]> gcc.gnu.org Git - gcc.git/blame - gcc/local-alloc.c
wrap_langinfo.h: New file.
[gcc.git] / gcc / local-alloc.c
CommitLineData
2bbd3819 1/* Allocate registers within a basic block, for GNU compiler.
d050d723
JL
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
2bbd3819
RS
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
a35311b0
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
2bbd3819 21
2bbd3819
RS
22/* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
64e3a413 51
2bbd3819
RS
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
a300b8d9
JW
58/* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
6cad67d2
JL
60 here if their preferred class is likely to be used by spills. */
61
2bbd3819 62#include "config.h"
670ee920 63#include "system.h"
2bbd3819 64#include "rtl.h"
6baf1cc8 65#include "tm_p.h"
2bbd3819 66#include "flags.h"
efc9bd41 67#include "hard-reg-set.h"
2bbd3819
RS
68#include "basic-block.h"
69#include "regs.h"
49ad7cfa 70#include "function.h"
2bbd3819 71#include "insn-config.h"
624a8b3a 72#include "insn-attr.h"
2bbd3819
RS
73#include "recog.h"
74#include "output.h"
2e107e9e 75#include "toplev.h"
2bbd3819
RS
76\f
77/* Next quantity number available for allocation. */
78
79static int next_qty;
80
a1ed7bdb
JH
81/* Information we maitain about each quantity. */
82struct qty
83{
84 /* The number of refs to quantity Q. */
2bbd3819 85
a1ed7bdb 86 int n_refs;
2bbd3819 87
a1ed7bdb
JH
88 /* Insn number (counting from head of basic block)
89 where quantity Q was born. -1 if birth has not been recorded. */
2bbd3819 90
a1ed7bdb 91 int birth;
2bbd3819 92
a1ed7bdb
JH
93 /* Insn number (counting from head of basic block)
94 where given quantity died. Due to the way tying is done,
95 and the fact that we consider in this pass only regs that die but once,
96 a quantity can die only once. Each quantity's life span
97 is a set of consecutive insns. -1 if death has not been recorded. */
2bbd3819 98
a1ed7bdb 99 int death;
2bbd3819 100
a1ed7bdb
JH
101 /* Number of words needed to hold the data in given quantity.
102 This depends on its machine mode. It is used for these purposes:
103 1. It is used in computing the relative importances of qtys,
104 which determines the order in which we look for regs for them.
105 2. It is used in rules that prevent tying several registers of
106 different sizes in a way that is geometrically impossible
107 (see combine_regs). */
2bbd3819 108
a1ed7bdb 109 int size;
2bbd3819 110
a1ed7bdb 111 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
2bbd3819 112
a1ed7bdb 113 int n_calls_crossed;
2bbd3819 114
a1ed7bdb
JH
115 /* The register number of one pseudo register whose reg_qty value is Q.
116 This register should be the head of the chain
117 maintained in reg_next_in_qty. */
2bbd3819 118
a1ed7bdb 119 int first_reg;
2bbd3819 120
a1ed7bdb
JH
121 /* Reg class contained in (smaller than) the preferred classes of all
122 the pseudo regs that are tied in given quantity.
123 This is the preferred class for allocating that quantity. */
124
125 enum reg_class min_class;
2bbd3819 126
a1ed7bdb
JH
127 /* Register class within which we allocate given qty if we can't get
128 its preferred class. */
2bbd3819 129
a1ed7bdb 130 enum reg_class alternate_class;
2bbd3819 131
a1ed7bdb
JH
132 /* This holds the mode of the registers that are tied to given qty,
133 or VOIDmode if registers with differing modes are tied together. */
2bbd3819 134
a1ed7bdb 135 enum machine_mode mode;
2bbd3819 136
a1ed7bdb
JH
137 /* the hard reg number chosen for given quantity,
138 or -1 if none was found. */
2bbd3819 139
a1ed7bdb 140 short phys_reg;
2bbd3819 141
02188693
RH
142 /* Nonzero if this quantity has been used in a SUBREG in some
143 way that is illegal. */
2bbd3819 144
02188693 145 char changes_mode;
2bbd3819 146
a1ed7bdb 147};
2bbd3819 148
a1ed7bdb 149static struct qty *qty;
2bbd3819 150
a1ed7bdb 151/* These fields are kept separately to speedup their clearing. */
2bbd3819 152
a1ed7bdb
JH
153/* We maintain two hard register sets that indicate suggested hard registers
154 for each quantity. The first, phys_copy_sugg, contains hard registers
155 that are tied to the quantity by a simple copy. The second contains all
156 hard registers that are tied to the quantity via an arithmetic operation.
2bbd3819 157
a1ed7bdb
JH
158 The former register set is given priority for allocation. This tends to
159 eliminate copy insns. */
2bbd3819 160
a1ed7bdb
JH
161/* Element Q is a set of hard registers that are suggested for quantity Q by
162 copy insns. */
2bbd3819 163
a1ed7bdb 164static HARD_REG_SET *qty_phys_copy_sugg;
2bbd3819 165
a1ed7bdb
JH
166/* Element Q is a set of hard registers that are suggested for quantity Q by
167 arithmetic insns. */
168
169static HARD_REG_SET *qty_phys_sugg;
170
171/* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
2bbd3819 172
a1ed7bdb 173static short *qty_phys_num_copy_sugg;
0f64b8f6 174
a1ed7bdb 175/* Element Q is the number of suggested registers in qty_phys_sugg. */
0f64b8f6 176
a1ed7bdb 177static short *qty_phys_num_sugg;
2bbd3819 178
2bbd3819
RS
179/* If (REG N) has been assigned a quantity number, is a register number
180 of another register assigned the same quantity number, or -1 for the
a1ed7bdb 181 end of the chain. qty->first_reg point to the head of this chain. */
2bbd3819 182
aabf56ce 183static int *reg_next_in_qty;
2bbd3819
RS
184
185/* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
186 if it is >= 0,
187 of -1 if this register cannot be allocated by local-alloc,
188 or -2 if not known yet.
189
190 Note that if we see a use or death of pseudo register N with
191 reg_qty[N] == -2, register N must be local to the current block. If
192 it were used in more than one block, we would have reg_qty[N] == -1.
193 This relies on the fact that if reg_basic_block[N] is >= 0, register N
194 will not appear in any other block. We save a considerable number of
195 tests by exploiting this.
196
197 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
198 be referenced. */
199
200static int *reg_qty;
201
202/* The offset (in words) of register N within its quantity.
203 This can be nonzero if register N is SImode, and has been tied
204 to a subreg of a DImode register. */
205
206static char *reg_offset;
207
208/* Vector of substitutions of register numbers,
209 used to map pseudo regs into hardware regs.
210 This is set up as a result of register allocation.
211 Element N is the hard reg assigned to pseudo reg N,
212 or is -1 if no hard reg was assigned.
213 If N is a hard reg number, element N is N. */
214
215short *reg_renumber;
216
217/* Set of hard registers live at the current point in the scan
218 of the instructions in a basic block. */
219
220static HARD_REG_SET regs_live;
221
222/* Each set of hard registers indicates registers live at a particular
223 point in the basic block. For N even, regs_live_at[N] says which
224 hard registers are needed *after* insn N/2 (i.e., they may not
225 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
226
227 If an object is to conflict with the inputs of insn J but not the
228 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
229 if it is to conflict with the outputs of insn J but not the inputs of
230 insn J + 1, it is said to die at index J*2 + 1. */
231
232static HARD_REG_SET *regs_live_at;
233
234/* Communicate local vars `insn_number' and `insn'
235 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
236static int this_insn_number;
237static rtx this_insn;
238
bf6d9fd7
JW
239struct equivalence
240{
241 /* Set when an attempt should be made to replace a register
242 with the associated src entry. */
243
244 char replace;
245
246 /* Set when a REG_EQUIV note is found or created. Use to
247 keep track of what memory accesses might be created later,
248 e.g. by reload. */
249
250 rtx replacement;
68342d36 251
bf6d9fd7 252 rtx src;
c25a4c25 253
bf6d9fd7
JW
254 /* Loop depth is used to recognize equivalences which appear
255 to be present within the same loop (or in an inner loop). */
256
257 int loop_depth;
258
259 /* The list of each instruction which initializes this register. */
260
261 rtx init_insns;
262};
263
264/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
265 structure for that register. */
266
267static struct equivalence *reg_equiv;
135eb61c 268
3f1b9b1b
JL
269/* Nonzero if we recorded an equivalence for a LABEL_REF. */
270static int recorded_label_ref;
271
3fe41456
KG
272static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
273static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
274static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
bf6d9fd7
JW
275static int equiv_init_varies_p PARAMS ((rtx));
276static int equiv_init_movable_p PARAMS ((rtx, int));
277static int contains_replace_regs PARAMS ((rtx));
3fe41456
KG
278static int memref_referenced_p PARAMS ((rtx, rtx));
279static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
280static void update_equiv_regs PARAMS ((void));
281static void no_equiv PARAMS ((rtx, rtx, void *));
282static void block_alloc PARAMS ((int));
283static int qty_sugg_compare PARAMS ((int, int));
284static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
285static int qty_compare PARAMS ((int, int));
286static int qty_compare_1 PARAMS ((const PTR, const PTR));
287static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
288static int reg_meets_class_p PARAMS ((int, enum reg_class));
289static void update_qty_class PARAMS ((int, int));
290static void reg_is_set PARAMS ((rtx, rtx, void *));
291static void reg_is_born PARAMS ((rtx, int));
292static void wipe_dead_reg PARAMS ((rtx, int));
293static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
82c68a78 294 int, int, int, int, int));
3fe41456
KG
295static void mark_life PARAMS ((int, enum machine_mode, int));
296static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
297static int no_conflict_p PARAMS ((rtx, rtx, rtx));
298static int requires_inout PARAMS ((const char *));
2bbd3819
RS
299\f
300/* Allocate a new quantity (new within current basic block)
301 for register number REGNO which is born at index BIRTH
302 within the block. MODE and SIZE are info on reg REGNO. */
303
304static void
305alloc_qty (regno, mode, size, birth)
306 int regno;
307 enum machine_mode mode;
308 int size, birth;
309{
a1ed7bdb 310 register int qtyno = next_qty++;
2bbd3819 311
a1ed7bdb 312 reg_qty[regno] = qtyno;
2bbd3819
RS
313 reg_offset[regno] = 0;
314 reg_next_in_qty[regno] = -1;
315
a1ed7bdb
JH
316 qty[qtyno].first_reg = regno;
317 qty[qtyno].size = size;
318 qty[qtyno].mode = mode;
319 qty[qtyno].birth = birth;
320 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
321 qty[qtyno].min_class = reg_preferred_class (regno);
322 qty[qtyno].alternate_class = reg_alternate_class (regno);
323 qty[qtyno].n_refs = REG_N_REFS (regno);
02188693 324 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
2bbd3819
RS
325}
326\f
2bbd3819
RS
327/* Main entry point of this file. */
328
3f1b9b1b 329int
2bbd3819
RS
330local_alloc ()
331{
332 register int b, i;
333 int max_qty;
334
3f1b9b1b
JL
335 /* We need to keep track of whether or not we recorded a LABEL_REF so
336 that we know if the jump optimizer needs to be rerun. */
337 recorded_label_ref = 0;
338
2bbd3819
RS
339 /* Leaf functions and non-leaf functions have different needs.
340 If defined, let the machine say what kind of ordering we
341 should use. */
342#ifdef ORDER_REGS_FOR_LOCAL_ALLOC
343 ORDER_REGS_FOR_LOCAL_ALLOC;
344#endif
345
346 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
347 registers. */
348 update_equiv_regs ();
349
350 /* This sets the maximum number of quantities we can have. Quantity
34f89b5f
BS
351 numbers start at zero and we can have one for each pseudo. */
352 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
2bbd3819
RS
353
354 /* Allocate vectors of temporary data.
355 See the declarations of these variables, above,
356 for what they mean. */
357
a1ed7bdb 358 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
4c9a05bc 359 qty_phys_copy_sugg
75c6bd46
RH
360 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
361 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
362 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
363 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
2bbd3819 364
83cbe7e4
RH
365 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
366 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
64e3a413 367 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
2bbd3819 368
64e3a413 369 /* Allocate the reg_renumber array. */
39379e67 370 allocate_reg_info (max_regno, FALSE, TRUE);
2bbd3819
RS
371
372 /* Determine which pseudo-registers can be allocated by local-alloc.
373 In general, these are the registers used only in a single block and
611bbf2a 374 which only die once.
2bbd3819
RS
375
376 We need not be concerned with which block actually uses the register
377 since we will never see it outside that block. */
378
379 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
380 {
611bbf2a 381 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
2bbd3819
RS
382 reg_qty[i] = -2;
383 else
384 reg_qty[i] = -1;
385 }
386
387 /* Force loop below to initialize entire quantity array. */
388 next_qty = max_qty;
389
390 /* Allocate each block's local registers, block by block. */
391
392 for (b = 0; b < n_basic_blocks; b++)
393 {
394 /* NEXT_QTY indicates which elements of the `qty_...'
395 vectors might need to be initialized because they were used
396 for the previous block; it is set to the entire array before
397 block 0. Initialize those, with explicit loop if there are few,
398 else with bzero and bcopy. Do not initialize vectors that are
399 explicit set by `alloc_qty'. */
400
401 if (next_qty < 6)
402 {
403 for (i = 0; i < next_qty; i++)
404 {
2bbd3819 405 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
51b86d8b 406 qty_phys_num_copy_sugg[i] = 0;
2bbd3819 407 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
51b86d8b 408 qty_phys_num_sugg[i] = 0;
2bbd3819
RS
409 }
410 }
411 else
412 {
413#define CLEAR(vector) \
961192e1 414 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
2bbd3819 415
2bbd3819 416 CLEAR (qty_phys_copy_sugg);
51b86d8b 417 CLEAR (qty_phys_num_copy_sugg);
2bbd3819 418 CLEAR (qty_phys_sugg);
51b86d8b 419 CLEAR (qty_phys_num_sugg);
2bbd3819
RS
420 }
421
422 next_qty = 0;
423
424 block_alloc (b);
2bbd3819 425 }
83cbe7e4 426
a1ed7bdb 427 free (qty);
75c6bd46
RH
428 free (qty_phys_copy_sugg);
429 free (qty_phys_num_copy_sugg);
430 free (qty_phys_sugg);
e7749837 431 free (qty_phys_num_sugg);
75c6bd46 432
83cbe7e4
RH
433 free (reg_qty);
434 free (reg_offset);
435 free (reg_next_in_qty);
75c6bd46 436
3f1b9b1b 437 return recorded_label_ref;
2bbd3819
RS
438}
439\f
2bbd3819
RS
440/* Used for communication between the following two functions: contains
441 a MEM that we wish to ensure remains unchanged. */
442static rtx equiv_mem;
443
444/* Set nonzero if EQUIV_MEM is modified. */
445static int equiv_mem_modified;
446
447/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
448 Called via note_stores. */
449
450static void
84832317 451validate_equiv_mem_from_store (dest, set, data)
2bbd3819 452 rtx dest;
e51712db 453 rtx set ATTRIBUTE_UNUSED;
84832317 454 void *data ATTRIBUTE_UNUSED;
2bbd3819
RS
455{
456 if ((GET_CODE (dest) == REG
457 && reg_overlap_mentioned_p (dest, equiv_mem))
458 || (GET_CODE (dest) == MEM
9ae8ffe7 459 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
2bbd3819
RS
460 equiv_mem_modified = 1;
461}
462
463/* Verify that no store between START and the death of REG invalidates
464 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
465 by storing into an overlapping memory location, or with a non-const
466 CALL_INSN.
467
468 Return 1 if MEMREF remains valid. */
469
470static int
471validate_equiv_mem (start, reg, memref)
472 rtx start;
473 rtx reg;
474 rtx memref;
475{
476 rtx insn;
477 rtx note;
478
479 equiv_mem = memref;
480 equiv_mem_modified = 0;
481
482 /* If the memory reference has side effects or is volatile, it isn't a
483 valid equivalence. */
484 if (side_effects_p (memref))
485 return 0;
486
487 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
488 {
2c3c49de 489 if (! INSN_P (insn))
2bbd3819
RS
490 continue;
491
492 if (find_reg_note (insn, REG_DEAD, reg))
493 return 1;
494
495 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
496 && ! CONST_CALL_P (insn))
497 return 0;
498
84832317 499 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2bbd3819
RS
500
501 /* If a register mentioned in MEMREF is modified via an
502 auto-increment, we lose the equivalence. Do the same if one
503 dies; although we could extend the life, it doesn't seem worth
504 the trouble. */
505
506 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
507 if ((REG_NOTE_KIND (note) == REG_INC
508 || REG_NOTE_KIND (note) == REG_DEAD)
509 && GET_CODE (XEXP (note, 0)) == REG
510 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
511 return 0;
512 }
513
514 return 0;
515}
a1729519 516
bf6d9fd7
JW
517/* Returns zero if X is known to be invariant. */
518
519static int
520equiv_init_varies_p (x)
521 rtx x;
522{
523 register RTX_CODE code = GET_CODE (x);
524 register int i;
525 register const char *fmt;
526
527 switch (code)
528 {
529 case MEM:
530 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
531
532 case QUEUED:
533 return 1;
534
535 case CONST:
536 case CONST_INT:
537 case CONST_DOUBLE:
538 case SYMBOL_REF:
539 case LABEL_REF:
540 return 0;
541
542 case REG:
543 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x);
544
545 case ASM_OPERANDS:
546 if (MEM_VOLATILE_P (x))
547 return 1;
548
549 /* FALLTHROUGH */
550
551 default:
552 break;
553 }
554
555 fmt = GET_RTX_FORMAT (code);
556 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
557 if (fmt[i] == 'e')
558 {
559 if (equiv_init_varies_p (XEXP (x, i)))
560 return 1;
561 }
562 else if (fmt[i] == 'E')
563 {
564 int j;
565 for (j = 0; j < XVECLEN (x, i); j++)
566 if (equiv_init_varies_p (XVECEXP (x, i, j)))
567 return 1;
568 }
569
570 return 0;
571}
572
573/* Returns non-zero if X (used to initialize register REGNO) is movable.
574 X is only movable if the registers it uses have equivalent initializations
575 which appear to be within the same loop (or in an inner loop) and movable
576 or if they are not candidates for local_alloc and don't vary. */
a1729519
JW
577
578static int
bf6d9fd7
JW
579equiv_init_movable_p (x, regno)
580 rtx x;
581 int regno;
582{
583 int i, j;
584 const char *fmt;
585 enum rtx_code code = GET_CODE (x);
586
587 switch (code)
588 {
589 case SET:
590 return equiv_init_movable_p (SET_SRC (x), regno);
591
592 case CLOBBER:
593 return 0;
594
595 case PRE_INC:
596 case PRE_DEC:
597 case POST_INC:
598 case POST_DEC:
599 case PRE_MODIFY:
600 case POST_MODIFY:
601 return 0;
602
603 case REG:
604 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
605 && reg_equiv[REGNO (x)].replace)
606 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x));
607
608 case UNSPEC_VOLATILE:
609 return 0;
610
611 case ASM_OPERANDS:
612 if (MEM_VOLATILE_P (x))
613 return 0;
614
615 /* FALLTHROUGH */
616
617 default:
618 break;
619 }
620
621 fmt = GET_RTX_FORMAT (code);
622 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
623 switch (fmt[i])
624 {
625 case 'e':
626 if (! equiv_init_movable_p (XEXP (x, i), regno))
627 return 0;
628 break;
629 case 'E':
630 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
631 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
632 return 0;
633 break;
634 }
635
636 return 1;
637}
638
639/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
640
641static int
642contains_replace_regs (x)
a1729519 643 rtx x;
a1729519
JW
644{
645 int i, j;
6f7d635c 646 const char *fmt;
a1729519
JW
647 enum rtx_code code = GET_CODE (x);
648
649 switch (code)
650 {
651 case CONST_INT:
652 case CONST:
653 case LABEL_REF:
654 case SYMBOL_REF:
655 case CONST_DOUBLE:
656 case PC:
657 case CC0:
658 case HIGH:
659 case LO_SUM:
660 return 0;
661
662 case REG:
bf6d9fd7 663 return reg_equiv[REGNO (x)].replace;
1d300e19
KG
664
665 default:
666 break;
a1729519
JW
667 }
668
669 fmt = GET_RTX_FORMAT (code);
670 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
671 switch (fmt[i])
672 {
673 case 'e':
bf6d9fd7 674 if (contains_replace_regs (XEXP (x, i)))
a1729519
JW
675 return 1;
676 break;
677 case 'E':
678 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
bf6d9fd7 679 if (contains_replace_regs (XVECEXP (x, i, j)))
a1729519
JW
680 return 1;
681 break;
682 }
683
684 return 0;
685}
2bbd3819
RS
686\f
687/* TRUE if X references a memory location that would be affected by a store
688 to MEMREF. */
689
690static int
691memref_referenced_p (memref, x)
692 rtx x;
693 rtx memref;
694{
695 int i, j;
6f7d635c 696 const char *fmt;
2bbd3819
RS
697 enum rtx_code code = GET_CODE (x);
698
699 switch (code)
700 {
2bbd3819
RS
701 case CONST_INT:
702 case CONST:
703 case LABEL_REF:
704 case SYMBOL_REF:
705 case CONST_DOUBLE:
706 case PC:
707 case CC0:
708 case HIGH:
709 case LO_SUM:
710 return 0;
711
c25a4c25 712 case REG:
bf6d9fd7 713 return (reg_equiv[REGNO (x)].replacement
3298a1b1 714 && memref_referenced_p (memref,
bf6d9fd7 715 reg_equiv[REGNO (x)].replacement));
c25a4c25 716
2bbd3819 717 case MEM:
9ae8ffe7 718 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
2bbd3819
RS
719 return 1;
720 break;
721
722 case SET:
723 /* If we are setting a MEM, it doesn't count (its address does), but any
724 other SET_DEST that has a MEM in it is referencing the MEM. */
725 if (GET_CODE (SET_DEST (x)) == MEM)
726 {
727 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
728 return 1;
729 }
730 else if (memref_referenced_p (memref, SET_DEST (x)))
731 return 1;
732
733 return memref_referenced_p (memref, SET_SRC (x));
64e3a413 734
e9a25f70
JL
735 default:
736 break;
2bbd3819
RS
737 }
738
739 fmt = GET_RTX_FORMAT (code);
740 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
741 switch (fmt[i])
742 {
743 case 'e':
744 if (memref_referenced_p (memref, XEXP (x, i)))
745 return 1;
746 break;
747 case 'E':
748 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
749 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
750 return 1;
751 break;
752 }
753
754 return 0;
755}
756
757/* TRUE if some insn in the range (START, END] references a memory location
758 that would be affected by a store to MEMREF. */
759
760static int
761memref_used_between_p (memref, start, end)
762 rtx memref;
763 rtx start;
764 rtx end;
765{
766 rtx insn;
767
768 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
769 insn = NEXT_INSN (insn))
2c3c49de 770 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
2bbd3819
RS
771 return 1;
772
773 return 0;
774}
775\f
2b49ee39
R
776/* Return nonzero if the rtx X is invariant over the current function. */
777int
778function_invariant_p (x)
779 rtx x;
780{
781 if (CONSTANT_P (x))
782 return 1;
783 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
784 return 1;
785 if (GET_CODE (x) == PLUS
786 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
787 && CONSTANT_P (XEXP (x, 1)))
788 return 1;
789 return 0;
790}
791
2bbd3819
RS
792/* Find registers that are equivalent to a single value throughout the
793 compilation (either because they can be referenced in memory or are set once
794 from a single constant). Lower their priority for a register.
795
796 If such a register is only referenced once, try substituting its value
797 into the using insn. If it succeeds, we can eliminate the register
798 completely. */
799
800static void
801update_equiv_regs ()
802{
2bbd3819 803 rtx insn;
bf6d9fd7
JW
804 int block;
805 int loop_depth;
2bbd3819 806
bf6d9fd7 807 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
2bbd3819
RS
808
809 init_alias_analysis ();
810
2bbd3819
RS
811 /* Scan the insns and find which registers have equivalences. Do this
812 in a separate scan of the insns because (due to -fcse-follow-jumps)
813 a register can be set below its use. */
bf6d9fd7 814 loop_depth = 0;
2bbd3819
RS
815 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
816 {
817 rtx note;
135eb61c 818 rtx set;
49ddab16 819 rtx dest, src;
2bbd3819
RS
820 int regno;
821
822 if (GET_CODE (insn) == NOTE)
823 {
824 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
bf6d9fd7 825 ++loop_depth;
2bbd3819 826 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
bf6d9fd7
JW
827 {
828 if (! loop_depth)
829 abort ();
830 --loop_depth;
831 }
2bbd3819
RS
832 }
833
2c3c49de 834 if (! INSN_P (insn))
2bbd3819
RS
835 continue;
836
135eb61c
R
837 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
838 if (REG_NOTE_KIND (note) == REG_INC)
84832317 839 no_equiv (XEXP (note, 0), note, NULL);
135eb61c
R
840
841 set = single_set (insn);
842
843 /* If this insn contains more (or less) than a single SET,
844 only mark all destinations as having no known equivalence. */
845 if (set == 0)
846 {
84832317 847 note_stores (PATTERN (insn), no_equiv, NULL);
135eb61c
R
848 continue;
849 }
850 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
851 {
852 int i;
853
854 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
855 {
856 rtx part = XVECEXP (PATTERN (insn), 0, i);
857 if (part != set)
84832317 858 note_stores (part, no_equiv, NULL);
135eb61c
R
859 }
860 }
861
2bbd3819 862 dest = SET_DEST (set);
49ddab16 863 src = SET_SRC (set);
2bbd3819
RS
864
865 /* If this sets a MEM to the contents of a REG that is only used
866 in a single basic block, see if the register is always equivalent
867 to that memory location and if moving the store from INSN to the
868 insn that set REG is safe. If so, put a REG_EQUIV note on the
a1729519
JW
869 initializing insn.
870
871 Don't add a REG_EQUIV note if the insn already has one. The existing
872 REG_EQUIV is likely more useful than the one we are adding.
873
bf6d9fd7
JW
874 If one of the regs in the address has reg_equiv[REGNO].replace set,
875 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
a1729519 876 optimization may move the set of this register immediately before
bf6d9fd7 877 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
a1729519
JW
878 the mention in the REG_EQUIV note would be to an uninitialized
879 pseudo. */
135eb61c
R
880 /* ????? This test isn't good enough; we might see a MEM with a use of
881 a pseudo register before we see its setting insn that will cause
bf6d9fd7 882 reg_equiv[].replace for that pseudo to be set.
135eb61c 883 Equivalences to MEMs should be made in another pass, after the
bf6d9fd7 884 reg_equiv[].replace information has been gathered. */
135eb61c
R
885
886 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
887 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
b1f21e0a 888 && REG_BASIC_BLOCK (regno) >= 0
135eb61c 889 && REG_N_SETS (regno) == 1
bf6d9fd7
JW
890 && reg_equiv[regno].init_insns != 0
891 && reg_equiv[regno].init_insns != const0_rtx
892 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
b768aa38 893 REG_EQUIV, NULL_RTX)
bf6d9fd7 894 && ! contains_replace_regs (XEXP (dest, 0)))
135eb61c 895 {
bf6d9fd7 896 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
135eb61c
R
897 if (validate_equiv_mem (init_insn, src, dest)
898 && ! memref_used_between_p (dest, init_insn, insn))
899 REG_NOTES (init_insn)
900 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
901 }
2bbd3819 902
1230327b 903 /* We only handle the case of a pseudo register being set
135eb61c
R
904 once, or always to the same value. */
905 /* ??? The mn10200 port breaks if we add equivalences for
906 values that need an ADDRESS_REGS register and set them equivalent
907 to a MEM of a pseudo. The actual problem is in the over-conservative
908 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
909 calculate_needs, but we traditionally work around this problem
910 here by rejecting equivalences when the destination is in a register
911 that's likely spilled. This is fragile, of course, since the
8585f8f1 912 preferred class of a pseudo depends on all instructions that set
135eb61c
R
913 or use it. */
914
2bbd3819
RS
915 if (GET_CODE (dest) != REG
916 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
bf6d9fd7 917 || reg_equiv[regno].init_insns == const0_rtx
135eb61c
R
918 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
919 && GET_CODE (src) == MEM))
920 {
921 /* This might be seting a SUBREG of a pseudo, a pseudo that is
922 also set somewhere else to a constant. */
84832317 923 note_stores (set, no_equiv, NULL);
135eb61c
R
924 continue;
925 }
2bbd3819 926
b1ec3c92 927 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2bbd3819 928
2f93c5c3
BS
929 /* cse sometimes generates function invariants, but doesn't put a
930 REG_EQUAL note on the insn. Since this note would be redundant,
931 there's no point creating it earlier than here. */
bf6d9fd7 932 if (! note && ! rtx_varies_p (src))
2f93c5c3
BS
933 REG_NOTES (insn)
934 = note = gen_rtx_EXPR_LIST (REG_EQUAL, src, REG_NOTES (insn));
935
bf6d9fd7
JW
936 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
937 since it represents a function call */
938 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
939 note = NULL_RTX;
940
135eb61c
R
941 if (REG_N_SETS (regno) != 1
942 && (! note
bf6d9fd7
JW
943 || rtx_varies_p (XEXP (note, 0))
944 || (reg_equiv[regno].replacement
135eb61c 945 && ! rtx_equal_p (XEXP (note, 0),
bf6d9fd7 946 reg_equiv[regno].replacement))))
135eb61c 947 {
84832317 948 no_equiv (dest, set, NULL);
135eb61c
R
949 continue;
950 }
2bbd3819 951 /* Record this insn as initializing this register. */
bf6d9fd7
JW
952 reg_equiv[regno].init_insns
953 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2bbd3819
RS
954
955 /* If this register is known to be equal to a constant, record that
956 it is always equivalent to the constant. */
bf6d9fd7 957 if (note && ! rtx_varies_p (XEXP (note, 0)))
2bbd3819
RS
958 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
959
960 /* If this insn introduces a "constant" register, decrease the priority
961 of that register. Record this insn if the register is only used once
962 more and the equivalence value is the same as our source.
963
964 The latter condition is checked for two reasons: First, it is an
965 indication that it may be more efficient to actually emit the insn
966 as written (if no registers are available, reload will substitute
967 the equivalence). Secondly, it avoids problems with any registers
968 dying in this insn whose death notes would be missed.
969
970 If we don't have a REG_EQUIV note, see if this insn is loading
971 a register used only in one basic block from a MEM. If so, and the
972 MEM remains unchanged for the life of the register, add a REG_EQUIV
973 note. */
64e3a413 974
b1ec3c92 975 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2bbd3819 976
b1f21e0a 977 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
2bbd3819
RS
978 && GET_CODE (SET_SRC (set)) == MEM
979 && validate_equiv_mem (insn, dest, SET_SRC (set)))
38a448ca
RH
980 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
981 REG_NOTES (insn));
2bbd3819 982
68342d36 983 if (note)
2bbd3819
RS
984 {
985 int regno = REGNO (dest);
986
3f1b9b1b
JL
987 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
988 We might end up substituting the LABEL_REF for uses of the
989 pseudo here or later. That kind of transformation may turn an
990 indirect jump into a direct jump, in which case we must rerun the
991 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
992 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
993 || (GET_CODE (XEXP (note, 0)) == CONST
994 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
995 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
996 == LABEL_REF)))
997 recorded_label_ref = 1;
64e3a413 998
bf6d9fd7
JW
999 reg_equiv[regno].replacement = XEXP (note, 0);
1000 reg_equiv[regno].src = src;
1001 reg_equiv[regno].loop_depth = loop_depth;
68342d36
RK
1002
1003 /* Don't mess with things live during setjmp. */
b1f21e0a 1004 if (REG_LIVE_LENGTH (regno) >= 0)
68342d36
RK
1005 {
1006 /* Note that the statement below does not affect the priority
1007 in local-alloc! */
b1f21e0a 1008 REG_LIVE_LENGTH (regno) *= 2;
2bbd3819 1009
2bbd3819 1010
68342d36
RK
1011 /* If the register is referenced exactly twice, meaning it is
1012 set once and used once, indicate that the reference may be
bf6d9fd7
JW
1013 replaced by the equivalence we computed above. Do this
1014 even if the register is only used in one block so that
1015 dependencies can be handled where the last register is
1016 used in a different block (i.e. HIGH / LO_SUM sequences)
1017 and to reduce the number of registers alive across calls.
2bbd3819 1018
68342d36
RK
1019 It would be nice to use "loop_depth * 2" in the compare
1020 below. Unfortunately, LOOP_DEPTH need not be constant within
1021 a basic block so this would be too complicated.
2bbd3819 1022
68342d36
RK
1023 This case normally occurs when a parameter is read from
1024 memory and then used exactly once, not in a loop. */
1025
b1f21e0a 1026 if (REG_N_REFS (regno) == 2
bf6d9fd7
JW
1027 && (rtx_equal_p (XEXP (note, 0), src)
1028 || ! equiv_init_varies_p (src))
1029 && GET_CODE (insn) == INSN
1030 && equiv_init_movable_p (PATTERN (insn), regno))
1031 reg_equiv[regno].replace = 1;
68342d36 1032 }
2bbd3819
RS
1033 }
1034 }
1035
2e1253f3
ILT
1036 /* Now scan all regs killed in an insn to see if any of them are
1037 registers only used that once. If so, see if we can replace the
1038 reference with the equivalent from. If we can, delete the
1039 initializing reference and this register will go away. If we
bf6d9fd7
JW
1040 can't replace the reference, and the initialzing reference is
1041 within the same loop (or in an inner loop), then move the register
1042 initialization just before the use, so that they are in the same
1043 basic block.
1044
1045 Skip this optimization if loop_depth isn't initially zero since
1046 that indicates a mismatch between loop begin and loop end notes
1047 (i.e. gcc.dg/noncompile/920721-2.c). */
1048 block = n_basic_blocks - 1;
1049 for (insn = (loop_depth == 0) ? get_last_insn () : NULL_RTX;
1050 insn; insn = PREV_INSN (insn))
2bbd3819
RS
1051 {
1052 rtx link;
1053
2c3c49de 1054 if (! INSN_P (insn))
2e1253f3
ILT
1055 {
1056 if (GET_CODE (insn) == NOTE)
1057 {
bf6d9fd7
JW
1058 if (NOTE_INSN_BASIC_BLOCK_P (insn))
1059 block = NOTE_BASIC_BLOCK (insn)->index - 1;
1060 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2e1253f3 1061 {
bf6d9fd7 1062 if (! loop_depth)
2e1253f3 1063 abort ();
bf6d9fd7 1064 --loop_depth;
2e1253f3 1065 }
bf6d9fd7
JW
1066 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1067 ++loop_depth;
2e1253f3
ILT
1068 }
1069
1070 continue;
1071 }
1072
2bbd3819 1073 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2e1253f3
ILT
1074 {
1075 if (REG_NOTE_KIND (link) == REG_DEAD
1076 /* Make sure this insn still refers to the register. */
1077 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1078 {
1079 int regno = REGNO (XEXP (link, 0));
1080 rtx equiv_insn;
2bbd3819 1081
bf6d9fd7
JW
1082 if (! reg_equiv[regno].replace
1083 || reg_equiv[regno].loop_depth < loop_depth)
2e1253f3
ILT
1084 continue;
1085
bf6d9fd7 1086 /* reg_equiv[REGNO].replace gets set only when
135eb61c
R
1087 REG_N_REFS[REGNO] is 2, i.e. the register is set
1088 once and used once. (If it were only set, but not used,
64e3a413 1089 flow would have deleted the setting insns.) Hence
bf6d9fd7 1090 there can only be one insn in reg_equiv[REGNO].init_insns. */
96af667a
GK
1091 if (reg_equiv[regno].init_insns == NULL_RTX
1092 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1093 abort ();
bf6d9fd7 1094 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
2e1253f3 1095
bf6d9fd7
JW
1096 if (asm_noperands (PATTERN (equiv_insn)) < 0
1097 && validate_replace_rtx (regno_reg_rtx[regno],
1098 reg_equiv[regno].src, insn))
2e1253f3 1099 {
bf6d9fd7
JW
1100 rtx equiv_link;
1101 rtx last_link;
1102 rtx note;
1103
1104 /* Find the last note. */
1105 for (last_link = link; XEXP (last_link, 1);
1106 last_link = XEXP (last_link, 1))
1107 ;
1108
1109 /* Append the REG_DEAD notes from equiv_insn. */
1110 equiv_link = REG_NOTES (equiv_insn);
1111 while (equiv_link)
1112 {
1113 note = equiv_link;
1114 equiv_link = XEXP (equiv_link, 1);
1115 if (REG_NOTE_KIND (note) == REG_DEAD)
1116 {
1117 remove_note (equiv_insn, note);
1118 XEXP (last_link, 1) = note;
1119 XEXP (note, 1) = NULL_RTX;
1120 last_link = note;
1121 }
1122 }
1123
2e1253f3 1124 remove_death (regno, insn);
b1f21e0a 1125 REG_N_REFS (regno) = 0;
2e1253f3
ILT
1126 PUT_CODE (equiv_insn, NOTE);
1127 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1128 NOTE_SOURCE_FILE (equiv_insn) = 0;
96af667a
GK
1129
1130 reg_equiv[regno].init_insns =
1131 XEXP (reg_equiv[regno].init_insns, 1);
2e1253f3 1132 }
bf6d9fd7
JW
1133 /* Move the initialization of the register to just before
1134 INSN. Update the flow information. */
1135 else if (PREV_INSN (insn) != equiv_insn)
2e1253f3 1136 {
8e08106d 1137 int l;
96af667a 1138 rtx new_insn;
2e1253f3 1139
96af667a
GK
1140 new_insn = emit_insn_before (copy_rtx (PATTERN (equiv_insn)),
1141 insn);
9956bfc0 1142 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
ef178af3 1143 REG_NOTES (equiv_insn) = 0;
2e1253f3
ILT
1144
1145 PUT_CODE (equiv_insn, NOTE);
1146 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1147 NOTE_SOURCE_FILE (equiv_insn) = 0;
2e1253f3 1148
96af667a
GK
1149 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1150
bf6d9fd7 1151 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
b1f21e0a
MM
1152 REG_N_CALLS_CROSSED (regno) = 0;
1153 REG_LIVE_LENGTH (regno) = 2;
2e1253f3 1154
3b413743
RH
1155 if (block >= 0 && insn == BLOCK_HEAD (block))
1156 BLOCK_HEAD (block) = PREV_INSN (insn);
2e1253f3 1157
2e1253f3 1158 for (l = 0; l < n_basic_blocks; l++)
bf6d9fd7
JW
1159 {
1160 CLEAR_REGNO_REG_SET (
1161 BASIC_BLOCK (l)->global_live_at_start,
1162 regno);
1163 CLEAR_REGNO_REG_SET (
1164 BASIC_BLOCK (l)->global_live_at_end,
1165 regno);
1166 }
2e1253f3
ILT
1167 }
1168 }
1169 }
2bbd3819 1170 }
e05e2395
MM
1171
1172 /* Clean up. */
1173 end_alias_analysis ();
bf6d9fd7 1174 free (reg_equiv);
2bbd3819 1175}
135eb61c
R
1176
1177/* Mark REG as having no known equivalence.
1178 Some instructions might have been proceessed before and furnished
1179 with REG_EQUIV notes for this register; these notes will have to be
1180 removed.
1181 STORE is the piece of RTL that does the non-constant / conflicting
1182 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1183 but needs to be there because this function is called from note_stores. */
1184static void
84832317 1185no_equiv (reg, store, data)
54ea1de9 1186 rtx reg, store ATTRIBUTE_UNUSED;
84832317 1187 void *data ATTRIBUTE_UNUSED;
135eb61c
R
1188{
1189 int regno;
1190 rtx list;
1191
1192 if (GET_CODE (reg) != REG)
1193 return;
1194 regno = REGNO (reg);
bf6d9fd7 1195 list = reg_equiv[regno].init_insns;
135eb61c
R
1196 if (list == const0_rtx)
1197 return;
1198 for (; list; list = XEXP (list, 1))
1199 {
1200 rtx insn = XEXP (list, 0);
1201 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1202 }
bf6d9fd7
JW
1203 reg_equiv[regno].init_insns = const0_rtx;
1204 reg_equiv[regno].replacement = NULL_RTX;
135eb61c 1205}
2bbd3819
RS
1206\f
1207/* Allocate hard regs to the pseudo regs used only within block number B.
1208 Only the pseudos that die but once can be handled. */
1209
1210static void
1211block_alloc (b)
1212 int b;
1213{
1214 register int i, q;
1215 register rtx insn;
1216 rtx note;
1217 int insn_number = 0;
1218 int insn_count = 0;
1219 int max_uid = get_max_uid ();
aabf56ce 1220 int *qty_order;
2bbd3819
RS
1221 int no_conflict_combined_regno = -1;
1222
1223 /* Count the instructions in the basic block. */
1224
3b413743 1225 insn = BLOCK_END (b);
2bbd3819
RS
1226 while (1)
1227 {
1228 if (GET_CODE (insn) != NOTE)
1229 if (++insn_count > max_uid)
1230 abort ();
3b413743 1231 if (insn == BLOCK_HEAD (b))
2bbd3819
RS
1232 break;
1233 insn = PREV_INSN (insn);
1234 }
1235
1236 /* +2 to leave room for a post_mark_life at the last insn and for
1237 the birth of a CLOBBER in the first insn. */
ff154f78
MM
1238 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1239 sizeof (HARD_REG_SET));
2bbd3819
RS
1240
1241 /* Initialize table of hardware registers currently live. */
1242
e881bb1b 1243 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
2bbd3819
RS
1244
1245 /* This loop scans the instructions of the basic block
1246 and assigns quantities to registers.
1247 It computes which registers to tie. */
1248
3b413743 1249 insn = BLOCK_HEAD (b);
2bbd3819
RS
1250 while (1)
1251 {
2bbd3819
RS
1252 if (GET_CODE (insn) != NOTE)
1253 insn_number++;
1254
2c3c49de 1255 if (INSN_P (insn))
2bbd3819
RS
1256 {
1257 register rtx link, set;
1258 register int win = 0;
a544cfd2 1259 register rtx r0, r1 = NULL_RTX;
2bbd3819
RS
1260 int combined_regno = -1;
1261 int i;
2bbd3819
RS
1262
1263 this_insn_number = insn_number;
1264 this_insn = insn;
1265
0a578fee 1266 extract_insn (insn);
2bbd3819
RS
1267 which_alternative = -1;
1268
1269 /* Is this insn suitable for tying two registers?
1270 If so, try doing that.
1271 Suitable insns are those with at least two operands and where
1272 operand 0 is an output that is a register that is not
1273 earlyclobber.
7aba0f0b
RK
1274
1275 We can tie operand 0 with some operand that dies in this insn.
1276 First look for operands that are required to be in the same
1277 register as operand 0. If we find such, only try tying that
1278 operand or one that can be put into that operand if the
1279 operation is commutative. If we don't find an operand
1280 that is required to be in the same register as operand 0,
1281 we can tie with any operand.
1282
2bbd3819
RS
1283 Subregs in place of regs are also ok.
1284
1285 If tying is done, WIN is set nonzero. */
1286
d29c259b
RH
1287 if (optimize
1288 && recog_data.n_operands > 1
1ccbefce 1289 && recog_data.constraints[0][0] == '='
19af6455 1290 && recog_data.constraints[0][1] != '&')
2bbd3819 1291 {
3061cc54 1292 /* If non-negative, is an operand that must match operand 0. */
7aba0f0b 1293 int must_match_0 = -1;
3061cc54
RK
1294 /* Counts number of alternatives that require a match with
1295 operand 0. */
1296 int n_matching_alts = 0;
7aba0f0b 1297
1ccbefce 1298 for (i = 1; i < recog_data.n_operands; i++)
3061cc54 1299 {
1ccbefce 1300 const char *p = recog_data.constraints[i];
3061cc54
RK
1301 int this_match = (requires_inout (p));
1302
1303 n_matching_alts += this_match;
1ccbefce 1304 if (this_match == recog_data.n_alternatives)
3061cc54
RK
1305 must_match_0 = i;
1306 }
2bbd3819 1307
1ccbefce
RH
1308 r0 = recog_data.operand[0];
1309 for (i = 1; i < recog_data.n_operands; i++)
2bbd3819 1310 {
7aba0f0b
RK
1311 /* Skip this operand if we found an operand that
1312 must match operand 0 and this operand isn't it
1313 and can't be made to be it by commutativity. */
1314
1315 if (must_match_0 >= 0 && i != must_match_0
1316 && ! (i == must_match_0 + 1
1ccbefce 1317 && recog_data.constraints[i-1][0] == '%')
7aba0f0b 1318 && ! (i == must_match_0 - 1
1ccbefce 1319 && recog_data.constraints[i][0] == '%'))
7aba0f0b 1320 continue;
3061cc54
RK
1321
1322 /* Likewise if each alternative has some operand that
64e3a413 1323 must match operand zero. In that case, skip any
3061cc54
RK
1324 operand that doesn't list operand 0 since we know that
1325 the operand always conflicts with operand 0. We
1326 ignore commutatity in this case to keep things simple. */
1ccbefce
RH
1327 if (n_matching_alts == recog_data.n_alternatives
1328 && 0 == requires_inout (recog_data.constraints[i]))
3061cc54 1329 continue;
2bbd3819 1330
1ccbefce 1331 r1 = recog_data.operand[i];
2bbd3819 1332
7aba0f0b
RK
1333 /* If the operand is an address, find a register in it.
1334 There may be more than one register, but we only try one
1335 of them. */
19af6455 1336 if (recog_data.constraints[i][0] == 'p')
7aba0f0b
RK
1337 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1338 r1 = XEXP (r1, 0);
1339
1340 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1341 {
1342 /* We have two priorities for hard register preferences.
1343 If we have a move insn or an insn whose first input
1344 can only be in the same register as the output, give
1345 priority to an equivalence found from that insn. */
1346 int may_save_copy
1ccbefce 1347 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
64e3a413 1348
7aba0f0b
RK
1349 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1350 win = combine_regs (r1, r0, may_save_copy,
1351 insn_number, insn, 0);
1352 }
662347c5
JL
1353 if (win)
1354 break;
2bbd3819
RS
1355 }
1356 }
1357
1358 /* Recognize an insn sequence with an ultimate result
1359 which can safely overlap one of the inputs.
1360 The sequence begins with a CLOBBER of its result,
1361 and ends with an insn that copies the result to itself
1362 and has a REG_EQUAL note for an equivalent formula.
1363 That note indicates what the inputs are.
1364 The result and the input can overlap if each insn in
1365 the sequence either doesn't mention the input
1366 or has a REG_NO_CONFLICT note to inhibit the conflict.
1367
1368 We do the combining test at the CLOBBER so that the
1369 destination register won't have had a quantity number
1370 assigned, since that would prevent combining. */
1371
d29c259b
RH
1372 if (optimize
1373 && GET_CODE (PATTERN (insn)) == CLOBBER
2bbd3819
RS
1374 && (r0 = XEXP (PATTERN (insn), 0),
1375 GET_CODE (r0) == REG)
b1ec3c92 1376 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
a6665f8c 1377 && XEXP (link, 0) != 0
2bbd3819
RS
1378 && GET_CODE (XEXP (link, 0)) == INSN
1379 && (set = single_set (XEXP (link, 0))) != 0
1380 && SET_DEST (set) == r0 && SET_SRC (set) == r0
b1ec3c92
CH
1381 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1382 NULL_RTX)) != 0)
2bbd3819
RS
1383 {
1384 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1385 /* Check that we have such a sequence. */
1386 && no_conflict_p (insn, r0, r1))
1387 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1388 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1389 && (r1 = XEXP (XEXP (note, 0), 0),
1390 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1391 && no_conflict_p (insn, r0, r1))
1392 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1393
1394 /* Here we care if the operation to be computed is
1395 commutative. */
1396 else if ((GET_CODE (XEXP (note, 0)) == EQ
1397 || GET_CODE (XEXP (note, 0)) == NE
1398 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1399 && (r1 = XEXP (XEXP (note, 0), 1),
1400 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1401 && no_conflict_p (insn, r0, r1))
1402 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1403
1404 /* If we did combine something, show the register number
1405 in question so that we know to ignore its death. */
1406 if (win)
1407 no_conflict_combined_regno = REGNO (r1);
1408 }
1409
1410 /* If registers were just tied, set COMBINED_REGNO
1411 to the number of the register used in this insn
1412 that was tied to the register set in this insn.
1413 This register's qty should not be "killed". */
1414
1415 if (win)
1416 {
1417 while (GET_CODE (r1) == SUBREG)
1418 r1 = SUBREG_REG (r1);
1419 combined_regno = REGNO (r1);
1420 }
1421
1422 /* Mark the death of everything that dies in this instruction,
1423 except for anything that was just combined. */
1424
1425 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1426 if (REG_NOTE_KIND (link) == REG_DEAD
1427 && GET_CODE (XEXP (link, 0)) == REG
770ae6cc
RK
1428 && combined_regno != (int) REGNO (XEXP (link, 0))
1429 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1430 || ! find_reg_note (insn, REG_NO_CONFLICT,
1431 XEXP (link, 0))))
2bbd3819
RS
1432 wipe_dead_reg (XEXP (link, 0), 0);
1433
1434 /* Allocate qty numbers for all registers local to this block
1435 that are born (set) in this instruction.
1436 A pseudo that already has a qty is not changed. */
1437
84832317 1438 note_stores (PATTERN (insn), reg_is_set, NULL);
2bbd3819
RS
1439
1440 /* If anything is set in this insn and then unused, mark it as dying
1441 after this insn, so it will conflict with our outputs. This
1442 can't match with something that combined, and it doesn't matter
1443 if it did. Do this after the calls to reg_is_set since these
1444 die after, not during, the current insn. */
1445
1446 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1447 if (REG_NOTE_KIND (link) == REG_UNUSED
1448 && GET_CODE (XEXP (link, 0)) == REG)
1449 wipe_dead_reg (XEXP (link, 0), 1);
1450
64e3a413 1451 /* If this is an insn that has a REG_RETVAL note pointing at a
2bbd3819
RS
1452 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1453 block, so clear any register number that combined within it. */
b1ec3c92 1454 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
2bbd3819
RS
1455 && GET_CODE (XEXP (note, 0)) == INSN
1456 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1457 no_conflict_combined_regno = -1;
1458 }
1459
1460 /* Set the registers live after INSN_NUMBER. Note that we never
1461 record the registers live before the block's first insn, since no
1462 pseudos we care about are live before that insn. */
1463
1464 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1465 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1466
3b413743 1467 if (insn == BLOCK_END (b))
2bbd3819
RS
1468 break;
1469
1470 insn = NEXT_INSN (insn);
1471 }
1472
1473 /* Now every register that is local to this basic block
1474 should have been given a quantity, or else -1 meaning ignore it.
64e3a413 1475 Every quantity should have a known birth and death.
2bbd3819 1476
51b86d8b
RK
1477 Order the qtys so we assign them registers in order of the
1478 number of suggested registers they need so we allocate those with
1479 the most restrictive needs first. */
2bbd3819 1480
ff154f78 1481 qty_order = (int *) xmalloc (next_qty * sizeof (int));
2bbd3819
RS
1482 for (i = 0; i < next_qty; i++)
1483 qty_order[i] = i;
1484
1485#define EXCHANGE(I1, I2) \
1486 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1487
1488 switch (next_qty)
1489 {
1490 case 3:
1491 /* Make qty_order[2] be the one to allocate last. */
51b86d8b 1492 if (qty_sugg_compare (0, 1) > 0)
2bbd3819 1493 EXCHANGE (0, 1);
51b86d8b 1494 if (qty_sugg_compare (1, 2) > 0)
2bbd3819
RS
1495 EXCHANGE (2, 1);
1496
0f41302f 1497 /* ... Fall through ... */
2bbd3819
RS
1498 case 2:
1499 /* Put the best one to allocate in qty_order[0]. */
51b86d8b 1500 if (qty_sugg_compare (0, 1) > 0)
2bbd3819
RS
1501 EXCHANGE (0, 1);
1502
0f41302f 1503 /* ... Fall through ... */
2bbd3819
RS
1504
1505 case 1:
1506 case 0:
1507 /* Nothing to do here. */
1508 break;
1509
1510 default:
51b86d8b 1511 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
2bbd3819
RS
1512 }
1513
1514 /* Try to put each quantity in a suggested physical register, if it has one.
1515 This may cause registers to be allocated that otherwise wouldn't be, but
1516 this seems acceptable in local allocation (unlike global allocation). */
1517 for (i = 0; i < next_qty; i++)
1518 {
1519 q = qty_order[i];
51b86d8b 1520 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
a1ed7bdb
JH
1521 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1522 0, 1, qty[q].birth, qty[q].death);
2bbd3819 1523 else
a1ed7bdb 1524 qty[q].phys_reg = -1;
2bbd3819
RS
1525 }
1526
64e3a413
KH
1527 /* Order the qtys so we assign them registers in order of
1528 decreasing length of life. Normally call qsort, but if we
51b86d8b
RK
1529 have only a very small number of quantities, sort them ourselves. */
1530
1531 for (i = 0; i < next_qty; i++)
1532 qty_order[i] = i;
1533
1534#define EXCHANGE(I1, I2) \
1535 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1536
1537 switch (next_qty)
1538 {
1539 case 3:
1540 /* Make qty_order[2] be the one to allocate last. */
1541 if (qty_compare (0, 1) > 0)
1542 EXCHANGE (0, 1);
1543 if (qty_compare (1, 2) > 0)
1544 EXCHANGE (2, 1);
1545
0f41302f 1546 /* ... Fall through ... */
51b86d8b
RK
1547 case 2:
1548 /* Put the best one to allocate in qty_order[0]. */
1549 if (qty_compare (0, 1) > 0)
1550 EXCHANGE (0, 1);
1551
0f41302f 1552 /* ... Fall through ... */
51b86d8b
RK
1553
1554 case 1:
1555 case 0:
1556 /* Nothing to do here. */
1557 break;
1558
1559 default:
1560 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1561 }
1562
2bbd3819
RS
1563 /* Now for each qty that is not a hardware register,
1564 look for a hardware register to put it in.
1565 First try the register class that is cheapest for this qty,
1566 if there is more than one class. */
1567
1568 for (i = 0; i < next_qty; i++)
1569 {
1570 q = qty_order[i];
a1ed7bdb 1571 if (qty[q].phys_reg < 0)
2bbd3819 1572 {
624a8b3a
JL
1573#ifdef INSN_SCHEDULING
1574 /* These values represent the adjusted lifetime of a qty so
1575 that it conflicts with qtys which appear near the start/end
1576 of this qty's lifetime.
1577
1578 The purpose behind extending the lifetime of this qty is to
1579 discourage the register allocator from creating false
1580 dependencies.
64e3a413 1581
996e9683
JL
1582 The adjustment value is choosen to indicate that this qty
1583 conflicts with all the qtys in the instructions immediately
624a8b3a
JL
1584 before and after the lifetime of this qty.
1585
1586 Experiments have shown that higher values tend to hurt
1587 overall code performance.
1588
1589 If allocation using the extended lifetime fails we will try
1590 again with the qty's unadjusted lifetime. */
a1ed7bdb 1591 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
996e9683 1592 int fake_death = MIN (insn_number * 2 + 1,
a1ed7bdb 1593 qty[q].death + 2 - qty[q].death % 2);
624a8b3a
JL
1594#endif
1595
2bbd3819
RS
1596 if (N_REG_CLASSES > 1)
1597 {
624a8b3a
JL
1598#ifdef INSN_SCHEDULING
1599 /* We try to avoid using hard registers allocated to qtys which
1600 are born immediately after this qty or die immediately before
1601 this qty.
1602
1603 This optimization is only appropriate when we will run
1604 a scheduling pass after reload and we are not optimizing
1605 for code size. */
c358412f
JL
1606 if (flag_schedule_insns_after_reload
1607 && !optimize_size
1608 && !SMALL_REGISTER_CLASSES)
624a8b3a 1609 {
64e3a413 1610 qty[q].phys_reg = find_free_reg (qty[q].min_class,
a1ed7bdb 1611 qty[q].mode, q, 0, 0,
624a8b3a 1612 fake_birth, fake_death);
a1ed7bdb 1613 if (qty[q].phys_reg >= 0)
624a8b3a
JL
1614 continue;
1615 }
1616#endif
64e3a413 1617 qty[q].phys_reg = find_free_reg (qty[q].min_class,
a1ed7bdb
JH
1618 qty[q].mode, q, 0, 0,
1619 qty[q].birth, qty[q].death);
1620 if (qty[q].phys_reg >= 0)
2bbd3819
RS
1621 continue;
1622 }
1623
624a8b3a
JL
1624#ifdef INSN_SCHEDULING
1625 /* Similarly, avoid false dependencies. */
c358412f
JL
1626 if (flag_schedule_insns_after_reload
1627 && !optimize_size
1628 && !SMALL_REGISTER_CLASSES
a1ed7bdb
JH
1629 && qty[q].alternate_class != NO_REGS)
1630 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1631 qty[q].mode, q, 0, 0,
624a8b3a
JL
1632 fake_birth, fake_death);
1633#endif
a1ed7bdb
JH
1634 if (qty[q].alternate_class != NO_REGS)
1635 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1636 qty[q].mode, q, 0, 0,
1637 qty[q].birth, qty[q].death);
2bbd3819
RS
1638 }
1639 }
1640
1641 /* Now propagate the register assignments
1642 to the pseudo regs belonging to the qtys. */
1643
1644 for (q = 0; q < next_qty; q++)
a1ed7bdb 1645 if (qty[q].phys_reg >= 0)
2bbd3819 1646 {
a1ed7bdb
JH
1647 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1648 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
2bbd3819 1649 }
ff154f78
MM
1650
1651 /* Clean up. */
1652 free (regs_live_at);
1653 free (qty_order);
2bbd3819
RS
1654}
1655\f
1656/* Compare two quantities' priority for getting real registers.
1657 We give shorter-lived quantities higher priority.
6dc42e49
RS
1658 Quantities with more references are also preferred, as are quantities that
1659 require multiple registers. This is the identical prioritization as
2bbd3819
RS
1660 done by global-alloc.
1661
1662 We used to give preference to registers with *longer* lives, but using
1663 the same algorithm in both local- and global-alloc can speed up execution
1664 of some programs by as much as a factor of three! */
1665
2f23fcc9
RK
1666/* Note that the quotient will never be bigger than
1667 the value of floor_log2 times the maximum number of
1668 times a register can occur in one insn (surely less than 100).
1669 Multiplying this by 10000 can't overflow.
1670 QTY_CMP_PRI is also used by qty_sugg_compare. */
1671
1672#define QTY_CMP_PRI(q) \
a1ed7bdb
JH
1673 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].n_refs * qty[q].size) \
1674 / (qty[q].death - qty[q].birth)) * 10000))
2f23fcc9 1675
2bbd3819
RS
1676static int
1677qty_compare (q1, q2)
1678 int q1, q2;
1679{
2f23fcc9 1680 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
2bbd3819
RS
1681}
1682
1683static int
2f23fcc9 1684qty_compare_1 (q1p, q2p)
e1b6684c
KG
1685 const PTR q1p;
1686 const PTR q2p;
2bbd3819 1687{
64e3a413 1688 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
2f23fcc9
RK
1689 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1690
1691 if (tem != 0)
1692 return tem;
1693
2bbd3819
RS
1694 /* If qtys are equally good, sort by qty number,
1695 so that the results of qsort leave nothing to chance. */
2f23fcc9 1696 return q1 - q2;
2bbd3819
RS
1697}
1698\f
51b86d8b
RK
1699/* Compare two quantities' priority for getting real registers. This version
1700 is called for quantities that have suggested hard registers. First priority
1701 goes to quantities that have copy preferences, then to those that have
1702 normal preferences. Within those groups, quantities with the lower
9faa82d8 1703 number of preferences have the highest priority. Of those, we use the same
51b86d8b
RK
1704 algorithm as above. */
1705
2f23fcc9
RK
1706#define QTY_CMP_SUGG(q) \
1707 (qty_phys_num_copy_sugg[q] \
1708 ? qty_phys_num_copy_sugg[q] \
1709 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1710
51b86d8b
RK
1711static int
1712qty_sugg_compare (q1, q2)
1713 int q1, q2;
1714{
2f23fcc9
RK
1715 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1716
1717 if (tem != 0)
1718 return tem;
64e3a413 1719
2f23fcc9 1720 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
51b86d8b
RK
1721}
1722
1723static int
2f23fcc9 1724qty_sugg_compare_1 (q1p, q2p)
e1b6684c
KG
1725 const PTR q1p;
1726 const PTR q2p;
51b86d8b 1727{
64e3a413 1728 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
2f23fcc9
RK
1729 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1730
1731 if (tem != 0)
1732 return tem;
1733
1734 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1735 if (tem != 0)
1736 return tem;
51b86d8b
RK
1737
1738 /* If qtys are equally good, sort by qty number,
1739 so that the results of qsort leave nothing to chance. */
2f23fcc9 1740 return q1 - q2;
51b86d8b 1741}
2f23fcc9
RK
1742
1743#undef QTY_CMP_SUGG
1744#undef QTY_CMP_PRI
51b86d8b 1745\f
2bbd3819
RS
1746/* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1747 Returns 1 if have done so, or 0 if cannot.
1748
1749 Combining registers means marking them as having the same quantity
1750 and adjusting the offsets within the quantity if either of
1751 them is a SUBREG).
1752
1753 We don't actually combine a hard reg with a pseudo; instead
1754 we just record the hard reg as the suggestion for the pseudo's quantity.
1755 If we really combined them, we could lose if the pseudo lives
1756 across an insn that clobbers the hard reg (eg, movstr).
1757
1758 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1759 there is no REG_DEAD note on INSN. This occurs during the processing
1760 of REG_NO_CONFLICT blocks.
1761
1762 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1763 SETREG or if the input and output must share a register.
1764 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
64e3a413 1765
2bbd3819
RS
1766 There are elaborate checks for the validity of combining. */
1767
2bbd3819
RS
1768static int
1769combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1770 rtx usedreg, setreg;
1771 int may_save_copy;
1772 int insn_number;
1773 rtx insn;
1774 int already_dead;
1775{
1776 register int ureg, sreg;
1777 register int offset = 0;
1778 int usize, ssize;
1779 register int sqty;
1780
1781 /* Determine the numbers and sizes of registers being used. If a subreg
6dc42e49 1782 is present that does not change the entire register, don't consider
2bbd3819
RS
1783 this a copy insn. */
1784
1785 while (GET_CODE (usedreg) == SUBREG)
1786 {
1787 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1788 may_save_copy = 0;
1789 offset += SUBREG_WORD (usedreg);
1790 usedreg = SUBREG_REG (usedreg);
1791 }
1792 if (GET_CODE (usedreg) != REG)
1793 return 0;
1794 ureg = REGNO (usedreg);
1795 usize = REG_SIZE (usedreg);
1796
1797 while (GET_CODE (setreg) == SUBREG)
1798 {
1799 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1800 may_save_copy = 0;
1801 offset -= SUBREG_WORD (setreg);
1802 setreg = SUBREG_REG (setreg);
1803 }
1804 if (GET_CODE (setreg) != REG)
1805 return 0;
1806 sreg = REGNO (setreg);
1807 ssize = REG_SIZE (setreg);
1808
1809 /* If UREG is a pseudo-register that hasn't already been assigned a
1810 quantity number, it means that it is not local to this block or dies
1811 more than once. In either event, we can't do anything with it. */
1812 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1813 /* Do not combine registers unless one fits within the other. */
1814 || (offset > 0 && usize + offset > ssize)
1815 || (offset < 0 && usize + offset < ssize)
1816 /* Do not combine with a smaller already-assigned object
0f41302f 1817 if that smaller object is already combined with something bigger. */
2bbd3819 1818 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
a1ed7bdb 1819 && usize < qty[reg_qty[ureg]].size)
2bbd3819
RS
1820 /* Can't combine if SREG is not a register we can allocate. */
1821 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1822 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1823 These have already been taken care of. This probably wouldn't
1824 combine anyway, but don't take any chances. */
1825 || (ureg >= FIRST_PSEUDO_REGISTER
1826 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1827 /* Don't tie something to itself. In most cases it would make no
1828 difference, but it would screw up if the reg being tied to itself
1829 also dies in this insn. */
1830 || ureg == sreg
1831 /* Don't try to connect two different hardware registers. */
1832 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1833 /* Don't connect two different machine modes if they have different
1834 implications as to which registers may be used. */
1835 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1836 return 0;
1837
1838 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1839 qty_phys_sugg for the pseudo instead of tying them.
1840
1841 Return "failure" so that the lifespan of UREG is terminated here;
1842 that way the two lifespans will be disjoint and nothing will prevent
1843 the pseudo reg from being given this hard reg. */
1844
1845 if (ureg < FIRST_PSEUDO_REGISTER)
1846 {
1847 /* Allocate a quantity number so we have a place to put our
1848 suggestions. */
1849 if (reg_qty[sreg] == -2)
1850 reg_is_born (setreg, 2 * insn_number);
1851
1852 if (reg_qty[sreg] >= 0)
1853 {
51b86d8b
RK
1854 if (may_save_copy
1855 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
2bbd3819
RS
1856 {
1857 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
51b86d8b 1858 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
2bbd3819 1859 }
51b86d8b 1860 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
2bbd3819
RS
1861 {
1862 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
51b86d8b 1863 qty_phys_num_sugg[reg_qty[sreg]]++;
2bbd3819
RS
1864 }
1865 }
1866 return 0;
1867 }
1868
1869 /* Similarly for SREG a hard register and UREG a pseudo register. */
1870
1871 if (sreg < FIRST_PSEUDO_REGISTER)
1872 {
51b86d8b
RK
1873 if (may_save_copy
1874 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
2bbd3819
RS
1875 {
1876 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
51b86d8b 1877 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
2bbd3819 1878 }
51b86d8b 1879 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
2bbd3819
RS
1880 {
1881 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
51b86d8b 1882 qty_phys_num_sugg[reg_qty[ureg]]++;
2bbd3819
RS
1883 }
1884 return 0;
1885 }
1886
1887 /* At this point we know that SREG and UREG are both pseudos.
1888 Do nothing if SREG already has a quantity or is a register that we
1889 don't allocate. */
1890 if (reg_qty[sreg] >= -1
1891 /* If we are not going to let any regs live across calls,
1892 don't tie a call-crossing reg to a non-call-crossing reg. */
1893 || (current_function_has_nonlocal_label
b1f21e0a
MM
1894 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1895 != (REG_N_CALLS_CROSSED (sreg) > 0))))
2bbd3819
RS
1896 return 0;
1897
1898 /* We don't already know about SREG, so tie it to UREG
1899 if this is the last use of UREG, provided the classes they want
1900 are compatible. */
1901
1902 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
a1ed7bdb 1903 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
2bbd3819
RS
1904 {
1905 /* Add SREG to UREG's quantity. */
1906 sqty = reg_qty[ureg];
1907 reg_qty[sreg] = sqty;
1908 reg_offset[sreg] = reg_offset[ureg] + offset;
a1ed7bdb
JH
1909 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1910 qty[sqty].first_reg = sreg;
2bbd3819 1911
a1ed7bdb 1912 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
2bbd3819
RS
1913 update_qty_class (sqty, sreg);
1914
1915 /* Update info about quantity SQTY. */
a1ed7bdb
JH
1916 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1917 qty[sqty].n_refs += REG_N_REFS (sreg);
2bbd3819
RS
1918 if (usize < ssize)
1919 {
1920 register int i;
1921
a1ed7bdb 1922 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
2bbd3819
RS
1923 reg_offset[i] -= offset;
1924
a1ed7bdb
JH
1925 qty[sqty].size = ssize;
1926 qty[sqty].mode = GET_MODE (setreg);
2bbd3819
RS
1927 }
1928 }
1929 else
1930 return 0;
1931
1932 return 1;
1933}
1934\f
1935/* Return 1 if the preferred class of REG allows it to be tied
1936 to a quantity or register whose class is CLASS.
1937 True if REG's reg class either contains or is contained in CLASS. */
1938
1939static int
1940reg_meets_class_p (reg, class)
1941 int reg;
1942 enum reg_class class;
1943{
1944 register enum reg_class rclass = reg_preferred_class (reg);
1945 return (reg_class_subset_p (rclass, class)
1946 || reg_class_subset_p (class, rclass));
1947}
1948
a1ed7bdb 1949/* Update the class of QTYNO assuming that REG is being tied to it. */
2bbd3819
RS
1950
1951static void
a1ed7bdb
JH
1952update_qty_class (qtyno, reg)
1953 int qtyno;
2bbd3819
RS
1954 int reg;
1955{
1956 enum reg_class rclass = reg_preferred_class (reg);
a1ed7bdb
JH
1957 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1958 qty[qtyno].min_class = rclass;
e4600702
RK
1959
1960 rclass = reg_alternate_class (reg);
a1ed7bdb
JH
1961 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1962 qty[qtyno].alternate_class = rclass;
0f64b8f6 1963
02188693
RH
1964 if (REG_CHANGES_MODE (reg))
1965 qty[qtyno].changes_mode = 1;
2bbd3819
RS
1966}
1967\f
1968/* Handle something which alters the value of an rtx REG.
1969
1970 REG is whatever is set or clobbered. SETTER is the rtx that
1971 is modifying the register.
1972
1973 If it is not really a register, we do nothing.
1974 The file-global variables `this_insn' and `this_insn_number'
1975 carry info from `block_alloc'. */
1976
1977static void
84832317 1978reg_is_set (reg, setter, data)
2bbd3819
RS
1979 rtx reg;
1980 rtx setter;
84832317 1981 void *data ATTRIBUTE_UNUSED;
2bbd3819
RS
1982{
1983 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1984 a hard register. These may actually not exist any more. */
1985
1986 if (GET_CODE (reg) != SUBREG
1987 && GET_CODE (reg) != REG)
1988 return;
1989
1990 /* Mark this register as being born. If it is used in a CLOBBER, mark
1991 it as being born halfway between the previous insn and this insn so that
1992 it conflicts with our inputs but not the outputs of the previous insn. */
1993
1994 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1995}
1996\f
1997/* Handle beginning of the life of register REG.
1998 BIRTH is the index at which this is happening. */
1999
2000static void
2001reg_is_born (reg, birth)
2002 rtx reg;
2003 int birth;
2004{
2005 register int regno;
64e3a413 2006
2bbd3819
RS
2007 if (GET_CODE (reg) == SUBREG)
2008 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
2009 else
2010 regno = REGNO (reg);
2011
2012 if (regno < FIRST_PSEUDO_REGISTER)
2013 {
2014 mark_life (regno, GET_MODE (reg), 1);
2015
2016 /* If the register was to have been born earlier that the present
2017 insn, mark it as live where it is actually born. */
2018 if (birth < 2 * this_insn_number)
2019 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2020 }
2021 else
2022 {
2023 if (reg_qty[regno] == -2)
2024 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2025
2026 /* If this register has a quantity number, show that it isn't dead. */
2027 if (reg_qty[regno] >= 0)
a1ed7bdb 2028 qty[reg_qty[regno]].death = -1;
2bbd3819
RS
2029 }
2030}
2031
2032/* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2033 REG is an output that is dying (i.e., it is never used), otherwise it
333e0f7d
RS
2034 is an input (the normal case).
2035 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2bbd3819
RS
2036
2037static void
2038wipe_dead_reg (reg, output_p)
2039 register rtx reg;
2040 int output_p;
2041{
2042 register int regno = REGNO (reg);
2043
333e0f7d
RS
2044 /* If this insn has multiple results,
2045 and the dead reg is used in one of the results,
2046 extend its life to after this insn,
64e3a413 2047 so it won't get allocated together with any other result of this insn.
941c63ac
JL
2048
2049 It is unsafe to use !single_set here since it will ignore an unused
2050 output. Just because an output is unused does not mean the compiler
2051 can assume the side effect will not occur. Consider if REG appears
2052 in the address of an output and we reload the output. If we allocate
2053 REG to the same hard register as an unused output we could set the hard
2054 register before the output reload insn. */
333e0f7d 2055 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
941c63ac 2056 && multiple_sets (this_insn))
333e0f7d
RS
2057 {
2058 int i;
2059 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2060 {
2061 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2062 if (GET_CODE (set) == SET
2063 && GET_CODE (SET_DEST (set)) != REG
2064 && !rtx_equal_p (reg, SET_DEST (set))
2065 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2066 output_p = 1;
2067 }
2068 }
2069
c182df0b
RK
2070 /* If this register is used in an auto-increment address, then extend its
2071 life to after this insn, so that it won't get allocated together with
2072 the result of this insn. */
2073 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2074 output_p = 1;
2075
2bbd3819
RS
2076 if (regno < FIRST_PSEUDO_REGISTER)
2077 {
2078 mark_life (regno, GET_MODE (reg), 0);
2079
2080 /* If a hard register is dying as an output, mark it as in use at
2081 the beginning of this insn (the above statement would cause this
2082 not to happen). */
2083 if (output_p)
2084 post_mark_life (regno, GET_MODE (reg), 1,
64e3a413 2085 2 * this_insn_number, 2 * this_insn_number + 1);
2bbd3819
RS
2086 }
2087
2088 else if (reg_qty[regno] >= 0)
a1ed7bdb 2089 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2bbd3819
RS
2090}
2091\f
2092/* Find a block of SIZE words of hard regs in reg_class CLASS
2093 that can hold something of machine-mode MODE
2094 (but actually we test only the first of the block for holding MODE)
2095 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2096 and return the number of the first of them.
64e3a413 2097 Return -1 if such a block cannot be found.
a1ed7bdb 2098 If QTYNO crosses calls, insist on a register preserved by calls,
2bbd3819
RS
2099 unless ACCEPT_CALL_CLOBBERED is nonzero.
2100
2101 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2102 register is available. If not, return -1. */
2103
2104static int
a1ed7bdb 2105find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2bbd3819
RS
2106 born_index, dead_index)
2107 enum reg_class class;
2108 enum machine_mode mode;
a1ed7bdb 2109 int qtyno;
2bbd3819
RS
2110 int accept_call_clobbered;
2111 int just_try_suggested;
2bbd3819
RS
2112 int born_index, dead_index;
2113{
2114 register int i, ins;
2115#ifdef HARD_REG_SET
64e3a413
KH
2116 /* Declare it register if it's a scalar. */
2117 register
2bbd3819
RS
2118#endif
2119 HARD_REG_SET used, first_used;
2120#ifdef ELIMINABLE_REGS
2121 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2122#endif
2123
2124 /* Validate our parameters. */
2125 if (born_index < 0 || born_index > dead_index)
2126 abort ();
2127
2128 /* Don't let a pseudo live in a reg across a function call
2129 if we might get a nonlocal goto. */
2130 if (current_function_has_nonlocal_label
a1ed7bdb 2131 && qty[qtyno].n_calls_crossed > 0)
2bbd3819
RS
2132 return -1;
2133
2134 if (accept_call_clobbered)
2135 COPY_HARD_REG_SET (used, call_fixed_reg_set);
a1ed7bdb 2136 else if (qty[qtyno].n_calls_crossed == 0)
2bbd3819
RS
2137 COPY_HARD_REG_SET (used, fixed_reg_set);
2138 else
2139 COPY_HARD_REG_SET (used, call_used_reg_set);
2140
6cad67d2 2141 if (accept_call_clobbered)
c09be6c4 2142 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
6cad67d2 2143
2bbd3819
RS
2144 for (ins = born_index; ins < dead_index; ins++)
2145 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2146
2147 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2148
2149 /* Don't use the frame pointer reg in local-alloc even if
2150 we may omit the frame pointer, because if we do that and then we
2151 need a frame pointer, reload won't know how to move the pseudo
2152 to another hard reg. It can move only regs made by global-alloc.
2153
2154 This is true of any register that can be eliminated. */
2155#ifdef ELIMINABLE_REGS
b6a1cbae 2156 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2bbd3819 2157 SET_HARD_REG_BIT (used, eliminables[i].from);
c2618f05
DE
2158#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2159 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
0f41302f 2160 that it might be eliminated into. */
c2618f05
DE
2161 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2162#endif
2bbd3819
RS
2163#else
2164 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2165#endif
2166
02188693
RH
2167#ifdef CLASS_CANNOT_CHANGE_MODE
2168 if (qty[qtyno].changes_mode)
899d4140 2169 IOR_HARD_REG_SET (used,
02188693 2170 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
0f64b8f6
RK
2171#endif
2172
2bbd3819
RS
2173 /* Normally, the registers that can be used for the first register in
2174 a multi-register quantity are the same as those that can be used for
2175 subsequent registers. However, if just trying suggested registers,
2176 restrict our consideration to them. If there are copy-suggested
2177 register, try them. Otherwise, try the arithmetic-suggested
2178 registers. */
2179 COPY_HARD_REG_SET (first_used, used);
2180
2181 if (just_try_suggested)
2182 {
a1ed7bdb
JH
2183 if (qty_phys_num_copy_sugg[qtyno] != 0)
2184 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2bbd3819 2185 else
a1ed7bdb 2186 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2bbd3819
RS
2187 }
2188
2189 /* If all registers are excluded, we can't do anything. */
2190 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2191
2192 /* If at least one would be suitable, test each hard reg. */
2193
2194 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2195 {
2196#ifdef REG_ALLOC_ORDER
2197 int regno = reg_alloc_order[i];
2198#else
2199 int regno = i;
2200#endif
2201 if (! TEST_HARD_REG_BIT (first_used, regno)
1e326708 2202 && HARD_REGNO_MODE_OK (regno, mode)
a1ed7bdb 2203 && (qty[qtyno].n_calls_crossed == 0
1e326708
MH
2204 || accept_call_clobbered
2205 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2bbd3819
RS
2206 {
2207 register int j;
2208 register int size1 = HARD_REGNO_NREGS (regno, mode);
2209 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2210 if (j == size1)
2211 {
2212 /* Mark that this register is in use between its birth and death
2213 insns. */
2214 post_mark_life (regno, mode, 1, born_index, dead_index);
2215 return regno;
2216 }
2217#ifndef REG_ALLOC_ORDER
64e3a413
KH
2218 /* Skip starting points we know will lose. */
2219 i += j;
2bbd3819
RS
2220#endif
2221 }
2222 }
2223
2224 fail:
2bbd3819
RS
2225 /* If we are just trying suggested register, we have just tried copy-
2226 suggested registers, and there are arithmetic-suggested registers,
2227 try them. */
64e3a413 2228
2bbd3819
RS
2229 /* If it would be profitable to allocate a call-clobbered register
2230 and save and restore it around calls, do that. */
a1ed7bdb
JH
2231 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2232 && qty_phys_num_sugg[qtyno] != 0)
2bbd3819
RS
2233 {
2234 /* Don't try the copy-suggested regs again. */
a1ed7bdb
JH
2235 qty_phys_num_copy_sugg[qtyno] = 0;
2236 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2bbd3819
RS
2237 born_index, dead_index);
2238 }
2239
e19f5192
RK
2240 /* We need not check to see if the current function has nonlocal
2241 labels because we don't put any pseudos that are live over calls in
2242 registers in that case. */
2243
2bbd3819
RS
2244 if (! accept_call_clobbered
2245 && flag_caller_saves
2246 && ! just_try_suggested
a1ed7bdb 2247 && qty[qtyno].n_calls_crossed != 0
64e3a413
KH
2248 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2249 qty[qtyno].n_calls_crossed))
2bbd3819 2250 {
a1ed7bdb 2251 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2bbd3819
RS
2252 if (i >= 0)
2253 caller_save_needed = 1;
2254 return i;
2255 }
2256 return -1;
2257}
2258\f
2259/* Mark that REGNO with machine-mode MODE is live starting from the current
2260 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2261 is zero). */
2262
2263static void
2264mark_life (regno, mode, life)
2265 register int regno;
2266 enum machine_mode mode;
2267 int life;
2268{
2269 register int j = HARD_REGNO_NREGS (regno, mode);
2270 if (life)
2271 while (--j >= 0)
2272 SET_HARD_REG_BIT (regs_live, regno + j);
2273 else
2274 while (--j >= 0)
2275 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2276}
2277
2278/* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2279 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2280 to insn number DEATH (exclusive). */
2281
2282static void
2283post_mark_life (regno, mode, life, birth, death)
82c68a78 2284 int regno;
2bbd3819 2285 enum machine_mode mode;
82c68a78 2286 int life, birth, death;
2bbd3819
RS
2287{
2288 register int j = HARD_REGNO_NREGS (regno, mode);
2289#ifdef HARD_REG_SET
64e3a413
KH
2290 /* Declare it register if it's a scalar. */
2291 register
2bbd3819
RS
2292#endif
2293 HARD_REG_SET this_reg;
2294
2295 CLEAR_HARD_REG_SET (this_reg);
2296 while (--j >= 0)
2297 SET_HARD_REG_BIT (this_reg, regno + j);
2298
2299 if (life)
2300 while (birth < death)
2301 {
2302 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2303 birth++;
2304 }
2305 else
2306 while (birth < death)
2307 {
2308 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2309 birth++;
2310 }
2311}
2312\f
2313/* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2314 is the register being clobbered, and R1 is a register being used in
2315 the equivalent expression.
2316
2317 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2318 in which it is used, return 1.
2319
2320 Otherwise, return 0. */
2321
2322static int
2323no_conflict_p (insn, r0, r1)
272df862 2324 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2bbd3819
RS
2325{
2326 int ok = 0;
b1ec3c92 2327 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2bbd3819
RS
2328 rtx p, last;
2329
2330 /* If R1 is a hard register, return 0 since we handle this case
2331 when we scan the insns that actually use it. */
2332
2333 if (note == 0
2334 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2335 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2336 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2337 return 0;
2338
2339 last = XEXP (note, 0);
2340
2341 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2c3c49de 2342 if (INSN_P (p))
2bbd3819
RS
2343 {
2344 if (find_reg_note (p, REG_DEAD, r1))
2345 ok = 1;
2346
8bb19658
JW
2347 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2348 some earlier optimization pass has inserted instructions into
2349 the sequence, and it is not safe to perform this optimization.
2350 Note that emit_no_conflict_block always ensures that this is
2351 true when these sequences are created. */
2352 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2bbd3819
RS
2353 return 0;
2354 }
64e3a413 2355
2bbd3819
RS
2356 return ok;
2357}
2358\f
3061cc54
RK
2359/* Return the number of alternatives for which the constraint string P
2360 indicates that the operand must be equal to operand 0 and that no register
2361 is acceptable. */
2bbd3819
RS
2362
2363static int
3061cc54 2364requires_inout (p)
64e3a413 2365 const char *p;
2bbd3819
RS
2366{
2367 char c;
2368 int found_zero = 0;
3061cc54
RK
2369 int reg_allowed = 0;
2370 int num_matching_alts = 0;
2bbd3819 2371
51723711 2372 while ((c = *p++))
2bbd3819
RS
2373 switch (c)
2374 {
2bbd3819
RS
2375 case '=': case '+': case '?':
2376 case '#': case '&': case '!':
3061cc54 2377 case '*': case '%':
c5c76735
JL
2378 case '1': case '2': case '3': case '4': case '5':
2379 case '6': case '7': case '8': case '9':
2bbd3819
RS
2380 case 'm': case '<': case '>': case 'V': case 'o':
2381 case 'E': case 'F': case 'G': case 'H':
2382 case 's': case 'i': case 'n':
2383 case 'I': case 'J': case 'K': case 'L':
2384 case 'M': case 'N': case 'O': case 'P':
2bbd3819
RS
2385 case 'X':
2386 /* These don't say anything we care about. */
2387 break;
2388
3061cc54
RK
2389 case ',':
2390 if (found_zero && ! reg_allowed)
2391 num_matching_alts++;
2392
2393 found_zero = reg_allowed = 0;
2394 break;
2395
2396 case '0':
2397 found_zero = 1;
2398 break;
2399
c2cba7a9
RH
2400 default:
2401 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2402 break;
2403 /* FALLTHRU */
2bbd3819
RS
2404 case 'p':
2405 case 'g': case 'r':
3061cc54
RK
2406 reg_allowed = 1;
2407 break;
2bbd3819
RS
2408 }
2409
3061cc54
RK
2410 if (found_zero && ! reg_allowed)
2411 num_matching_alts++;
2412
2413 return num_matching_alts;
2bbd3819
RS
2414}
2415\f
2416void
2417dump_local_alloc (file)
2418 FILE *file;
2419{
2420 register int i;
2421 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2422 if (reg_renumber[i] != -1)
2423 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2424}
This page took 1.442626 seconds and 5 git commands to generate.