]> gcc.gnu.org Git - gcc.git/blame - gcc/loop.c
(make_insn_raw): Eliminate unused argument pat_formals. All calls changed.
[gcc.git] / gcc / loop.c
CommitLineData
b4ad7b23 1/* Move constant computations out of loops.
5fd8383e 2 Copyright (C) 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
b4ad7b23
RS
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This is the loop optimization pass of the compiler.
22 It finds invariant computations within loops and moves them
23 to the beginning of the loop. Then it identifies basic and
24 general induction variables. Strength reduction is applied to the general
25 induction variables, and induction variable elimination is applied to
26 the basic induction variables.
27
28 It also finds cases where
29 a register is set within the loop by zero-extending a narrower value
30 and changes these to zero the entire register once before the loop
31 and merely copy the low part within the loop.
32
33 Most of the complexity is in heuristics to decide when it is worth
34 while to do these things. */
35
ff2da9fc 36#include <stdio.h>
b4ad7b23
RS
37#include "config.h"
38#include "rtl.h"
39#include "obstack.h"
40#include "expr.h"
41#include "insn-config.h"
42#include "insn-flags.h"
43#include "regs.h"
44#include "hard-reg-set.h"
45#include "recog.h"
46#include "flags.h"
47#include "real.h"
b4ad7b23
RS
48#include "loop.h"
49
50/* Vector mapping INSN_UIDs to luids.
d45cf215 51 The luids are like uids but increase monotonically always.
b4ad7b23
RS
52 We use them to see whether a jump comes from outside a given loop. */
53
54int *uid_luid;
55
56/* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
57 number the insn is contained in. */
58
59int *uid_loop_num;
60
61/* 1 + largest uid of any insn. */
62
63int max_uid_for_loop;
64
65/* 1 + luid of last insn. */
66
67static int max_luid;
68
69/* Number of loops detected in current function. Used as index to the
70 next few tables. */
71
72static int max_loop_num;
73
74/* Indexed by loop number, contains the first and last insn of each loop. */
75
76static rtx *loop_number_loop_starts, *loop_number_loop_ends;
77
78/* For each loop, gives the containing loop number, -1 if none. */
79
80int *loop_outer_loop;
81
82/* Indexed by loop number, contains a nonzero value if the "loop" isn't
83 really a loop (an insn outside the loop branches into it). */
84
85static char *loop_invalid;
86
87/* Indexed by loop number, links together all LABEL_REFs which refer to
88 code labels outside the loop. Used by routines that need to know all
89 loop exits, such as final_biv_value and final_giv_value.
90
91 This does not include loop exits due to return instructions. This is
92 because all bivs and givs are pseudos, and hence must be dead after a
93 return, so the presense of a return does not affect any of the
94 optimizations that use this info. It is simpler to just not include return
95 instructions on this list. */
96
97rtx *loop_number_exit_labels;
98
99/* Holds the number of loop iterations. It is zero if the number could not be
5fd8383e
RK
100 calculated. Must be unsigned since the number of iterations can
101 be as high as 2^wordsize-1. For loops with a wider iterator, this number
102 will will be zero if the number of loop iterations is too large for an
103 unsigned integer to hold. */
b4ad7b23 104
5fd8383e 105unsigned HOST_WIDE_INT loop_n_iterations;
b4ad7b23
RS
106
107/* Nonzero if there is a subroutine call in the current loop.
108 (unknown_address_altered is also nonzero in this case.) */
109
110static int loop_has_call;
111
552bc76f
RS
112/* Nonzero if there is a volatile memory reference in the current
113 loop. */
114
115static int loop_has_volatile;
116
b4ad7b23
RS
117/* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
118 current loop. A continue statement will generate a branch to
119 NEXT_INSN (loop_continue). */
120
121static rtx loop_continue;
122
123/* Indexed by register number, contains the number of times the reg
124 is set during the loop being scanned.
125 During code motion, a negative value indicates a reg that has been
126 made a candidate; in particular -2 means that it is an candidate that
c5b7917e 127 we know is equal to a constant and -1 means that it is an candidate
b4ad7b23
RS
128 not known equal to a constant.
129 After code motion, regs moved have 0 (which is accurate now)
130 while the failed candidates have the original number of times set.
131
132 Therefore, at all times, == 0 indicates an invariant register;
133 < 0 a conditionally invariant one. */
134
135static short *n_times_set;
136
137/* Original value of n_times_set; same except that this value
138 is not set negative for a reg whose sets have been made candidates
139 and not set to 0 for a reg that is moved. */
140
141static short *n_times_used;
142
143/* Index by register number, 1 indicates that the register
144 cannot be moved or strength reduced. */
145
146static char *may_not_optimize;
147
148/* Nonzero means reg N has already been moved out of one loop.
149 This reduces the desire to move it out of another. */
150
151static char *moved_once;
152
153/* Array of MEMs that are stored in this loop. If there are too many to fit
154 here, we just turn on unknown_address_altered. */
155
156#define NUM_STORES 20
157static rtx loop_store_mems[NUM_STORES];
158
159/* Index of first available slot in above array. */
160static int loop_store_mems_idx;
161
162/* Nonzero if we don't know what MEMs were changed in the current loop.
552bc76f 163 This happens if the loop contains a call (in which case `loop_has_call'
b4ad7b23
RS
164 will also be set) or if we store into more than NUM_STORES MEMs. */
165
166static int unknown_address_altered;
167
168/* Count of movable (i.e. invariant) instructions discovered in the loop. */
169static int num_movables;
170
171/* Count of memory write instructions discovered in the loop. */
172static int num_mem_sets;
173
174/* Number of loops contained within the current one, including itself. */
175static int loops_enclosed;
176
177/* Bound on pseudo register number before loop optimization.
178 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
179int max_reg_before_loop;
180
181/* This obstack is used in product_cheap_p to allocate its rtl. It
182 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
183 If we used the same obstack that it did, we would be deallocating
184 that array. */
185
186static struct obstack temp_obstack;
187
188/* This is where the pointer to the obstack being used for RTL is stored. */
189
190extern struct obstack *rtl_obstack;
191
192#define obstack_chunk_alloc xmalloc
193#define obstack_chunk_free free
194
195extern char *oballoc ();
b4ad7b23
RS
196\f
197/* During the analysis of a loop, a chain of `struct movable's
198 is made to record all the movable insns found.
199 Then the entire chain can be scanned to decide which to move. */
200
201struct movable
202{
203 rtx insn; /* A movable insn */
204 rtx set_src; /* The expression this reg is set from. */
205 rtx set_dest; /* The destination of this SET. */
206 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
207 of any registers used within the LIBCALL. */
208 int consec; /* Number of consecutive following insns
209 that must be moved with this one. */
210 int regno; /* The register it sets */
211 short lifetime; /* lifetime of that register;
212 may be adjusted when matching movables
213 that load the same value are found. */
214 short savings; /* Number of insns we can move for this reg,
215 including other movables that force this
216 or match this one. */
217 unsigned int cond : 1; /* 1 if only conditionally movable */
218 unsigned int force : 1; /* 1 means MUST move this insn */
219 unsigned int global : 1; /* 1 means reg is live outside this loop */
220 /* If PARTIAL is 1, GLOBAL means something different:
221 that the reg is live outside the range from where it is set
222 to the following label. */
223 unsigned int done : 1; /* 1 inhibits further processing of this */
224
225 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
226 In particular, moving it does not make it
227 invariant. */
228 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
229 load SRC, rather than copying INSN. */
230 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
231 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
232 that we should avoid changing when clearing
233 the rest of the reg. */
234 struct movable *match; /* First entry for same value */
235 struct movable *forces; /* An insn that must be moved if this is */
236 struct movable *next;
237};
238
239FILE *loop_dump_stream;
240
241/* Forward declarations. */
242
243static void find_and_verify_loops ();
244static void mark_loop_jump ();
245static void prescan_loop ();
246static int reg_in_basic_block_p ();
247static int consec_sets_invariant_p ();
248static rtx libcall_other_reg ();
249static int labels_in_range_p ();
250static void count_loop_regs_set ();
251static void note_addr_stored ();
252static int loop_reg_used_before_p ();
253static void scan_loop ();
254static void replace_call_address ();
255static rtx skip_consec_insns ();
256static int libcall_benefit ();
257static void ignore_some_movables ();
258static void force_movables ();
259static void combine_movables ();
260static int rtx_equal_for_loop_p ();
261static void move_movables ();
262static void strength_reduce ();
263static int valid_initial_value_p ();
264static void find_mem_givs ();
265static void record_biv ();
266static void check_final_value ();
267static void record_giv ();
268static void update_giv_derive ();
269static void delete_insn_forces ();
270static int basic_induction_var ();
271static rtx simplify_giv_expr ();
272static int general_induction_var ();
273static int consec_sets_giv ();
274static int check_dbra_loop ();
275static rtx express_from ();
276static int combine_givs_p ();
277static void combine_givs ();
278static int product_cheap_p ();
279static int maybe_eliminate_biv ();
280static int maybe_eliminate_biv_1 ();
281static int last_use_this_basic_block ();
282static void record_initial ();
283static void update_reg_last_use ();
284\f
285/* Relative gain of eliminating various kinds of operations. */
286int add_cost;
287#if 0
288int shift_cost;
289int mult_cost;
290#endif
291
292/* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
293 copy the value of the strength reduced giv to its original register. */
294int copy_cost;
295
296void
297init_loop ()
298{
299 char *free_point = (char *) oballoc (1);
6e1b9d9f 300 rtx reg = gen_rtx (REG, word_mode, 0);
5fd8383e 301 rtx pow2 = GEN_INT (32);
b4ad7b23
RS
302 rtx lea;
303 int i;
304
6e1b9d9f 305 add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
b4ad7b23
RS
306
307 /* We multiply by 2 to reconcile the difference in scale between
308 these two ways of computing costs. Otherwise the cost of a copy
309 will be far less than the cost of an add. */
5fd8383e 310
b4ad7b23 311 copy_cost = 2 * 2;
b4ad7b23
RS
312
313 /* Free the objects we just allocated. */
314 obfree (free_point);
315
316 /* Initialize the obstack used for rtl in product_cheap_p. */
317 gcc_obstack_init (&temp_obstack);
318}
319\f
320/* Entry point of this file. Perform loop optimization
321 on the current function. F is the first insn of the function
322 and DUMPFILE is a stream for output of a trace of actions taken
323 (or 0 if none should be output). */
324
325void
326loop_optimize (f, dumpfile)
327 /* f is the first instruction of a chain of insns for one function */
328 rtx f;
329 FILE *dumpfile;
330{
331 register rtx insn;
332 register int i;
333 rtx end;
334 rtx last_insn;
335
336 loop_dump_stream = dumpfile;
337
338 init_recog_no_volatile ();
339 init_alias_analysis ();
340
341 max_reg_before_loop = max_reg_num ();
342
343 moved_once = (char *) alloca (max_reg_before_loop);
344 bzero (moved_once, max_reg_before_loop);
345
346 regs_may_share = 0;
347
348 /* Count the number of loops. */
349
350 max_loop_num = 0;
351 for (insn = f; insn; insn = NEXT_INSN (insn))
352 {
353 if (GET_CODE (insn) == NOTE
354 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
355 max_loop_num++;
356 }
357
358 /* Don't waste time if no loops. */
359 if (max_loop_num == 0)
360 return;
361
362 /* Get size to use for tables indexed by uids.
363 Leave some space for labels allocated by find_and_verify_loops. */
364 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 4;
365
366 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
367 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
368
369 bzero (uid_luid, max_uid_for_loop * sizeof (int));
370 bzero (uid_loop_num, max_uid_for_loop * sizeof (int));
371
372 /* Allocate tables for recording each loop. We set each entry, so they need
373 not be zeroed. */
374 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
375 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
376 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
377 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
378 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
379
380 if (flag_unroll_loops && write_symbols != NO_DEBUG)
381 {
382 loop_number_first_block
383 = (union tree_node **) alloca (max_loop_num
384 * sizeof (union tree_node *));
385 loop_number_last_block
386 = (union tree_node **) alloca (max_loop_num
387 * sizeof (union tree_node *));
388 loop_number_block_level = (int *) alloca (max_loop_num * sizeof (int));
389 }
390
391 /* Find and process each loop.
392 First, find them, and record them in order of their beginnings. */
393 find_and_verify_loops (f);
394
395 /* Now find all register lifetimes. This must be done after
396 find_and_verify_loops, because it might reorder the insns in the
397 function. */
398 reg_scan (f, max_reg_num (), 1);
399
400 /* Compute the mapping from uids to luids.
401 LUIDs are numbers assigned to insns, like uids,
402 except that luids increase monotonically through the code.
403 Don't assign luids to line-number NOTEs, so that the distance in luids
404 between two insns is not affected by -g. */
405
406 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
407 {
408 last_insn = insn;
409 if (GET_CODE (insn) != NOTE
410 || NOTE_LINE_NUMBER (insn) <= 0)
411 uid_luid[INSN_UID (insn)] = ++i;
412 else
413 /* Give a line number note the same luid as preceding insn. */
414 uid_luid[INSN_UID (insn)] = i;
415 }
416
417 max_luid = i + 1;
418
419 /* Don't leave gaps in uid_luid for insns that have been
420 deleted. It is possible that the first or last insn
421 using some register has been deleted by cross-jumping.
422 Make sure that uid_luid for that former insn's uid
423 points to the general area where that insn used to be. */
424 for (i = 0; i < max_uid_for_loop; i++)
425 {
426 uid_luid[0] = uid_luid[i];
427 if (uid_luid[0] != 0)
428 break;
429 }
430 for (i = 0; i < max_uid_for_loop; i++)
431 if (uid_luid[i] == 0)
432 uid_luid[i] = uid_luid[i - 1];
433
434 /* Create a mapping from loops to BLOCK tree nodes. */
435 if (flag_unroll_loops && write_symbols != NO_DEBUG)
436 find_loop_tree_blocks (f);
437
438 /* Now scan the loops, last ones first, since this means inner ones are done
439 before outer ones. */
440 for (i = max_loop_num-1; i >= 0; i--)
441 if (! loop_invalid[i] && loop_number_loop_ends[i])
442 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
443 max_reg_num ());
444}
445\f
446/* Optimize one loop whose start is LOOP_START and end is END.
447 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
448 NOTE_INSN_LOOP_END. */
449
450/* ??? Could also move memory writes out of loops if the destination address
451 is invariant, the source is invariant, the memory write is not volatile,
452 and if we can prove that no read inside the loop can read this address
453 before the write occurs. If there is a read of this address after the
454 write, then we can also mark the memory read as invariant. */
455
456static void
457scan_loop (loop_start, end, nregs)
458 rtx loop_start, end;
459 int nregs;
460{
461 register int i;
462 register rtx p;
463 /* 1 if we are scanning insns that could be executed zero times. */
464 int maybe_never = 0;
465 /* 1 if we are scanning insns that might never be executed
466 due to a subroutine call which might exit before they are reached. */
467 int call_passed = 0;
468 /* For a rotated loop that is entered near the bottom,
469 this is the label at the top. Otherwise it is zero. */
470 rtx loop_top = 0;
471 /* Jump insn that enters the loop, or 0 if control drops in. */
472 rtx loop_entry_jump = 0;
473 /* Place in the loop where control enters. */
474 rtx scan_start;
475 /* Number of insns in the loop. */
476 int insn_count;
477 int in_libcall = 0;
478 int tem;
479 rtx temp;
480 /* The SET from an insn, if it is the only SET in the insn. */
481 rtx set, set1;
482 /* Chain describing insns movable in current loop. */
483 struct movable *movables = 0;
484 /* Last element in `movables' -- so we can add elements at the end. */
485 struct movable *last_movable = 0;
486 /* Ratio of extra register life span we can justify
487 for saving an instruction. More if loop doesn't call subroutines
488 since in that case saving an insn makes more difference
489 and more registers are available. */
490 int threshold;
491 /* If we have calls, contains the insn in which a register was used
492 if it was used exactly once; contains const0_rtx if it was used more
493 than once. */
494 rtx *reg_single_usage = 0;
495
496 n_times_set = (short *) alloca (nregs * sizeof (short));
497 n_times_used = (short *) alloca (nregs * sizeof (short));
498 may_not_optimize = (char *) alloca (nregs);
499
500 /* Determine whether this loop starts with a jump down to a test at
501 the end. This will occur for a small number of loops with a test
502 that is too complex to duplicate in front of the loop.
503
504 We search for the first insn or label in the loop, skipping NOTEs.
505 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
506 (because we might have a loop executed only once that contains a
507 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
508 (in case we have a degenerate loop).
509
510 Note that if we mistakenly think that a loop is entered at the top
511 when, in fact, it is entered at the exit test, the only effect will be
512 slightly poorer optimization. Making the opposite error can generate
513 incorrect code. Since very few loops now start with a jump to the
514 exit test, the code here to detect that case is very conservative. */
515
516 for (p = NEXT_INSN (loop_start);
517 p != end
518 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
519 && (GET_CODE (p) != NOTE
520 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
521 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
522 p = NEXT_INSN (p))
523 ;
524
525 scan_start = p;
526
527 /* Set up variables describing this loop. */
528 prescan_loop (loop_start, end);
529 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
530
531 /* If loop has a jump before the first label,
532 the true entry is the target of that jump.
533 Start scan from there.
534 But record in LOOP_TOP the place where the end-test jumps
535 back to so we can scan that after the end of the loop. */
536 if (GET_CODE (p) == JUMP_INSN)
537 {
538 loop_entry_jump = p;
539
540 /* Loop entry must be unconditional jump (and not a RETURN) */
541 if (simplejump_p (p)
542 && JUMP_LABEL (p) != 0
543 /* Check to see whether the jump actually
544 jumps out of the loop (meaning it's no loop).
545 This case can happen for things like
546 do {..} while (0). If this label was generated previously
547 by loop, we can't tell anything about it and have to reject
548 the loop. */
549 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
550 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
551 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
552 {
553 loop_top = next_label (scan_start);
554 scan_start = JUMP_LABEL (p);
555 }
556 }
557
558 /* If SCAN_START was an insn created by loop, we don't know its luid
559 as required by loop_reg_used_before_p. So skip such loops. (This
560 test may never be true, but it's best to play it safe.)
561
562 Also, skip loops where we do not start scanning at a label. This
563 test also rejects loops starting with a JUMP_INSN that failed the
564 test above. */
565
566 if (INSN_UID (scan_start) >= max_uid_for_loop
567 || GET_CODE (scan_start) != CODE_LABEL)
568 {
569 if (loop_dump_stream)
570 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
571 INSN_UID (loop_start), INSN_UID (end));
572 return;
573 }
574
575 /* Count number of times each reg is set during this loop.
576 Set may_not_optimize[I] if it is not safe to move out
577 the setting of register I. If this loop has calls, set
578 reg_single_usage[I]. */
579
580 bzero (n_times_set, nregs * sizeof (short));
581 bzero (may_not_optimize, nregs);
582
583 if (loop_has_call)
584 {
585 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
586 bzero (reg_single_usage, nregs * sizeof (rtx));
587 }
588
589 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
590 may_not_optimize, reg_single_usage, &insn_count, nregs);
591
592 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
593 may_not_optimize[i] = 1, n_times_set[i] = 1;
594 bcopy (n_times_set, n_times_used, nregs * sizeof (short));
595
596 if (loop_dump_stream)
597 {
598 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
599 INSN_UID (loop_start), INSN_UID (end), insn_count);
600 if (loop_continue)
601 fprintf (loop_dump_stream, "Continue at insn %d.\n",
602 INSN_UID (loop_continue));
603 }
604
605 /* Scan through the loop finding insns that are safe to move.
d45cf215 606 Set n_times_set negative for the reg being set, so that
b4ad7b23
RS
607 this reg will be considered invariant for subsequent insns.
608 We consider whether subsequent insns use the reg
609 in deciding whether it is worth actually moving.
610
611 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
612 and therefore it is possible that the insns we are scanning
613 would never be executed. At such times, we must make sure
614 that it is safe to execute the insn once instead of zero times.
615 When MAYBE_NEVER is 0, all insns will be executed at least once
616 so that is not a problem. */
617
618 p = scan_start;
619 while (1)
620 {
621 p = NEXT_INSN (p);
622 /* At end of a straight-in loop, we are done.
623 At end of a loop entered at the bottom, scan the top. */
624 if (p == scan_start)
625 break;
626 if (p == end)
627 {
628 if (loop_top != 0)
629 p = NEXT_INSN (loop_top);
630 else
631 break;
632 if (p == scan_start)
633 break;
634 }
635
636 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
5fd8383e 637 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
b4ad7b23
RS
638 in_libcall = 1;
639 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
5fd8383e 640 && find_reg_note (p, REG_RETVAL, NULL_RTX))
b4ad7b23
RS
641 in_libcall = 0;
642
643 if (GET_CODE (p) == INSN
644 && (set = single_set (p))
645 && GET_CODE (SET_DEST (set)) == REG
646 && ! may_not_optimize[REGNO (SET_DEST (set))])
647 {
648 int tem1 = 0;
649 int tem2 = 0;
650 int move_insn = 0;
651 rtx src = SET_SRC (set);
652 rtx dependencies = 0;
653
654 /* Figure out what to use as a source of this insn. If a REG_EQUIV
655 note is given or if a REG_EQUAL note with a constant operand is
656 specified, use it as the source and mark that we should move
657 this insn by calling emit_move_insn rather that duplicating the
658 insn.
659
660 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
661 is present. */
5fd8383e 662 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
b4ad7b23
RS
663 if (temp)
664 src = XEXP (temp, 0), move_insn = 1;
665 else
666 {
5fd8383e 667 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
b4ad7b23
RS
668 if (temp && CONSTANT_P (XEXP (temp, 0)))
669 src = XEXP (temp, 0), move_insn = 1;
5fd8383e 670 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
b4ad7b23
RS
671 {
672 src = XEXP (temp, 0);
673 /* A libcall block can use regs that don't appear in
674 the equivalent expression. To move the libcall,
675 we must move those regs too. */
676 dependencies = libcall_other_reg (p, src);
677 }
678 }
679
680 /* Don't try to optimize a register that was made
681 by loop-optimization for an inner loop.
682 We don't know its life-span, so we can't compute the benefit. */
683 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
684 ;
685 /* In order to move a register, we need to have one of three cases:
686 (1) it is used only in the same basic block as the set
687 (2) it is not a user variable.
688 (3) the set is guaranteed to be executed once the loop starts,
689 and the reg is not used until after that. */
690 else if (! ((! maybe_never
691 && ! loop_reg_used_before_p (set, p, loop_start,
692 scan_start, end))
693 || ! REG_USERVAR_P (SET_DEST (PATTERN (p)))
694 || reg_in_basic_block_p (p, SET_DEST (PATTERN (p)))))
695 ;
696 else if ((tem = invariant_p (src))
697 && (dependencies == 0
698 || (tem2 = invariant_p (dependencies)) != 0)
699 && (n_times_set[REGNO (SET_DEST (set))] == 1
700 || (tem1
701 = consec_sets_invariant_p (SET_DEST (set),
702 n_times_set[REGNO (SET_DEST (set))],
703 p)))
704 /* If the insn can cause a trap (such as divide by zero),
705 can't move it unless it's guaranteed to be executed
706 once loop is entered. Even a function call might
707 prevent the trap insn from being reached
708 (since it might exit!) */
709 && ! ((maybe_never || call_passed)
710 && may_trap_p (src)))
711 {
712 register struct movable *m;
713 register int regno = REGNO (SET_DEST (set));
714
715 /* A potential lossage is where we have a case where two insns
716 can be combined as long as they are both in the loop, but
717 we move one of them outside the loop. For large loops,
718 this can lose. The most common case of this is the address
719 of a function being called.
720
721 Therefore, if this register is marked as being used exactly
722 once if we are in a loop with calls (a "large loop"), see if
723 we can replace the usage of this register with the source
724 of this SET. If we can, delete this insn.
725
726 Don't do this if P has a REG_RETVAL note or if we have
727 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
728
729 if (reg_single_usage && reg_single_usage[regno] != 0
730 && reg_single_usage[regno] != const0_rtx
731 && regno_first_uid[regno] == INSN_UID (p)
732 && (regno_last_uid[regno]
733 == INSN_UID (reg_single_usage[regno]))
734 && n_times_set[REGNO (SET_DEST (set))] == 1
735 && ! side_effects_p (SET_SRC (set))
5fd8383e 736 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
b4ad7b23
RS
737#ifdef SMALL_REGISTER_CLASSES
738 && ! (GET_CODE (SET_SRC (set)) == REG
739 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
740#endif
741 /* This test is not redundant; SET_SRC (set) might be
742 a call-clobbered register and the life of REGNO
743 might span a call. */
744 && ! modified_between_p (SET_SRC (set), p,
745 reg_single_usage[regno])
746 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
747 reg_single_usage[regno]))
748 {
749 /* Replace any usage in a REG_EQUAL note. */
750 REG_NOTES (reg_single_usage[regno])
751 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
752 SET_DEST (set), SET_SRC (set));
753
754 PUT_CODE (p, NOTE);
755 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
756 NOTE_SOURCE_FILE (p) = 0;
757 n_times_set[regno] = 0;
758 continue;
759 }
760
761 m = (struct movable *) alloca (sizeof (struct movable));
762 m->next = 0;
763 m->insn = p;
764 m->set_src = src;
765 m->dependencies = dependencies;
766 m->set_dest = SET_DEST (set);
767 m->force = 0;
768 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
769 m->done = 0;
770 m->forces = 0;
771 m->partial = 0;
772 m->move_insn = move_insn;
5fd8383e 773 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
b4ad7b23
RS
774 m->savemode = VOIDmode;
775 m->regno = regno;
776 /* Set M->cond if either invariant_p or consec_sets_invariant_p
777 returned 2 (only conditionally invariant). */
778 m->cond = ((tem | tem1 | tem2) > 1);
779 m->global = (uid_luid[regno_last_uid[regno]] > INSN_LUID (end)
780 || uid_luid[regno_first_uid[regno]] < INSN_LUID (loop_start));
781 m->match = 0;
782 m->lifetime = (uid_luid[regno_last_uid[regno]]
783 - uid_luid[regno_first_uid[regno]]);
784 m->savings = n_times_used[regno];
5fd8383e 785 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
b4ad7b23
RS
786 m->savings += libcall_benefit (p);
787 n_times_set[regno] = move_insn ? -2 : -1;
788 /* Add M to the end of the chain MOVABLES. */
789 if (movables == 0)
790 movables = m;
791 else
792 last_movable->next = m;
793 last_movable = m;
794
795 if (m->consec > 0)
796 {
797 /* Skip this insn, not checking REG_LIBCALL notes. */
798 p = NEXT_INSN (p);
799 /* Skip the consecutive insns, if there are any. */
800 p = skip_consec_insns (p, m->consec);
801 /* Back up to the last insn of the consecutive group. */
802 p = prev_nonnote_insn (p);
803
804 /* We must now reset m->move_insn, m->is_equiv, and possibly
805 m->set_src to correspond to the effects of all the
806 insns. */
5fd8383e 807 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
b4ad7b23
RS
808 if (temp)
809 m->set_src = XEXP (temp, 0), m->move_insn = 1;
810 else
811 {
5fd8383e 812 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
b4ad7b23
RS
813 if (temp && CONSTANT_P (XEXP (temp, 0)))
814 m->set_src = XEXP (temp, 0), m->move_insn = 1;
815 else
816 m->move_insn = 0;
817
818 }
5fd8383e 819 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
b4ad7b23
RS
820 }
821 }
822 /* If this register is always set within a STRICT_LOW_PART
823 or set to zero, then its high bytes are constant.
824 So clear them outside the loop and within the loop
825 just load the low bytes.
826 We must check that the machine has an instruction to do so.
827 Also, if the value loaded into the register
828 depends on the same register, this cannot be done. */
829 else if (SET_SRC (set) == const0_rtx
830 && GET_CODE (NEXT_INSN (p)) == INSN
831 && (set1 = single_set (NEXT_INSN (p)))
832 && GET_CODE (set1) == SET
833 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
834 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
835 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
836 == SET_DEST (set))
837 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
838 {
839 register int regno = REGNO (SET_DEST (set));
840 if (n_times_set[regno] == 2)
841 {
842 register struct movable *m;
843 m = (struct movable *) alloca (sizeof (struct movable));
844 m->next = 0;
845 m->insn = p;
846 m->set_dest = SET_DEST (set);
847 m->dependencies = 0;
848 m->force = 0;
849 m->consec = 0;
850 m->done = 0;
851 m->forces = 0;
852 m->move_insn = 0;
853 m->partial = 1;
854 /* If the insn may not be executed on some cycles,
855 we can't clear the whole reg; clear just high part.
856 Not even if the reg is used only within this loop.
857 Consider this:
858 while (1)
859 while (s != t) {
860 if (foo ()) x = *s;
861 use (x);
862 }
863 Clearing x before the inner loop could clobber a value
864 being saved from the last time around the outer loop.
865 However, if the reg is not used outside this loop
866 and all uses of the register are in the same
867 basic block as the store, there is no problem.
868
869 If this insn was made by loop, we don't know its
870 INSN_LUID and hence must make a conservative
871 assumption. */
872 m->global = (INSN_UID (p) >= max_uid_for_loop
873 || (uid_luid[regno_last_uid[regno]]
874 > INSN_LUID (end))
875 || (uid_luid[regno_first_uid[regno]]
876 < INSN_LUID (p))
877 || (labels_in_range_p
878 (p, uid_luid[regno_first_uid[regno]])));
879 if (maybe_never && m->global)
880 m->savemode = GET_MODE (SET_SRC (set1));
881 else
882 m->savemode = VOIDmode;
883 m->regno = regno;
884 m->cond = 0;
885 m->match = 0;
886 m->lifetime = (uid_luid[regno_last_uid[regno]]
887 - uid_luid[regno_first_uid[regno]]);
888 m->savings = 1;
889 n_times_set[regno] = -1;
890 /* Add M to the end of the chain MOVABLES. */
891 if (movables == 0)
892 movables = m;
893 else
894 last_movable->next = m;
895 last_movable = m;
896 }
897 }
898 }
899 /* Past a call insn, we get to insns which might not be executed
900 because the call might exit. This matters for insns that trap.
901 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
902 so they don't count. */
903 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
904 call_passed = 1;
905 /* Past a label or a jump, we get to insns for which we
906 can't count on whether or how many times they will be
907 executed during each iteration. Therefore, we can
908 only move out sets of trivial variables
909 (those not used after the loop). */
910 /* This code appears in three places, once in scan_loop, and twice
911 in strength_reduce. */
912 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
913 /* If we enter the loop in the middle, and scan around to the
914 beginning, don't set maybe_never for that. This must be an
915 unconditional jump, otherwise the code at the top of the
916 loop might never be executed. Unconditional jumps are
917 followed a by barrier then loop end. */
918 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
919 && NEXT_INSN (NEXT_INSN (p)) == end
920 && simplejump_p (p)))
921 maybe_never = 1;
922 /* At the virtual top of a converted loop, insns are again known to
923 be executed: logically, the loop begins here even though the exit
924 code has been duplicated. */
925 else if (GET_CODE (p) == NOTE
926 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
927 maybe_never = call_passed = 0;
928 }
929
930 /* If one movable subsumes another, ignore that other. */
931
932 ignore_some_movables (movables);
933
934 /* For each movable insn, see if the reg that it loads
935 leads when it dies right into another conditionally movable insn.
936 If so, record that the second insn "forces" the first one,
937 since the second can be moved only if the first is. */
938
939 force_movables (movables);
940
941 /* See if there are multiple movable insns that load the same value.
942 If there are, make all but the first point at the first one
943 through the `match' field, and add the priorities of them
944 all together as the priority of the first. */
945
946 combine_movables (movables, nregs);
947
948 /* Now consider each movable insn to decide whether it is worth moving.
949 Store 0 in n_times_set for each reg that is moved. */
950
951 move_movables (movables, threshold,
952 insn_count, loop_start, end, nregs);
953
954 /* Now candidates that still are negative are those not moved.
955 Change n_times_set to indicate that those are not actually invariant. */
956 for (i = 0; i < nregs; i++)
957 if (n_times_set[i] < 0)
958 n_times_set[i] = n_times_used[i];
959
960 if (flag_strength_reduce)
961 strength_reduce (scan_start, end, loop_top,
962 insn_count, loop_start, end);
963}
964\f
965/* Add elements to *OUTPUT to record all the pseudo-regs
966 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
967
968void
969record_excess_regs (in_this, not_in_this, output)
970 rtx in_this, not_in_this;
971 rtx *output;
972{
973 enum rtx_code code;
974 char *fmt;
975 int i;
976
977 code = GET_CODE (in_this);
978
979 switch (code)
980 {
981 case PC:
982 case CC0:
983 case CONST_INT:
984 case CONST_DOUBLE:
985 case CONST:
986 case SYMBOL_REF:
987 case LABEL_REF:
988 return;
989
990 case REG:
991 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
992 && ! reg_mentioned_p (in_this, not_in_this))
993 *output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
994 return;
995 }
996
997 fmt = GET_RTX_FORMAT (code);
998 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
999 {
1000 int j;
1001
1002 switch (fmt[i])
1003 {
1004 case 'E':
1005 for (j = 0; j < XVECLEN (in_this, i); j++)
1006 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1007 break;
1008
1009 case 'e':
1010 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1011 break;
1012 }
1013 }
1014}
1015\f
1016/* Check what regs are referred to in the libcall block ending with INSN,
1017 aside from those mentioned in the equivalent value.
1018 If there are none, return 0.
1019 If there are one or more, return an EXPR_LIST containing all of them. */
1020
1021static rtx
1022libcall_other_reg (insn, equiv)
1023 rtx insn, equiv;
1024{
5fd8383e 1025 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
b4ad7b23
RS
1026 rtx p = XEXP (note, 0);
1027 rtx output = 0;
1028
1029 /* First, find all the regs used in the libcall block
1030 that are not mentioned as inputs to the result. */
1031
1032 while (p != insn)
1033 {
1034 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1035 || GET_CODE (p) == CALL_INSN)
1036 record_excess_regs (PATTERN (p), equiv, &output);
1037 p = NEXT_INSN (p);
1038 }
1039
1040 return output;
1041}
1042\f
1043/* Return 1 if all uses of REG
1044 are between INSN and the end of the basic block. */
1045
1046static int
1047reg_in_basic_block_p (insn, reg)
1048 rtx insn, reg;
1049{
1050 int regno = REGNO (reg);
1051 rtx p;
1052
1053 if (regno_first_uid[regno] != INSN_UID (insn))
1054 return 0;
1055
1056 /* Search this basic block for the already recorded last use of the reg. */
1057 for (p = insn; p; p = NEXT_INSN (p))
1058 {
1059 switch (GET_CODE (p))
1060 {
1061 case NOTE:
1062 break;
1063
1064 case INSN:
1065 case CALL_INSN:
1066 /* Ordinary insn: if this is the last use, we win. */
1067 if (regno_last_uid[regno] == INSN_UID (p))
1068 return 1;
1069 break;
1070
1071 case JUMP_INSN:
1072 /* Jump insn: if this is the last use, we win. */
1073 if (regno_last_uid[regno] == INSN_UID (p))
1074 return 1;
1075 /* Otherwise, it's the end of the basic block, so we lose. */
1076 return 0;
1077
1078 case CODE_LABEL:
1079 case BARRIER:
1080 /* It's the end of the basic block, so we lose. */
1081 return 0;
1082 }
1083 }
1084
1085 /* The "last use" doesn't follow the "first use"?? */
1086 abort ();
1087}
1088\f
1089/* Compute the benefit of eliminating the insns in the block whose
1090 last insn is LAST. This may be a group of insns used to compute a
1091 value directly or can contain a library call. */
1092
1093static int
1094libcall_benefit (last)
1095 rtx last;
1096{
1097 rtx insn;
1098 int benefit = 0;
1099
5fd8383e 1100 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
b4ad7b23
RS
1101 insn != last; insn = NEXT_INSN (insn))
1102 {
1103 if (GET_CODE (insn) == CALL_INSN)
1104 benefit += 10; /* Assume at least this many insns in a library
1105 routine. */
1106 else if (GET_CODE (insn) == INSN
1107 && GET_CODE (PATTERN (insn)) != USE
1108 && GET_CODE (PATTERN (insn)) != CLOBBER)
1109 benefit++;
1110 }
1111
1112 return benefit;
1113}
1114\f
1115/* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1116
1117static rtx
1118skip_consec_insns (insn, count)
1119 rtx insn;
1120 int count;
1121{
1122 for (; count > 0; count--)
1123 {
1124 rtx temp;
1125
1126 /* If first insn of libcall sequence, skip to end. */
1127 /* Do this at start of loop, since INSN is guaranteed to
1128 be an insn here. */
1129 if (GET_CODE (insn) != NOTE
5fd8383e 1130 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
b4ad7b23
RS
1131 insn = XEXP (temp, 0);
1132
1133 do insn = NEXT_INSN (insn);
1134 while (GET_CODE (insn) == NOTE);
1135 }
1136
1137 return insn;
1138}
1139
1140/* Ignore any movable whose insn falls within a libcall
1141 which is part of another movable.
1142 We make use of the fact that the movable for the libcall value
1143 was made later and so appears later on the chain. */
1144
1145static void
1146ignore_some_movables (movables)
1147 struct movable *movables;
1148{
1149 register struct movable *m, *m1;
1150
1151 for (m = movables; m; m = m->next)
1152 {
1153 /* Is this a movable for the value of a libcall? */
5fd8383e 1154 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
b4ad7b23
RS
1155 if (note)
1156 {
1157 rtx insn;
1158 /* Check for earlier movables inside that range,
1159 and mark them invalid. We cannot use LUIDs here because
1160 insns created by loop.c for prior loops don't have LUIDs.
1161 Rather than reject all such insns from movables, we just
1162 explicitly check each insn in the libcall (since invariant
1163 libcalls aren't that common). */
1164 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1165 for (m1 = movables; m1 != m; m1 = m1->next)
1166 if (m1->insn == insn)
1167 m1->done = 1;
1168 }
1169 }
1170}
1171
1172/* For each movable insn, see if the reg that it loads
1173 leads when it dies right into another conditionally movable insn.
1174 If so, record that the second insn "forces" the first one,
1175 since the second can be moved only if the first is. */
1176
1177static void
1178force_movables (movables)
1179 struct movable *movables;
1180{
1181 register struct movable *m, *m1;
1182 for (m1 = movables; m1; m1 = m1->next)
1183 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1184 if (!m1->partial && !m1->done)
1185 {
1186 int regno = m1->regno;
1187 for (m = m1->next; m; m = m->next)
1188 /* ??? Could this be a bug? What if CSE caused the
1189 register of M1 to be used after this insn?
1190 Since CSE does not update regno_last_uid,
1191 this insn M->insn might not be where it dies.
1192 But very likely this doesn't matter; what matters is
1193 that M's reg is computed from M1's reg. */
1194 if (INSN_UID (m->insn) == regno_last_uid[regno]
1195 && !m->done)
1196 break;
1197 if (m != 0 && m->set_src == m1->set_dest
1198 /* If m->consec, m->set_src isn't valid. */
1199 && m->consec == 0)
1200 m = 0;
1201
1202 /* Increase the priority of the moving the first insn
1203 since it permits the second to be moved as well. */
1204 if (m != 0)
1205 {
1206 m->forces = m1;
1207 m1->lifetime += m->lifetime;
1208 m1->savings += m1->savings;
1209 }
1210 }
1211}
1212\f
1213/* Find invariant expressions that are equal and can be combined into
1214 one register. */
1215
1216static void
1217combine_movables (movables, nregs)
1218 struct movable *movables;
1219 int nregs;
1220{
1221 register struct movable *m;
1222 char *matched_regs = (char *) alloca (nregs);
1223 enum machine_mode mode;
1224
1225 /* Regs that are set more than once are not allowed to match
1226 or be matched. I'm no longer sure why not. */
1227 /* Perhaps testing m->consec_sets would be more appropriate here? */
1228
1229 for (m = movables; m; m = m->next)
1230 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1231 {
1232 register struct movable *m1;
1233 int regno = m->regno;
1234 rtx reg_note, reg_note1;
1235
1236 bzero (matched_regs, nregs);
1237 matched_regs[regno] = 1;
1238
1239 for (m1 = movables; m1; m1 = m1->next)
1240 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1241 /* A reg used outside the loop mustn't be eliminated. */
1242 && !m1->global
1243 /* A reg used for zero-extending mustn't be eliminated. */
1244 && !m1->partial
1245 && (matched_regs[m1->regno]
1246 ||
1247 (
1248 /* Can combine regs with different modes loaded from the
1249 same constant only if the modes are the same or
1250 if both are integer modes with M wider or the same
1251 width as M1. The check for integer is redundant, but
1252 safe, since the only case of differing destination
1253 modes with equal sources is when both sources are
1254 VOIDmode, i.e., CONST_INT. */
1255 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1256 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1257 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1258 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1259 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1260 /* See if the source of M1 says it matches M. */
1261 && ((GET_CODE (m1->set_src) == REG
1262 && matched_regs[REGNO (m1->set_src)])
1263 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1264 movables))))
1265 && ((m->dependencies == m1->dependencies)
1266 || rtx_equal_p (m->dependencies, m1->dependencies)))
1267 {
1268 m->lifetime += m1->lifetime;
1269 m->savings += m1->savings;
1270 m1->done = 1;
1271 m1->match = m;
1272 matched_regs[m1->regno] = 1;
1273 }
1274 }
1275
1276 /* Now combine the regs used for zero-extension.
1277 This can be done for those not marked `global'
1278 provided their lives don't overlap. */
1279
1280 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1281 mode = GET_MODE_WIDER_MODE (mode))
1282 {
1283 register struct movable *m0 = 0;
1284
1285 /* Combine all the registers for extension from mode MODE.
1286 Don't combine any that are used outside this loop. */
1287 for (m = movables; m; m = m->next)
1288 if (m->partial && ! m->global
1289 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1290 {
1291 register struct movable *m1;
1292 int first = uid_luid[regno_first_uid[m->regno]];
1293 int last = uid_luid[regno_last_uid[m->regno]];
1294
1295 if (m0 == 0)
1296 {
1297 /* First one: don't check for overlap, just record it. */
1298 m0 = m;
1299 continue;
1300 }
1301
1302 /* Make sure they extend to the same mode.
1303 (Almost always true.) */
1304 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1305 continue;
1306
1307 /* We already have one: check for overlap with those
1308 already combined together. */
1309 for (m1 = movables; m1 != m; m1 = m1->next)
1310 if (m1 == m0 || (m1->partial && m1->match == m0))
1311 if (! (uid_luid[regno_first_uid[m1->regno]] > last
1312 || uid_luid[regno_last_uid[m1->regno]] < first))
1313 goto overlap;
1314
1315 /* No overlap: we can combine this with the others. */
1316 m0->lifetime += m->lifetime;
1317 m0->savings += m->savings;
1318 m->done = 1;
1319 m->match = m0;
1320
1321 overlap: ;
1322 }
1323 }
1324}
1325\f
1326/* Return 1 if regs X and Y will become the same if moved. */
1327
1328static int
1329regs_match_p (x, y, movables)
1330 rtx x, y;
1331 struct movable *movables;
1332{
1333 int xn = REGNO (x);
1334 int yn = REGNO (y);
1335 struct movable *mx, *my;
1336
1337 for (mx = movables; mx; mx = mx->next)
1338 if (mx->regno == xn)
1339 break;
1340
1341 for (my = movables; my; my = my->next)
1342 if (my->regno == yn)
1343 break;
1344
1345 return (mx && my
1346 && ((mx->match == my->match && mx->match != 0)
1347 || mx->match == my
1348 || mx == my->match));
1349}
1350
1351/* Return 1 if X and Y are identical-looking rtx's.
1352 This is the Lisp function EQUAL for rtx arguments.
1353
1354 If two registers are matching movables or a movable register and an
1355 equivalent constant, consider them equal. */
1356
1357static int
1358rtx_equal_for_loop_p (x, y, movables)
1359 rtx x, y;
1360 struct movable *movables;
1361{
1362 register int i;
1363 register int j;
1364 register struct movable *m;
1365 register enum rtx_code code;
1366 register char *fmt;
1367
1368 if (x == y)
1369 return 1;
1370 if (x == 0 || y == 0)
1371 return 0;
1372
1373 code = GET_CODE (x);
1374
1375 /* If we have a register and a constant, they may sometimes be
1376 equal. */
1377 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1378 && CONSTANT_P (y))
1379 for (m = movables; m; m = m->next)
1380 if (m->move_insn && m->regno == REGNO (x)
1381 && rtx_equal_p (m->set_src, y))
1382 return 1;
1383
1384 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1385 && CONSTANT_P (x))
1386 for (m = movables; m; m = m->next)
1387 if (m->move_insn && m->regno == REGNO (y)
1388 && rtx_equal_p (m->set_src, x))
1389 return 1;
1390
1391 /* Otherwise, rtx's of different codes cannot be equal. */
1392 if (code != GET_CODE (y))
1393 return 0;
1394
1395 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1396 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1397
1398 if (GET_MODE (x) != GET_MODE (y))
1399 return 0;
1400
1401 /* These three types of rtx's can be compared nonrecursively. */
1402 if (code == REG)
1403 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1404
1405 if (code == LABEL_REF)
1406 return XEXP (x, 0) == XEXP (y, 0);
1407 if (code == SYMBOL_REF)
1408 return XSTR (x, 0) == XSTR (y, 0);
1409
1410 /* Compare the elements. If any pair of corresponding elements
1411 fail to match, return 0 for the whole things. */
1412
1413 fmt = GET_RTX_FORMAT (code);
1414 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1415 {
1416 switch (fmt[i])
1417 {
5fd8383e
RK
1418 case 'w':
1419 if (XWINT (x, i) != XWINT (y, i))
1420 return 0;
1421 break;
1422
b4ad7b23
RS
1423 case 'i':
1424 if (XINT (x, i) != XINT (y, i))
1425 return 0;
1426 break;
1427
1428 case 'E':
1429 /* Two vectors must have the same length. */
1430 if (XVECLEN (x, i) != XVECLEN (y, i))
1431 return 0;
1432
1433 /* And the corresponding elements must match. */
1434 for (j = 0; j < XVECLEN (x, i); j++)
1435 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1436 return 0;
1437 break;
1438
1439 case 'e':
1440 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1441 return 0;
1442 break;
1443
1444 case 's':
1445 if (strcmp (XSTR (x, i), XSTR (y, i)))
1446 return 0;
1447 break;
1448
1449 case 'u':
1450 /* These are just backpointers, so they don't matter. */
1451 break;
1452
1453 case '0':
1454 break;
1455
1456 /* It is believed that rtx's at this level will never
1457 contain anything but integers and other rtx's,
1458 except for within LABEL_REFs and SYMBOL_REFs. */
1459 default:
1460 abort ();
1461 }
1462 }
1463 return 1;
1464}
1465\f
c160c628
RK
1466/* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1467 insns in INSNS which use thet reference. */
1468
1469static void
1470add_label_notes (x, insns)
1471 rtx x;
1472 rtx insns;
1473{
1474 enum rtx_code code = GET_CODE (x);
7dcd3836 1475 int i, j;
c160c628
RK
1476 char *fmt;
1477 rtx insn;
1478
82d00367 1479 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
c160c628
RK
1480 {
1481 for (insn = insns; insn; insn = NEXT_INSN (insn))
1482 if (reg_mentioned_p (XEXP (x, 0), insn))
1483 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1484 REG_NOTES (insn));
1485 return;
1486 }
1487
1488 fmt = GET_RTX_FORMAT (code);
1489 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7dcd3836
RK
1490 {
1491 if (fmt[i] == 'e')
1492 add_label_notes (XEXP (x, i), insns);
1493 else if (fmt[i] == 'E')
1494 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1495 add_label_notes (XVECEXP (x, i, j), insns);
1496 }
c160c628
RK
1497}
1498\f
b4ad7b23
RS
1499/* Scan MOVABLES, and move the insns that deserve to be moved.
1500 If two matching movables are combined, replace one reg with the
1501 other throughout. */
1502
1503static void
1504move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1505 struct movable *movables;
1506 int threshold;
1507 int insn_count;
1508 rtx loop_start;
1509 rtx end;
1510 int nregs;
1511{
1512 rtx new_start = 0;
1513 register struct movable *m;
1514 register rtx p;
1515 /* Map of pseudo-register replacements to handle combining
1516 when we move several insns that load the same value
1517 into different pseudo-registers. */
1518 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1519 char *already_moved = (char *) alloca (nregs);
1520
1521 bzero (already_moved, nregs);
1522 bzero (reg_map, nregs * sizeof (rtx));
1523
1524 num_movables = 0;
1525
1526 for (m = movables; m; m = m->next)
1527 {
1528 /* Describe this movable insn. */
1529
1530 if (loop_dump_stream)
1531 {
1532 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1533 INSN_UID (m->insn), m->regno, m->lifetime);
1534 if (m->consec > 0)
1535 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1536 if (m->cond)
1537 fprintf (loop_dump_stream, "cond ");
1538 if (m->force)
1539 fprintf (loop_dump_stream, "force ");
1540 if (m->global)
1541 fprintf (loop_dump_stream, "global ");
1542 if (m->done)
1543 fprintf (loop_dump_stream, "done ");
1544 if (m->move_insn)
1545 fprintf (loop_dump_stream, "move-insn ");
1546 if (m->match)
1547 fprintf (loop_dump_stream, "matches %d ",
1548 INSN_UID (m->match->insn));
1549 if (m->forces)
1550 fprintf (loop_dump_stream, "forces %d ",
1551 INSN_UID (m->forces->insn));
1552 }
1553
1554 /* Count movables. Value used in heuristics in strength_reduce. */
1555 num_movables++;
1556
1557 /* Ignore the insn if it's already done (it matched something else).
1558 Otherwise, see if it is now safe to move. */
1559
1560 if (!m->done
1561 && (! m->cond
1562 || (1 == invariant_p (m->set_src)
1563 && (m->dependencies == 0
1564 || 1 == invariant_p (m->dependencies))
1565 && (m->consec == 0
1566 || 1 == consec_sets_invariant_p (m->set_dest,
1567 m->consec + 1,
1568 m->insn))))
1569 && (! m->forces || m->forces->done))
1570 {
1571 register int regno;
1572 register rtx p;
1573 int savings = m->savings;
1574
1575 /* We have an insn that is safe to move.
1576 Compute its desirability. */
1577
1578 p = m->insn;
1579 regno = m->regno;
1580
1581 if (loop_dump_stream)
1582 fprintf (loop_dump_stream, "savings %d ", savings);
1583
1584 if (moved_once[regno])
1585 {
1586 insn_count *= 2;
1587
1588 if (loop_dump_stream)
1589 fprintf (loop_dump_stream, "halved since already moved ");
1590 }
1591
1592 /* An insn MUST be moved if we already moved something else
1593 which is safe only if this one is moved too: that is,
1594 if already_moved[REGNO] is nonzero. */
1595
1596 /* An insn is desirable to move if the new lifetime of the
1597 register is no more than THRESHOLD times the old lifetime.
1598 If it's not desirable, it means the loop is so big
1599 that moving won't speed things up much,
1600 and it is liable to make register usage worse. */
1601
1602 /* It is also desirable to move if it can be moved at no
1603 extra cost because something else was already moved. */
1604
1605 if (already_moved[regno]
1606 || (threshold * savings * m->lifetime) >= insn_count
1607 || (m->forces && m->forces->done
1608 && n_times_used[m->forces->regno] == 1))
1609 {
1610 int count;
1611 register struct movable *m1;
1612 rtx first;
1613
1614 /* Now move the insns that set the reg. */
1615
1616 if (m->partial && m->match)
1617 {
1618 rtx newpat, i1;
1619 rtx r1, r2;
1620 /* Find the end of this chain of matching regs.
1621 Thus, we load each reg in the chain from that one reg.
1622 And that reg is loaded with 0 directly,
1623 since it has ->match == 0. */
1624 for (m1 = m; m1->match; m1 = m1->match);
1625 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1626 SET_DEST (PATTERN (m1->insn)));
1627 i1 = emit_insn_before (newpat, loop_start);
1628
1629 /* Mark the moved, invariant reg as being allowed to
1630 share a hard reg with the other matching invariant. */
1631 REG_NOTES (i1) = REG_NOTES (m->insn);
1632 r1 = SET_DEST (PATTERN (m->insn));
1633 r2 = SET_DEST (PATTERN (m1->insn));
1634 regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1635 gen_rtx (EXPR_LIST, VOIDmode, r2,
1636 regs_may_share));
1637 delete_insn (m->insn);
1638
1639 if (new_start == 0)
1640 new_start = i1;
1641
1642 if (loop_dump_stream)
1643 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1644 }
1645 /* If we are to re-generate the item being moved with a
1646 new move insn, first delete what we have and then emit
1647 the move insn before the loop. */
1648 else if (m->move_insn)
1649 {
1650 rtx i1, temp;
1651
1652 for (count = m->consec; count >= 0; count--)
1653 {
1654 /* If this is the first insn of a library call sequence,
1655 skip to the end. */
1656 if (GET_CODE (p) != NOTE
5fd8383e 1657 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
b4ad7b23
RS
1658 p = XEXP (temp, 0);
1659
1660 /* If this is the last insn of a libcall sequence, then
1661 delete every insn in the sequence except the last.
1662 The last insn is handled in the normal manner. */
1663 if (GET_CODE (p) != NOTE
5fd8383e 1664 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
b4ad7b23
RS
1665 {
1666 temp = XEXP (temp, 0);
1667 while (temp != p)
1668 temp = delete_insn (temp);
1669 }
1670
1671 p = delete_insn (p);
1672 }
1673
1674 start_sequence ();
1675 emit_move_insn (m->set_dest, m->set_src);
c160c628 1676 temp = get_insns ();
b4ad7b23
RS
1677 end_sequence ();
1678
c160c628
RK
1679 add_label_notes (m->set_src, temp);
1680
1681 i1 = emit_insns_before (temp, loop_start);
5fd8383e 1682 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
b4ad7b23
RS
1683 REG_NOTES (i1)
1684 = gen_rtx (EXPR_LIST,
1685 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1686 m->set_src, REG_NOTES (i1));
1687
1688 if (loop_dump_stream)
1689 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1690
1691 /* The more regs we move, the less we like moving them. */
1692 threshold -= 3;
1693 }
1694 else
1695 {
1696 for (count = m->consec; count >= 0; count--)
1697 {
1698 rtx i1, temp;
1699
1700 /* If first insn of libcall sequence, skip to end. */
1701 /* Do this at start of loop, since p is guaranteed to
1702 be an insn here. */
1703 if (GET_CODE (p) != NOTE
5fd8383e 1704 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
b4ad7b23
RS
1705 p = XEXP (temp, 0);
1706
1707 /* If last insn of libcall sequence, move all
1708 insns except the last before the loop. The last
1709 insn is handled in the normal manner. */
1710 if (GET_CODE (p) != NOTE
5fd8383e 1711 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
b4ad7b23
RS
1712 {
1713 rtx fn_address = 0;
1714 rtx fn_reg = 0;
1715 rtx fn_address_insn = 0;
1716
1717 first = 0;
1718 for (temp = XEXP (temp, 0); temp != p;
1719 temp = NEXT_INSN (temp))
1720 {
1721 rtx body;
1722 rtx n;
1723 rtx next;
1724
1725 if (GET_CODE (temp) == NOTE)
1726 continue;
1727
1728 body = PATTERN (temp);
1729
1730 /* Find the next insn after TEMP,
1731 not counting USE or NOTE insns. */
1732 for (next = NEXT_INSN (temp); next != p;
1733 next = NEXT_INSN (next))
1734 if (! (GET_CODE (next) == INSN
1735 && GET_CODE (PATTERN (next)) == USE)
1736 && GET_CODE (next) != NOTE)
1737 break;
1738
1739 /* If that is the call, this may be the insn
1740 that loads the function address.
1741
1742 Extract the function address from the insn
1743 that loads it into a register.
1744 If this insn was cse'd, we get incorrect code.
1745
1746 So emit a new move insn that copies the
1747 function address into the register that the
1748 call insn will use. flow.c will delete any
1749 redundant stores that we have created. */
1750 if (GET_CODE (next) == CALL_INSN
1751 && GET_CODE (body) == SET
1752 && GET_CODE (SET_DEST (body)) == REG
5fd8383e
RK
1753 && (n = find_reg_note (temp, REG_EQUAL,
1754 NULL_RTX)))
b4ad7b23
RS
1755 {
1756 fn_reg = SET_SRC (body);
1757 if (GET_CODE (fn_reg) != REG)
1758 fn_reg = SET_DEST (body);
1759 fn_address = XEXP (n, 0);
1760 fn_address_insn = temp;
1761 }
1762 /* We have the call insn.
1763 If it uses the register we suspect it might,
1764 load it with the correct address directly. */
1765 if (GET_CODE (temp) == CALL_INSN
1766 && fn_address != 0
1767 && reg_mentioned_p (fn_reg, body))
1768 emit_insn_after (gen_move_insn (fn_reg,
1769 fn_address),
1770 fn_address_insn);
1771
1772 if (GET_CODE (temp) == CALL_INSN)
1773 i1 = emit_call_insn_before (body, loop_start);
1774 else
1775 i1 = emit_insn_before (body, loop_start);
1776 if (first == 0)
1777 first = i1;
1778 if (temp == fn_address_insn)
1779 fn_address_insn = i1;
1780 REG_NOTES (i1) = REG_NOTES (temp);
1781 delete_insn (temp);
1782 }
1783 }
1784 if (m->savemode != VOIDmode)
1785 {
1786 /* P sets REG to zero; but we should clear only
1787 the bits that are not covered by the mode
1788 m->savemode. */
1789 rtx reg = m->set_dest;
1790 rtx sequence;
1791 rtx tem;
1792
1793 start_sequence ();
1794 tem = expand_binop
1795 (GET_MODE (reg), and_optab, reg,
5fd8383e
RK
1796 GEN_INT ((((HOST_WIDE_INT) 1
1797 << GET_MODE_BITSIZE (m->savemode)))
b4ad7b23
RS
1798 - 1),
1799 reg, 1, OPTAB_LIB_WIDEN);
1800 if (tem == 0)
1801 abort ();
1802 if (tem != reg)
1803 emit_move_insn (reg, tem);
1804 sequence = gen_sequence ();
1805 end_sequence ();
1806 i1 = emit_insn_before (sequence, loop_start);
1807 }
1808 else if (GET_CODE (p) == CALL_INSN)
1809 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1810 else
1811 i1 = emit_insn_before (PATTERN (p), loop_start);
1812
1813 REG_NOTES (i1) = REG_NOTES (p);
1814
1815 if (new_start == 0)
1816 new_start = i1;
1817
1818 if (loop_dump_stream)
1819 fprintf (loop_dump_stream, " moved to %d",
1820 INSN_UID (i1));
1821
1822#if 0
1823 /* This isn't needed because REG_NOTES is copied
1824 below and is wrong since P might be a PARALLEL. */
1825 if (REG_NOTES (i1) == 0
1826 && ! m->partial /* But not if it's a zero-extend clr. */
1827 && ! m->global /* and not if used outside the loop
1828 (since it might get set outside). */
1829 && CONSTANT_P (SET_SRC (PATTERN (p))))
1830 REG_NOTES (i1)
1831 = gen_rtx (EXPR_LIST, REG_EQUAL,
1832 SET_SRC (PATTERN (p)), REG_NOTES (i1));
1833#endif
1834
1835 /* If library call, now fix the REG_NOTES that contain
1836 insn pointers, namely REG_LIBCALL on FIRST
1837 and REG_RETVAL on I1. */
5fd8383e 1838 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
b4ad7b23
RS
1839 {
1840 XEXP (temp, 0) = first;
5fd8383e 1841 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
b4ad7b23
RS
1842 XEXP (temp, 0) = i1;
1843 }
1844
1845 delete_insn (p);
1846 do p = NEXT_INSN (p);
1847 while (p && GET_CODE (p) == NOTE);
1848 }
1849
1850 /* The more regs we move, the less we like moving them. */
1851 threshold -= 3;
1852 }
1853
1854 /* Any other movable that loads the same register
1855 MUST be moved. */
1856 already_moved[regno] = 1;
1857
1858 /* This reg has been moved out of one loop. */
1859 moved_once[regno] = 1;
1860
1861 /* The reg set here is now invariant. */
1862 if (! m->partial)
1863 n_times_set[regno] = 0;
1864
1865 m->done = 1;
1866
1867 /* Change the length-of-life info for the register
1868 to say it lives at least the full length of this loop.
1869 This will help guide optimizations in outer loops. */
1870
1871 if (uid_luid[regno_first_uid[regno]] > INSN_LUID (loop_start))
1872 /* This is the old insn before all the moved insns.
1873 We can't use the moved insn because it is out of range
1874 in uid_luid. Only the old insns have luids. */
1875 regno_first_uid[regno] = INSN_UID (loop_start);
1876 if (uid_luid[regno_last_uid[regno]] < INSN_LUID (end))
1877 regno_last_uid[regno] = INSN_UID (end);
1878
1879 /* Combine with this moved insn any other matching movables. */
1880
1881 if (! m->partial)
1882 for (m1 = movables; m1; m1 = m1->next)
1883 if (m1->match == m)
1884 {
1885 rtx temp;
1886
1887 /* Schedule the reg loaded by M1
1888 for replacement so that shares the reg of M.
1889 If the modes differ (only possible in restricted
1890 circumstances, make a SUBREG. */
1891 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
1892 reg_map[m1->regno] = m->set_dest;
1893 else
1894 reg_map[m1->regno]
1895 = gen_lowpart_common (GET_MODE (m1->set_dest),
1896 m->set_dest);
1897
1898 /* Get rid of the matching insn
1899 and prevent further processing of it. */
1900 m1->done = 1;
1901
1902 /* if library call, delete all insn except last, which
1903 is deleted below */
5fd8383e
RK
1904 if (temp = find_reg_note (m1->insn, REG_RETVAL,
1905 NULL_RTX))
b4ad7b23
RS
1906 {
1907 for (temp = XEXP (temp, 0); temp != m1->insn;
1908 temp = NEXT_INSN (temp))
1909 delete_insn (temp);
1910 }
1911 delete_insn (m1->insn);
1912
1913 /* Any other movable that loads the same register
1914 MUST be moved. */
1915 already_moved[m1->regno] = 1;
1916
1917 /* The reg merged here is now invariant,
1918 if the reg it matches is invariant. */
1919 if (! m->partial)
1920 n_times_set[m1->regno] = 0;
1921 }
1922 }
1923 else if (loop_dump_stream)
1924 fprintf (loop_dump_stream, "not desirable");
1925 }
1926 else if (loop_dump_stream && !m->match)
1927 fprintf (loop_dump_stream, "not safe");
1928
1929 if (loop_dump_stream)
1930 fprintf (loop_dump_stream, "\n");
1931 }
1932
1933 if (new_start == 0)
1934 new_start = loop_start;
1935
1936 /* Go through all the instructions in the loop, making
1937 all the register substitutions scheduled in REG_MAP. */
1938 for (p = new_start; p != end; p = NEXT_INSN (p))
1939 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1940 || GET_CODE (p) == CALL_INSN)
1941 {
1942 replace_regs (PATTERN (p), reg_map, nregs, 0);
1943 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
1944 }
1945}
1946\f
1947#if 0
1948/* Scan X and replace the address of any MEM in it with ADDR.
1949 REG is the address that MEM should have before the replacement. */
1950
1951static void
1952replace_call_address (x, reg, addr)
1953 rtx x, reg, addr;
1954{
1955 register enum rtx_code code;
1956 register int i;
1957 register char *fmt;
1958
1959 if (x == 0)
1960 return;
1961 code = GET_CODE (x);
1962 switch (code)
1963 {
1964 case PC:
1965 case CC0:
1966 case CONST_INT:
1967 case CONST_DOUBLE:
1968 case CONST:
1969 case SYMBOL_REF:
1970 case LABEL_REF:
1971 case REG:
1972 return;
1973
1974 case SET:
1975 /* Short cut for very common case. */
1976 replace_call_address (XEXP (x, 1), reg, addr);
1977 return;
1978
1979 case CALL:
1980 /* Short cut for very common case. */
1981 replace_call_address (XEXP (x, 0), reg, addr);
1982 return;
1983
1984 case MEM:
1985 /* If this MEM uses a reg other than the one we expected,
1986 something is wrong. */
1987 if (XEXP (x, 0) != reg)
1988 abort ();
1989 XEXP (x, 0) = addr;
1990 return;
1991 }
1992
1993 fmt = GET_RTX_FORMAT (code);
1994 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1995 {
1996 if (fmt[i] == 'e')
1997 replace_call_address (XEXP (x, i), reg, addr);
1998 if (fmt[i] == 'E')
1999 {
2000 register int j;
2001 for (j = 0; j < XVECLEN (x, i); j++)
2002 replace_call_address (XVECEXP (x, i, j), reg, addr);
2003 }
2004 }
2005}
2006#endif
2007\f
2008/* Return the number of memory refs to addresses that vary
2009 in the rtx X. */
2010
2011static int
2012count_nonfixed_reads (x)
2013 rtx x;
2014{
2015 register enum rtx_code code;
2016 register int i;
2017 register char *fmt;
2018 int value;
2019
2020 if (x == 0)
2021 return 0;
2022
2023 code = GET_CODE (x);
2024 switch (code)
2025 {
2026 case PC:
2027 case CC0:
2028 case CONST_INT:
2029 case CONST_DOUBLE:
2030 case CONST:
2031 case SYMBOL_REF:
2032 case LABEL_REF:
2033 case REG:
2034 return 0;
2035
2036 case MEM:
2037 return ((invariant_p (XEXP (x, 0)) != 1)
2038 + count_nonfixed_reads (XEXP (x, 0)));
2039 }
2040
2041 value = 0;
2042 fmt = GET_RTX_FORMAT (code);
2043 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2044 {
2045 if (fmt[i] == 'e')
2046 value += count_nonfixed_reads (XEXP (x, i));
2047 if (fmt[i] == 'E')
2048 {
2049 register int j;
2050 for (j = 0; j < XVECLEN (x, i); j++)
2051 value += count_nonfixed_reads (XVECEXP (x, i, j));
2052 }
2053 }
2054 return value;
2055}
2056
2057\f
2058#if 0
2059/* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2060 Replace it with an instruction to load just the low bytes
2061 if the machine supports such an instruction,
2062 and insert above LOOP_START an instruction to clear the register. */
2063
2064static void
2065constant_high_bytes (p, loop_start)
2066 rtx p, loop_start;
2067{
2068 register rtx new;
2069 register int insn_code_number;
2070
2071 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2072 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2073
2074 new = gen_rtx (SET, VOIDmode,
2075 gen_rtx (STRICT_LOW_PART, VOIDmode,
2076 gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2077 SET_DEST (PATTERN (p)),
2078 0)),
2079 XEXP (SET_SRC (PATTERN (p)), 0));
2080 insn_code_number = recog (new, p);
2081
2082 if (insn_code_number)
2083 {
2084 register int i;
2085
2086 /* Clear destination register before the loop. */
2087 emit_insn_before (gen_rtx (SET, VOIDmode,
2088 SET_DEST (PATTERN (p)),
2089 const0_rtx),
2090 loop_start);
2091
2092 /* Inside the loop, just load the low part. */
2093 PATTERN (p) = new;
2094 }
2095}
2096#endif
2097\f
2098/* Scan a loop setting the variables `unknown_address_altered',
552bc76f
RS
2099 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2100 and `loop_has_volatile'.
b4ad7b23
RS
2101 Also, fill in the array `loop_store_mems'. */
2102
2103static void
2104prescan_loop (start, end)
2105 rtx start, end;
2106{
2107 register int level = 1;
2108 register rtx insn;
2109
2110 unknown_address_altered = 0;
2111 loop_has_call = 0;
552bc76f 2112 loop_has_volatile = 0;
b4ad7b23
RS
2113 loop_store_mems_idx = 0;
2114
2115 num_mem_sets = 0;
2116 loops_enclosed = 1;
2117 loop_continue = 0;
2118
2119 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2120 insn = NEXT_INSN (insn))
2121 {
2122 if (GET_CODE (insn) == NOTE)
2123 {
2124 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2125 {
2126 ++level;
2127 /* Count number of loops contained in this one. */
2128 loops_enclosed++;
2129 }
2130 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2131 {
2132 --level;
2133 if (level == 0)
2134 {
2135 end = insn;
2136 break;
2137 }
2138 }
2139 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2140 {
2141 if (level == 1)
2142 loop_continue = insn;
2143 }
2144 }
2145 else if (GET_CODE (insn) == CALL_INSN)
2146 {
2147 unknown_address_altered = 1;
2148 loop_has_call = 1;
2149 }
2150 else
2151 {
2152 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
552bc76f
RS
2153 {
2154 if (volatile_refs_p (PATTERN (insn)))
2155 loop_has_volatile = 1;
2156
2157 note_stores (PATTERN (insn), note_addr_stored);
2158 }
b4ad7b23
RS
2159 }
2160 }
2161}
2162\f
2163/* Scan the function looking for loops. Record the start and end of each loop.
2164 Also mark as invalid loops any loops that contain a setjmp or are branched
2165 to from outside the loop. */
2166
2167static void
2168find_and_verify_loops (f)
2169 rtx f;
2170{
2171 rtx insn;
2172 int current_loop = -1;
2173 int next_loop = -1;
2174 int loop;
2175
2176 /* If there are jumps to undefined labels,
2177 treat them as jumps out of any/all loops.
2178 This also avoids writing past end of tables when there are no loops. */
2179 uid_loop_num[0] = -1;
2180
2181 /* Find boundaries of loops, mark which loops are contained within
2182 loops, and invalidate loops that have setjmp. */
2183
2184 for (insn = f; insn; insn = NEXT_INSN (insn))
2185 {
2186 if (GET_CODE (insn) == NOTE)
2187 switch (NOTE_LINE_NUMBER (insn))
2188 {
2189 case NOTE_INSN_LOOP_BEG:
2190 loop_number_loop_starts[++next_loop] = insn;
2191 loop_number_loop_ends[next_loop] = 0;
2192 loop_outer_loop[next_loop] = current_loop;
2193 loop_invalid[next_loop] = 0;
2194 loop_number_exit_labels[next_loop] = 0;
2195 current_loop = next_loop;
2196 break;
2197
2198 case NOTE_INSN_SETJMP:
2199 /* In this case, we must invalidate our current loop and any
2200 enclosing loop. */
2201 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2202 {
2203 loop_invalid[loop] = 1;
2204 if (loop_dump_stream)
2205 fprintf (loop_dump_stream,
2206 "\nLoop at %d ignored due to setjmp.\n",
2207 INSN_UID (loop_number_loop_starts[loop]));
2208 }
2209 break;
2210
2211 case NOTE_INSN_LOOP_END:
2212 if (current_loop == -1)
2213 abort ();
2214
2215 loop_number_loop_ends[current_loop] = insn;
2216 current_loop = loop_outer_loop[current_loop];
2217 break;
2218
2219 }
2220
2221 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2222 enclosing loop, but this doesn't matter. */
2223 uid_loop_num[INSN_UID (insn)] = current_loop;
2224 }
2225
2226 /* Now scan all JUMP_INSN's in the function. If any branches into a loop
2227 that it is not contained within, that loop is marked invalid.
2228
2229 Also look for blocks of code ending in an unconditional branch that
2230 exits the loop. If such a block is surrounded by a conditional
2231 branch around the block, move the block elsewhere (see below) and
2232 invert the jump to point to the code block. This may eliminate a
2233 label in our loop and will simplify processing by both us and a
2234 possible second cse pass. */
2235
2236 for (insn = f; insn; insn = NEXT_INSN (insn))
2237 if (GET_CODE (insn) == JUMP_INSN)
2238 {
2239 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2240
2241 mark_loop_jump (PATTERN (insn), this_loop_num);
2242
2243 /* See if this is an unconditional branch outside the loop. */
2244 if (this_loop_num != -1
2245 && (GET_CODE (PATTERN (insn)) == RETURN
2246 || (simplejump_p (insn)
2247 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2248 != this_loop_num))))
2249 {
2250 rtx p;
2251 rtx our_next = next_real_insn (insn);
2252
2253 /* Go backwards until we reach the start of the loop, a label,
2254 or a JUMP_INSN. */
2255 for (p = PREV_INSN (insn);
2256 GET_CODE (p) != CODE_LABEL
2257 && ! (GET_CODE (p) == NOTE
2258 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2259 && GET_CODE (p) != JUMP_INSN;
2260 p = PREV_INSN (p))
2261 ;
2262
2263 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2264 we have a block of code to try to move.
2265
2266 We look backward and then forward from the target of INSN
2267 to find a BARRIER at the same loop depth as the target.
2268 If we find such a BARRIER, we make a new label for the start
2269 of the block, invert the jump in P and point it to that label,
2270 and move the block of code to the spot we found. */
2271
2272 if (GET_CODE (p) == JUMP_INSN
c6096c5e
RS
2273 && JUMP_LABEL (p) != 0
2274 /* Just ignore jumps to labels that were never emitted.
2275 These always indicate compilation errors. */
2276 && INSN_UID (JUMP_LABEL (p)) != 0
2277 && condjump_p (p)
2278 && ! simplejump_p (p)
2279 && next_real_insn (JUMP_LABEL (p)) == our_next)
b4ad7b23
RS
2280 {
2281 rtx target
2282 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2283 int target_loop_num = uid_loop_num[INSN_UID (target)];
2284 rtx loc;
2285
2286 for (loc = target; loc; loc = PREV_INSN (loc))
2287 if (GET_CODE (loc) == BARRIER
2288 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2289 break;
2290
2291 if (loc == 0)
2292 for (loc = target; loc; loc = NEXT_INSN (loc))
2293 if (GET_CODE (loc) == BARRIER
2294 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2295 break;
2296
2297 if (loc)
2298 {
2299 rtx cond_label = JUMP_LABEL (p);
2300 rtx new_label = get_label_after (p);
2301
2302 /* Ensure our label doesn't go away. */
2303 LABEL_NUSES (cond_label)++;
2304
2305 /* Verify that uid_loop_num is large enough and that
2306 we can invert P. */
2307 if (INSN_UID (new_label) < max_uid_for_loop
2308 && invert_jump (p, new_label))
2309 {
2310 rtx q, r;
2311
2312 /* Include the BARRIER after INSN and copy the
2313 block after LOC. */
915f619f 2314 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
b4ad7b23
RS
2315 reorder_insns (new_label, NEXT_INSN (insn), loc);
2316
2317 /* All those insns are now in TARGET_LOOP_NUM. */
2318 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2319 q = NEXT_INSN (q))
2320 uid_loop_num[INSN_UID (q)] = target_loop_num;
2321
2322 /* The label jumped to by INSN is no longer a loop exit.
2323 Unless INSN does not have a label (e.g., it is a
2324 RETURN insn), search loop_number_exit_labels to find
2325 its label_ref, and remove it. Also turn off
2326 LABEL_OUTSIDE_LOOP_P bit. */
2327 if (JUMP_LABEL (insn))
2328 {
2329 for (q = 0,
2330 r = loop_number_exit_labels[this_loop_num];
2331 r; q = r, r = LABEL_NEXTREF (r))
2332 if (XEXP (r, 0) == JUMP_LABEL (insn))
2333 {
2334 LABEL_OUTSIDE_LOOP_P (r) = 0;
2335 if (q)
2336 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2337 else
2338 loop_number_exit_labels[this_loop_num]
2339 = LABEL_NEXTREF (r);
2340 break;
2341 }
2342
2343 /* If we didn't find it, then something is wrong. */
2344 if (! r)
2345 abort ();
2346 }
2347
2348 /* P is now a jump outside the loop, so it must be put
2349 in loop_number_exit_labels, and marked as such.
2350 The easiest way to do this is to just call
2351 mark_loop_jump again for P. */
2352 mark_loop_jump (PATTERN (p), this_loop_num);
2353
2354 /* If INSN now jumps to the insn after it,
2355 delete INSN. */
2356 if (JUMP_LABEL (insn) != 0
2357 && (next_real_insn (JUMP_LABEL (insn))
2358 == next_real_insn (insn)))
2359 delete_insn (insn);
2360 }
2361
2362 /* Continue the loop after where the conditional
2363 branch used to jump, since the only branch insn
2364 in the block (if it still remains) is an inter-loop
2365 branch and hence needs no processing. */
2366 insn = NEXT_INSN (cond_label);
2367
2368 if (--LABEL_NUSES (cond_label) == 0)
2369 delete_insn (cond_label);
2370 }
2371 }
2372 }
2373 }
2374}
2375
2376/* If any label in X jumps to a loop different from LOOP_NUM and any of the
2377 loops it is contained in, mark the target loop invalid.
2378
2379 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2380
2381static void
2382mark_loop_jump (x, loop_num)
2383 rtx x;
2384 int loop_num;
2385{
2386 int dest_loop;
2387 int outer_loop;
2388 int i;
2389
2390 switch (GET_CODE (x))
2391 {
2392 case PC:
2393 case USE:
2394 case CLOBBER:
2395 case REG:
2396 case MEM:
2397 case CONST_INT:
2398 case CONST_DOUBLE:
2399 case RETURN:
2400 return;
2401
2402 case CONST:
2403 /* There could be a label reference in here. */
2404 mark_loop_jump (XEXP (x, 0), loop_num);
2405 return;
2406
2407 case PLUS:
2408 case MINUS:
2409 case MULT:
2410 case LSHIFT:
2411 mark_loop_jump (XEXP (x, 0), loop_num);
2412 mark_loop_jump (XEXP (x, 1), loop_num);
2413 return;
2414
2415 case SIGN_EXTEND:
2416 case ZERO_EXTEND:
2417 mark_loop_jump (XEXP (x, 0), loop_num);
2418 return;
2419
2420 case LABEL_REF:
2421 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2422
2423 /* Link together all labels that branch outside the loop. This
2424 is used by final_[bg]iv_value and the loop unrolling code. Also
2425 mark this LABEL_REF so we know that this branch should predict
2426 false. */
2427
2428 if (dest_loop != loop_num && loop_num != -1)
2429 {
2430 LABEL_OUTSIDE_LOOP_P (x) = 1;
2431 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2432 loop_number_exit_labels[loop_num] = x;
2433 }
2434
2435 /* If this is inside a loop, but not in the current loop or one enclosed
2436 by it, it invalidates at least one loop. */
2437
2438 if (dest_loop == -1)
2439 return;
2440
2441 /* We must invalidate every nested loop containing the target of this
2442 label, except those that also contain the jump insn. */
2443
2444 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2445 {
2446 /* Stop when we reach a loop that also contains the jump insn. */
2447 for (outer_loop = loop_num; outer_loop != -1;
2448 outer_loop = loop_outer_loop[outer_loop])
2449 if (dest_loop == outer_loop)
2450 return;
2451
2452 /* If we get here, we know we need to invalidate a loop. */
2453 if (loop_dump_stream && ! loop_invalid[dest_loop])
2454 fprintf (loop_dump_stream,
2455 "\nLoop at %d ignored due to multiple entry points.\n",
2456 INSN_UID (loop_number_loop_starts[dest_loop]));
2457
2458 loop_invalid[dest_loop] = 1;
2459 }
2460 return;
2461
2462 case SET:
2463 /* If this is not setting pc, ignore. */
2464 if (SET_DEST (x) == pc_rtx)
2465 mark_loop_jump (SET_SRC (x), loop_num);
2466 return;
2467
2468 case IF_THEN_ELSE:
2469 mark_loop_jump (XEXP (x, 1), loop_num);
2470 mark_loop_jump (XEXP (x, 2), loop_num);
2471 return;
2472
2473 case PARALLEL:
2474 case ADDR_VEC:
2475 for (i = 0; i < XVECLEN (x, 0); i++)
2476 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2477 return;
2478
2479 case ADDR_DIFF_VEC:
2480 for (i = 0; i < XVECLEN (x, 1); i++)
2481 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2482 return;
2483
2484 default:
2485 /* Nothing else should occur in a JUMP_INSN. */
2486 abort ();
2487 }
2488}
2489\f
2490/* Return nonzero if there is a label in the range from
2491 insn INSN to and including the insn whose luid is END
2492 INSN must have an assigned luid (i.e., it must not have
2493 been previously created by loop.c). */
2494
2495static int
2496labels_in_range_p (insn, end)
2497 rtx insn;
2498 int end;
2499{
2500 while (insn && INSN_LUID (insn) <= end)
2501 {
2502 if (GET_CODE (insn) == CODE_LABEL)
2503 return 1;
2504 insn = NEXT_INSN (insn);
2505 }
2506
2507 return 0;
2508}
2509
2510/* Record that a memory reference X is being set. */
2511
2512static void
2513note_addr_stored (x)
2514 rtx x;
2515{
2516 register int i;
2517
2518 if (x == 0 || GET_CODE (x) != MEM)
2519 return;
2520
2521 /* Count number of memory writes.
2522 This affects heuristics in strength_reduce. */
2523 num_mem_sets++;
2524
2525 if (unknown_address_altered)
2526 return;
2527
2528 for (i = 0; i < loop_store_mems_idx; i++)
2529 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2530 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2531 {
2532 /* We are storing at the same address as previously noted. Save the
2533 wider reference, treating BLKmode as wider. */
2534 if (GET_MODE (x) == BLKmode
2535 || (GET_MODE_SIZE (GET_MODE (x))
2536 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i]))))
2537 loop_store_mems[i] = x;
2538 break;
2539 }
2540
2541 if (i == NUM_STORES)
2542 unknown_address_altered = 1;
2543
2544 else if (i == loop_store_mems_idx)
2545 loop_store_mems[loop_store_mems_idx++] = x;
2546}
2547\f
2548/* Return nonzero if the rtx X is invariant over the current loop.
2549
2550 The value is 2 if we refer to something only conditionally invariant.
2551
2552 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2553 Otherwise, a memory ref is invariant if it does not conflict with
2554 anything stored in `loop_store_mems'. */
2555
2556int
2557invariant_p (x)
2558 register rtx x;
2559{
2560 register int i;
2561 register enum rtx_code code;
2562 register char *fmt;
2563 int conditional = 0;
2564
2565 if (x == 0)
2566 return 1;
2567 code = GET_CODE (x);
2568 switch (code)
2569 {
2570 case CONST_INT:
2571 case CONST_DOUBLE:
2572 case SYMBOL_REF:
2573 case CONST:
2574 return 1;
2575
2576 case LABEL_REF:
2577 /* A LABEL_REF is normally invariant, however, if we are unrolling
2578 loops, and this label is inside the loop, then it isn't invariant.
2579 This is because each unrolled copy of the loop body will have
2580 a copy of this label. If this was invariant, then an insn loading
2581 the address of this label into a register might get moved outside
2582 the loop, and then each loop body would end up using the same label.
2583
2584 We don't know the loop bounds here though, so just fail for all
2585 labels. */
2586 if (flag_unroll_loops)
2587 return 0;
2588 else
2589 return 1;
2590
2591 case PC:
2592 case CC0:
2593 case UNSPEC_VOLATILE:
2594 return 0;
2595
2596 case REG:
2597 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2598 since the reg might be set by initialization within the loop. */
2599 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
2600 return 1;
2601 if (loop_has_call
2602 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2603 return 0;
2604 if (n_times_set[REGNO (x)] < 0)
2605 return 2;
2606 return n_times_set[REGNO (x)] == 0;
2607
2608 case MEM:
2609 /* Read-only items (such as constants in a constant pool) are
2610 invariant if their address is. */
2611 if (RTX_UNCHANGING_P (x))
2612 break;
2613
2614 /* If we filled the table (or had a subroutine call), any location
2615 in memory could have been clobbered. */
2616 if (unknown_address_altered
2617 /* Don't mess with volatile memory references. */
2618 || MEM_VOLATILE_P (x))
2619 return 0;
2620
2621 /* See if there is any dependence between a store and this load. */
2622 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2623 if (true_dependence (loop_store_mems[i], x))
2624 return 0;
2625
2626 /* It's not invalidated by a store in memory
2627 but we must still verify the address is invariant. */
2628 break;
2629
2630 case ASM_OPERANDS:
2631 /* Don't mess with insns declared volatile. */
2632 if (MEM_VOLATILE_P (x))
2633 return 0;
2634 }
2635
2636 fmt = GET_RTX_FORMAT (code);
2637 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2638 {
2639 if (fmt[i] == 'e')
2640 {
2641 int tem = invariant_p (XEXP (x, i));
2642 if (tem == 0)
2643 return 0;
2644 if (tem == 2)
2645 conditional = 1;
2646 }
2647 else if (fmt[i] == 'E')
2648 {
2649 register int j;
2650 for (j = 0; j < XVECLEN (x, i); j++)
2651 {
2652 int tem = invariant_p (XVECEXP (x, i, j));
2653 if (tem == 0)
2654 return 0;
2655 if (tem == 2)
2656 conditional = 1;
2657 }
2658
2659 }
2660 }
2661
2662 return 1 + conditional;
2663}
2664
2665/* Return 1 if OTHER (a mem ref) overlaps the area of memory
2666 which is SIZE bytes starting at BASE. */
2667
2668int
2669addr_overlap_p (other, base, size)
2670 rtx other;
2671 rtx base;
5fd8383e 2672 HOST_WIDE_INT size;
b4ad7b23 2673{
5fd8383e 2674 HOST_WIDE_INT start = 0, end;
b4ad7b23
RS
2675
2676 if (GET_CODE (base) == CONST)
2677 base = XEXP (base, 0);
2678 if (GET_CODE (base) == PLUS
2679 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2680 {
2681 start = INTVAL (XEXP (base, 1));
2682 base = XEXP (base, 0);
2683 }
2684
2685 end = start + size;
2686 return refers_to_mem_p (other, base, start, end);
2687}
2688\f
2689/* Return nonzero if all the insns in the loop that set REG
2690 are INSN and the immediately following insns,
2691 and if each of those insns sets REG in an invariant way
2692 (not counting uses of REG in them).
2693
2694 The value is 2 if some of these insns are only conditionally invariant.
2695
2696 We assume that INSN itself is the first set of REG
2697 and that its source is invariant. */
2698
2699static int
2700consec_sets_invariant_p (reg, n_sets, insn)
2701 int n_sets;
2702 rtx reg, insn;
2703{
2704 register rtx p = insn;
2705 register int regno = REGNO (reg);
2706 rtx temp;
2707 /* Number of sets we have to insist on finding after INSN. */
2708 int count = n_sets - 1;
2709 int old = n_times_set[regno];
2710 int value = 0;
2711 int this;
2712
2713 /* If N_SETS hit the limit, we can't rely on its value. */
2714 if (n_sets == 127)
2715 return 0;
2716
2717 n_times_set[regno] = 0;
2718
2719 while (count > 0)
2720 {
2721 register enum rtx_code code;
2722 rtx set;
2723
2724 p = NEXT_INSN (p);
2725 code = GET_CODE (p);
2726
2727 /* If library call, skip to end of of it. */
5fd8383e 2728 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
b4ad7b23
RS
2729 p = XEXP (temp, 0);
2730
2731 this = 0;
2732 if (code == INSN
2733 && (set = single_set (p))
2734 && GET_CODE (SET_DEST (set)) == REG
2735 && REGNO (SET_DEST (set)) == regno)
2736 {
2737 this = invariant_p (SET_SRC (set));
2738 if (this != 0)
2739 value |= this;
5fd8383e 2740 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
b4ad7b23
RS
2741 {
2742 this = invariant_p (XEXP (temp, 0));
2743 if (this != 0)
2744 value |= this;
2745 }
2746 }
2747 if (this != 0)
2748 count--;
2749 else if (code != NOTE)
2750 {
2751 n_times_set[regno] = old;
2752 return 0;
2753 }
2754 }
2755
2756 n_times_set[regno] = old;
2757 /* If invariant_p ever returned 2, we return 2. */
2758 return 1 + (value & 2);
2759}
2760
2761#if 0
2762/* I don't think this condition is sufficient to allow INSN
2763 to be moved, so we no longer test it. */
2764
2765/* Return 1 if all insns in the basic block of INSN and following INSN
2766 that set REG are invariant according to TABLE. */
2767
2768static int
2769all_sets_invariant_p (reg, insn, table)
2770 rtx reg, insn;
2771 short *table;
2772{
2773 register rtx p = insn;
2774 register int regno = REGNO (reg);
2775
2776 while (1)
2777 {
2778 register enum rtx_code code;
2779 p = NEXT_INSN (p);
2780 code = GET_CODE (p);
2781 if (code == CODE_LABEL || code == JUMP_INSN)
2782 return 1;
2783 if (code == INSN && GET_CODE (PATTERN (p)) == SET
2784 && GET_CODE (SET_DEST (PATTERN (p))) == REG
2785 && REGNO (SET_DEST (PATTERN (p))) == regno)
2786 {
2787 if (!invariant_p (SET_SRC (PATTERN (p)), table))
2788 return 0;
2789 }
2790 }
2791}
2792#endif /* 0 */
2793\f
2794/* Look at all uses (not sets) of registers in X. For each, if it is
2795 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
2796 a different insn, set USAGE[REGNO] to const0_rtx. */
2797
2798static void
2799find_single_use_in_loop (insn, x, usage)
2800 rtx insn;
2801 rtx x;
2802 rtx *usage;
2803{
2804 enum rtx_code code = GET_CODE (x);
2805 char *fmt = GET_RTX_FORMAT (code);
2806 int i, j;
2807
2808 if (code == REG)
2809 usage[REGNO (x)]
2810 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
2811 ? const0_rtx : insn;
2812
2813 else if (code == SET)
2814 {
2815 /* Don't count SET_DEST if it is a REG; otherwise count things
2816 in SET_DEST because if a register is partially modified, it won't
2817 show up as a potential movable so we don't care how USAGE is set
2818 for it. */
2819 if (GET_CODE (SET_DEST (x)) != REG)
2820 find_single_use_in_loop (insn, SET_DEST (x), usage);
2821 find_single_use_in_loop (insn, SET_SRC (x), usage);
2822 }
2823 else
2824 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2825 {
2826 if (fmt[i] == 'e' && XEXP (x, i) != 0)
2827 find_single_use_in_loop (insn, XEXP (x, i), usage);
2828 else if (fmt[i] == 'E')
2829 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2830 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
2831 }
2832}
2833\f
2834/* Increment N_TIMES_SET at the index of each register
2835 that is modified by an insn between FROM and TO.
2836 If the value of an element of N_TIMES_SET becomes 127 or more,
2837 stop incrementing it, to avoid overflow.
2838
2839 Store in SINGLE_USAGE[I] the single insn in which register I is
2840 used, if it is only used once. Otherwise, it is set to 0 (for no
2841 uses) or const0_rtx for more than one use. This parameter may be zero,
2842 in which case this processing is not done.
2843
2844 Store in *COUNT_PTR the number of actual instruction
2845 in the loop. We use this to decide what is worth moving out. */
2846
2847/* last_set[n] is nonzero iff reg n has been set in the current basic block.
2848 In that case, it is the insn that last set reg n. */
2849
2850static void
2851count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
2852 register rtx from, to;
2853 char *may_not_move;
2854 rtx *single_usage;
2855 int *count_ptr;
2856 int nregs;
2857{
2858 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
2859 register rtx insn;
2860 register int count = 0;
2861 register rtx dest;
2862
2863 bzero (last_set, nregs * sizeof (rtx));
2864 for (insn = from; insn != to; insn = NEXT_INSN (insn))
2865 {
2866 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2867 {
2868 ++count;
2869
2870 /* If requested, record registers that have exactly one use. */
2871 if (single_usage)
2872 {
2873 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
2874
2875 /* Include uses in REG_EQUAL notes. */
2876 if (REG_NOTES (insn))
2877 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
2878 }
2879
2880 if (GET_CODE (PATTERN (insn)) == CLOBBER
2881 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
2882 /* Don't move a reg that has an explicit clobber.
2883 We might do so sometimes, but it's not worth the pain. */
2884 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
2885
2886 if (GET_CODE (PATTERN (insn)) == SET
2887 || GET_CODE (PATTERN (insn)) == CLOBBER)
2888 {
2889 dest = SET_DEST (PATTERN (insn));
2890 while (GET_CODE (dest) == SUBREG
2891 || GET_CODE (dest) == ZERO_EXTRACT
2892 || GET_CODE (dest) == SIGN_EXTRACT
2893 || GET_CODE (dest) == STRICT_LOW_PART)
2894 dest = XEXP (dest, 0);
2895 if (GET_CODE (dest) == REG)
2896 {
2897 register int regno = REGNO (dest);
2898 /* If this is the first setting of this reg
2899 in current basic block, and it was set before,
2900 it must be set in two basic blocks, so it cannot
2901 be moved out of the loop. */
2902 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2903 may_not_move[regno] = 1;
2904 /* If this is not first setting in current basic block,
2905 see if reg was used in between previous one and this.
2906 If so, neither one can be moved. */
2907 if (last_set[regno] != 0
2908 && reg_used_between_p (dest, last_set[regno], insn))
2909 may_not_move[regno] = 1;
2910 if (n_times_set[regno] < 127)
2911 ++n_times_set[regno];
2912 last_set[regno] = insn;
2913 }
2914 }
2915 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2916 {
2917 register int i;
2918 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2919 {
2920 register rtx x = XVECEXP (PATTERN (insn), 0, i);
2921 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
2922 /* Don't move a reg that has an explicit clobber.
2923 It's not worth the pain to try to do it correctly. */
2924 may_not_move[REGNO (XEXP (x, 0))] = 1;
2925
2926 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2927 {
2928 dest = SET_DEST (x);
2929 while (GET_CODE (dest) == SUBREG
2930 || GET_CODE (dest) == ZERO_EXTRACT
2931 || GET_CODE (dest) == SIGN_EXTRACT
2932 || GET_CODE (dest) == STRICT_LOW_PART)
2933 dest = XEXP (dest, 0);
2934 if (GET_CODE (dest) == REG)
2935 {
2936 register int regno = REGNO (dest);
2937 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2938 may_not_move[regno] = 1;
2939 if (last_set[regno] != 0
2940 && reg_used_between_p (dest, last_set[regno], insn))
2941 may_not_move[regno] = 1;
2942 if (n_times_set[regno] < 127)
2943 ++n_times_set[regno];
2944 last_set[regno] = insn;
2945 }
2946 }
2947 }
2948 }
2949 }
2950 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
2951 bzero (last_set, nregs * sizeof (rtx));
2952 }
2953 *count_ptr = count;
2954}
2955\f
2956/* Given a loop that is bounded by LOOP_START and LOOP_END
2957 and that is entered at SCAN_START,
2958 return 1 if the register set in SET contained in insn INSN is used by
2959 any insn that precedes INSN in cyclic order starting
2960 from the loop entry point.
2961
2962 We don't want to use INSN_LUID here because if we restrict INSN to those
2963 that have a valid INSN_LUID, it means we cannot move an invariant out
2964 from an inner loop past two loops. */
2965
2966static int
2967loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
2968 rtx set, insn, loop_start, scan_start, loop_end;
2969{
2970 rtx reg = SET_DEST (set);
2971 rtx p;
2972
2973 /* Scan forward checking for register usage. If we hit INSN, we
2974 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
2975 for (p = scan_start; p != insn; p = NEXT_INSN (p))
2976 {
2977 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
2978 && reg_overlap_mentioned_p (reg, PATTERN (p)))
2979 return 1;
2980
2981 if (p == loop_end)
2982 p = loop_start;
2983 }
2984
2985 return 0;
2986}
2987\f
2988/* A "basic induction variable" or biv is a pseudo reg that is set
2989 (within this loop) only by incrementing or decrementing it. */
2990/* A "general induction variable" or giv is a pseudo reg whose
2991 value is a linear function of a biv. */
2992
2993/* Bivs are recognized by `basic_induction_var';
2994 Givs by `general_induct_var'. */
2995
2996/* Indexed by register number, indicates whether or not register is an
2997 induction variable, and if so what type. */
2998
2999enum iv_mode *reg_iv_type;
3000
3001/* Indexed by register number, contains pointer to `struct induction'
3002 if register is an induction variable. This holds general info for
3003 all induction variables. */
3004
3005struct induction **reg_iv_info;
3006
3007/* Indexed by register number, contains pointer to `struct iv_class'
3008 if register is a basic induction variable. This holds info describing
3009 the class (a related group) of induction variables that the biv belongs
3010 to. */
3011
3012struct iv_class **reg_biv_class;
3013
3014/* The head of a list which links together (via the next field)
3015 every iv class for the current loop. */
3016
3017struct iv_class *loop_iv_list;
3018
3019/* Communication with routines called via `note_stores'. */
3020
3021static rtx note_insn;
3022
3023/* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3024
3025static rtx addr_placeholder;
3026
3027/* ??? Unfinished optimizations, and possible future optimizations,
3028 for the strength reduction code. */
3029
3030/* ??? There is one more optimization you might be interested in doing: to
3031 allocate pseudo registers for frequently-accessed memory locations.
3032 If the same memory location is referenced each time around, it might
3033 be possible to copy it into a register before and out after.
3034 This is especially useful when the memory location is a variable which
3035 is in a stack slot because somewhere its address is taken. If the
3036 loop doesn't contain a function call and the variable isn't volatile,
3037 it is safe to keep the value in a register for the duration of the
3038 loop. One tricky thing is that the copying of the value back from the
3039 register has to be done on all exits from the loop. You need to check that
3040 all the exits from the loop go to the same place. */
3041
3042/* ??? The interaction of biv elimination, and recognition of 'constant'
3043 bivs, may cause problems. */
3044
3045/* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3046 performance problems.
3047
3048 Perhaps don't eliminate things that can be combined with an addressing
3049 mode. Find all givs that have the same biv, mult_val, and add_val;
3050 then for each giv, check to see if its only use dies in a following
3051 memory address. If so, generate a new memory address and check to see
3052 if it is valid. If it is valid, then store the modified memory address,
3053 otherwise, mark the giv as not done so that it will get its own iv. */
3054
3055/* ??? Could try to optimize branches when it is known that a biv is always
3056 positive. */
3057
3058/* ??? When replace a biv in a compare insn, we should replace with closest
3059 giv so that an optimized branch can still be recognized by the combiner,
3060 e.g. the VAX acb insn. */
3061
3062/* ??? Many of the checks involving uid_luid could be simplified if regscan
3063 was rerun in loop_optimize whenever a register was added or moved.
3064 Also, some of the optimizations could be a little less conservative. */
3065\f
3066/* Perform strength reduction and induction variable elimination. */
3067
3068/* Pseudo registers created during this function will be beyond the last
3069 valid index in several tables including n_times_set and regno_last_uid.
3070 This does not cause a problem here, because the added registers cannot be
3071 givs outside of their loop, and hence will never be reconsidered.
3072 But scan_loop must check regnos to make sure they are in bounds. */
3073
3074static void
3075strength_reduce (scan_start, end, loop_top, insn_count,
3076 loop_start, loop_end)
3077 rtx scan_start;
3078 rtx end;
3079 rtx loop_top;
3080 int insn_count;
3081 rtx loop_start;
3082 rtx loop_end;
3083{
3084 rtx p;
3085 rtx set;
3086 rtx inc_val;
3087 rtx mult_val;
3088 rtx dest_reg;
3089 /* This is 1 if current insn is not executed at least once for every loop
3090 iteration. */
3091 int not_every_iteration = 0;
7dcd3836
RK
3092 /* This is 1 if current insn may be executed more than once for every
3093 loop iteration. */
3094 int maybe_multiple = 0;
b4ad7b23
RS
3095 /* Temporary list pointers for traversing loop_iv_list. */
3096 struct iv_class *bl, **backbl;
3097 /* Ratio of extra register life span we can justify
3098 for saving an instruction. More if loop doesn't call subroutines
3099 since in that case saving an insn makes more difference
3100 and more registers are available. */
3101 /* ??? could set this to last value of threshold in move_movables */
3102 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3103 /* Map of pseudo-register replacements. */
3104 rtx *reg_map;
3105 int call_seen;
3106 rtx test;
3107 rtx end_insert_before;
3108
3109 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3110 * sizeof (enum iv_mode *));
3111 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3112 reg_iv_info = (struct induction **)
3113 alloca (max_reg_before_loop * sizeof (struct induction *));
3114 bzero ((char *) reg_iv_info, (max_reg_before_loop
3115 * sizeof (struct induction *)));
3116 reg_biv_class = (struct iv_class **)
3117 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3118 bzero ((char *) reg_biv_class, (max_reg_before_loop
3119 * sizeof (struct iv_class *)));
3120
3121 loop_iv_list = 0;
3122 addr_placeholder = gen_reg_rtx (Pmode);
3123
3124 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3125 must be put before this insn, so that they will appear in the right
3126 order (i.e. loop order). */
3127
3128 end_insert_before = NEXT_INSN (loop_end);
3129
3130 /* Scan through loop to find all possible bivs. */
3131
3132 p = scan_start;
3133 while (1)
3134 {
3135 p = NEXT_INSN (p);
3136 /* At end of a straight-in loop, we are done.
3137 At end of a loop entered at the bottom, scan the top. */
3138 if (p == scan_start)
3139 break;
3140 if (p == end)
3141 {
3142 if (loop_top != 0)
3143 p = NEXT_INSN (loop_top);
3144 else
3145 break;
3146 if (p == scan_start)
3147 break;
3148 }
3149
3150 if (GET_CODE (p) == INSN
3151 && (set = single_set (p))
3152 && GET_CODE (SET_DEST (set)) == REG)
3153 {
3154 dest_reg = SET_DEST (set);
3155 if (REGNO (dest_reg) < max_reg_before_loop
3156 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3157 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3158 {
3159 if (basic_induction_var (SET_SRC (set), dest_reg,
3160 &inc_val, &mult_val))
3161 {
3162 /* It is a possible basic induction variable.
3163 Create and initialize an induction structure for it. */
3164
3165 struct induction *v
3166 = (struct induction *) alloca (sizeof (struct induction));
3167
3168 record_biv (v, p, dest_reg, inc_val, mult_val,
7dcd3836 3169 not_every_iteration, maybe_multiple);
b4ad7b23
RS
3170 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3171 }
3172 else if (REGNO (dest_reg) < max_reg_before_loop)
3173 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3174 }
3175 }
3176
7dcd3836
RK
3177 /* Past CODE_LABEL, we get to insns that may be executed multiple
3178 times. The only way we can be sure that they can't is if every
3179 every jump insn between here and the end of the loop either
3180 returns, exits the loop, or is a forward jump. */
3181
3182 if (GET_CODE (p) == CODE_LABEL)
3183 {
3184 rtx insn = p;
3185
3186 maybe_multiple = 0;
3187
3188 while (1)
3189 {
3190 insn = NEXT_INSN (insn);
3191 if (insn == scan_start)
3192 break;
3193 if (insn == end)
3194 {
3195 if (loop_top != 0)
3196 insn = NEXT_INSN (loop_top);
3197 else
3198 break;
3199 if (insn == scan_start)
3200 break;
3201 }
3202
3203 if (GET_CODE (insn) == JUMP_INSN
3204 && GET_CODE (PATTERN (insn)) != RETURN
3205 && (! condjump_p (insn)
3206 || (JUMP_LABEL (insn) != 0
cdc54cc9
TW
3207 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3208 || INSN_UID (insn) >= max_uid_for_loop
7dcd3836
RK
3209 || (INSN_LUID (JUMP_LABEL (insn))
3210 < INSN_LUID (insn))))))
3211 {
3212 maybe_multiple = 1;
3213 break;
3214 }
3215 }
3216 }
3217
b4ad7b23
RS
3218 /* Past a label or a jump, we get to insns for which we can't count
3219 on whether or how many times they will be executed during each
3220 iteration. */
3221 /* This code appears in three places, once in scan_loop, and twice
3222 in strength_reduce. */
3223 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3224 /* If we enter the loop in the middle, and scan around to the
3225 beginning, don't set not_every_iteration for that.
3226 This can be any kind of jump, since we want to know if insns
3227 will be executed if the loop is executed. */
3228 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3229 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3230 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3231 not_every_iteration = 1;
3232
3233 /* At the virtual top of a converted loop, insns are again known to
3234 be executed each iteration: logically, the loop begins here
3235 even though the exit code has been duplicated. */
3236
3237 else if (GET_CODE (p) == NOTE
3238 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3239 not_every_iteration = 0;
3240
3241 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3242 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3243 or not an insn is known to be executed each iteration of the
3244 loop, whether or not any iterations are known to occur.
3245
3246 Therefore, if we have just passed a label and have no more labels
3247 between here and the test insn of the loop, we know these insns
3248 will be executed each iteration. This can also happen if we
3249 have just passed a jump, for example, when there are nested loops. */
3250
3251 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3252 && no_labels_between_p (p, loop_end))
3253 not_every_iteration = 0;
3254 }
3255
3256 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3257 Make a sanity check against n_times_set. */
3258 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3259 {
3260 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3261 /* Above happens if register modified by subreg, etc. */
3262 /* Make sure it is not recognized as a basic induction var: */
3263 || n_times_set[bl->regno] != bl->biv_count
3264 /* If never incremented, it is invariant that we decided not to
3265 move. So leave it alone. */
3266 || ! bl->incremented)
3267 {
3268 if (loop_dump_stream)
3269 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3270 bl->regno,
3271 (reg_iv_type[bl->regno] != BASIC_INDUCT
3272 ? "not induction variable"
3273 : (! bl->incremented ? "never incremented"
3274 : "count error")));
3275
3276 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3277 *backbl = bl->next;
3278 }
3279 else
3280 {
3281 backbl = &bl->next;
3282
3283 if (loop_dump_stream)
3284 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3285 }
3286 }
3287
3288 /* Exit if there are no bivs. */
3289 if (! loop_iv_list)
3290 {
3291 /* Can still unroll the loop anyways, but indicate that there is no
3292 strength reduction info available. */
3293 if (flag_unroll_loops)
3294 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3295
3296 return;
3297 }
3298
3299 /* Find initial value for each biv by searching backwards from loop_start,
3300 halting at first label. Also record any test condition. */
3301
3302 call_seen = 0;
3303 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3304 {
3305 note_insn = p;
3306
3307 if (GET_CODE (p) == CALL_INSN)
3308 call_seen = 1;
3309
3310 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3311 || GET_CODE (p) == CALL_INSN)
3312 note_stores (PATTERN (p), record_initial);
3313
3314 /* Record any test of a biv that branches around the loop if no store
3315 between it and the start of loop. We only care about tests with
3316 constants and registers and only certain of those. */
3317 if (GET_CODE (p) == JUMP_INSN
3318 && JUMP_LABEL (p) != 0
3319 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3320 && (test = get_condition_for_loop (p)) != 0
3321 && GET_CODE (XEXP (test, 0)) == REG
3322 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3323 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3324 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3325 && bl->init_insn == 0)
3326 {
3327 /* If an NE test, we have an initial value! */
3328 if (GET_CODE (test) == NE)
3329 {
3330 bl->init_insn = p;
3331 bl->init_set = gen_rtx (SET, VOIDmode,
3332 XEXP (test, 0), XEXP (test, 1));
3333 }
3334 else
3335 bl->initial_test = test;
3336 }
3337 }
3338
3339 /* Look at the each biv and see if we can say anything better about its
3340 initial value from any initializing insns set up above. (This is done
3341 in two passes to avoid missing SETs in a PARALLEL.) */
3342 for (bl = loop_iv_list; bl; bl = bl->next)
3343 {
3344 rtx src;
3345
3346 if (! bl->init_insn)
3347 continue;
3348
3349 src = SET_SRC (bl->init_set);
3350
3351 if (loop_dump_stream)
3352 fprintf (loop_dump_stream,
3353 "Biv %d initialized at insn %d: initial value ",
3354 bl->regno, INSN_UID (bl->init_insn));
3355
3356 if (valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3357 {
3358 bl->initial_value = src;
3359
3360 if (loop_dump_stream)
3361 {
3362 if (GET_CODE (src) == CONST_INT)
3363 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3364 else
3365 {
3366 print_rtl (loop_dump_stream, src);
3367 fprintf (loop_dump_stream, "\n");
3368 }
3369 }
3370 }
3371 else
3372 {
3373 /* Biv initial value is not simple move,
d45cf215 3374 so let it keep initial value of "itself". */
b4ad7b23
RS
3375
3376 if (loop_dump_stream)
3377 fprintf (loop_dump_stream, "is complex\n");
3378 }
3379 }
3380
3381 /* Search the loop for general induction variables. */
3382
3383 /* A register is a giv if: it is only set once, it is a function of a
3384 biv and a constant (or invariant), and it is not a biv. */
3385
3386 not_every_iteration = 0;
3387 p = scan_start;
3388 while (1)
3389 {
3390 p = NEXT_INSN (p);
3391 /* At end of a straight-in loop, we are done.
3392 At end of a loop entered at the bottom, scan the top. */
3393 if (p == scan_start)
3394 break;
3395 if (p == end)
3396 {
3397 if (loop_top != 0)
3398 p = NEXT_INSN (loop_top);
3399 else
3400 break;
3401 if (p == scan_start)
3402 break;
3403 }
3404
3405 /* Look for a general induction variable in a register. */
3406 if (GET_CODE (p) == INSN
3407 && (set = single_set (p))
3408 && GET_CODE (SET_DEST (set)) == REG
3409 && ! may_not_optimize[REGNO (SET_DEST (set))])
3410 {
3411 rtx src_reg;
3412 rtx add_val;
3413 rtx mult_val;
3414 int benefit;
3415 rtx regnote = 0;
3416
3417 dest_reg = SET_DEST (set);
3418 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3419 continue;
3420
3421 if (/* SET_SRC is a giv. */
3422 ((benefit = general_induction_var (SET_SRC (set),
3423 &src_reg, &add_val,
3424 &mult_val))
3425 /* Equivalent expression is a giv. */
5fd8383e 3426 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
b4ad7b23
RS
3427 && (benefit = general_induction_var (XEXP (regnote, 0),
3428 &src_reg,
3429 &add_val, &mult_val))))
3430 /* Don't try to handle any regs made by loop optimization.
3431 We have nothing on them in regno_first_uid, etc. */
3432 && REGNO (dest_reg) < max_reg_before_loop
3433 /* Don't recognize a BASIC_INDUCT_VAR here. */
3434 && dest_reg != src_reg
3435 /* This must be the only place where the register is set. */
3436 && (n_times_set[REGNO (dest_reg)] == 1
3437 /* or all sets must be consecutive and make a giv. */
3438 || (benefit = consec_sets_giv (benefit, p,
3439 src_reg, dest_reg,
3440 &add_val, &mult_val))))
3441 {
3442 int count;
3443 struct induction *v
3444 = (struct induction *) alloca (sizeof (struct induction));
3445 rtx temp;
3446
3447 /* If this is a library call, increase benefit. */
5fd8383e 3448 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
b4ad7b23
RS
3449 benefit += libcall_benefit (p);
3450
3451 /* Skip the consecutive insns, if there are any. */
3452 for (count = n_times_set[REGNO (dest_reg)] - 1;
3453 count > 0; count--)
3454 {
3455 /* If first insn of libcall sequence, skip to end.
3456 Do this at start of loop, since INSN is guaranteed to
3457 be an insn here. */
3458 if (GET_CODE (p) != NOTE
5fd8383e 3459 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
b4ad7b23
RS
3460 p = XEXP (temp, 0);
3461
3462 do p = NEXT_INSN (p);
3463 while (GET_CODE (p) == NOTE);
3464 }
3465
3466 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
5fd8383e 3467 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
b4ad7b23
RS
3468 loop_end);
3469
3470 }
3471 }
3472
3473#ifndef DONT_REDUCE_ADDR
3474 /* Look for givs which are memory addresses. */
3475 /* This resulted in worse code on a VAX 8600. I wonder if it
3476 still does. */
3477 if (GET_CODE (p) == INSN)
3478 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3479 loop_end);
3480#endif
3481
3482 /* Update the status of whether giv can derive other givs. This can
3483 change when we pass a label or an insn that updates a biv. */
7dcd3836
RK
3484 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3485 || GET_CODE (p) == CODE_LABEL)
b4ad7b23
RS
3486 update_giv_derive (p);
3487
3488 /* Past a label or a jump, we get to insns for which we can't count
3489 on whether or how many times they will be executed during each
3490 iteration. */
3491 /* This code appears in three places, once in scan_loop, and twice
3492 in strength_reduce. */
3493 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3494 /* If we enter the loop in the middle, and scan around
3495 to the beginning, don't set not_every_iteration for that.
3496 This can be any kind of jump, since we want to know if insns
3497 will be executed if the loop is executed. */
3498 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3499 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3500 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3501 not_every_iteration = 1;
3502
3503 /* At the virtual top of a converted loop, insns are again known to
3504 be executed each iteration: logically, the loop begins here
3505 even though the exit code has been duplicated. */
3506
3507 else if (GET_CODE (p) == NOTE
3508 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3509 not_every_iteration = 0;
3510
3511 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3512 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3513 or not an insn is known to be executed each iteration of the
3514 loop, whether or not any iterations are known to occur.
3515
3516 Therefore, if we have just passed a label and have no more labels
3517 between here and the test insn of the loop, we know these insns
3518 will be executed each iteration. */
3519
3520 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3521 && no_labels_between_p (p, loop_end))
3522 not_every_iteration = 0;
3523 }
3524
3525 /* Try to calculate and save the number of loop iterations. This is
3526 set to zero if the actual number can not be calculated. This must
3527 be called after all giv's have been identified, since otherwise it may
3528 fail if the iteration variable is a giv. */
3529
3530 loop_n_iterations = loop_iterations (loop_start, loop_end);
3531
3532 /* Now for each giv for which we still don't know whether or not it is
3533 replaceable, check to see if it is replaceable because its final value
3534 can be calculated. This must be done after loop_iterations is called,
3535 so that final_giv_value will work correctly. */
3536
3537 for (bl = loop_iv_list; bl; bl = bl->next)
3538 {
3539 struct induction *v;
3540
3541 for (v = bl->giv; v; v = v->next_iv)
3542 if (! v->replaceable && ! v->not_replaceable)
3543 check_final_value (v, loop_start, loop_end);
3544 }
3545
3546 /* Try to prove that the loop counter variable (if any) is always
3547 nonnegative; if so, record that fact with a REG_NONNEG note
3548 so that "decrement and branch until zero" insn can be used. */
3549 check_dbra_loop (loop_end, insn_count, loop_start);
3550
3551 /* Create reg_map to hold substitutions for replaceable giv regs. */
3552 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3553 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3554
3555 /* Examine each iv class for feasibility of strength reduction/induction
3556 variable elimination. */
3557
3558 for (bl = loop_iv_list; bl; bl = bl->next)
3559 {
3560 struct induction *v;
3561 int benefit;
3562 int all_reduced;
3563 rtx final_value = 0;
3564
3565 /* Test whether it will be possible to eliminate this biv
3566 provided all givs are reduced. This is possible if either
3567 the reg is not used outside the loop, or we can compute
3568 what its final value will be.
3569
3570 For architectures with a decrement_and_branch_until_zero insn,
3571 don't do this if we put a REG_NONNEG note on the endtest for
3572 this biv. */
3573
3574 /* Compare against bl->init_insn rather than loop_start.
3575 We aren't concerned with any uses of the biv between
3576 init_insn and loop_start since these won't be affected
3577 by the value of the biv elsewhere in the function, so
3578 long as init_insn doesn't use the biv itself.
3579 March 14, 1989 -- self@bayes.arc.nasa.gov */
3580
3581 if ((uid_luid[regno_last_uid[bl->regno]] < INSN_LUID (loop_end)
3582 && bl->init_insn
3583 && INSN_UID (bl->init_insn) < max_uid_for_loop
3584 && uid_luid[regno_first_uid[bl->regno]] >= INSN_LUID (bl->init_insn)
3585#ifdef HAVE_decrement_and_branch_until_zero
3586 && ! bl->nonneg
3587#endif
3588 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3589 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3590#ifdef HAVE_decrement_and_branch_until_zero
3591 && ! bl->nonneg
3592#endif
3593 ))
3594 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3595 threshold, insn_count);
3596 else
3597 {
3598 if (loop_dump_stream)
3599 {
3600 fprintf (loop_dump_stream,
3601 "Cannot eliminate biv %d.\n",
3602 bl->regno);
3603 fprintf (loop_dump_stream,
3604 "First use: insn %d, last use: insn %d.\n",
3605 regno_first_uid[bl->regno],
3606 regno_last_uid[bl->regno]);
3607 }
3608 }
3609
3610 /* Combine all giv's for this iv_class. */
3611 combine_givs (bl);
3612
3613 /* This will be true at the end, if all givs which depend on this
3614 biv have been strength reduced.
3615 We can't (currently) eliminate the biv unless this is so. */
3616 all_reduced = 1;
3617
3618 /* Check each giv in this class to see if we will benefit by reducing
3619 it. Skip giv's combined with others. */
3620 for (v = bl->giv; v; v = v->next_iv)
3621 {
3622 struct induction *tv;
3623
3624 if (v->ignore || v->same)
3625 continue;
3626
3627 benefit = v->benefit;
3628
3629 /* Reduce benefit if not replaceable, since we will insert
3630 a move-insn to replace the insn that calculates this giv.
3631 Don't do this unless the giv is a user variable, since it
3632 will often be marked non-replaceable because of the duplication
3633 of the exit code outside the loop. In such a case, the copies
3634 we insert are dead and will be deleted. So they don't have
3635 a cost. Similar situations exist. */
3636 /* ??? The new final_[bg]iv_value code does a much better job
3637 of finding replaceable giv's, and hence this code may no longer
3638 be necessary. */
3639 if (! v->replaceable && ! bl->eliminable
3640 && REG_USERVAR_P (v->dest_reg))
3641 benefit -= copy_cost;
3642
3643 /* Decrease the benefit to count the add-insns that we will
3644 insert to increment the reduced reg for the giv. */
3645 benefit -= add_cost * bl->biv_count;
3646
3647 /* Decide whether to strength-reduce this giv or to leave the code
3648 unchanged (recompute it from the biv each time it is used).
3649 This decision can be made independently for each giv. */
3650
3651 /* ??? Perhaps attempt to guess whether autoincrement will handle
3652 some of the new add insns; if so, can increase BENEFIT
3653 (undo the subtraction of add_cost that was done above). */
3654
3655 /* If an insn is not to be strength reduced, then set its ignore
3656 flag, and clear all_reduced. */
3657
3658 if (v->lifetime * threshold * benefit < insn_count)
3659 {
3660 if (loop_dump_stream)
3661 fprintf (loop_dump_stream,
3662 "giv of insn %d not worth while, %d vs %d.\n",
3663 INSN_UID (v->insn),
3664 v->lifetime * threshold * benefit, insn_count);
3665 v->ignore = 1;
3666 all_reduced = 0;
3667 }
3668 else
3669 {
3670 /* Check that we can increment the reduced giv without a
3671 multiply insn. If not, reject it. */
3672
3673 for (tv = bl->biv; tv; tv = tv->next_iv)
3674 if (tv->mult_val == const1_rtx
3675 && ! product_cheap_p (tv->add_val, v->mult_val))
3676 {
3677 if (loop_dump_stream)
3678 fprintf (loop_dump_stream,
3679 "giv of insn %d: would need a multiply.\n",
3680 INSN_UID (v->insn));
3681 v->ignore = 1;
3682 all_reduced = 0;
3683 break;
3684 }
3685 }
3686 }
3687
3688 /* Reduce each giv that we decided to reduce. */
3689
3690 for (v = bl->giv; v; v = v->next_iv)
3691 {
3692 struct induction *tv;
3693 if (! v->ignore && v->same == 0)
3694 {
3695 v->new_reg = gen_reg_rtx (v->mode);
3696
3697 /* For each place where the biv is incremented,
3698 add an insn to increment the new, reduced reg for the giv. */
3699 for (tv = bl->biv; tv; tv = tv->next_iv)
3700 {
3701 if (tv->mult_val == const1_rtx)
3702 emit_iv_add_mult (tv->add_val, v->mult_val,
3703 v->new_reg, v->new_reg, tv->insn);
3704 else /* tv->mult_val == const0_rtx */
3705 /* A multiply is acceptable here
3706 since this is presumed to be seldom executed. */
3707 emit_iv_add_mult (tv->add_val, v->mult_val,
3708 v->add_val, v->new_reg, tv->insn);
3709 }
3710
3711 /* Add code at loop start to initialize giv's reduced reg. */
3712
3713 emit_iv_add_mult (bl->initial_value, v->mult_val,
3714 v->add_val, v->new_reg, loop_start);
3715 }
3716 }
3717
3718 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
3719 as not reduced.
3720
3721 For each giv register that can be reduced now: if replaceable,
3722 substitute reduced reg wherever the old giv occurs;
3723 else add new move insn "giv_reg = reduced_reg".
3724
3725 Also check for givs whose first use is their definition and whose
3726 last use is the definition of another giv. If so, it is likely
3727 dead and should not be used to eliminate a biv. */
3728 for (v = bl->giv; v; v = v->next_iv)
3729 {
3730 if (v->same && v->same->ignore)
3731 v->ignore = 1;
3732
3733 if (v->ignore)
3734 continue;
3735
3736 if (v->giv_type == DEST_REG
3737 && regno_first_uid[REGNO (v->dest_reg)] == INSN_UID (v->insn))
3738 {
3739 struct induction *v1;
3740
3741 for (v1 = bl->giv; v1; v1 = v1->next_iv)
3742 if (regno_last_uid[REGNO (v->dest_reg)] == INSN_UID (v1->insn))
3743 v->maybe_dead = 1;
3744 }
3745
3746 /* Update expression if this was combined, in case other giv was
3747 replaced. */
3748 if (v->same)
3749 v->new_reg = replace_rtx (v->new_reg,
3750 v->same->dest_reg, v->same->new_reg);
3751
3752 if (v->giv_type == DEST_ADDR)
3753 /* Store reduced reg as the address in the memref where we found
3754 this giv. */
3755 *v->location = v->new_reg;
3756 else if (v->replaceable)
3757 {
3758 reg_map[REGNO (v->dest_reg)] = v->new_reg;
3759
3760#if 0
3761 /* I can no longer duplicate the original problem. Perhaps
3762 this is unnecessary now? */
3763
3764 /* Replaceable; it isn't strictly necessary to delete the old
3765 insn and emit a new one, because v->dest_reg is now dead.
3766
3767 However, especially when unrolling loops, the special
3768 handling for (set REG0 REG1) in the second cse pass may
3769 make v->dest_reg live again. To avoid this problem, emit
3770 an insn to set the original giv reg from the reduced giv.
3771 We can not delete the original insn, since it may be part
3772 of a LIBCALL, and the code in flow that eliminates dead
3773 libcalls will fail if it is deleted. */
3774 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3775 v->insn);
3776#endif
3777 }
3778 else
3779 {
3780 /* Not replaceable; emit an insn to set the original giv reg from
3781 the reduced giv, same as above. */
3782 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3783 v->insn);
3784 }
3785
3786 /* When a loop is reversed, givs which depend on the reversed
3787 biv, and which are live outside the loop, must be set to their
3788 correct final value. This insn is only needed if the giv is
3789 not replaceable. The correct final value is the same as the
3790 value that the giv starts the reversed loop with. */
3791 if (bl->reversed && ! v->replaceable)
3792 emit_iv_add_mult (bl->initial_value, v->mult_val,
3793 v->add_val, v->dest_reg, end_insert_before);
3794 else if (v->final_value)
3795 {
3796 rtx insert_before;
3797
3798 /* If the loop has multiple exits, emit the insn before the
3799 loop to ensure that it will always be executed no matter
3800 how the loop exits. Otherwise, emit the insn after the loop,
3801 since this is slightly more efficient. */
3802 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3803 insert_before = loop_start;
3804 else
3805 insert_before = end_insert_before;
3806 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
3807 insert_before);
3808
3809#if 0
3810 /* If the insn to set the final value of the giv was emitted
3811 before the loop, then we must delete the insn inside the loop
3812 that sets it. If this is a LIBCALL, then we must delete
3813 every insn in the libcall. Note, however, that
3814 final_giv_value will only succeed when there are multiple
3815 exits if the giv is dead at each exit, hence it does not
3816 matter that the original insn remains because it is dead
3817 anyways. */
3818 /* Delete the insn inside the loop that sets the giv since
3819 the giv is now set before (or after) the loop. */
3820 delete_insn (v->insn);
3821#endif
3822 }
3823
3824 if (loop_dump_stream)
3825 {
3826 fprintf (loop_dump_stream, "giv at %d reduced to ",
3827 INSN_UID (v->insn));
3828 print_rtl (loop_dump_stream, v->new_reg);
3829 fprintf (loop_dump_stream, "\n");
3830 }
3831 }
3832
3833 /* All the givs based on the biv bl have been reduced if they
3834 merit it. */
3835
3836 /* For each giv not marked as maybe dead that has been combined with a
3837 second giv, clear any "maybe dead" mark on that second giv.
3838 v->new_reg will either be or refer to the register of the giv it
3839 combined with.
3840
3841 Doing this clearing avoids problems in biv elimination where a
3842 giv's new_reg is a complex value that can't be put in the insn but
3843 the giv combined with (with a reg as new_reg) is marked maybe_dead.
3844 Since the register will be used in either case, we'd prefer it be
3845 used from the simpler giv. */
3846
3847 for (v = bl->giv; v; v = v->next_iv)
3848 if (! v->maybe_dead && v->same)
3849 v->same->maybe_dead = 0;
3850
3851 /* Try to eliminate the biv, if it is a candidate.
3852 This won't work if ! all_reduced,
3853 since the givs we planned to use might not have been reduced.
3854
d45cf215 3855 We have to be careful that we didn't initially think we could eliminate
b4ad7b23
RS
3856 this biv because of a giv that we now think may be dead and shouldn't
3857 be used as a biv replacement.
3858
3859 Also, there is the possibility that we may have a giv that looks
3860 like it can be used to eliminate a biv, but the resulting insn
3861 isn't valid. This can happen, for example, on the 88k, where a
3862 JUMP_INSN can compare a register only with zero. Attempts to
c5b7917e 3863 replace it with a compare with a constant will fail.
b4ad7b23
RS
3864
3865 Note that in cases where this call fails, we may have replaced some
3866 of the occurrences of the biv with a giv, but no harm was done in
3867 doing so in the rare cases where it can occur. */
3868
3869 if (all_reduced == 1 && bl->eliminable
3870 && maybe_eliminate_biv (bl, loop_start, end, 1,
3871 threshold, insn_count))
3872
3873 {
3874 /* ?? If we created a new test to bypass the loop entirely,
3875 or otherwise drop straight in, based on this test, then
3876 we might want to rewrite it also. This way some later
3877 pass has more hope of removing the initialization of this
3878 biv entirely. */
3879
3880 /* If final_value != 0, then the biv may be used after loop end
3881 and we must emit an insn to set it just in case.
3882
3883 Reversed bivs already have an insn after the loop setting their
3884 value, so we don't need another one. We can't calculate the
3885 proper final value for such a biv here anyways. */
3886 if (final_value != 0 && ! bl->reversed)
3887 {
3888 rtx insert_before;
3889
3890 /* If the loop has multiple exits, emit the insn before the
3891 loop to ensure that it will always be executed no matter
3892 how the loop exits. Otherwise, emit the insn after the
3893 loop, since this is slightly more efficient. */
3894 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3895 insert_before = loop_start;
3896 else
3897 insert_before = end_insert_before;
3898
3899 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
3900 end_insert_before);
3901 }
3902
3903#if 0
3904 /* Delete all of the instructions inside the loop which set
3905 the biv, as they are all dead. If is safe to delete them,
3906 because an insn setting a biv will never be part of a libcall. */
3907 /* However, deleting them will invalidate the regno_last_uid info,
3908 so keeping them around is more convenient. Final_biv_value
3909 will only succeed when there are multiple exits if the biv
3910 is dead at each exit, hence it does not matter that the original
3911 insn remains, because it is dead anyways. */
3912 for (v = bl->biv; v; v = v->next_iv)
3913 delete_insn (v->insn);
3914#endif
3915
3916 if (loop_dump_stream)
3917 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
3918 bl->regno);
3919 }
3920 }
3921
3922 /* Go through all the instructions in the loop, making all the
3923 register substitutions scheduled in REG_MAP. */
3924
3925 for (p = loop_start; p != end; p = NEXT_INSN (p))
3926 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3927 || GET_CODE (p) == CALL_INSN)
3928 {
3929 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
3930 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
3931 }
3932
3933 /* Unroll loops from within strength reduction so that we can use the
3934 induction variable information that strength_reduce has already
3935 collected. */
3936
3937 if (flag_unroll_loops)
3938 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
3939
3940 if (loop_dump_stream)
3941 fprintf (loop_dump_stream, "\n");
3942}
3943\f
3944/* Return 1 if X is a valid source for an initial value (or as value being
3945 compared against in an initial test).
3946
3947 X must be either a register or constant and must not be clobbered between
3948 the current insn and the start of the loop.
3949
3950 INSN is the insn containing X. */
3951
3952static int
3953valid_initial_value_p (x, insn, call_seen, loop_start)
3954 rtx x;
3955 rtx insn;
3956 int call_seen;
3957 rtx loop_start;
3958{
3959 if (CONSTANT_P (x))
3960 return 1;
3961
d45cf215 3962 /* Only consider pseudos we know about initialized in insns whose luids
b4ad7b23
RS
3963 we know. */
3964 if (GET_CODE (x) != REG
3965 || REGNO (x) >= max_reg_before_loop)
3966 return 0;
3967
3968 /* Don't use call-clobbered registers across a call which clobbers it. On
3969 some machines, don't use any hard registers at all. */
3970 if (REGNO (x) < FIRST_PSEUDO_REGISTER
3971#ifndef SMALL_REGISTER_CLASSES
3972 && call_used_regs[REGNO (x)] && call_seen
3973#endif
3974 )
3975 return 0;
3976
3977 /* Don't use registers that have been clobbered before the start of the
3978 loop. */
3979 if (reg_set_between_p (x, insn, loop_start))
3980 return 0;
3981
3982 return 1;
3983}
3984\f
3985/* Scan X for memory refs and check each memory address
3986 as a possible giv. INSN is the insn whose pattern X comes from.
3987 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
3988 every loop iteration. */
3989
3990static void
3991find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
3992 rtx x;
3993 rtx insn;
3994 int not_every_iteration;
3995 rtx loop_start, loop_end;
3996{
3997 register int i, j;
3998 register enum rtx_code code;
3999 register char *fmt;
4000
4001 if (x == 0)
4002 return;
4003
4004 code = GET_CODE (x);
4005 switch (code)
4006 {
4007 case REG:
4008 case CONST_INT:
4009 case CONST:
4010 case CONST_DOUBLE:
4011 case SYMBOL_REF:
4012 case LABEL_REF:
4013 case PC:
4014 case CC0:
4015 case ADDR_VEC:
4016 case ADDR_DIFF_VEC:
4017 case USE:
4018 case CLOBBER:
4019 return;
4020
4021 case MEM:
4022 {
4023 rtx src_reg;
4024 rtx add_val;
4025 rtx mult_val;
4026 int benefit;
4027
4028 benefit = general_induction_var (XEXP (x, 0),
4029 &src_reg, &add_val, &mult_val);
4030
4031 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4032 Such a giv isn't useful. */
4033 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4034 {
4035 /* Found one; record it. */
4036 struct induction *v
4037 = (struct induction *) oballoc (sizeof (struct induction));
4038
4039 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4040 add_val, benefit, DEST_ADDR, not_every_iteration,
4041 &XEXP (x, 0), loop_start, loop_end);
4042
4043 v->mem_mode = GET_MODE (x);
4044 }
4045 return;
4046 }
4047 }
4048
4049 /* Recursively scan the subexpressions for other mem refs. */
4050
4051 fmt = GET_RTX_FORMAT (code);
4052 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4053 if (fmt[i] == 'e')
4054 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4055 loop_end);
4056 else if (fmt[i] == 'E')
4057 for (j = 0; j < XVECLEN (x, i); j++)
4058 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4059 loop_start, loop_end);
4060}
4061\f
4062/* Fill in the data about one biv update.
4063 V is the `struct induction' in which we record the biv. (It is
4064 allocated by the caller, with alloca.)
4065 INSN is the insn that sets it.
4066 DEST_REG is the biv's reg.
4067
4068 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4069 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
7dcd3836
RK
4070 being set to INC_VAL.
4071
4072 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4073 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4074 can be executed more than once per iteration. If MAYBE_MULTIPLE
4075 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4076 executed exactly once per iteration. */
b4ad7b23
RS
4077
4078static void
7dcd3836
RK
4079record_biv (v, insn, dest_reg, inc_val, mult_val,
4080 not_every_iteration, maybe_multiple)
b4ad7b23
RS
4081 struct induction *v;
4082 rtx insn;
4083 rtx dest_reg;
4084 rtx inc_val;
4085 rtx mult_val;
4086 int not_every_iteration;
7dcd3836 4087 int maybe_multiple;
b4ad7b23
RS
4088{
4089 struct iv_class *bl;
4090
4091 v->insn = insn;
4092 v->src_reg = dest_reg;
4093 v->dest_reg = dest_reg;
4094 v->mult_val = mult_val;
4095 v->add_val = inc_val;
4096 v->mode = GET_MODE (dest_reg);
4097 v->always_computable = ! not_every_iteration;
7dcd3836 4098 v->maybe_multiple = maybe_multiple;
b4ad7b23
RS
4099
4100 /* Add this to the reg's iv_class, creating a class
4101 if this is the first incrementation of the reg. */
4102
4103 bl = reg_biv_class[REGNO (dest_reg)];
4104 if (bl == 0)
4105 {
4106 /* Create and initialize new iv_class. */
4107
4108 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4109
4110 bl->regno = REGNO (dest_reg);
4111 bl->biv = 0;
4112 bl->giv = 0;
4113 bl->biv_count = 0;
4114 bl->giv_count = 0;
4115
4116 /* Set initial value to the reg itself. */
4117 bl->initial_value = dest_reg;
c5b7917e 4118 /* We haven't seen the initializing insn yet */
b4ad7b23
RS
4119 bl->init_insn = 0;
4120 bl->init_set = 0;
4121 bl->initial_test = 0;
4122 bl->incremented = 0;
4123 bl->eliminable = 0;
4124 bl->nonneg = 0;
4125 bl->reversed = 0;
4126
4127 /* Add this class to loop_iv_list. */
4128 bl->next = loop_iv_list;
4129 loop_iv_list = bl;
4130
4131 /* Put it in the array of biv register classes. */
4132 reg_biv_class[REGNO (dest_reg)] = bl;
4133 }
4134
4135 /* Update IV_CLASS entry for this biv. */
4136 v->next_iv = bl->biv;
4137 bl->biv = v;
4138 bl->biv_count++;
4139 if (mult_val == const1_rtx)
4140 bl->incremented = 1;
4141
4142 if (loop_dump_stream)
4143 {
4144 fprintf (loop_dump_stream,
4145 "Insn %d: possible biv, reg %d,",
4146 INSN_UID (insn), REGNO (dest_reg));
4147 if (GET_CODE (inc_val) == CONST_INT)
4148 fprintf (loop_dump_stream, " const = %d\n",
4149 INTVAL (inc_val));
4150 else
4151 {
4152 fprintf (loop_dump_stream, " const = ");
4153 print_rtl (loop_dump_stream, inc_val);
4154 fprintf (loop_dump_stream, "\n");
4155 }
4156 }
4157}
4158\f
4159/* Fill in the data about one giv.
4160 V is the `struct induction' in which we record the giv. (It is
4161 allocated by the caller, with alloca.)
4162 INSN is the insn that sets it.
4163 BENEFIT estimates the savings from deleting this insn.
4164 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4165 into a register or is used as a memory address.
4166
4167 SRC_REG is the biv reg which the giv is computed from.
4168 DEST_REG is the giv's reg (if the giv is stored in a reg).
4169 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4170 LOCATION points to the place where this giv's value appears in INSN. */
4171
4172static void
4173record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4174 type, not_every_iteration, location, loop_start, loop_end)
4175 struct induction *v;
4176 rtx insn;
4177 rtx src_reg;
4178 rtx dest_reg;
4179 rtx mult_val, add_val;
4180 int benefit;
4181 enum g_types type;
4182 int not_every_iteration;
4183 rtx *location;
4184 rtx loop_start, loop_end;
4185{
4186 struct induction *b;
4187 struct iv_class *bl;
4188 rtx set = single_set (insn);
4189 rtx p;
4190
4191 v->insn = insn;
4192 v->src_reg = src_reg;
4193 v->giv_type = type;
4194 v->dest_reg = dest_reg;
4195 v->mult_val = mult_val;
4196 v->add_val = add_val;
4197 v->benefit = benefit;
4198 v->location = location;
4199 v->cant_derive = 0;
4200 v->combined_with = 0;
7dcd3836 4201 v->maybe_multiple = 0;
b4ad7b23
RS
4202 v->maybe_dead = 0;
4203 v->derive_adjustment = 0;
4204 v->same = 0;
4205 v->ignore = 0;
4206 v->new_reg = 0;
4207 v->final_value = 0;
4208
4209 /* The v->always_computable field is used in update_giv_derive, to
4210 determine whether a giv can be used to derive another giv. For a
4211 DEST_REG giv, INSN computes a new value for the giv, so its value
4212 isn't computable if INSN insn't executed every iteration.
4213 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4214 it does not compute a new value. Hence the value is always computable
d45cf215 4215 regardless of whether INSN is executed each iteration. */
b4ad7b23
RS
4216
4217 if (type == DEST_ADDR)
4218 v->always_computable = 1;
4219 else
4220 v->always_computable = ! not_every_iteration;
4221
4222 if (type == DEST_ADDR)
4223 {
4224 v->mode = GET_MODE (*location);
4225 v->lifetime = 1;
4226 v->times_used = 1;
4227 }
4228 else /* type == DEST_REG */
4229 {
4230 v->mode = GET_MODE (SET_DEST (set));
4231
4232 v->lifetime = (uid_luid[regno_last_uid[REGNO (dest_reg)]]
4233 - uid_luid[regno_first_uid[REGNO (dest_reg)]]);
4234
4235 v->times_used = n_times_used[REGNO (dest_reg)];
4236
4237 /* If the lifetime is zero, it means that this register is
4238 really a dead store. So mark this as a giv that can be
4239 ignored. This will not prevent the biv from being eliminated. */
4240 if (v->lifetime == 0)
4241 v->ignore = 1;
4242
4243 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4244 reg_iv_info[REGNO (dest_reg)] = v;
4245 }
4246
4247 /* Add the giv to the class of givs computed from one biv. */
4248
4249 bl = reg_biv_class[REGNO (src_reg)];
4250 if (bl)
4251 {
4252 v->next_iv = bl->giv;
4253 bl->giv = v;
4254 /* Don't count DEST_ADDR. This is supposed to count the number of
4255 insns that calculate givs. */
4256 if (type == DEST_REG)
4257 bl->giv_count++;
4258 bl->total_benefit += benefit;
4259 }
4260 else
4261 /* Fatal error, biv missing for this giv? */
4262 abort ();
4263
4264 if (type == DEST_ADDR)
4265 v->replaceable = 1;
4266 else
4267 {
4268 /* The giv can be replaced outright by the reduced register only if all
4269 of the following conditions are true:
4270 - the insn that sets the giv is always executed on any iteration
4271 on which the giv is used at all
4272 (there are two ways to deduce this:
4273 either the insn is executed on every iteration,
4274 or all uses follow that insn in the same basic block),
4275 - the giv is not used outside the loop
4276 - no assignments to the biv occur during the giv's lifetime. */
4277
4278 if (regno_first_uid[REGNO (dest_reg)] == INSN_UID (insn)
4279 /* Previous line always fails if INSN was moved by loop opt. */
4280 && uid_luid[regno_last_uid[REGNO (dest_reg)]] < INSN_LUID (loop_end)
4281 && (! not_every_iteration
4282 || last_use_this_basic_block (dest_reg, insn)))
4283 {
4284 /* Now check that there are no assignments to the biv within the
4285 giv's lifetime. This requires two separate checks. */
4286
4287 /* Check each biv update, and fail if any are between the first
4288 and last use of the giv.
4289
4290 If this loop contains an inner loop that was unrolled, then
4291 the insn modifying the biv may have been emitted by the loop
4292 unrolling code, and hence does not have a valid luid. Just
4293 mark the biv as not replaceable in this case. It is not very
4294 useful as a biv, because it is used in two different loops.
4295 It is very unlikely that we would be able to optimize the giv
4296 using this biv anyways. */
4297
4298 v->replaceable = 1;
4299 for (b = bl->biv; b; b = b->next_iv)
4300 {
4301 if (INSN_UID (b->insn) >= max_uid_for_loop
4302 || ((uid_luid[INSN_UID (b->insn)]
4303 >= uid_luid[regno_first_uid[REGNO (dest_reg)]])
4304 && (uid_luid[INSN_UID (b->insn)]
4305 <= uid_luid[regno_last_uid[REGNO (dest_reg)]])))
4306 {
4307 v->replaceable = 0;
4308 v->not_replaceable = 1;
4309 break;
4310 }
4311 }
4312
4313 /* Check each insn between the first and last use of the giv,
4314 and fail if any of them are branches that jump to a named label
4315 outside this range, but still inside the loop. This catches
4316 cases of spaghetti code where the execution order of insns
4317 is not linear, and hence the above test fails. For example,
4318 in the following code, j is not replaceable:
4319 for (i = 0; i < 100; ) {
4320 L0: j = 4*i; goto L1;
4321 L2: k = j; goto L3;
4322 L1: i++; goto L2;
4323 L3: ; }
4324 printf ("k = %d\n", k); }
4325 This test is conservative, but this test succeeds rarely enough
4326 that it isn't a problem. See also check_final_value below. */
4327
4328 if (v->replaceable)
4329 for (p = insn;
4330 INSN_UID (p) >= max_uid_for_loop
4331 || INSN_LUID (p) < uid_luid[regno_last_uid[REGNO (dest_reg)]];
4332 p = NEXT_INSN (p))
4333 {
4334 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4335 && LABEL_NAME (JUMP_LABEL (p))
4336 && ((INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start)
4337 && (INSN_LUID (JUMP_LABEL (p))
4338 < uid_luid[regno_first_uid[REGNO (dest_reg)]]))
4339 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end)
4340 && (INSN_LUID (JUMP_LABEL (p))
4341 > uid_luid[regno_last_uid[REGNO (dest_reg)]]))))
4342 {
4343 v->replaceable = 0;
4344 v->not_replaceable = 1;
4345
4346 if (loop_dump_stream)
4347 fprintf (loop_dump_stream,
4348 "Found branch outside giv lifetime.\n");
4349
4350 break;
4351 }
4352 }
4353 }
4354 else
4355 {
4356 /* May still be replaceable, we don't have enough info here to
4357 decide. */
4358 v->replaceable = 0;
4359 v->not_replaceable = 0;
4360 }
4361 }
4362
4363 if (loop_dump_stream)
4364 {
4365 if (type == DEST_REG)
4366 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4367 INSN_UID (insn), REGNO (dest_reg));
4368 else
4369 fprintf (loop_dump_stream, "Insn %d: dest address",
4370 INSN_UID (insn));
4371
4372 fprintf (loop_dump_stream, " src reg %d benefit %d",
4373 REGNO (src_reg), v->benefit);
4374 fprintf (loop_dump_stream, " used %d lifetime %d",
4375 v->times_used, v->lifetime);
4376
4377 if (v->replaceable)
4378 fprintf (loop_dump_stream, " replaceable");
4379
4380 if (GET_CODE (mult_val) == CONST_INT)
4381 fprintf (loop_dump_stream, " mult %d",
4382 INTVAL (mult_val));
4383 else
4384 {
4385 fprintf (loop_dump_stream, " mult ");
4386 print_rtl (loop_dump_stream, mult_val);
4387 }
4388
4389 if (GET_CODE (add_val) == CONST_INT)
4390 fprintf (loop_dump_stream, " add %d",
4391 INTVAL (add_val));
4392 else
4393 {
4394 fprintf (loop_dump_stream, " add ");
4395 print_rtl (loop_dump_stream, add_val);
4396 }
4397 }
4398
4399 if (loop_dump_stream)
4400 fprintf (loop_dump_stream, "\n");
4401
4402}
4403
4404
4405/* All this does is determine whether a giv can be made replaceable because
4406 its final value can be calculated. This code can not be part of record_giv
4407 above, because final_giv_value requires that the number of loop iterations
4408 be known, and that can not be accurately calculated until after all givs
4409 have been identified. */
4410
4411static void
4412check_final_value (v, loop_start, loop_end)
4413 struct induction *v;
4414 rtx loop_start, loop_end;
4415{
4416 struct iv_class *bl;
4417 rtx final_value = 0;
4418 rtx tem;
4419
4420 bl = reg_biv_class[REGNO (v->src_reg)];
4421
4422 /* DEST_ADDR givs will never reach here, because they are always marked
4423 replaceable above in record_giv. */
4424
4425 /* The giv can be replaced outright by the reduced register only if all
4426 of the following conditions are true:
4427 - the insn that sets the giv is always executed on any iteration
4428 on which the giv is used at all
4429 (there are two ways to deduce this:
4430 either the insn is executed on every iteration,
4431 or all uses follow that insn in the same basic block),
4432 - its final value can be calculated (this condition is different
4433 than the one above in record_giv)
4434 - no assignments to the biv occur during the giv's lifetime. */
4435
4436#if 0
4437 /* This is only called now when replaceable is known to be false. */
4438 /* Clear replaceable, so that it won't confuse final_giv_value. */
4439 v->replaceable = 0;
4440#endif
4441
4442 if ((final_value = final_giv_value (v, loop_start, loop_end))
4443 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4444 {
4445 int biv_increment_seen = 0;
4446 rtx p = v->insn;
4447 rtx last_giv_use;
4448
4449 v->replaceable = 1;
4450
4451 /* When trying to determine whether or not a biv increment occurs
4452 during the lifetime of the giv, we can ignore uses of the variable
4453 outside the loop because final_value is true. Hence we can not
4454 use regno_last_uid and regno_first_uid as above in record_giv. */
4455
4456 /* Search the loop to determine whether any assignments to the
4457 biv occur during the giv's lifetime. Start with the insn
4458 that sets the giv, and search around the loop until we come
4459 back to that insn again.
4460
4461 Also fail if there is a jump within the giv's lifetime that jumps
4462 to somewhere outside the lifetime but still within the loop. This
4463 catches spaghetti code where the execution order is not linear, and
4464 hence the above test fails. Here we assume that the giv lifetime
4465 does not extend from one iteration of the loop to the next, so as
4466 to make the test easier. Since the lifetime isn't known yet,
4467 this requires two loops. See also record_giv above. */
4468
4469 last_giv_use = v->insn;
4470
4471 while (1)
4472 {
4473 p = NEXT_INSN (p);
4474 if (p == loop_end)
4475 p = NEXT_INSN (loop_start);
4476 if (p == v->insn)
4477 break;
4478
4479 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4480 || GET_CODE (p) == CALL_INSN)
4481 {
4482 if (biv_increment_seen)
4483 {
4484 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4485 {
4486 v->replaceable = 0;
4487 v->not_replaceable = 1;
4488 break;
4489 }
4490 }
4491 else if (GET_CODE (PATTERN (p)) == SET
4492 && SET_DEST (PATTERN (p)) == v->src_reg)
4493 biv_increment_seen = 1;
4494 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4495 last_giv_use = p;
4496 }
4497 }
4498
4499 /* Now that the lifetime of the giv is known, check for branches
4500 from within the lifetime to outside the lifetime if it is still
4501 replaceable. */
4502
4503 if (v->replaceable)
4504 {
4505 p = v->insn;
4506 while (1)
4507 {
4508 p = NEXT_INSN (p);
4509 if (p == loop_end)
4510 p = NEXT_INSN (loop_start);
4511 if (p == last_giv_use)
4512 break;
4513
4514 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4515 && LABEL_NAME (JUMP_LABEL (p))
4516 && ((INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4517 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4518 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4519 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4520 {
4521 v->replaceable = 0;
4522 v->not_replaceable = 1;
4523
4524 if (loop_dump_stream)
4525 fprintf (loop_dump_stream,
4526 "Found branch outside giv lifetime.\n");
4527
4528 break;
4529 }
4530 }
4531 }
4532
4533 /* If it is replaceable, then save the final value. */
4534 if (v->replaceable)
4535 v->final_value = final_value;
4536 }
4537
4538 if (loop_dump_stream && v->replaceable)
4539 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4540 INSN_UID (v->insn), REGNO (v->dest_reg));
4541}
4542\f
4543/* Update the status of whether a giv can derive other givs.
4544
4545 We need to do something special if there is or may be an update to the biv
4546 between the time the giv is defined and the time it is used to derive
4547 another giv.
4548
4549 In addition, a giv that is only conditionally set is not allowed to
4550 derive another giv once a label has been passed.
4551
4552 The cases we look at are when a label or an update to a biv is passed. */
4553
4554static void
4555update_giv_derive (p)
4556 rtx p;
4557{
4558 struct iv_class *bl;
4559 struct induction *biv, *giv;
4560 rtx tem;
4561 int dummy;
4562
4563 /* Search all IV classes, then all bivs, and finally all givs.
4564
7dcd3836 4565 There are three cases we are concerned with. First we have the situation
b4ad7b23
RS
4566 of a giv that is only updated conditionally. In that case, it may not
4567 derive any givs after a label is passed.
4568
4569 The second case is when a biv update occurs, or may occur, after the
4570 definition of a giv. For certain biv updates (see below) that are
4571 known to occur between the giv definition and use, we can adjust the
4572 giv definition. For others, or when the biv update is conditional,
4573 we must prevent the giv from deriving any other givs. There are two
4574 sub-cases within this case.
4575
4576 If this is a label, we are concerned with any biv update that is done
4577 conditionally, since it may be done after the giv is defined followed by
4578 a branch here (actually, we need to pass both a jump and a label, but
4579 this extra tracking doesn't seem worth it).
4580
7dcd3836
RK
4581 If this is a jump, we are concerned about any biv update that may be
4582 executed multiple times. We are actually only concerned about
4583 backward jumps, but it is probably not worth performing the test
4584 on the jump again here.
4585
4586 If this is a biv update, we must adjust the giv status to show that a
b4ad7b23
RS
4587 subsequent biv update was performed. If this adjustment cannot be done,
4588 the giv cannot derive further givs. */
4589
4590 for (bl = loop_iv_list; bl; bl = bl->next)
4591 for (biv = bl->biv; biv; biv = biv->next_iv)
7dcd3836
RK
4592 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
4593 || biv->insn == p)
b4ad7b23
RS
4594 {
4595 for (giv = bl->giv; giv; giv = giv->next_iv)
4596 {
4597 /* If cant_derive is already true, there is no point in
4598 checking all of these conditions again. */
4599 if (giv->cant_derive)
4600 continue;
4601
4602 /* If this giv is conditionally set and we have passed a label,
4603 it cannot derive anything. */
4604 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
4605 giv->cant_derive = 1;
4606
4607 /* Skip givs that have mult_val == 0, since
4608 they are really invariants. Also skip those that are
4609 replaceable, since we know their lifetime doesn't contain
4610 any biv update. */
4611 else if (giv->mult_val == const0_rtx || giv->replaceable)
4612 continue;
4613
4614 /* The only way we can allow this giv to derive another
4615 is if this is a biv increment and we can form the product
4616 of biv->add_val and giv->mult_val. In this case, we will
4617 be able to compute a compensation. */
4618 else if (biv->insn == p)
4619 {
c160c628
RK
4620 tem = 0;
4621
4622 if (biv->mult_val == const1_rtx)
4623 tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
4624 biv->add_val,
4625 giv->mult_val),
4626 &dummy);
4627
4628 if (tem && giv->derive_adjustment)
4629 tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
4630 giv->derive_adjustment),
4631 &dummy);
4632 if (tem)
b4ad7b23
RS
4633 giv->derive_adjustment = tem;
4634 else
4635 giv->cant_derive = 1;
4636 }
7dcd3836
RK
4637 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
4638 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
b4ad7b23
RS
4639 giv->cant_derive = 1;
4640 }
4641 }
4642}
4643\f
4644/* Check whether an insn is an increment legitimate for a basic induction var.
4645 X is the source of the insn.
4646 DEST_REG is the putative biv, also the destination of the insn.
4647 We accept patterns of these forms:
4648 REG = REG + INVARIANT
4649 REG = INVARIANT + REG
4650 REG = REG - CONSTANT
4651
4652 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
4653 and store the additive term into *INC_VAL.
4654
4655 If X is an assignment of an invariant into DEST_REG, we set
4656 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
4657
4658 Otherwise we return 0. */
4659
4660static int
4661basic_induction_var (x, dest_reg, inc_val, mult_val)
4662 register rtx x;
4663 rtx dest_reg;
4664 rtx *inc_val;
4665 rtx *mult_val;
4666{
4667 register enum rtx_code code;
4668 rtx arg;
4669
4670 code = GET_CODE (x);
4671 switch (code)
4672 {
4673 case PLUS:
4674 if (XEXP (x, 0) == dest_reg)
4675 arg = XEXP (x, 1);
4676 else if (XEXP (x, 1) == dest_reg)
4677 arg = XEXP (x, 0);
4678 else
4679 return 0;
4680
4681 if (invariant_p (arg) != 1)
4682 return 0;
4683
4684 *inc_val = arg;
4685 *mult_val = const1_rtx;
4686 return 1;
4687
4688 case MINUS:
4689 if (XEXP (x, 0) == dest_reg
4690 && GET_CODE (XEXP (x, 1)) == CONST_INT)
5fd8383e 4691 *inc_val = GEN_INT (- INTVAL (XEXP (x, 1)));
b4ad7b23
RS
4692 else
4693 return 0;
4694
4695 *mult_val = const1_rtx;
4696 return 1;
4697
4698 /* Can accept constant setting of biv only when inside inner most loop.
4699 Otherwise, a biv of an inner loop may be incorrectly recognized
4700 as a biv of the outer loop,
4701 causing code to be moved INTO the inner loop. */
4702 case MEM:
4703 case REG:
4704 if (invariant_p (x) != 1)
4705 return 0;
4706 case CONST_INT:
4707 case SYMBOL_REF:
4708 case CONST:
4709 if (loops_enclosed == 1)
4710 {
4711 *inc_val = x;
4712 *mult_val = const0_rtx;
4713 return 1;
4714 }
4715 else
4716 return 0;
4717
4718 default:
4719 return 0;
4720 }
4721}
4722\f
4723/* A general induction variable (giv) is any quantity that is a linear
4724 function of a basic induction variable,
4725 i.e. giv = biv * mult_val + add_val.
4726 The coefficients can be any loop invariant quantity.
4727 A giv need not be computed directly from the biv;
4728 it can be computed by way of other givs. */
4729
4730/* Determine whether X computes a giv.
4731 If it does, return a nonzero value
4732 which is the benefit from eliminating the computation of X;
4733 set *SRC_REG to the register of the biv that it is computed from;
4734 set *ADD_VAL and *MULT_VAL to the coefficients,
4735 such that the value of X is biv * mult + add; */
4736
4737static int
4738general_induction_var (x, src_reg, add_val, mult_val)
4739 rtx x;
4740 rtx *src_reg;
4741 rtx *add_val;
4742 rtx *mult_val;
4743{
4744 rtx orig_x = x;
4745 int benefit = 0;
4746 char *storage;
4747
4748 /* If this is an invariant, forget it, it isn't a giv. */
4749 if (invariant_p (x) == 1)
4750 return 0;
4751
4752 /* See if the expression could be a giv and get its form.
4753 Mark our place on the obstack in case we don't find a giv. */
4754 storage = (char *) oballoc (0);
4755 x = simplify_giv_expr (x, &benefit);
4756 if (x == 0)
4757 {
4758 obfree (storage);
4759 return 0;
4760 }
4761
4762 switch (GET_CODE (x))
4763 {
4764 case USE:
4765 case CONST_INT:
4766 /* Since this is now an invariant and wasn't before, it must be a giv
4767 with MULT_VAL == 0. It doesn't matter which BIV we associate this
4768 with. */
4769 *src_reg = loop_iv_list->biv->dest_reg;
4770 *mult_val = const0_rtx;
4771 *add_val = x;
4772 break;
4773
4774 case REG:
4775 /* This is equivalent to a BIV. */
4776 *src_reg = x;
4777 *mult_val = const1_rtx;
4778 *add_val = const0_rtx;
4779 break;
4780
4781 case PLUS:
4782 /* Either (plus (biv) (invar)) or
4783 (plus (mult (biv) (invar_1)) (invar_2)). */
4784 if (GET_CODE (XEXP (x, 0)) == MULT)
4785 {
4786 *src_reg = XEXP (XEXP (x, 0), 0);
4787 *mult_val = XEXP (XEXP (x, 0), 1);
4788 }
4789 else
4790 {
4791 *src_reg = XEXP (x, 0);
4792 *mult_val = const1_rtx;
4793 }
4794 *add_val = XEXP (x, 1);
4795 break;
4796
4797 case MULT:
4798 /* ADD_VAL is zero. */
4799 *src_reg = XEXP (x, 0);
4800 *mult_val = XEXP (x, 1);
4801 *add_val = const0_rtx;
4802 break;
4803
4804 default:
4805 abort ();
4806 }
4807
4808 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
4809 unless they are CONST_INT). */
4810 if (GET_CODE (*add_val) == USE)
4811 *add_val = XEXP (*add_val, 0);
4812 if (GET_CODE (*mult_val) == USE)
4813 *mult_val = XEXP (*mult_val, 0);
4814
3bb22aee 4815 benefit += rtx_cost (orig_x, SET);
b4ad7b23
RS
4816
4817 /* Always return some benefit if this is a giv so it will be detected
4818 as such. This allows elimination of bivs that might otherwise
4819 not be eliminated. */
4820 return benefit == 0 ? 1 : benefit;
4821}
4822\f
4823/* Given an expression, X, try to form it as a linear function of a biv.
4824 We will canonicalize it to be of the form
4825 (plus (mult (BIV) (invar_1))
4826 (invar_2))
c5b7917e 4827 with possible degeneracies.
b4ad7b23
RS
4828
4829 The invariant expressions must each be of a form that can be used as a
4830 machine operand. We surround then with a USE rtx (a hack, but localized
4831 and certainly unambiguous!) if not a CONST_INT for simplicity in this
4832 routine; it is the caller's responsibility to strip them.
4833
4834 If no such canonicalization is possible (i.e., two biv's are used or an
4835 expression that is neither invariant nor a biv or giv), this routine
4836 returns 0.
4837
4838 For a non-zero return, the result will have a code of CONST_INT, USE,
4839 REG (for a BIV), PLUS, or MULT. No other codes will occur.
4840
4841 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
4842
4843static rtx
4844simplify_giv_expr (x, benefit)
4845 rtx x;
4846 int *benefit;
4847{
4848 enum machine_mode mode = GET_MODE (x);
4849 rtx arg0, arg1;
4850 rtx tem;
4851
4852 /* If this is not an integer mode, or if we cannot do arithmetic in this
4853 mode, this can't be a giv. */
4854 if (mode != VOIDmode
4855 && (GET_MODE_CLASS (mode) != MODE_INT
5fd8383e 4856 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
b4ad7b23
RS
4857 return 0;
4858
4859 switch (GET_CODE (x))
4860 {
4861 case PLUS:
4862 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
4863 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
4864 if (arg0 == 0 || arg1 == 0)
4865 return 0;
4866
4867 /* Put constant last, CONST_INT last if both constant. */
4868 if ((GET_CODE (arg0) == USE
4869 || GET_CODE (arg0) == CONST_INT)
4870 && GET_CODE (arg1) != CONST_INT)
4871 tem = arg0, arg0 = arg1, arg1 = tem;
4872
4873 /* Handle addition of zero, then addition of an invariant. */
4874 if (arg1 == const0_rtx)
4875 return arg0;
4876 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
4877 switch (GET_CODE (arg0))
4878 {
4879 case CONST_INT:
4880 case USE:
4881 /* Both invariant. Only valid if sum is machine operand.
4882 First strip off possible USE on first operand. */
4883 if (GET_CODE (arg0) == USE)
4884 arg0 = XEXP (arg0, 0);
4885
4886 tem = 0;
4887 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
4888 {
4889 tem = plus_constant (arg0, INTVAL (arg1));
4890 if (GET_CODE (tem) != CONST_INT)
4891 tem = gen_rtx (USE, mode, tem);
4892 }
4893
4894 return tem;
4895
4896 case REG:
4897 case MULT:
4898 /* biv + invar or mult + invar. Return sum. */
4899 return gen_rtx (PLUS, mode, arg0, arg1);
4900
4901 case PLUS:
4902 /* (a + invar_1) + invar_2. Associate. */
4903 return simplify_giv_expr (gen_rtx (PLUS, mode,
4904 XEXP (arg0, 0),
4905 gen_rtx (PLUS, mode,
4906 XEXP (arg0, 1), arg1)),
4907 benefit);
4908
4909 default:
4910 abort ();
4911 }
4912
4913 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
4914 MULT to reduce cases. */
4915 if (GET_CODE (arg0) == REG)
4916 arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
4917 if (GET_CODE (arg1) == REG)
4918 arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
4919
4920 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
4921 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
4922 Recurse to associate the second PLUS. */
4923 if (GET_CODE (arg1) == MULT)
4924 tem = arg0, arg0 = arg1, arg1 = tem;
4925
4926 if (GET_CODE (arg1) == PLUS)
4927 return simplify_giv_expr (gen_rtx (PLUS, mode,
4928 gen_rtx (PLUS, mode,
4929 arg0, XEXP (arg1, 0)),
4930 XEXP (arg1, 1)),
4931 benefit);
4932
4933 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
4934 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
4935 abort ();
4936
4937 if (XEXP (arg0, 0) != XEXP (arg1, 0))
4938 return 0;
4939
4940 return simplify_giv_expr (gen_rtx (MULT, mode,
4941 XEXP (arg0, 0),
4942 gen_rtx (PLUS, mode,
4943 XEXP (arg0, 1),
4944 XEXP (arg1, 1))),
4945 benefit);
4946
4947 case MINUS:
4948 /* Handle "a - b" as "a + b * (-1)". */
4949 return simplify_giv_expr (gen_rtx (PLUS, mode,
4950 XEXP (x, 0),
4951 gen_rtx (MULT, mode,
5fd8383e 4952 XEXP (x, 1), constm1_rtx)),
b4ad7b23
RS
4953 benefit);
4954
4955 case MULT:
4956 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
4957 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
4958 if (arg0 == 0 || arg1 == 0)
4959 return 0;
4960
4961 /* Put constant last, CONST_INT last if both constant. */
4962 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
4963 && GET_CODE (arg1) != CONST_INT)
4964 tem = arg0, arg0 = arg1, arg1 = tem;
4965
4966 /* If second argument is not now constant, not giv. */
4967 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
4968 return 0;
4969
4970 /* Handle multiply by 0 or 1. */
4971 if (arg1 == const0_rtx)
4972 return const0_rtx;
4973
4974 else if (arg1 == const1_rtx)
4975 return arg0;
4976
4977 switch (GET_CODE (arg0))
4978 {
4979 case REG:
4980 /* biv * invar. Done. */
4981 return gen_rtx (MULT, mode, arg0, arg1);
4982
4983 case CONST_INT:
4984 /* Product of two constants. */
5fd8383e 4985 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
b4ad7b23
RS
4986
4987 case USE:
4988 /* invar * invar. Not giv. */
4989 return 0;
4990
4991 case MULT:
4992 /* (a * invar_1) * invar_2. Associate. */
4993 return simplify_giv_expr (gen_rtx (MULT, mode,
4994 XEXP (arg0, 0),
4995 gen_rtx (MULT, mode,
4996 XEXP (arg0, 1), arg1)),
4997 benefit);
4998
4999 case PLUS:
5000 /* (a + invar_1) * invar_2. Distribute. */
5001 return simplify_giv_expr (gen_rtx (PLUS, mode,
5002 gen_rtx (MULT, mode,
5003 XEXP (arg0, 0), arg1),
5004 gen_rtx (MULT, mode,
5005 XEXP (arg0, 1), arg1)),
5006 benefit);
5007
5008 default:
5009 abort ();
5010 }
5011
5012 case ASHIFT:
5013 case LSHIFT:
5014 /* Shift by constant is multiply by power of two. */
5015 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5016 return 0;
5017
5018 return simplify_giv_expr (gen_rtx (MULT, mode,
5019 XEXP (x, 0),
5fd8383e
RK
5020 GEN_INT ((HOST_WIDE_INT) 1
5021 << INTVAL (XEXP (x, 1)))),
b4ad7b23
RS
5022 benefit);
5023
5024 case NEG:
5025 /* "-a" is "a * (-1)" */
5fd8383e 5026 return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
b4ad7b23
RS
5027 benefit);
5028
5029 case NOT:
5030 /* "~a" is "-a - 1". Silly, but easy. */
5031 return simplify_giv_expr (gen_rtx (MINUS, mode,
5032 gen_rtx (NEG, mode, XEXP (x, 0)),
5033 const1_rtx),
5034 benefit);
5035
5036 case USE:
5037 /* Already in proper form for invariant. */
5038 return x;
5039
5040 case REG:
5041 /* If this is a new register, we can't deal with it. */
5042 if (REGNO (x) >= max_reg_before_loop)
5043 return 0;
5044
5045 /* Check for biv or giv. */
5046 switch (reg_iv_type[REGNO (x)])
5047 {
5048 case BASIC_INDUCT:
5049 return x;
5050 case GENERAL_INDUCT:
5051 {
5052 struct induction *v = reg_iv_info[REGNO (x)];
5053
5054 /* Form expression from giv and add benefit. Ensure this giv
5055 can derive another and subtract any needed adjustment if so. */
5056 *benefit += v->benefit;
5057 if (v->cant_derive)
5058 return 0;
5059
5060 tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5061 v->src_reg, v->mult_val),
5062 v->add_val);
5063 if (v->derive_adjustment)
5064 tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5065 return simplify_giv_expr (tem, benefit);
5066 }
5067 }
5068
5069 /* Fall through to general case. */
5070 default:
5071 /* If invariant, return as USE (unless CONST_INT).
5072 Otherwise, not giv. */
5073 if (GET_CODE (x) == USE)
5074 x = XEXP (x, 0);
5075
5076 if (invariant_p (x) == 1)
5077 {
5078 if (GET_CODE (x) == CONST_INT)
5079 return x;
5080 else
5081 return gen_rtx (USE, mode, x);
5082 }
5083 else
5084 return 0;
5085 }
5086}
5087\f
5088/* Help detect a giv that is calculated by several consecutive insns;
5089 for example,
5090 giv = biv * M
5091 giv = giv + A
5092 The caller has already identified the first insn P as having a giv as dest;
5093 we check that all other insns that set the same register follow
5094 immediately after P, that they alter nothing else,
5095 and that the result of the last is still a giv.
5096
5097 The value is 0 if the reg set in P is not really a giv.
5098 Otherwise, the value is the amount gained by eliminating
5099 all the consecutive insns that compute the value.
5100
5101 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5102 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5103
5104 The coefficients of the ultimate giv value are stored in
5105 *MULT_VAL and *ADD_VAL. */
5106
5107static int
5108consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5109 add_val, mult_val)
5110 int first_benefit;
5111 rtx p;
5112 rtx src_reg;
5113 rtx dest_reg;
5114 rtx *add_val;
5115 rtx *mult_val;
5116{
5117 int count;
5118 enum rtx_code code;
5119 int benefit;
5120 rtx temp;
5121 rtx set;
5122
5123 /* Indicate that this is a giv so that we can update the value produced in
5124 each insn of the multi-insn sequence.
5125
5126 This induction structure will be used only by the call to
5127 general_induction_var below, so we can allocate it on our stack.
5128 If this is a giv, our caller will replace the induct var entry with
5129 a new induction structure. */
5130 struct induction *v
5131 = (struct induction *) alloca (sizeof (struct induction));
5132 v->src_reg = src_reg;
5133 v->mult_val = *mult_val;
5134 v->add_val = *add_val;
5135 v->benefit = first_benefit;
5136 v->cant_derive = 0;
5137 v->derive_adjustment = 0;
5138
5139 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5140 reg_iv_info[REGNO (dest_reg)] = v;
5141
5142 count = n_times_set[REGNO (dest_reg)] - 1;
5143
5144 while (count > 0)
5145 {
5146 p = NEXT_INSN (p);
5147 code = GET_CODE (p);
5148
5149 /* If libcall, skip to end of call sequence. */
5fd8383e 5150 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
b4ad7b23
RS
5151 p = XEXP (temp, 0);
5152
5153 if (code == INSN
5154 && (set = single_set (p))
5155 && GET_CODE (SET_DEST (set)) == REG
5156 && SET_DEST (set) == dest_reg
5157 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5158 add_val, mult_val))
5159 /* Giv created by equivalent expression. */
5fd8383e 5160 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
b4ad7b23
RS
5161 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5162 add_val, mult_val))))
5163 && src_reg == v->src_reg)
5164 {
5fd8383e 5165 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
b4ad7b23
RS
5166 benefit += libcall_benefit (p);
5167
5168 count--;
5169 v->mult_val = *mult_val;
5170 v->add_val = *add_val;
5171 v->benefit = benefit;
5172 }
5173 else if (code != NOTE)
5174 {
5175 /* Allow insns that set something other than this giv to a
5176 constant. Such insns are needed on machines which cannot
5177 include long constants and should not disqualify a giv. */
5178 if (code == INSN
5179 && (set = single_set (p))
5180 && SET_DEST (set) != dest_reg
5181 && CONSTANT_P (SET_SRC (set)))
5182 continue;
5183
5184 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5185 return 0;
5186 }
5187 }
5188
5189 return v->benefit;
5190}
5191\f
5192/* Return an rtx, if any, that expresses giv G2 as a function of the register
5193 represented by G1. If no such expression can be found, or it is clear that
5194 it cannot possibly be a valid address, 0 is returned.
5195
5196 To perform the computation, we note that
5197 G1 = a * v + b and
5198 G2 = c * v + d
5199 where `v' is the biv.
5200
5201 So G2 = (c/a) * G1 + (d - b*c/a) */
5202
5203#ifdef ADDRESS_COST
5204static rtx
5205express_from (g1, g2)
5206 struct induction *g1, *g2;
5207{
5208 rtx mult, add;
5209
5210 /* The value that G1 will be multiplied by must be a constant integer. Also,
5211 the only chance we have of getting a valid address is if b*c/a (see above
5212 for notation) is also an integer. */
5213 if (GET_CODE (g1->mult_val) != CONST_INT
5214 || GET_CODE (g2->mult_val) != CONST_INT
5215 || GET_CODE (g1->add_val) != CONST_INT
5216 || g1->mult_val == const0_rtx
5217 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5218 return 0;
5219
5fd8383e 5220 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
b4ad7b23
RS
5221 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5222
5223 /* Form simplified final result. */
5224 if (mult == const0_rtx)
5225 return add;
5226 else if (mult == const1_rtx)
5227 mult = g1->dest_reg;
5228 else
5229 mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5230
5231 if (add == const0_rtx)
5232 return mult;
5233 else
5234 return gen_rtx (PLUS, g2->mode, mult, add);
5235}
5236#endif
5237\f
5238/* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5239 (either directly or via an address expression) a register used to represent
5240 G1. Set g2->new_reg to a represtation of G1 (normally just
5241 g1->dest_reg). */
5242
5243static int
5244combine_givs_p (g1, g2)
5245 struct induction *g1, *g2;
5246{
5247 rtx tem;
5248
5249 /* If these givs are identical, they can be combined. */
5250 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5251 && rtx_equal_p (g1->add_val, g2->add_val))
5252 {
5253 g2->new_reg = g1->dest_reg;
5254 return 1;
5255 }
5256
5257#ifdef ADDRESS_COST
5258 /* If G2 can be expressed as a function of G1 and that function is valid
5259 as an address and no more expensive than using a register for G2,
5260 the expression of G2 in terms of G1 can be used. */
5261 if (g2->giv_type == DEST_ADDR
5262 && (tem = express_from (g1, g2)) != 0
5263 && memory_address_p (g2->mem_mode, tem)
5264 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5265 {
5266 g2->new_reg = tem;
5267 return 1;
5268 }
5269#endif
5270
5271 return 0;
5272}
5273\f
5274/* Check all pairs of givs for iv_class BL and see if any can be combined with
5275 any other. If so, point SAME to the giv combined with and set NEW_REG to
5276 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5277 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5278
5279static void
5280combine_givs (bl)
5281 struct iv_class *bl;
5282{
5283 struct induction *g1, *g2;
5284 int pass;
5285
5286 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5287 for (pass = 0; pass <= 1; pass++)
5288 for (g2 = bl->giv; g2; g2 = g2->next_iv)
5289 if (g1 != g2
5290 /* First try to combine with replaceable givs, then all givs. */
5291 && (g1->replaceable || pass == 1)
5292 /* If either has already been combined or is to be ignored, can't
5293 combine. */
5294 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5295 /* If something has been based on G2, G2 cannot itself be based
5296 on something else. */
5297 && ! g2->combined_with
5298 && combine_givs_p (g1, g2))
5299 {
5300 /* g2->new_reg set by `combine_givs_p' */
5301 g2->same = g1;
5302 g1->combined_with = 1;
5303 g1->benefit += g2->benefit;
5304 /* ??? The new final_[bg]iv_value code does a much better job
5305 of finding replaceable giv's, and hence this code may no
5306 longer be necessary. */
5307 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5308 g1->benefit -= copy_cost;
5309 g1->lifetime += g2->lifetime;
5310 g1->times_used += g2->times_used;
5311
5312 if (loop_dump_stream)
5313 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5314 INSN_UID (g2->insn), INSN_UID (g1->insn));
5315 }
5316}
5317\f
5318/* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5319
5320void
5321emit_iv_add_mult (b, m, a, reg, insert_before)
5322 rtx b; /* initial value of basic induction variable */
5323 rtx m; /* multiplicative constant */
5324 rtx a; /* additive constant */
5325 rtx reg; /* destination register */
5326 rtx insert_before;
5327{
5328 rtx seq;
5329 rtx result;
5330
5331 /* Prevent unexpected sharing of these rtx. */
5332 a = copy_rtx (a);
5333 b = copy_rtx (b);
5334
5335 /* Increase the lifetime of any invariants moved further in code. */
5336 update_reg_last_use (a, insert_before);
5337 update_reg_last_use (b, insert_before);
5338 update_reg_last_use (m, insert_before);
5339
5340 start_sequence ();
5341 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5342 if (reg != result)
5343 emit_move_insn (reg, result);
5344 seq = gen_sequence ();
5345 end_sequence ();
5346
5347 emit_insn_before (seq, insert_before);
5348}
5349\f
5350/* Test whether A * B can be computed without
5351 an actual multiply insn. Value is 1 if so. */
5352
5353static int
5354product_cheap_p (a, b)
5355 rtx a;
5356 rtx b;
5357{
5358 int i;
5359 rtx tmp;
5360 struct obstack *old_rtl_obstack = rtl_obstack;
5361 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5362 int win = 1;
5363
5364 /* If only one is constant, make it B. */
5365 if (GET_CODE (a) == CONST_INT)
5366 tmp = a, a = b, b = tmp;
5367
5368 /* If first constant, both constant, so don't need multiply. */
5369 if (GET_CODE (a) == CONST_INT)
5370 return 1;
5371
5372 /* If second not constant, neither is constant, so would need multiply. */
5373 if (GET_CODE (b) != CONST_INT)
5374 return 0;
5375
5376 /* One operand is constant, so might not need multiply insn. Generate the
5377 code for the multiply and see if a call or multiply, or long sequence
5378 of insns is generated. */
5379
5380 rtl_obstack = &temp_obstack;
5381 start_sequence ();
5fd8383e 5382 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
b4ad7b23
RS
5383 tmp = gen_sequence ();
5384 end_sequence ();
5385
5386 if (GET_CODE (tmp) == SEQUENCE)
5387 {
5388 if (XVEC (tmp, 0) == 0)
5389 win = 1;
5390 else if (XVECLEN (tmp, 0) > 3)
5391 win = 0;
5392 else
5393 for (i = 0; i < XVECLEN (tmp, 0); i++)
5394 {
5395 rtx insn = XVECEXP (tmp, 0, i);
5396
5397 if (GET_CODE (insn) != INSN
5398 || (GET_CODE (PATTERN (insn)) == SET
5399 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5400 || (GET_CODE (PATTERN (insn)) == PARALLEL
5401 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5402 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5403 {
5404 win = 0;
5405 break;
5406 }
5407 }
5408 }
5409 else if (GET_CODE (tmp) == SET
5410 && GET_CODE (SET_SRC (tmp)) == MULT)
5411 win = 0;
5412 else if (GET_CODE (tmp) == PARALLEL
5413 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5414 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5415 win = 0;
5416
5417 /* Free any storage we obtained in generating this multiply and restore rtl
5418 allocation to its normal obstack. */
5419 obstack_free (&temp_obstack, storage);
5420 rtl_obstack = old_rtl_obstack;
5421
5422 return win;
5423}
5424\f
5425/* Check to see if loop can be terminated by a "decrement and branch until
5426 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
5427 Also try reversing an increment loop to a decrement loop
5428 to see if the optimization can be performed.
5429 Value is nonzero if optimization was performed. */
5430
5431/* This is useful even if the architecture doesn't have such an insn,
5432 because it might change a loops which increments from 0 to n to a loop
5433 which decrements from n to 0. A loop that decrements to zero is usually
5434 faster than one that increments from zero. */
5435
5436/* ??? This could be rewritten to use some of the loop unrolling procedures,
5437 such as approx_final_value, biv_total_increment, loop_iterations, and
5438 final_[bg]iv_value. */
5439
5440static int
5441check_dbra_loop (loop_end, insn_count, loop_start)
5442 rtx loop_end;
5443 int insn_count;
5444 rtx loop_start;
5445{
5446 struct iv_class *bl;
5447 rtx reg;
5448 rtx jump_label;
5449 rtx final_value;
5450 rtx start_value;
5451 enum rtx_code branch_code;
5452 rtx new_add_val;
5453 rtx comparison;
5454 rtx before_comparison;
5455 rtx p;
5456
5457 /* If last insn is a conditional branch, and the insn before tests a
5458 register value, try to optimize it. Otherwise, we can't do anything. */
5459
5460 comparison = get_condition_for_loop (PREV_INSN (loop_end));
5461 if (comparison == 0)
5462 return 0;
5463
5464 /* Check all of the bivs to see if the compare uses one of them.
5465 Skip biv's set more than once because we can't guarantee that
5466 it will be zero on the last iteration. Also skip if the biv is
5467 used between its update and the test insn. */
5468
5469 for (bl = loop_iv_list; bl; bl = bl->next)
5470 {
5471 if (bl->biv_count == 1
5472 && bl->biv->dest_reg == XEXP (comparison, 0)
5473 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
5474 PREV_INSN (PREV_INSN (loop_end))))
5475 break;
5476 }
5477
5478 if (! bl)
5479 return 0;
5480
5481 /* Look for the case where the basic induction variable is always
5482 nonnegative, and equals zero on the last iteration.
5483 In this case, add a reg_note REG_NONNEG, which allows the
5484 m68k DBRA instruction to be used. */
5485
5486 if (((GET_CODE (comparison) == GT
5487 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5488 && INTVAL (XEXP (comparison, 1)) == -1)
5489 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
5490 && GET_CODE (bl->biv->add_val) == CONST_INT
5491 && INTVAL (bl->biv->add_val) < 0)
5492 {
5493 /* Initial value must be greater than 0,
5494 init_val % -dec_value == 0 to ensure that it equals zero on
5495 the last iteration */
5496
5497 if (GET_CODE (bl->initial_value) == CONST_INT
5498 && INTVAL (bl->initial_value) > 0
5499 && (INTVAL (bl->initial_value) %
5500 (-INTVAL (bl->biv->add_val))) == 0)
5501 {
5502 /* register always nonnegative, add REG_NOTE to branch */
5503 REG_NOTES (PREV_INSN (loop_end))
5fd8383e 5504 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
b4ad7b23
RS
5505 REG_NOTES (PREV_INSN (loop_end)));
5506 bl->nonneg = 1;
5507
5508 return 1;
5509 }
5510
5511 /* If the decrement is 1 and the value was tested as >= 0 before
5512 the loop, then we can safely optimize. */
5513 for (p = loop_start; p; p = PREV_INSN (p))
5514 {
5515 if (GET_CODE (p) == CODE_LABEL)
5516 break;
5517 if (GET_CODE (p) != JUMP_INSN)
5518 continue;
5519
5520 before_comparison = get_condition_for_loop (p);
5521 if (before_comparison
5522 && XEXP (before_comparison, 0) == bl->biv->dest_reg
5523 && GET_CODE (before_comparison) == LT
5524 && XEXP (before_comparison, 1) == const0_rtx
5525 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
5526 && INTVAL (bl->biv->add_val) == -1)
5527 {
5528 REG_NOTES (PREV_INSN (loop_end))
5fd8383e 5529 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
b4ad7b23
RS
5530 REG_NOTES (PREV_INSN (loop_end)));
5531 bl->nonneg = 1;
5532
5533 return 1;
5534 }
5535 }
5536 }
5537 else if (num_mem_sets <= 1)
5538 {
5539 /* Try to change inc to dec, so can apply above optimization. */
5540 /* Can do this if:
5541 all registers modified are induction variables or invariant,
5542 all memory references have non-overlapping addresses
5543 (obviously true if only one write)
5544 allow 2 insns for the compare/jump at the end of the loop. */
5545 int num_nonfixed_reads = 0;
5546 /* 1 if the iteration var is used only to count iterations. */
5547 int no_use_except_counting = 0;
5548
5549 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5550 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5551 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
5552
5553 if (bl->giv_count == 0
5554 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
5555 {
5556 rtx bivreg = regno_reg_rtx[bl->regno];
5557
5558 /* If there are no givs for this biv, and the only exit is the
5559 fall through at the end of the the loop, then
5560 see if perhaps there are no uses except to count. */
5561 no_use_except_counting = 1;
5562 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5563 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5564 {
5565 rtx set = single_set (p);
5566
5567 if (set && GET_CODE (SET_DEST (set)) == REG
5568 && REGNO (SET_DEST (set)) == bl->regno)
5569 /* An insn that sets the biv is okay. */
5570 ;
5571 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
5572 || p == prev_nonnote_insn (loop_end))
5573 /* Don't bother about the end test. */
5574 ;
5575 else if (reg_mentioned_p (bivreg, PATTERN (p)))
5576 /* Any other use of the biv is no good. */
5577 {
5578 no_use_except_counting = 0;
5579 break;
5580 }
5581 }
5582 }
5583
5584 /* This code only acts for innermost loops. Also it simplifies
5585 the memory address check by only reversing loops with
5586 zero or one memory access.
5587 Two memory accesses could involve parts of the same array,
5588 and that can't be reversed. */
5589
5590 if (num_nonfixed_reads <= 1
5591 && !loop_has_call
552bc76f 5592 && !loop_has_volatile
b4ad7b23
RS
5593 && (no_use_except_counting
5594 || (bl->giv_count + bl->biv_count + num_mem_sets
5595 + num_movables + 2 == insn_count)))
5596 {
5597 rtx condition = get_condition_for_loop (PREV_INSN (loop_end));
5598 int win;
5599 rtx tem;
5600
5601 /* Loop can be reversed. */
5602 if (loop_dump_stream)
5603 fprintf (loop_dump_stream, "Can reverse loop\n");
5604
5605 /* Now check other conditions:
5606 initial_value must be zero,
5607 final_value % add_val == 0, so that when reversed, the
5608 biv will be zero on the last iteration.
5609
5610 This test can probably be improved since +/- 1 in the constant
5611 can be obtained by changing LT to LE and vice versa; this is
5612 confusing. */
5613
5614 if (comparison && bl->initial_value == const0_rtx
5615 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5616 /* LE gets turned into LT */
5617 && GET_CODE (comparison) == LT
5618 && (INTVAL (XEXP (comparison, 1))
5619 % INTVAL (bl->biv->add_val)) == 0)
5620 {
5621 /* Register will always be nonnegative, with value
5622 0 on last iteration if loop reversed */
5623
5624 /* Save some info needed to produce the new insns. */
5625 reg = bl->biv->dest_reg;
5626 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
5fd8383e 5627 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
b4ad7b23
RS
5628
5629 final_value = XEXP (comparison, 1);
5fd8383e
RK
5630 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
5631 - INTVAL (bl->biv->add_val));
b4ad7b23
RS
5632
5633 /* Initialize biv to start_value before loop start.
5634 The old initializing insn will be deleted as a
5635 dead store by flow.c. */
5636 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
5637
5638 /* Add insn to decrement register, and delete insn
5639 that incremented the register. */
5640 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
5641 bl->biv->insn);
5642 delete_insn (bl->biv->insn);
5643
5644 /* Update biv info to reflect its new status. */
5645 bl->biv->insn = p;
5646 bl->initial_value = start_value;
5647 bl->biv->add_val = new_add_val;
5648
5649 /* Inc LABEL_NUSES so that delete_insn will
5650 not delete the label. */
5651 LABEL_NUSES (XEXP (jump_label, 0)) ++;
5652
5653 /* Emit an insn after the end of the loop to set the biv's
5654 proper exit value if it is used anywhere outside the loop. */
5655 if ((regno_last_uid[bl->regno]
5656 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
5657 || ! bl->init_insn
5658 || regno_first_uid[bl->regno] != INSN_UID (bl->init_insn))
5659 emit_insn_after (gen_move_insn (reg, final_value),
5660 loop_end);
5661
5662 /* Delete compare/branch at end of loop. */
5663 delete_insn (PREV_INSN (loop_end));
5664 delete_insn (PREV_INSN (loop_end));
5665
5666 /* Add new compare/branch insn at end of loop. */
5667 start_sequence ();
5fd8383e
RK
5668 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
5669 GET_MODE (reg), 0, 0);
b4ad7b23
RS
5670 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
5671 tem = gen_sequence ();
5672 end_sequence ();
5673 emit_jump_insn_before (tem, loop_end);
5674
5675 for (tem = PREV_INSN (loop_end);
5676 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
5677 ;
5678 if (tem)
5679 {
5680 JUMP_LABEL (tem) = XEXP (jump_label, 0);
5681
5682 /* Increment of LABEL_NUSES done above. */
5683 /* Register is now always nonnegative,
5684 so add REG_NONNEG note to the branch. */
5fd8383e 5685 REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
b4ad7b23
RS
5686 REG_NOTES (tem));
5687 }
5688
5689 bl->nonneg = 1;
5690
5691 /* Mark that this biv has been reversed. Each giv which depends
5692 on this biv, and which is also live past the end of the loop
5693 will have to be fixed up. */
5694
5695 bl->reversed = 1;
5696
5697 if (loop_dump_stream)
5698 fprintf (loop_dump_stream,
5699 "Reversed loop and added reg_nonneg\n");
5700
5701 return 1;
5702 }
5703 }
5704 }
5705
5706 return 0;
5707}
5708\f
5709/* Verify whether the biv BL appears to be eliminable,
5710 based on the insns in the loop that refer to it.
5711 LOOP_START is the first insn of the loop, and END is the end insn.
5712
5713 If ELIMINATE_P is non-zero, actually do the elimination.
5714
5715 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
5716 determine whether invariant insns should be placed inside or at the
5717 start of the loop. */
5718
5719static int
5720maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
5721 struct iv_class *bl;
5722 rtx loop_start;
5723 rtx end;
5724 int eliminate_p;
5725 int threshold, insn_count;
5726{
5727 rtx reg = bl->biv->dest_reg;
5728 rtx p, set;
5729 struct induction *v;
5730
5731 /* Scan all insns in the loop, stopping if we find one that uses the
5732 biv in a way that we cannot eliminate. */
5733
5734 for (p = loop_start; p != end; p = NEXT_INSN (p))
5735 {
5736 enum rtx_code code = GET_CODE (p);
5737 rtx where = threshold >= insn_count ? loop_start : p;
5738
5739 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
5740 && reg_mentioned_p (reg, PATTERN (p))
5741 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
5742 {
5743 if (loop_dump_stream)
5744 fprintf (loop_dump_stream,
5745 "Cannot eliminate biv %d: biv used in insn %d.\n",
5746 bl->regno, INSN_UID (p));
5747 break;
5748 }
5749 }
5750
5751 if (p == end)
5752 {
5753 if (loop_dump_stream)
5754 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
5755 bl->regno, eliminate_p ? "was" : "can be");
5756 return 1;
5757 }
5758
5759 return 0;
5760}
5761\f
5762/* If BL appears in X (part of the pattern of INSN), see if we can
5763 eliminate its use. If so, return 1. If not, return 0.
5764
5765 If BIV does not appear in X, return 1.
5766
5767 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
5768 where extra insns should be added. Depending on how many items have been
5769 moved out of the loop, it will either be before INSN or at the start of
5770 the loop. */
5771
5772static int
5773maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
5774 rtx x, insn;
5775 struct iv_class *bl;
5776 int eliminate_p;
5777 rtx where;
5778{
5779 enum rtx_code code = GET_CODE (x);
5780 rtx reg = bl->biv->dest_reg;
5781 enum machine_mode mode = GET_MODE (reg);
5782 struct induction *v;
5783 rtx arg, new, tem;
5784 int arg_operand;
5785 char *fmt;
5786 int i, j;
5787
5788 switch (code)
5789 {
5790 case REG:
5791 /* If we haven't already been able to do something with this BIV,
5792 we can't eliminate it. */
5793 if (x == reg)
5794 return 0;
5795 return 1;
5796
5797 case SET:
5798 /* If this sets the BIV, it is not a problem. */
5799 if (SET_DEST (x) == reg)
5800 return 1;
5801
5802 /* If this is an insn that defines a giv, it is also ok because
5803 it will go away when the giv is reduced. */
5804 for (v = bl->giv; v; v = v->next_iv)
5805 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
5806 return 1;
5807
5808#ifdef HAVE_cc0
5809 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
5810 {
5811 /* Can replace with any giv that was reduced and
5812 that has (MULT_VAL != 0) and (ADD_VAL == 0).
5813 Require a constant for MULT_VAL, so we know it's nonzero. */
5814
5815 for (v = bl->giv; v; v = v->next_iv)
5816 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5817 && v->add_val == const0_rtx
5818 && ! v->ignore && ! v->maybe_dead
5819 && v->mode == mode)
5820 {
5821 if (! eliminate_p)
5822 return 1;
5823
5824 /* If the giv has the opposite direction of change,
5825 then reverse the comparison. */
5826 if (INTVAL (v->mult_val) < 0)
5827 new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
5828 const0_rtx, v->new_reg);
5829 else
5830 new = v->new_reg;
5831
5832 /* We can probably test that giv's reduced reg. */
5833 if (validate_change (insn, &SET_SRC (x), new, 0))
5834 return 1;
5835 }
5836
5837 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
5838 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
5839 Require a constant for MULT_VAL, so we know it's nonzero. */
5840
5841 for (v = bl->giv; v; v = v->next_iv)
5842 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5843 && ! v->ignore && ! v->maybe_dead
5844 && v->mode == mode)
5845 {
5846 if (! eliminate_p)
5847 return 1;
5848
5849 /* If the giv has the opposite direction of change,
5850 then reverse the comparison. */
5851 if (INTVAL (v->mult_val) < 0)
5852 new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
5853 v->new_reg);
5854 else
5855 new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
5856 copy_rtx (v->add_val));
5857
5858 /* Replace biv with the giv's reduced register. */
5859 update_reg_last_use (v->add_val, insn);
5860 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
5861 return 1;
5862
5863 /* Insn doesn't support that constant or invariant. Copy it
5864 into a register (it will be a loop invariant.) */
5865 tem = gen_reg_rtx (GET_MODE (v->new_reg));
5866
5867 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
5868 where);
5869
5870 if (validate_change (insn, &SET_SRC (PATTERN (insn)),
5871 gen_rtx (COMPARE, VOIDmode,
5872 v->new_reg, tem), 0))
5873 return 1;
5874 }
5875 }
5876#endif
5877 break;
5878
5879 case COMPARE:
5880 case EQ: case NE:
5881 case GT: case GE: case GTU: case GEU:
5882 case LT: case LE: case LTU: case LEU:
5883 /* See if either argument is the biv. */
5884 if (XEXP (x, 0) == reg)
5885 arg = XEXP (x, 1), arg_operand = 1;
5886 else if (XEXP (x, 1) == reg)
5887 arg = XEXP (x, 0), arg_operand = 0;
5888 else
5889 break;
5890
5891 if (CONSTANT_P (arg))
5892 {
5893 /* First try to replace with any giv that has constant positive
5894 mult_val and constant add_val. We might be able to support
5895 negative mult_val, but it seems complex to do it in general. */
5896
5897 for (v = bl->giv; v; v = v->next_iv)
5898 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
5899 && CONSTANT_P (v->add_val)
5900 && ! v->ignore && ! v->maybe_dead
5901 && v->mode == mode)
5902 {
5903 if (! eliminate_p)
5904 return 1;
5905
5906 /* Replace biv with the giv's reduced reg. */
5907 XEXP (x, 1-arg_operand) = v->new_reg;
5908
5909 /* If all constants are actually constant integers and
5910 the derived constant can be directly placed in the COMPARE,
5911 do so. */
5912 if (GET_CODE (arg) == CONST_INT
5913 && GET_CODE (v->mult_val) == CONST_INT
5914 && GET_CODE (v->add_val) == CONST_INT
5915 && validate_change (insn, &XEXP (x, arg_operand),
5fd8383e
RK
5916 GEN_INT (INTVAL (arg)
5917 * INTVAL (v->mult_val)
5918 + INTVAL (v->add_val)), 0))
b4ad7b23
RS
5919 return 1;
5920
5921 /* Otherwise, load it into a register. */
5922 tem = gen_reg_rtx (mode);
5923 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
5924 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
5925 return 1;
5926
5927 /* If that failed, put back the change we made above. */
5928 XEXP (x, 1-arg_operand) = reg;
5929 }
5930
5931 /* Look for giv with positive constant mult_val and nonconst add_val.
5932 Insert insns to calculate new compare value. */
5933
5934 for (v = bl->giv; v; v = v->next_iv)
d45cf215 5935 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
b4ad7b23
RS
5936 && ! v->ignore && ! v->maybe_dead
5937 && v->mode == mode)
5938 {
5939 rtx tem;
5940
5941 if (! eliminate_p)
5942 return 1;
5943
5944 tem = gen_reg_rtx (mode);
5945
5946 /* Replace biv with giv's reduced register. */
5947 validate_change (insn, &XEXP (x, 1 - arg_operand),
5948 v->new_reg, 1);
5949
5950 /* Compute value to compare against. */
5951 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
5952 /* Use it in this insn. */
5953 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
5954 if (apply_change_group ())
5955 return 1;
5956 }
5957 }
5958 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
5959 {
5960 if (invariant_p (arg) == 1)
5961 {
5962 /* Look for giv with constant positive mult_val and nonconst
5963 add_val. Insert insns to compute new compare value. */
5964
5965 for (v = bl->giv; v; v = v->next_iv)
5966 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
5967 && ! v->ignore && ! v->maybe_dead
5968 && v->mode == mode)
5969 {
5970 rtx tem;
5971
5972 if (! eliminate_p)
5973 return 1;
5974
5975 tem = gen_reg_rtx (mode);
5976
5977 /* Replace biv with giv's reduced register. */
5978 validate_change (insn, &XEXP (x, 1 - arg_operand),
5979 v->new_reg, 1);
5980
5981 /* Compute value to compare against. */
5982 emit_iv_add_mult (arg, v->mult_val, v->add_val,
5983 tem, where);
5984 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
5985 if (apply_change_group ())
5986 return 1;
5987 }
5988 }
5989
5990 /* This code has problems. Basically, you can't know when
5991 seeing if we will eliminate BL, whether a particular giv
5992 of ARG will be reduced. If it isn't going to be reduced,
5993 we can't eliminate BL. We can try forcing it to be reduced,
5994 but that can generate poor code.
5995
5996 The problem is that the benefit of reducing TV, below should
5997 be increased if BL can actually be eliminated, but this means
5998 we might have to do a topological sort of the order in which
5999 we try to process biv. It doesn't seem worthwhile to do
6000 this sort of thing now. */
6001
6002#if 0
6003 /* Otherwise the reg compared with had better be a biv. */
6004 if (GET_CODE (arg) != REG
6005 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6006 return 0;
6007
6008 /* Look for a pair of givs, one for each biv,
6009 with identical coefficients. */
6010 for (v = bl->giv; v; v = v->next_iv)
6011 {
6012 struct induction *tv;
6013
6014 if (v->ignore || v->maybe_dead || v->mode != mode)
6015 continue;
6016
6017 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6018 if (! tv->ignore && ! tv->maybe_dead
6019 && rtx_equal_p (tv->mult_val, v->mult_val)
6020 && rtx_equal_p (tv->add_val, v->add_val)
6021 && tv->mode == mode)
6022 {
6023 if (! eliminate_p)
6024 return 1;
6025
6026 /* Replace biv with its giv's reduced reg. */
6027 XEXP (x, 1-arg_operand) = v->new_reg;
6028 /* Replace other operand with the other giv's
6029 reduced reg. */
6030 XEXP (x, arg_operand) = tv->new_reg;
6031 return 1;
6032 }
6033 }
6034#endif
6035 }
6036
6037 /* If we get here, the biv can't be eliminated. */
6038 return 0;
6039
6040 case MEM:
6041 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6042 biv is used in it, since it will be replaced. */
6043 for (v = bl->giv; v; v = v->next_iv)
6044 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6045 return 1;
6046 break;
6047 }
6048
6049 /* See if any subexpression fails elimination. */
6050 fmt = GET_RTX_FORMAT (code);
6051 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6052 {
6053 switch (fmt[i])
6054 {
6055 case 'e':
6056 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6057 eliminate_p, where))
6058 return 0;
6059 break;
6060
6061 case 'E':
6062 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6063 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6064 eliminate_p, where))
6065 return 0;
6066 break;
6067 }
6068 }
6069
6070 return 1;
6071}
6072\f
6073/* Return nonzero if the last use of REG
6074 is in an insn following INSN in the same basic block. */
6075
6076static int
6077last_use_this_basic_block (reg, insn)
6078 rtx reg;
6079 rtx insn;
6080{
6081 rtx n;
6082 for (n = insn;
6083 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6084 n = NEXT_INSN (n))
6085 {
6086 if (regno_last_uid[REGNO (reg)] == INSN_UID (n))
6087 return 1;
6088 }
6089 return 0;
6090}
6091\f
6092/* Called via `note_stores' to record the initial value of a biv. Here we
6093 just record the location of the set and process it later. */
6094
6095static void
6096record_initial (dest, set)
6097 rtx dest;
6098 rtx set;
6099{
6100 struct iv_class *bl;
6101
6102 if (GET_CODE (dest) != REG
6103 || REGNO (dest) >= max_reg_before_loop
6104 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
6105 return;
6106
6107 bl = reg_biv_class[REGNO (dest)];
6108
6109 /* If this is the first set found, record it. */
6110 if (bl->init_insn == 0)
6111 {
6112 bl->init_insn = note_insn;
6113 bl->init_set = set;
6114 }
6115}
6116\f
6117/* If any of the registers in X are "old" and currently have a last use earlier
6118 than INSN, update them to have a last use of INSN. Their actual last use
6119 will be the previous insn but it will not have a valid uid_luid so we can't
6120 use it. */
6121
6122static void
6123update_reg_last_use (x, insn)
6124 rtx x;
6125 rtx insn;
6126{
6127 /* Check for the case where INSN does not have a valid luid. In this case,
6128 there is no need to modify the regno_last_uid, as this can only happen
6129 when code is inserted after the loop_end to set a pseudo's final value,
6130 and hence this insn will never be the last use of x. */
6131 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6132 && INSN_UID (insn) < max_uid_for_loop
6133 && uid_luid[regno_last_uid[REGNO (x)]] < uid_luid[INSN_UID (insn)])
6134 regno_last_uid[REGNO (x)] = INSN_UID (insn);
6135 else
6136 {
6137 register int i, j;
6138 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6139 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6140 {
6141 if (fmt[i] == 'e')
6142 update_reg_last_use (XEXP (x, i), insn);
6143 else if (fmt[i] == 'E')
6144 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6145 update_reg_last_use (XVECEXP (x, i, j), insn);
6146 }
6147 }
6148}
6149\f
6150/* Given a jump insn JUMP, return the condition that will cause it to branch
6151 to its JUMP_LABEL. If the condition cannot be understood, or is an
6152 inequality floating-point comparison which needs to be reversed, 0 will
6153 be returned.
6154
6155 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6156 insn used in locating the condition was found. If a replacement test
6157 of the condition is desired, it should be placed in front of that
6158 insn and we will be sure that the inputs are still valid.
6159
6160 The condition will be returned in a canonical form to simplify testing by
6161 callers. Specifically:
6162
6163 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6164 (2) Both operands will be machine operands; (cc0) will have been replaced.
6165 (3) If an operand is a constant, it will be the second operand.
6166 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6167 for GE, GEU, and LEU. */
6168
6169rtx
6170get_condition (jump, earliest)
6171 rtx jump;
6172 rtx *earliest;
6173{
6174 enum rtx_code code;
6175 rtx prev = jump;
6176 rtx set;
6177 rtx tem;
6178 rtx op0, op1;
6179 int reverse_code = 0;
6180 int did_reverse_condition = 0;
6181
6182 /* If this is not a standard conditional jump, we can't parse it. */
6183 if (GET_CODE (jump) != JUMP_INSN
6184 || ! condjump_p (jump) || simplejump_p (jump))
6185 return 0;
6186
6187 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6188 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6189 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6190
6191 if (earliest)
6192 *earliest = jump;
6193
6194 /* If this branches to JUMP_LABEL when the condition is false, reverse
6195 the condition. */
6196 if (XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6197 code = reverse_condition (code), did_reverse_condition ^= 1;
6198
6199 /* If we are comparing a register with zero, see if the register is set
6200 in the previous insn to a COMPARE or a comparison operation. Perform
6201 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6202 in cse.c */
6203
6204 while (GET_RTX_CLASS (code) == '<' && op1 == const0_rtx)
6205 {
6206 /* Set non-zero when we find something of interest. */
6207 rtx x = 0;
6208
6209#ifdef HAVE_cc0
6210 /* If comparison with cc0, import actual comparison from compare
6211 insn. */
6212 if (op0 == cc0_rtx)
6213 {
6214 if ((prev = prev_nonnote_insn (prev)) == 0
6215 || GET_CODE (prev) != INSN
6216 || (set = single_set (prev)) == 0
6217 || SET_DEST (set) != cc0_rtx)
6218 return 0;
6219
6220 op0 = SET_SRC (set);
6221 op1 = CONST0_RTX (GET_MODE (op0));
6222 if (earliest)
6223 *earliest = prev;
6224 }
6225#endif
6226
6227 /* If this is a COMPARE, pick up the two things being compared. */
6228 if (GET_CODE (op0) == COMPARE)
6229 {
6230 op1 = XEXP (op0, 1);
6231 op0 = XEXP (op0, 0);
6232 continue;
6233 }
6234 else if (GET_CODE (op0) != REG)
6235 break;
6236
6237 /* Go back to the previous insn. Stop if it is not an INSN. We also
6238 stop if it isn't a single set or if it has a REG_INC note because
6239 we don't want to bother dealing with it. */
6240
6241 if ((prev = prev_nonnote_insn (prev)) == 0
6242 || GET_CODE (prev) != INSN
6243 || FIND_REG_INC_NOTE (prev, 0)
6244 || (set = single_set (prev)) == 0)
6245 break;
6246
6247 /* If this is setting OP0, get what it sets it to if it looks
6248 relevant. */
6249 if (SET_DEST (set) == op0)
6250 {
6251 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6252
6253 if ((GET_CODE (SET_SRC (set)) == COMPARE
b565a316
RK
6254 || (((code == NE
6255 || (code == LT
6256 && GET_MODE_CLASS (inner_mode) == MODE_INT
5fd8383e
RK
6257 && (GET_MODE_BITSIZE (inner_mode)
6258 <= HOST_BITS_PER_WIDE_INT)
b565a316 6259 && (STORE_FLAG_VALUE
5fd8383e
RK
6260 & ((HOST_WIDE_INT) 1
6261 << (GET_MODE_BITSIZE (inner_mode) - 1))))
b565a316
RK
6262#ifdef FLOAT_STORE_FLAG_VALUE
6263 || (code == LT
6264 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6265 && FLOAT_STORE_FLAG_VALUE < 0)
6266#endif
6267 ))
b4ad7b23
RS
6268 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6269 x = SET_SRC (set);
b565a316
RK
6270 else if (((code == EQ
6271 || (code == GE
5fd8383e
RK
6272 && (GET_MODE_BITSIZE (inner_mode)
6273 <= HOST_BITS_PER_WIDE_INT)
b565a316
RK
6274 && GET_MODE_CLASS (inner_mode) == MODE_INT
6275 && (STORE_FLAG_VALUE
5fd8383e
RK
6276 & ((HOST_WIDE_INT) 1
6277 << (GET_MODE_BITSIZE (inner_mode) - 1))))
b565a316
RK
6278#ifdef FLOAT_STORE_FLAG_VALUE
6279 || (code == GE
6280 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6281 && FLOAT_STORE_FLAG_VALUE < 0)
fb8ca0a4 6282#endif
b565a316 6283 ))
b4ad7b23
RS
6284 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6285 {
6286 /* We might have reversed a LT to get a GE here. But this wasn't
6287 actually the comparison of data, so we don't flag that we
6288 have had to reverse the condition. */
6289 did_reverse_condition ^= 1;
6290 reverse_code = 1;
6291 x = SET_SRC (set);
6292 }
6293 }
6294
6295 else if (reg_set_p (op0, prev))
6296 /* If this sets OP0, but not directly, we have to give up. */
6297 break;
6298
6299 if (x)
6300 {
6301 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6302 code = GET_CODE (x);
6303 if (reverse_code)
6304 {
6305 code = reverse_condition (code);
6306 did_reverse_condition ^= 1;
6307 reverse_code = 0;
6308 }
6309
6310 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6311 if (earliest)
6312 *earliest = prev;
6313 }
6314 }
6315
6316 /* If constant is first, put it last. */
6317 if (CONSTANT_P (op0))
6318 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6319
6320 /* If OP0 is the result of a comparison, we weren't able to find what
6321 was really being compared, so fail. */
6322 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6323 return 0;
6324
6325 /* Canonicalize any ordered comparison with integers involving equality. */
6326 if (GET_CODE (op1) == CONST_INT)
6327 {
5fd8383e
RK
6328 HOST_WIDE_INT const_val = INTVAL (op1);
6329 unsigned HOST_WIDE_INT uconst_val = const_val;
b4ad7b23
RS
6330
6331 switch (code)
6332 {
6333 case LE:
6334 code = LT;
5fd8383e 6335 op1 = GEN_INT (const_val + 1);
b4ad7b23
RS
6336 break;
6337
6338 case GE:
6339 code = GT;
5fd8383e 6340 op1 = GEN_INT (const_val - 1);
b4ad7b23
RS
6341 break;
6342
6343 case LEU:
6344 code = LTU;
5fd8383e 6345 op1 = GEN_INT (uconst_val + 1);
b4ad7b23
RS
6346 break;
6347
6348 case GEU:
6349 code = GTU;
5fd8383e 6350 op1 = GEN_INT (uconst_val - 1);
b4ad7b23
RS
6351 break;
6352 }
6353 }
6354
6355 /* If this was floating-point and we reversed anything other than an
6356 EQ or NE, return zero. */
6357 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
6358 && did_reverse_condition && code != NE && code != EQ
6359 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
6360 return 0;
6361
6362#ifdef HAVE_cc0
6363 /* Never return CC0; return zero instead. */
6364 if (op0 == cc0_rtx)
6365 return 0;
6366#endif
6367
6368 return gen_rtx (code, VOIDmode, op0, op1);
6369}
6370
6371/* Similar to above routine, except that we also put an invariant last
6372 unless both operands are invariants. */
6373
6374rtx
6375get_condition_for_loop (x)
6376 rtx x;
6377{
5fd8383e 6378 rtx comparison = get_condition (x, NULL_PTR);
b4ad7b23
RS
6379
6380 if (comparison == 0
6381 || ! invariant_p (XEXP (comparison, 0))
6382 || invariant_p (XEXP (comparison, 1)))
6383 return comparison;
6384
6385 return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
6386 XEXP (comparison, 1), XEXP (comparison, 0));
6387}
This page took 0.686606 seconds and 5 git commands to generate.