]> gcc.gnu.org Git - gcc.git/blame - gcc/local-alloc.c
(qty_phys_num{,_copy}_sugg): New variables.
[gcc.git] / gcc / local-alloc.c
CommitLineData
2bbd3819 1/* Allocate registers within a basic block, for GNU compiler.
da2c9ff9 2 Copyright (C) 1987, 1988, 1991, 1993, 1994 Free Software Foundation, Inc.
2bbd3819
RS
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* Allocation of hard register numbers to pseudo registers is done in
22 two passes. In this pass we consider only regs that are born and
23 die once within one basic block. We do this one basic block at a
24 time. Then the next pass allocates the registers that remain.
25 Two passes are used because this pass uses methods that work only
26 on linear code, but that do a better job than the general methods
27 used in global_alloc, and more quickly too.
28
29 The assignments made are recorded in the vector reg_renumber
30 whose space is allocated here. The rtl code itself is not altered.
31
32 We assign each instruction in the basic block a number
33 which is its order from the beginning of the block.
34 Then we can represent the lifetime of a pseudo register with
35 a pair of numbers, and check for conflicts easily.
36 We can record the availability of hard registers with a
37 HARD_REG_SET for each instruction. The HARD_REG_SET
38 contains 0 or 1 for each hard reg.
39
40 To avoid register shuffling, we tie registers together when one
41 dies by being copied into another, or dies in an instruction that
42 does arithmetic to produce another. The tied registers are
43 allocated as one. Registers with different reg class preferences
44 can never be tied unless the class preferred by one is a subclass
45 of the one preferred by the other.
46
47 Tying is represented with "quantity numbers".
48 A non-tied register is given a new quantity number.
49 Tied registers have the same quantity number.
50
51 We have provision to exempt registers, even when they are contained
52 within the block, that can be tied to others that are not contained in it.
53 This is so that global_alloc could process them both and tie them then.
54 But this is currently disabled since tying in global_alloc is not
55 yet implemented. */
56
57#include <stdio.h>
58#include "config.h"
59#include "rtl.h"
60#include "flags.h"
61#include "basic-block.h"
62#include "regs.h"
63#include "hard-reg-set.h"
64#include "insn-config.h"
65#include "recog.h"
66#include "output.h"
67\f
cde62d1a
RK
68/* Pseudos allocated here cannot be reallocated by global.c if the hard
69 register is used as a spill register. So we don't allocate such pseudos
70 here if their preferred class is likely to be used by spills.
71
72 On most machines, the appropriate test is if the class has one
73 register, so we default to that. */
74
75#ifndef CLASS_LIKELY_SPILLED_P
76#define CLASS_LIKELY_SPILLED_P(CLASS) (reg_class_size[(int) (CLASS)] == 1)
77#endif
78
2bbd3819
RS
79/* Next quantity number available for allocation. */
80
81static int next_qty;
82
83/* In all the following vectors indexed by quantity number. */
84
85/* Element Q is the hard reg number chosen for quantity Q,
86 or -1 if none was found. */
87
88static short *qty_phys_reg;
89
90/* We maintain two hard register sets that indicate suggested hard registers
91 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
92 that are tied to the quantity by a simple copy. The second contains all
93 hard registers that are tied to the quantity via an arithmetic operation.
94
95 The former register set is given priority for allocation. This tends to
96 eliminate copy insns. */
97
98/* Element Q is a set of hard registers that are suggested for quantity Q by
99 copy insns. */
100
101static HARD_REG_SET *qty_phys_copy_sugg;
102
103/* Element Q is a set of hard registers that are suggested for quantity Q by
104 arithmetic insns. */
105
106static HARD_REG_SET *qty_phys_sugg;
107
51b86d8b 108/* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
2bbd3819 109
51b86d8b 110static short *qty_phys_num_copy_sugg;
2bbd3819 111
51b86d8b 112/* Element Q is the number of suggested registers in qty_phys_sugg. */
2bbd3819 113
51b86d8b 114static short *qty_phys_num_sugg;
2bbd3819
RS
115
116/* Element Q is the number of refs to quantity Q. */
117
aabf56ce 118static int *qty_n_refs;
2bbd3819
RS
119
120/* Element Q is a reg class contained in (smaller than) the
121 preferred classes of all the pseudo regs that are tied in quantity Q.
122 This is the preferred class for allocating that quantity. */
123
124static enum reg_class *qty_min_class;
125
126/* Insn number (counting from head of basic block)
127 where quantity Q was born. -1 if birth has not been recorded. */
128
129static int *qty_birth;
130
131/* Insn number (counting from head of basic block)
132 where quantity Q died. Due to the way tying is done,
133 and the fact that we consider in this pass only regs that die but once,
134 a quantity can die only once. Each quantity's life span
135 is a set of consecutive insns. -1 if death has not been recorded. */
136
137static int *qty_death;
138
139/* Number of words needed to hold the data in quantity Q.
140 This depends on its machine mode. It is used for these purposes:
141 1. It is used in computing the relative importances of qtys,
142 which determines the order in which we look for regs for them.
143 2. It is used in rules that prevent tying several registers of
144 different sizes in a way that is geometrically impossible
145 (see combine_regs). */
146
147static int *qty_size;
148
149/* This holds the mode of the registers that are tied to qty Q,
150 or VOIDmode if registers with differing modes are tied together. */
151
152static enum machine_mode *qty_mode;
153
154/* Number of times a reg tied to qty Q lives across a CALL_INSN. */
155
156static int *qty_n_calls_crossed;
157
e4600702
RK
158/* Register class within which we allocate qty Q if we can't get
159 its preferred class. */
2bbd3819 160
e4600702 161static enum reg_class *qty_alternate_class;
2bbd3819
RS
162
163/* Element Q is the SCRATCH expression for which this quantity is being
164 allocated or 0 if this quantity is allocating registers. */
165
166static rtx *qty_scratch_rtx;
167
168/* Element Q is the register number of one pseudo register whose
169 reg_qty value is Q, or -1 is this quantity is for a SCRATCH. This
170 register should be the head of the chain maintained in reg_next_in_qty. */
171
aabf56ce 172static int *qty_first_reg;
2bbd3819
RS
173
174/* If (REG N) has been assigned a quantity number, is a register number
175 of another register assigned the same quantity number, or -1 for the
176 end of the chain. qty_first_reg point to the head of this chain. */
177
aabf56ce 178static int *reg_next_in_qty;
2bbd3819
RS
179
180/* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
181 if it is >= 0,
182 of -1 if this register cannot be allocated by local-alloc,
183 or -2 if not known yet.
184
185 Note that if we see a use or death of pseudo register N with
186 reg_qty[N] == -2, register N must be local to the current block. If
187 it were used in more than one block, we would have reg_qty[N] == -1.
188 This relies on the fact that if reg_basic_block[N] is >= 0, register N
189 will not appear in any other block. We save a considerable number of
190 tests by exploiting this.
191
192 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
193 be referenced. */
194
195static int *reg_qty;
196
197/* The offset (in words) of register N within its quantity.
198 This can be nonzero if register N is SImode, and has been tied
199 to a subreg of a DImode register. */
200
201static char *reg_offset;
202
203/* Vector of substitutions of register numbers,
204 used to map pseudo regs into hardware regs.
205 This is set up as a result of register allocation.
206 Element N is the hard reg assigned to pseudo reg N,
207 or is -1 if no hard reg was assigned.
208 If N is a hard reg number, element N is N. */
209
210short *reg_renumber;
211
212/* Set of hard registers live at the current point in the scan
213 of the instructions in a basic block. */
214
215static HARD_REG_SET regs_live;
216
217/* Each set of hard registers indicates registers live at a particular
218 point in the basic block. For N even, regs_live_at[N] says which
219 hard registers are needed *after* insn N/2 (i.e., they may not
220 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
221
222 If an object is to conflict with the inputs of insn J but not the
223 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
224 if it is to conflict with the outputs of insn J but not the inputs of
225 insn J + 1, it is said to die at index J*2 + 1. */
226
227static HARD_REG_SET *regs_live_at;
228
bd5f197a
RK
229int *scratch_block;
230rtx *scratch_list;
231int scratch_list_length;
232static int scratch_index;
233
2bbd3819
RS
234/* Communicate local vars `insn_number' and `insn'
235 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
236static int this_insn_number;
237static rtx this_insn;
238
82c68a78
RK
239static void alloc_qty PROTO((int, enum machine_mode, int, int));
240static void alloc_qty_for_scratch PROTO((rtx, int, rtx, int, int));
241static void validate_equiv_mem_from_store PROTO((rtx, rtx));
242static int validate_equiv_mem PROTO((rtx, rtx, rtx));
243static int memref_referenced_p PROTO((rtx, rtx));
244static int memref_used_between_p PROTO((rtx, rtx, rtx));
245static void optimize_reg_copy_1 PROTO((rtx, rtx, rtx));
246static void optimize_reg_copy_2 PROTO((rtx, rtx, rtx));
247static void update_equiv_regs PROTO((void));
248static void block_alloc PROTO((int));
51b86d8b
RK
249static int qty_sugg_compare PROTO((int, int));
250static int qty_sugg_compare_1 PROTO((int *, int *));
82c68a78
RK
251static int qty_compare PROTO((int, int));
252static int qty_compare_1 PROTO((int *, int *));
253static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
254static int reg_meets_class_p PROTO((int, enum reg_class));
255static int reg_classes_overlap_p PROTO((enum reg_class, enum reg_class,
256 int));
257static void update_qty_class PROTO((int, int));
258static void reg_is_set PROTO((rtx, rtx));
259static void reg_is_born PROTO((rtx, int));
260static void wipe_dead_reg PROTO((rtx, int));
261static int find_free_reg PROTO((enum reg_class, enum machine_mode,
262 int, int, int, int, int));
263static void mark_life PROTO((int, enum machine_mode, int));
264static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
265static int no_conflict_p PROTO((rtx, rtx, rtx));
266static int requires_inout_p PROTO((char *));
2bbd3819
RS
267\f
268/* Allocate a new quantity (new within current basic block)
269 for register number REGNO which is born at index BIRTH
270 within the block. MODE and SIZE are info on reg REGNO. */
271
272static void
273alloc_qty (regno, mode, size, birth)
274 int regno;
275 enum machine_mode mode;
276 int size, birth;
277{
278 register int qty = next_qty++;
279
280 reg_qty[regno] = qty;
281 reg_offset[regno] = 0;
282 reg_next_in_qty[regno] = -1;
283
284 qty_first_reg[qty] = regno;
285 qty_size[qty] = size;
286 qty_mode[qty] = mode;
287 qty_birth[qty] = birth;
288 qty_n_calls_crossed[qty] = reg_n_calls_crossed[regno];
289 qty_min_class[qty] = reg_preferred_class (regno);
e4600702 290 qty_alternate_class[qty] = reg_alternate_class (regno);
2bbd3819
RS
291 qty_n_refs[qty] = reg_n_refs[regno];
292}
293\f
294/* Similar to `alloc_qty', but allocates a quantity for a SCRATCH rtx
295 used as operand N in INSN. We assume here that the SCRATCH is used in
296 a CLOBBER. */
297
298static void
299alloc_qty_for_scratch (scratch, n, insn, insn_code_num, insn_number)
300 rtx scratch;
301 int n;
302 rtx insn;
303 int insn_code_num, insn_number;
304{
305 register int qty;
306 enum reg_class class;
307 char *p, c;
308 int i;
309
7fe4336e 310#ifdef REGISTER_CONSTRAINTS
2bbd3819
RS
311 /* If we haven't yet computed which alternative will be used, do so now.
312 Then set P to the constraints for that alternative. */
313 if (which_alternative == -1)
314 if (! constrain_operands (insn_code_num, 0))
315 return;
316
317 for (p = insn_operand_constraint[insn_code_num][n], i = 0;
318 *p && i < which_alternative; p++)
319 if (*p == ',')
320 i++;
321
322 /* Compute the class required for this SCRATCH. If we don't need a
323 register, the class will remain NO_REGS. If we guessed the alternative
324 number incorrectly, reload will fix things up for us. */
325
326 class = NO_REGS;
327 while ((c = *p++) != '\0' && c != ',')
328 switch (c)
329 {
330 case '=': case '+': case '?':
331 case '#': case '&': case '!':
332 case '*': case '%':
333 case '0': case '1': case '2': case '3': case '4':
334 case 'm': case '<': case '>': case 'V': case 'o':
335 case 'E': case 'F': case 'G': case 'H':
336 case 's': case 'i': case 'n':
337 case 'I': case 'J': case 'K': case 'L':
338 case 'M': case 'N': case 'O': case 'P':
339#ifdef EXTRA_CONSTRAINT
340 case 'Q': case 'R': case 'S': case 'T': case 'U':
341#endif
342 case 'p':
343 /* These don't say anything we care about. */
344 break;
345
346 case 'X':
347 /* We don't need to allocate this SCRATCH. */
348 return;
349
350 case 'g': case 'r':
351 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
352 break;
353
354 default:
355 class
356 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER (c)];
357 break;
358 }
359
e15eb3aa 360 if (class == NO_REGS)
2bbd3819
RS
361 return;
362
7fe4336e
RK
363#else /* REGISTER_CONSTRAINTS */
364
365 class = GENERAL_REGS;
366#endif
367
368
2bbd3819
RS
369 qty = next_qty++;
370
371 qty_first_reg[qty] = -1;
372 qty_scratch_rtx[qty] = scratch;
373 qty_size[qty] = GET_MODE_SIZE (GET_MODE (scratch));
374 qty_mode[qty] = GET_MODE (scratch);
375 qty_birth[qty] = 2 * insn_number - 1;
376 qty_death[qty] = 2 * insn_number + 1;
377 qty_n_calls_crossed[qty] = 0;
378 qty_min_class[qty] = class;
e4600702 379 qty_alternate_class[qty] = NO_REGS;
2bbd3819
RS
380 qty_n_refs[qty] = 1;
381}
382\f
383/* Main entry point of this file. */
384
385void
386local_alloc ()
387{
388 register int b, i;
389 int max_qty;
390
391 /* Leaf functions and non-leaf functions have different needs.
392 If defined, let the machine say what kind of ordering we
393 should use. */
394#ifdef ORDER_REGS_FOR_LOCAL_ALLOC
395 ORDER_REGS_FOR_LOCAL_ALLOC;
396#endif
397
398 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
399 registers. */
400 update_equiv_regs ();
401
402 /* This sets the maximum number of quantities we can have. Quantity
d45cf215 403 numbers start at zero and we can have one for each pseudo plus the
6dc42e49 404 number of SCRATCHes in the largest block, in the worst case. */
2bbd3819
RS
405 max_qty = (max_regno - FIRST_PSEUDO_REGISTER) + max_scratch;
406
407 /* Allocate vectors of temporary data.
408 See the declarations of these variables, above,
409 for what they mean. */
410
e15eb3aa
RK
411 /* There can be up to MAX_SCRATCH * N_BASIC_BLOCKS SCRATCHes to allocate.
412 Instead of allocating this much memory from now until the end of
413 reload, only allocate space for MAX_QTY SCRATCHes. If there are more
414 reload will allocate them. */
415
bd5f197a
RK
416 scratch_list_length = max_qty;
417 scratch_list = (rtx *) xmalloc (scratch_list_length * sizeof (rtx));
418 bzero (scratch_list, scratch_list_length * sizeof (rtx));
419 scratch_block = (int *) xmalloc (scratch_list_length * sizeof (int));
420 bzero (scratch_block, scratch_list_length * sizeof (int));
421 scratch_index = 0;
422
2bbd3819
RS
423 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
424 qty_phys_copy_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
51b86d8b 425 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (char));
2bbd3819 426 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
51b86d8b 427 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (char));
2bbd3819
RS
428 qty_birth = (int *) alloca (max_qty * sizeof (int));
429 qty_death = (int *) alloca (max_qty * sizeof (int));
430 qty_scratch_rtx = (rtx *) alloca (max_qty * sizeof (rtx));
aabf56ce 431 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
2bbd3819
RS
432 qty_size = (int *) alloca (max_qty * sizeof (int));
433 qty_mode = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
434 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
435 qty_min_class = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
e4600702 436 qty_alternate_class = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
aabf56ce 437 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
2bbd3819
RS
438
439 reg_qty = (int *) alloca (max_regno * sizeof (int));
440 reg_offset = (char *) alloca (max_regno * sizeof (char));
aabf56ce 441 reg_next_in_qty = (int *) alloca (max_regno * sizeof (int));
2bbd3819
RS
442
443 reg_renumber = (short *) oballoc (max_regno * sizeof (short));
444 for (i = 0; i < max_regno; i++)
445 reg_renumber[i] = -1;
446
447 /* Determine which pseudo-registers can be allocated by local-alloc.
448 In general, these are the registers used only in a single block and
449 which only die once. However, if a register's preferred class has only
cde62d1a 450 a few entries, don't allocate this register here unless it is preferred
2bbd3819
RS
451 or nothing since retry_global_alloc won't be able to move it to
452 GENERAL_REGS if a reload register of this class is needed.
453
454 We need not be concerned with which block actually uses the register
455 since we will never see it outside that block. */
456
457 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
458 {
459 if (reg_basic_block[i] >= 0 && reg_n_deaths[i] == 1
e4600702 460 && (reg_alternate_class (i) == NO_REGS
cde62d1a 461 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
2bbd3819
RS
462 reg_qty[i] = -2;
463 else
464 reg_qty[i] = -1;
465 }
466
467 /* Force loop below to initialize entire quantity array. */
468 next_qty = max_qty;
469
470 /* Allocate each block's local registers, block by block. */
471
472 for (b = 0; b < n_basic_blocks; b++)
473 {
474 /* NEXT_QTY indicates which elements of the `qty_...'
475 vectors might need to be initialized because they were used
476 for the previous block; it is set to the entire array before
477 block 0. Initialize those, with explicit loop if there are few,
478 else with bzero and bcopy. Do not initialize vectors that are
479 explicit set by `alloc_qty'. */
480
481 if (next_qty < 6)
482 {
483 for (i = 0; i < next_qty; i++)
484 {
485 qty_scratch_rtx[i] = 0;
486 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
51b86d8b 487 qty_phys_num_copy_sugg[i] = 0;
2bbd3819 488 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
51b86d8b 489 qty_phys_num_sugg[i] = 0;
2bbd3819
RS
490 }
491 }
492 else
493 {
494#define CLEAR(vector) \
495 bzero ((vector), (sizeof (*(vector))) * next_qty);
496
497 CLEAR (qty_scratch_rtx);
498 CLEAR (qty_phys_copy_sugg);
51b86d8b 499 CLEAR (qty_phys_num_copy_sugg);
2bbd3819 500 CLEAR (qty_phys_sugg);
51b86d8b 501 CLEAR (qty_phys_num_sugg);
2bbd3819
RS
502 }
503
504 next_qty = 0;
505
506 block_alloc (b);
507#ifdef USE_C_ALLOCA
508 alloca (0);
509#endif
510 }
511}
512\f
513/* Depth of loops we are in while in update_equiv_regs. */
514static int loop_depth;
515
516/* Used for communication between the following two functions: contains
517 a MEM that we wish to ensure remains unchanged. */
518static rtx equiv_mem;
519
520/* Set nonzero if EQUIV_MEM is modified. */
521static int equiv_mem_modified;
522
523/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
524 Called via note_stores. */
525
526static void
527validate_equiv_mem_from_store (dest, set)
528 rtx dest;
529 rtx set;
530{
531 if ((GET_CODE (dest) == REG
532 && reg_overlap_mentioned_p (dest, equiv_mem))
533 || (GET_CODE (dest) == MEM
534 && true_dependence (dest, equiv_mem)))
535 equiv_mem_modified = 1;
536}
537
538/* Verify that no store between START and the death of REG invalidates
539 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
540 by storing into an overlapping memory location, or with a non-const
541 CALL_INSN.
542
543 Return 1 if MEMREF remains valid. */
544
545static int
546validate_equiv_mem (start, reg, memref)
547 rtx start;
548 rtx reg;
549 rtx memref;
550{
551 rtx insn;
552 rtx note;
553
554 equiv_mem = memref;
555 equiv_mem_modified = 0;
556
557 /* If the memory reference has side effects or is volatile, it isn't a
558 valid equivalence. */
559 if (side_effects_p (memref))
560 return 0;
561
562 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
563 {
564 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
565 continue;
566
567 if (find_reg_note (insn, REG_DEAD, reg))
568 return 1;
569
570 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
571 && ! CONST_CALL_P (insn))
572 return 0;
573
574 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
575
576 /* If a register mentioned in MEMREF is modified via an
577 auto-increment, we lose the equivalence. Do the same if one
578 dies; although we could extend the life, it doesn't seem worth
579 the trouble. */
580
581 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
582 if ((REG_NOTE_KIND (note) == REG_INC
583 || REG_NOTE_KIND (note) == REG_DEAD)
584 && GET_CODE (XEXP (note, 0)) == REG
585 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
586 return 0;
587 }
588
589 return 0;
590}
591\f
592/* TRUE if X references a memory location that would be affected by a store
593 to MEMREF. */
594
595static int
596memref_referenced_p (memref, x)
597 rtx x;
598 rtx memref;
599{
600 int i, j;
601 char *fmt;
602 enum rtx_code code = GET_CODE (x);
603
604 switch (code)
605 {
606 case REG:
607 case CONST_INT:
608 case CONST:
609 case LABEL_REF:
610 case SYMBOL_REF:
611 case CONST_DOUBLE:
612 case PC:
613 case CC0:
614 case HIGH:
615 case LO_SUM:
616 return 0;
617
618 case MEM:
619 if (true_dependence (memref, x))
620 return 1;
621 break;
622
623 case SET:
624 /* If we are setting a MEM, it doesn't count (its address does), but any
625 other SET_DEST that has a MEM in it is referencing the MEM. */
626 if (GET_CODE (SET_DEST (x)) == MEM)
627 {
628 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
629 return 1;
630 }
631 else if (memref_referenced_p (memref, SET_DEST (x)))
632 return 1;
633
634 return memref_referenced_p (memref, SET_SRC (x));
635 }
636
637 fmt = GET_RTX_FORMAT (code);
638 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
639 switch (fmt[i])
640 {
641 case 'e':
642 if (memref_referenced_p (memref, XEXP (x, i)))
643 return 1;
644 break;
645 case 'E':
646 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
647 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
648 return 1;
649 break;
650 }
651
652 return 0;
653}
654
655/* TRUE if some insn in the range (START, END] references a memory location
656 that would be affected by a store to MEMREF. */
657
658static int
659memref_used_between_p (memref, start, end)
660 rtx memref;
661 rtx start;
662 rtx end;
663{
664 rtx insn;
665
666 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
667 insn = NEXT_INSN (insn))
668 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
669 && memref_referenced_p (memref, PATTERN (insn)))
670 return 1;
671
672 return 0;
673}
674\f
675/* INSN is a copy from SRC to DEST, both registers, and SRC does not die
676 in INSN.
677
678 Search forward to see if SRC dies before either it or DEST is modified,
679 but don't scan past the end of a basic block. If so, we can replace SRC
680 with DEST and let SRC die in INSN.
681
682 This will reduce the number of registers live in that range and may enable
683 DEST to be tied to SRC, thus often saving one register in addition to a
684 register-register copy. */
685
686static void
d45cf215 687optimize_reg_copy_1 (insn, dest, src)
2bbd3819
RS
688 rtx insn;
689 rtx dest;
690 rtx src;
691{
692 rtx p, q;
693 rtx note;
694 rtx dest_death = 0;
695 int sregno = REGNO (src);
696 int dregno = REGNO (dest);
697
698 if (sregno == dregno
699#ifdef SMALL_REGISTER_CLASSES
700 /* We don't want to mess with hard regs if register classes are small. */
701 || sregno < FIRST_PSEUDO_REGISTER || dregno < FIRST_PSEUDO_REGISTER
702#endif
703 /* We don't see all updates to SP if they are in an auto-inc memory
704 reference, so we must disallow this optimization on them. */
705 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
706 return;
707
708 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
709 {
710 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
711 || (GET_CODE (p) == NOTE
712 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
713 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
714 break;
715
716 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
717 continue;
718
719 if (reg_set_p (src, p) || reg_set_p (dest, p)
720 /* Don't change a USE of a register. */
721 || (GET_CODE (PATTERN (p)) == USE
722 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
723 break;
724
d9983d6c
RK
725 /* See if all of SRC dies in P. This test is slightly more
726 conservative than it needs to be. */
727 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
728 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2bbd3819
RS
729 {
730 int failed = 0;
731 int length = 0;
d9983d6c 732 int d_length = 0;
2bbd3819 733 int n_calls = 0;
d9983d6c 734 int d_n_calls = 0;
2bbd3819
RS
735
736 /* We can do the optimization. Scan forward from INSN again,
737 replacing regs as we go. Set FAILED if a replacement can't
738 be done. In that case, we can't move the death note for SRC.
739 This should be rare. */
740
741 /* Set to stop at next insn. */
742 for (q = next_real_insn (insn);
743 q != next_real_insn (p);
744 q = next_real_insn (q))
745 {
d9983d6c 746 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2bbd3819 747 {
d9983d6c
RK
748 /* If SRC is a hard register, we might miss some
749 overlapping registers with validate_replace_rtx,
750 so we would have to undo it. We can't if DEST is
751 present in the insn, so fail in that combination
752 of cases. */
753 if (sregno < FIRST_PSEUDO_REGISTER
754 && reg_mentioned_p (dest, PATTERN (q)))
755 failed = 1;
756
757 /* Replace all uses and make sure that the register
758 isn't still present. */
759 else if (validate_replace_rtx (src, dest, q)
760 && (sregno >= FIRST_PSEUDO_REGISTER
761 || ! reg_overlap_mentioned_p (src,
762 PATTERN (q))))
2bbd3819
RS
763 {
764 /* We assume that a register is used exactly once per
765 insn in the updates below. If this is not correct,
766 no great harm is done. */
767 if (sregno >= FIRST_PSEUDO_REGISTER)
768 reg_n_refs[sregno] -= loop_depth;
769 if (dregno >= FIRST_PSEUDO_REGISTER)
770 reg_n_refs[dregno] += loop_depth;
771 }
772 else
d9983d6c
RK
773 {
774 validate_replace_rtx (dest, src, q);
775 failed = 1;
776 }
2bbd3819
RS
777 }
778
779 /* Count the insns and CALL_INSNs passed. If we passed the
780 death note of DEST, show increased live length. */
781 length++;
782 if (dest_death)
d9983d6c 783 d_length++;
2bbd3819 784
da2c9ff9
RK
785 /* If the insn in which SRC dies is a CALL_INSN, don't count it
786 as a call that has been crossed. Otherwise, count it. */
787 if (q != p && GET_CODE (q) == CALL_INSN)
2bbd3819
RS
788 {
789 n_calls++;
790 if (dest_death)
d9983d6c 791 d_n_calls++;
2bbd3819
RS
792 }
793
794 /* If DEST dies here, remove the death note and save it for
d9983d6c
RK
795 later. Make sure ALL of DEST dies here; again, this is
796 overly conservative. */
2bbd3819 797 if (dest_death == 0
d9983d6c
RK
798 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0
799 && GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2bbd3819
RS
800 remove_note (q, dest_death);
801 }
802
803 if (! failed)
804 {
805 if (sregno >= FIRST_PSEUDO_REGISTER)
806 {
807 reg_live_length[sregno] -= length;
2d19a71c
JW
808 /* reg_live_length is only an approximation after combine
809 if sched is not run, so make sure that we still have
810 a reasonable value. */
811 if (reg_live_length[sregno] < 2)
812 reg_live_length[sregno] = 2;
2bbd3819
RS
813 reg_n_calls_crossed[sregno] -= n_calls;
814 }
815
d9983d6c
RK
816 if (dregno >= FIRST_PSEUDO_REGISTER)
817 {
818 reg_live_length[dregno] += d_length;
819 reg_n_calls_crossed[dregno] += d_n_calls;
820 }
821
2bbd3819
RS
822 /* Move death note of SRC from P to INSN. */
823 remove_note (p, note);
824 XEXP (note, 1) = REG_NOTES (insn);
825 REG_NOTES (insn) = note;
826 }
827
828 /* Put death note of DEST on P if we saw it die. */
829 if (dest_death)
830 {
831 XEXP (dest_death, 1) = REG_NOTES (p);
832 REG_NOTES (p) = dest_death;
833 }
834
835 return;
836 }
d9983d6c
RK
837
838 /* If SRC is a hard register which is set or killed in some other
839 way, we can't do this optimization. */
840 else if (sregno < FIRST_PSEUDO_REGISTER
841 && dead_or_set_p (p, src))
842 break;
2bbd3819
RS
843 }
844}
d45cf215
RS
845\f
846/* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
847 a sequence of insns that modify DEST followed by an insn that sets
848 SRC to DEST in which DEST dies, with no prior modification of DEST.
849 (There is no need to check if the insns in between actually modify
850 DEST. We should not have cases where DEST is not modified, but
851 the optimization is safe if no such modification is detected.)
852 In that case, we can replace all uses of DEST, starting with INSN and
853 ending with the set of SRC to DEST, with SRC. We do not do this
854 optimization if a CALL_INSN is crossed unless SRC already crosses a
855 call.
856
857 It is assumed that DEST and SRC are pseudos; it is too complicated to do
858 this for hard registers since the substitutions we may make might fail. */
859
860static void
861optimize_reg_copy_2 (insn, dest, src)
862 rtx insn;
863 rtx dest;
864 rtx src;
865{
866 rtx p, q;
867 rtx set;
868 int sregno = REGNO (src);
869 int dregno = REGNO (dest);
870
871 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
872 {
873 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
874 || (GET_CODE (p) == NOTE
875 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
876 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
877 break;
878
879 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
880 continue;
881
882 set = single_set (p);
883 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
884 && find_reg_note (p, REG_DEAD, dest))
885 {
886 /* We can do the optimization. Scan forward from INSN again,
887 replacing regs as we go. */
888
889 /* Set to stop at next insn. */
890 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
891 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
892 {
893 if (reg_mentioned_p (dest, PATTERN (q)))
894 {
895 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
896
897 /* We assume that a register is used exactly once per
898 insn in the updates below. If this is not correct,
899 no great harm is done. */
6102fe95
JW
900 reg_n_refs[dregno] -= loop_depth;
901 reg_n_refs[sregno] += loop_depth;
d45cf215
RS
902 }
903
904
905 if (GET_CODE (q) == CALL_INSN)
906 {
907 reg_n_calls_crossed[dregno]--;
908 reg_n_calls_crossed[sregno]++;
909 }
910 }
911
912 remove_note (p, find_reg_note (p, REG_DEAD, dest));
913 reg_n_deaths[dregno]--;
914 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
915 reg_n_deaths[sregno]--;
916 return;
917 }
918
919 if (reg_set_p (src, p)
920 || (GET_CODE (p) == CALL_INSN && reg_n_calls_crossed[sregno] == 0))
921 break;
922 }
923}
2bbd3819
RS
924\f
925/* Find registers that are equivalent to a single value throughout the
926 compilation (either because they can be referenced in memory or are set once
927 from a single constant). Lower their priority for a register.
928
929 If such a register is only referenced once, try substituting its value
930 into the using insn. If it succeeds, we can eliminate the register
931 completely. */
932
933static void
934update_equiv_regs ()
935{
936 rtx *reg_equiv_init_insn = (rtx *) alloca (max_regno * sizeof (rtx *));
937 rtx *reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx *));
938 rtx insn;
939
940 bzero (reg_equiv_init_insn, max_regno * sizeof (rtx *));
941 bzero (reg_equiv_replacement, max_regno * sizeof (rtx *));
942
943 init_alias_analysis ();
944
945 loop_depth = 1;
946
947 /* Scan the insns and find which registers have equivalences. Do this
948 in a separate scan of the insns because (due to -fcse-follow-jumps)
949 a register can be set below its use. */
950 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
951 {
952 rtx note;
953 rtx set = single_set (insn);
954 rtx dest;
955 int regno;
956
957 if (GET_CODE (insn) == NOTE)
958 {
959 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
960 loop_depth++;
961 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
962 loop_depth--;
963 }
964
965 /* If this insn contains more (or less) than a single SET, ignore it. */
966 if (set == 0)
967 continue;
968
969 dest = SET_DEST (set);
970
971 /* If this sets a MEM to the contents of a REG that is only used
972 in a single basic block, see if the register is always equivalent
973 to that memory location and if moving the store from INSN to the
974 insn that set REG is safe. If so, put a REG_EQUIV note on the
975 initializing insn. */
976
977 if (GET_CODE (dest) == MEM && GET_CODE (SET_SRC (set)) == REG
978 && (regno = REGNO (SET_SRC (set))) >= FIRST_PSEUDO_REGISTER
979 && reg_basic_block[regno] >= 0
980 && reg_equiv_init_insn[regno] != 0
981 && validate_equiv_mem (reg_equiv_init_insn[regno], SET_SRC (set),
982 dest)
983 && ! memref_used_between_p (SET_DEST (set),
984 reg_equiv_init_insn[regno], insn))
985 REG_NOTES (reg_equiv_init_insn[regno])
986 = gen_rtx (EXPR_LIST, REG_EQUIV, dest,
987 REG_NOTES (reg_equiv_init_insn[regno]));
988
989 /* If this is a register-register copy where SRC is not dead, see if we
990 can optimize it. */
991 if (flag_expensive_optimizations && GET_CODE (dest) == REG
992 && GET_CODE (SET_SRC (set)) == REG
993 && ! find_reg_note (insn, REG_DEAD, SET_SRC (set)))
d45cf215
RS
994 optimize_reg_copy_1 (insn, dest, SET_SRC (set));
995
996 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
997 else if (flag_expensive_optimizations && GET_CODE (dest) == REG
998 && REGNO (dest) >= FIRST_PSEUDO_REGISTER
999 && GET_CODE (SET_SRC (set)) == REG
1000 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
1001 && find_reg_note (insn, REG_DEAD, SET_SRC (set)))
1002 optimize_reg_copy_2 (insn, dest, SET_SRC (set));
2bbd3819
RS
1003
1004 /* Otherwise, we only handle the case of a pseudo register being set
1005 once. */
1006 if (GET_CODE (dest) != REG
1007 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
1008 || reg_n_sets[regno] != 1)
1009 continue;
1010
b1ec3c92 1011 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2bbd3819
RS
1012
1013 /* Record this insn as initializing this register. */
1014 reg_equiv_init_insn[regno] = insn;
1015
1016 /* If this register is known to be equal to a constant, record that
1017 it is always equivalent to the constant. */
1018 if (note && CONSTANT_P (XEXP (note, 0)))
1019 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
1020
1021 /* If this insn introduces a "constant" register, decrease the priority
1022 of that register. Record this insn if the register is only used once
1023 more and the equivalence value is the same as our source.
1024
1025 The latter condition is checked for two reasons: First, it is an
1026 indication that it may be more efficient to actually emit the insn
1027 as written (if no registers are available, reload will substitute
1028 the equivalence). Secondly, it avoids problems with any registers
1029 dying in this insn whose death notes would be missed.
1030
1031 If we don't have a REG_EQUIV note, see if this insn is loading
1032 a register used only in one basic block from a MEM. If so, and the
1033 MEM remains unchanged for the life of the register, add a REG_EQUIV
1034 note. */
1035
b1ec3c92 1036 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2bbd3819
RS
1037
1038 if (note == 0 && reg_basic_block[regno] >= 0
1039 && GET_CODE (SET_SRC (set)) == MEM
1040 && validate_equiv_mem (insn, dest, SET_SRC (set)))
1041 REG_NOTES (insn) = note = gen_rtx (EXPR_LIST, REG_EQUIV, SET_SRC (set),
1042 REG_NOTES (insn));
1043
1044 /* Don't mess with things live during setjmp. */
1045 if (note && reg_live_length[regno] >= 0)
1046 {
1047 int regno = REGNO (dest);
1048
1049 /* Note that the statement below does not affect the priority
1050 in local-alloc! */
1051 reg_live_length[regno] *= 2;
1052
1053 /* If the register is referenced exactly twice, meaning it is set
1054 once and used once, indicate that the reference may be replaced
1055 by the equivalence we computed above. If the register is only
1056 used in one basic block, this can't succeed or combine would
1057 have done it.
1058
1059 It would be nice to use "loop_depth * 2" in the compare
1060 below. Unfortunately, LOOP_DEPTH need not be constant within
1061 a basic block so this would be too complicated.
1062
1063 This case normally occurs when a parameter is read from memory
1064 and then used exactly once, not in a loop. */
1065
1066 if (reg_n_refs[regno] == 2
1067 && reg_basic_block[regno] < 0
1068 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
1069 reg_equiv_replacement[regno] = SET_SRC (set);
1070 }
1071 }
1072
1073 /* Now scan all regs killed in an insn to see if any of them are registers
1074 only used that once. If so, see if we can replace the reference with
1075 the equivalent from. If we can, delete the initializing reference
1076 and this register will go away. */
1077 for (insn = next_active_insn (get_insns ());
1078 insn;
1079 insn = next_active_insn (insn))
1080 {
1081 rtx link;
1082
1083 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1084 if (REG_NOTE_KIND (link) == REG_DEAD
1085 /* Make sure this insn still refers to the register. */
1086 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1087 {
1088 int regno = REGNO (XEXP (link, 0));
1089
1090 if (reg_equiv_replacement[regno]
1091 && validate_replace_rtx (regno_reg_rtx[regno],
1092 reg_equiv_replacement[regno], insn))
1093 {
1094 rtx equiv_insn = reg_equiv_init_insn[regno];
1095
1096 remove_death (regno, insn);
1097 reg_n_refs[regno] = 0;
1098 PUT_CODE (equiv_insn, NOTE);
1099 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1100 NOTE_SOURCE_FILE (equiv_insn) = 0;
1101 }
1102 }
1103 }
1104}
1105\f
1106/* Allocate hard regs to the pseudo regs used only within block number B.
1107 Only the pseudos that die but once can be handled. */
1108
1109static void
1110block_alloc (b)
1111 int b;
1112{
1113 register int i, q;
1114 register rtx insn;
1115 rtx note;
1116 int insn_number = 0;
1117 int insn_count = 0;
1118 int max_uid = get_max_uid ();
aabf56ce 1119 int *qty_order;
2bbd3819 1120 int no_conflict_combined_regno = -1;
2a81034f
JW
1121 /* Counter to prevent allocating more SCRATCHes than can be stored
1122 in SCRATCH_LIST. */
1123 int scratches_allocated = scratch_index;
2bbd3819
RS
1124
1125 /* Count the instructions in the basic block. */
1126
1127 insn = basic_block_end[b];
1128 while (1)
1129 {
1130 if (GET_CODE (insn) != NOTE)
1131 if (++insn_count > max_uid)
1132 abort ();
1133 if (insn == basic_block_head[b])
1134 break;
1135 insn = PREV_INSN (insn);
1136 }
1137
1138 /* +2 to leave room for a post_mark_life at the last insn and for
1139 the birth of a CLOBBER in the first insn. */
1140 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1141 * sizeof (HARD_REG_SET));
1142 bzero (regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1143
1144 /* Initialize table of hardware registers currently live. */
1145
69887ad9
RK
1146#ifdef HARD_REG_SET
1147 regs_live = *basic_block_live_at_start[b];
1148#else
1149 COPY_HARD_REG_SET (regs_live, basic_block_live_at_start[b]);
1150#endif
2bbd3819
RS
1151
1152 /* This loop scans the instructions of the basic block
1153 and assigns quantities to registers.
1154 It computes which registers to tie. */
1155
1156 insn = basic_block_head[b];
1157 while (1)
1158 {
1159 register rtx body = PATTERN (insn);
1160
1161 if (GET_CODE (insn) != NOTE)
1162 insn_number++;
1163
1164 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1165 {
1166 register rtx link, set;
1167 register int win = 0;
1168 register rtx r0, r1;
1169 int combined_regno = -1;
1170 int i;
1171 int insn_code_number = recog_memoized (insn);
1172
1173 this_insn_number = insn_number;
1174 this_insn = insn;
1175
1176 if (insn_code_number >= 0)
1177 insn_extract (insn);
1178 which_alternative = -1;
1179
1180 /* Is this insn suitable for tying two registers?
1181 If so, try doing that.
1182 Suitable insns are those with at least two operands and where
1183 operand 0 is an output that is a register that is not
1184 earlyclobber.
7aba0f0b
RK
1185
1186 We can tie operand 0 with some operand that dies in this insn.
1187 First look for operands that are required to be in the same
1188 register as operand 0. If we find such, only try tying that
1189 operand or one that can be put into that operand if the
1190 operation is commutative. If we don't find an operand
1191 that is required to be in the same register as operand 0,
1192 we can tie with any operand.
1193
2bbd3819
RS
1194 Subregs in place of regs are also ok.
1195
1196 If tying is done, WIN is set nonzero. */
1197
1198 if (insn_code_number >= 0
7fe4336e 1199#ifdef REGISTER_CONSTRAINTS
2bbd3819
RS
1200 && insn_n_operands[insn_code_number] > 1
1201 && insn_operand_constraint[insn_code_number][0][0] == '='
7fe4336e
RK
1202 && insn_operand_constraint[insn_code_number][0][1] != '&'
1203#else
1204 && GET_CODE (PATTERN (insn)) == SET
1205 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1206#endif
1207 )
2bbd3819 1208 {
7fe4336e 1209#ifdef REGISTER_CONSTRAINTS
7aba0f0b
RK
1210 int must_match_0 = -1;
1211
1212
1213 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1214 if (requires_inout_p
1215 (insn_operand_constraint[insn_code_number][i]))
1216 must_match_0 = i;
7fe4336e 1217#endif
2bbd3819 1218
7aba0f0b
RK
1219 r0 = recog_operand[0];
1220 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
2bbd3819 1221 {
7fe4336e 1222#ifdef REGISTER_CONSTRAINTS
7aba0f0b
RK
1223 /* Skip this operand if we found an operand that
1224 must match operand 0 and this operand isn't it
1225 and can't be made to be it by commutativity. */
1226
1227 if (must_match_0 >= 0 && i != must_match_0
1228 && ! (i == must_match_0 + 1
1229 && insn_operand_constraint[insn_code_number][i-1][0] == '%')
1230 && ! (i == must_match_0 - 1
1231 && insn_operand_constraint[insn_code_number][i][0] == '%'))
1232 continue;
7fe4336e 1233#endif
2bbd3819 1234
7aba0f0b 1235 r1 = recog_operand[i];
2bbd3819 1236
7aba0f0b
RK
1237 /* If the operand is an address, find a register in it.
1238 There may be more than one register, but we only try one
1239 of them. */
1240 if (
7fe4336e 1241#ifdef REGISTER_CONSTRAINTS
7aba0f0b 1242 insn_operand_constraint[insn_code_number][i][0] == 'p'
7fe4336e 1243#else
7aba0f0b 1244 insn_operand_address_p[insn_code_number][i]
7fe4336e 1245#endif
7aba0f0b
RK
1246 )
1247 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1248 r1 = XEXP (r1, 0);
1249
1250 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1251 {
1252 /* We have two priorities for hard register preferences.
1253 If we have a move insn or an insn whose first input
1254 can only be in the same register as the output, give
1255 priority to an equivalence found from that insn. */
1256 int may_save_copy
1257 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1258#ifdef REGISTER_CONSTRAINTS
1259 || (r1 == recog_operand[i] && must_match_0 >= 0)
1260#endif
1261 );
1262
1263 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1264 win = combine_regs (r1, r0, may_save_copy,
1265 insn_number, insn, 0);
1266 }
2bbd3819
RS
1267 }
1268 }
1269
1270 /* Recognize an insn sequence with an ultimate result
1271 which can safely overlap one of the inputs.
1272 The sequence begins with a CLOBBER of its result,
1273 and ends with an insn that copies the result to itself
1274 and has a REG_EQUAL note for an equivalent formula.
1275 That note indicates what the inputs are.
1276 The result and the input can overlap if each insn in
1277 the sequence either doesn't mention the input
1278 or has a REG_NO_CONFLICT note to inhibit the conflict.
1279
1280 We do the combining test at the CLOBBER so that the
1281 destination register won't have had a quantity number
1282 assigned, since that would prevent combining. */
1283
1284 if (GET_CODE (PATTERN (insn)) == CLOBBER
1285 && (r0 = XEXP (PATTERN (insn), 0),
1286 GET_CODE (r0) == REG)
b1ec3c92 1287 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
a6665f8c 1288 && XEXP (link, 0) != 0
2bbd3819
RS
1289 && GET_CODE (XEXP (link, 0)) == INSN
1290 && (set = single_set (XEXP (link, 0))) != 0
1291 && SET_DEST (set) == r0 && SET_SRC (set) == r0
b1ec3c92
CH
1292 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1293 NULL_RTX)) != 0)
2bbd3819
RS
1294 {
1295 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1296 /* Check that we have such a sequence. */
1297 && no_conflict_p (insn, r0, r1))
1298 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1299 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1300 && (r1 = XEXP (XEXP (note, 0), 0),
1301 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1302 && no_conflict_p (insn, r0, r1))
1303 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1304
1305 /* Here we care if the operation to be computed is
1306 commutative. */
1307 else if ((GET_CODE (XEXP (note, 0)) == EQ
1308 || GET_CODE (XEXP (note, 0)) == NE
1309 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1310 && (r1 = XEXP (XEXP (note, 0), 1),
1311 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1312 && no_conflict_p (insn, r0, r1))
1313 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1314
1315 /* If we did combine something, show the register number
1316 in question so that we know to ignore its death. */
1317 if (win)
1318 no_conflict_combined_regno = REGNO (r1);
1319 }
1320
1321 /* If registers were just tied, set COMBINED_REGNO
1322 to the number of the register used in this insn
1323 that was tied to the register set in this insn.
1324 This register's qty should not be "killed". */
1325
1326 if (win)
1327 {
1328 while (GET_CODE (r1) == SUBREG)
1329 r1 = SUBREG_REG (r1);
1330 combined_regno = REGNO (r1);
1331 }
1332
1333 /* Mark the death of everything that dies in this instruction,
1334 except for anything that was just combined. */
1335
1336 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1337 if (REG_NOTE_KIND (link) == REG_DEAD
1338 && GET_CODE (XEXP (link, 0)) == REG
1339 && combined_regno != REGNO (XEXP (link, 0))
1340 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1341 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1342 wipe_dead_reg (XEXP (link, 0), 0);
1343
1344 /* Allocate qty numbers for all registers local to this block
1345 that are born (set) in this instruction.
1346 A pseudo that already has a qty is not changed. */
1347
1348 note_stores (PATTERN (insn), reg_is_set);
1349
1350 /* If anything is set in this insn and then unused, mark it as dying
1351 after this insn, so it will conflict with our outputs. This
1352 can't match with something that combined, and it doesn't matter
1353 if it did. Do this after the calls to reg_is_set since these
1354 die after, not during, the current insn. */
1355
1356 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1357 if (REG_NOTE_KIND (link) == REG_UNUSED
1358 && GET_CODE (XEXP (link, 0)) == REG)
1359 wipe_dead_reg (XEXP (link, 0), 1);
1360
e15eb3aa 1361 /* Allocate quantities for any SCRATCH operands of this insn. */
2bbd3819
RS
1362
1363 if (insn_code_number >= 0)
1364 for (i = 0; i < insn_n_operands[insn_code_number]; i++)
bd5f197a 1365 if (GET_CODE (recog_operand[i]) == SCRATCH
2a81034f 1366 && scratches_allocated++ < scratch_list_length)
2bbd3819
RS
1367 alloc_qty_for_scratch (recog_operand[i], i, insn,
1368 insn_code_number, insn_number);
2bbd3819
RS
1369
1370 /* If this is an insn that has a REG_RETVAL note pointing at a
1371 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1372 block, so clear any register number that combined within it. */
b1ec3c92 1373 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
2bbd3819
RS
1374 && GET_CODE (XEXP (note, 0)) == INSN
1375 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1376 no_conflict_combined_regno = -1;
1377 }
1378
1379 /* Set the registers live after INSN_NUMBER. Note that we never
1380 record the registers live before the block's first insn, since no
1381 pseudos we care about are live before that insn. */
1382
1383 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1384 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1385
1386 if (insn == basic_block_end[b])
1387 break;
1388
1389 insn = NEXT_INSN (insn);
1390 }
1391
1392 /* Now every register that is local to this basic block
1393 should have been given a quantity, or else -1 meaning ignore it.
1394 Every quantity should have a known birth and death.
1395
51b86d8b
RK
1396 Order the qtys so we assign them registers in order of the
1397 number of suggested registers they need so we allocate those with
1398 the most restrictive needs first. */
2bbd3819 1399
aabf56ce 1400 qty_order = (int *) alloca (next_qty * sizeof (int));
2bbd3819
RS
1401 for (i = 0; i < next_qty; i++)
1402 qty_order[i] = i;
1403
1404#define EXCHANGE(I1, I2) \
1405 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1406
1407 switch (next_qty)
1408 {
1409 case 3:
1410 /* Make qty_order[2] be the one to allocate last. */
51b86d8b 1411 if (qty_sugg_compare (0, 1) > 0)
2bbd3819 1412 EXCHANGE (0, 1);
51b86d8b 1413 if (qty_sugg_compare (1, 2) > 0)
2bbd3819
RS
1414 EXCHANGE (2, 1);
1415
1416 /* ... Fall through ... */
1417 case 2:
1418 /* Put the best one to allocate in qty_order[0]. */
51b86d8b 1419 if (qty_sugg_compare (0, 1) > 0)
2bbd3819
RS
1420 EXCHANGE (0, 1);
1421
1422 /* ... Fall through ... */
1423
1424 case 1:
1425 case 0:
1426 /* Nothing to do here. */
1427 break;
1428
1429 default:
51b86d8b 1430 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
2bbd3819
RS
1431 }
1432
1433 /* Try to put each quantity in a suggested physical register, if it has one.
1434 This may cause registers to be allocated that otherwise wouldn't be, but
1435 this seems acceptable in local allocation (unlike global allocation). */
1436 for (i = 0; i < next_qty; i++)
1437 {
1438 q = qty_order[i];
51b86d8b 1439 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
2bbd3819
RS
1440 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1441 0, 1, qty_birth[q], qty_death[q]);
1442 else
1443 qty_phys_reg[q] = -1;
1444 }
1445
51b86d8b
RK
1446 /* Order the qtys so we assign them registers in order of
1447 decreasing length of life. Normally call qsort, but if we
1448 have only a very small number of quantities, sort them ourselves. */
1449
1450 for (i = 0; i < next_qty; i++)
1451 qty_order[i] = i;
1452
1453#define EXCHANGE(I1, I2) \
1454 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1455
1456 switch (next_qty)
1457 {
1458 case 3:
1459 /* Make qty_order[2] be the one to allocate last. */
1460 if (qty_compare (0, 1) > 0)
1461 EXCHANGE (0, 1);
1462 if (qty_compare (1, 2) > 0)
1463 EXCHANGE (2, 1);
1464
1465 /* ... Fall through ... */
1466 case 2:
1467 /* Put the best one to allocate in qty_order[0]. */
1468 if (qty_compare (0, 1) > 0)
1469 EXCHANGE (0, 1);
1470
1471 /* ... Fall through ... */
1472
1473 case 1:
1474 case 0:
1475 /* Nothing to do here. */
1476 break;
1477
1478 default:
1479 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1480 }
1481
2bbd3819
RS
1482 /* Now for each qty that is not a hardware register,
1483 look for a hardware register to put it in.
1484 First try the register class that is cheapest for this qty,
1485 if there is more than one class. */
1486
1487 for (i = 0; i < next_qty; i++)
1488 {
1489 q = qty_order[i];
1490 if (qty_phys_reg[q] < 0)
1491 {
1492 if (N_REG_CLASSES > 1)
1493 {
1494 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1495 qty_mode[q], q, 0, 0,
1496 qty_birth[q], qty_death[q]);
1497 if (qty_phys_reg[q] >= 0)
1498 continue;
1499 }
1500
e4600702
RK
1501 if (qty_alternate_class[q] != NO_REGS)
1502 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
2bbd3819
RS
1503 qty_mode[q], q, 0, 0,
1504 qty_birth[q], qty_death[q]);
1505 }
1506 }
1507
1508 /* Now propagate the register assignments
1509 to the pseudo regs belonging to the qtys. */
1510
1511 for (q = 0; q < next_qty; q++)
1512 if (qty_phys_reg[q] >= 0)
1513 {
1514 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1515 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1516 if (qty_scratch_rtx[q])
1517 {
bd5f197a
RK
1518 if (GET_CODE (qty_scratch_rtx[q]) == REG)
1519 abort ();
2bbd3819
RS
1520 PUT_CODE (qty_scratch_rtx[q], REG);
1521 REGNO (qty_scratch_rtx[q]) = qty_phys_reg[q];
1522
bd5f197a
RK
1523 scratch_block[scratch_index] = b;
1524 scratch_list[scratch_index++] = qty_scratch_rtx[q];
2bbd3819
RS
1525
1526 /* Must clear the USED field, because it will have been set by
1527 copy_rtx_if_shared, but the leaf_register code expects that
1528 it is zero in all REG rtx. copy_rtx_if_shared does not set the
1529 used bit for REGs, but does for SCRATCHes. */
1530 qty_scratch_rtx[q]->used = 0;
1531 }
1532 }
1533}
1534\f
1535/* Compare two quantities' priority for getting real registers.
1536 We give shorter-lived quantities higher priority.
6dc42e49
RS
1537 Quantities with more references are also preferred, as are quantities that
1538 require multiple registers. This is the identical prioritization as
2bbd3819
RS
1539 done by global-alloc.
1540
1541 We used to give preference to registers with *longer* lives, but using
1542 the same algorithm in both local- and global-alloc can speed up execution
1543 of some programs by as much as a factor of three! */
1544
1545static int
1546qty_compare (q1, q2)
1547 int q1, q2;
1548{
1549 /* Note that the quotient will never be bigger than
1550 the value of floor_log2 times the maximum number of
1551 times a register can occur in one insn (surely less than 100).
1552 Multiplying this by 10000 can't overflow. */
1553 register int pri1
6680889f
RK
1554 = (((double) (floor_log2 (qty_n_refs[q1]) * qty_n_refs[q1] * qty_size[q1])
1555 / (qty_death[q1] - qty_birth[q1]))
2bbd3819
RS
1556 * 10000);
1557 register int pri2
6680889f
RK
1558 = (((double) (floor_log2 (qty_n_refs[q2]) * qty_n_refs[q2] * qty_size[q2])
1559 / (qty_death[q2] - qty_birth[q2]))
2bbd3819
RS
1560 * 10000);
1561 return pri2 - pri1;
1562}
1563
1564static int
1565qty_compare_1 (q1, q2)
aabf56ce 1566 int *q1, *q2;
2bbd3819
RS
1567{
1568 register int tem;
1569
1570 /* Note that the quotient will never be bigger than
1571 the value of floor_log2 times the maximum number of
1572 times a register can occur in one insn (surely less than 100).
1573 Multiplying this by 10000 can't overflow. */
1574 register int pri1
6680889f
RK
1575 = (((double) (floor_log2 (qty_n_refs[*q1]) * qty_n_refs[*q1]
1576 * qty_size[*q1])
1577 / (qty_death[*q1] - qty_birth[*q1]))
2bbd3819
RS
1578 * 10000);
1579 register int pri2
6680889f
RK
1580 = (((double) (floor_log2 (qty_n_refs[*q2]) * qty_n_refs[*q2]
1581 * qty_size[*q2])
1582 / (qty_death[*q2] - qty_birth[*q2]))
2bbd3819
RS
1583 * 10000);
1584
1585 tem = pri2 - pri1;
1586 if (tem != 0) return tem;
1587 /* If qtys are equally good, sort by qty number,
1588 so that the results of qsort leave nothing to chance. */
1589 return *q1 - *q2;
1590}
1591\f
51b86d8b
RK
1592/* Compare two quantities' priority for getting real registers. This version
1593 is called for quantities that have suggested hard registers. First priority
1594 goes to quantities that have copy preferences, then to those that have
1595 normal preferences. Within those groups, quantities with the lower
1596 number of preferenes have the highest priority. Of those, we use the same
1597 algorithm as above. */
1598
1599static int
1600qty_sugg_compare (q1, q2)
1601 int q1, q2;
1602{
1603 register int sugg1 = (qty_phys_num_copy_sugg[q1]
1604 ? qty_phys_num_copy_sugg[q1]
1605 : qty_phys_num_sugg[q1] * FIRST_PSEUDO_REGISTER);
1606 register int sugg2 = (qty_phys_num_copy_sugg[q2]
1607 ? qty_phys_num_copy_sugg[q2]
1608 : qty_phys_num_sugg[q2] * FIRST_PSEUDO_REGISTER);
1609 /* Note that the quotient will never be bigger than
1610 the value of floor_log2 times the maximum number of
1611 times a register can occur in one insn (surely less than 100).
1612 Multiplying this by 10000 can't overflow. */
1613 register int pri1
1614 = (((double) (floor_log2 (qty_n_refs[q1]) * qty_n_refs[q1] * qty_size[q1])
1615 / (qty_death[q1] - qty_birth[q1]))
1616 * 10000);
1617 register int pri2
1618 = (((double) (floor_log2 (qty_n_refs[q2]) * qty_n_refs[q2] * qty_size[q2])
1619 / (qty_death[q2] - qty_birth[q2]))
1620 * 10000);
1621
1622 if (sugg1 != sugg2)
1623 return sugg1 - sugg2;
1624
1625 return pri2 - pri1;
1626}
1627
1628static int
1629qty_sugg_compare_1 (q1, q2)
1630 int *q1, *q2;
1631{
1632 register int sugg1 = (qty_phys_num_copy_sugg[*q1]
1633 ? qty_phys_num_copy_sugg[*q1]
1634 : qty_phys_num_sugg[*q1] * FIRST_PSEUDO_REGISTER);
1635 register int sugg2 = (qty_phys_num_copy_sugg[*q2]
1636 ? qty_phys_num_copy_sugg[*q2]
1637 : qty_phys_num_sugg[*q2] * FIRST_PSUEDO_REGISTER);
1638
1639 /* Note that the quotient will never be bigger than
1640 the value of floor_log2 times the maximum number of
1641 times a register can occur in one insn (surely less than 100).
1642 Multiplying this by 10000 can't overflow. */
1643 register int pri1
1644 = (((double) (floor_log2 (qty_n_refs[*q1]) * qty_n_refs[*q1]
1645 * qty_size[*q1])
1646 / (qty_death[*q1] - qty_birth[*q1]))
1647 * 10000);
1648 register int pri2
1649 = (((double) (floor_log2 (qty_n_refs[*q2]) * qty_n_refs[*q2]
1650 * qty_size[*q2])
1651 / (qty_death[*q2] - qty_birth[*q2]))
1652 * 10000);
1653
1654 if (sugg1 != sugg2)
1655 return sugg1 - sugg2;
1656
1657 if (pri1 != pri2)
1658 return pri2 - pri1;
1659
1660 /* If qtys are equally good, sort by qty number,
1661 so that the results of qsort leave nothing to chance. */
1662 return *q1 - *q2;
1663}
1664\f
2bbd3819
RS
1665/* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1666 Returns 1 if have done so, or 0 if cannot.
1667
1668 Combining registers means marking them as having the same quantity
1669 and adjusting the offsets within the quantity if either of
1670 them is a SUBREG).
1671
1672 We don't actually combine a hard reg with a pseudo; instead
1673 we just record the hard reg as the suggestion for the pseudo's quantity.
1674 If we really combined them, we could lose if the pseudo lives
1675 across an insn that clobbers the hard reg (eg, movstr).
1676
1677 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1678 there is no REG_DEAD note on INSN. This occurs during the processing
1679 of REG_NO_CONFLICT blocks.
1680
1681 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1682 SETREG or if the input and output must share a register.
1683 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1684
1685 There are elaborate checks for the validity of combining. */
1686
1687
1688static int
1689combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1690 rtx usedreg, setreg;
1691 int may_save_copy;
1692 int insn_number;
1693 rtx insn;
1694 int already_dead;
1695{
1696 register int ureg, sreg;
1697 register int offset = 0;
1698 int usize, ssize;
1699 register int sqty;
1700
1701 /* Determine the numbers and sizes of registers being used. If a subreg
6dc42e49 1702 is present that does not change the entire register, don't consider
2bbd3819
RS
1703 this a copy insn. */
1704
1705 while (GET_CODE (usedreg) == SUBREG)
1706 {
1707 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1708 may_save_copy = 0;
1709 offset += SUBREG_WORD (usedreg);
1710 usedreg = SUBREG_REG (usedreg);
1711 }
1712 if (GET_CODE (usedreg) != REG)
1713 return 0;
1714 ureg = REGNO (usedreg);
1715 usize = REG_SIZE (usedreg);
1716
1717 while (GET_CODE (setreg) == SUBREG)
1718 {
1719 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1720 may_save_copy = 0;
1721 offset -= SUBREG_WORD (setreg);
1722 setreg = SUBREG_REG (setreg);
1723 }
1724 if (GET_CODE (setreg) != REG)
1725 return 0;
1726 sreg = REGNO (setreg);
1727 ssize = REG_SIZE (setreg);
1728
1729 /* If UREG is a pseudo-register that hasn't already been assigned a
1730 quantity number, it means that it is not local to this block or dies
1731 more than once. In either event, we can't do anything with it. */
1732 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1733 /* Do not combine registers unless one fits within the other. */
1734 || (offset > 0 && usize + offset > ssize)
1735 || (offset < 0 && usize + offset < ssize)
1736 /* Do not combine with a smaller already-assigned object
1737 if that smaller object is already combined with something bigger. */
1738 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1739 && usize < qty_size[reg_qty[ureg]])
1740 /* Can't combine if SREG is not a register we can allocate. */
1741 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1742 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1743 These have already been taken care of. This probably wouldn't
1744 combine anyway, but don't take any chances. */
1745 || (ureg >= FIRST_PSEUDO_REGISTER
1746 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1747 /* Don't tie something to itself. In most cases it would make no
1748 difference, but it would screw up if the reg being tied to itself
1749 also dies in this insn. */
1750 || ureg == sreg
1751 /* Don't try to connect two different hardware registers. */
1752 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1753 /* Don't connect two different machine modes if they have different
1754 implications as to which registers may be used. */
1755 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1756 return 0;
1757
1758 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1759 qty_phys_sugg for the pseudo instead of tying them.
1760
1761 Return "failure" so that the lifespan of UREG is terminated here;
1762 that way the two lifespans will be disjoint and nothing will prevent
1763 the pseudo reg from being given this hard reg. */
1764
1765 if (ureg < FIRST_PSEUDO_REGISTER)
1766 {
1767 /* Allocate a quantity number so we have a place to put our
1768 suggestions. */
1769 if (reg_qty[sreg] == -2)
1770 reg_is_born (setreg, 2 * insn_number);
1771
1772 if (reg_qty[sreg] >= 0)
1773 {
51b86d8b
RK
1774 if (may_save_copy
1775 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
2bbd3819
RS
1776 {
1777 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
51b86d8b 1778 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
2bbd3819 1779 }
51b86d8b 1780 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
2bbd3819
RS
1781 {
1782 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
51b86d8b 1783 qty_phys_num_sugg[reg_qty[sreg]]++;
2bbd3819
RS
1784 }
1785 }
1786 return 0;
1787 }
1788
1789 /* Similarly for SREG a hard register and UREG a pseudo register. */
1790
1791 if (sreg < FIRST_PSEUDO_REGISTER)
1792 {
51b86d8b
RK
1793 if (may_save_copy
1794 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
2bbd3819
RS
1795 {
1796 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
51b86d8b 1797 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
2bbd3819 1798 }
51b86d8b 1799 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
2bbd3819
RS
1800 {
1801 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
51b86d8b 1802 qty_phys_num_sugg[reg_qty[ureg]]++;
2bbd3819
RS
1803 }
1804 return 0;
1805 }
1806
1807 /* At this point we know that SREG and UREG are both pseudos.
1808 Do nothing if SREG already has a quantity or is a register that we
1809 don't allocate. */
1810 if (reg_qty[sreg] >= -1
1811 /* If we are not going to let any regs live across calls,
1812 don't tie a call-crossing reg to a non-call-crossing reg. */
1813 || (current_function_has_nonlocal_label
1814 && ((reg_n_calls_crossed[ureg] > 0)
1815 != (reg_n_calls_crossed[sreg] > 0))))
1816 return 0;
1817
1818 /* We don't already know about SREG, so tie it to UREG
1819 if this is the last use of UREG, provided the classes they want
1820 are compatible. */
1821
1822 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1823 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1824 {
1825 /* Add SREG to UREG's quantity. */
1826 sqty = reg_qty[ureg];
1827 reg_qty[sreg] = sqty;
1828 reg_offset[sreg] = reg_offset[ureg] + offset;
1829 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1830 qty_first_reg[sqty] = sreg;
1831
1832 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1833 update_qty_class (sqty, sreg);
1834
1835 /* Update info about quantity SQTY. */
1836 qty_n_calls_crossed[sqty] += reg_n_calls_crossed[sreg];
1837 qty_n_refs[sqty] += reg_n_refs[sreg];
2bbd3819
RS
1838 if (usize < ssize)
1839 {
1840 register int i;
1841
1842 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1843 reg_offset[i] -= offset;
1844
1845 qty_size[sqty] = ssize;
1846 qty_mode[sqty] = GET_MODE (setreg);
1847 }
1848 }
1849 else
1850 return 0;
1851
1852 return 1;
1853}
1854\f
1855/* Return 1 if the preferred class of REG allows it to be tied
1856 to a quantity or register whose class is CLASS.
1857 True if REG's reg class either contains or is contained in CLASS. */
1858
1859static int
1860reg_meets_class_p (reg, class)
1861 int reg;
1862 enum reg_class class;
1863{
1864 register enum reg_class rclass = reg_preferred_class (reg);
1865 return (reg_class_subset_p (rclass, class)
1866 || reg_class_subset_p (class, rclass));
1867}
1868
1869/* Return 1 if the two specified classes have registers in common.
1870 If CALL_SAVED, then consider only call-saved registers. */
1871
1872static int
1873reg_classes_overlap_p (c1, c2, call_saved)
1874 register enum reg_class c1;
1875 register enum reg_class c2;
1876 int call_saved;
1877{
1878 HARD_REG_SET c;
1879 int i;
1880
1881 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
1882 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
1883
1884 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1885 if (TEST_HARD_REG_BIT (c, i)
1886 && (! call_saved || ! call_used_regs[i]))
1887 return 1;
1888
1889 return 0;
1890}
1891
1892/* Update the class of QTY assuming that REG is being tied to it. */
1893
1894static void
1895update_qty_class (qty, reg)
1896 int qty;
1897 int reg;
1898{
1899 enum reg_class rclass = reg_preferred_class (reg);
1900 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1901 qty_min_class[qty] = rclass;
e4600702
RK
1902
1903 rclass = reg_alternate_class (reg);
1904 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1905 qty_alternate_class[qty] = rclass;
2bbd3819
RS
1906}
1907\f
1908/* Handle something which alters the value of an rtx REG.
1909
1910 REG is whatever is set or clobbered. SETTER is the rtx that
1911 is modifying the register.
1912
1913 If it is not really a register, we do nothing.
1914 The file-global variables `this_insn' and `this_insn_number'
1915 carry info from `block_alloc'. */
1916
1917static void
1918reg_is_set (reg, setter)
1919 rtx reg;
1920 rtx setter;
1921{
1922 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1923 a hard register. These may actually not exist any more. */
1924
1925 if (GET_CODE (reg) != SUBREG
1926 && GET_CODE (reg) != REG)
1927 return;
1928
1929 /* Mark this register as being born. If it is used in a CLOBBER, mark
1930 it as being born halfway between the previous insn and this insn so that
1931 it conflicts with our inputs but not the outputs of the previous insn. */
1932
1933 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1934}
1935\f
1936/* Handle beginning of the life of register REG.
1937 BIRTH is the index at which this is happening. */
1938
1939static void
1940reg_is_born (reg, birth)
1941 rtx reg;
1942 int birth;
1943{
1944 register int regno;
1945
1946 if (GET_CODE (reg) == SUBREG)
1947 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1948 else
1949 regno = REGNO (reg);
1950
1951 if (regno < FIRST_PSEUDO_REGISTER)
1952 {
1953 mark_life (regno, GET_MODE (reg), 1);
1954
1955 /* If the register was to have been born earlier that the present
1956 insn, mark it as live where it is actually born. */
1957 if (birth < 2 * this_insn_number)
1958 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1959 }
1960 else
1961 {
1962 if (reg_qty[regno] == -2)
1963 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1964
1965 /* If this register has a quantity number, show that it isn't dead. */
1966 if (reg_qty[regno] >= 0)
1967 qty_death[reg_qty[regno]] = -1;
1968 }
1969}
1970
1971/* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1972 REG is an output that is dying (i.e., it is never used), otherwise it
333e0f7d
RS
1973 is an input (the normal case).
1974 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2bbd3819
RS
1975
1976static void
1977wipe_dead_reg (reg, output_p)
1978 register rtx reg;
1979 int output_p;
1980{
1981 register int regno = REGNO (reg);
1982
333e0f7d
RS
1983 /* If this insn has multiple results,
1984 and the dead reg is used in one of the results,
1985 extend its life to after this insn,
1986 so it won't get allocated together with any other result of this insn. */
1987 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1988 && !single_set (this_insn))
1989 {
1990 int i;
1991 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1992 {
1993 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1994 if (GET_CODE (set) == SET
1995 && GET_CODE (SET_DEST (set)) != REG
1996 && !rtx_equal_p (reg, SET_DEST (set))
1997 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1998 output_p = 1;
1999 }
2000 }
2001
2bbd3819
RS
2002 if (regno < FIRST_PSEUDO_REGISTER)
2003 {
2004 mark_life (regno, GET_MODE (reg), 0);
2005
2006 /* If a hard register is dying as an output, mark it as in use at
2007 the beginning of this insn (the above statement would cause this
2008 not to happen). */
2009 if (output_p)
2010 post_mark_life (regno, GET_MODE (reg), 1,
2011 2 * this_insn_number, 2 * this_insn_number+ 1);
2012 }
2013
2014 else if (reg_qty[regno] >= 0)
2015 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
2016}
2017\f
2018/* Find a block of SIZE words of hard regs in reg_class CLASS
2019 that can hold something of machine-mode MODE
2020 (but actually we test only the first of the block for holding MODE)
2021 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2022 and return the number of the first of them.
2023 Return -1 if such a block cannot be found.
2024 If QTY crosses calls, insist on a register preserved by calls,
2025 unless ACCEPT_CALL_CLOBBERED is nonzero.
2026
2027 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2028 register is available. If not, return -1. */
2029
2030static int
2031find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
2032 born_index, dead_index)
2033 enum reg_class class;
2034 enum machine_mode mode;
82c68a78 2035 int qty;
2bbd3819
RS
2036 int accept_call_clobbered;
2037 int just_try_suggested;
2bbd3819
RS
2038 int born_index, dead_index;
2039{
2040 register int i, ins;
2041#ifdef HARD_REG_SET
2042 register /* Declare it register if it's a scalar. */
2043#endif
2044 HARD_REG_SET used, first_used;
2045#ifdef ELIMINABLE_REGS
2046 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2047#endif
2048
2049 /* Validate our parameters. */
2050 if (born_index < 0 || born_index > dead_index)
2051 abort ();
2052
2053 /* Don't let a pseudo live in a reg across a function call
2054 if we might get a nonlocal goto. */
2055 if (current_function_has_nonlocal_label
2056 && qty_n_calls_crossed[qty] > 0)
2057 return -1;
2058
2059 if (accept_call_clobbered)
2060 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2061 else if (qty_n_calls_crossed[qty] == 0)
2062 COPY_HARD_REG_SET (used, fixed_reg_set);
2063 else
2064 COPY_HARD_REG_SET (used, call_used_reg_set);
2065
2066 for (ins = born_index; ins < dead_index; ins++)
2067 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2068
2069 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2070
2071 /* Don't use the frame pointer reg in local-alloc even if
2072 we may omit the frame pointer, because if we do that and then we
2073 need a frame pointer, reload won't know how to move the pseudo
2074 to another hard reg. It can move only regs made by global-alloc.
2075
2076 This is true of any register that can be eliminated. */
2077#ifdef ELIMINABLE_REGS
2078 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
2079 SET_HARD_REG_BIT (used, eliminables[i].from);
c2618f05
DE
2080#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2081 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2082 that it might be eliminated into. */
2083 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2084#endif
2bbd3819
RS
2085#else
2086 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2087#endif
2088
2089 /* Normally, the registers that can be used for the first register in
2090 a multi-register quantity are the same as those that can be used for
2091 subsequent registers. However, if just trying suggested registers,
2092 restrict our consideration to them. If there are copy-suggested
2093 register, try them. Otherwise, try the arithmetic-suggested
2094 registers. */
2095 COPY_HARD_REG_SET (first_used, used);
2096
2097 if (just_try_suggested)
2098 {
51b86d8b 2099 if (qty_phys_num_copy_sugg[qty] != 0)
2bbd3819
RS
2100 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2101 else
2102 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2103 }
2104
2105 /* If all registers are excluded, we can't do anything. */
2106 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2107
2108 /* If at least one would be suitable, test each hard reg. */
2109
2110 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2111 {
2112#ifdef REG_ALLOC_ORDER
2113 int regno = reg_alloc_order[i];
2114#else
2115 int regno = i;
2116#endif
2117 if (! TEST_HARD_REG_BIT (first_used, regno)
2118 && HARD_REGNO_MODE_OK (regno, mode))
2119 {
2120 register int j;
2121 register int size1 = HARD_REGNO_NREGS (regno, mode);
2122 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2123 if (j == size1)
2124 {
2125 /* Mark that this register is in use between its birth and death
2126 insns. */
2127 post_mark_life (regno, mode, 1, born_index, dead_index);
2128 return regno;
2129 }
2130#ifndef REG_ALLOC_ORDER
2131 i += j; /* Skip starting points we know will lose */
2132#endif
2133 }
2134 }
2135
2136 fail:
2137
2138 /* If we are just trying suggested register, we have just tried copy-
2139 suggested registers, and there are arithmetic-suggested registers,
2140 try them. */
2141
2142 /* If it would be profitable to allocate a call-clobbered register
2143 and save and restore it around calls, do that. */
51b86d8b
RK
2144 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2145 && qty_phys_num_sugg[qty] != 0)
2bbd3819
RS
2146 {
2147 /* Don't try the copy-suggested regs again. */
51b86d8b 2148 qty_phys_num_copy_sugg[qty] = 0;
2bbd3819
RS
2149 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2150 born_index, dead_index);
2151 }
2152
e19f5192
RK
2153 /* We need not check to see if the current function has nonlocal
2154 labels because we don't put any pseudos that are live over calls in
2155 registers in that case. */
2156
2bbd3819
RS
2157 if (! accept_call_clobbered
2158 && flag_caller_saves
2159 && ! just_try_suggested
2160 && qty_n_calls_crossed[qty] != 0
2161 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2162 {
2163 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2164 if (i >= 0)
2165 caller_save_needed = 1;
2166 return i;
2167 }
2168 return -1;
2169}
2170\f
2171/* Mark that REGNO with machine-mode MODE is live starting from the current
2172 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2173 is zero). */
2174
2175static void
2176mark_life (regno, mode, life)
2177 register int regno;
2178 enum machine_mode mode;
2179 int life;
2180{
2181 register int j = HARD_REGNO_NREGS (regno, mode);
2182 if (life)
2183 while (--j >= 0)
2184 SET_HARD_REG_BIT (regs_live, regno + j);
2185 else
2186 while (--j >= 0)
2187 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2188}
2189
2190/* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2191 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2192 to insn number DEATH (exclusive). */
2193
2194static void
2195post_mark_life (regno, mode, life, birth, death)
82c68a78 2196 int regno;
2bbd3819 2197 enum machine_mode mode;
82c68a78 2198 int life, birth, death;
2bbd3819
RS
2199{
2200 register int j = HARD_REGNO_NREGS (regno, mode);
2201#ifdef HARD_REG_SET
2202 register /* Declare it register if it's a scalar. */
2203#endif
2204 HARD_REG_SET this_reg;
2205
2206 CLEAR_HARD_REG_SET (this_reg);
2207 while (--j >= 0)
2208 SET_HARD_REG_BIT (this_reg, regno + j);
2209
2210 if (life)
2211 while (birth < death)
2212 {
2213 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2214 birth++;
2215 }
2216 else
2217 while (birth < death)
2218 {
2219 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2220 birth++;
2221 }
2222}
2223\f
2224/* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2225 is the register being clobbered, and R1 is a register being used in
2226 the equivalent expression.
2227
2228 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2229 in which it is used, return 1.
2230
2231 Otherwise, return 0. */
2232
2233static int
2234no_conflict_p (insn, r0, r1)
2235 rtx insn, r0, r1;
2236{
2237 int ok = 0;
b1ec3c92 2238 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2bbd3819
RS
2239 rtx p, last;
2240
2241 /* If R1 is a hard register, return 0 since we handle this case
2242 when we scan the insns that actually use it. */
2243
2244 if (note == 0
2245 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2246 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2247 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2248 return 0;
2249
2250 last = XEXP (note, 0);
2251
2252 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2253 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2254 {
2255 if (find_reg_note (p, REG_DEAD, r1))
2256 ok = 1;
2257
2258 if (reg_mentioned_p (r1, PATTERN (p))
2259 && ! find_reg_note (p, REG_NO_CONFLICT, r1))
2260 return 0;
2261 }
2262
2263 return ok;
2264}
2265\f
7fe4336e
RK
2266#ifdef REGISTER_CONSTRAINTS
2267
2bbd3819
RS
2268/* Return 1 if the constraint string P indicates that the a the operand
2269 must be equal to operand 0 and that no register is acceptable. */
2270
2271static int
2272requires_inout_p (p)
2273 char *p;
2274{
2275 char c;
2276 int found_zero = 0;
2277
2278 while (c = *p++)
2279 switch (c)
2280 {
2281 case '0':
2282 found_zero = 1;
2283 break;
2284
2285 case '=': case '+': case '?':
2286 case '#': case '&': case '!':
2287 case '*': case '%': case ',':
2288 case '1': case '2': case '3': case '4':
2289 case 'm': case '<': case '>': case 'V': case 'o':
2290 case 'E': case 'F': case 'G': case 'H':
2291 case 's': case 'i': case 'n':
2292 case 'I': case 'J': case 'K': case 'L':
2293 case 'M': case 'N': case 'O': case 'P':
2294#ifdef EXTRA_CONSTRAINT
2295 case 'Q': case 'R': case 'S': case 'T': case 'U':
2296#endif
2297 case 'X':
2298 /* These don't say anything we care about. */
2299 break;
2300
2301 case 'p':
2302 case 'g': case 'r':
2303 default:
2304 /* These mean a register is allowed. Fail if so. */
2305 return 0;
2306 }
2307
2308 return found_zero;
2309}
7fe4336e 2310#endif /* REGISTER_CONSTRAINTS */
2bbd3819
RS
2311\f
2312void
2313dump_local_alloc (file)
2314 FILE *file;
2315{
2316 register int i;
2317 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2318 if (reg_renumber[i] != -1)
2319 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2320}
This page took 0.43907 seconds and 5 git commands to generate.