]> gcc.gnu.org Git - gcc.git/blame - gcc/loop.c
(stmp-fixproto): Depend on stmp-headers, not LIBGCC2_DEPS.
[gcc.git] / gcc / loop.c
CommitLineData
b4ad7b23 1/* Move constant computations out of loops.
5fd8383e 2 Copyright (C) 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
b4ad7b23
RS
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This is the loop optimization pass of the compiler.
22 It finds invariant computations within loops and moves them
23 to the beginning of the loop. Then it identifies basic and
24 general induction variables. Strength reduction is applied to the general
25 induction variables, and induction variable elimination is applied to
26 the basic induction variables.
27
28 It also finds cases where
29 a register is set within the loop by zero-extending a narrower value
30 and changes these to zero the entire register once before the loop
31 and merely copy the low part within the loop.
32
33 Most of the complexity is in heuristics to decide when it is worth
34 while to do these things. */
35
ff2da9fc 36#include <stdio.h>
b4ad7b23
RS
37#include "config.h"
38#include "rtl.h"
39#include "obstack.h"
40#include "expr.h"
41#include "insn-config.h"
42#include "insn-flags.h"
43#include "regs.h"
44#include "hard-reg-set.h"
45#include "recog.h"
46#include "flags.h"
47#include "real.h"
b4ad7b23
RS
48#include "loop.h"
49
50/* Vector mapping INSN_UIDs to luids.
d45cf215 51 The luids are like uids but increase monotonically always.
b4ad7b23
RS
52 We use them to see whether a jump comes from outside a given loop. */
53
54int *uid_luid;
55
56/* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
57 number the insn is contained in. */
58
59int *uid_loop_num;
60
61/* 1 + largest uid of any insn. */
62
63int max_uid_for_loop;
64
65/* 1 + luid of last insn. */
66
67static int max_luid;
68
69/* Number of loops detected in current function. Used as index to the
70 next few tables. */
71
72static int max_loop_num;
73
74/* Indexed by loop number, contains the first and last insn of each loop. */
75
76static rtx *loop_number_loop_starts, *loop_number_loop_ends;
77
78/* For each loop, gives the containing loop number, -1 if none. */
79
80int *loop_outer_loop;
81
82/* Indexed by loop number, contains a nonzero value if the "loop" isn't
83 really a loop (an insn outside the loop branches into it). */
84
85static char *loop_invalid;
86
87/* Indexed by loop number, links together all LABEL_REFs which refer to
88 code labels outside the loop. Used by routines that need to know all
89 loop exits, such as final_biv_value and final_giv_value.
90
91 This does not include loop exits due to return instructions. This is
92 because all bivs and givs are pseudos, and hence must be dead after a
93 return, so the presense of a return does not affect any of the
94 optimizations that use this info. It is simpler to just not include return
95 instructions on this list. */
96
97rtx *loop_number_exit_labels;
98
99/* Holds the number of loop iterations. It is zero if the number could not be
5fd8383e
RK
100 calculated. Must be unsigned since the number of iterations can
101 be as high as 2^wordsize-1. For loops with a wider iterator, this number
102 will will be zero if the number of loop iterations is too large for an
103 unsigned integer to hold. */
b4ad7b23 104
5fd8383e 105unsigned HOST_WIDE_INT loop_n_iterations;
b4ad7b23
RS
106
107/* Nonzero if there is a subroutine call in the current loop.
108 (unknown_address_altered is also nonzero in this case.) */
109
110static int loop_has_call;
111
552bc76f
RS
112/* Nonzero if there is a volatile memory reference in the current
113 loop. */
114
115static int loop_has_volatile;
116
b4ad7b23
RS
117/* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
118 current loop. A continue statement will generate a branch to
119 NEXT_INSN (loop_continue). */
120
121static rtx loop_continue;
122
123/* Indexed by register number, contains the number of times the reg
124 is set during the loop being scanned.
125 During code motion, a negative value indicates a reg that has been
126 made a candidate; in particular -2 means that it is an candidate that
c5b7917e 127 we know is equal to a constant and -1 means that it is an candidate
b4ad7b23
RS
128 not known equal to a constant.
129 After code motion, regs moved have 0 (which is accurate now)
130 while the failed candidates have the original number of times set.
131
132 Therefore, at all times, == 0 indicates an invariant register;
133 < 0 a conditionally invariant one. */
134
135static short *n_times_set;
136
137/* Original value of n_times_set; same except that this value
138 is not set negative for a reg whose sets have been made candidates
139 and not set to 0 for a reg that is moved. */
140
141static short *n_times_used;
142
143/* Index by register number, 1 indicates that the register
144 cannot be moved or strength reduced. */
145
146static char *may_not_optimize;
147
148/* Nonzero means reg N has already been moved out of one loop.
149 This reduces the desire to move it out of another. */
150
151static char *moved_once;
152
153/* Array of MEMs that are stored in this loop. If there are too many to fit
154 here, we just turn on unknown_address_altered. */
155
156#define NUM_STORES 20
157static rtx loop_store_mems[NUM_STORES];
158
159/* Index of first available slot in above array. */
160static int loop_store_mems_idx;
161
162/* Nonzero if we don't know what MEMs were changed in the current loop.
552bc76f 163 This happens if the loop contains a call (in which case `loop_has_call'
b4ad7b23
RS
164 will also be set) or if we store into more than NUM_STORES MEMs. */
165
166static int unknown_address_altered;
167
168/* Count of movable (i.e. invariant) instructions discovered in the loop. */
169static int num_movables;
170
171/* Count of memory write instructions discovered in the loop. */
172static int num_mem_sets;
173
174/* Number of loops contained within the current one, including itself. */
175static int loops_enclosed;
176
177/* Bound on pseudo register number before loop optimization.
178 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
179int max_reg_before_loop;
180
181/* This obstack is used in product_cheap_p to allocate its rtl. It
182 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
183 If we used the same obstack that it did, we would be deallocating
184 that array. */
185
186static struct obstack temp_obstack;
187
188/* This is where the pointer to the obstack being used for RTL is stored. */
189
190extern struct obstack *rtl_obstack;
191
192#define obstack_chunk_alloc xmalloc
193#define obstack_chunk_free free
194
195extern char *oballoc ();
b4ad7b23
RS
196\f
197/* During the analysis of a loop, a chain of `struct movable's
198 is made to record all the movable insns found.
199 Then the entire chain can be scanned to decide which to move. */
200
201struct movable
202{
203 rtx insn; /* A movable insn */
204 rtx set_src; /* The expression this reg is set from. */
205 rtx set_dest; /* The destination of this SET. */
206 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
207 of any registers used within the LIBCALL. */
208 int consec; /* Number of consecutive following insns
209 that must be moved with this one. */
210 int regno; /* The register it sets */
211 short lifetime; /* lifetime of that register;
212 may be adjusted when matching movables
213 that load the same value are found. */
214 short savings; /* Number of insns we can move for this reg,
215 including other movables that force this
216 or match this one. */
217 unsigned int cond : 1; /* 1 if only conditionally movable */
218 unsigned int force : 1; /* 1 means MUST move this insn */
219 unsigned int global : 1; /* 1 means reg is live outside this loop */
220 /* If PARTIAL is 1, GLOBAL means something different:
221 that the reg is live outside the range from where it is set
222 to the following label. */
223 unsigned int done : 1; /* 1 inhibits further processing of this */
224
225 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
226 In particular, moving it does not make it
227 invariant. */
228 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
229 load SRC, rather than copying INSN. */
230 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
231 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
232 that we should avoid changing when clearing
233 the rest of the reg. */
234 struct movable *match; /* First entry for same value */
235 struct movable *forces; /* An insn that must be moved if this is */
236 struct movable *next;
237};
238
239FILE *loop_dump_stream;
240
241/* Forward declarations. */
242
243static void find_and_verify_loops ();
244static void mark_loop_jump ();
245static void prescan_loop ();
246static int reg_in_basic_block_p ();
247static int consec_sets_invariant_p ();
248static rtx libcall_other_reg ();
249static int labels_in_range_p ();
250static void count_loop_regs_set ();
251static void note_addr_stored ();
252static int loop_reg_used_before_p ();
253static void scan_loop ();
254static void replace_call_address ();
255static rtx skip_consec_insns ();
256static int libcall_benefit ();
257static void ignore_some_movables ();
258static void force_movables ();
259static void combine_movables ();
260static int rtx_equal_for_loop_p ();
261static void move_movables ();
262static void strength_reduce ();
263static int valid_initial_value_p ();
264static void find_mem_givs ();
265static void record_biv ();
266static void check_final_value ();
267static void record_giv ();
268static void update_giv_derive ();
b4ad7b23
RS
269static int basic_induction_var ();
270static rtx simplify_giv_expr ();
271static int general_induction_var ();
272static int consec_sets_giv ();
273static int check_dbra_loop ();
274static rtx express_from ();
275static int combine_givs_p ();
276static void combine_givs ();
277static int product_cheap_p ();
278static int maybe_eliminate_biv ();
279static int maybe_eliminate_biv_1 ();
280static int last_use_this_basic_block ();
281static void record_initial ();
282static void update_reg_last_use ();
283\f
284/* Relative gain of eliminating various kinds of operations. */
285int add_cost;
286#if 0
287int shift_cost;
288int mult_cost;
289#endif
290
291/* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
292 copy the value of the strength reduced giv to its original register. */
293int copy_cost;
294
295void
296init_loop ()
297{
298 char *free_point = (char *) oballoc (1);
6e1b9d9f 299 rtx reg = gen_rtx (REG, word_mode, 0);
5fd8383e 300 rtx pow2 = GEN_INT (32);
b4ad7b23
RS
301 rtx lea;
302 int i;
303
6e1b9d9f 304 add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
b4ad7b23
RS
305
306 /* We multiply by 2 to reconcile the difference in scale between
307 these two ways of computing costs. Otherwise the cost of a copy
308 will be far less than the cost of an add. */
5fd8383e 309
b4ad7b23 310 copy_cost = 2 * 2;
b4ad7b23
RS
311
312 /* Free the objects we just allocated. */
313 obfree (free_point);
314
315 /* Initialize the obstack used for rtl in product_cheap_p. */
316 gcc_obstack_init (&temp_obstack);
317}
318\f
319/* Entry point of this file. Perform loop optimization
320 on the current function. F is the first insn of the function
321 and DUMPFILE is a stream for output of a trace of actions taken
322 (or 0 if none should be output). */
323
324void
325loop_optimize (f, dumpfile)
326 /* f is the first instruction of a chain of insns for one function */
327 rtx f;
328 FILE *dumpfile;
329{
330 register rtx insn;
331 register int i;
332 rtx end;
333 rtx last_insn;
334
335 loop_dump_stream = dumpfile;
336
337 init_recog_no_volatile ();
338 init_alias_analysis ();
339
340 max_reg_before_loop = max_reg_num ();
341
342 moved_once = (char *) alloca (max_reg_before_loop);
343 bzero (moved_once, max_reg_before_loop);
344
345 regs_may_share = 0;
346
347 /* Count the number of loops. */
348
349 max_loop_num = 0;
350 for (insn = f; insn; insn = NEXT_INSN (insn))
351 {
352 if (GET_CODE (insn) == NOTE
353 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
354 max_loop_num++;
355 }
356
357 /* Don't waste time if no loops. */
358 if (max_loop_num == 0)
359 return;
360
361 /* Get size to use for tables indexed by uids.
362 Leave some space for labels allocated by find_and_verify_loops. */
1c01e9df 363 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
b4ad7b23
RS
364
365 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
366 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
367
368 bzero (uid_luid, max_uid_for_loop * sizeof (int));
369 bzero (uid_loop_num, max_uid_for_loop * sizeof (int));
370
371 /* Allocate tables for recording each loop. We set each entry, so they need
372 not be zeroed. */
373 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
374 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
375 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
376 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
377 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
378
b4ad7b23
RS
379 /* Find and process each loop.
380 First, find them, and record them in order of their beginnings. */
381 find_and_verify_loops (f);
382
383 /* Now find all register lifetimes. This must be done after
384 find_and_verify_loops, because it might reorder the insns in the
385 function. */
386 reg_scan (f, max_reg_num (), 1);
387
1c01e9df
TW
388 /* See if we went too far. */
389 if (get_max_uid () > max_uid_for_loop)
390 abort ();
391
b4ad7b23
RS
392 /* Compute the mapping from uids to luids.
393 LUIDs are numbers assigned to insns, like uids,
394 except that luids increase monotonically through the code.
395 Don't assign luids to line-number NOTEs, so that the distance in luids
396 between two insns is not affected by -g. */
397
398 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
399 {
400 last_insn = insn;
401 if (GET_CODE (insn) != NOTE
402 || NOTE_LINE_NUMBER (insn) <= 0)
403 uid_luid[INSN_UID (insn)] = ++i;
404 else
405 /* Give a line number note the same luid as preceding insn. */
406 uid_luid[INSN_UID (insn)] = i;
407 }
408
409 max_luid = i + 1;
410
411 /* Don't leave gaps in uid_luid for insns that have been
412 deleted. It is possible that the first or last insn
413 using some register has been deleted by cross-jumping.
414 Make sure that uid_luid for that former insn's uid
415 points to the general area where that insn used to be. */
416 for (i = 0; i < max_uid_for_loop; i++)
417 {
418 uid_luid[0] = uid_luid[i];
419 if (uid_luid[0] != 0)
420 break;
421 }
422 for (i = 0; i < max_uid_for_loop; i++)
423 if (uid_luid[i] == 0)
424 uid_luid[i] = uid_luid[i - 1];
425
426 /* Create a mapping from loops to BLOCK tree nodes. */
427 if (flag_unroll_loops && write_symbols != NO_DEBUG)
07e857c2 428 find_loop_tree_blocks ();
b4ad7b23
RS
429
430 /* Now scan the loops, last ones first, since this means inner ones are done
431 before outer ones. */
432 for (i = max_loop_num-1; i >= 0; i--)
433 if (! loop_invalid[i] && loop_number_loop_ends[i])
434 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
435 max_reg_num ());
07e857c2
JW
436
437 /* If debugging and unrolling loops, we must replicate the tree nodes
438 corresponding to the blocks inside the loop, so that the original one
439 to one mapping will remain. */
440 if (flag_unroll_loops && write_symbols != NO_DEBUG)
441 unroll_block_trees ();
b4ad7b23
RS
442}
443\f
444/* Optimize one loop whose start is LOOP_START and end is END.
445 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
446 NOTE_INSN_LOOP_END. */
447
448/* ??? Could also move memory writes out of loops if the destination address
449 is invariant, the source is invariant, the memory write is not volatile,
450 and if we can prove that no read inside the loop can read this address
451 before the write occurs. If there is a read of this address after the
452 write, then we can also mark the memory read as invariant. */
453
454static void
455scan_loop (loop_start, end, nregs)
456 rtx loop_start, end;
457 int nregs;
458{
459 register int i;
460 register rtx p;
461 /* 1 if we are scanning insns that could be executed zero times. */
462 int maybe_never = 0;
463 /* 1 if we are scanning insns that might never be executed
464 due to a subroutine call which might exit before they are reached. */
465 int call_passed = 0;
466 /* For a rotated loop that is entered near the bottom,
467 this is the label at the top. Otherwise it is zero. */
468 rtx loop_top = 0;
469 /* Jump insn that enters the loop, or 0 if control drops in. */
470 rtx loop_entry_jump = 0;
471 /* Place in the loop where control enters. */
472 rtx scan_start;
473 /* Number of insns in the loop. */
474 int insn_count;
475 int in_libcall = 0;
476 int tem;
477 rtx temp;
478 /* The SET from an insn, if it is the only SET in the insn. */
479 rtx set, set1;
480 /* Chain describing insns movable in current loop. */
481 struct movable *movables = 0;
482 /* Last element in `movables' -- so we can add elements at the end. */
483 struct movable *last_movable = 0;
484 /* Ratio of extra register life span we can justify
485 for saving an instruction. More if loop doesn't call subroutines
486 since in that case saving an insn makes more difference
487 and more registers are available. */
488 int threshold;
489 /* If we have calls, contains the insn in which a register was used
490 if it was used exactly once; contains const0_rtx if it was used more
491 than once. */
492 rtx *reg_single_usage = 0;
493
494 n_times_set = (short *) alloca (nregs * sizeof (short));
495 n_times_used = (short *) alloca (nregs * sizeof (short));
496 may_not_optimize = (char *) alloca (nregs);
497
498 /* Determine whether this loop starts with a jump down to a test at
499 the end. This will occur for a small number of loops with a test
500 that is too complex to duplicate in front of the loop.
501
502 We search for the first insn or label in the loop, skipping NOTEs.
503 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
504 (because we might have a loop executed only once that contains a
505 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
506 (in case we have a degenerate loop).
507
508 Note that if we mistakenly think that a loop is entered at the top
509 when, in fact, it is entered at the exit test, the only effect will be
510 slightly poorer optimization. Making the opposite error can generate
511 incorrect code. Since very few loops now start with a jump to the
512 exit test, the code here to detect that case is very conservative. */
513
514 for (p = NEXT_INSN (loop_start);
515 p != end
516 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
517 && (GET_CODE (p) != NOTE
518 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
519 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
520 p = NEXT_INSN (p))
521 ;
522
523 scan_start = p;
524
525 /* Set up variables describing this loop. */
526 prescan_loop (loop_start, end);
527 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
528
529 /* If loop has a jump before the first label,
530 the true entry is the target of that jump.
531 Start scan from there.
532 But record in LOOP_TOP the place where the end-test jumps
533 back to so we can scan that after the end of the loop. */
534 if (GET_CODE (p) == JUMP_INSN)
535 {
536 loop_entry_jump = p;
537
538 /* Loop entry must be unconditional jump (and not a RETURN) */
539 if (simplejump_p (p)
540 && JUMP_LABEL (p) != 0
541 /* Check to see whether the jump actually
542 jumps out of the loop (meaning it's no loop).
543 This case can happen for things like
544 do {..} while (0). If this label was generated previously
545 by loop, we can't tell anything about it and have to reject
546 the loop. */
547 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
548 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
549 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
550 {
551 loop_top = next_label (scan_start);
552 scan_start = JUMP_LABEL (p);
553 }
554 }
555
556 /* If SCAN_START was an insn created by loop, we don't know its luid
557 as required by loop_reg_used_before_p. So skip such loops. (This
558 test may never be true, but it's best to play it safe.)
559
560 Also, skip loops where we do not start scanning at a label. This
561 test also rejects loops starting with a JUMP_INSN that failed the
562 test above. */
563
564 if (INSN_UID (scan_start) >= max_uid_for_loop
565 || GET_CODE (scan_start) != CODE_LABEL)
566 {
567 if (loop_dump_stream)
568 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
569 INSN_UID (loop_start), INSN_UID (end));
570 return;
571 }
572
573 /* Count number of times each reg is set during this loop.
574 Set may_not_optimize[I] if it is not safe to move out
575 the setting of register I. If this loop has calls, set
576 reg_single_usage[I]. */
577
578 bzero (n_times_set, nregs * sizeof (short));
579 bzero (may_not_optimize, nregs);
580
581 if (loop_has_call)
582 {
583 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
584 bzero (reg_single_usage, nregs * sizeof (rtx));
585 }
586
587 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
588 may_not_optimize, reg_single_usage, &insn_count, nregs);
589
590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
591 may_not_optimize[i] = 1, n_times_set[i] = 1;
592 bcopy (n_times_set, n_times_used, nregs * sizeof (short));
593
594 if (loop_dump_stream)
595 {
596 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
597 INSN_UID (loop_start), INSN_UID (end), insn_count);
598 if (loop_continue)
599 fprintf (loop_dump_stream, "Continue at insn %d.\n",
600 INSN_UID (loop_continue));
601 }
602
603 /* Scan through the loop finding insns that are safe to move.
d45cf215 604 Set n_times_set negative for the reg being set, so that
b4ad7b23
RS
605 this reg will be considered invariant for subsequent insns.
606 We consider whether subsequent insns use the reg
607 in deciding whether it is worth actually moving.
608
609 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
610 and therefore it is possible that the insns we are scanning
611 would never be executed. At such times, we must make sure
612 that it is safe to execute the insn once instead of zero times.
613 When MAYBE_NEVER is 0, all insns will be executed at least once
614 so that is not a problem. */
615
616 p = scan_start;
617 while (1)
618 {
619 p = NEXT_INSN (p);
620 /* At end of a straight-in loop, we are done.
621 At end of a loop entered at the bottom, scan the top. */
622 if (p == scan_start)
623 break;
624 if (p == end)
625 {
626 if (loop_top != 0)
627 p = NEXT_INSN (loop_top);
628 else
629 break;
630 if (p == scan_start)
631 break;
632 }
633
634 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
5fd8383e 635 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
b4ad7b23
RS
636 in_libcall = 1;
637 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
5fd8383e 638 && find_reg_note (p, REG_RETVAL, NULL_RTX))
b4ad7b23
RS
639 in_libcall = 0;
640
641 if (GET_CODE (p) == INSN
642 && (set = single_set (p))
643 && GET_CODE (SET_DEST (set)) == REG
644 && ! may_not_optimize[REGNO (SET_DEST (set))])
645 {
646 int tem1 = 0;
647 int tem2 = 0;
648 int move_insn = 0;
649 rtx src = SET_SRC (set);
650 rtx dependencies = 0;
651
652 /* Figure out what to use as a source of this insn. If a REG_EQUIV
653 note is given or if a REG_EQUAL note with a constant operand is
654 specified, use it as the source and mark that we should move
655 this insn by calling emit_move_insn rather that duplicating the
656 insn.
657
658 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
659 is present. */
5fd8383e 660 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
b4ad7b23
RS
661 if (temp)
662 src = XEXP (temp, 0), move_insn = 1;
663 else
664 {
5fd8383e 665 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
b4ad7b23
RS
666 if (temp && CONSTANT_P (XEXP (temp, 0)))
667 src = XEXP (temp, 0), move_insn = 1;
5fd8383e 668 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
b4ad7b23
RS
669 {
670 src = XEXP (temp, 0);
671 /* A libcall block can use regs that don't appear in
672 the equivalent expression. To move the libcall,
673 we must move those regs too. */
674 dependencies = libcall_other_reg (p, src);
675 }
676 }
677
678 /* Don't try to optimize a register that was made
679 by loop-optimization for an inner loop.
680 We don't know its life-span, so we can't compute the benefit. */
681 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
682 ;
683 /* In order to move a register, we need to have one of three cases:
684 (1) it is used only in the same basic block as the set
6ad216ad
RS
685 (2) it is not a user variable and it is not used in the
686 exit test (this can cause the variable to be used
687 before it is set just like a user-variable).
b4ad7b23
RS
688 (3) the set is guaranteed to be executed once the loop starts,
689 and the reg is not used until after that. */
690 else if (! ((! maybe_never
691 && ! loop_reg_used_before_p (set, p, loop_start,
692 scan_start, end))
6ad216ad
RS
693 || (! REG_USERVAR_P (SET_DEST (PATTERN (p)))
694 && ! REG_LOOP_TEST_P (SET_DEST (PATTERN (p))))
b4ad7b23
RS
695 || reg_in_basic_block_p (p, SET_DEST (PATTERN (p)))))
696 ;
697 else if ((tem = invariant_p (src))
698 && (dependencies == 0
699 || (tem2 = invariant_p (dependencies)) != 0)
700 && (n_times_set[REGNO (SET_DEST (set))] == 1
701 || (tem1
702 = consec_sets_invariant_p (SET_DEST (set),
703 n_times_set[REGNO (SET_DEST (set))],
704 p)))
705 /* If the insn can cause a trap (such as divide by zero),
706 can't move it unless it's guaranteed to be executed
707 once loop is entered. Even a function call might
708 prevent the trap insn from being reached
709 (since it might exit!) */
710 && ! ((maybe_never || call_passed)
711 && may_trap_p (src)))
712 {
713 register struct movable *m;
714 register int regno = REGNO (SET_DEST (set));
715
716 /* A potential lossage is where we have a case where two insns
717 can be combined as long as they are both in the loop, but
718 we move one of them outside the loop. For large loops,
719 this can lose. The most common case of this is the address
720 of a function being called.
721
722 Therefore, if this register is marked as being used exactly
723 once if we are in a loop with calls (a "large loop"), see if
724 we can replace the usage of this register with the source
725 of this SET. If we can, delete this insn.
726
727 Don't do this if P has a REG_RETVAL note or if we have
728 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
729
730 if (reg_single_usage && reg_single_usage[regno] != 0
731 && reg_single_usage[regno] != const0_rtx
732 && regno_first_uid[regno] == INSN_UID (p)
733 && (regno_last_uid[regno]
734 == INSN_UID (reg_single_usage[regno]))
735 && n_times_set[REGNO (SET_DEST (set))] == 1
736 && ! side_effects_p (SET_SRC (set))
5fd8383e 737 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
b4ad7b23
RS
738#ifdef SMALL_REGISTER_CLASSES
739 && ! (GET_CODE (SET_SRC (set)) == REG
740 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
741#endif
742 /* This test is not redundant; SET_SRC (set) might be
743 a call-clobbered register and the life of REGNO
744 might span a call. */
745 && ! modified_between_p (SET_SRC (set), p,
746 reg_single_usage[regno])
747 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
748 reg_single_usage[regno]))
749 {
750 /* Replace any usage in a REG_EQUAL note. */
751 REG_NOTES (reg_single_usage[regno])
752 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
753 SET_DEST (set), SET_SRC (set));
754
755 PUT_CODE (p, NOTE);
756 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
757 NOTE_SOURCE_FILE (p) = 0;
758 n_times_set[regno] = 0;
759 continue;
760 }
761
762 m = (struct movable *) alloca (sizeof (struct movable));
763 m->next = 0;
764 m->insn = p;
765 m->set_src = src;
766 m->dependencies = dependencies;
767 m->set_dest = SET_DEST (set);
768 m->force = 0;
769 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
770 m->done = 0;
771 m->forces = 0;
772 m->partial = 0;
773 m->move_insn = move_insn;
5fd8383e 774 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
b4ad7b23
RS
775 m->savemode = VOIDmode;
776 m->regno = regno;
777 /* Set M->cond if either invariant_p or consec_sets_invariant_p
778 returned 2 (only conditionally invariant). */
779 m->cond = ((tem | tem1 | tem2) > 1);
780 m->global = (uid_luid[regno_last_uid[regno]] > INSN_LUID (end)
781 || uid_luid[regno_first_uid[regno]] < INSN_LUID (loop_start));
782 m->match = 0;
783 m->lifetime = (uid_luid[regno_last_uid[regno]]
784 - uid_luid[regno_first_uid[regno]]);
785 m->savings = n_times_used[regno];
5fd8383e 786 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
b4ad7b23
RS
787 m->savings += libcall_benefit (p);
788 n_times_set[regno] = move_insn ? -2 : -1;
789 /* Add M to the end of the chain MOVABLES. */
790 if (movables == 0)
791 movables = m;
792 else
793 last_movable->next = m;
794 last_movable = m;
795
796 if (m->consec > 0)
797 {
798 /* Skip this insn, not checking REG_LIBCALL notes. */
202a34fd 799 p = next_nonnote_insn (p);
b4ad7b23
RS
800 /* Skip the consecutive insns, if there are any. */
801 p = skip_consec_insns (p, m->consec);
802 /* Back up to the last insn of the consecutive group. */
803 p = prev_nonnote_insn (p);
804
805 /* We must now reset m->move_insn, m->is_equiv, and possibly
806 m->set_src to correspond to the effects of all the
807 insns. */
5fd8383e 808 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
b4ad7b23
RS
809 if (temp)
810 m->set_src = XEXP (temp, 0), m->move_insn = 1;
811 else
812 {
5fd8383e 813 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
b4ad7b23
RS
814 if (temp && CONSTANT_P (XEXP (temp, 0)))
815 m->set_src = XEXP (temp, 0), m->move_insn = 1;
816 else
817 m->move_insn = 0;
818
819 }
5fd8383e 820 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
b4ad7b23
RS
821 }
822 }
823 /* If this register is always set within a STRICT_LOW_PART
824 or set to zero, then its high bytes are constant.
825 So clear them outside the loop and within the loop
826 just load the low bytes.
827 We must check that the machine has an instruction to do so.
828 Also, if the value loaded into the register
829 depends on the same register, this cannot be done. */
830 else if (SET_SRC (set) == const0_rtx
831 && GET_CODE (NEXT_INSN (p)) == INSN
832 && (set1 = single_set (NEXT_INSN (p)))
833 && GET_CODE (set1) == SET
834 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
835 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
836 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
837 == SET_DEST (set))
838 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
839 {
840 register int regno = REGNO (SET_DEST (set));
841 if (n_times_set[regno] == 2)
842 {
843 register struct movable *m;
844 m = (struct movable *) alloca (sizeof (struct movable));
845 m->next = 0;
846 m->insn = p;
847 m->set_dest = SET_DEST (set);
848 m->dependencies = 0;
849 m->force = 0;
850 m->consec = 0;
851 m->done = 0;
852 m->forces = 0;
853 m->move_insn = 0;
854 m->partial = 1;
855 /* If the insn may not be executed on some cycles,
856 we can't clear the whole reg; clear just high part.
857 Not even if the reg is used only within this loop.
858 Consider this:
859 while (1)
860 while (s != t) {
861 if (foo ()) x = *s;
862 use (x);
863 }
864 Clearing x before the inner loop could clobber a value
865 being saved from the last time around the outer loop.
866 However, if the reg is not used outside this loop
867 and all uses of the register are in the same
868 basic block as the store, there is no problem.
869
870 If this insn was made by loop, we don't know its
871 INSN_LUID and hence must make a conservative
872 assumption. */
873 m->global = (INSN_UID (p) >= max_uid_for_loop
874 || (uid_luid[regno_last_uid[regno]]
875 > INSN_LUID (end))
876 || (uid_luid[regno_first_uid[regno]]
877 < INSN_LUID (p))
878 || (labels_in_range_p
879 (p, uid_luid[regno_first_uid[regno]])));
880 if (maybe_never && m->global)
881 m->savemode = GET_MODE (SET_SRC (set1));
882 else
883 m->savemode = VOIDmode;
884 m->regno = regno;
885 m->cond = 0;
886 m->match = 0;
887 m->lifetime = (uid_luid[regno_last_uid[regno]]
888 - uid_luid[regno_first_uid[regno]]);
889 m->savings = 1;
890 n_times_set[regno] = -1;
891 /* Add M to the end of the chain MOVABLES. */
892 if (movables == 0)
893 movables = m;
894 else
895 last_movable->next = m;
896 last_movable = m;
897 }
898 }
899 }
900 /* Past a call insn, we get to insns which might not be executed
901 because the call might exit. This matters for insns that trap.
902 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
903 so they don't count. */
904 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
905 call_passed = 1;
906 /* Past a label or a jump, we get to insns for which we
907 can't count on whether or how many times they will be
908 executed during each iteration. Therefore, we can
909 only move out sets of trivial variables
910 (those not used after the loop). */
911 /* This code appears in three places, once in scan_loop, and twice
912 in strength_reduce. */
913 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
914 /* If we enter the loop in the middle, and scan around to the
915 beginning, don't set maybe_never for that. This must be an
916 unconditional jump, otherwise the code at the top of the
917 loop might never be executed. Unconditional jumps are
918 followed a by barrier then loop end. */
919 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
920 && NEXT_INSN (NEXT_INSN (p)) == end
921 && simplejump_p (p)))
922 maybe_never = 1;
923 /* At the virtual top of a converted loop, insns are again known to
924 be executed: logically, the loop begins here even though the exit
925 code has been duplicated. */
926 else if (GET_CODE (p) == NOTE
927 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
928 maybe_never = call_passed = 0;
929 }
930
931 /* If one movable subsumes another, ignore that other. */
932
933 ignore_some_movables (movables);
934
935 /* For each movable insn, see if the reg that it loads
936 leads when it dies right into another conditionally movable insn.
937 If so, record that the second insn "forces" the first one,
938 since the second can be moved only if the first is. */
939
940 force_movables (movables);
941
942 /* See if there are multiple movable insns that load the same value.
943 If there are, make all but the first point at the first one
944 through the `match' field, and add the priorities of them
945 all together as the priority of the first. */
946
947 combine_movables (movables, nregs);
948
949 /* Now consider each movable insn to decide whether it is worth moving.
950 Store 0 in n_times_set for each reg that is moved. */
951
952 move_movables (movables, threshold,
953 insn_count, loop_start, end, nregs);
954
955 /* Now candidates that still are negative are those not moved.
956 Change n_times_set to indicate that those are not actually invariant. */
957 for (i = 0; i < nregs; i++)
958 if (n_times_set[i] < 0)
959 n_times_set[i] = n_times_used[i];
960
961 if (flag_strength_reduce)
962 strength_reduce (scan_start, end, loop_top,
963 insn_count, loop_start, end);
964}
965\f
966/* Add elements to *OUTPUT to record all the pseudo-regs
967 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
968
969void
970record_excess_regs (in_this, not_in_this, output)
971 rtx in_this, not_in_this;
972 rtx *output;
973{
974 enum rtx_code code;
975 char *fmt;
976 int i;
977
978 code = GET_CODE (in_this);
979
980 switch (code)
981 {
982 case PC:
983 case CC0:
984 case CONST_INT:
985 case CONST_DOUBLE:
986 case CONST:
987 case SYMBOL_REF:
988 case LABEL_REF:
989 return;
990
991 case REG:
992 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
993 && ! reg_mentioned_p (in_this, not_in_this))
994 *output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
995 return;
996 }
997
998 fmt = GET_RTX_FORMAT (code);
999 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1000 {
1001 int j;
1002
1003 switch (fmt[i])
1004 {
1005 case 'E':
1006 for (j = 0; j < XVECLEN (in_this, i); j++)
1007 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1008 break;
1009
1010 case 'e':
1011 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1012 break;
1013 }
1014 }
1015}
1016\f
1017/* Check what regs are referred to in the libcall block ending with INSN,
1018 aside from those mentioned in the equivalent value.
1019 If there are none, return 0.
1020 If there are one or more, return an EXPR_LIST containing all of them. */
1021
1022static rtx
1023libcall_other_reg (insn, equiv)
1024 rtx insn, equiv;
1025{
5fd8383e 1026 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
b4ad7b23
RS
1027 rtx p = XEXP (note, 0);
1028 rtx output = 0;
1029
1030 /* First, find all the regs used in the libcall block
1031 that are not mentioned as inputs to the result. */
1032
1033 while (p != insn)
1034 {
1035 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1036 || GET_CODE (p) == CALL_INSN)
1037 record_excess_regs (PATTERN (p), equiv, &output);
1038 p = NEXT_INSN (p);
1039 }
1040
1041 return output;
1042}
1043\f
1044/* Return 1 if all uses of REG
1045 are between INSN and the end of the basic block. */
1046
1047static int
1048reg_in_basic_block_p (insn, reg)
1049 rtx insn, reg;
1050{
1051 int regno = REGNO (reg);
1052 rtx p;
1053
1054 if (regno_first_uid[regno] != INSN_UID (insn))
1055 return 0;
1056
1057 /* Search this basic block for the already recorded last use of the reg. */
1058 for (p = insn; p; p = NEXT_INSN (p))
1059 {
1060 switch (GET_CODE (p))
1061 {
1062 case NOTE:
1063 break;
1064
1065 case INSN:
1066 case CALL_INSN:
1067 /* Ordinary insn: if this is the last use, we win. */
1068 if (regno_last_uid[regno] == INSN_UID (p))
1069 return 1;
1070 break;
1071
1072 case JUMP_INSN:
1073 /* Jump insn: if this is the last use, we win. */
1074 if (regno_last_uid[regno] == INSN_UID (p))
1075 return 1;
1076 /* Otherwise, it's the end of the basic block, so we lose. */
1077 return 0;
1078
1079 case CODE_LABEL:
1080 case BARRIER:
1081 /* It's the end of the basic block, so we lose. */
1082 return 0;
1083 }
1084 }
1085
1086 /* The "last use" doesn't follow the "first use"?? */
1087 abort ();
1088}
1089\f
1090/* Compute the benefit of eliminating the insns in the block whose
1091 last insn is LAST. This may be a group of insns used to compute a
1092 value directly or can contain a library call. */
1093
1094static int
1095libcall_benefit (last)
1096 rtx last;
1097{
1098 rtx insn;
1099 int benefit = 0;
1100
5fd8383e 1101 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
b4ad7b23
RS
1102 insn != last; insn = NEXT_INSN (insn))
1103 {
1104 if (GET_CODE (insn) == CALL_INSN)
1105 benefit += 10; /* Assume at least this many insns in a library
1106 routine. */
1107 else if (GET_CODE (insn) == INSN
1108 && GET_CODE (PATTERN (insn)) != USE
1109 && GET_CODE (PATTERN (insn)) != CLOBBER)
1110 benefit++;
1111 }
1112
1113 return benefit;
1114}
1115\f
1116/* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1117
1118static rtx
1119skip_consec_insns (insn, count)
1120 rtx insn;
1121 int count;
1122{
1123 for (; count > 0; count--)
1124 {
1125 rtx temp;
1126
1127 /* If first insn of libcall sequence, skip to end. */
1128 /* Do this at start of loop, since INSN is guaranteed to
1129 be an insn here. */
1130 if (GET_CODE (insn) != NOTE
5fd8383e 1131 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
b4ad7b23
RS
1132 insn = XEXP (temp, 0);
1133
1134 do insn = NEXT_INSN (insn);
1135 while (GET_CODE (insn) == NOTE);
1136 }
1137
1138 return insn;
1139}
1140
1141/* Ignore any movable whose insn falls within a libcall
1142 which is part of another movable.
1143 We make use of the fact that the movable for the libcall value
1144 was made later and so appears later on the chain. */
1145
1146static void
1147ignore_some_movables (movables)
1148 struct movable *movables;
1149{
1150 register struct movable *m, *m1;
1151
1152 for (m = movables; m; m = m->next)
1153 {
1154 /* Is this a movable for the value of a libcall? */
5fd8383e 1155 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
b4ad7b23
RS
1156 if (note)
1157 {
1158 rtx insn;
1159 /* Check for earlier movables inside that range,
1160 and mark them invalid. We cannot use LUIDs here because
1161 insns created by loop.c for prior loops don't have LUIDs.
1162 Rather than reject all such insns from movables, we just
1163 explicitly check each insn in the libcall (since invariant
1164 libcalls aren't that common). */
1165 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1166 for (m1 = movables; m1 != m; m1 = m1->next)
1167 if (m1->insn == insn)
1168 m1->done = 1;
1169 }
1170 }
1171}
1172
1173/* For each movable insn, see if the reg that it loads
1174 leads when it dies right into another conditionally movable insn.
1175 If so, record that the second insn "forces" the first one,
1176 since the second can be moved only if the first is. */
1177
1178static void
1179force_movables (movables)
1180 struct movable *movables;
1181{
1182 register struct movable *m, *m1;
1183 for (m1 = movables; m1; m1 = m1->next)
1184 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1185 if (!m1->partial && !m1->done)
1186 {
1187 int regno = m1->regno;
1188 for (m = m1->next; m; m = m->next)
1189 /* ??? Could this be a bug? What if CSE caused the
1190 register of M1 to be used after this insn?
1191 Since CSE does not update regno_last_uid,
1192 this insn M->insn might not be where it dies.
1193 But very likely this doesn't matter; what matters is
1194 that M's reg is computed from M1's reg. */
1195 if (INSN_UID (m->insn) == regno_last_uid[regno]
1196 && !m->done)
1197 break;
1198 if (m != 0 && m->set_src == m1->set_dest
1199 /* If m->consec, m->set_src isn't valid. */
1200 && m->consec == 0)
1201 m = 0;
1202
1203 /* Increase the priority of the moving the first insn
1204 since it permits the second to be moved as well. */
1205 if (m != 0)
1206 {
1207 m->forces = m1;
1208 m1->lifetime += m->lifetime;
1209 m1->savings += m1->savings;
1210 }
1211 }
1212}
1213\f
1214/* Find invariant expressions that are equal and can be combined into
1215 one register. */
1216
1217static void
1218combine_movables (movables, nregs)
1219 struct movable *movables;
1220 int nregs;
1221{
1222 register struct movable *m;
1223 char *matched_regs = (char *) alloca (nregs);
1224 enum machine_mode mode;
1225
1226 /* Regs that are set more than once are not allowed to match
1227 or be matched. I'm no longer sure why not. */
1228 /* Perhaps testing m->consec_sets would be more appropriate here? */
1229
1230 for (m = movables; m; m = m->next)
1231 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1232 {
1233 register struct movable *m1;
1234 int regno = m->regno;
1235 rtx reg_note, reg_note1;
1236
1237 bzero (matched_regs, nregs);
1238 matched_regs[regno] = 1;
1239
1240 for (m1 = movables; m1; m1 = m1->next)
1241 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1242 /* A reg used outside the loop mustn't be eliminated. */
1243 && !m1->global
1244 /* A reg used for zero-extending mustn't be eliminated. */
1245 && !m1->partial
1246 && (matched_regs[m1->regno]
1247 ||
1248 (
1249 /* Can combine regs with different modes loaded from the
1250 same constant only if the modes are the same or
1251 if both are integer modes with M wider or the same
1252 width as M1. The check for integer is redundant, but
1253 safe, since the only case of differing destination
1254 modes with equal sources is when both sources are
1255 VOIDmode, i.e., CONST_INT. */
1256 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1257 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1258 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1259 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1260 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1261 /* See if the source of M1 says it matches M. */
1262 && ((GET_CODE (m1->set_src) == REG
1263 && matched_regs[REGNO (m1->set_src)])
1264 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1265 movables))))
1266 && ((m->dependencies == m1->dependencies)
1267 || rtx_equal_p (m->dependencies, m1->dependencies)))
1268 {
1269 m->lifetime += m1->lifetime;
1270 m->savings += m1->savings;
1271 m1->done = 1;
1272 m1->match = m;
1273 matched_regs[m1->regno] = 1;
1274 }
1275 }
1276
1277 /* Now combine the regs used for zero-extension.
1278 This can be done for those not marked `global'
1279 provided their lives don't overlap. */
1280
1281 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1282 mode = GET_MODE_WIDER_MODE (mode))
1283 {
1284 register struct movable *m0 = 0;
1285
1286 /* Combine all the registers for extension from mode MODE.
1287 Don't combine any that are used outside this loop. */
1288 for (m = movables; m; m = m->next)
1289 if (m->partial && ! m->global
1290 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1291 {
1292 register struct movable *m1;
1293 int first = uid_luid[regno_first_uid[m->regno]];
1294 int last = uid_luid[regno_last_uid[m->regno]];
1295
1296 if (m0 == 0)
1297 {
1298 /* First one: don't check for overlap, just record it. */
1299 m0 = m;
1300 continue;
1301 }
1302
1303 /* Make sure they extend to the same mode.
1304 (Almost always true.) */
1305 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1306 continue;
1307
1308 /* We already have one: check for overlap with those
1309 already combined together. */
1310 for (m1 = movables; m1 != m; m1 = m1->next)
1311 if (m1 == m0 || (m1->partial && m1->match == m0))
1312 if (! (uid_luid[regno_first_uid[m1->regno]] > last
1313 || uid_luid[regno_last_uid[m1->regno]] < first))
1314 goto overlap;
1315
1316 /* No overlap: we can combine this with the others. */
1317 m0->lifetime += m->lifetime;
1318 m0->savings += m->savings;
1319 m->done = 1;
1320 m->match = m0;
1321
1322 overlap: ;
1323 }
1324 }
1325}
1326\f
1327/* Return 1 if regs X and Y will become the same if moved. */
1328
1329static int
1330regs_match_p (x, y, movables)
1331 rtx x, y;
1332 struct movable *movables;
1333{
1334 int xn = REGNO (x);
1335 int yn = REGNO (y);
1336 struct movable *mx, *my;
1337
1338 for (mx = movables; mx; mx = mx->next)
1339 if (mx->regno == xn)
1340 break;
1341
1342 for (my = movables; my; my = my->next)
1343 if (my->regno == yn)
1344 break;
1345
1346 return (mx && my
1347 && ((mx->match == my->match && mx->match != 0)
1348 || mx->match == my
1349 || mx == my->match));
1350}
1351
1352/* Return 1 if X and Y are identical-looking rtx's.
1353 This is the Lisp function EQUAL for rtx arguments.
1354
1355 If two registers are matching movables or a movable register and an
1356 equivalent constant, consider them equal. */
1357
1358static int
1359rtx_equal_for_loop_p (x, y, movables)
1360 rtx x, y;
1361 struct movable *movables;
1362{
1363 register int i;
1364 register int j;
1365 register struct movable *m;
1366 register enum rtx_code code;
1367 register char *fmt;
1368
1369 if (x == y)
1370 return 1;
1371 if (x == 0 || y == 0)
1372 return 0;
1373
1374 code = GET_CODE (x);
1375
1376 /* If we have a register and a constant, they may sometimes be
1377 equal. */
1378 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1379 && CONSTANT_P (y))
1380 for (m = movables; m; m = m->next)
1381 if (m->move_insn && m->regno == REGNO (x)
1382 && rtx_equal_p (m->set_src, y))
1383 return 1;
1384
1385 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1386 && CONSTANT_P (x))
1387 for (m = movables; m; m = m->next)
1388 if (m->move_insn && m->regno == REGNO (y)
1389 && rtx_equal_p (m->set_src, x))
1390 return 1;
1391
1392 /* Otherwise, rtx's of different codes cannot be equal. */
1393 if (code != GET_CODE (y))
1394 return 0;
1395
1396 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1397 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1398
1399 if (GET_MODE (x) != GET_MODE (y))
1400 return 0;
1401
1402 /* These three types of rtx's can be compared nonrecursively. */
1403 if (code == REG)
1404 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1405
1406 if (code == LABEL_REF)
1407 return XEXP (x, 0) == XEXP (y, 0);
1408 if (code == SYMBOL_REF)
1409 return XSTR (x, 0) == XSTR (y, 0);
1410
1411 /* Compare the elements. If any pair of corresponding elements
1412 fail to match, return 0 for the whole things. */
1413
1414 fmt = GET_RTX_FORMAT (code);
1415 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1416 {
1417 switch (fmt[i])
1418 {
5fd8383e
RK
1419 case 'w':
1420 if (XWINT (x, i) != XWINT (y, i))
1421 return 0;
1422 break;
1423
b4ad7b23
RS
1424 case 'i':
1425 if (XINT (x, i) != XINT (y, i))
1426 return 0;
1427 break;
1428
1429 case 'E':
1430 /* Two vectors must have the same length. */
1431 if (XVECLEN (x, i) != XVECLEN (y, i))
1432 return 0;
1433
1434 /* And the corresponding elements must match. */
1435 for (j = 0; j < XVECLEN (x, i); j++)
1436 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1437 return 0;
1438 break;
1439
1440 case 'e':
1441 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1442 return 0;
1443 break;
1444
1445 case 's':
1446 if (strcmp (XSTR (x, i), XSTR (y, i)))
1447 return 0;
1448 break;
1449
1450 case 'u':
1451 /* These are just backpointers, so they don't matter. */
1452 break;
1453
1454 case '0':
1455 break;
1456
1457 /* It is believed that rtx's at this level will never
1458 contain anything but integers and other rtx's,
1459 except for within LABEL_REFs and SYMBOL_REFs. */
1460 default:
1461 abort ();
1462 }
1463 }
1464 return 1;
1465}
1466\f
c160c628
RK
1467/* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1468 insns in INSNS which use thet reference. */
1469
1470static void
1471add_label_notes (x, insns)
1472 rtx x;
1473 rtx insns;
1474{
1475 enum rtx_code code = GET_CODE (x);
7dcd3836 1476 int i, j;
c160c628
RK
1477 char *fmt;
1478 rtx insn;
1479
82d00367 1480 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
c160c628 1481 {
034dabc9
JW
1482 rtx next = next_real_insn (XEXP (x, 0));
1483
1484 /* Don't record labels that refer to dispatch tables.
1485 This is not necessary, since the tablejump references the same label.
1486 And if we did record them, flow.c would make worse code. */
1487 if (next == 0
1488 || ! (GET_CODE (next) == JUMP_INSN
1489 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1490 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1491 {
1492 for (insn = insns; insn; insn = NEXT_INSN (insn))
1493 if (reg_mentioned_p (XEXP (x, 0), insn))
1494 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1495 REG_NOTES (insn));
1496 }
c160c628
RK
1497 return;
1498 }
1499
1500 fmt = GET_RTX_FORMAT (code);
1501 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7dcd3836
RK
1502 {
1503 if (fmt[i] == 'e')
1504 add_label_notes (XEXP (x, i), insns);
1505 else if (fmt[i] == 'E')
1506 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1507 add_label_notes (XVECEXP (x, i, j), insns);
1508 }
c160c628
RK
1509}
1510\f
b4ad7b23
RS
1511/* Scan MOVABLES, and move the insns that deserve to be moved.
1512 If two matching movables are combined, replace one reg with the
1513 other throughout. */
1514
1515static void
1516move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1517 struct movable *movables;
1518 int threshold;
1519 int insn_count;
1520 rtx loop_start;
1521 rtx end;
1522 int nregs;
1523{
1524 rtx new_start = 0;
1525 register struct movable *m;
1526 register rtx p;
1527 /* Map of pseudo-register replacements to handle combining
1528 when we move several insns that load the same value
1529 into different pseudo-registers. */
1530 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1531 char *already_moved = (char *) alloca (nregs);
1532
1533 bzero (already_moved, nregs);
1534 bzero (reg_map, nregs * sizeof (rtx));
1535
1536 num_movables = 0;
1537
1538 for (m = movables; m; m = m->next)
1539 {
1540 /* Describe this movable insn. */
1541
1542 if (loop_dump_stream)
1543 {
1544 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1545 INSN_UID (m->insn), m->regno, m->lifetime);
1546 if (m->consec > 0)
1547 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1548 if (m->cond)
1549 fprintf (loop_dump_stream, "cond ");
1550 if (m->force)
1551 fprintf (loop_dump_stream, "force ");
1552 if (m->global)
1553 fprintf (loop_dump_stream, "global ");
1554 if (m->done)
1555 fprintf (loop_dump_stream, "done ");
1556 if (m->move_insn)
1557 fprintf (loop_dump_stream, "move-insn ");
1558 if (m->match)
1559 fprintf (loop_dump_stream, "matches %d ",
1560 INSN_UID (m->match->insn));
1561 if (m->forces)
1562 fprintf (loop_dump_stream, "forces %d ",
1563 INSN_UID (m->forces->insn));
1564 }
1565
1566 /* Count movables. Value used in heuristics in strength_reduce. */
1567 num_movables++;
1568
1569 /* Ignore the insn if it's already done (it matched something else).
1570 Otherwise, see if it is now safe to move. */
1571
1572 if (!m->done
1573 && (! m->cond
1574 || (1 == invariant_p (m->set_src)
1575 && (m->dependencies == 0
1576 || 1 == invariant_p (m->dependencies))
1577 && (m->consec == 0
1578 || 1 == consec_sets_invariant_p (m->set_dest,
1579 m->consec + 1,
1580 m->insn))))
1581 && (! m->forces || m->forces->done))
1582 {
1583 register int regno;
1584 register rtx p;
1585 int savings = m->savings;
1586
1587 /* We have an insn that is safe to move.
1588 Compute its desirability. */
1589
1590 p = m->insn;
1591 regno = m->regno;
1592
1593 if (loop_dump_stream)
1594 fprintf (loop_dump_stream, "savings %d ", savings);
1595
1596 if (moved_once[regno])
1597 {
1598 insn_count *= 2;
1599
1600 if (loop_dump_stream)
1601 fprintf (loop_dump_stream, "halved since already moved ");
1602 }
1603
1604 /* An insn MUST be moved if we already moved something else
1605 which is safe only if this one is moved too: that is,
1606 if already_moved[REGNO] is nonzero. */
1607
1608 /* An insn is desirable to move if the new lifetime of the
1609 register is no more than THRESHOLD times the old lifetime.
1610 If it's not desirable, it means the loop is so big
1611 that moving won't speed things up much,
1612 and it is liable to make register usage worse. */
1613
1614 /* It is also desirable to move if it can be moved at no
1615 extra cost because something else was already moved. */
1616
1617 if (already_moved[regno]
1618 || (threshold * savings * m->lifetime) >= insn_count
1619 || (m->forces && m->forces->done
1620 && n_times_used[m->forces->regno] == 1))
1621 {
1622 int count;
1623 register struct movable *m1;
1624 rtx first;
1625
1626 /* Now move the insns that set the reg. */
1627
1628 if (m->partial && m->match)
1629 {
1630 rtx newpat, i1;
1631 rtx r1, r2;
1632 /* Find the end of this chain of matching regs.
1633 Thus, we load each reg in the chain from that one reg.
1634 And that reg is loaded with 0 directly,
1635 since it has ->match == 0. */
1636 for (m1 = m; m1->match; m1 = m1->match);
1637 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1638 SET_DEST (PATTERN (m1->insn)));
1639 i1 = emit_insn_before (newpat, loop_start);
1640
1641 /* Mark the moved, invariant reg as being allowed to
1642 share a hard reg with the other matching invariant. */
1643 REG_NOTES (i1) = REG_NOTES (m->insn);
1644 r1 = SET_DEST (PATTERN (m->insn));
1645 r2 = SET_DEST (PATTERN (m1->insn));
1646 regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1647 gen_rtx (EXPR_LIST, VOIDmode, r2,
1648 regs_may_share));
1649 delete_insn (m->insn);
1650
1651 if (new_start == 0)
1652 new_start = i1;
1653
1654 if (loop_dump_stream)
1655 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1656 }
1657 /* If we are to re-generate the item being moved with a
1658 new move insn, first delete what we have and then emit
1659 the move insn before the loop. */
1660 else if (m->move_insn)
1661 {
1662 rtx i1, temp;
1663
1664 for (count = m->consec; count >= 0; count--)
1665 {
1666 /* If this is the first insn of a library call sequence,
1667 skip to the end. */
1668 if (GET_CODE (p) != NOTE
5fd8383e 1669 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
b4ad7b23
RS
1670 p = XEXP (temp, 0);
1671
1672 /* If this is the last insn of a libcall sequence, then
1673 delete every insn in the sequence except the last.
1674 The last insn is handled in the normal manner. */
1675 if (GET_CODE (p) != NOTE
5fd8383e 1676 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
b4ad7b23
RS
1677 {
1678 temp = XEXP (temp, 0);
1679 while (temp != p)
1680 temp = delete_insn (temp);
1681 }
1682
1683 p = delete_insn (p);
1684 }
1685
1686 start_sequence ();
1687 emit_move_insn (m->set_dest, m->set_src);
c160c628 1688 temp = get_insns ();
b4ad7b23
RS
1689 end_sequence ();
1690
c160c628
RK
1691 add_label_notes (m->set_src, temp);
1692
1693 i1 = emit_insns_before (temp, loop_start);
5fd8383e 1694 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
b4ad7b23
RS
1695 REG_NOTES (i1)
1696 = gen_rtx (EXPR_LIST,
1697 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1698 m->set_src, REG_NOTES (i1));
1699
1700 if (loop_dump_stream)
1701 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1702
1703 /* The more regs we move, the less we like moving them. */
1704 threshold -= 3;
1705 }
1706 else
1707 {
1708 for (count = m->consec; count >= 0; count--)
1709 {
1710 rtx i1, temp;
1711
1712 /* If first insn of libcall sequence, skip to end. */
1713 /* Do this at start of loop, since p is guaranteed to
1714 be an insn here. */
1715 if (GET_CODE (p) != NOTE
5fd8383e 1716 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
b4ad7b23
RS
1717 p = XEXP (temp, 0);
1718
1719 /* If last insn of libcall sequence, move all
1720 insns except the last before the loop. The last
1721 insn is handled in the normal manner. */
1722 if (GET_CODE (p) != NOTE
5fd8383e 1723 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
b4ad7b23
RS
1724 {
1725 rtx fn_address = 0;
1726 rtx fn_reg = 0;
1727 rtx fn_address_insn = 0;
1728
1729 first = 0;
1730 for (temp = XEXP (temp, 0); temp != p;
1731 temp = NEXT_INSN (temp))
1732 {
1733 rtx body;
1734 rtx n;
1735 rtx next;
1736
1737 if (GET_CODE (temp) == NOTE)
1738 continue;
1739
1740 body = PATTERN (temp);
1741
1742 /* Find the next insn after TEMP,
1743 not counting USE or NOTE insns. */
1744 for (next = NEXT_INSN (temp); next != p;
1745 next = NEXT_INSN (next))
1746 if (! (GET_CODE (next) == INSN
1747 && GET_CODE (PATTERN (next)) == USE)
1748 && GET_CODE (next) != NOTE)
1749 break;
1750
1751 /* If that is the call, this may be the insn
1752 that loads the function address.
1753
1754 Extract the function address from the insn
1755 that loads it into a register.
1756 If this insn was cse'd, we get incorrect code.
1757
1758 So emit a new move insn that copies the
1759 function address into the register that the
1760 call insn will use. flow.c will delete any
1761 redundant stores that we have created. */
1762 if (GET_CODE (next) == CALL_INSN
1763 && GET_CODE (body) == SET
1764 && GET_CODE (SET_DEST (body)) == REG
5fd8383e
RK
1765 && (n = find_reg_note (temp, REG_EQUAL,
1766 NULL_RTX)))
b4ad7b23
RS
1767 {
1768 fn_reg = SET_SRC (body);
1769 if (GET_CODE (fn_reg) != REG)
1770 fn_reg = SET_DEST (body);
1771 fn_address = XEXP (n, 0);
1772 fn_address_insn = temp;
1773 }
1774 /* We have the call insn.
1775 If it uses the register we suspect it might,
1776 load it with the correct address directly. */
1777 if (GET_CODE (temp) == CALL_INSN
1778 && fn_address != 0
d9f8a199 1779 && reg_referenced_p (fn_reg, body))
b4ad7b23
RS
1780 emit_insn_after (gen_move_insn (fn_reg,
1781 fn_address),
1782 fn_address_insn);
1783
1784 if (GET_CODE (temp) == CALL_INSN)
1785 i1 = emit_call_insn_before (body, loop_start);
1786 else
1787 i1 = emit_insn_before (body, loop_start);
1788 if (first == 0)
1789 first = i1;
1790 if (temp == fn_address_insn)
1791 fn_address_insn = i1;
1792 REG_NOTES (i1) = REG_NOTES (temp);
1793 delete_insn (temp);
1794 }
1795 }
1796 if (m->savemode != VOIDmode)
1797 {
1798 /* P sets REG to zero; but we should clear only
1799 the bits that are not covered by the mode
1800 m->savemode. */
1801 rtx reg = m->set_dest;
1802 rtx sequence;
1803 rtx tem;
1804
1805 start_sequence ();
1806 tem = expand_binop
1807 (GET_MODE (reg), and_optab, reg,
5fd8383e
RK
1808 GEN_INT ((((HOST_WIDE_INT) 1
1809 << GET_MODE_BITSIZE (m->savemode)))
b4ad7b23
RS
1810 - 1),
1811 reg, 1, OPTAB_LIB_WIDEN);
1812 if (tem == 0)
1813 abort ();
1814 if (tem != reg)
1815 emit_move_insn (reg, tem);
1816 sequence = gen_sequence ();
1817 end_sequence ();
1818 i1 = emit_insn_before (sequence, loop_start);
1819 }
1820 else if (GET_CODE (p) == CALL_INSN)
1821 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1822 else
1823 i1 = emit_insn_before (PATTERN (p), loop_start);
1824
1825 REG_NOTES (i1) = REG_NOTES (p);
1826
e6726b1f
JW
1827 /* If there is a REG_EQUAL note present whose value is
1828 not loop invariant, then delete it, since it may
1829 cause problems with later optimization passes.
1830 It is possible for cse to create such notes
1831 like this as a result of record_jump_cond. */
1832
1833 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1834 && ! invariant_p (XEXP (temp, 0)))
1835 remove_note (i1, temp);
1836
b4ad7b23
RS
1837 if (new_start == 0)
1838 new_start = i1;
1839
1840 if (loop_dump_stream)
1841 fprintf (loop_dump_stream, " moved to %d",
1842 INSN_UID (i1));
1843
1844#if 0
1845 /* This isn't needed because REG_NOTES is copied
1846 below and is wrong since P might be a PARALLEL. */
1847 if (REG_NOTES (i1) == 0
1848 && ! m->partial /* But not if it's a zero-extend clr. */
1849 && ! m->global /* and not if used outside the loop
1850 (since it might get set outside). */
1851 && CONSTANT_P (SET_SRC (PATTERN (p))))
1852 REG_NOTES (i1)
1853 = gen_rtx (EXPR_LIST, REG_EQUAL,
1854 SET_SRC (PATTERN (p)), REG_NOTES (i1));
1855#endif
1856
1857 /* If library call, now fix the REG_NOTES that contain
1858 insn pointers, namely REG_LIBCALL on FIRST
1859 and REG_RETVAL on I1. */
5fd8383e 1860 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
b4ad7b23
RS
1861 {
1862 XEXP (temp, 0) = first;
5fd8383e 1863 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
b4ad7b23
RS
1864 XEXP (temp, 0) = i1;
1865 }
1866
1867 delete_insn (p);
1868 do p = NEXT_INSN (p);
1869 while (p && GET_CODE (p) == NOTE);
1870 }
1871
1872 /* The more regs we move, the less we like moving them. */
1873 threshold -= 3;
1874 }
1875
1876 /* Any other movable that loads the same register
1877 MUST be moved. */
1878 already_moved[regno] = 1;
1879
1880 /* This reg has been moved out of one loop. */
1881 moved_once[regno] = 1;
1882
1883 /* The reg set here is now invariant. */
1884 if (! m->partial)
1885 n_times_set[regno] = 0;
1886
1887 m->done = 1;
1888
1889 /* Change the length-of-life info for the register
1890 to say it lives at least the full length of this loop.
1891 This will help guide optimizations in outer loops. */
1892
1893 if (uid_luid[regno_first_uid[regno]] > INSN_LUID (loop_start))
1894 /* This is the old insn before all the moved insns.
1895 We can't use the moved insn because it is out of range
1896 in uid_luid. Only the old insns have luids. */
1897 regno_first_uid[regno] = INSN_UID (loop_start);
1898 if (uid_luid[regno_last_uid[regno]] < INSN_LUID (end))
1899 regno_last_uid[regno] = INSN_UID (end);
1900
1901 /* Combine with this moved insn any other matching movables. */
1902
1903 if (! m->partial)
1904 for (m1 = movables; m1; m1 = m1->next)
1905 if (m1->match == m)
1906 {
1907 rtx temp;
1908
1909 /* Schedule the reg loaded by M1
1910 for replacement so that shares the reg of M.
1911 If the modes differ (only possible in restricted
1912 circumstances, make a SUBREG. */
1913 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
1914 reg_map[m1->regno] = m->set_dest;
1915 else
1916 reg_map[m1->regno]
1917 = gen_lowpart_common (GET_MODE (m1->set_dest),
1918 m->set_dest);
1919
1920 /* Get rid of the matching insn
1921 and prevent further processing of it. */
1922 m1->done = 1;
1923
1924 /* if library call, delete all insn except last, which
1925 is deleted below */
5fd8383e
RK
1926 if (temp = find_reg_note (m1->insn, REG_RETVAL,
1927 NULL_RTX))
b4ad7b23
RS
1928 {
1929 for (temp = XEXP (temp, 0); temp != m1->insn;
1930 temp = NEXT_INSN (temp))
1931 delete_insn (temp);
1932 }
1933 delete_insn (m1->insn);
1934
1935 /* Any other movable that loads the same register
1936 MUST be moved. */
1937 already_moved[m1->regno] = 1;
1938
1939 /* The reg merged here is now invariant,
1940 if the reg it matches is invariant. */
1941 if (! m->partial)
1942 n_times_set[m1->regno] = 0;
1943 }
1944 }
1945 else if (loop_dump_stream)
1946 fprintf (loop_dump_stream, "not desirable");
1947 }
1948 else if (loop_dump_stream && !m->match)
1949 fprintf (loop_dump_stream, "not safe");
1950
1951 if (loop_dump_stream)
1952 fprintf (loop_dump_stream, "\n");
1953 }
1954
1955 if (new_start == 0)
1956 new_start = loop_start;
1957
1958 /* Go through all the instructions in the loop, making
1959 all the register substitutions scheduled in REG_MAP. */
1960 for (p = new_start; p != end; p = NEXT_INSN (p))
1961 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1962 || GET_CODE (p) == CALL_INSN)
1963 {
1964 replace_regs (PATTERN (p), reg_map, nregs, 0);
1965 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
da0c128e 1966 INSN_CODE (p) = -1;
b4ad7b23
RS
1967 }
1968}
1969\f
1970#if 0
1971/* Scan X and replace the address of any MEM in it with ADDR.
1972 REG is the address that MEM should have before the replacement. */
1973
1974static void
1975replace_call_address (x, reg, addr)
1976 rtx x, reg, addr;
1977{
1978 register enum rtx_code code;
1979 register int i;
1980 register char *fmt;
1981
1982 if (x == 0)
1983 return;
1984 code = GET_CODE (x);
1985 switch (code)
1986 {
1987 case PC:
1988 case CC0:
1989 case CONST_INT:
1990 case CONST_DOUBLE:
1991 case CONST:
1992 case SYMBOL_REF:
1993 case LABEL_REF:
1994 case REG:
1995 return;
1996
1997 case SET:
1998 /* Short cut for very common case. */
1999 replace_call_address (XEXP (x, 1), reg, addr);
2000 return;
2001
2002 case CALL:
2003 /* Short cut for very common case. */
2004 replace_call_address (XEXP (x, 0), reg, addr);
2005 return;
2006
2007 case MEM:
2008 /* If this MEM uses a reg other than the one we expected,
2009 something is wrong. */
2010 if (XEXP (x, 0) != reg)
2011 abort ();
2012 XEXP (x, 0) = addr;
2013 return;
2014 }
2015
2016 fmt = GET_RTX_FORMAT (code);
2017 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2018 {
2019 if (fmt[i] == 'e')
2020 replace_call_address (XEXP (x, i), reg, addr);
2021 if (fmt[i] == 'E')
2022 {
2023 register int j;
2024 for (j = 0; j < XVECLEN (x, i); j++)
2025 replace_call_address (XVECEXP (x, i, j), reg, addr);
2026 }
2027 }
2028}
2029#endif
2030\f
2031/* Return the number of memory refs to addresses that vary
2032 in the rtx X. */
2033
2034static int
2035count_nonfixed_reads (x)
2036 rtx x;
2037{
2038 register enum rtx_code code;
2039 register int i;
2040 register char *fmt;
2041 int value;
2042
2043 if (x == 0)
2044 return 0;
2045
2046 code = GET_CODE (x);
2047 switch (code)
2048 {
2049 case PC:
2050 case CC0:
2051 case CONST_INT:
2052 case CONST_DOUBLE:
2053 case CONST:
2054 case SYMBOL_REF:
2055 case LABEL_REF:
2056 case REG:
2057 return 0;
2058
2059 case MEM:
2060 return ((invariant_p (XEXP (x, 0)) != 1)
2061 + count_nonfixed_reads (XEXP (x, 0)));
2062 }
2063
2064 value = 0;
2065 fmt = GET_RTX_FORMAT (code);
2066 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2067 {
2068 if (fmt[i] == 'e')
2069 value += count_nonfixed_reads (XEXP (x, i));
2070 if (fmt[i] == 'E')
2071 {
2072 register int j;
2073 for (j = 0; j < XVECLEN (x, i); j++)
2074 value += count_nonfixed_reads (XVECEXP (x, i, j));
2075 }
2076 }
2077 return value;
2078}
2079
2080\f
2081#if 0
2082/* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2083 Replace it with an instruction to load just the low bytes
2084 if the machine supports such an instruction,
2085 and insert above LOOP_START an instruction to clear the register. */
2086
2087static void
2088constant_high_bytes (p, loop_start)
2089 rtx p, loop_start;
2090{
2091 register rtx new;
2092 register int insn_code_number;
2093
2094 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2095 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2096
2097 new = gen_rtx (SET, VOIDmode,
2098 gen_rtx (STRICT_LOW_PART, VOIDmode,
2099 gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2100 SET_DEST (PATTERN (p)),
2101 0)),
2102 XEXP (SET_SRC (PATTERN (p)), 0));
2103 insn_code_number = recog (new, p);
2104
2105 if (insn_code_number)
2106 {
2107 register int i;
2108
2109 /* Clear destination register before the loop. */
2110 emit_insn_before (gen_rtx (SET, VOIDmode,
2111 SET_DEST (PATTERN (p)),
2112 const0_rtx),
2113 loop_start);
2114
2115 /* Inside the loop, just load the low part. */
2116 PATTERN (p) = new;
2117 }
2118}
2119#endif
2120\f
2121/* Scan a loop setting the variables `unknown_address_altered',
552bc76f
RS
2122 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2123 and `loop_has_volatile'.
b4ad7b23
RS
2124 Also, fill in the array `loop_store_mems'. */
2125
2126static void
2127prescan_loop (start, end)
2128 rtx start, end;
2129{
2130 register int level = 1;
2131 register rtx insn;
2132
2133 unknown_address_altered = 0;
2134 loop_has_call = 0;
552bc76f 2135 loop_has_volatile = 0;
b4ad7b23
RS
2136 loop_store_mems_idx = 0;
2137
2138 num_mem_sets = 0;
2139 loops_enclosed = 1;
2140 loop_continue = 0;
2141
2142 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2143 insn = NEXT_INSN (insn))
2144 {
2145 if (GET_CODE (insn) == NOTE)
2146 {
2147 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2148 {
2149 ++level;
2150 /* Count number of loops contained in this one. */
2151 loops_enclosed++;
2152 }
2153 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2154 {
2155 --level;
2156 if (level == 0)
2157 {
2158 end = insn;
2159 break;
2160 }
2161 }
2162 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2163 {
2164 if (level == 1)
2165 loop_continue = insn;
2166 }
2167 }
2168 else if (GET_CODE (insn) == CALL_INSN)
2169 {
2170 unknown_address_altered = 1;
2171 loop_has_call = 1;
2172 }
2173 else
2174 {
2175 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
552bc76f
RS
2176 {
2177 if (volatile_refs_p (PATTERN (insn)))
2178 loop_has_volatile = 1;
2179
2180 note_stores (PATTERN (insn), note_addr_stored);
2181 }
b4ad7b23
RS
2182 }
2183 }
2184}
2185\f
2186/* Scan the function looking for loops. Record the start and end of each loop.
2187 Also mark as invalid loops any loops that contain a setjmp or are branched
2188 to from outside the loop. */
2189
2190static void
2191find_and_verify_loops (f)
2192 rtx f;
2193{
034dabc9 2194 rtx insn, label;
b4ad7b23
RS
2195 int current_loop = -1;
2196 int next_loop = -1;
2197 int loop;
2198
2199 /* If there are jumps to undefined labels,
2200 treat them as jumps out of any/all loops.
2201 This also avoids writing past end of tables when there are no loops. */
2202 uid_loop_num[0] = -1;
2203
2204 /* Find boundaries of loops, mark which loops are contained within
2205 loops, and invalidate loops that have setjmp. */
2206
2207 for (insn = f; insn; insn = NEXT_INSN (insn))
2208 {
2209 if (GET_CODE (insn) == NOTE)
2210 switch (NOTE_LINE_NUMBER (insn))
2211 {
2212 case NOTE_INSN_LOOP_BEG:
2213 loop_number_loop_starts[++next_loop] = insn;
2214 loop_number_loop_ends[next_loop] = 0;
2215 loop_outer_loop[next_loop] = current_loop;
2216 loop_invalid[next_loop] = 0;
2217 loop_number_exit_labels[next_loop] = 0;
2218 current_loop = next_loop;
2219 break;
2220
2221 case NOTE_INSN_SETJMP:
2222 /* In this case, we must invalidate our current loop and any
2223 enclosing loop. */
2224 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2225 {
2226 loop_invalid[loop] = 1;
2227 if (loop_dump_stream)
2228 fprintf (loop_dump_stream,
2229 "\nLoop at %d ignored due to setjmp.\n",
2230 INSN_UID (loop_number_loop_starts[loop]));
2231 }
2232 break;
2233
2234 case NOTE_INSN_LOOP_END:
2235 if (current_loop == -1)
2236 abort ();
2237
2238 loop_number_loop_ends[current_loop] = insn;
2239 current_loop = loop_outer_loop[current_loop];
2240 break;
2241
2242 }
2243
2244 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2245 enclosing loop, but this doesn't matter. */
2246 uid_loop_num[INSN_UID (insn)] = current_loop;
2247 }
2248
034dabc9
JW
2249 /* Any loop containing a label used in an initializer must be invalidated,
2250 because it can be jumped into from anywhere. */
2251
2252 for (label = forced_labels; label; label = XEXP (label, 1))
2253 {
2254 int loop_num;
2255
2256 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2257 loop_num != -1;
2258 loop_num = loop_outer_loop[loop_num])
2259 loop_invalid[loop_num] = 1;
2260 }
2261
2262 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2263 loop that it is not contained within, that loop is marked invalid.
2264 If any INSN or CALL_INSN uses a label's address, then the loop containing
2265 that label is marked invalid, because it could be jumped into from
2266 anywhere.
b4ad7b23
RS
2267
2268 Also look for blocks of code ending in an unconditional branch that
2269 exits the loop. If such a block is surrounded by a conditional
2270 branch around the block, move the block elsewhere (see below) and
2271 invert the jump to point to the code block. This may eliminate a
2272 label in our loop and will simplify processing by both us and a
2273 possible second cse pass. */
2274
2275 for (insn = f; insn; insn = NEXT_INSN (insn))
034dabc9 2276 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
b4ad7b23
RS
2277 {
2278 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2279
034dabc9
JW
2280 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2281 {
2282 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2283 if (note)
2284 {
2285 int loop_num;
2286
2287 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2288 loop_num != -1;
2289 loop_num = loop_outer_loop[loop_num])
2290 loop_invalid[loop_num] = 1;
2291 }
2292 }
2293
2294 if (GET_CODE (insn) != JUMP_INSN)
2295 continue;
2296
b4ad7b23
RS
2297 mark_loop_jump (PATTERN (insn), this_loop_num);
2298
2299 /* See if this is an unconditional branch outside the loop. */
2300 if (this_loop_num != -1
2301 && (GET_CODE (PATTERN (insn)) == RETURN
2302 || (simplejump_p (insn)
2303 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
1c01e9df
TW
2304 != this_loop_num)))
2305 && get_max_uid () < max_uid_for_loop)
b4ad7b23
RS
2306 {
2307 rtx p;
2308 rtx our_next = next_real_insn (insn);
2309
2310 /* Go backwards until we reach the start of the loop, a label,
2311 or a JUMP_INSN. */
2312 for (p = PREV_INSN (insn);
2313 GET_CODE (p) != CODE_LABEL
2314 && ! (GET_CODE (p) == NOTE
2315 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2316 && GET_CODE (p) != JUMP_INSN;
2317 p = PREV_INSN (p))
2318 ;
2319
2320 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2321 we have a block of code to try to move.
2322
2323 We look backward and then forward from the target of INSN
2324 to find a BARRIER at the same loop depth as the target.
2325 If we find such a BARRIER, we make a new label for the start
2326 of the block, invert the jump in P and point it to that label,
2327 and move the block of code to the spot we found. */
2328
2329 if (GET_CODE (p) == JUMP_INSN
c6096c5e
RS
2330 && JUMP_LABEL (p) != 0
2331 /* Just ignore jumps to labels that were never emitted.
2332 These always indicate compilation errors. */
2333 && INSN_UID (JUMP_LABEL (p)) != 0
2334 && condjump_p (p)
2335 && ! simplejump_p (p)
2336 && next_real_insn (JUMP_LABEL (p)) == our_next)
b4ad7b23
RS
2337 {
2338 rtx target
2339 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2340 int target_loop_num = uid_loop_num[INSN_UID (target)];
2341 rtx loc;
2342
2343 for (loc = target; loc; loc = PREV_INSN (loc))
2344 if (GET_CODE (loc) == BARRIER
2345 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2346 break;
2347
2348 if (loc == 0)
2349 for (loc = target; loc; loc = NEXT_INSN (loc))
2350 if (GET_CODE (loc) == BARRIER
2351 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2352 break;
2353
2354 if (loc)
2355 {
2356 rtx cond_label = JUMP_LABEL (p);
2357 rtx new_label = get_label_after (p);
2358
2359 /* Ensure our label doesn't go away. */
2360 LABEL_NUSES (cond_label)++;
2361
2362 /* Verify that uid_loop_num is large enough and that
2363 we can invert P. */
1c01e9df 2364 if (invert_jump (p, new_label))
b4ad7b23
RS
2365 {
2366 rtx q, r;
2367
2368 /* Include the BARRIER after INSN and copy the
2369 block after LOC. */
915f619f 2370 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
b4ad7b23
RS
2371 reorder_insns (new_label, NEXT_INSN (insn), loc);
2372
2373 /* All those insns are now in TARGET_LOOP_NUM. */
2374 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2375 q = NEXT_INSN (q))
2376 uid_loop_num[INSN_UID (q)] = target_loop_num;
2377
2378 /* The label jumped to by INSN is no longer a loop exit.
2379 Unless INSN does not have a label (e.g., it is a
2380 RETURN insn), search loop_number_exit_labels to find
2381 its label_ref, and remove it. Also turn off
2382 LABEL_OUTSIDE_LOOP_P bit. */
2383 if (JUMP_LABEL (insn))
2384 {
2385 for (q = 0,
2386 r = loop_number_exit_labels[this_loop_num];
2387 r; q = r, r = LABEL_NEXTREF (r))
2388 if (XEXP (r, 0) == JUMP_LABEL (insn))
2389 {
2390 LABEL_OUTSIDE_LOOP_P (r) = 0;
2391 if (q)
2392 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2393 else
2394 loop_number_exit_labels[this_loop_num]
2395 = LABEL_NEXTREF (r);
2396 break;
2397 }
2398
2399 /* If we didn't find it, then something is wrong. */
2400 if (! r)
2401 abort ();
2402 }
2403
2404 /* P is now a jump outside the loop, so it must be put
2405 in loop_number_exit_labels, and marked as such.
2406 The easiest way to do this is to just call
2407 mark_loop_jump again for P. */
2408 mark_loop_jump (PATTERN (p), this_loop_num);
2409
2410 /* If INSN now jumps to the insn after it,
2411 delete INSN. */
2412 if (JUMP_LABEL (insn) != 0
2413 && (next_real_insn (JUMP_LABEL (insn))
2414 == next_real_insn (insn)))
2415 delete_insn (insn);
2416 }
2417
2418 /* Continue the loop after where the conditional
2419 branch used to jump, since the only branch insn
2420 in the block (if it still remains) is an inter-loop
2421 branch and hence needs no processing. */
2422 insn = NEXT_INSN (cond_label);
2423
2424 if (--LABEL_NUSES (cond_label) == 0)
2425 delete_insn (cond_label);
2426 }
2427 }
2428 }
2429 }
2430}
2431
2432/* If any label in X jumps to a loop different from LOOP_NUM and any of the
2433 loops it is contained in, mark the target loop invalid.
2434
2435 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2436
2437static void
2438mark_loop_jump (x, loop_num)
2439 rtx x;
2440 int loop_num;
2441{
2442 int dest_loop;
2443 int outer_loop;
2444 int i;
2445
2446 switch (GET_CODE (x))
2447 {
2448 case PC:
2449 case USE:
2450 case CLOBBER:
2451 case REG:
2452 case MEM:
2453 case CONST_INT:
2454 case CONST_DOUBLE:
2455 case RETURN:
2456 return;
2457
2458 case CONST:
2459 /* There could be a label reference in here. */
2460 mark_loop_jump (XEXP (x, 0), loop_num);
2461 return;
2462
2463 case PLUS:
2464 case MINUS:
2465 case MULT:
2466 case LSHIFT:
2467 mark_loop_jump (XEXP (x, 0), loop_num);
2468 mark_loop_jump (XEXP (x, 1), loop_num);
2469 return;
2470
2471 case SIGN_EXTEND:
2472 case ZERO_EXTEND:
2473 mark_loop_jump (XEXP (x, 0), loop_num);
2474 return;
2475
2476 case LABEL_REF:
2477 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2478
2479 /* Link together all labels that branch outside the loop. This
2480 is used by final_[bg]iv_value and the loop unrolling code. Also
2481 mark this LABEL_REF so we know that this branch should predict
2482 false. */
2483
2484 if (dest_loop != loop_num && loop_num != -1)
2485 {
2486 LABEL_OUTSIDE_LOOP_P (x) = 1;
2487 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2488 loop_number_exit_labels[loop_num] = x;
2489 }
2490
2491 /* If this is inside a loop, but not in the current loop or one enclosed
2492 by it, it invalidates at least one loop. */
2493
2494 if (dest_loop == -1)
2495 return;
2496
2497 /* We must invalidate every nested loop containing the target of this
2498 label, except those that also contain the jump insn. */
2499
2500 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2501 {
2502 /* Stop when we reach a loop that also contains the jump insn. */
2503 for (outer_loop = loop_num; outer_loop != -1;
2504 outer_loop = loop_outer_loop[outer_loop])
2505 if (dest_loop == outer_loop)
2506 return;
2507
2508 /* If we get here, we know we need to invalidate a loop. */
2509 if (loop_dump_stream && ! loop_invalid[dest_loop])
2510 fprintf (loop_dump_stream,
2511 "\nLoop at %d ignored due to multiple entry points.\n",
2512 INSN_UID (loop_number_loop_starts[dest_loop]));
2513
2514 loop_invalid[dest_loop] = 1;
2515 }
2516 return;
2517
2518 case SET:
2519 /* If this is not setting pc, ignore. */
2520 if (SET_DEST (x) == pc_rtx)
2521 mark_loop_jump (SET_SRC (x), loop_num);
2522 return;
2523
2524 case IF_THEN_ELSE:
2525 mark_loop_jump (XEXP (x, 1), loop_num);
2526 mark_loop_jump (XEXP (x, 2), loop_num);
2527 return;
2528
2529 case PARALLEL:
2530 case ADDR_VEC:
2531 for (i = 0; i < XVECLEN (x, 0); i++)
2532 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2533 return;
2534
2535 case ADDR_DIFF_VEC:
2536 for (i = 0; i < XVECLEN (x, 1); i++)
2537 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2538 return;
2539
2540 default:
b6ccc3fb
RS
2541 /* Treat anything else (such as a symbol_ref)
2542 as a branch out of this loop, but not into any loop. */
2543
2544 if (loop_num != -1)
2545 {
2546 LABEL_OUTSIDE_LOOP_P (x) = 1;
2547 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2548 loop_number_exit_labels[loop_num] = x;
2549 }
2550
2551 return;
b4ad7b23
RS
2552 }
2553}
2554\f
2555/* Return nonzero if there is a label in the range from
2556 insn INSN to and including the insn whose luid is END
2557 INSN must have an assigned luid (i.e., it must not have
2558 been previously created by loop.c). */
2559
2560static int
2561labels_in_range_p (insn, end)
2562 rtx insn;
2563 int end;
2564{
2565 while (insn && INSN_LUID (insn) <= end)
2566 {
2567 if (GET_CODE (insn) == CODE_LABEL)
2568 return 1;
2569 insn = NEXT_INSN (insn);
2570 }
2571
2572 return 0;
2573}
2574
2575/* Record that a memory reference X is being set. */
2576
2577static void
2578note_addr_stored (x)
2579 rtx x;
2580{
2581 register int i;
2582
2583 if (x == 0 || GET_CODE (x) != MEM)
2584 return;
2585
2586 /* Count number of memory writes.
2587 This affects heuristics in strength_reduce. */
2588 num_mem_sets++;
2589
2590 if (unknown_address_altered)
2591 return;
2592
2593 for (i = 0; i < loop_store_mems_idx; i++)
2594 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2595 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2596 {
2597 /* We are storing at the same address as previously noted. Save the
2598 wider reference, treating BLKmode as wider. */
2599 if (GET_MODE (x) == BLKmode
2600 || (GET_MODE_SIZE (GET_MODE (x))
2601 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i]))))
2602 loop_store_mems[i] = x;
2603 break;
2604 }
2605
2606 if (i == NUM_STORES)
2607 unknown_address_altered = 1;
2608
2609 else if (i == loop_store_mems_idx)
2610 loop_store_mems[loop_store_mems_idx++] = x;
2611}
2612\f
2613/* Return nonzero if the rtx X is invariant over the current loop.
2614
2615 The value is 2 if we refer to something only conditionally invariant.
2616
2617 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2618 Otherwise, a memory ref is invariant if it does not conflict with
2619 anything stored in `loop_store_mems'. */
2620
2621int
2622invariant_p (x)
2623 register rtx x;
2624{
2625 register int i;
2626 register enum rtx_code code;
2627 register char *fmt;
2628 int conditional = 0;
2629
2630 if (x == 0)
2631 return 1;
2632 code = GET_CODE (x);
2633 switch (code)
2634 {
2635 case CONST_INT:
2636 case CONST_DOUBLE:
2637 case SYMBOL_REF:
2638 case CONST:
2639 return 1;
2640
2641 case LABEL_REF:
2642 /* A LABEL_REF is normally invariant, however, if we are unrolling
2643 loops, and this label is inside the loop, then it isn't invariant.
2644 This is because each unrolled copy of the loop body will have
2645 a copy of this label. If this was invariant, then an insn loading
2646 the address of this label into a register might get moved outside
2647 the loop, and then each loop body would end up using the same label.
2648
2649 We don't know the loop bounds here though, so just fail for all
2650 labels. */
2651 if (flag_unroll_loops)
2652 return 0;
2653 else
2654 return 1;
2655
2656 case PC:
2657 case CC0:
2658 case UNSPEC_VOLATILE:
2659 return 0;
2660
2661 case REG:
2662 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2663 since the reg might be set by initialization within the loop. */
6fa4004a
DE
2664 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
2665 || x == arg_pointer_rtx)
b4ad7b23
RS
2666 return 1;
2667 if (loop_has_call
2668 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2669 return 0;
2670 if (n_times_set[REGNO (x)] < 0)
2671 return 2;
2672 return n_times_set[REGNO (x)] == 0;
2673
2674 case MEM:
2675 /* Read-only items (such as constants in a constant pool) are
2676 invariant if their address is. */
2677 if (RTX_UNCHANGING_P (x))
2678 break;
2679
2680 /* If we filled the table (or had a subroutine call), any location
2681 in memory could have been clobbered. */
2682 if (unknown_address_altered
2683 /* Don't mess with volatile memory references. */
2684 || MEM_VOLATILE_P (x))
2685 return 0;
2686
2687 /* See if there is any dependence between a store and this load. */
2688 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2689 if (true_dependence (loop_store_mems[i], x))
2690 return 0;
2691
2692 /* It's not invalidated by a store in memory
2693 but we must still verify the address is invariant. */
2694 break;
2695
2696 case ASM_OPERANDS:
2697 /* Don't mess with insns declared volatile. */
2698 if (MEM_VOLATILE_P (x))
2699 return 0;
2700 }
2701
2702 fmt = GET_RTX_FORMAT (code);
2703 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2704 {
2705 if (fmt[i] == 'e')
2706 {
2707 int tem = invariant_p (XEXP (x, i));
2708 if (tem == 0)
2709 return 0;
2710 if (tem == 2)
2711 conditional = 1;
2712 }
2713 else if (fmt[i] == 'E')
2714 {
2715 register int j;
2716 for (j = 0; j < XVECLEN (x, i); j++)
2717 {
2718 int tem = invariant_p (XVECEXP (x, i, j));
2719 if (tem == 0)
2720 return 0;
2721 if (tem == 2)
2722 conditional = 1;
2723 }
2724
2725 }
2726 }
2727
2728 return 1 + conditional;
2729}
2730
b4ad7b23
RS
2731\f
2732/* Return nonzero if all the insns in the loop that set REG
2733 are INSN and the immediately following insns,
2734 and if each of those insns sets REG in an invariant way
2735 (not counting uses of REG in them).
2736
2737 The value is 2 if some of these insns are only conditionally invariant.
2738
2739 We assume that INSN itself is the first set of REG
2740 and that its source is invariant. */
2741
2742static int
2743consec_sets_invariant_p (reg, n_sets, insn)
2744 int n_sets;
2745 rtx reg, insn;
2746{
2747 register rtx p = insn;
2748 register int regno = REGNO (reg);
2749 rtx temp;
2750 /* Number of sets we have to insist on finding after INSN. */
2751 int count = n_sets - 1;
2752 int old = n_times_set[regno];
2753 int value = 0;
2754 int this;
2755
2756 /* If N_SETS hit the limit, we can't rely on its value. */
2757 if (n_sets == 127)
2758 return 0;
2759
2760 n_times_set[regno] = 0;
2761
2762 while (count > 0)
2763 {
2764 register enum rtx_code code;
2765 rtx set;
2766
2767 p = NEXT_INSN (p);
2768 code = GET_CODE (p);
2769
2770 /* If library call, skip to end of of it. */
5fd8383e 2771 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
b4ad7b23
RS
2772 p = XEXP (temp, 0);
2773
2774 this = 0;
2775 if (code == INSN
2776 && (set = single_set (p))
2777 && GET_CODE (SET_DEST (set)) == REG
2778 && REGNO (SET_DEST (set)) == regno)
2779 {
2780 this = invariant_p (SET_SRC (set));
2781 if (this != 0)
2782 value |= this;
5fd8383e 2783 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
b4ad7b23 2784 {
83d90aac
JW
2785 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
2786 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
2787 notes are OK. */
2788 this = (CONSTANT_P (XEXP (temp, 0))
2789 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
2790 && invariant_p (XEXP (temp, 0))));
b4ad7b23
RS
2791 if (this != 0)
2792 value |= this;
2793 }
2794 }
2795 if (this != 0)
2796 count--;
2797 else if (code != NOTE)
2798 {
2799 n_times_set[regno] = old;
2800 return 0;
2801 }
2802 }
2803
2804 n_times_set[regno] = old;
2805 /* If invariant_p ever returned 2, we return 2. */
2806 return 1 + (value & 2);
2807}
2808
2809#if 0
2810/* I don't think this condition is sufficient to allow INSN
2811 to be moved, so we no longer test it. */
2812
2813/* Return 1 if all insns in the basic block of INSN and following INSN
2814 that set REG are invariant according to TABLE. */
2815
2816static int
2817all_sets_invariant_p (reg, insn, table)
2818 rtx reg, insn;
2819 short *table;
2820{
2821 register rtx p = insn;
2822 register int regno = REGNO (reg);
2823
2824 while (1)
2825 {
2826 register enum rtx_code code;
2827 p = NEXT_INSN (p);
2828 code = GET_CODE (p);
2829 if (code == CODE_LABEL || code == JUMP_INSN)
2830 return 1;
2831 if (code == INSN && GET_CODE (PATTERN (p)) == SET
2832 && GET_CODE (SET_DEST (PATTERN (p))) == REG
2833 && REGNO (SET_DEST (PATTERN (p))) == regno)
2834 {
2835 if (!invariant_p (SET_SRC (PATTERN (p)), table))
2836 return 0;
2837 }
2838 }
2839}
2840#endif /* 0 */
2841\f
2842/* Look at all uses (not sets) of registers in X. For each, if it is
2843 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
2844 a different insn, set USAGE[REGNO] to const0_rtx. */
2845
2846static void
2847find_single_use_in_loop (insn, x, usage)
2848 rtx insn;
2849 rtx x;
2850 rtx *usage;
2851{
2852 enum rtx_code code = GET_CODE (x);
2853 char *fmt = GET_RTX_FORMAT (code);
2854 int i, j;
2855
2856 if (code == REG)
2857 usage[REGNO (x)]
2858 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
2859 ? const0_rtx : insn;
2860
2861 else if (code == SET)
2862 {
2863 /* Don't count SET_DEST if it is a REG; otherwise count things
2864 in SET_DEST because if a register is partially modified, it won't
2865 show up as a potential movable so we don't care how USAGE is set
2866 for it. */
2867 if (GET_CODE (SET_DEST (x)) != REG)
2868 find_single_use_in_loop (insn, SET_DEST (x), usage);
2869 find_single_use_in_loop (insn, SET_SRC (x), usage);
2870 }
2871 else
2872 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2873 {
2874 if (fmt[i] == 'e' && XEXP (x, i) != 0)
2875 find_single_use_in_loop (insn, XEXP (x, i), usage);
2876 else if (fmt[i] == 'E')
2877 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2878 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
2879 }
2880}
2881\f
2882/* Increment N_TIMES_SET at the index of each register
2883 that is modified by an insn between FROM and TO.
2884 If the value of an element of N_TIMES_SET becomes 127 or more,
2885 stop incrementing it, to avoid overflow.
2886
2887 Store in SINGLE_USAGE[I] the single insn in which register I is
2888 used, if it is only used once. Otherwise, it is set to 0 (for no
2889 uses) or const0_rtx for more than one use. This parameter may be zero,
2890 in which case this processing is not done.
2891
2892 Store in *COUNT_PTR the number of actual instruction
2893 in the loop. We use this to decide what is worth moving out. */
2894
2895/* last_set[n] is nonzero iff reg n has been set in the current basic block.
2896 In that case, it is the insn that last set reg n. */
2897
2898static void
2899count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
2900 register rtx from, to;
2901 char *may_not_move;
2902 rtx *single_usage;
2903 int *count_ptr;
2904 int nregs;
2905{
2906 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
2907 register rtx insn;
2908 register int count = 0;
2909 register rtx dest;
2910
2911 bzero (last_set, nregs * sizeof (rtx));
2912 for (insn = from; insn != to; insn = NEXT_INSN (insn))
2913 {
2914 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2915 {
2916 ++count;
2917
2918 /* If requested, record registers that have exactly one use. */
2919 if (single_usage)
2920 {
2921 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
2922
2923 /* Include uses in REG_EQUAL notes. */
2924 if (REG_NOTES (insn))
2925 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
2926 }
2927
2928 if (GET_CODE (PATTERN (insn)) == CLOBBER
2929 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
2930 /* Don't move a reg that has an explicit clobber.
2931 We might do so sometimes, but it's not worth the pain. */
2932 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
2933
2934 if (GET_CODE (PATTERN (insn)) == SET
2935 || GET_CODE (PATTERN (insn)) == CLOBBER)
2936 {
2937 dest = SET_DEST (PATTERN (insn));
2938 while (GET_CODE (dest) == SUBREG
2939 || GET_CODE (dest) == ZERO_EXTRACT
2940 || GET_CODE (dest) == SIGN_EXTRACT
2941 || GET_CODE (dest) == STRICT_LOW_PART)
2942 dest = XEXP (dest, 0);
2943 if (GET_CODE (dest) == REG)
2944 {
2945 register int regno = REGNO (dest);
2946 /* If this is the first setting of this reg
2947 in current basic block, and it was set before,
2948 it must be set in two basic blocks, so it cannot
2949 be moved out of the loop. */
2950 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2951 may_not_move[regno] = 1;
2952 /* If this is not first setting in current basic block,
2953 see if reg was used in between previous one and this.
2954 If so, neither one can be moved. */
2955 if (last_set[regno] != 0
2956 && reg_used_between_p (dest, last_set[regno], insn))
2957 may_not_move[regno] = 1;
2958 if (n_times_set[regno] < 127)
2959 ++n_times_set[regno];
2960 last_set[regno] = insn;
2961 }
2962 }
2963 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2964 {
2965 register int i;
2966 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2967 {
2968 register rtx x = XVECEXP (PATTERN (insn), 0, i);
2969 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
2970 /* Don't move a reg that has an explicit clobber.
2971 It's not worth the pain to try to do it correctly. */
2972 may_not_move[REGNO (XEXP (x, 0))] = 1;
2973
2974 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2975 {
2976 dest = SET_DEST (x);
2977 while (GET_CODE (dest) == SUBREG
2978 || GET_CODE (dest) == ZERO_EXTRACT
2979 || GET_CODE (dest) == SIGN_EXTRACT
2980 || GET_CODE (dest) == STRICT_LOW_PART)
2981 dest = XEXP (dest, 0);
2982 if (GET_CODE (dest) == REG)
2983 {
2984 register int regno = REGNO (dest);
2985 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2986 may_not_move[regno] = 1;
2987 if (last_set[regno] != 0
2988 && reg_used_between_p (dest, last_set[regno], insn))
2989 may_not_move[regno] = 1;
2990 if (n_times_set[regno] < 127)
2991 ++n_times_set[regno];
2992 last_set[regno] = insn;
2993 }
2994 }
2995 }
2996 }
2997 }
2998 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
2999 bzero (last_set, nregs * sizeof (rtx));
3000 }
3001 *count_ptr = count;
3002}
3003\f
3004/* Given a loop that is bounded by LOOP_START and LOOP_END
3005 and that is entered at SCAN_START,
3006 return 1 if the register set in SET contained in insn INSN is used by
3007 any insn that precedes INSN in cyclic order starting
3008 from the loop entry point.
3009
3010 We don't want to use INSN_LUID here because if we restrict INSN to those
3011 that have a valid INSN_LUID, it means we cannot move an invariant out
3012 from an inner loop past two loops. */
3013
3014static int
3015loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3016 rtx set, insn, loop_start, scan_start, loop_end;
3017{
3018 rtx reg = SET_DEST (set);
3019 rtx p;
3020
3021 /* Scan forward checking for register usage. If we hit INSN, we
3022 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3023 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3024 {
3025 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3026 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3027 return 1;
3028
3029 if (p == loop_end)
3030 p = loop_start;
3031 }
3032
3033 return 0;
3034}
3035\f
3036/* A "basic induction variable" or biv is a pseudo reg that is set
3037 (within this loop) only by incrementing or decrementing it. */
3038/* A "general induction variable" or giv is a pseudo reg whose
3039 value is a linear function of a biv. */
3040
3041/* Bivs are recognized by `basic_induction_var';
3042 Givs by `general_induct_var'. */
3043
3044/* Indexed by register number, indicates whether or not register is an
3045 induction variable, and if so what type. */
3046
3047enum iv_mode *reg_iv_type;
3048
3049/* Indexed by register number, contains pointer to `struct induction'
3050 if register is an induction variable. This holds general info for
3051 all induction variables. */
3052
3053struct induction **reg_iv_info;
3054
3055/* Indexed by register number, contains pointer to `struct iv_class'
3056 if register is a basic induction variable. This holds info describing
3057 the class (a related group) of induction variables that the biv belongs
3058 to. */
3059
3060struct iv_class **reg_biv_class;
3061
3062/* The head of a list which links together (via the next field)
3063 every iv class for the current loop. */
3064
3065struct iv_class *loop_iv_list;
3066
3067/* Communication with routines called via `note_stores'. */
3068
3069static rtx note_insn;
3070
3071/* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3072
3073static rtx addr_placeholder;
3074
3075/* ??? Unfinished optimizations, and possible future optimizations,
3076 for the strength reduction code. */
3077
3078/* ??? There is one more optimization you might be interested in doing: to
3079 allocate pseudo registers for frequently-accessed memory locations.
3080 If the same memory location is referenced each time around, it might
3081 be possible to copy it into a register before and out after.
3082 This is especially useful when the memory location is a variable which
3083 is in a stack slot because somewhere its address is taken. If the
3084 loop doesn't contain a function call and the variable isn't volatile,
3085 it is safe to keep the value in a register for the duration of the
3086 loop. One tricky thing is that the copying of the value back from the
3087 register has to be done on all exits from the loop. You need to check that
3088 all the exits from the loop go to the same place. */
3089
3090/* ??? The interaction of biv elimination, and recognition of 'constant'
3091 bivs, may cause problems. */
3092
3093/* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3094 performance problems.
3095
3096 Perhaps don't eliminate things that can be combined with an addressing
3097 mode. Find all givs that have the same biv, mult_val, and add_val;
3098 then for each giv, check to see if its only use dies in a following
3099 memory address. If so, generate a new memory address and check to see
3100 if it is valid. If it is valid, then store the modified memory address,
3101 otherwise, mark the giv as not done so that it will get its own iv. */
3102
3103/* ??? Could try to optimize branches when it is known that a biv is always
3104 positive. */
3105
3106/* ??? When replace a biv in a compare insn, we should replace with closest
3107 giv so that an optimized branch can still be recognized by the combiner,
3108 e.g. the VAX acb insn. */
3109
3110/* ??? Many of the checks involving uid_luid could be simplified if regscan
3111 was rerun in loop_optimize whenever a register was added or moved.
3112 Also, some of the optimizations could be a little less conservative. */
3113\f
3114/* Perform strength reduction and induction variable elimination. */
3115
3116/* Pseudo registers created during this function will be beyond the last
3117 valid index in several tables including n_times_set and regno_last_uid.
3118 This does not cause a problem here, because the added registers cannot be
3119 givs outside of their loop, and hence will never be reconsidered.
3120 But scan_loop must check regnos to make sure they are in bounds. */
3121
3122static void
3123strength_reduce (scan_start, end, loop_top, insn_count,
3124 loop_start, loop_end)
3125 rtx scan_start;
3126 rtx end;
3127 rtx loop_top;
3128 int insn_count;
3129 rtx loop_start;
3130 rtx loop_end;
3131{
3132 rtx p;
3133 rtx set;
3134 rtx inc_val;
3135 rtx mult_val;
3136 rtx dest_reg;
3137 /* This is 1 if current insn is not executed at least once for every loop
3138 iteration. */
3139 int not_every_iteration = 0;
7dcd3836
RK
3140 /* This is 1 if current insn may be executed more than once for every
3141 loop iteration. */
3142 int maybe_multiple = 0;
b4ad7b23
RS
3143 /* Temporary list pointers for traversing loop_iv_list. */
3144 struct iv_class *bl, **backbl;
3145 /* Ratio of extra register life span we can justify
3146 for saving an instruction. More if loop doesn't call subroutines
3147 since in that case saving an insn makes more difference
3148 and more registers are available. */
3149 /* ??? could set this to last value of threshold in move_movables */
3150 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3151 /* Map of pseudo-register replacements. */
3152 rtx *reg_map;
3153 int call_seen;
3154 rtx test;
3155 rtx end_insert_before;
3156
3157 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3158 * sizeof (enum iv_mode *));
3159 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3160 reg_iv_info = (struct induction **)
3161 alloca (max_reg_before_loop * sizeof (struct induction *));
3162 bzero ((char *) reg_iv_info, (max_reg_before_loop
3163 * sizeof (struct induction *)));
3164 reg_biv_class = (struct iv_class **)
3165 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3166 bzero ((char *) reg_biv_class, (max_reg_before_loop
3167 * sizeof (struct iv_class *)));
3168
3169 loop_iv_list = 0;
3170 addr_placeholder = gen_reg_rtx (Pmode);
3171
3172 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3173 must be put before this insn, so that they will appear in the right
b2586fe0 3174 order (i.e. loop order).
b4ad7b23 3175
b2586fe0
JL
3176 If loop_end is the end of the current function, then emit a
3177 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3178 dummy note insn. */
3179 if (NEXT_INSN (loop_end) != 0)
3180 end_insert_before = NEXT_INSN (loop_end);
3181 else
3182 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
b4ad7b23
RS
3183
3184 /* Scan through loop to find all possible bivs. */
3185
3186 p = scan_start;
3187 while (1)
3188 {
3189 p = NEXT_INSN (p);
3190 /* At end of a straight-in loop, we are done.
3191 At end of a loop entered at the bottom, scan the top. */
3192 if (p == scan_start)
3193 break;
3194 if (p == end)
3195 {
3196 if (loop_top != 0)
3197 p = NEXT_INSN (loop_top);
3198 else
3199 break;
3200 if (p == scan_start)
3201 break;
3202 }
3203
3204 if (GET_CODE (p) == INSN
3205 && (set = single_set (p))
3206 && GET_CODE (SET_DEST (set)) == REG)
3207 {
3208 dest_reg = SET_DEST (set);
3209 if (REGNO (dest_reg) < max_reg_before_loop
3210 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3211 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3212 {
7056f7e8
RS
3213 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3214 dest_reg, p, &inc_val, &mult_val))
b4ad7b23
RS
3215 {
3216 /* It is a possible basic induction variable.
3217 Create and initialize an induction structure for it. */
3218
3219 struct induction *v
3220 = (struct induction *) alloca (sizeof (struct induction));
3221
3222 record_biv (v, p, dest_reg, inc_val, mult_val,
7dcd3836 3223 not_every_iteration, maybe_multiple);
b4ad7b23
RS
3224 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3225 }
3226 else if (REGNO (dest_reg) < max_reg_before_loop)
3227 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3228 }
3229 }
3230
7dcd3836
RK
3231 /* Past CODE_LABEL, we get to insns that may be executed multiple
3232 times. The only way we can be sure that they can't is if every
3233 every jump insn between here and the end of the loop either
3234 returns, exits the loop, or is a forward jump. */
3235
3236 if (GET_CODE (p) == CODE_LABEL)
3237 {
3238 rtx insn = p;
3239
3240 maybe_multiple = 0;
3241
3242 while (1)
3243 {
3244 insn = NEXT_INSN (insn);
3245 if (insn == scan_start)
3246 break;
3247 if (insn == end)
3248 {
3249 if (loop_top != 0)
3250 insn = NEXT_INSN (loop_top);
3251 else
3252 break;
3253 if (insn == scan_start)
3254 break;
3255 }
3256
3257 if (GET_CODE (insn) == JUMP_INSN
3258 && GET_CODE (PATTERN (insn)) != RETURN
3259 && (! condjump_p (insn)
3260 || (JUMP_LABEL (insn) != 0
cdc54cc9
TW
3261 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3262 || INSN_UID (insn) >= max_uid_for_loop
7dcd3836
RK
3263 || (INSN_LUID (JUMP_LABEL (insn))
3264 < INSN_LUID (insn))))))
3265 {
3266 maybe_multiple = 1;
3267 break;
3268 }
3269 }
3270 }
3271
b4ad7b23
RS
3272 /* Past a label or a jump, we get to insns for which we can't count
3273 on whether or how many times they will be executed during each
3274 iteration. */
3275 /* This code appears in three places, once in scan_loop, and twice
3276 in strength_reduce. */
3277 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3278 /* If we enter the loop in the middle, and scan around to the
3279 beginning, don't set not_every_iteration for that.
3280 This can be any kind of jump, since we want to know if insns
3281 will be executed if the loop is executed. */
3282 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3283 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3284 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3285 not_every_iteration = 1;
3286
3287 /* At the virtual top of a converted loop, insns are again known to
3288 be executed each iteration: logically, the loop begins here
3289 even though the exit code has been duplicated. */
3290
3291 else if (GET_CODE (p) == NOTE
3292 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3293 not_every_iteration = 0;
3294
3295 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3296 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3297 or not an insn is known to be executed each iteration of the
3298 loop, whether or not any iterations are known to occur.
3299
3300 Therefore, if we have just passed a label and have no more labels
3301 between here and the test insn of the loop, we know these insns
3302 will be executed each iteration. This can also happen if we
3303 have just passed a jump, for example, when there are nested loops. */
3304
3305 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3306 && no_labels_between_p (p, loop_end))
3307 not_every_iteration = 0;
3308 }
3309
3310 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3311 Make a sanity check against n_times_set. */
3312 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3313 {
3314 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3315 /* Above happens if register modified by subreg, etc. */
3316 /* Make sure it is not recognized as a basic induction var: */
3317 || n_times_set[bl->regno] != bl->biv_count
3318 /* If never incremented, it is invariant that we decided not to
3319 move. So leave it alone. */
3320 || ! bl->incremented)
3321 {
3322 if (loop_dump_stream)
3323 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3324 bl->regno,
3325 (reg_iv_type[bl->regno] != BASIC_INDUCT
3326 ? "not induction variable"
3327 : (! bl->incremented ? "never incremented"
3328 : "count error")));
3329
3330 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3331 *backbl = bl->next;
3332 }
3333 else
3334 {
3335 backbl = &bl->next;
3336
3337 if (loop_dump_stream)
3338 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3339 }
3340 }
3341
3342 /* Exit if there are no bivs. */
3343 if (! loop_iv_list)
3344 {
3345 /* Can still unroll the loop anyways, but indicate that there is no
3346 strength reduction info available. */
3347 if (flag_unroll_loops)
3348 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3349
3350 return;
3351 }
3352
3353 /* Find initial value for each biv by searching backwards from loop_start,
3354 halting at first label. Also record any test condition. */
3355
3356 call_seen = 0;
3357 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3358 {
3359 note_insn = p;
3360
3361 if (GET_CODE (p) == CALL_INSN)
3362 call_seen = 1;
3363
3364 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3365 || GET_CODE (p) == CALL_INSN)
3366 note_stores (PATTERN (p), record_initial);
3367
3368 /* Record any test of a biv that branches around the loop if no store
3369 between it and the start of loop. We only care about tests with
3370 constants and registers and only certain of those. */
3371 if (GET_CODE (p) == JUMP_INSN
3372 && JUMP_LABEL (p) != 0
3373 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3374 && (test = get_condition_for_loop (p)) != 0
3375 && GET_CODE (XEXP (test, 0)) == REG
3376 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3377 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3378 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3379 && bl->init_insn == 0)
3380 {
3381 /* If an NE test, we have an initial value! */
3382 if (GET_CODE (test) == NE)
3383 {
3384 bl->init_insn = p;
3385 bl->init_set = gen_rtx (SET, VOIDmode,
3386 XEXP (test, 0), XEXP (test, 1));
3387 }
3388 else
3389 bl->initial_test = test;
3390 }
3391 }
3392
3393 /* Look at the each biv and see if we can say anything better about its
3394 initial value from any initializing insns set up above. (This is done
3395 in two passes to avoid missing SETs in a PARALLEL.) */
3396 for (bl = loop_iv_list; bl; bl = bl->next)
3397 {
3398 rtx src;
3399
3400 if (! bl->init_insn)
3401 continue;
3402
3403 src = SET_SRC (bl->init_set);
3404
3405 if (loop_dump_stream)
3406 fprintf (loop_dump_stream,
3407 "Biv %d initialized at insn %d: initial value ",
3408 bl->regno, INSN_UID (bl->init_insn));
3409
3410 if (valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3411 {
3412 bl->initial_value = src;
3413
3414 if (loop_dump_stream)
3415 {
3416 if (GET_CODE (src) == CONST_INT)
3417 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3418 else
3419 {
3420 print_rtl (loop_dump_stream, src);
3421 fprintf (loop_dump_stream, "\n");
3422 }
3423 }
3424 }
3425 else
3426 {
3427 /* Biv initial value is not simple move,
d45cf215 3428 so let it keep initial value of "itself". */
b4ad7b23
RS
3429
3430 if (loop_dump_stream)
3431 fprintf (loop_dump_stream, "is complex\n");
3432 }
3433 }
3434
3435 /* Search the loop for general induction variables. */
3436
3437 /* A register is a giv if: it is only set once, it is a function of a
3438 biv and a constant (or invariant), and it is not a biv. */
3439
3440 not_every_iteration = 0;
3441 p = scan_start;
3442 while (1)
3443 {
3444 p = NEXT_INSN (p);
3445 /* At end of a straight-in loop, we are done.
3446 At end of a loop entered at the bottom, scan the top. */
3447 if (p == scan_start)
3448 break;
3449 if (p == end)
3450 {
3451 if (loop_top != 0)
3452 p = NEXT_INSN (loop_top);
3453 else
3454 break;
3455 if (p == scan_start)
3456 break;
3457 }
3458
3459 /* Look for a general induction variable in a register. */
3460 if (GET_CODE (p) == INSN
3461 && (set = single_set (p))
3462 && GET_CODE (SET_DEST (set)) == REG
3463 && ! may_not_optimize[REGNO (SET_DEST (set))])
3464 {
3465 rtx src_reg;
3466 rtx add_val;
3467 rtx mult_val;
3468 int benefit;
3469 rtx regnote = 0;
3470
3471 dest_reg = SET_DEST (set);
3472 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3473 continue;
3474
3475 if (/* SET_SRC is a giv. */
3476 ((benefit = general_induction_var (SET_SRC (set),
3477 &src_reg, &add_val,
3478 &mult_val))
3479 /* Equivalent expression is a giv. */
5fd8383e 3480 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
b4ad7b23
RS
3481 && (benefit = general_induction_var (XEXP (regnote, 0),
3482 &src_reg,
3483 &add_val, &mult_val))))
3484 /* Don't try to handle any regs made by loop optimization.
3485 We have nothing on them in regno_first_uid, etc. */
3486 && REGNO (dest_reg) < max_reg_before_loop
3487 /* Don't recognize a BASIC_INDUCT_VAR here. */
3488 && dest_reg != src_reg
3489 /* This must be the only place where the register is set. */
3490 && (n_times_set[REGNO (dest_reg)] == 1
3491 /* or all sets must be consecutive and make a giv. */
3492 || (benefit = consec_sets_giv (benefit, p,
3493 src_reg, dest_reg,
3494 &add_val, &mult_val))))
3495 {
3496 int count;
3497 struct induction *v
3498 = (struct induction *) alloca (sizeof (struct induction));
3499 rtx temp;
3500
3501 /* If this is a library call, increase benefit. */
5fd8383e 3502 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
b4ad7b23
RS
3503 benefit += libcall_benefit (p);
3504
3505 /* Skip the consecutive insns, if there are any. */
3506 for (count = n_times_set[REGNO (dest_reg)] - 1;
3507 count > 0; count--)
3508 {
3509 /* If first insn of libcall sequence, skip to end.
3510 Do this at start of loop, since INSN is guaranteed to
3511 be an insn here. */
3512 if (GET_CODE (p) != NOTE
5fd8383e 3513 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
b4ad7b23
RS
3514 p = XEXP (temp, 0);
3515
3516 do p = NEXT_INSN (p);
3517 while (GET_CODE (p) == NOTE);
3518 }
3519
3520 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
5fd8383e 3521 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
b4ad7b23
RS
3522 loop_end);
3523
3524 }
3525 }
3526
3527#ifndef DONT_REDUCE_ADDR
3528 /* Look for givs which are memory addresses. */
3529 /* This resulted in worse code on a VAX 8600. I wonder if it
3530 still does. */
3531 if (GET_CODE (p) == INSN)
3532 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3533 loop_end);
3534#endif
3535
3536 /* Update the status of whether giv can derive other givs. This can
3537 change when we pass a label or an insn that updates a biv. */
7dcd3836
RK
3538 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3539 || GET_CODE (p) == CODE_LABEL)
b4ad7b23
RS
3540 update_giv_derive (p);
3541
3542 /* Past a label or a jump, we get to insns for which we can't count
3543 on whether or how many times they will be executed during each
3544 iteration. */
3545 /* This code appears in three places, once in scan_loop, and twice
3546 in strength_reduce. */
3547 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3548 /* If we enter the loop in the middle, and scan around
3549 to the beginning, don't set not_every_iteration for that.
3550 This can be any kind of jump, since we want to know if insns
3551 will be executed if the loop is executed. */
3552 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3553 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3554 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3555 not_every_iteration = 1;
3556
3557 /* At the virtual top of a converted loop, insns are again known to
3558 be executed each iteration: logically, the loop begins here
3559 even though the exit code has been duplicated. */
3560
3561 else if (GET_CODE (p) == NOTE
3562 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3563 not_every_iteration = 0;
3564
3565 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3566 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3567 or not an insn is known to be executed each iteration of the
3568 loop, whether or not any iterations are known to occur.
3569
3570 Therefore, if we have just passed a label and have no more labels
3571 between here and the test insn of the loop, we know these insns
3572 will be executed each iteration. */
3573
3574 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3575 && no_labels_between_p (p, loop_end))
3576 not_every_iteration = 0;
3577 }
3578
3579 /* Try to calculate and save the number of loop iterations. This is
3580 set to zero if the actual number can not be calculated. This must
3581 be called after all giv's have been identified, since otherwise it may
3582 fail if the iteration variable is a giv. */
3583
3584 loop_n_iterations = loop_iterations (loop_start, loop_end);
3585
3586 /* Now for each giv for which we still don't know whether or not it is
3587 replaceable, check to see if it is replaceable because its final value
3588 can be calculated. This must be done after loop_iterations is called,
3589 so that final_giv_value will work correctly. */
3590
3591 for (bl = loop_iv_list; bl; bl = bl->next)
3592 {
3593 struct induction *v;
3594
3595 for (v = bl->giv; v; v = v->next_iv)
3596 if (! v->replaceable && ! v->not_replaceable)
3597 check_final_value (v, loop_start, loop_end);
3598 }
3599
3600 /* Try to prove that the loop counter variable (if any) is always
3601 nonnegative; if so, record that fact with a REG_NONNEG note
3602 so that "decrement and branch until zero" insn can be used. */
3603 check_dbra_loop (loop_end, insn_count, loop_start);
3604
3605 /* Create reg_map to hold substitutions for replaceable giv regs. */
3606 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3607 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3608
3609 /* Examine each iv class for feasibility of strength reduction/induction
3610 variable elimination. */
3611
3612 for (bl = loop_iv_list; bl; bl = bl->next)
3613 {
3614 struct induction *v;
3615 int benefit;
3616 int all_reduced;
3617 rtx final_value = 0;
3618
3619 /* Test whether it will be possible to eliminate this biv
3620 provided all givs are reduced. This is possible if either
3621 the reg is not used outside the loop, or we can compute
3622 what its final value will be.
3623
3624 For architectures with a decrement_and_branch_until_zero insn,
3625 don't do this if we put a REG_NONNEG note on the endtest for
3626 this biv. */
3627
3628 /* Compare against bl->init_insn rather than loop_start.
3629 We aren't concerned with any uses of the biv between
3630 init_insn and loop_start since these won't be affected
3631 by the value of the biv elsewhere in the function, so
3632 long as init_insn doesn't use the biv itself.
3633 March 14, 1989 -- self@bayes.arc.nasa.gov */
3634
3635 if ((uid_luid[regno_last_uid[bl->regno]] < INSN_LUID (loop_end)
3636 && bl->init_insn
3637 && INSN_UID (bl->init_insn) < max_uid_for_loop
3638 && uid_luid[regno_first_uid[bl->regno]] >= INSN_LUID (bl->init_insn)
3639#ifdef HAVE_decrement_and_branch_until_zero
3640 && ! bl->nonneg
3641#endif
3642 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3643 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3644#ifdef HAVE_decrement_and_branch_until_zero
3645 && ! bl->nonneg
3646#endif
3647 ))
3648 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3649 threshold, insn_count);
3650 else
3651 {
3652 if (loop_dump_stream)
3653 {
3654 fprintf (loop_dump_stream,
3655 "Cannot eliminate biv %d.\n",
3656 bl->regno);
3657 fprintf (loop_dump_stream,
3658 "First use: insn %d, last use: insn %d.\n",
3659 regno_first_uid[bl->regno],
3660 regno_last_uid[bl->regno]);
3661 }
3662 }
3663
3664 /* Combine all giv's for this iv_class. */
3665 combine_givs (bl);
3666
3667 /* This will be true at the end, if all givs which depend on this
3668 biv have been strength reduced.
3669 We can't (currently) eliminate the biv unless this is so. */
3670 all_reduced = 1;
3671
3672 /* Check each giv in this class to see if we will benefit by reducing
3673 it. Skip giv's combined with others. */
3674 for (v = bl->giv; v; v = v->next_iv)
3675 {
3676 struct induction *tv;
3677
3678 if (v->ignore || v->same)
3679 continue;
3680
3681 benefit = v->benefit;
3682
3683 /* Reduce benefit if not replaceable, since we will insert
3684 a move-insn to replace the insn that calculates this giv.
3685 Don't do this unless the giv is a user variable, since it
3686 will often be marked non-replaceable because of the duplication
3687 of the exit code outside the loop. In such a case, the copies
3688 we insert are dead and will be deleted. So they don't have
3689 a cost. Similar situations exist. */
3690 /* ??? The new final_[bg]iv_value code does a much better job
3691 of finding replaceable giv's, and hence this code may no longer
3692 be necessary. */
3693 if (! v->replaceable && ! bl->eliminable
3694 && REG_USERVAR_P (v->dest_reg))
3695 benefit -= copy_cost;
3696
3697 /* Decrease the benefit to count the add-insns that we will
3698 insert to increment the reduced reg for the giv. */
3699 benefit -= add_cost * bl->biv_count;
3700
3701 /* Decide whether to strength-reduce this giv or to leave the code
3702 unchanged (recompute it from the biv each time it is used).
3703 This decision can be made independently for each giv. */
3704
3705 /* ??? Perhaps attempt to guess whether autoincrement will handle
3706 some of the new add insns; if so, can increase BENEFIT
3707 (undo the subtraction of add_cost that was done above). */
3708
3709 /* If an insn is not to be strength reduced, then set its ignore
3710 flag, and clear all_reduced. */
3711
e6f6eb29
JW
3712 /* A giv that depends on a reversed biv must be reduced if it is
3713 used after the loop exit, otherwise, it would have the wrong
3714 value after the loop exit. To make it simple, just reduce all
3715 of such giv's whether or not we know they are used after the loop
3716 exit. */
3717
3718 if (v->lifetime * threshold * benefit < insn_count
3719 && ! bl->reversed)
b4ad7b23
RS
3720 {
3721 if (loop_dump_stream)
3722 fprintf (loop_dump_stream,
3723 "giv of insn %d not worth while, %d vs %d.\n",
3724 INSN_UID (v->insn),
3725 v->lifetime * threshold * benefit, insn_count);
3726 v->ignore = 1;
3727 all_reduced = 0;
3728 }
3729 else
3730 {
3731 /* Check that we can increment the reduced giv without a
3732 multiply insn. If not, reject it. */
3733
3734 for (tv = bl->biv; tv; tv = tv->next_iv)
3735 if (tv->mult_val == const1_rtx
3736 && ! product_cheap_p (tv->add_val, v->mult_val))
3737 {
3738 if (loop_dump_stream)
3739 fprintf (loop_dump_stream,
3740 "giv of insn %d: would need a multiply.\n",
3741 INSN_UID (v->insn));
3742 v->ignore = 1;
3743 all_reduced = 0;
3744 break;
3745 }
3746 }
3747 }
3748
3749 /* Reduce each giv that we decided to reduce. */
3750
3751 for (v = bl->giv; v; v = v->next_iv)
3752 {
3753 struct induction *tv;
3754 if (! v->ignore && v->same == 0)
3755 {
3756 v->new_reg = gen_reg_rtx (v->mode);
3757
3758 /* For each place where the biv is incremented,
3759 add an insn to increment the new, reduced reg for the giv. */
3760 for (tv = bl->biv; tv; tv = tv->next_iv)
3761 {
3762 if (tv->mult_val == const1_rtx)
3763 emit_iv_add_mult (tv->add_val, v->mult_val,
3764 v->new_reg, v->new_reg, tv->insn);
3765 else /* tv->mult_val == const0_rtx */
3766 /* A multiply is acceptable here
3767 since this is presumed to be seldom executed. */
3768 emit_iv_add_mult (tv->add_val, v->mult_val,
3769 v->add_val, v->new_reg, tv->insn);
3770 }
3771
3772 /* Add code at loop start to initialize giv's reduced reg. */
3773
3774 emit_iv_add_mult (bl->initial_value, v->mult_val,
3775 v->add_val, v->new_reg, loop_start);
3776 }
3777 }
3778
3779 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
3780 as not reduced.
3781
3782 For each giv register that can be reduced now: if replaceable,
3783 substitute reduced reg wherever the old giv occurs;
3784 else add new move insn "giv_reg = reduced_reg".
3785
3786 Also check for givs whose first use is their definition and whose
3787 last use is the definition of another giv. If so, it is likely
3788 dead and should not be used to eliminate a biv. */
3789 for (v = bl->giv; v; v = v->next_iv)
3790 {
3791 if (v->same && v->same->ignore)
3792 v->ignore = 1;
3793
3794 if (v->ignore)
3795 continue;
3796
3797 if (v->giv_type == DEST_REG
3798 && regno_first_uid[REGNO (v->dest_reg)] == INSN_UID (v->insn))
3799 {
3800 struct induction *v1;
3801
3802 for (v1 = bl->giv; v1; v1 = v1->next_iv)
3803 if (regno_last_uid[REGNO (v->dest_reg)] == INSN_UID (v1->insn))
3804 v->maybe_dead = 1;
3805 }
3806
3807 /* Update expression if this was combined, in case other giv was
3808 replaced. */
3809 if (v->same)
3810 v->new_reg = replace_rtx (v->new_reg,
3811 v->same->dest_reg, v->same->new_reg);
3812
3813 if (v->giv_type == DEST_ADDR)
3814 /* Store reduced reg as the address in the memref where we found
3815 this giv. */
3816 *v->location = v->new_reg;
3817 else if (v->replaceable)
3818 {
3819 reg_map[REGNO (v->dest_reg)] = v->new_reg;
3820
3821#if 0
3822 /* I can no longer duplicate the original problem. Perhaps
3823 this is unnecessary now? */
3824
3825 /* Replaceable; it isn't strictly necessary to delete the old
3826 insn and emit a new one, because v->dest_reg is now dead.
3827
3828 However, especially when unrolling loops, the special
3829 handling for (set REG0 REG1) in the second cse pass may
3830 make v->dest_reg live again. To avoid this problem, emit
3831 an insn to set the original giv reg from the reduced giv.
3832 We can not delete the original insn, since it may be part
3833 of a LIBCALL, and the code in flow that eliminates dead
3834 libcalls will fail if it is deleted. */
3835 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3836 v->insn);
3837#endif
3838 }
3839 else
3840 {
3841 /* Not replaceable; emit an insn to set the original giv reg from
3842 the reduced giv, same as above. */
3843 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3844 v->insn);
3845 }
3846
3847 /* When a loop is reversed, givs which depend on the reversed
3848 biv, and which are live outside the loop, must be set to their
3849 correct final value. This insn is only needed if the giv is
3850 not replaceable. The correct final value is the same as the
3851 value that the giv starts the reversed loop with. */
3852 if (bl->reversed && ! v->replaceable)
3853 emit_iv_add_mult (bl->initial_value, v->mult_val,
3854 v->add_val, v->dest_reg, end_insert_before);
3855 else if (v->final_value)
3856 {
3857 rtx insert_before;
3858
3859 /* If the loop has multiple exits, emit the insn before the
3860 loop to ensure that it will always be executed no matter
3861 how the loop exits. Otherwise, emit the insn after the loop,
3862 since this is slightly more efficient. */
3863 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3864 insert_before = loop_start;
3865 else
3866 insert_before = end_insert_before;
3867 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
3868 insert_before);
3869
3870#if 0
3871 /* If the insn to set the final value of the giv was emitted
3872 before the loop, then we must delete the insn inside the loop
3873 that sets it. If this is a LIBCALL, then we must delete
3874 every insn in the libcall. Note, however, that
3875 final_giv_value will only succeed when there are multiple
3876 exits if the giv is dead at each exit, hence it does not
3877 matter that the original insn remains because it is dead
3878 anyways. */
3879 /* Delete the insn inside the loop that sets the giv since
3880 the giv is now set before (or after) the loop. */
3881 delete_insn (v->insn);
3882#endif
3883 }
3884
3885 if (loop_dump_stream)
3886 {
3887 fprintf (loop_dump_stream, "giv at %d reduced to ",
3888 INSN_UID (v->insn));
3889 print_rtl (loop_dump_stream, v->new_reg);
3890 fprintf (loop_dump_stream, "\n");
3891 }
3892 }
3893
3894 /* All the givs based on the biv bl have been reduced if they
3895 merit it. */
3896
3897 /* For each giv not marked as maybe dead that has been combined with a
3898 second giv, clear any "maybe dead" mark on that second giv.
3899 v->new_reg will either be or refer to the register of the giv it
3900 combined with.
3901
3902 Doing this clearing avoids problems in biv elimination where a
3903 giv's new_reg is a complex value that can't be put in the insn but
3904 the giv combined with (with a reg as new_reg) is marked maybe_dead.
3905 Since the register will be used in either case, we'd prefer it be
3906 used from the simpler giv. */
3907
3908 for (v = bl->giv; v; v = v->next_iv)
3909 if (! v->maybe_dead && v->same)
3910 v->same->maybe_dead = 0;
3911
3912 /* Try to eliminate the biv, if it is a candidate.
3913 This won't work if ! all_reduced,
3914 since the givs we planned to use might not have been reduced.
3915
d45cf215 3916 We have to be careful that we didn't initially think we could eliminate
b4ad7b23
RS
3917 this biv because of a giv that we now think may be dead and shouldn't
3918 be used as a biv replacement.
3919
3920 Also, there is the possibility that we may have a giv that looks
3921 like it can be used to eliminate a biv, but the resulting insn
3922 isn't valid. This can happen, for example, on the 88k, where a
3923 JUMP_INSN can compare a register only with zero. Attempts to
c5b7917e 3924 replace it with a compare with a constant will fail.
b4ad7b23
RS
3925
3926 Note that in cases where this call fails, we may have replaced some
3927 of the occurrences of the biv with a giv, but no harm was done in
3928 doing so in the rare cases where it can occur. */
3929
3930 if (all_reduced == 1 && bl->eliminable
3931 && maybe_eliminate_biv (bl, loop_start, end, 1,
3932 threshold, insn_count))
3933
3934 {
3935 /* ?? If we created a new test to bypass the loop entirely,
3936 or otherwise drop straight in, based on this test, then
3937 we might want to rewrite it also. This way some later
3938 pass has more hope of removing the initialization of this
3939 biv entirely. */
3940
3941 /* If final_value != 0, then the biv may be used after loop end
3942 and we must emit an insn to set it just in case.
3943
3944 Reversed bivs already have an insn after the loop setting their
3945 value, so we don't need another one. We can't calculate the
3946 proper final value for such a biv here anyways. */
3947 if (final_value != 0 && ! bl->reversed)
3948 {
3949 rtx insert_before;
3950
3951 /* If the loop has multiple exits, emit the insn before the
3952 loop to ensure that it will always be executed no matter
3953 how the loop exits. Otherwise, emit the insn after the
3954 loop, since this is slightly more efficient. */
3955 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3956 insert_before = loop_start;
3957 else
3958 insert_before = end_insert_before;
3959
3960 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
3961 end_insert_before);
3962 }
3963
3964#if 0
3965 /* Delete all of the instructions inside the loop which set
3966 the biv, as they are all dead. If is safe to delete them,
3967 because an insn setting a biv will never be part of a libcall. */
3968 /* However, deleting them will invalidate the regno_last_uid info,
3969 so keeping them around is more convenient. Final_biv_value
3970 will only succeed when there are multiple exits if the biv
3971 is dead at each exit, hence it does not matter that the original
3972 insn remains, because it is dead anyways. */
3973 for (v = bl->biv; v; v = v->next_iv)
3974 delete_insn (v->insn);
3975#endif
3976
3977 if (loop_dump_stream)
3978 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
3979 bl->regno);
3980 }
3981 }
3982
3983 /* Go through all the instructions in the loop, making all the
3984 register substitutions scheduled in REG_MAP. */
3985
3986 for (p = loop_start; p != end; p = NEXT_INSN (p))
3987 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3988 || GET_CODE (p) == CALL_INSN)
3989 {
3990 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
3991 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
da0c128e 3992 INSN_CODE (p) = -1;
b4ad7b23
RS
3993 }
3994
3995 /* Unroll loops from within strength reduction so that we can use the
3996 induction variable information that strength_reduce has already
3997 collected. */
3998
3999 if (flag_unroll_loops)
4000 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4001
4002 if (loop_dump_stream)
4003 fprintf (loop_dump_stream, "\n");
4004}
4005\f
4006/* Return 1 if X is a valid source for an initial value (or as value being
4007 compared against in an initial test).
4008
4009 X must be either a register or constant and must not be clobbered between
4010 the current insn and the start of the loop.
4011
4012 INSN is the insn containing X. */
4013
4014static int
4015valid_initial_value_p (x, insn, call_seen, loop_start)
4016 rtx x;
4017 rtx insn;
4018 int call_seen;
4019 rtx loop_start;
4020{
4021 if (CONSTANT_P (x))
4022 return 1;
4023
d45cf215 4024 /* Only consider pseudos we know about initialized in insns whose luids
b4ad7b23
RS
4025 we know. */
4026 if (GET_CODE (x) != REG
4027 || REGNO (x) >= max_reg_before_loop)
4028 return 0;
4029
4030 /* Don't use call-clobbered registers across a call which clobbers it. On
4031 some machines, don't use any hard registers at all. */
4032 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4033#ifndef SMALL_REGISTER_CLASSES
4034 && call_used_regs[REGNO (x)] && call_seen
4035#endif
4036 )
4037 return 0;
4038
4039 /* Don't use registers that have been clobbered before the start of the
4040 loop. */
4041 if (reg_set_between_p (x, insn, loop_start))
4042 return 0;
4043
4044 return 1;
4045}
4046\f
4047/* Scan X for memory refs and check each memory address
4048 as a possible giv. INSN is the insn whose pattern X comes from.
4049 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4050 every loop iteration. */
4051
4052static void
4053find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4054 rtx x;
4055 rtx insn;
4056 int not_every_iteration;
4057 rtx loop_start, loop_end;
4058{
4059 register int i, j;
4060 register enum rtx_code code;
4061 register char *fmt;
4062
4063 if (x == 0)
4064 return;
4065
4066 code = GET_CODE (x);
4067 switch (code)
4068 {
4069 case REG:
4070 case CONST_INT:
4071 case CONST:
4072 case CONST_DOUBLE:
4073 case SYMBOL_REF:
4074 case LABEL_REF:
4075 case PC:
4076 case CC0:
4077 case ADDR_VEC:
4078 case ADDR_DIFF_VEC:
4079 case USE:
4080 case CLOBBER:
4081 return;
4082
4083 case MEM:
4084 {
4085 rtx src_reg;
4086 rtx add_val;
4087 rtx mult_val;
4088 int benefit;
4089
4090 benefit = general_induction_var (XEXP (x, 0),
4091 &src_reg, &add_val, &mult_val);
4092
4093 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4094 Such a giv isn't useful. */
4095 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4096 {
4097 /* Found one; record it. */
4098 struct induction *v
4099 = (struct induction *) oballoc (sizeof (struct induction));
4100
4101 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4102 add_val, benefit, DEST_ADDR, not_every_iteration,
4103 &XEXP (x, 0), loop_start, loop_end);
4104
4105 v->mem_mode = GET_MODE (x);
4106 }
4107 return;
4108 }
4109 }
4110
4111 /* Recursively scan the subexpressions for other mem refs. */
4112
4113 fmt = GET_RTX_FORMAT (code);
4114 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4115 if (fmt[i] == 'e')
4116 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4117 loop_end);
4118 else if (fmt[i] == 'E')
4119 for (j = 0; j < XVECLEN (x, i); j++)
4120 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4121 loop_start, loop_end);
4122}
4123\f
4124/* Fill in the data about one biv update.
4125 V is the `struct induction' in which we record the biv. (It is
4126 allocated by the caller, with alloca.)
4127 INSN is the insn that sets it.
4128 DEST_REG is the biv's reg.
4129
4130 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4131 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
7dcd3836
RK
4132 being set to INC_VAL.
4133
4134 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4135 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4136 can be executed more than once per iteration. If MAYBE_MULTIPLE
4137 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4138 executed exactly once per iteration. */
b4ad7b23
RS
4139
4140static void
7dcd3836
RK
4141record_biv (v, insn, dest_reg, inc_val, mult_val,
4142 not_every_iteration, maybe_multiple)
b4ad7b23
RS
4143 struct induction *v;
4144 rtx insn;
4145 rtx dest_reg;
4146 rtx inc_val;
4147 rtx mult_val;
4148 int not_every_iteration;
7dcd3836 4149 int maybe_multiple;
b4ad7b23
RS
4150{
4151 struct iv_class *bl;
4152
4153 v->insn = insn;
4154 v->src_reg = dest_reg;
4155 v->dest_reg = dest_reg;
4156 v->mult_val = mult_val;
4157 v->add_val = inc_val;
4158 v->mode = GET_MODE (dest_reg);
4159 v->always_computable = ! not_every_iteration;
7dcd3836 4160 v->maybe_multiple = maybe_multiple;
b4ad7b23
RS
4161
4162 /* Add this to the reg's iv_class, creating a class
4163 if this is the first incrementation of the reg. */
4164
4165 bl = reg_biv_class[REGNO (dest_reg)];
4166 if (bl == 0)
4167 {
4168 /* Create and initialize new iv_class. */
4169
4170 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4171
4172 bl->regno = REGNO (dest_reg);
4173 bl->biv = 0;
4174 bl->giv = 0;
4175 bl->biv_count = 0;
4176 bl->giv_count = 0;
4177
4178 /* Set initial value to the reg itself. */
4179 bl->initial_value = dest_reg;
c5b7917e 4180 /* We haven't seen the initializing insn yet */
b4ad7b23
RS
4181 bl->init_insn = 0;
4182 bl->init_set = 0;
4183 bl->initial_test = 0;
4184 bl->incremented = 0;
4185 bl->eliminable = 0;
4186 bl->nonneg = 0;
4187 bl->reversed = 0;
b5d27be7 4188 bl->total_benefit = 0;
b4ad7b23
RS
4189
4190 /* Add this class to loop_iv_list. */
4191 bl->next = loop_iv_list;
4192 loop_iv_list = bl;
4193
4194 /* Put it in the array of biv register classes. */
4195 reg_biv_class[REGNO (dest_reg)] = bl;
4196 }
4197
4198 /* Update IV_CLASS entry for this biv. */
4199 v->next_iv = bl->biv;
4200 bl->biv = v;
4201 bl->biv_count++;
4202 if (mult_val == const1_rtx)
4203 bl->incremented = 1;
4204
4205 if (loop_dump_stream)
4206 {
4207 fprintf (loop_dump_stream,
4208 "Insn %d: possible biv, reg %d,",
4209 INSN_UID (insn), REGNO (dest_reg));
4210 if (GET_CODE (inc_val) == CONST_INT)
4211 fprintf (loop_dump_stream, " const = %d\n",
4212 INTVAL (inc_val));
4213 else
4214 {
4215 fprintf (loop_dump_stream, " const = ");
4216 print_rtl (loop_dump_stream, inc_val);
4217 fprintf (loop_dump_stream, "\n");
4218 }
4219 }
4220}
4221\f
4222/* Fill in the data about one giv.
4223 V is the `struct induction' in which we record the giv. (It is
4224 allocated by the caller, with alloca.)
4225 INSN is the insn that sets it.
4226 BENEFIT estimates the savings from deleting this insn.
4227 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4228 into a register or is used as a memory address.
4229
4230 SRC_REG is the biv reg which the giv is computed from.
4231 DEST_REG is the giv's reg (if the giv is stored in a reg).
4232 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4233 LOCATION points to the place where this giv's value appears in INSN. */
4234
4235static void
4236record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4237 type, not_every_iteration, location, loop_start, loop_end)
4238 struct induction *v;
4239 rtx insn;
4240 rtx src_reg;
4241 rtx dest_reg;
4242 rtx mult_val, add_val;
4243 int benefit;
4244 enum g_types type;
4245 int not_every_iteration;
4246 rtx *location;
4247 rtx loop_start, loop_end;
4248{
4249 struct induction *b;
4250 struct iv_class *bl;
4251 rtx set = single_set (insn);
4252 rtx p;
4253
4254 v->insn = insn;
4255 v->src_reg = src_reg;
4256 v->giv_type = type;
4257 v->dest_reg = dest_reg;
4258 v->mult_val = mult_val;
4259 v->add_val = add_val;
4260 v->benefit = benefit;
4261 v->location = location;
4262 v->cant_derive = 0;
4263 v->combined_with = 0;
7dcd3836 4264 v->maybe_multiple = 0;
b4ad7b23
RS
4265 v->maybe_dead = 0;
4266 v->derive_adjustment = 0;
4267 v->same = 0;
4268 v->ignore = 0;
4269 v->new_reg = 0;
4270 v->final_value = 0;
4271
4272 /* The v->always_computable field is used in update_giv_derive, to
4273 determine whether a giv can be used to derive another giv. For a
4274 DEST_REG giv, INSN computes a new value for the giv, so its value
4275 isn't computable if INSN insn't executed every iteration.
4276 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4277 it does not compute a new value. Hence the value is always computable
d45cf215 4278 regardless of whether INSN is executed each iteration. */
b4ad7b23
RS
4279
4280 if (type == DEST_ADDR)
4281 v->always_computable = 1;
4282 else
4283 v->always_computable = ! not_every_iteration;
4284
4285 if (type == DEST_ADDR)
4286 {
4287 v->mode = GET_MODE (*location);
4288 v->lifetime = 1;
4289 v->times_used = 1;
4290 }
4291 else /* type == DEST_REG */
4292 {
4293 v->mode = GET_MODE (SET_DEST (set));
4294
4295 v->lifetime = (uid_luid[regno_last_uid[REGNO (dest_reg)]]
4296 - uid_luid[regno_first_uid[REGNO (dest_reg)]]);
4297
4298 v->times_used = n_times_used[REGNO (dest_reg)];
4299
4300 /* If the lifetime is zero, it means that this register is
4301 really a dead store. So mark this as a giv that can be
4302 ignored. This will not prevent the biv from being eliminated. */
4303 if (v->lifetime == 0)
4304 v->ignore = 1;
4305
4306 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4307 reg_iv_info[REGNO (dest_reg)] = v;
4308 }
4309
4310 /* Add the giv to the class of givs computed from one biv. */
4311
4312 bl = reg_biv_class[REGNO (src_reg)];
4313 if (bl)
4314 {
4315 v->next_iv = bl->giv;
4316 bl->giv = v;
4317 /* Don't count DEST_ADDR. This is supposed to count the number of
4318 insns that calculate givs. */
4319 if (type == DEST_REG)
4320 bl->giv_count++;
4321 bl->total_benefit += benefit;
4322 }
4323 else
4324 /* Fatal error, biv missing for this giv? */
4325 abort ();
4326
4327 if (type == DEST_ADDR)
4328 v->replaceable = 1;
4329 else
4330 {
4331 /* The giv can be replaced outright by the reduced register only if all
4332 of the following conditions are true:
4333 - the insn that sets the giv is always executed on any iteration
4334 on which the giv is used at all
4335 (there are two ways to deduce this:
4336 either the insn is executed on every iteration,
4337 or all uses follow that insn in the same basic block),
4338 - the giv is not used outside the loop
4339 - no assignments to the biv occur during the giv's lifetime. */
4340
4341 if (regno_first_uid[REGNO (dest_reg)] == INSN_UID (insn)
4342 /* Previous line always fails if INSN was moved by loop opt. */
4343 && uid_luid[regno_last_uid[REGNO (dest_reg)]] < INSN_LUID (loop_end)
4344 && (! not_every_iteration
4345 || last_use_this_basic_block (dest_reg, insn)))
4346 {
4347 /* Now check that there are no assignments to the biv within the
4348 giv's lifetime. This requires two separate checks. */
4349
4350 /* Check each biv update, and fail if any are between the first
4351 and last use of the giv.
4352
4353 If this loop contains an inner loop that was unrolled, then
4354 the insn modifying the biv may have been emitted by the loop
4355 unrolling code, and hence does not have a valid luid. Just
4356 mark the biv as not replaceable in this case. It is not very
4357 useful as a biv, because it is used in two different loops.
4358 It is very unlikely that we would be able to optimize the giv
4359 using this biv anyways. */
4360
4361 v->replaceable = 1;
4362 for (b = bl->biv; b; b = b->next_iv)
4363 {
4364 if (INSN_UID (b->insn) >= max_uid_for_loop
4365 || ((uid_luid[INSN_UID (b->insn)]
4366 >= uid_luid[regno_first_uid[REGNO (dest_reg)]])
4367 && (uid_luid[INSN_UID (b->insn)]
4368 <= uid_luid[regno_last_uid[REGNO (dest_reg)]])))
4369 {
4370 v->replaceable = 0;
4371 v->not_replaceable = 1;
4372 break;
4373 }
4374 }
4375
4376 /* Check each insn between the first and last use of the giv,
4377 and fail if any of them are branches that jump to a named label
4378 outside this range, but still inside the loop. This catches
4379 cases of spaghetti code where the execution order of insns
4380 is not linear, and hence the above test fails. For example,
4381 in the following code, j is not replaceable:
4382 for (i = 0; i < 100; ) {
4383 L0: j = 4*i; goto L1;
4384 L2: k = j; goto L3;
4385 L1: i++; goto L2;
4386 L3: ; }
4387 printf ("k = %d\n", k); }
4388 This test is conservative, but this test succeeds rarely enough
4389 that it isn't a problem. See also check_final_value below. */
4390
4391 if (v->replaceable)
4392 for (p = insn;
4393 INSN_UID (p) >= max_uid_for_loop
4394 || INSN_LUID (p) < uid_luid[regno_last_uid[REGNO (dest_reg)]];
4395 p = NEXT_INSN (p))
4396 {
4397 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4398 && LABEL_NAME (JUMP_LABEL (p))
4399 && ((INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start)
4400 && (INSN_LUID (JUMP_LABEL (p))
4401 < uid_luid[regno_first_uid[REGNO (dest_reg)]]))
4402 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end)
4403 && (INSN_LUID (JUMP_LABEL (p))
4404 > uid_luid[regno_last_uid[REGNO (dest_reg)]]))))
4405 {
4406 v->replaceable = 0;
4407 v->not_replaceable = 1;
4408
4409 if (loop_dump_stream)
4410 fprintf (loop_dump_stream,
4411 "Found branch outside giv lifetime.\n");
4412
4413 break;
4414 }
4415 }
4416 }
4417 else
4418 {
4419 /* May still be replaceable, we don't have enough info here to
4420 decide. */
4421 v->replaceable = 0;
4422 v->not_replaceable = 0;
4423 }
4424 }
4425
4426 if (loop_dump_stream)
4427 {
4428 if (type == DEST_REG)
4429 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4430 INSN_UID (insn), REGNO (dest_reg));
4431 else
4432 fprintf (loop_dump_stream, "Insn %d: dest address",
4433 INSN_UID (insn));
4434
4435 fprintf (loop_dump_stream, " src reg %d benefit %d",
4436 REGNO (src_reg), v->benefit);
4437 fprintf (loop_dump_stream, " used %d lifetime %d",
4438 v->times_used, v->lifetime);
4439
4440 if (v->replaceable)
4441 fprintf (loop_dump_stream, " replaceable");
4442
4443 if (GET_CODE (mult_val) == CONST_INT)
4444 fprintf (loop_dump_stream, " mult %d",
4445 INTVAL (mult_val));
4446 else
4447 {
4448 fprintf (loop_dump_stream, " mult ");
4449 print_rtl (loop_dump_stream, mult_val);
4450 }
4451
4452 if (GET_CODE (add_val) == CONST_INT)
4453 fprintf (loop_dump_stream, " add %d",
4454 INTVAL (add_val));
4455 else
4456 {
4457 fprintf (loop_dump_stream, " add ");
4458 print_rtl (loop_dump_stream, add_val);
4459 }
4460 }
4461
4462 if (loop_dump_stream)
4463 fprintf (loop_dump_stream, "\n");
4464
4465}
4466
4467
4468/* All this does is determine whether a giv can be made replaceable because
4469 its final value can be calculated. This code can not be part of record_giv
4470 above, because final_giv_value requires that the number of loop iterations
4471 be known, and that can not be accurately calculated until after all givs
4472 have been identified. */
4473
4474static void
4475check_final_value (v, loop_start, loop_end)
4476 struct induction *v;
4477 rtx loop_start, loop_end;
4478{
4479 struct iv_class *bl;
4480 rtx final_value = 0;
4481 rtx tem;
4482
4483 bl = reg_biv_class[REGNO (v->src_reg)];
4484
4485 /* DEST_ADDR givs will never reach here, because they are always marked
4486 replaceable above in record_giv. */
4487
4488 /* The giv can be replaced outright by the reduced register only if all
4489 of the following conditions are true:
4490 - the insn that sets the giv is always executed on any iteration
4491 on which the giv is used at all
4492 (there are two ways to deduce this:
4493 either the insn is executed on every iteration,
4494 or all uses follow that insn in the same basic block),
4495 - its final value can be calculated (this condition is different
4496 than the one above in record_giv)
4497 - no assignments to the biv occur during the giv's lifetime. */
4498
4499#if 0
4500 /* This is only called now when replaceable is known to be false. */
4501 /* Clear replaceable, so that it won't confuse final_giv_value. */
4502 v->replaceable = 0;
4503#endif
4504
4505 if ((final_value = final_giv_value (v, loop_start, loop_end))
4506 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4507 {
4508 int biv_increment_seen = 0;
4509 rtx p = v->insn;
4510 rtx last_giv_use;
4511
4512 v->replaceable = 1;
4513
4514 /* When trying to determine whether or not a biv increment occurs
4515 during the lifetime of the giv, we can ignore uses of the variable
4516 outside the loop because final_value is true. Hence we can not
4517 use regno_last_uid and regno_first_uid as above in record_giv. */
4518
4519 /* Search the loop to determine whether any assignments to the
4520 biv occur during the giv's lifetime. Start with the insn
4521 that sets the giv, and search around the loop until we come
4522 back to that insn again.
4523
4524 Also fail if there is a jump within the giv's lifetime that jumps
4525 to somewhere outside the lifetime but still within the loop. This
4526 catches spaghetti code where the execution order is not linear, and
4527 hence the above test fails. Here we assume that the giv lifetime
4528 does not extend from one iteration of the loop to the next, so as
4529 to make the test easier. Since the lifetime isn't known yet,
4530 this requires two loops. See also record_giv above. */
4531
4532 last_giv_use = v->insn;
4533
4534 while (1)
4535 {
4536 p = NEXT_INSN (p);
4537 if (p == loop_end)
4538 p = NEXT_INSN (loop_start);
4539 if (p == v->insn)
4540 break;
4541
4542 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4543 || GET_CODE (p) == CALL_INSN)
4544 {
4545 if (biv_increment_seen)
4546 {
4547 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4548 {
4549 v->replaceable = 0;
4550 v->not_replaceable = 1;
4551 break;
4552 }
4553 }
4554 else if (GET_CODE (PATTERN (p)) == SET
4555 && SET_DEST (PATTERN (p)) == v->src_reg)
4556 biv_increment_seen = 1;
4557 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4558 last_giv_use = p;
4559 }
4560 }
4561
4562 /* Now that the lifetime of the giv is known, check for branches
4563 from within the lifetime to outside the lifetime if it is still
4564 replaceable. */
4565
4566 if (v->replaceable)
4567 {
4568 p = v->insn;
4569 while (1)
4570 {
4571 p = NEXT_INSN (p);
4572 if (p == loop_end)
4573 p = NEXT_INSN (loop_start);
4574 if (p == last_giv_use)
4575 break;
4576
4577 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4578 && LABEL_NAME (JUMP_LABEL (p))
4579 && ((INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4580 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4581 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4582 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4583 {
4584 v->replaceable = 0;
4585 v->not_replaceable = 1;
4586
4587 if (loop_dump_stream)
4588 fprintf (loop_dump_stream,
4589 "Found branch outside giv lifetime.\n");
4590
4591 break;
4592 }
4593 }
4594 }
4595
4596 /* If it is replaceable, then save the final value. */
4597 if (v->replaceable)
4598 v->final_value = final_value;
4599 }
4600
4601 if (loop_dump_stream && v->replaceable)
4602 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4603 INSN_UID (v->insn), REGNO (v->dest_reg));
4604}
4605\f
4606/* Update the status of whether a giv can derive other givs.
4607
4608 We need to do something special if there is or may be an update to the biv
4609 between the time the giv is defined and the time it is used to derive
4610 another giv.
4611
4612 In addition, a giv that is only conditionally set is not allowed to
4613 derive another giv once a label has been passed.
4614
4615 The cases we look at are when a label or an update to a biv is passed. */
4616
4617static void
4618update_giv_derive (p)
4619 rtx p;
4620{
4621 struct iv_class *bl;
4622 struct induction *biv, *giv;
4623 rtx tem;
4624 int dummy;
4625
4626 /* Search all IV classes, then all bivs, and finally all givs.
4627
7dcd3836 4628 There are three cases we are concerned with. First we have the situation
b4ad7b23
RS
4629 of a giv that is only updated conditionally. In that case, it may not
4630 derive any givs after a label is passed.
4631
4632 The second case is when a biv update occurs, or may occur, after the
4633 definition of a giv. For certain biv updates (see below) that are
4634 known to occur between the giv definition and use, we can adjust the
4635 giv definition. For others, or when the biv update is conditional,
4636 we must prevent the giv from deriving any other givs. There are two
4637 sub-cases within this case.
4638
4639 If this is a label, we are concerned with any biv update that is done
4640 conditionally, since it may be done after the giv is defined followed by
4641 a branch here (actually, we need to pass both a jump and a label, but
4642 this extra tracking doesn't seem worth it).
4643
7dcd3836
RK
4644 If this is a jump, we are concerned about any biv update that may be
4645 executed multiple times. We are actually only concerned about
4646 backward jumps, but it is probably not worth performing the test
4647 on the jump again here.
4648
4649 If this is a biv update, we must adjust the giv status to show that a
b4ad7b23
RS
4650 subsequent biv update was performed. If this adjustment cannot be done,
4651 the giv cannot derive further givs. */
4652
4653 for (bl = loop_iv_list; bl; bl = bl->next)
4654 for (biv = bl->biv; biv; biv = biv->next_iv)
7dcd3836
RK
4655 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
4656 || biv->insn == p)
b4ad7b23
RS
4657 {
4658 for (giv = bl->giv; giv; giv = giv->next_iv)
4659 {
4660 /* If cant_derive is already true, there is no point in
4661 checking all of these conditions again. */
4662 if (giv->cant_derive)
4663 continue;
4664
4665 /* If this giv is conditionally set and we have passed a label,
4666 it cannot derive anything. */
4667 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
4668 giv->cant_derive = 1;
4669
4670 /* Skip givs that have mult_val == 0, since
4671 they are really invariants. Also skip those that are
4672 replaceable, since we know their lifetime doesn't contain
4673 any biv update. */
4674 else if (giv->mult_val == const0_rtx || giv->replaceable)
4675 continue;
4676
4677 /* The only way we can allow this giv to derive another
4678 is if this is a biv increment and we can form the product
4679 of biv->add_val and giv->mult_val. In this case, we will
4680 be able to compute a compensation. */
4681 else if (biv->insn == p)
4682 {
c160c628
RK
4683 tem = 0;
4684
4685 if (biv->mult_val == const1_rtx)
4686 tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
4687 biv->add_val,
4688 giv->mult_val),
4689 &dummy);
4690
4691 if (tem && giv->derive_adjustment)
4692 tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
4693 giv->derive_adjustment),
4694 &dummy);
4695 if (tem)
b4ad7b23
RS
4696 giv->derive_adjustment = tem;
4697 else
4698 giv->cant_derive = 1;
4699 }
7dcd3836
RK
4700 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
4701 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
b4ad7b23
RS
4702 giv->cant_derive = 1;
4703 }
4704 }
4705}
4706\f
4707/* Check whether an insn is an increment legitimate for a basic induction var.
7056f7e8
RS
4708 X is the source of insn P, or a part of it.
4709 MODE is the mode in which X should be interpreted.
4710
b4ad7b23
RS
4711 DEST_REG is the putative biv, also the destination of the insn.
4712 We accept patterns of these forms:
09d7f5a5 4713 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
b4ad7b23 4714 REG = INVARIANT + REG
b4ad7b23
RS
4715
4716 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
4717 and store the additive term into *INC_VAL.
4718
4719 If X is an assignment of an invariant into DEST_REG, we set
4720 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
4721
09d7f5a5
RK
4722 We also want to detect a BIV when it corresponds to a variable
4723 whose mode was promoted via PROMOTED_MODE. In that case, an increment
4724 of the variable may be a PLUS that adds a SUBREG of that variable to
4725 an invariant and then sign- or zero-extends the result of the PLUS
4726 into the variable.
4727
4728 Most GIVs in such cases will be in the promoted mode, since that is the
4729 probably the natural computation mode (and almost certainly the mode
4730 used for addresses) on the machine. So we view the pseudo-reg containing
4731 the variable as the BIV, as if it were simply incremented.
4732
4733 Note that treating the entire pseudo as a BIV will result in making
4734 simple increments to any GIVs based on it. However, if the variable
4735 overflows in its declared mode but not its promoted mode, the result will
4736 be incorrect. This is acceptable if the variable is signed, since
4737 overflows in such cases are undefined, but not if it is unsigned, since
4738 those overflows are defined. So we only check for SIGN_EXTEND and
4739 not ZERO_EXTEND.
4740
4741 If we cannot find a biv, we return 0. */
b4ad7b23
RS
4742
4743static int
7056f7e8 4744basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
b4ad7b23 4745 register rtx x;
7056f7e8 4746 enum machine_mode mode;
09d7f5a5 4747 rtx p;
b4ad7b23
RS
4748 rtx dest_reg;
4749 rtx *inc_val;
4750 rtx *mult_val;
4751{
4752 register enum rtx_code code;
4753 rtx arg;
09d7f5a5 4754 rtx insn, set = 0;
b4ad7b23
RS
4755
4756 code = GET_CODE (x);
4757 switch (code)
4758 {
4759 case PLUS:
09d7f5a5
RK
4760 if (XEXP (x, 0) == dest_reg
4761 || (GET_CODE (XEXP (x, 0)) == SUBREG
4762 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
4763 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
b4ad7b23 4764 arg = XEXP (x, 1);
09d7f5a5
RK
4765 else if (XEXP (x, 1) == dest_reg
4766 || (GET_CODE (XEXP (x, 1)) == SUBREG
b81fd0f4
RS
4767 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
4768 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
b4ad7b23
RS
4769 arg = XEXP (x, 0);
4770 else
4771 return 0;
4772
4773 if (invariant_p (arg) != 1)
4774 return 0;
4775
7056f7e8 4776 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
b4ad7b23
RS
4777 *mult_val = const1_rtx;
4778 return 1;
4779
09d7f5a5
RK
4780 case SUBREG:
4781 /* If this is a SUBREG for a promoted variable, check the inner
4782 value. */
4783 if (SUBREG_PROMOTED_VAR_P (x))
7056f7e8
RS
4784 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
4785 dest_reg, p, inc_val, mult_val);
b4ad7b23 4786
09d7f5a5
RK
4787 case REG:
4788 /* If this register is assigned in the previous insn, look at its
4789 source, but don't go outside the loop or past a label. */
4790
4791 for (insn = PREV_INSN (p);
4792 (insn && GET_CODE (insn) == NOTE
4793 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4794 insn = PREV_INSN (insn))
4795 ;
4796
4797 if (insn)
4798 set = single_set (insn);
4799
4800 if (set != 0 && SET_DEST (set) == x)
7056f7e8
RS
4801 return basic_induction_var (SET_SRC (set),
4802 (GET_MODE (SET_SRC (set)) == VOIDmode
4803 ? GET_MODE (x)
4804 : GET_MODE (SET_SRC (set))),
4805 dest_reg, insn,
09d7f5a5
RK
4806 inc_val, mult_val);
4807 /* ... fall through ... */
b4ad7b23
RS
4808
4809 /* Can accept constant setting of biv only when inside inner most loop.
4810 Otherwise, a biv of an inner loop may be incorrectly recognized
4811 as a biv of the outer loop,
4812 causing code to be moved INTO the inner loop. */
4813 case MEM:
b4ad7b23
RS
4814 if (invariant_p (x) != 1)
4815 return 0;
4816 case CONST_INT:
4817 case SYMBOL_REF:
4818 case CONST:
4819 if (loops_enclosed == 1)
4820 {
7056f7e8
RS
4821 /* Possible bug here? Perhaps we don't know the mode of X. */
4822 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
b4ad7b23
RS
4823 *mult_val = const0_rtx;
4824 return 1;
4825 }
4826 else
4827 return 0;
4828
09d7f5a5 4829 case SIGN_EXTEND:
7056f7e8
RS
4830 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4831 dest_reg, p, inc_val, mult_val);
09d7f5a5
RK
4832 case ASHIFTRT:
4833 /* Similar, since this can be a sign extension. */
4834 for (insn = PREV_INSN (p);
4835 (insn && GET_CODE (insn) == NOTE
4836 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4837 insn = PREV_INSN (insn))
4838 ;
4839
4840 if (insn)
4841 set = single_set (insn);
4842
4843 if (set && SET_DEST (set) == XEXP (x, 0)
4844 && GET_CODE (XEXP (x, 1)) == CONST_INT
4845 && INTVAL (XEXP (x, 1)) >= 0
4846 && GET_CODE (SET_SRC (set)) == ASHIFT
4847 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
7056f7e8
RS
4848 return basic_induction_var (XEXP (SET_SRC (set), 0),
4849 GET_MODE (XEXP (x, 0)),
4850 dest_reg, insn, inc_val, mult_val);
09d7f5a5
RK
4851 return 0;
4852
b4ad7b23
RS
4853 default:
4854 return 0;
4855 }
4856}
4857\f
4858/* A general induction variable (giv) is any quantity that is a linear
4859 function of a basic induction variable,
4860 i.e. giv = biv * mult_val + add_val.
4861 The coefficients can be any loop invariant quantity.
4862 A giv need not be computed directly from the biv;
4863 it can be computed by way of other givs. */
4864
4865/* Determine whether X computes a giv.
4866 If it does, return a nonzero value
4867 which is the benefit from eliminating the computation of X;
4868 set *SRC_REG to the register of the biv that it is computed from;
4869 set *ADD_VAL and *MULT_VAL to the coefficients,
4870 such that the value of X is biv * mult + add; */
4871
4872static int
4873general_induction_var (x, src_reg, add_val, mult_val)
4874 rtx x;
4875 rtx *src_reg;
4876 rtx *add_val;
4877 rtx *mult_val;
4878{
4879 rtx orig_x = x;
4880 int benefit = 0;
4881 char *storage;
4882
4883 /* If this is an invariant, forget it, it isn't a giv. */
4884 if (invariant_p (x) == 1)
4885 return 0;
4886
4887 /* See if the expression could be a giv and get its form.
4888 Mark our place on the obstack in case we don't find a giv. */
4889 storage = (char *) oballoc (0);
4890 x = simplify_giv_expr (x, &benefit);
4891 if (x == 0)
4892 {
4893 obfree (storage);
4894 return 0;
4895 }
4896
4897 switch (GET_CODE (x))
4898 {
4899 case USE:
4900 case CONST_INT:
4901 /* Since this is now an invariant and wasn't before, it must be a giv
4902 with MULT_VAL == 0. It doesn't matter which BIV we associate this
4903 with. */
4904 *src_reg = loop_iv_list->biv->dest_reg;
4905 *mult_val = const0_rtx;
4906 *add_val = x;
4907 break;
4908
4909 case REG:
4910 /* This is equivalent to a BIV. */
4911 *src_reg = x;
4912 *mult_val = const1_rtx;
4913 *add_val = const0_rtx;
4914 break;
4915
4916 case PLUS:
4917 /* Either (plus (biv) (invar)) or
4918 (plus (mult (biv) (invar_1)) (invar_2)). */
4919 if (GET_CODE (XEXP (x, 0)) == MULT)
4920 {
4921 *src_reg = XEXP (XEXP (x, 0), 0);
4922 *mult_val = XEXP (XEXP (x, 0), 1);
4923 }
4924 else
4925 {
4926 *src_reg = XEXP (x, 0);
4927 *mult_val = const1_rtx;
4928 }
4929 *add_val = XEXP (x, 1);
4930 break;
4931
4932 case MULT:
4933 /* ADD_VAL is zero. */
4934 *src_reg = XEXP (x, 0);
4935 *mult_val = XEXP (x, 1);
4936 *add_val = const0_rtx;
4937 break;
4938
4939 default:
4940 abort ();
4941 }
4942
4943 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
4944 unless they are CONST_INT). */
4945 if (GET_CODE (*add_val) == USE)
4946 *add_val = XEXP (*add_val, 0);
4947 if (GET_CODE (*mult_val) == USE)
4948 *mult_val = XEXP (*mult_val, 0);
4949
3bb22aee 4950 benefit += rtx_cost (orig_x, SET);
b4ad7b23
RS
4951
4952 /* Always return some benefit if this is a giv so it will be detected
4953 as such. This allows elimination of bivs that might otherwise
4954 not be eliminated. */
4955 return benefit == 0 ? 1 : benefit;
4956}
4957\f
4958/* Given an expression, X, try to form it as a linear function of a biv.
4959 We will canonicalize it to be of the form
4960 (plus (mult (BIV) (invar_1))
4961 (invar_2))
c5b7917e 4962 with possible degeneracies.
b4ad7b23
RS
4963
4964 The invariant expressions must each be of a form that can be used as a
4965 machine operand. We surround then with a USE rtx (a hack, but localized
4966 and certainly unambiguous!) if not a CONST_INT for simplicity in this
4967 routine; it is the caller's responsibility to strip them.
4968
4969 If no such canonicalization is possible (i.e., two biv's are used or an
4970 expression that is neither invariant nor a biv or giv), this routine
4971 returns 0.
4972
4973 For a non-zero return, the result will have a code of CONST_INT, USE,
4974 REG (for a BIV), PLUS, or MULT. No other codes will occur.
4975
4976 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
4977
4978static rtx
4979simplify_giv_expr (x, benefit)
4980 rtx x;
4981 int *benefit;
4982{
4983 enum machine_mode mode = GET_MODE (x);
4984 rtx arg0, arg1;
4985 rtx tem;
4986
4987 /* If this is not an integer mode, or if we cannot do arithmetic in this
4988 mode, this can't be a giv. */
4989 if (mode != VOIDmode
4990 && (GET_MODE_CLASS (mode) != MODE_INT
5fd8383e 4991 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
b4ad7b23
RS
4992 return 0;
4993
4994 switch (GET_CODE (x))
4995 {
4996 case PLUS:
4997 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
4998 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
4999 if (arg0 == 0 || arg1 == 0)
5000 return 0;
5001
5002 /* Put constant last, CONST_INT last if both constant. */
5003 if ((GET_CODE (arg0) == USE
5004 || GET_CODE (arg0) == CONST_INT)
5005 && GET_CODE (arg1) != CONST_INT)
5006 tem = arg0, arg0 = arg1, arg1 = tem;
5007
5008 /* Handle addition of zero, then addition of an invariant. */
5009 if (arg1 == const0_rtx)
5010 return arg0;
5011 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5012 switch (GET_CODE (arg0))
5013 {
5014 case CONST_INT:
5015 case USE:
5016 /* Both invariant. Only valid if sum is machine operand.
5017 First strip off possible USE on first operand. */
5018 if (GET_CODE (arg0) == USE)
5019 arg0 = XEXP (arg0, 0);
5020
5021 tem = 0;
5022 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
5023 {
5024 tem = plus_constant (arg0, INTVAL (arg1));
5025 if (GET_CODE (tem) != CONST_INT)
5026 tem = gen_rtx (USE, mode, tem);
5027 }
5028
5029 return tem;
5030
5031 case REG:
5032 case MULT:
5033 /* biv + invar or mult + invar. Return sum. */
5034 return gen_rtx (PLUS, mode, arg0, arg1);
5035
5036 case PLUS:
5037 /* (a + invar_1) + invar_2. Associate. */
5038 return simplify_giv_expr (gen_rtx (PLUS, mode,
5039 XEXP (arg0, 0),
5040 gen_rtx (PLUS, mode,
5041 XEXP (arg0, 1), arg1)),
5042 benefit);
5043
5044 default:
5045 abort ();
5046 }
5047
5048 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5049 MULT to reduce cases. */
5050 if (GET_CODE (arg0) == REG)
5051 arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
5052 if (GET_CODE (arg1) == REG)
5053 arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
5054
5055 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5056 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5057 Recurse to associate the second PLUS. */
5058 if (GET_CODE (arg1) == MULT)
5059 tem = arg0, arg0 = arg1, arg1 = tem;
5060
5061 if (GET_CODE (arg1) == PLUS)
5062 return simplify_giv_expr (gen_rtx (PLUS, mode,
5063 gen_rtx (PLUS, mode,
5064 arg0, XEXP (arg1, 0)),
5065 XEXP (arg1, 1)),
5066 benefit);
5067
5068 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5069 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5070 abort ();
5071
5072 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5073 return 0;
5074
5075 return simplify_giv_expr (gen_rtx (MULT, mode,
5076 XEXP (arg0, 0),
5077 gen_rtx (PLUS, mode,
5078 XEXP (arg0, 1),
5079 XEXP (arg1, 1))),
5080 benefit);
5081
5082 case MINUS:
5083 /* Handle "a - b" as "a + b * (-1)". */
5084 return simplify_giv_expr (gen_rtx (PLUS, mode,
5085 XEXP (x, 0),
5086 gen_rtx (MULT, mode,
5fd8383e 5087 XEXP (x, 1), constm1_rtx)),
b4ad7b23
RS
5088 benefit);
5089
5090 case MULT:
5091 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5092 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5093 if (arg0 == 0 || arg1 == 0)
5094 return 0;
5095
5096 /* Put constant last, CONST_INT last if both constant. */
5097 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5098 && GET_CODE (arg1) != CONST_INT)
5099 tem = arg0, arg0 = arg1, arg1 = tem;
5100
5101 /* If second argument is not now constant, not giv. */
5102 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5103 return 0;
5104
5105 /* Handle multiply by 0 or 1. */
5106 if (arg1 == const0_rtx)
5107 return const0_rtx;
5108
5109 else if (arg1 == const1_rtx)
5110 return arg0;
5111
5112 switch (GET_CODE (arg0))
5113 {
5114 case REG:
5115 /* biv * invar. Done. */
5116 return gen_rtx (MULT, mode, arg0, arg1);
5117
5118 case CONST_INT:
5119 /* Product of two constants. */
5fd8383e 5120 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
b4ad7b23
RS
5121
5122 case USE:
5123 /* invar * invar. Not giv. */
5124 return 0;
5125
5126 case MULT:
5127 /* (a * invar_1) * invar_2. Associate. */
5128 return simplify_giv_expr (gen_rtx (MULT, mode,
5129 XEXP (arg0, 0),
5130 gen_rtx (MULT, mode,
5131 XEXP (arg0, 1), arg1)),
5132 benefit);
5133
5134 case PLUS:
5135 /* (a + invar_1) * invar_2. Distribute. */
5136 return simplify_giv_expr (gen_rtx (PLUS, mode,
5137 gen_rtx (MULT, mode,
5138 XEXP (arg0, 0), arg1),
5139 gen_rtx (MULT, mode,
5140 XEXP (arg0, 1), arg1)),
5141 benefit);
5142
5143 default:
5144 abort ();
5145 }
5146
5147 case ASHIFT:
5148 case LSHIFT:
5149 /* Shift by constant is multiply by power of two. */
5150 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5151 return 0;
5152
5153 return simplify_giv_expr (gen_rtx (MULT, mode,
5154 XEXP (x, 0),
5fd8383e
RK
5155 GEN_INT ((HOST_WIDE_INT) 1
5156 << INTVAL (XEXP (x, 1)))),
b4ad7b23
RS
5157 benefit);
5158
5159 case NEG:
5160 /* "-a" is "a * (-1)" */
5fd8383e 5161 return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
b4ad7b23
RS
5162 benefit);
5163
5164 case NOT:
5165 /* "~a" is "-a - 1". Silly, but easy. */
5166 return simplify_giv_expr (gen_rtx (MINUS, mode,
5167 gen_rtx (NEG, mode, XEXP (x, 0)),
5168 const1_rtx),
5169 benefit);
5170
5171 case USE:
5172 /* Already in proper form for invariant. */
5173 return x;
5174
5175 case REG:
5176 /* If this is a new register, we can't deal with it. */
5177 if (REGNO (x) >= max_reg_before_loop)
5178 return 0;
5179
5180 /* Check for biv or giv. */
5181 switch (reg_iv_type[REGNO (x)])
5182 {
5183 case BASIC_INDUCT:
5184 return x;
5185 case GENERAL_INDUCT:
5186 {
5187 struct induction *v = reg_iv_info[REGNO (x)];
5188
5189 /* Form expression from giv and add benefit. Ensure this giv
5190 can derive another and subtract any needed adjustment if so. */
5191 *benefit += v->benefit;
5192 if (v->cant_derive)
5193 return 0;
5194
5195 tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5196 v->src_reg, v->mult_val),
5197 v->add_val);
5198 if (v->derive_adjustment)
5199 tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5200 return simplify_giv_expr (tem, benefit);
5201 }
5202 }
5203
5204 /* Fall through to general case. */
5205 default:
5206 /* If invariant, return as USE (unless CONST_INT).
5207 Otherwise, not giv. */
5208 if (GET_CODE (x) == USE)
5209 x = XEXP (x, 0);
5210
5211 if (invariant_p (x) == 1)
5212 {
5213 if (GET_CODE (x) == CONST_INT)
5214 return x;
5215 else
5216 return gen_rtx (USE, mode, x);
5217 }
5218 else
5219 return 0;
5220 }
5221}
5222\f
5223/* Help detect a giv that is calculated by several consecutive insns;
5224 for example,
5225 giv = biv * M
5226 giv = giv + A
5227 The caller has already identified the first insn P as having a giv as dest;
5228 we check that all other insns that set the same register follow
5229 immediately after P, that they alter nothing else,
5230 and that the result of the last is still a giv.
5231
5232 The value is 0 if the reg set in P is not really a giv.
5233 Otherwise, the value is the amount gained by eliminating
5234 all the consecutive insns that compute the value.
5235
5236 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5237 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5238
5239 The coefficients of the ultimate giv value are stored in
5240 *MULT_VAL and *ADD_VAL. */
5241
5242static int
5243consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5244 add_val, mult_val)
5245 int first_benefit;
5246 rtx p;
5247 rtx src_reg;
5248 rtx dest_reg;
5249 rtx *add_val;
5250 rtx *mult_val;
5251{
5252 int count;
5253 enum rtx_code code;
5254 int benefit;
5255 rtx temp;
5256 rtx set;
5257
5258 /* Indicate that this is a giv so that we can update the value produced in
5259 each insn of the multi-insn sequence.
5260
5261 This induction structure will be used only by the call to
5262 general_induction_var below, so we can allocate it on our stack.
5263 If this is a giv, our caller will replace the induct var entry with
5264 a new induction structure. */
5265 struct induction *v
5266 = (struct induction *) alloca (sizeof (struct induction));
5267 v->src_reg = src_reg;
5268 v->mult_val = *mult_val;
5269 v->add_val = *add_val;
5270 v->benefit = first_benefit;
5271 v->cant_derive = 0;
5272 v->derive_adjustment = 0;
5273
5274 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5275 reg_iv_info[REGNO (dest_reg)] = v;
5276
5277 count = n_times_set[REGNO (dest_reg)] - 1;
5278
5279 while (count > 0)
5280 {
5281 p = NEXT_INSN (p);
5282 code = GET_CODE (p);
5283
5284 /* If libcall, skip to end of call sequence. */
5fd8383e 5285 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
b4ad7b23
RS
5286 p = XEXP (temp, 0);
5287
5288 if (code == INSN
5289 && (set = single_set (p))
5290 && GET_CODE (SET_DEST (set)) == REG
5291 && SET_DEST (set) == dest_reg
5292 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5293 add_val, mult_val))
5294 /* Giv created by equivalent expression. */
5fd8383e 5295 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
b4ad7b23
RS
5296 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5297 add_val, mult_val))))
5298 && src_reg == v->src_reg)
5299 {
5fd8383e 5300 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
b4ad7b23
RS
5301 benefit += libcall_benefit (p);
5302
5303 count--;
5304 v->mult_val = *mult_val;
5305 v->add_val = *add_val;
5306 v->benefit = benefit;
5307 }
5308 else if (code != NOTE)
5309 {
5310 /* Allow insns that set something other than this giv to a
5311 constant. Such insns are needed on machines which cannot
5312 include long constants and should not disqualify a giv. */
5313 if (code == INSN
5314 && (set = single_set (p))
5315 && SET_DEST (set) != dest_reg
5316 && CONSTANT_P (SET_SRC (set)))
5317 continue;
5318
5319 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5320 return 0;
5321 }
5322 }
5323
5324 return v->benefit;
5325}
5326\f
5327/* Return an rtx, if any, that expresses giv G2 as a function of the register
5328 represented by G1. If no such expression can be found, or it is clear that
5329 it cannot possibly be a valid address, 0 is returned.
5330
5331 To perform the computation, we note that
5332 G1 = a * v + b and
5333 G2 = c * v + d
5334 where `v' is the biv.
5335
5336 So G2 = (c/a) * G1 + (d - b*c/a) */
5337
5338#ifdef ADDRESS_COST
5339static rtx
5340express_from (g1, g2)
5341 struct induction *g1, *g2;
5342{
5343 rtx mult, add;
5344
5345 /* The value that G1 will be multiplied by must be a constant integer. Also,
5346 the only chance we have of getting a valid address is if b*c/a (see above
5347 for notation) is also an integer. */
5348 if (GET_CODE (g1->mult_val) != CONST_INT
5349 || GET_CODE (g2->mult_val) != CONST_INT
5350 || GET_CODE (g1->add_val) != CONST_INT
5351 || g1->mult_val == const0_rtx
5352 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5353 return 0;
5354
5fd8383e 5355 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
b4ad7b23
RS
5356 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5357
5358 /* Form simplified final result. */
5359 if (mult == const0_rtx)
5360 return add;
5361 else if (mult == const1_rtx)
5362 mult = g1->dest_reg;
5363 else
5364 mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5365
5366 if (add == const0_rtx)
5367 return mult;
5368 else
5369 return gen_rtx (PLUS, g2->mode, mult, add);
5370}
5371#endif
5372\f
5373/* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5374 (either directly or via an address expression) a register used to represent
5375 G1. Set g2->new_reg to a represtation of G1 (normally just
5376 g1->dest_reg). */
5377
5378static int
5379combine_givs_p (g1, g2)
5380 struct induction *g1, *g2;
5381{
5382 rtx tem;
5383
5384 /* If these givs are identical, they can be combined. */
5385 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5386 && rtx_equal_p (g1->add_val, g2->add_val))
5387 {
5388 g2->new_reg = g1->dest_reg;
5389 return 1;
5390 }
5391
5392#ifdef ADDRESS_COST
5393 /* If G2 can be expressed as a function of G1 and that function is valid
5394 as an address and no more expensive than using a register for G2,
5395 the expression of G2 in terms of G1 can be used. */
5396 if (g2->giv_type == DEST_ADDR
5397 && (tem = express_from (g1, g2)) != 0
5398 && memory_address_p (g2->mem_mode, tem)
5399 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5400 {
5401 g2->new_reg = tem;
5402 return 1;
5403 }
5404#endif
5405
5406 return 0;
5407}
5408\f
5409/* Check all pairs of givs for iv_class BL and see if any can be combined with
5410 any other. If so, point SAME to the giv combined with and set NEW_REG to
5411 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5412 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5413
5414static void
5415combine_givs (bl)
5416 struct iv_class *bl;
5417{
5418 struct induction *g1, *g2;
5419 int pass;
5420
5421 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5422 for (pass = 0; pass <= 1; pass++)
5423 for (g2 = bl->giv; g2; g2 = g2->next_iv)
5424 if (g1 != g2
5425 /* First try to combine with replaceable givs, then all givs. */
5426 && (g1->replaceable || pass == 1)
5427 /* If either has already been combined or is to be ignored, can't
5428 combine. */
5429 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5430 /* If something has been based on G2, G2 cannot itself be based
5431 on something else. */
5432 && ! g2->combined_with
5433 && combine_givs_p (g1, g2))
5434 {
5435 /* g2->new_reg set by `combine_givs_p' */
5436 g2->same = g1;
5437 g1->combined_with = 1;
5438 g1->benefit += g2->benefit;
5439 /* ??? The new final_[bg]iv_value code does a much better job
5440 of finding replaceable giv's, and hence this code may no
5441 longer be necessary. */
5442 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5443 g1->benefit -= copy_cost;
5444 g1->lifetime += g2->lifetime;
5445 g1->times_used += g2->times_used;
5446
5447 if (loop_dump_stream)
5448 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5449 INSN_UID (g2->insn), INSN_UID (g1->insn));
5450 }
5451}
5452\f
5453/* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5454
5455void
5456emit_iv_add_mult (b, m, a, reg, insert_before)
5457 rtx b; /* initial value of basic induction variable */
5458 rtx m; /* multiplicative constant */
5459 rtx a; /* additive constant */
5460 rtx reg; /* destination register */
5461 rtx insert_before;
5462{
5463 rtx seq;
5464 rtx result;
5465
5466 /* Prevent unexpected sharing of these rtx. */
5467 a = copy_rtx (a);
5468 b = copy_rtx (b);
5469
5470 /* Increase the lifetime of any invariants moved further in code. */
5471 update_reg_last_use (a, insert_before);
5472 update_reg_last_use (b, insert_before);
5473 update_reg_last_use (m, insert_before);
5474
5475 start_sequence ();
5476 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5477 if (reg != result)
5478 emit_move_insn (reg, result);
5479 seq = gen_sequence ();
5480 end_sequence ();
5481
5482 emit_insn_before (seq, insert_before);
5483}
5484\f
5485/* Test whether A * B can be computed without
5486 an actual multiply insn. Value is 1 if so. */
5487
5488static int
5489product_cheap_p (a, b)
5490 rtx a;
5491 rtx b;
5492{
5493 int i;
5494 rtx tmp;
5495 struct obstack *old_rtl_obstack = rtl_obstack;
5496 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5497 int win = 1;
5498
5499 /* If only one is constant, make it B. */
5500 if (GET_CODE (a) == CONST_INT)
5501 tmp = a, a = b, b = tmp;
5502
5503 /* If first constant, both constant, so don't need multiply. */
5504 if (GET_CODE (a) == CONST_INT)
5505 return 1;
5506
5507 /* If second not constant, neither is constant, so would need multiply. */
5508 if (GET_CODE (b) != CONST_INT)
5509 return 0;
5510
5511 /* One operand is constant, so might not need multiply insn. Generate the
5512 code for the multiply and see if a call or multiply, or long sequence
5513 of insns is generated. */
5514
5515 rtl_obstack = &temp_obstack;
5516 start_sequence ();
5fd8383e 5517 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
b4ad7b23
RS
5518 tmp = gen_sequence ();
5519 end_sequence ();
5520
5521 if (GET_CODE (tmp) == SEQUENCE)
5522 {
5523 if (XVEC (tmp, 0) == 0)
5524 win = 1;
5525 else if (XVECLEN (tmp, 0) > 3)
5526 win = 0;
5527 else
5528 for (i = 0; i < XVECLEN (tmp, 0); i++)
5529 {
5530 rtx insn = XVECEXP (tmp, 0, i);
5531
5532 if (GET_CODE (insn) != INSN
5533 || (GET_CODE (PATTERN (insn)) == SET
5534 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5535 || (GET_CODE (PATTERN (insn)) == PARALLEL
5536 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5537 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5538 {
5539 win = 0;
5540 break;
5541 }
5542 }
5543 }
5544 else if (GET_CODE (tmp) == SET
5545 && GET_CODE (SET_SRC (tmp)) == MULT)
5546 win = 0;
5547 else if (GET_CODE (tmp) == PARALLEL
5548 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5549 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5550 win = 0;
5551
5552 /* Free any storage we obtained in generating this multiply and restore rtl
5553 allocation to its normal obstack. */
5554 obstack_free (&temp_obstack, storage);
5555 rtl_obstack = old_rtl_obstack;
5556
5557 return win;
5558}
5559\f
5560/* Check to see if loop can be terminated by a "decrement and branch until
5561 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
5562 Also try reversing an increment loop to a decrement loop
5563 to see if the optimization can be performed.
5564 Value is nonzero if optimization was performed. */
5565
5566/* This is useful even if the architecture doesn't have such an insn,
5567 because it might change a loops which increments from 0 to n to a loop
5568 which decrements from n to 0. A loop that decrements to zero is usually
5569 faster than one that increments from zero. */
5570
5571/* ??? This could be rewritten to use some of the loop unrolling procedures,
5572 such as approx_final_value, biv_total_increment, loop_iterations, and
5573 final_[bg]iv_value. */
5574
5575static int
5576check_dbra_loop (loop_end, insn_count, loop_start)
5577 rtx loop_end;
5578 int insn_count;
5579 rtx loop_start;
5580{
5581 struct iv_class *bl;
5582 rtx reg;
5583 rtx jump_label;
5584 rtx final_value;
5585 rtx start_value;
5586 enum rtx_code branch_code;
5587 rtx new_add_val;
5588 rtx comparison;
5589 rtx before_comparison;
5590 rtx p;
5591
5592 /* If last insn is a conditional branch, and the insn before tests a
5593 register value, try to optimize it. Otherwise, we can't do anything. */
5594
5595 comparison = get_condition_for_loop (PREV_INSN (loop_end));
5596 if (comparison == 0)
5597 return 0;
5598
5599 /* Check all of the bivs to see if the compare uses one of them.
5600 Skip biv's set more than once because we can't guarantee that
5601 it will be zero on the last iteration. Also skip if the biv is
5602 used between its update and the test insn. */
5603
5604 for (bl = loop_iv_list; bl; bl = bl->next)
5605 {
5606 if (bl->biv_count == 1
5607 && bl->biv->dest_reg == XEXP (comparison, 0)
5608 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
5609 PREV_INSN (PREV_INSN (loop_end))))
5610 break;
5611 }
5612
5613 if (! bl)
5614 return 0;
5615
5616 /* Look for the case where the basic induction variable is always
5617 nonnegative, and equals zero on the last iteration.
5618 In this case, add a reg_note REG_NONNEG, which allows the
5619 m68k DBRA instruction to be used. */
5620
5621 if (((GET_CODE (comparison) == GT
5622 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5623 && INTVAL (XEXP (comparison, 1)) == -1)
5624 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
5625 && GET_CODE (bl->biv->add_val) == CONST_INT
5626 && INTVAL (bl->biv->add_val) < 0)
5627 {
5628 /* Initial value must be greater than 0,
5629 init_val % -dec_value == 0 to ensure that it equals zero on
5630 the last iteration */
5631
5632 if (GET_CODE (bl->initial_value) == CONST_INT
5633 && INTVAL (bl->initial_value) > 0
5634 && (INTVAL (bl->initial_value) %
5635 (-INTVAL (bl->biv->add_val))) == 0)
5636 {
5637 /* register always nonnegative, add REG_NOTE to branch */
5638 REG_NOTES (PREV_INSN (loop_end))
5fd8383e 5639 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
b4ad7b23
RS
5640 REG_NOTES (PREV_INSN (loop_end)));
5641 bl->nonneg = 1;
5642
5643 return 1;
5644 }
5645
5646 /* If the decrement is 1 and the value was tested as >= 0 before
5647 the loop, then we can safely optimize. */
5648 for (p = loop_start; p; p = PREV_INSN (p))
5649 {
5650 if (GET_CODE (p) == CODE_LABEL)
5651 break;
5652 if (GET_CODE (p) != JUMP_INSN)
5653 continue;
5654
5655 before_comparison = get_condition_for_loop (p);
5656 if (before_comparison
5657 && XEXP (before_comparison, 0) == bl->biv->dest_reg
5658 && GET_CODE (before_comparison) == LT
5659 && XEXP (before_comparison, 1) == const0_rtx
5660 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
5661 && INTVAL (bl->biv->add_val) == -1)
5662 {
5663 REG_NOTES (PREV_INSN (loop_end))
5fd8383e 5664 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
b4ad7b23
RS
5665 REG_NOTES (PREV_INSN (loop_end)));
5666 bl->nonneg = 1;
5667
5668 return 1;
5669 }
5670 }
5671 }
5672 else if (num_mem_sets <= 1)
5673 {
5674 /* Try to change inc to dec, so can apply above optimization. */
5675 /* Can do this if:
5676 all registers modified are induction variables or invariant,
5677 all memory references have non-overlapping addresses
5678 (obviously true if only one write)
5679 allow 2 insns for the compare/jump at the end of the loop. */
5680 int num_nonfixed_reads = 0;
5681 /* 1 if the iteration var is used only to count iterations. */
5682 int no_use_except_counting = 0;
5683
5684 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5685 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5686 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
5687
5688 if (bl->giv_count == 0
5689 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
5690 {
5691 rtx bivreg = regno_reg_rtx[bl->regno];
5692
5693 /* If there are no givs for this biv, and the only exit is the
5694 fall through at the end of the the loop, then
5695 see if perhaps there are no uses except to count. */
5696 no_use_except_counting = 1;
5697 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5698 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5699 {
5700 rtx set = single_set (p);
5701
5702 if (set && GET_CODE (SET_DEST (set)) == REG
5703 && REGNO (SET_DEST (set)) == bl->regno)
5704 /* An insn that sets the biv is okay. */
5705 ;
5706 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
5707 || p == prev_nonnote_insn (loop_end))
5708 /* Don't bother about the end test. */
5709 ;
5710 else if (reg_mentioned_p (bivreg, PATTERN (p)))
5711 /* Any other use of the biv is no good. */
5712 {
5713 no_use_except_counting = 0;
5714 break;
5715 }
5716 }
5717 }
5718
5719 /* This code only acts for innermost loops. Also it simplifies
5720 the memory address check by only reversing loops with
5721 zero or one memory access.
5722 Two memory accesses could involve parts of the same array,
5723 and that can't be reversed. */
5724
5725 if (num_nonfixed_reads <= 1
5726 && !loop_has_call
552bc76f 5727 && !loop_has_volatile
b4ad7b23
RS
5728 && (no_use_except_counting
5729 || (bl->giv_count + bl->biv_count + num_mem_sets
5730 + num_movables + 2 == insn_count)))
5731 {
5732 rtx condition = get_condition_for_loop (PREV_INSN (loop_end));
5733 int win;
5734 rtx tem;
5735
5736 /* Loop can be reversed. */
5737 if (loop_dump_stream)
5738 fprintf (loop_dump_stream, "Can reverse loop\n");
5739
5740 /* Now check other conditions:
5741 initial_value must be zero,
5742 final_value % add_val == 0, so that when reversed, the
5743 biv will be zero on the last iteration.
5744
5745 This test can probably be improved since +/- 1 in the constant
5746 can be obtained by changing LT to LE and vice versa; this is
5747 confusing. */
5748
5749 if (comparison && bl->initial_value == const0_rtx
5750 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5751 /* LE gets turned into LT */
5752 && GET_CODE (comparison) == LT
5753 && (INTVAL (XEXP (comparison, 1))
5754 % INTVAL (bl->biv->add_val)) == 0)
5755 {
5756 /* Register will always be nonnegative, with value
5757 0 on last iteration if loop reversed */
5758
5759 /* Save some info needed to produce the new insns. */
5760 reg = bl->biv->dest_reg;
5761 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
5fd8383e 5762 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
b4ad7b23
RS
5763
5764 final_value = XEXP (comparison, 1);
5fd8383e
RK
5765 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
5766 - INTVAL (bl->biv->add_val));
b4ad7b23
RS
5767
5768 /* Initialize biv to start_value before loop start.
5769 The old initializing insn will be deleted as a
5770 dead store by flow.c. */
5771 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
5772
5773 /* Add insn to decrement register, and delete insn
5774 that incremented the register. */
5775 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
5776 bl->biv->insn);
5777 delete_insn (bl->biv->insn);
5778
5779 /* Update biv info to reflect its new status. */
5780 bl->biv->insn = p;
5781 bl->initial_value = start_value;
5782 bl->biv->add_val = new_add_val;
5783
5784 /* Inc LABEL_NUSES so that delete_insn will
5785 not delete the label. */
5786 LABEL_NUSES (XEXP (jump_label, 0)) ++;
5787
5788 /* Emit an insn after the end of the loop to set the biv's
5789 proper exit value if it is used anywhere outside the loop. */
5790 if ((regno_last_uid[bl->regno]
5791 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
5792 || ! bl->init_insn
5793 || regno_first_uid[bl->regno] != INSN_UID (bl->init_insn))
5794 emit_insn_after (gen_move_insn (reg, final_value),
5795 loop_end);
5796
5797 /* Delete compare/branch at end of loop. */
5798 delete_insn (PREV_INSN (loop_end));
5799 delete_insn (PREV_INSN (loop_end));
5800
5801 /* Add new compare/branch insn at end of loop. */
5802 start_sequence ();
5fd8383e
RK
5803 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
5804 GET_MODE (reg), 0, 0);
b4ad7b23
RS
5805 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
5806 tem = gen_sequence ();
5807 end_sequence ();
5808 emit_jump_insn_before (tem, loop_end);
5809
5810 for (tem = PREV_INSN (loop_end);
5811 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
5812 ;
5813 if (tem)
5814 {
5815 JUMP_LABEL (tem) = XEXP (jump_label, 0);
5816
5817 /* Increment of LABEL_NUSES done above. */
5818 /* Register is now always nonnegative,
5819 so add REG_NONNEG note to the branch. */
5fd8383e 5820 REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
b4ad7b23
RS
5821 REG_NOTES (tem));
5822 }
5823
5824 bl->nonneg = 1;
5825
5826 /* Mark that this biv has been reversed. Each giv which depends
5827 on this biv, and which is also live past the end of the loop
5828 will have to be fixed up. */
5829
5830 bl->reversed = 1;
5831
5832 if (loop_dump_stream)
5833 fprintf (loop_dump_stream,
5834 "Reversed loop and added reg_nonneg\n");
5835
5836 return 1;
5837 }
5838 }
5839 }
5840
5841 return 0;
5842}
5843\f
5844/* Verify whether the biv BL appears to be eliminable,
5845 based on the insns in the loop that refer to it.
5846 LOOP_START is the first insn of the loop, and END is the end insn.
5847
5848 If ELIMINATE_P is non-zero, actually do the elimination.
5849
5850 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
5851 determine whether invariant insns should be placed inside or at the
5852 start of the loop. */
5853
5854static int
5855maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
5856 struct iv_class *bl;
5857 rtx loop_start;
5858 rtx end;
5859 int eliminate_p;
5860 int threshold, insn_count;
5861{
5862 rtx reg = bl->biv->dest_reg;
5863 rtx p, set;
5864 struct induction *v;
5865
5866 /* Scan all insns in the loop, stopping if we find one that uses the
5867 biv in a way that we cannot eliminate. */
5868
5869 for (p = loop_start; p != end; p = NEXT_INSN (p))
5870 {
5871 enum rtx_code code = GET_CODE (p);
5872 rtx where = threshold >= insn_count ? loop_start : p;
5873
5874 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
5875 && reg_mentioned_p (reg, PATTERN (p))
5876 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
5877 {
5878 if (loop_dump_stream)
5879 fprintf (loop_dump_stream,
5880 "Cannot eliminate biv %d: biv used in insn %d.\n",
5881 bl->regno, INSN_UID (p));
5882 break;
5883 }
5884 }
5885
5886 if (p == end)
5887 {
5888 if (loop_dump_stream)
5889 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
5890 bl->regno, eliminate_p ? "was" : "can be");
5891 return 1;
5892 }
5893
5894 return 0;
5895}
5896\f
5897/* If BL appears in X (part of the pattern of INSN), see if we can
5898 eliminate its use. If so, return 1. If not, return 0.
5899
5900 If BIV does not appear in X, return 1.
5901
5902 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
5903 where extra insns should be added. Depending on how many items have been
5904 moved out of the loop, it will either be before INSN or at the start of
5905 the loop. */
5906
5907static int
5908maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
5909 rtx x, insn;
5910 struct iv_class *bl;
5911 int eliminate_p;
5912 rtx where;
5913{
5914 enum rtx_code code = GET_CODE (x);
5915 rtx reg = bl->biv->dest_reg;
5916 enum machine_mode mode = GET_MODE (reg);
5917 struct induction *v;
5918 rtx arg, new, tem;
5919 int arg_operand;
5920 char *fmt;
5921 int i, j;
5922
5923 switch (code)
5924 {
5925 case REG:
5926 /* If we haven't already been able to do something with this BIV,
5927 we can't eliminate it. */
5928 if (x == reg)
5929 return 0;
5930 return 1;
5931
5932 case SET:
5933 /* If this sets the BIV, it is not a problem. */
5934 if (SET_DEST (x) == reg)
5935 return 1;
5936
5937 /* If this is an insn that defines a giv, it is also ok because
5938 it will go away when the giv is reduced. */
5939 for (v = bl->giv; v; v = v->next_iv)
5940 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
5941 return 1;
5942
5943#ifdef HAVE_cc0
5944 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
5945 {
5946 /* Can replace with any giv that was reduced and
5947 that has (MULT_VAL != 0) and (ADD_VAL == 0).
5948 Require a constant for MULT_VAL, so we know it's nonzero. */
5949
5950 for (v = bl->giv; v; v = v->next_iv)
5951 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5952 && v->add_val == const0_rtx
5953 && ! v->ignore && ! v->maybe_dead
5954 && v->mode == mode)
5955 {
5956 if (! eliminate_p)
5957 return 1;
5958
5959 /* If the giv has the opposite direction of change,
5960 then reverse the comparison. */
5961 if (INTVAL (v->mult_val) < 0)
5962 new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
5963 const0_rtx, v->new_reg);
5964 else
5965 new = v->new_reg;
5966
5967 /* We can probably test that giv's reduced reg. */
5968 if (validate_change (insn, &SET_SRC (x), new, 0))
5969 return 1;
5970 }
5971
5972 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
5973 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
5974 Require a constant for MULT_VAL, so we know it's nonzero. */
5975
5976 for (v = bl->giv; v; v = v->next_iv)
5977 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5978 && ! v->ignore && ! v->maybe_dead
5979 && v->mode == mode)
5980 {
5981 if (! eliminate_p)
5982 return 1;
5983
5984 /* If the giv has the opposite direction of change,
5985 then reverse the comparison. */
5986 if (INTVAL (v->mult_val) < 0)
5987 new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
5988 v->new_reg);
5989 else
5990 new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
5991 copy_rtx (v->add_val));
5992
5993 /* Replace biv with the giv's reduced register. */
5994 update_reg_last_use (v->add_val, insn);
5995 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
5996 return 1;
5997
5998 /* Insn doesn't support that constant or invariant. Copy it
5999 into a register (it will be a loop invariant.) */
6000 tem = gen_reg_rtx (GET_MODE (v->new_reg));
6001
6002 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
6003 where);
6004
6005 if (validate_change (insn, &SET_SRC (PATTERN (insn)),
6006 gen_rtx (COMPARE, VOIDmode,
6007 v->new_reg, tem), 0))
6008 return 1;
6009 }
6010 }
6011#endif
6012 break;
6013
6014 case COMPARE:
6015 case EQ: case NE:
6016 case GT: case GE: case GTU: case GEU:
6017 case LT: case LE: case LTU: case LEU:
6018 /* See if either argument is the biv. */
6019 if (XEXP (x, 0) == reg)
6020 arg = XEXP (x, 1), arg_operand = 1;
6021 else if (XEXP (x, 1) == reg)
6022 arg = XEXP (x, 0), arg_operand = 0;
6023 else
6024 break;
6025
6026 if (CONSTANT_P (arg))
6027 {
6028 /* First try to replace with any giv that has constant positive
6029 mult_val and constant add_val. We might be able to support
6030 negative mult_val, but it seems complex to do it in general. */
6031
6032 for (v = bl->giv; v; v = v->next_iv)
6033 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6034 && CONSTANT_P (v->add_val)
6035 && ! v->ignore && ! v->maybe_dead
6036 && v->mode == mode)
6037 {
6038 if (! eliminate_p)
6039 return 1;
6040
6041 /* Replace biv with the giv's reduced reg. */
6042 XEXP (x, 1-arg_operand) = v->new_reg;
6043
6044 /* If all constants are actually constant integers and
6045 the derived constant can be directly placed in the COMPARE,
6046 do so. */
6047 if (GET_CODE (arg) == CONST_INT
6048 && GET_CODE (v->mult_val) == CONST_INT
6049 && GET_CODE (v->add_val) == CONST_INT
6050 && validate_change (insn, &XEXP (x, arg_operand),
5fd8383e
RK
6051 GEN_INT (INTVAL (arg)
6052 * INTVAL (v->mult_val)
6053 + INTVAL (v->add_val)), 0))
b4ad7b23
RS
6054 return 1;
6055
6056 /* Otherwise, load it into a register. */
6057 tem = gen_reg_rtx (mode);
6058 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6059 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6060 return 1;
6061
6062 /* If that failed, put back the change we made above. */
6063 XEXP (x, 1-arg_operand) = reg;
6064 }
6065
6066 /* Look for giv with positive constant mult_val and nonconst add_val.
6067 Insert insns to calculate new compare value. */
6068
6069 for (v = bl->giv; v; v = v->next_iv)
d45cf215 6070 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
b4ad7b23
RS
6071 && ! v->ignore && ! v->maybe_dead
6072 && v->mode == mode)
6073 {
6074 rtx tem;
6075
6076 if (! eliminate_p)
6077 return 1;
6078
6079 tem = gen_reg_rtx (mode);
6080
6081 /* Replace biv with giv's reduced register. */
6082 validate_change (insn, &XEXP (x, 1 - arg_operand),
6083 v->new_reg, 1);
6084
6085 /* Compute value to compare against. */
6086 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6087 /* Use it in this insn. */
6088 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6089 if (apply_change_group ())
6090 return 1;
6091 }
6092 }
6093 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6094 {
6095 if (invariant_p (arg) == 1)
6096 {
6097 /* Look for giv with constant positive mult_val and nonconst
6098 add_val. Insert insns to compute new compare value. */
6099
6100 for (v = bl->giv; v; v = v->next_iv)
6101 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6102 && ! v->ignore && ! v->maybe_dead
6103 && v->mode == mode)
6104 {
6105 rtx tem;
6106
6107 if (! eliminate_p)
6108 return 1;
6109
6110 tem = gen_reg_rtx (mode);
6111
6112 /* Replace biv with giv's reduced register. */
6113 validate_change (insn, &XEXP (x, 1 - arg_operand),
6114 v->new_reg, 1);
6115
6116 /* Compute value to compare against. */
6117 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6118 tem, where);
6119 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6120 if (apply_change_group ())
6121 return 1;
6122 }
6123 }
6124
6125 /* This code has problems. Basically, you can't know when
6126 seeing if we will eliminate BL, whether a particular giv
6127 of ARG will be reduced. If it isn't going to be reduced,
6128 we can't eliminate BL. We can try forcing it to be reduced,
6129 but that can generate poor code.
6130
6131 The problem is that the benefit of reducing TV, below should
6132 be increased if BL can actually be eliminated, but this means
6133 we might have to do a topological sort of the order in which
6134 we try to process biv. It doesn't seem worthwhile to do
6135 this sort of thing now. */
6136
6137#if 0
6138 /* Otherwise the reg compared with had better be a biv. */
6139 if (GET_CODE (arg) != REG
6140 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6141 return 0;
6142
6143 /* Look for a pair of givs, one for each biv,
6144 with identical coefficients. */
6145 for (v = bl->giv; v; v = v->next_iv)
6146 {
6147 struct induction *tv;
6148
6149 if (v->ignore || v->maybe_dead || v->mode != mode)
6150 continue;
6151
6152 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6153 if (! tv->ignore && ! tv->maybe_dead
6154 && rtx_equal_p (tv->mult_val, v->mult_val)
6155 && rtx_equal_p (tv->add_val, v->add_val)
6156 && tv->mode == mode)
6157 {
6158 if (! eliminate_p)
6159 return 1;
6160
6161 /* Replace biv with its giv's reduced reg. */
6162 XEXP (x, 1-arg_operand) = v->new_reg;
6163 /* Replace other operand with the other giv's
6164 reduced reg. */
6165 XEXP (x, arg_operand) = tv->new_reg;
6166 return 1;
6167 }
6168 }
6169#endif
6170 }
6171
6172 /* If we get here, the biv can't be eliminated. */
6173 return 0;
6174
6175 case MEM:
6176 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6177 biv is used in it, since it will be replaced. */
6178 for (v = bl->giv; v; v = v->next_iv)
6179 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6180 return 1;
6181 break;
6182 }
6183
6184 /* See if any subexpression fails elimination. */
6185 fmt = GET_RTX_FORMAT (code);
6186 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6187 {
6188 switch (fmt[i])
6189 {
6190 case 'e':
6191 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6192 eliminate_p, where))
6193 return 0;
6194 break;
6195
6196 case 'E':
6197 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6198 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6199 eliminate_p, where))
6200 return 0;
6201 break;
6202 }
6203 }
6204
6205 return 1;
6206}
6207\f
6208/* Return nonzero if the last use of REG
6209 is in an insn following INSN in the same basic block. */
6210
6211static int
6212last_use_this_basic_block (reg, insn)
6213 rtx reg;
6214 rtx insn;
6215{
6216 rtx n;
6217 for (n = insn;
6218 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6219 n = NEXT_INSN (n))
6220 {
6221 if (regno_last_uid[REGNO (reg)] == INSN_UID (n))
6222 return 1;
6223 }
6224 return 0;
6225}
6226\f
6227/* Called via `note_stores' to record the initial value of a biv. Here we
6228 just record the location of the set and process it later. */
6229
6230static void
6231record_initial (dest, set)
6232 rtx dest;
6233 rtx set;
6234{
6235 struct iv_class *bl;
6236
6237 if (GET_CODE (dest) != REG
6238 || REGNO (dest) >= max_reg_before_loop
163674a7
RS
6239 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT
6240 /* Reject this insn if the source isn't valid for the mode of DEST. */
6241 || GET_MODE (dest) != GET_MODE (SET_DEST (set)))
b4ad7b23
RS
6242 return;
6243
6244 bl = reg_biv_class[REGNO (dest)];
6245
6246 /* If this is the first set found, record it. */
6247 if (bl->init_insn == 0)
6248 {
6249 bl->init_insn = note_insn;
6250 bl->init_set = set;
6251 }
6252}
6253\f
6254/* If any of the registers in X are "old" and currently have a last use earlier
6255 than INSN, update them to have a last use of INSN. Their actual last use
6256 will be the previous insn but it will not have a valid uid_luid so we can't
6257 use it. */
6258
6259static void
6260update_reg_last_use (x, insn)
6261 rtx x;
6262 rtx insn;
6263{
6264 /* Check for the case where INSN does not have a valid luid. In this case,
6265 there is no need to modify the regno_last_uid, as this can only happen
6266 when code is inserted after the loop_end to set a pseudo's final value,
6267 and hence this insn will never be the last use of x. */
6268 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6269 && INSN_UID (insn) < max_uid_for_loop
6270 && uid_luid[regno_last_uid[REGNO (x)]] < uid_luid[INSN_UID (insn)])
6271 regno_last_uid[REGNO (x)] = INSN_UID (insn);
6272 else
6273 {
6274 register int i, j;
6275 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6276 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6277 {
6278 if (fmt[i] == 'e')
6279 update_reg_last_use (XEXP (x, i), insn);
6280 else if (fmt[i] == 'E')
6281 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6282 update_reg_last_use (XVECEXP (x, i, j), insn);
6283 }
6284 }
6285}
6286\f
6287/* Given a jump insn JUMP, return the condition that will cause it to branch
6288 to its JUMP_LABEL. If the condition cannot be understood, or is an
6289 inequality floating-point comparison which needs to be reversed, 0 will
6290 be returned.
6291
6292 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6293 insn used in locating the condition was found. If a replacement test
6294 of the condition is desired, it should be placed in front of that
6295 insn and we will be sure that the inputs are still valid.
6296
6297 The condition will be returned in a canonical form to simplify testing by
6298 callers. Specifically:
6299
6300 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6301 (2) Both operands will be machine operands; (cc0) will have been replaced.
6302 (3) If an operand is a constant, it will be the second operand.
6303 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6304 for GE, GEU, and LEU. */
6305
6306rtx
6307get_condition (jump, earliest)
6308 rtx jump;
6309 rtx *earliest;
6310{
6311 enum rtx_code code;
6312 rtx prev = jump;
6313 rtx set;
6314 rtx tem;
6315 rtx op0, op1;
6316 int reverse_code = 0;
6317 int did_reverse_condition = 0;
6318
6319 /* If this is not a standard conditional jump, we can't parse it. */
6320 if (GET_CODE (jump) != JUMP_INSN
6321 || ! condjump_p (jump) || simplejump_p (jump))
6322 return 0;
6323
6324 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6325 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6326 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6327
6328 if (earliest)
6329 *earliest = jump;
6330
6331 /* If this branches to JUMP_LABEL when the condition is false, reverse
6332 the condition. */
b5d27be7
RS
6333 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6334 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
b4ad7b23
RS
6335 code = reverse_condition (code), did_reverse_condition ^= 1;
6336
6337 /* If we are comparing a register with zero, see if the register is set
6338 in the previous insn to a COMPARE or a comparison operation. Perform
6339 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6340 in cse.c */
6341
6342 while (GET_RTX_CLASS (code) == '<' && op1 == const0_rtx)
6343 {
6344 /* Set non-zero when we find something of interest. */
6345 rtx x = 0;
6346
6347#ifdef HAVE_cc0
6348 /* If comparison with cc0, import actual comparison from compare
6349 insn. */
6350 if (op0 == cc0_rtx)
6351 {
6352 if ((prev = prev_nonnote_insn (prev)) == 0
6353 || GET_CODE (prev) != INSN
6354 || (set = single_set (prev)) == 0
6355 || SET_DEST (set) != cc0_rtx)
6356 return 0;
6357
6358 op0 = SET_SRC (set);
6359 op1 = CONST0_RTX (GET_MODE (op0));
6360 if (earliest)
6361 *earliest = prev;
6362 }
6363#endif
6364
6365 /* If this is a COMPARE, pick up the two things being compared. */
6366 if (GET_CODE (op0) == COMPARE)
6367 {
6368 op1 = XEXP (op0, 1);
6369 op0 = XEXP (op0, 0);
6370 continue;
6371 }
6372 else if (GET_CODE (op0) != REG)
6373 break;
6374
6375 /* Go back to the previous insn. Stop if it is not an INSN. We also
6376 stop if it isn't a single set or if it has a REG_INC note because
6377 we don't want to bother dealing with it. */
6378
6379 if ((prev = prev_nonnote_insn (prev)) == 0
6380 || GET_CODE (prev) != INSN
6381 || FIND_REG_INC_NOTE (prev, 0)
6382 || (set = single_set (prev)) == 0)
6383 break;
6384
6385 /* If this is setting OP0, get what it sets it to if it looks
6386 relevant. */
6387 if (SET_DEST (set) == op0)
6388 {
6389 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6390
6391 if ((GET_CODE (SET_SRC (set)) == COMPARE
b565a316
RK
6392 || (((code == NE
6393 || (code == LT
6394 && GET_MODE_CLASS (inner_mode) == MODE_INT
5fd8383e
RK
6395 && (GET_MODE_BITSIZE (inner_mode)
6396 <= HOST_BITS_PER_WIDE_INT)
b565a316 6397 && (STORE_FLAG_VALUE
5fd8383e
RK
6398 & ((HOST_WIDE_INT) 1
6399 << (GET_MODE_BITSIZE (inner_mode) - 1))))
b565a316
RK
6400#ifdef FLOAT_STORE_FLAG_VALUE
6401 || (code == LT
6402 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6403 && FLOAT_STORE_FLAG_VALUE < 0)
6404#endif
6405 ))
b4ad7b23
RS
6406 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6407 x = SET_SRC (set);
b565a316
RK
6408 else if (((code == EQ
6409 || (code == GE
5fd8383e
RK
6410 && (GET_MODE_BITSIZE (inner_mode)
6411 <= HOST_BITS_PER_WIDE_INT)
b565a316
RK
6412 && GET_MODE_CLASS (inner_mode) == MODE_INT
6413 && (STORE_FLAG_VALUE
5fd8383e
RK
6414 & ((HOST_WIDE_INT) 1
6415 << (GET_MODE_BITSIZE (inner_mode) - 1))))
b565a316
RK
6416#ifdef FLOAT_STORE_FLAG_VALUE
6417 || (code == GE
6418 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6419 && FLOAT_STORE_FLAG_VALUE < 0)
fb8ca0a4 6420#endif
b565a316 6421 ))
b4ad7b23
RS
6422 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6423 {
6424 /* We might have reversed a LT to get a GE here. But this wasn't
6425 actually the comparison of data, so we don't flag that we
6426 have had to reverse the condition. */
6427 did_reverse_condition ^= 1;
6428 reverse_code = 1;
6429 x = SET_SRC (set);
6430 }
6431 }
6432
6433 else if (reg_set_p (op0, prev))
6434 /* If this sets OP0, but not directly, we have to give up. */
6435 break;
6436
6437 if (x)
6438 {
6439 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6440 code = GET_CODE (x);
6441 if (reverse_code)
6442 {
6443 code = reverse_condition (code);
6444 did_reverse_condition ^= 1;
6445 reverse_code = 0;
6446 }
6447
6448 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6449 if (earliest)
6450 *earliest = prev;
6451 }
6452 }
6453
6454 /* If constant is first, put it last. */
6455 if (CONSTANT_P (op0))
6456 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6457
6458 /* If OP0 is the result of a comparison, we weren't able to find what
6459 was really being compared, so fail. */
6460 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6461 return 0;
6462
d8cfa4ee
RK
6463 /* Canonicalize any ordered comparison with integers involving equality
6464 if we can do computations in the relevant mode and we do not
6465 overflow. */
6466
6467 if (GET_CODE (op1) == CONST_INT
6468 && GET_MODE (op0) != VOIDmode
6469 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
b4ad7b23 6470 {
5fd8383e
RK
6471 HOST_WIDE_INT const_val = INTVAL (op1);
6472 unsigned HOST_WIDE_INT uconst_val = const_val;
d8cfa4ee
RK
6473 unsigned HOST_WIDE_INT max_val
6474 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
b4ad7b23
RS
6475
6476 switch (code)
d8cfa4ee
RK
6477 {
6478 case LE:
6479 if (const_val != max_val >> 1)
6480 code = LT, op1 = GEN_INT (const_val + 1);
6481 break;
b4ad7b23 6482
d8cfa4ee
RK
6483 case GE:
6484 if (const_val
6485 != (((HOST_WIDE_INT) 1
6486 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
6487 code = GT, op1 = GEN_INT (const_val - 1);
6488 break;
b4ad7b23 6489
d8cfa4ee
RK
6490 case LEU:
6491 if (uconst_val != max_val)
6492 code = LTU, op1 = GEN_INT (uconst_val + 1);
6493 break;
b4ad7b23 6494
d8cfa4ee
RK
6495 case GEU:
6496 if (uconst_val != 0)
6497 code = GTU, op1 = GEN_INT (uconst_val - 1);
6498 break;
6499 }
b4ad7b23
RS
6500 }
6501
6502 /* If this was floating-point and we reversed anything other than an
6503 EQ or NE, return zero. */
6504 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
6505 && did_reverse_condition && code != NE && code != EQ
6506 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
6507 return 0;
6508
6509#ifdef HAVE_cc0
6510 /* Never return CC0; return zero instead. */
6511 if (op0 == cc0_rtx)
6512 return 0;
6513#endif
6514
6515 return gen_rtx (code, VOIDmode, op0, op1);
6516}
6517
6518/* Similar to above routine, except that we also put an invariant last
6519 unless both operands are invariants. */
6520
6521rtx
6522get_condition_for_loop (x)
6523 rtx x;
6524{
5fd8383e 6525 rtx comparison = get_condition (x, NULL_PTR);
b4ad7b23
RS
6526
6527 if (comparison == 0
6528 || ! invariant_p (XEXP (comparison, 0))
6529 || invariant_p (XEXP (comparison, 1)))
6530 return comparison;
6531
6532 return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
6533 XEXP (comparison, 1), XEXP (comparison, 0));
6534}
This page took 0.809409 seconds and 5 git commands to generate.