]> gcc.gnu.org Git - gcc.git/blame - gcc/local-alloc.c
*** empty log message ***
[gcc.git] / gcc / local-alloc.c
CommitLineData
2bbd3819
RS
1/* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* Allocation of hard register numbers to pseudo registers is done in
22 two passes. In this pass we consider only regs that are born and
23 die once within one basic block. We do this one basic block at a
24 time. Then the next pass allocates the registers that remain.
25 Two passes are used because this pass uses methods that work only
26 on linear code, but that do a better job than the general methods
27 used in global_alloc, and more quickly too.
28
29 The assignments made are recorded in the vector reg_renumber
30 whose space is allocated here. The rtl code itself is not altered.
31
32 We assign each instruction in the basic block a number
33 which is its order from the beginning of the block.
34 Then we can represent the lifetime of a pseudo register with
35 a pair of numbers, and check for conflicts easily.
36 We can record the availability of hard registers with a
37 HARD_REG_SET for each instruction. The HARD_REG_SET
38 contains 0 or 1 for each hard reg.
39
40 To avoid register shuffling, we tie registers together when one
41 dies by being copied into another, or dies in an instruction that
42 does arithmetic to produce another. The tied registers are
43 allocated as one. Registers with different reg class preferences
44 can never be tied unless the class preferred by one is a subclass
45 of the one preferred by the other.
46
47 Tying is represented with "quantity numbers".
48 A non-tied register is given a new quantity number.
49 Tied registers have the same quantity number.
50
51 We have provision to exempt registers, even when they are contained
52 within the block, that can be tied to others that are not contained in it.
53 This is so that global_alloc could process them both and tie them then.
54 But this is currently disabled since tying in global_alloc is not
55 yet implemented. */
56
57#include <stdio.h>
58#include "config.h"
59#include "rtl.h"
60#include "flags.h"
61#include "basic-block.h"
62#include "regs.h"
63#include "hard-reg-set.h"
64#include "insn-config.h"
65#include "recog.h"
66#include "output.h"
67\f
68/* Next quantity number available for allocation. */
69
70static int next_qty;
71
72/* In all the following vectors indexed by quantity number. */
73
74/* Element Q is the hard reg number chosen for quantity Q,
75 or -1 if none was found. */
76
77static short *qty_phys_reg;
78
79/* We maintain two hard register sets that indicate suggested hard registers
80 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
81 that are tied to the quantity by a simple copy. The second contains all
82 hard registers that are tied to the quantity via an arithmetic operation.
83
84 The former register set is given priority for allocation. This tends to
85 eliminate copy insns. */
86
87/* Element Q is a set of hard registers that are suggested for quantity Q by
88 copy insns. */
89
90static HARD_REG_SET *qty_phys_copy_sugg;
91
92/* Element Q is a set of hard registers that are suggested for quantity Q by
93 arithmetic insns. */
94
95static HARD_REG_SET *qty_phys_sugg;
96
97/* Element Q is non-zero if there is a suggested register in
98 qty_phys_copy_sugg. */
99
100static char *qty_phys_has_copy_sugg;
101
102/* Element Q is non-zero if there is a suggested register in qty_phys_sugg. */
103
104static char *qty_phys_has_sugg;
105
106/* Element Q is the number of refs to quantity Q. */
107
108static short *qty_n_refs;
109
110/* Element Q is a reg class contained in (smaller than) the
111 preferred classes of all the pseudo regs that are tied in quantity Q.
112 This is the preferred class for allocating that quantity. */
113
114static enum reg_class *qty_min_class;
115
116/* Insn number (counting from head of basic block)
117 where quantity Q was born. -1 if birth has not been recorded. */
118
119static int *qty_birth;
120
121/* Insn number (counting from head of basic block)
122 where quantity Q died. Due to the way tying is done,
123 and the fact that we consider in this pass only regs that die but once,
124 a quantity can die only once. Each quantity's life span
125 is a set of consecutive insns. -1 if death has not been recorded. */
126
127static int *qty_death;
128
129/* Number of words needed to hold the data in quantity Q.
130 This depends on its machine mode. It is used for these purposes:
131 1. It is used in computing the relative importances of qtys,
132 which determines the order in which we look for regs for them.
133 2. It is used in rules that prevent tying several registers of
134 different sizes in a way that is geometrically impossible
135 (see combine_regs). */
136
137static int *qty_size;
138
139/* This holds the mode of the registers that are tied to qty Q,
140 or VOIDmode if registers with differing modes are tied together. */
141
142static enum machine_mode *qty_mode;
143
144/* Number of times a reg tied to qty Q lives across a CALL_INSN. */
145
146static int *qty_n_calls_crossed;
147
148/* Nonzero means don't allocate qty Q if we can't get its preferred class. */
149
150static char *qty_preferred_or_nothing;
151
152/* Element Q is the SCRATCH expression for which this quantity is being
153 allocated or 0 if this quantity is allocating registers. */
154
155static rtx *qty_scratch_rtx;
156
157/* Element Q is the register number of one pseudo register whose
158 reg_qty value is Q, or -1 is this quantity is for a SCRATCH. This
159 register should be the head of the chain maintained in reg_next_in_qty. */
160
161static short *qty_first_reg;
162
163/* If (REG N) has been assigned a quantity number, is a register number
164 of another register assigned the same quantity number, or -1 for the
165 end of the chain. qty_first_reg point to the head of this chain. */
166
167static short *reg_next_in_qty;
168
169/* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
170 if it is >= 0,
171 of -1 if this register cannot be allocated by local-alloc,
172 or -2 if not known yet.
173
174 Note that if we see a use or death of pseudo register N with
175 reg_qty[N] == -2, register N must be local to the current block. If
176 it were used in more than one block, we would have reg_qty[N] == -1.
177 This relies on the fact that if reg_basic_block[N] is >= 0, register N
178 will not appear in any other block. We save a considerable number of
179 tests by exploiting this.
180
181 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
182 be referenced. */
183
184static int *reg_qty;
185
186/* The offset (in words) of register N within its quantity.
187 This can be nonzero if register N is SImode, and has been tied
188 to a subreg of a DImode register. */
189
190static char *reg_offset;
191
192/* Vector of substitutions of register numbers,
193 used to map pseudo regs into hardware regs.
194 This is set up as a result of register allocation.
195 Element N is the hard reg assigned to pseudo reg N,
196 or is -1 if no hard reg was assigned.
197 If N is a hard reg number, element N is N. */
198
199short *reg_renumber;
200
201/* Set of hard registers live at the current point in the scan
202 of the instructions in a basic block. */
203
204static HARD_REG_SET regs_live;
205
206/* Each set of hard registers indicates registers live at a particular
207 point in the basic block. For N even, regs_live_at[N] says which
208 hard registers are needed *after* insn N/2 (i.e., they may not
209 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
210
211 If an object is to conflict with the inputs of insn J but not the
212 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
213 if it is to conflict with the outputs of insn J but not the inputs of
214 insn J + 1, it is said to die at index J*2 + 1. */
215
216static HARD_REG_SET *regs_live_at;
217
218/* Communicate local vars `insn_number' and `insn'
219 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
220static int this_insn_number;
221static rtx this_insn;
222
223static void block_alloc ();
224static void update_equiv_regs ();
225static int no_conflict_p ();
226static int combine_regs ();
227static void wipe_dead_reg ();
228static int find_free_reg ();
229static void reg_is_born ();
230static void reg_is_set ();
231static void mark_life ();
232static void post_mark_life ();
233static int qty_compare ();
234static int qty_compare_1 ();
235static int reg_meets_class_p ();
236static void update_qty_class ();
237static int requires_inout_p ();
238\f
239/* Allocate a new quantity (new within current basic block)
240 for register number REGNO which is born at index BIRTH
241 within the block. MODE and SIZE are info on reg REGNO. */
242
243static void
244alloc_qty (regno, mode, size, birth)
245 int regno;
246 enum machine_mode mode;
247 int size, birth;
248{
249 register int qty = next_qty++;
250
251 reg_qty[regno] = qty;
252 reg_offset[regno] = 0;
253 reg_next_in_qty[regno] = -1;
254
255 qty_first_reg[qty] = regno;
256 qty_size[qty] = size;
257 qty_mode[qty] = mode;
258 qty_birth[qty] = birth;
259 qty_n_calls_crossed[qty] = reg_n_calls_crossed[regno];
260 qty_min_class[qty] = reg_preferred_class (regno);
261 qty_preferred_or_nothing[qty] = reg_preferred_or_nothing (regno);
262 qty_n_refs[qty] = reg_n_refs[regno];
263}
264\f
265/* Similar to `alloc_qty', but allocates a quantity for a SCRATCH rtx
266 used as operand N in INSN. We assume here that the SCRATCH is used in
267 a CLOBBER. */
268
269static void
270alloc_qty_for_scratch (scratch, n, insn, insn_code_num, insn_number)
271 rtx scratch;
272 int n;
273 rtx insn;
274 int insn_code_num, insn_number;
275{
276 register int qty;
277 enum reg_class class;
278 char *p, c;
279 int i;
280
281 /* If we haven't yet computed which alternative will be used, do so now.
282 Then set P to the constraints for that alternative. */
283 if (which_alternative == -1)
284 if (! constrain_operands (insn_code_num, 0))
285 return;
286
287 for (p = insn_operand_constraint[insn_code_num][n], i = 0;
288 *p && i < which_alternative; p++)
289 if (*p == ',')
290 i++;
291
292 /* Compute the class required for this SCRATCH. If we don't need a
293 register, the class will remain NO_REGS. If we guessed the alternative
294 number incorrectly, reload will fix things up for us. */
295
296 class = NO_REGS;
297 while ((c = *p++) != '\0' && c != ',')
298 switch (c)
299 {
300 case '=': case '+': case '?':
301 case '#': case '&': case '!':
302 case '*': case '%':
303 case '0': case '1': case '2': case '3': case '4':
304 case 'm': case '<': case '>': case 'V': case 'o':
305 case 'E': case 'F': case 'G': case 'H':
306 case 's': case 'i': case 'n':
307 case 'I': case 'J': case 'K': case 'L':
308 case 'M': case 'N': case 'O': case 'P':
309#ifdef EXTRA_CONSTRAINT
310 case 'Q': case 'R': case 'S': case 'T': case 'U':
311#endif
312 case 'p':
313 /* These don't say anything we care about. */
314 break;
315
316 case 'X':
317 /* We don't need to allocate this SCRATCH. */
318 return;
319
320 case 'g': case 'r':
321 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
322 break;
323
324 default:
325 class
326 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER (c)];
327 break;
328 }
329
330 /* If CLASS has only one register, don't allocate the SCRATCH here since
331 it will prevent that register from being used as a spill register.
332 reload will do the allocation. */
333
334 if (class == NO_REGS || reg_class_size[(int) class] == 1)
335 return;
336
337 qty = next_qty++;
338
339 qty_first_reg[qty] = -1;
340 qty_scratch_rtx[qty] = scratch;
341 qty_size[qty] = GET_MODE_SIZE (GET_MODE (scratch));
342 qty_mode[qty] = GET_MODE (scratch);
343 qty_birth[qty] = 2 * insn_number - 1;
344 qty_death[qty] = 2 * insn_number + 1;
345 qty_n_calls_crossed[qty] = 0;
346 qty_min_class[qty] = class;
347 qty_preferred_or_nothing[qty] = 1;
348 qty_n_refs[qty] = 1;
349}
350\f
351/* Main entry point of this file. */
352
353void
354local_alloc ()
355{
356 register int b, i;
357 int max_qty;
358
359 /* Leaf functions and non-leaf functions have different needs.
360 If defined, let the machine say what kind of ordering we
361 should use. */
362#ifdef ORDER_REGS_FOR_LOCAL_ALLOC
363 ORDER_REGS_FOR_LOCAL_ALLOC;
364#endif
365
366 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
367 registers. */
368 update_equiv_regs ();
369
370 /* This sets the maximum number of quantities we can have. Quantity
d45cf215 371 numbers start at zero and we can have one for each pseudo plus the
2bbd3819
RS
372 number of SCRATCHs in the largest block, in the worst case. */
373 max_qty = (max_regno - FIRST_PSEUDO_REGISTER) + max_scratch;
374
375 /* Allocate vectors of temporary data.
376 See the declarations of these variables, above,
377 for what they mean. */
378
379 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
380 qty_phys_copy_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
381 qty_phys_has_copy_sugg = (char *) alloca (max_qty * sizeof (char));
382 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
383 qty_phys_has_sugg = (char *) alloca (max_qty * sizeof (char));
384 qty_birth = (int *) alloca (max_qty * sizeof (int));
385 qty_death = (int *) alloca (max_qty * sizeof (int));
386 qty_scratch_rtx = (rtx *) alloca (max_qty * sizeof (rtx));
387 qty_first_reg = (short *) alloca (max_qty * sizeof (short));
388 qty_size = (int *) alloca (max_qty * sizeof (int));
389 qty_mode = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
390 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
391 qty_min_class = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
392 qty_preferred_or_nothing = (char *) alloca (max_qty);
393 qty_n_refs = (short *) alloca (max_qty * sizeof (short));
394
395 reg_qty = (int *) alloca (max_regno * sizeof (int));
396 reg_offset = (char *) alloca (max_regno * sizeof (char));
397 reg_next_in_qty = (short *) alloca (max_regno * sizeof (short));
398
399 reg_renumber = (short *) oballoc (max_regno * sizeof (short));
400 for (i = 0; i < max_regno; i++)
401 reg_renumber[i] = -1;
402
403 /* Determine which pseudo-registers can be allocated by local-alloc.
404 In general, these are the registers used only in a single block and
405 which only die once. However, if a register's preferred class has only
406 one entry, don't allocate this register here unless it is preferred
407 or nothing since retry_global_alloc won't be able to move it to
408 GENERAL_REGS if a reload register of this class is needed.
409
410 We need not be concerned with which block actually uses the register
411 since we will never see it outside that block. */
412
413 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
414 {
415 if (reg_basic_block[i] >= 0 && reg_n_deaths[i] == 1
416 && (reg_preferred_or_nothing (i)
417 || reg_class_size[(int) reg_preferred_class (i)] > 1))
418 reg_qty[i] = -2;
419 else
420 reg_qty[i] = -1;
421 }
422
423 /* Force loop below to initialize entire quantity array. */
424 next_qty = max_qty;
425
426 /* Allocate each block's local registers, block by block. */
427
428 for (b = 0; b < n_basic_blocks; b++)
429 {
430 /* NEXT_QTY indicates which elements of the `qty_...'
431 vectors might need to be initialized because they were used
432 for the previous block; it is set to the entire array before
433 block 0. Initialize those, with explicit loop if there are few,
434 else with bzero and bcopy. Do not initialize vectors that are
435 explicit set by `alloc_qty'. */
436
437 if (next_qty < 6)
438 {
439 for (i = 0; i < next_qty; i++)
440 {
441 qty_scratch_rtx[i] = 0;
442 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
443 qty_phys_has_copy_sugg[i] = 0;
444 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
445 qty_phys_has_sugg[i] = 0;
446 }
447 }
448 else
449 {
450#define CLEAR(vector) \
451 bzero ((vector), (sizeof (*(vector))) * next_qty);
452
453 CLEAR (qty_scratch_rtx);
454 CLEAR (qty_phys_copy_sugg);
455 CLEAR (qty_phys_has_copy_sugg);
456 CLEAR (qty_phys_sugg);
457 CLEAR (qty_phys_has_sugg);
458 }
459
460 next_qty = 0;
461
462 block_alloc (b);
463#ifdef USE_C_ALLOCA
464 alloca (0);
465#endif
466 }
467}
468\f
469/* Depth of loops we are in while in update_equiv_regs. */
470static int loop_depth;
471
472/* Used for communication between the following two functions: contains
473 a MEM that we wish to ensure remains unchanged. */
474static rtx equiv_mem;
475
476/* Set nonzero if EQUIV_MEM is modified. */
477static int equiv_mem_modified;
478
479/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
480 Called via note_stores. */
481
482static void
483validate_equiv_mem_from_store (dest, set)
484 rtx dest;
485 rtx set;
486{
487 if ((GET_CODE (dest) == REG
488 && reg_overlap_mentioned_p (dest, equiv_mem))
489 || (GET_CODE (dest) == MEM
490 && true_dependence (dest, equiv_mem)))
491 equiv_mem_modified = 1;
492}
493
494/* Verify that no store between START and the death of REG invalidates
495 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
496 by storing into an overlapping memory location, or with a non-const
497 CALL_INSN.
498
499 Return 1 if MEMREF remains valid. */
500
501static int
502validate_equiv_mem (start, reg, memref)
503 rtx start;
504 rtx reg;
505 rtx memref;
506{
507 rtx insn;
508 rtx note;
509
510 equiv_mem = memref;
511 equiv_mem_modified = 0;
512
513 /* If the memory reference has side effects or is volatile, it isn't a
514 valid equivalence. */
515 if (side_effects_p (memref))
516 return 0;
517
518 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
519 {
520 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
521 continue;
522
523 if (find_reg_note (insn, REG_DEAD, reg))
524 return 1;
525
526 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
527 && ! CONST_CALL_P (insn))
528 return 0;
529
530 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
531
532 /* If a register mentioned in MEMREF is modified via an
533 auto-increment, we lose the equivalence. Do the same if one
534 dies; although we could extend the life, it doesn't seem worth
535 the trouble. */
536
537 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
538 if ((REG_NOTE_KIND (note) == REG_INC
539 || REG_NOTE_KIND (note) == REG_DEAD)
540 && GET_CODE (XEXP (note, 0)) == REG
541 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
542 return 0;
543 }
544
545 return 0;
546}
547\f
548/* TRUE if X references a memory location that would be affected by a store
549 to MEMREF. */
550
551static int
552memref_referenced_p (memref, x)
553 rtx x;
554 rtx memref;
555{
556 int i, j;
557 char *fmt;
558 enum rtx_code code = GET_CODE (x);
559
560 switch (code)
561 {
562 case REG:
563 case CONST_INT:
564 case CONST:
565 case LABEL_REF:
566 case SYMBOL_REF:
567 case CONST_DOUBLE:
568 case PC:
569 case CC0:
570 case HIGH:
571 case LO_SUM:
572 return 0;
573
574 case MEM:
575 if (true_dependence (memref, x))
576 return 1;
577 break;
578
579 case SET:
580 /* If we are setting a MEM, it doesn't count (its address does), but any
581 other SET_DEST that has a MEM in it is referencing the MEM. */
582 if (GET_CODE (SET_DEST (x)) == MEM)
583 {
584 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
585 return 1;
586 }
587 else if (memref_referenced_p (memref, SET_DEST (x)))
588 return 1;
589
590 return memref_referenced_p (memref, SET_SRC (x));
591 }
592
593 fmt = GET_RTX_FORMAT (code);
594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
595 switch (fmt[i])
596 {
597 case 'e':
598 if (memref_referenced_p (memref, XEXP (x, i)))
599 return 1;
600 break;
601 case 'E':
602 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
603 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
604 return 1;
605 break;
606 }
607
608 return 0;
609}
610
611/* TRUE if some insn in the range (START, END] references a memory location
612 that would be affected by a store to MEMREF. */
613
614static int
615memref_used_between_p (memref, start, end)
616 rtx memref;
617 rtx start;
618 rtx end;
619{
620 rtx insn;
621
622 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
623 insn = NEXT_INSN (insn))
624 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
625 && memref_referenced_p (memref, PATTERN (insn)))
626 return 1;
627
628 return 0;
629}
630\f
631/* INSN is a copy from SRC to DEST, both registers, and SRC does not die
632 in INSN.
633
634 Search forward to see if SRC dies before either it or DEST is modified,
635 but don't scan past the end of a basic block. If so, we can replace SRC
636 with DEST and let SRC die in INSN.
637
638 This will reduce the number of registers live in that range and may enable
639 DEST to be tied to SRC, thus often saving one register in addition to a
640 register-register copy. */
641
642static void
d45cf215 643optimize_reg_copy_1 (insn, dest, src)
2bbd3819
RS
644 rtx insn;
645 rtx dest;
646 rtx src;
647{
648 rtx p, q;
649 rtx note;
650 rtx dest_death = 0;
651 int sregno = REGNO (src);
652 int dregno = REGNO (dest);
653
654 if (sregno == dregno
655#ifdef SMALL_REGISTER_CLASSES
656 /* We don't want to mess with hard regs if register classes are small. */
657 || sregno < FIRST_PSEUDO_REGISTER || dregno < FIRST_PSEUDO_REGISTER
658#endif
659 /* We don't see all updates to SP if they are in an auto-inc memory
660 reference, so we must disallow this optimization on them. */
661 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
662 return;
663
664 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
665 {
666 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
667 || (GET_CODE (p) == NOTE
668 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
669 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
670 break;
671
672 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
673 continue;
674
675 if (reg_set_p (src, p) || reg_set_p (dest, p)
676 /* Don't change a USE of a register. */
677 || (GET_CODE (PATTERN (p)) == USE
678 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
679 break;
680
681 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0)
682 {
683 int failed = 0;
684 int length = 0;
685 int n_calls = 0;
686
687 /* We can do the optimization. Scan forward from INSN again,
688 replacing regs as we go. Set FAILED if a replacement can't
689 be done. In that case, we can't move the death note for SRC.
690 This should be rare. */
691
692 /* Set to stop at next insn. */
693 for (q = next_real_insn (insn);
694 q != next_real_insn (p);
695 q = next_real_insn (q))
696 {
697 if (reg_mentioned_p (src, PATTERN (q)))
698 {
699 if (validate_replace_rtx (src, dest, q))
700 {
701 /* We assume that a register is used exactly once per
702 insn in the updates below. If this is not correct,
703 no great harm is done. */
704 if (sregno >= FIRST_PSEUDO_REGISTER)
705 reg_n_refs[sregno] -= loop_depth;
706 if (dregno >= FIRST_PSEUDO_REGISTER)
707 reg_n_refs[dregno] += loop_depth;
708 }
709 else
710 failed = 1;
711 }
712
713 /* Count the insns and CALL_INSNs passed. If we passed the
714 death note of DEST, show increased live length. */
715 length++;
716 if (dest_death)
717 reg_live_length[dregno]++;
718
719 if (GET_CODE (q) == CALL_INSN)
720 {
721 n_calls++;
722 if (dest_death)
723 reg_n_calls_crossed[dregno]++;
724 }
725
726 /* If DEST dies here, remove the death note and save it for
727 later. */
728 if (dest_death == 0
729 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
730 remove_note (q, dest_death);
731 }
732
733 if (! failed)
734 {
735 if (sregno >= FIRST_PSEUDO_REGISTER)
736 {
737 reg_live_length[sregno] -= length;
738 reg_n_calls_crossed[sregno] -= n_calls;
739 }
740
741 /* Move death note of SRC from P to INSN. */
742 remove_note (p, note);
743 XEXP (note, 1) = REG_NOTES (insn);
744 REG_NOTES (insn) = note;
745 }
746
747 /* Put death note of DEST on P if we saw it die. */
748 if (dest_death)
749 {
750 XEXP (dest_death, 1) = REG_NOTES (p);
751 REG_NOTES (p) = dest_death;
752 }
753
754 return;
755 }
756 }
757}
d45cf215
RS
758\f
759/* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
760 a sequence of insns that modify DEST followed by an insn that sets
761 SRC to DEST in which DEST dies, with no prior modification of DEST.
762 (There is no need to check if the insns in between actually modify
763 DEST. We should not have cases where DEST is not modified, but
764 the optimization is safe if no such modification is detected.)
765 In that case, we can replace all uses of DEST, starting with INSN and
766 ending with the set of SRC to DEST, with SRC. We do not do this
767 optimization if a CALL_INSN is crossed unless SRC already crosses a
768 call.
769
770 It is assumed that DEST and SRC are pseudos; it is too complicated to do
771 this for hard registers since the substitutions we may make might fail. */
772
773static void
774optimize_reg_copy_2 (insn, dest, src)
775 rtx insn;
776 rtx dest;
777 rtx src;
778{
779 rtx p, q;
780 rtx set;
781 int sregno = REGNO (src);
782 int dregno = REGNO (dest);
783
784 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
785 {
786 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
787 || (GET_CODE (p) == NOTE
788 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
789 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
790 break;
791
792 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
793 continue;
794
795 set = single_set (p);
796 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
797 && find_reg_note (p, REG_DEAD, dest))
798 {
799 /* We can do the optimization. Scan forward from INSN again,
800 replacing regs as we go. */
801
802 /* Set to stop at next insn. */
803 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
804 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
805 {
806 if (reg_mentioned_p (dest, PATTERN (q)))
807 {
808 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
809
810 /* We assume that a register is used exactly once per
811 insn in the updates below. If this is not correct,
812 no great harm is done. */
813 reg_n_refs[sregno] -= loop_depth;
814 reg_n_refs[dregno] += loop_depth;
815 }
816
817
818 if (GET_CODE (q) == CALL_INSN)
819 {
820 reg_n_calls_crossed[dregno]--;
821 reg_n_calls_crossed[sregno]++;
822 }
823 }
824
825 remove_note (p, find_reg_note (p, REG_DEAD, dest));
826 reg_n_deaths[dregno]--;
827 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
828 reg_n_deaths[sregno]--;
829 return;
830 }
831
832 if (reg_set_p (src, p)
833 || (GET_CODE (p) == CALL_INSN && reg_n_calls_crossed[sregno] == 0))
834 break;
835 }
836}
2bbd3819
RS
837\f
838/* Find registers that are equivalent to a single value throughout the
839 compilation (either because they can be referenced in memory or are set once
840 from a single constant). Lower their priority for a register.
841
842 If such a register is only referenced once, try substituting its value
843 into the using insn. If it succeeds, we can eliminate the register
844 completely. */
845
846static void
847update_equiv_regs ()
848{
849 rtx *reg_equiv_init_insn = (rtx *) alloca (max_regno * sizeof (rtx *));
850 rtx *reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx *));
851 rtx insn;
852
853 bzero (reg_equiv_init_insn, max_regno * sizeof (rtx *));
854 bzero (reg_equiv_replacement, max_regno * sizeof (rtx *));
855
856 init_alias_analysis ();
857
858 loop_depth = 1;
859
860 /* Scan the insns and find which registers have equivalences. Do this
861 in a separate scan of the insns because (due to -fcse-follow-jumps)
862 a register can be set below its use. */
863 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
864 {
865 rtx note;
866 rtx set = single_set (insn);
867 rtx dest;
868 int regno;
869
870 if (GET_CODE (insn) == NOTE)
871 {
872 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
873 loop_depth++;
874 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
875 loop_depth--;
876 }
877
878 /* If this insn contains more (or less) than a single SET, ignore it. */
879 if (set == 0)
880 continue;
881
882 dest = SET_DEST (set);
883
884 /* If this sets a MEM to the contents of a REG that is only used
885 in a single basic block, see if the register is always equivalent
886 to that memory location and if moving the store from INSN to the
887 insn that set REG is safe. If so, put a REG_EQUIV note on the
888 initializing insn. */
889
890 if (GET_CODE (dest) == MEM && GET_CODE (SET_SRC (set)) == REG
891 && (regno = REGNO (SET_SRC (set))) >= FIRST_PSEUDO_REGISTER
892 && reg_basic_block[regno] >= 0
893 && reg_equiv_init_insn[regno] != 0
894 && validate_equiv_mem (reg_equiv_init_insn[regno], SET_SRC (set),
895 dest)
896 && ! memref_used_between_p (SET_DEST (set),
897 reg_equiv_init_insn[regno], insn))
898 REG_NOTES (reg_equiv_init_insn[regno])
899 = gen_rtx (EXPR_LIST, REG_EQUIV, dest,
900 REG_NOTES (reg_equiv_init_insn[regno]));
901
902 /* If this is a register-register copy where SRC is not dead, see if we
903 can optimize it. */
904 if (flag_expensive_optimizations && GET_CODE (dest) == REG
905 && GET_CODE (SET_SRC (set)) == REG
906 && ! find_reg_note (insn, REG_DEAD, SET_SRC (set)))
d45cf215
RS
907 optimize_reg_copy_1 (insn, dest, SET_SRC (set));
908
909 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
910 else if (flag_expensive_optimizations && GET_CODE (dest) == REG
911 && REGNO (dest) >= FIRST_PSEUDO_REGISTER
912 && GET_CODE (SET_SRC (set)) == REG
913 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
914 && find_reg_note (insn, REG_DEAD, SET_SRC (set)))
915 optimize_reg_copy_2 (insn, dest, SET_SRC (set));
2bbd3819
RS
916
917 /* Otherwise, we only handle the case of a pseudo register being set
918 once. */
919 if (GET_CODE (dest) != REG
920 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
921 || reg_n_sets[regno] != 1)
922 continue;
923
924 note = find_reg_note (insn, REG_EQUAL, 0);
925
926 /* Record this insn as initializing this register. */
927 reg_equiv_init_insn[regno] = insn;
928
929 /* If this register is known to be equal to a constant, record that
930 it is always equivalent to the constant. */
931 if (note && CONSTANT_P (XEXP (note, 0)))
932 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
933
934 /* If this insn introduces a "constant" register, decrease the priority
935 of that register. Record this insn if the register is only used once
936 more and the equivalence value is the same as our source.
937
938 The latter condition is checked for two reasons: First, it is an
939 indication that it may be more efficient to actually emit the insn
940 as written (if no registers are available, reload will substitute
941 the equivalence). Secondly, it avoids problems with any registers
942 dying in this insn whose death notes would be missed.
943
944 If we don't have a REG_EQUIV note, see if this insn is loading
945 a register used only in one basic block from a MEM. If so, and the
946 MEM remains unchanged for the life of the register, add a REG_EQUIV
947 note. */
948
949 note = find_reg_note (insn, REG_EQUIV, 0);
950
951 if (note == 0 && reg_basic_block[regno] >= 0
952 && GET_CODE (SET_SRC (set)) == MEM
953 && validate_equiv_mem (insn, dest, SET_SRC (set)))
954 REG_NOTES (insn) = note = gen_rtx (EXPR_LIST, REG_EQUIV, SET_SRC (set),
955 REG_NOTES (insn));
956
957 /* Don't mess with things live during setjmp. */
958 if (note && reg_live_length[regno] >= 0)
959 {
960 int regno = REGNO (dest);
961
962 /* Note that the statement below does not affect the priority
963 in local-alloc! */
964 reg_live_length[regno] *= 2;
965
966 /* If the register is referenced exactly twice, meaning it is set
967 once and used once, indicate that the reference may be replaced
968 by the equivalence we computed above. If the register is only
969 used in one basic block, this can't succeed or combine would
970 have done it.
971
972 It would be nice to use "loop_depth * 2" in the compare
973 below. Unfortunately, LOOP_DEPTH need not be constant within
974 a basic block so this would be too complicated.
975
976 This case normally occurs when a parameter is read from memory
977 and then used exactly once, not in a loop. */
978
979 if (reg_n_refs[regno] == 2
980 && reg_basic_block[regno] < 0
981 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
982 reg_equiv_replacement[regno] = SET_SRC (set);
983 }
984 }
985
986 /* Now scan all regs killed in an insn to see if any of them are registers
987 only used that once. If so, see if we can replace the reference with
988 the equivalent from. If we can, delete the initializing reference
989 and this register will go away. */
990 for (insn = next_active_insn (get_insns ());
991 insn;
992 insn = next_active_insn (insn))
993 {
994 rtx link;
995
996 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
997 if (REG_NOTE_KIND (link) == REG_DEAD
998 /* Make sure this insn still refers to the register. */
999 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1000 {
1001 int regno = REGNO (XEXP (link, 0));
1002
1003 if (reg_equiv_replacement[regno]
1004 && validate_replace_rtx (regno_reg_rtx[regno],
1005 reg_equiv_replacement[regno], insn))
1006 {
1007 rtx equiv_insn = reg_equiv_init_insn[regno];
1008
1009 remove_death (regno, insn);
1010 reg_n_refs[regno] = 0;
1011 PUT_CODE (equiv_insn, NOTE);
1012 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1013 NOTE_SOURCE_FILE (equiv_insn) = 0;
1014 }
1015 }
1016 }
1017}
1018\f
1019/* Allocate hard regs to the pseudo regs used only within block number B.
1020 Only the pseudos that die but once can be handled. */
1021
1022static void
1023block_alloc (b)
1024 int b;
1025{
1026 register int i, q;
1027 register rtx insn;
1028 rtx note;
1029 int insn_number = 0;
1030 int insn_count = 0;
1031 int max_uid = get_max_uid ();
1032 short *qty_order;
1033 int no_conflict_combined_regno = -1;
1034
1035 /* Count the instructions in the basic block. */
1036
1037 insn = basic_block_end[b];
1038 while (1)
1039 {
1040 if (GET_CODE (insn) != NOTE)
1041 if (++insn_count > max_uid)
1042 abort ();
1043 if (insn == basic_block_head[b])
1044 break;
1045 insn = PREV_INSN (insn);
1046 }
1047
1048 /* +2 to leave room for a post_mark_life at the last insn and for
1049 the birth of a CLOBBER in the first insn. */
1050 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1051 * sizeof (HARD_REG_SET));
1052 bzero (regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1053
1054 /* Initialize table of hardware registers currently live. */
1055
1056#ifdef HARD_REG_SET
1057 regs_live = *basic_block_live_at_start[b];
1058#else
1059 COPY_HARD_REG_SET (regs_live, basic_block_live_at_start[b]);
1060#endif
1061
1062 /* This loop scans the instructions of the basic block
1063 and assigns quantities to registers.
1064 It computes which registers to tie. */
1065
1066 insn = basic_block_head[b];
1067 while (1)
1068 {
1069 register rtx body = PATTERN (insn);
1070
1071 if (GET_CODE (insn) != NOTE)
1072 insn_number++;
1073
1074 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1075 {
1076 register rtx link, set;
1077 register int win = 0;
1078 register rtx r0, r1;
1079 int combined_regno = -1;
1080 int i;
1081 int insn_code_number = recog_memoized (insn);
1082
1083 this_insn_number = insn_number;
1084 this_insn = insn;
1085
1086 if (insn_code_number >= 0)
1087 insn_extract (insn);
1088 which_alternative = -1;
1089
1090 /* Is this insn suitable for tying two registers?
1091 If so, try doing that.
1092 Suitable insns are those with at least two operands and where
1093 operand 0 is an output that is a register that is not
1094 earlyclobber.
1095 For a commutative operation, try (set reg0 (arithop ... reg1)).
1096 Subregs in place of regs are also ok.
1097
1098 If tying is done, WIN is set nonzero. */
1099
1100 if (insn_code_number >= 0
1101 && insn_n_operands[insn_code_number] > 1
1102 && insn_operand_constraint[insn_code_number][0][0] == '='
1103 && insn_operand_constraint[insn_code_number][0][1] != '&')
1104 {
1105 r0 = recog_operand[0];
1106 r1 = recog_operand[1];
1107
1108 /* If the first operand is an address, find a register in it.
1109 There may be more than one register, but we only try one of
1110 them. */
1111 if (insn_operand_constraint[insn_code_number][1][0] == 'p')
1112 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1113 r1 = XEXP (r1, 0);
1114
1115 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1116 {
1117 /* We have two priorities for hard register preferrences.
1118 If we have a move insn or an insn whose first input can
1119 only be in the same register as the output, give
1120 priority to an equivalence found from that insn. */
1121 int may_save_copy
1122 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1123 || (r1 == recog_operand[1]
1124 && (requires_inout_p (insn_operand_constraint[insn_code_number][1]))));
1125
1126 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1127 win = combine_regs (r1, r0, may_save_copy,
1128 insn_number, insn, 0);
1129
1130 if (win == 0
1131 && insn_n_operands[insn_code_number] > 2
1132 && insn_operand_constraint[insn_code_number][1][0] == '%'
1133 && (r1 = recog_operand[2],
1134 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1135 win = combine_regs (r1, r0, may_save_copy,
1136 insn_number, insn, 0);
1137 }
1138 }
1139
1140 /* Recognize an insn sequence with an ultimate result
1141 which can safely overlap one of the inputs.
1142 The sequence begins with a CLOBBER of its result,
1143 and ends with an insn that copies the result to itself
1144 and has a REG_EQUAL note for an equivalent formula.
1145 That note indicates what the inputs are.
1146 The result and the input can overlap if each insn in
1147 the sequence either doesn't mention the input
1148 or has a REG_NO_CONFLICT note to inhibit the conflict.
1149
1150 We do the combining test at the CLOBBER so that the
1151 destination register won't have had a quantity number
1152 assigned, since that would prevent combining. */
1153
1154 if (GET_CODE (PATTERN (insn)) == CLOBBER
1155 && (r0 = XEXP (PATTERN (insn), 0),
1156 GET_CODE (r0) == REG)
1157 && (link = find_reg_note (insn, REG_LIBCALL, 0)) != 0
1158 && GET_CODE (XEXP (link, 0)) == INSN
1159 && (set = single_set (XEXP (link, 0))) != 0
1160 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1161 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL, 0)) != 0)
1162 {
1163 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1164 /* Check that we have such a sequence. */
1165 && no_conflict_p (insn, r0, r1))
1166 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1167 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1168 && (r1 = XEXP (XEXP (note, 0), 0),
1169 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1170 && no_conflict_p (insn, r0, r1))
1171 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1172
1173 /* Here we care if the operation to be computed is
1174 commutative. */
1175 else if ((GET_CODE (XEXP (note, 0)) == EQ
1176 || GET_CODE (XEXP (note, 0)) == NE
1177 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1178 && (r1 = XEXP (XEXP (note, 0), 1),
1179 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1180 && no_conflict_p (insn, r0, r1))
1181 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1182
1183 /* If we did combine something, show the register number
1184 in question so that we know to ignore its death. */
1185 if (win)
1186 no_conflict_combined_regno = REGNO (r1);
1187 }
1188
1189 /* If registers were just tied, set COMBINED_REGNO
1190 to the number of the register used in this insn
1191 that was tied to the register set in this insn.
1192 This register's qty should not be "killed". */
1193
1194 if (win)
1195 {
1196 while (GET_CODE (r1) == SUBREG)
1197 r1 = SUBREG_REG (r1);
1198 combined_regno = REGNO (r1);
1199 }
1200
1201 /* Mark the death of everything that dies in this instruction,
1202 except for anything that was just combined. */
1203
1204 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1205 if (REG_NOTE_KIND (link) == REG_DEAD
1206 && GET_CODE (XEXP (link, 0)) == REG
1207 && combined_regno != REGNO (XEXP (link, 0))
1208 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1209 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1210 wipe_dead_reg (XEXP (link, 0), 0);
1211
1212 /* Allocate qty numbers for all registers local to this block
1213 that are born (set) in this instruction.
1214 A pseudo that already has a qty is not changed. */
1215
1216 note_stores (PATTERN (insn), reg_is_set);
1217
1218 /* If anything is set in this insn and then unused, mark it as dying
1219 after this insn, so it will conflict with our outputs. This
1220 can't match with something that combined, and it doesn't matter
1221 if it did. Do this after the calls to reg_is_set since these
1222 die after, not during, the current insn. */
1223
1224 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1225 if (REG_NOTE_KIND (link) == REG_UNUSED
1226 && GET_CODE (XEXP (link, 0)) == REG)
1227 wipe_dead_reg (XEXP (link, 0), 1);
1228
1229#ifndef SMALL_REGISTER_CLASSES
1230 /* Allocate quantities for any SCRATCH operands of this insn. We
1231 don't do this for machines with small register classes because
1232 those machines can use registers explicitly mentioned in the
1233 RTL as spill registers and our usage of hard registers
1234 explicitly for SCRATCH operands will conflict. On those machines,
1235 reload will allocate the SCRATCH. */
1236
1237 if (insn_code_number >= 0)
1238 for (i = 0; i < insn_n_operands[insn_code_number]; i++)
1239 if (GET_CODE (recog_operand[i]) == SCRATCH)
1240 alloc_qty_for_scratch (recog_operand[i], i, insn,
1241 insn_code_number, insn_number);
1242#endif
1243
1244 /* If this is an insn that has a REG_RETVAL note pointing at a
1245 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1246 block, so clear any register number that combined within it. */
1247 if ((note = find_reg_note (insn, REG_RETVAL, 0)) != 0
1248 && GET_CODE (XEXP (note, 0)) == INSN
1249 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1250 no_conflict_combined_regno = -1;
1251 }
1252
1253 /* Set the registers live after INSN_NUMBER. Note that we never
1254 record the registers live before the block's first insn, since no
1255 pseudos we care about are live before that insn. */
1256
1257 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1258 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1259
1260 if (insn == basic_block_end[b])
1261 break;
1262
1263 insn = NEXT_INSN (insn);
1264 }
1265
1266 /* Now every register that is local to this basic block
1267 should have been given a quantity, or else -1 meaning ignore it.
1268 Every quantity should have a known birth and death.
1269
1270 Order the qtys so we assign them registers in order of
1271 decreasing length of life. Normally call qsort, but if we
1272 have only a very small number of quantities, sort them ourselves. */
1273
1274 qty_order = (short *) alloca (next_qty * sizeof (short));
1275 for (i = 0; i < next_qty; i++)
1276 qty_order[i] = i;
1277
1278#define EXCHANGE(I1, I2) \
1279 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1280
1281 switch (next_qty)
1282 {
1283 case 3:
1284 /* Make qty_order[2] be the one to allocate last. */
1285 if (qty_compare (0, 1) > 0)
1286 EXCHANGE (0, 1);
1287 if (qty_compare (1, 2) > 0)
1288 EXCHANGE (2, 1);
1289
1290 /* ... Fall through ... */
1291 case 2:
1292 /* Put the best one to allocate in qty_order[0]. */
1293 if (qty_compare (0, 1) > 0)
1294 EXCHANGE (0, 1);
1295
1296 /* ... Fall through ... */
1297
1298 case 1:
1299 case 0:
1300 /* Nothing to do here. */
1301 break;
1302
1303 default:
1304 qsort (qty_order, next_qty, sizeof (short), qty_compare_1);
1305 }
1306
1307 /* Try to put each quantity in a suggested physical register, if it has one.
1308 This may cause registers to be allocated that otherwise wouldn't be, but
1309 this seems acceptable in local allocation (unlike global allocation). */
1310 for (i = 0; i < next_qty; i++)
1311 {
1312 q = qty_order[i];
1313 if (qty_phys_has_sugg[q] || qty_phys_has_copy_sugg[q])
1314 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1315 0, 1, qty_birth[q], qty_death[q]);
1316 else
1317 qty_phys_reg[q] = -1;
1318 }
1319
1320 /* Now for each qty that is not a hardware register,
1321 look for a hardware register to put it in.
1322 First try the register class that is cheapest for this qty,
1323 if there is more than one class. */
1324
1325 for (i = 0; i < next_qty; i++)
1326 {
1327 q = qty_order[i];
1328 if (qty_phys_reg[q] < 0)
1329 {
1330 if (N_REG_CLASSES > 1)
1331 {
1332 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1333 qty_mode[q], q, 0, 0,
1334 qty_birth[q], qty_death[q]);
1335 if (qty_phys_reg[q] >= 0)
1336 continue;
1337 }
1338
1339 if (!qty_preferred_or_nothing[q])
1340 qty_phys_reg[q] = find_free_reg (ALL_REGS,
1341 qty_mode[q], q, 0, 0,
1342 qty_birth[q], qty_death[q]);
1343 }
1344 }
1345
1346 /* Now propagate the register assignments
1347 to the pseudo regs belonging to the qtys. */
1348
1349 for (q = 0; q < next_qty; q++)
1350 if (qty_phys_reg[q] >= 0)
1351 {
1352 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1353 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1354 if (qty_scratch_rtx[q])
1355 {
1356 PUT_CODE (qty_scratch_rtx[q], REG);
1357 REGNO (qty_scratch_rtx[q]) = qty_phys_reg[q];
1358
1359 for (i = HARD_REGNO_NREGS (qty_phys_reg[q],
1360 GET_MODE (qty_scratch_rtx[q])) - 1;
1361 i >= 0; i--)
1362 regs_ever_live[qty_phys_reg[q] + i] = 1;
1363
1364 /* Must clear the USED field, because it will have been set by
1365 copy_rtx_if_shared, but the leaf_register code expects that
1366 it is zero in all REG rtx. copy_rtx_if_shared does not set the
1367 used bit for REGs, but does for SCRATCHes. */
1368 qty_scratch_rtx[q]->used = 0;
1369 }
1370 }
1371}
1372\f
1373/* Compare two quantities' priority for getting real registers.
1374 We give shorter-lived quantities higher priority.
1375 Quantities with more references are also preferred, as are quanties that
1376 require multiple registers. This is the identical prioritorization as
1377 done by global-alloc.
1378
1379 We used to give preference to registers with *longer* lives, but using
1380 the same algorithm in both local- and global-alloc can speed up execution
1381 of some programs by as much as a factor of three! */
1382
1383static int
1384qty_compare (q1, q2)
1385 int q1, q2;
1386{
1387 /* Note that the quotient will never be bigger than
1388 the value of floor_log2 times the maximum number of
1389 times a register can occur in one insn (surely less than 100).
1390 Multiplying this by 10000 can't overflow. */
1391 register int pri1
1392 = (((double) (floor_log2 (qty_n_refs[q1]) * qty_n_refs[q1])
1393 / ((qty_death[q1] - qty_birth[q1]) * qty_size[q1]))
1394 * 10000);
1395 register int pri2
1396 = (((double) (floor_log2 (qty_n_refs[q2]) * qty_n_refs[q2])
1397 / ((qty_death[q2] - qty_birth[q2]) * qty_size[q2]))
1398 * 10000);
1399 return pri2 - pri1;
1400}
1401
1402static int
1403qty_compare_1 (q1, q2)
1404 short *q1, *q2;
1405{
1406 register int tem;
1407
1408 /* Note that the quotient will never be bigger than
1409 the value of floor_log2 times the maximum number of
1410 times a register can occur in one insn (surely less than 100).
1411 Multiplying this by 10000 can't overflow. */
1412 register int pri1
1413 = (((double) (floor_log2 (qty_n_refs[*q1]) * qty_n_refs[*q1])
1414 / ((qty_death[*q1] - qty_birth[*q1]) * qty_size[*q1]))
1415 * 10000);
1416 register int pri2
1417 = (((double) (floor_log2 (qty_n_refs[*q2]) * qty_n_refs[*q2])
1418 / ((qty_death[*q2] - qty_birth[*q2]) * qty_size[*q2]))
1419 * 10000);
1420
1421 tem = pri2 - pri1;
1422 if (tem != 0) return tem;
1423 /* If qtys are equally good, sort by qty number,
1424 so that the results of qsort leave nothing to chance. */
1425 return *q1 - *q2;
1426}
1427\f
1428/* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1429 Returns 1 if have done so, or 0 if cannot.
1430
1431 Combining registers means marking them as having the same quantity
1432 and adjusting the offsets within the quantity if either of
1433 them is a SUBREG).
1434
1435 We don't actually combine a hard reg with a pseudo; instead
1436 we just record the hard reg as the suggestion for the pseudo's quantity.
1437 If we really combined them, we could lose if the pseudo lives
1438 across an insn that clobbers the hard reg (eg, movstr).
1439
1440 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1441 there is no REG_DEAD note on INSN. This occurs during the processing
1442 of REG_NO_CONFLICT blocks.
1443
1444 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1445 SETREG or if the input and output must share a register.
1446 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1447
1448 There are elaborate checks for the validity of combining. */
1449
1450
1451static int
1452combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1453 rtx usedreg, setreg;
1454 int may_save_copy;
1455 int insn_number;
1456 rtx insn;
1457 int already_dead;
1458{
1459 register int ureg, sreg;
1460 register int offset = 0;
1461 int usize, ssize;
1462 register int sqty;
1463
1464 /* Determine the numbers and sizes of registers being used. If a subreg
1465 is present that does not change the entire register, don't conside
1466 this a copy insn. */
1467
1468 while (GET_CODE (usedreg) == SUBREG)
1469 {
1470 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1471 may_save_copy = 0;
1472 offset += SUBREG_WORD (usedreg);
1473 usedreg = SUBREG_REG (usedreg);
1474 }
1475 if (GET_CODE (usedreg) != REG)
1476 return 0;
1477 ureg = REGNO (usedreg);
1478 usize = REG_SIZE (usedreg);
1479
1480 while (GET_CODE (setreg) == SUBREG)
1481 {
1482 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1483 may_save_copy = 0;
1484 offset -= SUBREG_WORD (setreg);
1485 setreg = SUBREG_REG (setreg);
1486 }
1487 if (GET_CODE (setreg) != REG)
1488 return 0;
1489 sreg = REGNO (setreg);
1490 ssize = REG_SIZE (setreg);
1491
1492 /* If UREG is a pseudo-register that hasn't already been assigned a
1493 quantity number, it means that it is not local to this block or dies
1494 more than once. In either event, we can't do anything with it. */
1495 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1496 /* Do not combine registers unless one fits within the other. */
1497 || (offset > 0 && usize + offset > ssize)
1498 || (offset < 0 && usize + offset < ssize)
1499 /* Do not combine with a smaller already-assigned object
1500 if that smaller object is already combined with something bigger. */
1501 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1502 && usize < qty_size[reg_qty[ureg]])
1503 /* Can't combine if SREG is not a register we can allocate. */
1504 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1505 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1506 These have already been taken care of. This probably wouldn't
1507 combine anyway, but don't take any chances. */
1508 || (ureg >= FIRST_PSEUDO_REGISTER
1509 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1510 /* Don't tie something to itself. In most cases it would make no
1511 difference, but it would screw up if the reg being tied to itself
1512 also dies in this insn. */
1513 || ureg == sreg
1514 /* Don't try to connect two different hardware registers. */
1515 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1516 /* Don't connect two different machine modes if they have different
1517 implications as to which registers may be used. */
1518 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1519 return 0;
1520
1521 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1522 qty_phys_sugg for the pseudo instead of tying them.
1523
1524 Return "failure" so that the lifespan of UREG is terminated here;
1525 that way the two lifespans will be disjoint and nothing will prevent
1526 the pseudo reg from being given this hard reg. */
1527
1528 if (ureg < FIRST_PSEUDO_REGISTER)
1529 {
1530 /* Allocate a quantity number so we have a place to put our
1531 suggestions. */
1532 if (reg_qty[sreg] == -2)
1533 reg_is_born (setreg, 2 * insn_number);
1534
1535 if (reg_qty[sreg] >= 0)
1536 {
1537 if (may_save_copy)
1538 {
1539 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1540 qty_phys_has_copy_sugg[reg_qty[sreg]] = 1;
1541 }
1542 else
1543 {
1544 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1545 qty_phys_has_sugg[reg_qty[sreg]] = 1;
1546 }
1547 }
1548 return 0;
1549 }
1550
1551 /* Similarly for SREG a hard register and UREG a pseudo register. */
1552
1553 if (sreg < FIRST_PSEUDO_REGISTER)
1554 {
1555 if (may_save_copy)
1556 {
1557 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1558 qty_phys_has_copy_sugg[reg_qty[ureg]] = 1;
1559 }
1560 else
1561 {
1562 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1563 qty_phys_has_sugg[reg_qty[ureg]] = 1;
1564 }
1565 return 0;
1566 }
1567
1568 /* At this point we know that SREG and UREG are both pseudos.
1569 Do nothing if SREG already has a quantity or is a register that we
1570 don't allocate. */
1571 if (reg_qty[sreg] >= -1
1572 /* If we are not going to let any regs live across calls,
1573 don't tie a call-crossing reg to a non-call-crossing reg. */
1574 || (current_function_has_nonlocal_label
1575 && ((reg_n_calls_crossed[ureg] > 0)
1576 != (reg_n_calls_crossed[sreg] > 0))))
1577 return 0;
1578
1579 /* We don't already know about SREG, so tie it to UREG
1580 if this is the last use of UREG, provided the classes they want
1581 are compatible. */
1582
1583 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1584 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1585 {
1586 /* Add SREG to UREG's quantity. */
1587 sqty = reg_qty[ureg];
1588 reg_qty[sreg] = sqty;
1589 reg_offset[sreg] = reg_offset[ureg] + offset;
1590 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1591 qty_first_reg[sqty] = sreg;
1592
1593 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1594 update_qty_class (sqty, sreg);
1595
1596 /* Update info about quantity SQTY. */
1597 qty_n_calls_crossed[sqty] += reg_n_calls_crossed[sreg];
1598 qty_n_refs[sqty] += reg_n_refs[sreg];
1599 if (! reg_preferred_or_nothing (sreg))
1600 qty_preferred_or_nothing[sqty] = 0;
1601 if (usize < ssize)
1602 {
1603 register int i;
1604
1605 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1606 reg_offset[i] -= offset;
1607
1608 qty_size[sqty] = ssize;
1609 qty_mode[sqty] = GET_MODE (setreg);
1610 }
1611 }
1612 else
1613 return 0;
1614
1615 return 1;
1616}
1617\f
1618/* Return 1 if the preferred class of REG allows it to be tied
1619 to a quantity or register whose class is CLASS.
1620 True if REG's reg class either contains or is contained in CLASS. */
1621
1622static int
1623reg_meets_class_p (reg, class)
1624 int reg;
1625 enum reg_class class;
1626{
1627 register enum reg_class rclass = reg_preferred_class (reg);
1628 return (reg_class_subset_p (rclass, class)
1629 || reg_class_subset_p (class, rclass));
1630}
1631
1632/* Return 1 if the two specified classes have registers in common.
1633 If CALL_SAVED, then consider only call-saved registers. */
1634
1635static int
1636reg_classes_overlap_p (c1, c2, call_saved)
1637 register enum reg_class c1;
1638 register enum reg_class c2;
1639 int call_saved;
1640{
1641 HARD_REG_SET c;
1642 int i;
1643
1644 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
1645 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
1646
1647 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1648 if (TEST_HARD_REG_BIT (c, i)
1649 && (! call_saved || ! call_used_regs[i]))
1650 return 1;
1651
1652 return 0;
1653}
1654
1655/* Update the class of QTY assuming that REG is being tied to it. */
1656
1657static void
1658update_qty_class (qty, reg)
1659 int qty;
1660 int reg;
1661{
1662 enum reg_class rclass = reg_preferred_class (reg);
1663 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1664 qty_min_class[qty] = rclass;
1665}
1666\f
1667/* Handle something which alters the value of an rtx REG.
1668
1669 REG is whatever is set or clobbered. SETTER is the rtx that
1670 is modifying the register.
1671
1672 If it is not really a register, we do nothing.
1673 The file-global variables `this_insn' and `this_insn_number'
1674 carry info from `block_alloc'. */
1675
1676static void
1677reg_is_set (reg, setter)
1678 rtx reg;
1679 rtx setter;
1680{
1681 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1682 a hard register. These may actually not exist any more. */
1683
1684 if (GET_CODE (reg) != SUBREG
1685 && GET_CODE (reg) != REG)
1686 return;
1687
1688 /* Mark this register as being born. If it is used in a CLOBBER, mark
1689 it as being born halfway between the previous insn and this insn so that
1690 it conflicts with our inputs but not the outputs of the previous insn. */
1691
1692 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1693}
1694\f
1695/* Handle beginning of the life of register REG.
1696 BIRTH is the index at which this is happening. */
1697
1698static void
1699reg_is_born (reg, birth)
1700 rtx reg;
1701 int birth;
1702{
1703 register int regno;
1704
1705 if (GET_CODE (reg) == SUBREG)
1706 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1707 else
1708 regno = REGNO (reg);
1709
1710 if (regno < FIRST_PSEUDO_REGISTER)
1711 {
1712 mark_life (regno, GET_MODE (reg), 1);
1713
1714 /* If the register was to have been born earlier that the present
1715 insn, mark it as live where it is actually born. */
1716 if (birth < 2 * this_insn_number)
1717 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1718 }
1719 else
1720 {
1721 if (reg_qty[regno] == -2)
1722 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1723
1724 /* If this register has a quantity number, show that it isn't dead. */
1725 if (reg_qty[regno] >= 0)
1726 qty_death[reg_qty[regno]] = -1;
1727 }
1728}
1729
1730/* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1731 REG is an output that is dying (i.e., it is never used), otherwise it
333e0f7d
RS
1732 is an input (the normal case).
1733 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2bbd3819
RS
1734
1735static void
1736wipe_dead_reg (reg, output_p)
1737 register rtx reg;
1738 int output_p;
1739{
1740 register int regno = REGNO (reg);
1741
333e0f7d
RS
1742 /* If this insn has multiple results,
1743 and the dead reg is used in one of the results,
1744 extend its life to after this insn,
1745 so it won't get allocated together with any other result of this insn. */
1746 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1747 && !single_set (this_insn))
1748 {
1749 int i;
1750 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1751 {
1752 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1753 if (GET_CODE (set) == SET
1754 && GET_CODE (SET_DEST (set)) != REG
1755 && !rtx_equal_p (reg, SET_DEST (set))
1756 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1757 output_p = 1;
1758 }
1759 }
1760
2bbd3819
RS
1761 if (regno < FIRST_PSEUDO_REGISTER)
1762 {
1763 mark_life (regno, GET_MODE (reg), 0);
1764
1765 /* If a hard register is dying as an output, mark it as in use at
1766 the beginning of this insn (the above statement would cause this
1767 not to happen). */
1768 if (output_p)
1769 post_mark_life (regno, GET_MODE (reg), 1,
1770 2 * this_insn_number, 2 * this_insn_number+ 1);
1771 }
1772
1773 else if (reg_qty[regno] >= 0)
1774 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1775}
1776\f
1777/* Find a block of SIZE words of hard regs in reg_class CLASS
1778 that can hold something of machine-mode MODE
1779 (but actually we test only the first of the block for holding MODE)
1780 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1781 and return the number of the first of them.
1782 Return -1 if such a block cannot be found.
1783 If QTY crosses calls, insist on a register preserved by calls,
1784 unless ACCEPT_CALL_CLOBBERED is nonzero.
1785
1786 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1787 register is available. If not, return -1. */
1788
1789static int
1790find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1791 born_index, dead_index)
1792 enum reg_class class;
1793 enum machine_mode mode;
1794 int accept_call_clobbered;
1795 int just_try_suggested;
1796 int qty;
1797 int born_index, dead_index;
1798{
1799 register int i, ins;
1800#ifdef HARD_REG_SET
1801 register /* Declare it register if it's a scalar. */
1802#endif
1803 HARD_REG_SET used, first_used;
1804#ifdef ELIMINABLE_REGS
1805 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1806#endif
1807
1808 /* Validate our parameters. */
1809 if (born_index < 0 || born_index > dead_index)
1810 abort ();
1811
1812 /* Don't let a pseudo live in a reg across a function call
1813 if we might get a nonlocal goto. */
1814 if (current_function_has_nonlocal_label
1815 && qty_n_calls_crossed[qty] > 0)
1816 return -1;
1817
1818 if (accept_call_clobbered)
1819 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1820 else if (qty_n_calls_crossed[qty] == 0)
1821 COPY_HARD_REG_SET (used, fixed_reg_set);
1822 else
1823 COPY_HARD_REG_SET (used, call_used_reg_set);
1824
1825 for (ins = born_index; ins < dead_index; ins++)
1826 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1827
1828 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1829
1830 /* Don't use the frame pointer reg in local-alloc even if
1831 we may omit the frame pointer, because if we do that and then we
1832 need a frame pointer, reload won't know how to move the pseudo
1833 to another hard reg. It can move only regs made by global-alloc.
1834
1835 This is true of any register that can be eliminated. */
1836#ifdef ELIMINABLE_REGS
1837 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
1838 SET_HARD_REG_BIT (used, eliminables[i].from);
1839#else
1840 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1841#endif
1842
1843 /* Normally, the registers that can be used for the first register in
1844 a multi-register quantity are the same as those that can be used for
1845 subsequent registers. However, if just trying suggested registers,
1846 restrict our consideration to them. If there are copy-suggested
1847 register, try them. Otherwise, try the arithmetic-suggested
1848 registers. */
1849 COPY_HARD_REG_SET (first_used, used);
1850
1851 if (just_try_suggested)
1852 {
1853 if (qty_phys_has_copy_sugg[qty])
1854 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
1855 else
1856 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
1857 }
1858
1859 /* If all registers are excluded, we can't do anything. */
1860 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
1861
1862 /* If at least one would be suitable, test each hard reg. */
1863
1864 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1865 {
1866#ifdef REG_ALLOC_ORDER
1867 int regno = reg_alloc_order[i];
1868#else
1869 int regno = i;
1870#endif
1871 if (! TEST_HARD_REG_BIT (first_used, regno)
1872 && HARD_REGNO_MODE_OK (regno, mode))
1873 {
1874 register int j;
1875 register int size1 = HARD_REGNO_NREGS (regno, mode);
1876 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
1877 if (j == size1)
1878 {
1879 /* Mark that this register is in use between its birth and death
1880 insns. */
1881 post_mark_life (regno, mode, 1, born_index, dead_index);
1882 return regno;
1883 }
1884#ifndef REG_ALLOC_ORDER
1885 i += j; /* Skip starting points we know will lose */
1886#endif
1887 }
1888 }
1889
1890 fail:
1891
1892 /* If we are just trying suggested register, we have just tried copy-
1893 suggested registers, and there are arithmetic-suggested registers,
1894 try them. */
1895
1896 /* If it would be profitable to allocate a call-clobbered register
1897 and save and restore it around calls, do that. */
1898 if (just_try_suggested && qty_phys_has_copy_sugg[qty]
1899 && qty_phys_has_sugg[qty])
1900 {
1901 /* Don't try the copy-suggested regs again. */
1902 qty_phys_has_copy_sugg[qty] = 0;
1903 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
1904 born_index, dead_index);
1905 }
1906
1907 if (! accept_call_clobbered
1908 && flag_caller_saves
1909 && ! just_try_suggested
1910 && qty_n_calls_crossed[qty] != 0
1911 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
1912 {
1913 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
1914 if (i >= 0)
1915 caller_save_needed = 1;
1916 return i;
1917 }
1918 return -1;
1919}
1920\f
1921/* Mark that REGNO with machine-mode MODE is live starting from the current
1922 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
1923 is zero). */
1924
1925static void
1926mark_life (regno, mode, life)
1927 register int regno;
1928 enum machine_mode mode;
1929 int life;
1930{
1931 register int j = HARD_REGNO_NREGS (regno, mode);
1932 if (life)
1933 while (--j >= 0)
1934 SET_HARD_REG_BIT (regs_live, regno + j);
1935 else
1936 while (--j >= 0)
1937 CLEAR_HARD_REG_BIT (regs_live, regno + j);
1938}
1939
1940/* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
1941 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
1942 to insn number DEATH (exclusive). */
1943
1944static void
1945post_mark_life (regno, mode, life, birth, death)
1946 register int regno, life, birth;
1947 enum machine_mode mode;
1948 int death;
1949{
1950 register int j = HARD_REGNO_NREGS (regno, mode);
1951#ifdef HARD_REG_SET
1952 register /* Declare it register if it's a scalar. */
1953#endif
1954 HARD_REG_SET this_reg;
1955
1956 CLEAR_HARD_REG_SET (this_reg);
1957 while (--j >= 0)
1958 SET_HARD_REG_BIT (this_reg, regno + j);
1959
1960 if (life)
1961 while (birth < death)
1962 {
1963 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
1964 birth++;
1965 }
1966 else
1967 while (birth < death)
1968 {
1969 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
1970 birth++;
1971 }
1972}
1973\f
1974/* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
1975 is the register being clobbered, and R1 is a register being used in
1976 the equivalent expression.
1977
1978 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
1979 in which it is used, return 1.
1980
1981 Otherwise, return 0. */
1982
1983static int
1984no_conflict_p (insn, r0, r1)
1985 rtx insn, r0, r1;
1986{
1987 int ok = 0;
1988 rtx note = find_reg_note (insn, REG_LIBCALL, 0);
1989 rtx p, last;
1990
1991 /* If R1 is a hard register, return 0 since we handle this case
1992 when we scan the insns that actually use it. */
1993
1994 if (note == 0
1995 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
1996 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
1997 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
1998 return 0;
1999
2000 last = XEXP (note, 0);
2001
2002 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2003 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2004 {
2005 if (find_reg_note (p, REG_DEAD, r1))
2006 ok = 1;
2007
2008 if (reg_mentioned_p (r1, PATTERN (p))
2009 && ! find_reg_note (p, REG_NO_CONFLICT, r1))
2010 return 0;
2011 }
2012
2013 return ok;
2014}
2015\f
2016/* Return 1 if the constraint string P indicates that the a the operand
2017 must be equal to operand 0 and that no register is acceptable. */
2018
2019static int
2020requires_inout_p (p)
2021 char *p;
2022{
2023 char c;
2024 int found_zero = 0;
2025
2026 while (c = *p++)
2027 switch (c)
2028 {
2029 case '0':
2030 found_zero = 1;
2031 break;
2032
2033 case '=': case '+': case '?':
2034 case '#': case '&': case '!':
2035 case '*': case '%': case ',':
2036 case '1': case '2': case '3': case '4':
2037 case 'm': case '<': case '>': case 'V': case 'o':
2038 case 'E': case 'F': case 'G': case 'H':
2039 case 's': case 'i': case 'n':
2040 case 'I': case 'J': case 'K': case 'L':
2041 case 'M': case 'N': case 'O': case 'P':
2042#ifdef EXTRA_CONSTRAINT
2043 case 'Q': case 'R': case 'S': case 'T': case 'U':
2044#endif
2045 case 'X':
2046 /* These don't say anything we care about. */
2047 break;
2048
2049 case 'p':
2050 case 'g': case 'r':
2051 default:
2052 /* These mean a register is allowed. Fail if so. */
2053 return 0;
2054 }
2055
2056 return found_zero;
2057}
2058\f
2059void
2060dump_local_alloc (file)
2061 FILE *file;
2062{
2063 register int i;
2064 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2065 if (reg_renumber[i] != -1)
2066 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2067}
This page took 0.237629 seconds and 5 git commands to generate.