]> gcc.gnu.org Git - gcc.git/blame - gcc/local-alloc.c
(FUNCTION_PROFILER): Use $28 instead of $27.
[gcc.git] / gcc / local-alloc.c
CommitLineData
2bbd3819 1/* Allocate registers within a basic block, for GNU compiler.
da2c9ff9 2 Copyright (C) 1987, 1988, 1991, 1993, 1994 Free Software Foundation, Inc.
2bbd3819
RS
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* Allocation of hard register numbers to pseudo registers is done in
22 two passes. In this pass we consider only regs that are born and
23 die once within one basic block. We do this one basic block at a
24 time. Then the next pass allocates the registers that remain.
25 Two passes are used because this pass uses methods that work only
26 on linear code, but that do a better job than the general methods
27 used in global_alloc, and more quickly too.
28
29 The assignments made are recorded in the vector reg_renumber
30 whose space is allocated here. The rtl code itself is not altered.
31
32 We assign each instruction in the basic block a number
33 which is its order from the beginning of the block.
34 Then we can represent the lifetime of a pseudo register with
35 a pair of numbers, and check for conflicts easily.
36 We can record the availability of hard registers with a
37 HARD_REG_SET for each instruction. The HARD_REG_SET
38 contains 0 or 1 for each hard reg.
39
40 To avoid register shuffling, we tie registers together when one
41 dies by being copied into another, or dies in an instruction that
42 does arithmetic to produce another. The tied registers are
43 allocated as one. Registers with different reg class preferences
44 can never be tied unless the class preferred by one is a subclass
45 of the one preferred by the other.
46
47 Tying is represented with "quantity numbers".
48 A non-tied register is given a new quantity number.
49 Tied registers have the same quantity number.
50
51 We have provision to exempt registers, even when they are contained
52 within the block, that can be tied to others that are not contained in it.
53 This is so that global_alloc could process them both and tie them then.
54 But this is currently disabled since tying in global_alloc is not
55 yet implemented. */
56
57#include <stdio.h>
58#include "config.h"
59#include "rtl.h"
60#include "flags.h"
61#include "basic-block.h"
62#include "regs.h"
63#include "hard-reg-set.h"
64#include "insn-config.h"
65#include "recog.h"
66#include "output.h"
67\f
cde62d1a
RK
68/* Pseudos allocated here cannot be reallocated by global.c if the hard
69 register is used as a spill register. So we don't allocate such pseudos
70 here if their preferred class is likely to be used by spills.
71
72 On most machines, the appropriate test is if the class has one
73 register, so we default to that. */
74
75#ifndef CLASS_LIKELY_SPILLED_P
76#define CLASS_LIKELY_SPILLED_P(CLASS) (reg_class_size[(int) (CLASS)] == 1)
77#endif
78
2bbd3819
RS
79/* Next quantity number available for allocation. */
80
81static int next_qty;
82
83/* In all the following vectors indexed by quantity number. */
84
85/* Element Q is the hard reg number chosen for quantity Q,
86 or -1 if none was found. */
87
88static short *qty_phys_reg;
89
90/* We maintain two hard register sets that indicate suggested hard registers
91 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
92 that are tied to the quantity by a simple copy. The second contains all
93 hard registers that are tied to the quantity via an arithmetic operation.
94
95 The former register set is given priority for allocation. This tends to
96 eliminate copy insns. */
97
98/* Element Q is a set of hard registers that are suggested for quantity Q by
99 copy insns. */
100
101static HARD_REG_SET *qty_phys_copy_sugg;
102
103/* Element Q is a set of hard registers that are suggested for quantity Q by
104 arithmetic insns. */
105
106static HARD_REG_SET *qty_phys_sugg;
107
51b86d8b 108/* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
2bbd3819 109
51b86d8b 110static short *qty_phys_num_copy_sugg;
2bbd3819 111
51b86d8b 112/* Element Q is the number of suggested registers in qty_phys_sugg. */
2bbd3819 113
51b86d8b 114static short *qty_phys_num_sugg;
2bbd3819
RS
115
116/* Element Q is the number of refs to quantity Q. */
117
aabf56ce 118static int *qty_n_refs;
2bbd3819
RS
119
120/* Element Q is a reg class contained in (smaller than) the
121 preferred classes of all the pseudo regs that are tied in quantity Q.
122 This is the preferred class for allocating that quantity. */
123
124static enum reg_class *qty_min_class;
125
126/* Insn number (counting from head of basic block)
127 where quantity Q was born. -1 if birth has not been recorded. */
128
129static int *qty_birth;
130
131/* Insn number (counting from head of basic block)
132 where quantity Q died. Due to the way tying is done,
133 and the fact that we consider in this pass only regs that die but once,
134 a quantity can die only once. Each quantity's life span
135 is a set of consecutive insns. -1 if death has not been recorded. */
136
137static int *qty_death;
138
139/* Number of words needed to hold the data in quantity Q.
140 This depends on its machine mode. It is used for these purposes:
141 1. It is used in computing the relative importances of qtys,
142 which determines the order in which we look for regs for them.
143 2. It is used in rules that prevent tying several registers of
144 different sizes in a way that is geometrically impossible
145 (see combine_regs). */
146
147static int *qty_size;
148
149/* This holds the mode of the registers that are tied to qty Q,
150 or VOIDmode if registers with differing modes are tied together. */
151
152static enum machine_mode *qty_mode;
153
154/* Number of times a reg tied to qty Q lives across a CALL_INSN. */
155
156static int *qty_n_calls_crossed;
157
e4600702
RK
158/* Register class within which we allocate qty Q if we can't get
159 its preferred class. */
2bbd3819 160
e4600702 161static enum reg_class *qty_alternate_class;
2bbd3819
RS
162
163/* Element Q is the SCRATCH expression for which this quantity is being
164 allocated or 0 if this quantity is allocating registers. */
165
166static rtx *qty_scratch_rtx;
167
0f64b8f6
RK
168/* Element Q is nonzero if this quantity has been used in a SUBREG
169 that changes its size. */
170
171static char *qty_changes_size;
172
2bbd3819
RS
173/* Element Q is the register number of one pseudo register whose
174 reg_qty value is Q, or -1 is this quantity is for a SCRATCH. This
175 register should be the head of the chain maintained in reg_next_in_qty. */
176
aabf56ce 177static int *qty_first_reg;
2bbd3819
RS
178
179/* If (REG N) has been assigned a quantity number, is a register number
180 of another register assigned the same quantity number, or -1 for the
181 end of the chain. qty_first_reg point to the head of this chain. */
182
aabf56ce 183static int *reg_next_in_qty;
2bbd3819
RS
184
185/* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
186 if it is >= 0,
187 of -1 if this register cannot be allocated by local-alloc,
188 or -2 if not known yet.
189
190 Note that if we see a use or death of pseudo register N with
191 reg_qty[N] == -2, register N must be local to the current block. If
192 it were used in more than one block, we would have reg_qty[N] == -1.
193 This relies on the fact that if reg_basic_block[N] is >= 0, register N
194 will not appear in any other block. We save a considerable number of
195 tests by exploiting this.
196
197 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
198 be referenced. */
199
200static int *reg_qty;
201
202/* The offset (in words) of register N within its quantity.
203 This can be nonzero if register N is SImode, and has been tied
204 to a subreg of a DImode register. */
205
206static char *reg_offset;
207
208/* Vector of substitutions of register numbers,
209 used to map pseudo regs into hardware regs.
210 This is set up as a result of register allocation.
211 Element N is the hard reg assigned to pseudo reg N,
212 or is -1 if no hard reg was assigned.
213 If N is a hard reg number, element N is N. */
214
215short *reg_renumber;
216
217/* Set of hard registers live at the current point in the scan
218 of the instructions in a basic block. */
219
220static HARD_REG_SET regs_live;
221
222/* Each set of hard registers indicates registers live at a particular
223 point in the basic block. For N even, regs_live_at[N] says which
224 hard registers are needed *after* insn N/2 (i.e., they may not
225 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
226
227 If an object is to conflict with the inputs of insn J but not the
228 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
229 if it is to conflict with the outputs of insn J but not the inputs of
230 insn J + 1, it is said to die at index J*2 + 1. */
231
232static HARD_REG_SET *regs_live_at;
233
bd5f197a
RK
234int *scratch_block;
235rtx *scratch_list;
236int scratch_list_length;
237static int scratch_index;
238
2bbd3819
RS
239/* Communicate local vars `insn_number' and `insn'
240 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
241static int this_insn_number;
242static rtx this_insn;
243
82c68a78
RK
244static void alloc_qty PROTO((int, enum machine_mode, int, int));
245static void alloc_qty_for_scratch PROTO((rtx, int, rtx, int, int));
246static void validate_equiv_mem_from_store PROTO((rtx, rtx));
247static int validate_equiv_mem PROTO((rtx, rtx, rtx));
248static int memref_referenced_p PROTO((rtx, rtx));
249static int memref_used_between_p PROTO((rtx, rtx, rtx));
250static void optimize_reg_copy_1 PROTO((rtx, rtx, rtx));
251static void optimize_reg_copy_2 PROTO((rtx, rtx, rtx));
252static void update_equiv_regs PROTO((void));
253static void block_alloc PROTO((int));
51b86d8b
RK
254static int qty_sugg_compare PROTO((int, int));
255static int qty_sugg_compare_1 PROTO((int *, int *));
82c68a78
RK
256static int qty_compare PROTO((int, int));
257static int qty_compare_1 PROTO((int *, int *));
258static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
259static int reg_meets_class_p PROTO((int, enum reg_class));
260static int reg_classes_overlap_p PROTO((enum reg_class, enum reg_class,
261 int));
262static void update_qty_class PROTO((int, int));
263static void reg_is_set PROTO((rtx, rtx));
264static void reg_is_born PROTO((rtx, int));
265static void wipe_dead_reg PROTO((rtx, int));
266static int find_free_reg PROTO((enum reg_class, enum machine_mode,
267 int, int, int, int, int));
268static void mark_life PROTO((int, enum machine_mode, int));
269static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
270static int no_conflict_p PROTO((rtx, rtx, rtx));
3061cc54 271static int requires_inout PROTO((char *));
2bbd3819
RS
272\f
273/* Allocate a new quantity (new within current basic block)
274 for register number REGNO which is born at index BIRTH
275 within the block. MODE and SIZE are info on reg REGNO. */
276
277static void
278alloc_qty (regno, mode, size, birth)
279 int regno;
280 enum machine_mode mode;
281 int size, birth;
282{
283 register int qty = next_qty++;
284
285 reg_qty[regno] = qty;
286 reg_offset[regno] = 0;
287 reg_next_in_qty[regno] = -1;
288
289 qty_first_reg[qty] = regno;
290 qty_size[qty] = size;
291 qty_mode[qty] = mode;
292 qty_birth[qty] = birth;
293 qty_n_calls_crossed[qty] = reg_n_calls_crossed[regno];
294 qty_min_class[qty] = reg_preferred_class (regno);
e4600702 295 qty_alternate_class[qty] = reg_alternate_class (regno);
2bbd3819 296 qty_n_refs[qty] = reg_n_refs[regno];
0f64b8f6 297 qty_changes_size[qty] = reg_changes_size[regno];
2bbd3819
RS
298}
299\f
300/* Similar to `alloc_qty', but allocates a quantity for a SCRATCH rtx
301 used as operand N in INSN. We assume here that the SCRATCH is used in
302 a CLOBBER. */
303
304static void
305alloc_qty_for_scratch (scratch, n, insn, insn_code_num, insn_number)
306 rtx scratch;
307 int n;
308 rtx insn;
309 int insn_code_num, insn_number;
310{
311 register int qty;
312 enum reg_class class;
313 char *p, c;
314 int i;
315
7fe4336e 316#ifdef REGISTER_CONSTRAINTS
2bbd3819
RS
317 /* If we haven't yet computed which alternative will be used, do so now.
318 Then set P to the constraints for that alternative. */
319 if (which_alternative == -1)
320 if (! constrain_operands (insn_code_num, 0))
321 return;
322
323 for (p = insn_operand_constraint[insn_code_num][n], i = 0;
324 *p && i < which_alternative; p++)
325 if (*p == ',')
326 i++;
327
328 /* Compute the class required for this SCRATCH. If we don't need a
329 register, the class will remain NO_REGS. If we guessed the alternative
330 number incorrectly, reload will fix things up for us. */
331
332 class = NO_REGS;
333 while ((c = *p++) != '\0' && c != ',')
334 switch (c)
335 {
336 case '=': case '+': case '?':
337 case '#': case '&': case '!':
338 case '*': case '%':
339 case '0': case '1': case '2': case '3': case '4':
340 case 'm': case '<': case '>': case 'V': case 'o':
341 case 'E': case 'F': case 'G': case 'H':
342 case 's': case 'i': case 'n':
343 case 'I': case 'J': case 'K': case 'L':
344 case 'M': case 'N': case 'O': case 'P':
345#ifdef EXTRA_CONSTRAINT
346 case 'Q': case 'R': case 'S': case 'T': case 'U':
347#endif
348 case 'p':
349 /* These don't say anything we care about. */
350 break;
351
352 case 'X':
353 /* We don't need to allocate this SCRATCH. */
354 return;
355
356 case 'g': case 'r':
357 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
358 break;
359
360 default:
361 class
362 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER (c)];
363 break;
364 }
365
e15eb3aa 366 if (class == NO_REGS)
2bbd3819
RS
367 return;
368
7fe4336e
RK
369#else /* REGISTER_CONSTRAINTS */
370
371 class = GENERAL_REGS;
372#endif
373
374
2bbd3819
RS
375 qty = next_qty++;
376
377 qty_first_reg[qty] = -1;
378 qty_scratch_rtx[qty] = scratch;
379 qty_size[qty] = GET_MODE_SIZE (GET_MODE (scratch));
380 qty_mode[qty] = GET_MODE (scratch);
381 qty_birth[qty] = 2 * insn_number - 1;
382 qty_death[qty] = 2 * insn_number + 1;
383 qty_n_calls_crossed[qty] = 0;
384 qty_min_class[qty] = class;
e4600702 385 qty_alternate_class[qty] = NO_REGS;
2bbd3819 386 qty_n_refs[qty] = 1;
0f64b8f6 387 qty_changes_size[qty] = 0;
2bbd3819
RS
388}
389\f
390/* Main entry point of this file. */
391
392void
393local_alloc ()
394{
395 register int b, i;
396 int max_qty;
397
398 /* Leaf functions and non-leaf functions have different needs.
399 If defined, let the machine say what kind of ordering we
400 should use. */
401#ifdef ORDER_REGS_FOR_LOCAL_ALLOC
402 ORDER_REGS_FOR_LOCAL_ALLOC;
403#endif
404
405 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
406 registers. */
407 update_equiv_regs ();
408
409 /* This sets the maximum number of quantities we can have. Quantity
d45cf215 410 numbers start at zero and we can have one for each pseudo plus the
6dc42e49 411 number of SCRATCHes in the largest block, in the worst case. */
2bbd3819
RS
412 max_qty = (max_regno - FIRST_PSEUDO_REGISTER) + max_scratch;
413
414 /* Allocate vectors of temporary data.
415 See the declarations of these variables, above,
416 for what they mean. */
417
e15eb3aa
RK
418 /* There can be up to MAX_SCRATCH * N_BASIC_BLOCKS SCRATCHes to allocate.
419 Instead of allocating this much memory from now until the end of
420 reload, only allocate space for MAX_QTY SCRATCHes. If there are more
421 reload will allocate them. */
422
bd5f197a
RK
423 scratch_list_length = max_qty;
424 scratch_list = (rtx *) xmalloc (scratch_list_length * sizeof (rtx));
4c9a05bc 425 bzero ((char *) scratch_list, scratch_list_length * sizeof (rtx));
bd5f197a 426 scratch_block = (int *) xmalloc (scratch_list_length * sizeof (int));
4c9a05bc 427 bzero ((char *) scratch_block, scratch_list_length * sizeof (int));
bd5f197a
RK
428 scratch_index = 0;
429
2bbd3819 430 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
4c9a05bc
RK
431 qty_phys_copy_sugg
432 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
fc0e5bd0 433 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
2bbd3819 434 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
fc0e5bd0 435 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
2bbd3819
RS
436 qty_birth = (int *) alloca (max_qty * sizeof (int));
437 qty_death = (int *) alloca (max_qty * sizeof (int));
438 qty_scratch_rtx = (rtx *) alloca (max_qty * sizeof (rtx));
aabf56ce 439 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
2bbd3819 440 qty_size = (int *) alloca (max_qty * sizeof (int));
4c9a05bc
RK
441 qty_mode
442 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
2bbd3819 443 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
4c9a05bc
RK
444 qty_min_class
445 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
446 qty_alternate_class
447 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
aabf56ce 448 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
0f64b8f6 449 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
2bbd3819
RS
450
451 reg_qty = (int *) alloca (max_regno * sizeof (int));
452 reg_offset = (char *) alloca (max_regno * sizeof (char));
aabf56ce 453 reg_next_in_qty = (int *) alloca (max_regno * sizeof (int));
2bbd3819
RS
454
455 reg_renumber = (short *) oballoc (max_regno * sizeof (short));
456 for (i = 0; i < max_regno; i++)
457 reg_renumber[i] = -1;
458
459 /* Determine which pseudo-registers can be allocated by local-alloc.
460 In general, these are the registers used only in a single block and
461 which only die once. However, if a register's preferred class has only
cde62d1a 462 a few entries, don't allocate this register here unless it is preferred
2bbd3819
RS
463 or nothing since retry_global_alloc won't be able to move it to
464 GENERAL_REGS if a reload register of this class is needed.
465
466 We need not be concerned with which block actually uses the register
467 since we will never see it outside that block. */
468
469 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
470 {
471 if (reg_basic_block[i] >= 0 && reg_n_deaths[i] == 1
e4600702 472 && (reg_alternate_class (i) == NO_REGS
cde62d1a 473 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
2bbd3819
RS
474 reg_qty[i] = -2;
475 else
476 reg_qty[i] = -1;
477 }
478
479 /* Force loop below to initialize entire quantity array. */
480 next_qty = max_qty;
481
482 /* Allocate each block's local registers, block by block. */
483
484 for (b = 0; b < n_basic_blocks; b++)
485 {
486 /* NEXT_QTY indicates which elements of the `qty_...'
487 vectors might need to be initialized because they were used
488 for the previous block; it is set to the entire array before
489 block 0. Initialize those, with explicit loop if there are few,
490 else with bzero and bcopy. Do not initialize vectors that are
491 explicit set by `alloc_qty'. */
492
493 if (next_qty < 6)
494 {
495 for (i = 0; i < next_qty; i++)
496 {
497 qty_scratch_rtx[i] = 0;
498 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
51b86d8b 499 qty_phys_num_copy_sugg[i] = 0;
2bbd3819 500 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
51b86d8b 501 qty_phys_num_sugg[i] = 0;
2bbd3819
RS
502 }
503 }
504 else
505 {
506#define CLEAR(vector) \
4c9a05bc 507 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
2bbd3819
RS
508
509 CLEAR (qty_scratch_rtx);
510 CLEAR (qty_phys_copy_sugg);
51b86d8b 511 CLEAR (qty_phys_num_copy_sugg);
2bbd3819 512 CLEAR (qty_phys_sugg);
51b86d8b 513 CLEAR (qty_phys_num_sugg);
2bbd3819
RS
514 }
515
516 next_qty = 0;
517
518 block_alloc (b);
519#ifdef USE_C_ALLOCA
520 alloca (0);
521#endif
522 }
523}
524\f
525/* Depth of loops we are in while in update_equiv_regs. */
526static int loop_depth;
527
528/* Used for communication between the following two functions: contains
529 a MEM that we wish to ensure remains unchanged. */
530static rtx equiv_mem;
531
532/* Set nonzero if EQUIV_MEM is modified. */
533static int equiv_mem_modified;
534
535/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
536 Called via note_stores. */
537
538static void
539validate_equiv_mem_from_store (dest, set)
540 rtx dest;
541 rtx set;
542{
543 if ((GET_CODE (dest) == REG
544 && reg_overlap_mentioned_p (dest, equiv_mem))
545 || (GET_CODE (dest) == MEM
546 && true_dependence (dest, equiv_mem)))
547 equiv_mem_modified = 1;
548}
549
550/* Verify that no store between START and the death of REG invalidates
551 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
552 by storing into an overlapping memory location, or with a non-const
553 CALL_INSN.
554
555 Return 1 if MEMREF remains valid. */
556
557static int
558validate_equiv_mem (start, reg, memref)
559 rtx start;
560 rtx reg;
561 rtx memref;
562{
563 rtx insn;
564 rtx note;
565
566 equiv_mem = memref;
567 equiv_mem_modified = 0;
568
569 /* If the memory reference has side effects or is volatile, it isn't a
570 valid equivalence. */
571 if (side_effects_p (memref))
572 return 0;
573
574 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
575 {
576 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
577 continue;
578
579 if (find_reg_note (insn, REG_DEAD, reg))
580 return 1;
581
582 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
583 && ! CONST_CALL_P (insn))
584 return 0;
585
586 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
587
588 /* If a register mentioned in MEMREF is modified via an
589 auto-increment, we lose the equivalence. Do the same if one
590 dies; although we could extend the life, it doesn't seem worth
591 the trouble. */
592
593 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
594 if ((REG_NOTE_KIND (note) == REG_INC
595 || REG_NOTE_KIND (note) == REG_DEAD)
596 && GET_CODE (XEXP (note, 0)) == REG
597 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
598 return 0;
599 }
600
601 return 0;
602}
603\f
604/* TRUE if X references a memory location that would be affected by a store
605 to MEMREF. */
606
607static int
608memref_referenced_p (memref, x)
609 rtx x;
610 rtx memref;
611{
612 int i, j;
613 char *fmt;
614 enum rtx_code code = GET_CODE (x);
615
616 switch (code)
617 {
618 case REG:
619 case CONST_INT:
620 case CONST:
621 case LABEL_REF:
622 case SYMBOL_REF:
623 case CONST_DOUBLE:
624 case PC:
625 case CC0:
626 case HIGH:
627 case LO_SUM:
628 return 0;
629
630 case MEM:
631 if (true_dependence (memref, x))
632 return 1;
633 break;
634
635 case SET:
636 /* If we are setting a MEM, it doesn't count (its address does), but any
637 other SET_DEST that has a MEM in it is referencing the MEM. */
638 if (GET_CODE (SET_DEST (x)) == MEM)
639 {
640 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
641 return 1;
642 }
643 else if (memref_referenced_p (memref, SET_DEST (x)))
644 return 1;
645
646 return memref_referenced_p (memref, SET_SRC (x));
647 }
648
649 fmt = GET_RTX_FORMAT (code);
650 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
651 switch (fmt[i])
652 {
653 case 'e':
654 if (memref_referenced_p (memref, XEXP (x, i)))
655 return 1;
656 break;
657 case 'E':
658 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
659 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
660 return 1;
661 break;
662 }
663
664 return 0;
665}
666
667/* TRUE if some insn in the range (START, END] references a memory location
668 that would be affected by a store to MEMREF. */
669
670static int
671memref_used_between_p (memref, start, end)
672 rtx memref;
673 rtx start;
674 rtx end;
675{
676 rtx insn;
677
678 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
679 insn = NEXT_INSN (insn))
680 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
681 && memref_referenced_p (memref, PATTERN (insn)))
682 return 1;
683
684 return 0;
685}
686\f
687/* INSN is a copy from SRC to DEST, both registers, and SRC does not die
688 in INSN.
689
690 Search forward to see if SRC dies before either it or DEST is modified,
691 but don't scan past the end of a basic block. If so, we can replace SRC
692 with DEST and let SRC die in INSN.
693
694 This will reduce the number of registers live in that range and may enable
695 DEST to be tied to SRC, thus often saving one register in addition to a
696 register-register copy. */
697
698static void
d45cf215 699optimize_reg_copy_1 (insn, dest, src)
2bbd3819
RS
700 rtx insn;
701 rtx dest;
702 rtx src;
703{
704 rtx p, q;
705 rtx note;
706 rtx dest_death = 0;
707 int sregno = REGNO (src);
708 int dregno = REGNO (dest);
709
710 if (sregno == dregno
711#ifdef SMALL_REGISTER_CLASSES
712 /* We don't want to mess with hard regs if register classes are small. */
713 || sregno < FIRST_PSEUDO_REGISTER || dregno < FIRST_PSEUDO_REGISTER
714#endif
715 /* We don't see all updates to SP if they are in an auto-inc memory
716 reference, so we must disallow this optimization on them. */
717 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
718 return;
719
720 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
721 {
722 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
723 || (GET_CODE (p) == NOTE
724 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
725 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
726 break;
727
728 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
729 continue;
730
731 if (reg_set_p (src, p) || reg_set_p (dest, p)
732 /* Don't change a USE of a register. */
733 || (GET_CODE (PATTERN (p)) == USE
734 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
735 break;
736
d9983d6c
RK
737 /* See if all of SRC dies in P. This test is slightly more
738 conservative than it needs to be. */
739 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
740 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2bbd3819
RS
741 {
742 int failed = 0;
743 int length = 0;
d9983d6c 744 int d_length = 0;
2bbd3819 745 int n_calls = 0;
d9983d6c 746 int d_n_calls = 0;
2bbd3819
RS
747
748 /* We can do the optimization. Scan forward from INSN again,
749 replacing regs as we go. Set FAILED if a replacement can't
750 be done. In that case, we can't move the death note for SRC.
751 This should be rare. */
752
753 /* Set to stop at next insn. */
754 for (q = next_real_insn (insn);
755 q != next_real_insn (p);
756 q = next_real_insn (q))
757 {
d9983d6c 758 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2bbd3819 759 {
d9983d6c
RK
760 /* If SRC is a hard register, we might miss some
761 overlapping registers with validate_replace_rtx,
762 so we would have to undo it. We can't if DEST is
763 present in the insn, so fail in that combination
764 of cases. */
765 if (sregno < FIRST_PSEUDO_REGISTER
766 && reg_mentioned_p (dest, PATTERN (q)))
767 failed = 1;
768
769 /* Replace all uses and make sure that the register
770 isn't still present. */
771 else if (validate_replace_rtx (src, dest, q)
772 && (sregno >= FIRST_PSEUDO_REGISTER
773 || ! reg_overlap_mentioned_p (src,
774 PATTERN (q))))
2bbd3819
RS
775 {
776 /* We assume that a register is used exactly once per
777 insn in the updates below. If this is not correct,
778 no great harm is done. */
779 if (sregno >= FIRST_PSEUDO_REGISTER)
780 reg_n_refs[sregno] -= loop_depth;
781 if (dregno >= FIRST_PSEUDO_REGISTER)
782 reg_n_refs[dregno] += loop_depth;
783 }
784 else
d9983d6c
RK
785 {
786 validate_replace_rtx (dest, src, q);
787 failed = 1;
788 }
2bbd3819
RS
789 }
790
791 /* Count the insns and CALL_INSNs passed. If we passed the
792 death note of DEST, show increased live length. */
793 length++;
794 if (dest_death)
d9983d6c 795 d_length++;
2bbd3819 796
da2c9ff9
RK
797 /* If the insn in which SRC dies is a CALL_INSN, don't count it
798 as a call that has been crossed. Otherwise, count it. */
799 if (q != p && GET_CODE (q) == CALL_INSN)
2bbd3819
RS
800 {
801 n_calls++;
802 if (dest_death)
d9983d6c 803 d_n_calls++;
2bbd3819
RS
804 }
805
806 /* If DEST dies here, remove the death note and save it for
d9983d6c
RK
807 later. Make sure ALL of DEST dies here; again, this is
808 overly conservative. */
2bbd3819 809 if (dest_death == 0
d9983d6c
RK
810 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0
811 && GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2bbd3819
RS
812 remove_note (q, dest_death);
813 }
814
815 if (! failed)
816 {
817 if (sregno >= FIRST_PSEUDO_REGISTER)
818 {
819 reg_live_length[sregno] -= length;
2d19a71c
JW
820 /* reg_live_length is only an approximation after combine
821 if sched is not run, so make sure that we still have
822 a reasonable value. */
823 if (reg_live_length[sregno] < 2)
824 reg_live_length[sregno] = 2;
2bbd3819
RS
825 reg_n_calls_crossed[sregno] -= n_calls;
826 }
827
d9983d6c
RK
828 if (dregno >= FIRST_PSEUDO_REGISTER)
829 {
830 reg_live_length[dregno] += d_length;
831 reg_n_calls_crossed[dregno] += d_n_calls;
832 }
833
2bbd3819
RS
834 /* Move death note of SRC from P to INSN. */
835 remove_note (p, note);
836 XEXP (note, 1) = REG_NOTES (insn);
837 REG_NOTES (insn) = note;
838 }
839
840 /* Put death note of DEST on P if we saw it die. */
841 if (dest_death)
842 {
843 XEXP (dest_death, 1) = REG_NOTES (p);
844 REG_NOTES (p) = dest_death;
845 }
846
847 return;
848 }
d9983d6c
RK
849
850 /* If SRC is a hard register which is set or killed in some other
851 way, we can't do this optimization. */
852 else if (sregno < FIRST_PSEUDO_REGISTER
853 && dead_or_set_p (p, src))
854 break;
2bbd3819
RS
855 }
856}
d45cf215
RS
857\f
858/* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
859 a sequence of insns that modify DEST followed by an insn that sets
860 SRC to DEST in which DEST dies, with no prior modification of DEST.
861 (There is no need to check if the insns in between actually modify
862 DEST. We should not have cases where DEST is not modified, but
863 the optimization is safe if no such modification is detected.)
864 In that case, we can replace all uses of DEST, starting with INSN and
865 ending with the set of SRC to DEST, with SRC. We do not do this
866 optimization if a CALL_INSN is crossed unless SRC already crosses a
867 call.
868
869 It is assumed that DEST and SRC are pseudos; it is too complicated to do
870 this for hard registers since the substitutions we may make might fail. */
871
872static void
873optimize_reg_copy_2 (insn, dest, src)
874 rtx insn;
875 rtx dest;
876 rtx src;
877{
878 rtx p, q;
879 rtx set;
880 int sregno = REGNO (src);
881 int dregno = REGNO (dest);
882
883 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
884 {
885 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
886 || (GET_CODE (p) == NOTE
887 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
888 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
889 break;
890
891 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
892 continue;
893
894 set = single_set (p);
895 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
896 && find_reg_note (p, REG_DEAD, dest))
897 {
898 /* We can do the optimization. Scan forward from INSN again,
899 replacing regs as we go. */
900
901 /* Set to stop at next insn. */
902 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
903 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
904 {
905 if (reg_mentioned_p (dest, PATTERN (q)))
906 {
907 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
908
909 /* We assume that a register is used exactly once per
910 insn in the updates below. If this is not correct,
911 no great harm is done. */
6102fe95
JW
912 reg_n_refs[dregno] -= loop_depth;
913 reg_n_refs[sregno] += loop_depth;
d45cf215
RS
914 }
915
916
917 if (GET_CODE (q) == CALL_INSN)
918 {
919 reg_n_calls_crossed[dregno]--;
920 reg_n_calls_crossed[sregno]++;
921 }
922 }
923
924 remove_note (p, find_reg_note (p, REG_DEAD, dest));
925 reg_n_deaths[dregno]--;
926 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
927 reg_n_deaths[sregno]--;
928 return;
929 }
930
931 if (reg_set_p (src, p)
932 || (GET_CODE (p) == CALL_INSN && reg_n_calls_crossed[sregno] == 0))
933 break;
934 }
935}
2bbd3819
RS
936\f
937/* Find registers that are equivalent to a single value throughout the
938 compilation (either because they can be referenced in memory or are set once
939 from a single constant). Lower their priority for a register.
940
941 If such a register is only referenced once, try substituting its value
942 into the using insn. If it succeeds, we can eliminate the register
943 completely. */
944
945static void
946update_equiv_regs ()
947{
948 rtx *reg_equiv_init_insn = (rtx *) alloca (max_regno * sizeof (rtx *));
949 rtx *reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx *));
950 rtx insn;
951
4c9a05bc
RK
952 bzero ((char *) reg_equiv_init_insn, max_regno * sizeof (rtx *));
953 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx *));
2bbd3819
RS
954
955 init_alias_analysis ();
956
957 loop_depth = 1;
958
959 /* Scan the insns and find which registers have equivalences. Do this
960 in a separate scan of the insns because (due to -fcse-follow-jumps)
961 a register can be set below its use. */
962 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
963 {
964 rtx note;
965 rtx set = single_set (insn);
966 rtx dest;
967 int regno;
968
969 if (GET_CODE (insn) == NOTE)
970 {
971 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
972 loop_depth++;
973 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
974 loop_depth--;
975 }
976
977 /* If this insn contains more (or less) than a single SET, ignore it. */
978 if (set == 0)
979 continue;
980
981 dest = SET_DEST (set);
982
983 /* If this sets a MEM to the contents of a REG that is only used
984 in a single basic block, see if the register is always equivalent
985 to that memory location and if moving the store from INSN to the
986 insn that set REG is safe. If so, put a REG_EQUIV note on the
987 initializing insn. */
988
989 if (GET_CODE (dest) == MEM && GET_CODE (SET_SRC (set)) == REG
990 && (regno = REGNO (SET_SRC (set))) >= FIRST_PSEUDO_REGISTER
991 && reg_basic_block[regno] >= 0
992 && reg_equiv_init_insn[regno] != 0
993 && validate_equiv_mem (reg_equiv_init_insn[regno], SET_SRC (set),
994 dest)
995 && ! memref_used_between_p (SET_DEST (set),
996 reg_equiv_init_insn[regno], insn))
997 REG_NOTES (reg_equiv_init_insn[regno])
998 = gen_rtx (EXPR_LIST, REG_EQUIV, dest,
999 REG_NOTES (reg_equiv_init_insn[regno]));
1000
1001 /* If this is a register-register copy where SRC is not dead, see if we
1002 can optimize it. */
1003 if (flag_expensive_optimizations && GET_CODE (dest) == REG
1004 && GET_CODE (SET_SRC (set)) == REG
1005 && ! find_reg_note (insn, REG_DEAD, SET_SRC (set)))
d45cf215
RS
1006 optimize_reg_copy_1 (insn, dest, SET_SRC (set));
1007
1008 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1009 else if (flag_expensive_optimizations && GET_CODE (dest) == REG
1010 && REGNO (dest) >= FIRST_PSEUDO_REGISTER
1011 && GET_CODE (SET_SRC (set)) == REG
1012 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
1013 && find_reg_note (insn, REG_DEAD, SET_SRC (set)))
1014 optimize_reg_copy_2 (insn, dest, SET_SRC (set));
2bbd3819
RS
1015
1016 /* Otherwise, we only handle the case of a pseudo register being set
1017 once. */
1018 if (GET_CODE (dest) != REG
1019 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
1020 || reg_n_sets[regno] != 1)
1021 continue;
1022
b1ec3c92 1023 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2bbd3819
RS
1024
1025 /* Record this insn as initializing this register. */
1026 reg_equiv_init_insn[regno] = insn;
1027
1028 /* If this register is known to be equal to a constant, record that
1029 it is always equivalent to the constant. */
1030 if (note && CONSTANT_P (XEXP (note, 0)))
1031 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
1032
1033 /* If this insn introduces a "constant" register, decrease the priority
1034 of that register. Record this insn if the register is only used once
1035 more and the equivalence value is the same as our source.
1036
1037 The latter condition is checked for two reasons: First, it is an
1038 indication that it may be more efficient to actually emit the insn
1039 as written (if no registers are available, reload will substitute
1040 the equivalence). Secondly, it avoids problems with any registers
1041 dying in this insn whose death notes would be missed.
1042
1043 If we don't have a REG_EQUIV note, see if this insn is loading
1044 a register used only in one basic block from a MEM. If so, and the
1045 MEM remains unchanged for the life of the register, add a REG_EQUIV
1046 note. */
1047
b1ec3c92 1048 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2bbd3819
RS
1049
1050 if (note == 0 && reg_basic_block[regno] >= 0
1051 && GET_CODE (SET_SRC (set)) == MEM
1052 && validate_equiv_mem (insn, dest, SET_SRC (set)))
1053 REG_NOTES (insn) = note = gen_rtx (EXPR_LIST, REG_EQUIV, SET_SRC (set),
1054 REG_NOTES (insn));
1055
1056 /* Don't mess with things live during setjmp. */
1057 if (note && reg_live_length[regno] >= 0)
1058 {
1059 int regno = REGNO (dest);
1060
1061 /* Note that the statement below does not affect the priority
1062 in local-alloc! */
1063 reg_live_length[regno] *= 2;
1064
1065 /* If the register is referenced exactly twice, meaning it is set
1066 once and used once, indicate that the reference may be replaced
1067 by the equivalence we computed above. If the register is only
1068 used in one basic block, this can't succeed or combine would
1069 have done it.
1070
1071 It would be nice to use "loop_depth * 2" in the compare
1072 below. Unfortunately, LOOP_DEPTH need not be constant within
1073 a basic block so this would be too complicated.
1074
1075 This case normally occurs when a parameter is read from memory
1076 and then used exactly once, not in a loop. */
1077
1078 if (reg_n_refs[regno] == 2
1079 && reg_basic_block[regno] < 0
1080 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
1081 reg_equiv_replacement[regno] = SET_SRC (set);
1082 }
1083 }
1084
1085 /* Now scan all regs killed in an insn to see if any of them are registers
1086 only used that once. If so, see if we can replace the reference with
1087 the equivalent from. If we can, delete the initializing reference
1088 and this register will go away. */
1089 for (insn = next_active_insn (get_insns ());
1090 insn;
1091 insn = next_active_insn (insn))
1092 {
1093 rtx link;
1094
1095 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1096 if (REG_NOTE_KIND (link) == REG_DEAD
1097 /* Make sure this insn still refers to the register. */
1098 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1099 {
1100 int regno = REGNO (XEXP (link, 0));
1101
1102 if (reg_equiv_replacement[regno]
1103 && validate_replace_rtx (regno_reg_rtx[regno],
1104 reg_equiv_replacement[regno], insn))
1105 {
1106 rtx equiv_insn = reg_equiv_init_insn[regno];
1107
1108 remove_death (regno, insn);
1109 reg_n_refs[regno] = 0;
1110 PUT_CODE (equiv_insn, NOTE);
1111 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1112 NOTE_SOURCE_FILE (equiv_insn) = 0;
1113 }
1114 }
1115 }
1116}
1117\f
1118/* Allocate hard regs to the pseudo regs used only within block number B.
1119 Only the pseudos that die but once can be handled. */
1120
1121static void
1122block_alloc (b)
1123 int b;
1124{
1125 register int i, q;
1126 register rtx insn;
1127 rtx note;
1128 int insn_number = 0;
1129 int insn_count = 0;
1130 int max_uid = get_max_uid ();
aabf56ce 1131 int *qty_order;
2bbd3819 1132 int no_conflict_combined_regno = -1;
2a81034f
JW
1133 /* Counter to prevent allocating more SCRATCHes than can be stored
1134 in SCRATCH_LIST. */
1135 int scratches_allocated = scratch_index;
2bbd3819
RS
1136
1137 /* Count the instructions in the basic block. */
1138
1139 insn = basic_block_end[b];
1140 while (1)
1141 {
1142 if (GET_CODE (insn) != NOTE)
1143 if (++insn_count > max_uid)
1144 abort ();
1145 if (insn == basic_block_head[b])
1146 break;
1147 insn = PREV_INSN (insn);
1148 }
1149
1150 /* +2 to leave room for a post_mark_life at the last insn and for
1151 the birth of a CLOBBER in the first insn. */
1152 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1153 * sizeof (HARD_REG_SET));
4c9a05bc 1154 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
2bbd3819
RS
1155
1156 /* Initialize table of hardware registers currently live. */
1157
69887ad9
RK
1158#ifdef HARD_REG_SET
1159 regs_live = *basic_block_live_at_start[b];
1160#else
1161 COPY_HARD_REG_SET (regs_live, basic_block_live_at_start[b]);
1162#endif
2bbd3819
RS
1163
1164 /* This loop scans the instructions of the basic block
1165 and assigns quantities to registers.
1166 It computes which registers to tie. */
1167
1168 insn = basic_block_head[b];
1169 while (1)
1170 {
1171 register rtx body = PATTERN (insn);
1172
1173 if (GET_CODE (insn) != NOTE)
1174 insn_number++;
1175
1176 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1177 {
1178 register rtx link, set;
1179 register int win = 0;
1180 register rtx r0, r1;
1181 int combined_regno = -1;
1182 int i;
1183 int insn_code_number = recog_memoized (insn);
1184
1185 this_insn_number = insn_number;
1186 this_insn = insn;
1187
1188 if (insn_code_number >= 0)
1189 insn_extract (insn);
1190 which_alternative = -1;
1191
1192 /* Is this insn suitable for tying two registers?
1193 If so, try doing that.
1194 Suitable insns are those with at least two operands and where
1195 operand 0 is an output that is a register that is not
1196 earlyclobber.
7aba0f0b
RK
1197
1198 We can tie operand 0 with some operand that dies in this insn.
1199 First look for operands that are required to be in the same
1200 register as operand 0. If we find such, only try tying that
1201 operand or one that can be put into that operand if the
1202 operation is commutative. If we don't find an operand
1203 that is required to be in the same register as operand 0,
1204 we can tie with any operand.
1205
2bbd3819
RS
1206 Subregs in place of regs are also ok.
1207
1208 If tying is done, WIN is set nonzero. */
1209
1210 if (insn_code_number >= 0
7fe4336e 1211#ifdef REGISTER_CONSTRAINTS
2bbd3819
RS
1212 && insn_n_operands[insn_code_number] > 1
1213 && insn_operand_constraint[insn_code_number][0][0] == '='
7fe4336e
RK
1214 && insn_operand_constraint[insn_code_number][0][1] != '&'
1215#else
1216 && GET_CODE (PATTERN (insn)) == SET
1217 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1218#endif
1219 )
2bbd3819 1220 {
7fe4336e 1221#ifdef REGISTER_CONSTRAINTS
3061cc54 1222 /* If non-negative, is an operand that must match operand 0. */
7aba0f0b 1223 int must_match_0 = -1;
3061cc54
RK
1224 /* Counts number of alternatives that require a match with
1225 operand 0. */
1226 int n_matching_alts = 0;
7aba0f0b
RK
1227
1228 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
3061cc54
RK
1229 {
1230 char *p = insn_operand_constraint[insn_code_number][i];
1231 int this_match = (requires_inout (p));
1232
1233 n_matching_alts += this_match;
1234 if (this_match == insn_n_alternatives[insn_code_number])
1235 must_match_0 = i;
1236 }
7fe4336e 1237#endif
2bbd3819 1238
7aba0f0b
RK
1239 r0 = recog_operand[0];
1240 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
2bbd3819 1241 {
7fe4336e 1242#ifdef REGISTER_CONSTRAINTS
7aba0f0b
RK
1243 /* Skip this operand if we found an operand that
1244 must match operand 0 and this operand isn't it
1245 and can't be made to be it by commutativity. */
1246
1247 if (must_match_0 >= 0 && i != must_match_0
1248 && ! (i == must_match_0 + 1
1249 && insn_operand_constraint[insn_code_number][i-1][0] == '%')
1250 && ! (i == must_match_0 - 1
1251 && insn_operand_constraint[insn_code_number][i][0] == '%'))
1252 continue;
3061cc54
RK
1253
1254 /* Likewise if each alternative has some operand that
1255 must match operand zero. In that case, skip any
1256 operand that doesn't list operand 0 since we know that
1257 the operand always conflicts with operand 0. We
1258 ignore commutatity in this case to keep things simple. */
1259 if (n_matching_alts == insn_n_alternatives[insn_code_number]
1260 && (0 == requires_inout
1261 (insn_operand_constraint[insn_code_number][i])))
1262 continue;
7fe4336e 1263#endif
2bbd3819 1264
7aba0f0b 1265 r1 = recog_operand[i];
2bbd3819 1266
7aba0f0b
RK
1267 /* If the operand is an address, find a register in it.
1268 There may be more than one register, but we only try one
1269 of them. */
1270 if (
7fe4336e 1271#ifdef REGISTER_CONSTRAINTS
7aba0f0b 1272 insn_operand_constraint[insn_code_number][i][0] == 'p'
7fe4336e 1273#else
7aba0f0b 1274 insn_operand_address_p[insn_code_number][i]
7fe4336e 1275#endif
7aba0f0b
RK
1276 )
1277 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1278 r1 = XEXP (r1, 0);
1279
1280 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1281 {
1282 /* We have two priorities for hard register preferences.
1283 If we have a move insn or an insn whose first input
1284 can only be in the same register as the output, give
1285 priority to an equivalence found from that insn. */
1286 int may_save_copy
1287 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1288#ifdef REGISTER_CONSTRAINTS
1289 || (r1 == recog_operand[i] && must_match_0 >= 0)
1290#endif
1291 );
1292
1293 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1294 win = combine_regs (r1, r0, may_save_copy,
1295 insn_number, insn, 0);
1296 }
2bbd3819
RS
1297 }
1298 }
1299
1300 /* Recognize an insn sequence with an ultimate result
1301 which can safely overlap one of the inputs.
1302 The sequence begins with a CLOBBER of its result,
1303 and ends with an insn that copies the result to itself
1304 and has a REG_EQUAL note for an equivalent formula.
1305 That note indicates what the inputs are.
1306 The result and the input can overlap if each insn in
1307 the sequence either doesn't mention the input
1308 or has a REG_NO_CONFLICT note to inhibit the conflict.
1309
1310 We do the combining test at the CLOBBER so that the
1311 destination register won't have had a quantity number
1312 assigned, since that would prevent combining. */
1313
1314 if (GET_CODE (PATTERN (insn)) == CLOBBER
1315 && (r0 = XEXP (PATTERN (insn), 0),
1316 GET_CODE (r0) == REG)
b1ec3c92 1317 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
a6665f8c 1318 && XEXP (link, 0) != 0
2bbd3819
RS
1319 && GET_CODE (XEXP (link, 0)) == INSN
1320 && (set = single_set (XEXP (link, 0))) != 0
1321 && SET_DEST (set) == r0 && SET_SRC (set) == r0
b1ec3c92
CH
1322 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1323 NULL_RTX)) != 0)
2bbd3819
RS
1324 {
1325 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1326 /* Check that we have such a sequence. */
1327 && no_conflict_p (insn, r0, r1))
1328 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1329 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1330 && (r1 = XEXP (XEXP (note, 0), 0),
1331 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1332 && no_conflict_p (insn, r0, r1))
1333 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1334
1335 /* Here we care if the operation to be computed is
1336 commutative. */
1337 else if ((GET_CODE (XEXP (note, 0)) == EQ
1338 || GET_CODE (XEXP (note, 0)) == NE
1339 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1340 && (r1 = XEXP (XEXP (note, 0), 1),
1341 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1342 && no_conflict_p (insn, r0, r1))
1343 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1344
1345 /* If we did combine something, show the register number
1346 in question so that we know to ignore its death. */
1347 if (win)
1348 no_conflict_combined_regno = REGNO (r1);
1349 }
1350
1351 /* If registers were just tied, set COMBINED_REGNO
1352 to the number of the register used in this insn
1353 that was tied to the register set in this insn.
1354 This register's qty should not be "killed". */
1355
1356 if (win)
1357 {
1358 while (GET_CODE (r1) == SUBREG)
1359 r1 = SUBREG_REG (r1);
1360 combined_regno = REGNO (r1);
1361 }
1362
1363 /* Mark the death of everything that dies in this instruction,
1364 except for anything that was just combined. */
1365
1366 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1367 if (REG_NOTE_KIND (link) == REG_DEAD
1368 && GET_CODE (XEXP (link, 0)) == REG
1369 && combined_regno != REGNO (XEXP (link, 0))
1370 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1371 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1372 wipe_dead_reg (XEXP (link, 0), 0);
1373
1374 /* Allocate qty numbers for all registers local to this block
1375 that are born (set) in this instruction.
1376 A pseudo that already has a qty is not changed. */
1377
1378 note_stores (PATTERN (insn), reg_is_set);
1379
1380 /* If anything is set in this insn and then unused, mark it as dying
1381 after this insn, so it will conflict with our outputs. This
1382 can't match with something that combined, and it doesn't matter
1383 if it did. Do this after the calls to reg_is_set since these
1384 die after, not during, the current insn. */
1385
1386 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1387 if (REG_NOTE_KIND (link) == REG_UNUSED
1388 && GET_CODE (XEXP (link, 0)) == REG)
1389 wipe_dead_reg (XEXP (link, 0), 1);
1390
e15eb3aa 1391 /* Allocate quantities for any SCRATCH operands of this insn. */
2bbd3819
RS
1392
1393 if (insn_code_number >= 0)
1394 for (i = 0; i < insn_n_operands[insn_code_number]; i++)
bd5f197a 1395 if (GET_CODE (recog_operand[i]) == SCRATCH
2a81034f 1396 && scratches_allocated++ < scratch_list_length)
2bbd3819
RS
1397 alloc_qty_for_scratch (recog_operand[i], i, insn,
1398 insn_code_number, insn_number);
2bbd3819
RS
1399
1400 /* If this is an insn that has a REG_RETVAL note pointing at a
1401 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1402 block, so clear any register number that combined within it. */
b1ec3c92 1403 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
2bbd3819
RS
1404 && GET_CODE (XEXP (note, 0)) == INSN
1405 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1406 no_conflict_combined_regno = -1;
1407 }
1408
1409 /* Set the registers live after INSN_NUMBER. Note that we never
1410 record the registers live before the block's first insn, since no
1411 pseudos we care about are live before that insn. */
1412
1413 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1414 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1415
1416 if (insn == basic_block_end[b])
1417 break;
1418
1419 insn = NEXT_INSN (insn);
1420 }
1421
1422 /* Now every register that is local to this basic block
1423 should have been given a quantity, or else -1 meaning ignore it.
1424 Every quantity should have a known birth and death.
1425
51b86d8b
RK
1426 Order the qtys so we assign them registers in order of the
1427 number of suggested registers they need so we allocate those with
1428 the most restrictive needs first. */
2bbd3819 1429
aabf56ce 1430 qty_order = (int *) alloca (next_qty * sizeof (int));
2bbd3819
RS
1431 for (i = 0; i < next_qty; i++)
1432 qty_order[i] = i;
1433
1434#define EXCHANGE(I1, I2) \
1435 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1436
1437 switch (next_qty)
1438 {
1439 case 3:
1440 /* Make qty_order[2] be the one to allocate last. */
51b86d8b 1441 if (qty_sugg_compare (0, 1) > 0)
2bbd3819 1442 EXCHANGE (0, 1);
51b86d8b 1443 if (qty_sugg_compare (1, 2) > 0)
2bbd3819
RS
1444 EXCHANGE (2, 1);
1445
1446 /* ... Fall through ... */
1447 case 2:
1448 /* Put the best one to allocate in qty_order[0]. */
51b86d8b 1449 if (qty_sugg_compare (0, 1) > 0)
2bbd3819
RS
1450 EXCHANGE (0, 1);
1451
1452 /* ... Fall through ... */
1453
1454 case 1:
1455 case 0:
1456 /* Nothing to do here. */
1457 break;
1458
1459 default:
51b86d8b 1460 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
2bbd3819
RS
1461 }
1462
1463 /* Try to put each quantity in a suggested physical register, if it has one.
1464 This may cause registers to be allocated that otherwise wouldn't be, but
1465 this seems acceptable in local allocation (unlike global allocation). */
1466 for (i = 0; i < next_qty; i++)
1467 {
1468 q = qty_order[i];
51b86d8b 1469 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
2bbd3819
RS
1470 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1471 0, 1, qty_birth[q], qty_death[q]);
1472 else
1473 qty_phys_reg[q] = -1;
1474 }
1475
51b86d8b
RK
1476 /* Order the qtys so we assign them registers in order of
1477 decreasing length of life. Normally call qsort, but if we
1478 have only a very small number of quantities, sort them ourselves. */
1479
1480 for (i = 0; i < next_qty; i++)
1481 qty_order[i] = i;
1482
1483#define EXCHANGE(I1, I2) \
1484 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1485
1486 switch (next_qty)
1487 {
1488 case 3:
1489 /* Make qty_order[2] be the one to allocate last. */
1490 if (qty_compare (0, 1) > 0)
1491 EXCHANGE (0, 1);
1492 if (qty_compare (1, 2) > 0)
1493 EXCHANGE (2, 1);
1494
1495 /* ... Fall through ... */
1496 case 2:
1497 /* Put the best one to allocate in qty_order[0]. */
1498 if (qty_compare (0, 1) > 0)
1499 EXCHANGE (0, 1);
1500
1501 /* ... Fall through ... */
1502
1503 case 1:
1504 case 0:
1505 /* Nothing to do here. */
1506 break;
1507
1508 default:
1509 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1510 }
1511
2bbd3819
RS
1512 /* Now for each qty that is not a hardware register,
1513 look for a hardware register to put it in.
1514 First try the register class that is cheapest for this qty,
1515 if there is more than one class. */
1516
1517 for (i = 0; i < next_qty; i++)
1518 {
1519 q = qty_order[i];
1520 if (qty_phys_reg[q] < 0)
1521 {
1522 if (N_REG_CLASSES > 1)
1523 {
1524 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1525 qty_mode[q], q, 0, 0,
1526 qty_birth[q], qty_death[q]);
1527 if (qty_phys_reg[q] >= 0)
1528 continue;
1529 }
1530
e4600702
RK
1531 if (qty_alternate_class[q] != NO_REGS)
1532 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
2bbd3819
RS
1533 qty_mode[q], q, 0, 0,
1534 qty_birth[q], qty_death[q]);
1535 }
1536 }
1537
1538 /* Now propagate the register assignments
1539 to the pseudo regs belonging to the qtys. */
1540
1541 for (q = 0; q < next_qty; q++)
1542 if (qty_phys_reg[q] >= 0)
1543 {
1544 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1545 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1546 if (qty_scratch_rtx[q])
1547 {
bd5f197a
RK
1548 if (GET_CODE (qty_scratch_rtx[q]) == REG)
1549 abort ();
2bbd3819
RS
1550 PUT_CODE (qty_scratch_rtx[q], REG);
1551 REGNO (qty_scratch_rtx[q]) = qty_phys_reg[q];
1552
bd5f197a
RK
1553 scratch_block[scratch_index] = b;
1554 scratch_list[scratch_index++] = qty_scratch_rtx[q];
2bbd3819
RS
1555
1556 /* Must clear the USED field, because it will have been set by
1557 copy_rtx_if_shared, but the leaf_register code expects that
1558 it is zero in all REG rtx. copy_rtx_if_shared does not set the
1559 used bit for REGs, but does for SCRATCHes. */
1560 qty_scratch_rtx[q]->used = 0;
1561 }
1562 }
1563}
1564\f
1565/* Compare two quantities' priority for getting real registers.
1566 We give shorter-lived quantities higher priority.
6dc42e49
RS
1567 Quantities with more references are also preferred, as are quantities that
1568 require multiple registers. This is the identical prioritization as
2bbd3819
RS
1569 done by global-alloc.
1570
1571 We used to give preference to registers with *longer* lives, but using
1572 the same algorithm in both local- and global-alloc can speed up execution
1573 of some programs by as much as a factor of three! */
1574
1575static int
1576qty_compare (q1, q2)
1577 int q1, q2;
1578{
1579 /* Note that the quotient will never be bigger than
1580 the value of floor_log2 times the maximum number of
1581 times a register can occur in one insn (surely less than 100).
1582 Multiplying this by 10000 can't overflow. */
1583 register int pri1
6680889f
RK
1584 = (((double) (floor_log2 (qty_n_refs[q1]) * qty_n_refs[q1] * qty_size[q1])
1585 / (qty_death[q1] - qty_birth[q1]))
2bbd3819
RS
1586 * 10000);
1587 register int pri2
6680889f
RK
1588 = (((double) (floor_log2 (qty_n_refs[q2]) * qty_n_refs[q2] * qty_size[q2])
1589 / (qty_death[q2] - qty_birth[q2]))
2bbd3819
RS
1590 * 10000);
1591 return pri2 - pri1;
1592}
1593
1594static int
1595qty_compare_1 (q1, q2)
aabf56ce 1596 int *q1, *q2;
2bbd3819
RS
1597{
1598 register int tem;
1599
1600 /* Note that the quotient will never be bigger than
1601 the value of floor_log2 times the maximum number of
1602 times a register can occur in one insn (surely less than 100).
1603 Multiplying this by 10000 can't overflow. */
1604 register int pri1
6680889f
RK
1605 = (((double) (floor_log2 (qty_n_refs[*q1]) * qty_n_refs[*q1]
1606 * qty_size[*q1])
1607 / (qty_death[*q1] - qty_birth[*q1]))
2bbd3819
RS
1608 * 10000);
1609 register int pri2
6680889f
RK
1610 = (((double) (floor_log2 (qty_n_refs[*q2]) * qty_n_refs[*q2]
1611 * qty_size[*q2])
1612 / (qty_death[*q2] - qty_birth[*q2]))
2bbd3819
RS
1613 * 10000);
1614
1615 tem = pri2 - pri1;
1616 if (tem != 0) return tem;
1617 /* If qtys are equally good, sort by qty number,
1618 so that the results of qsort leave nothing to chance. */
1619 return *q1 - *q2;
1620}
1621\f
51b86d8b
RK
1622/* Compare two quantities' priority for getting real registers. This version
1623 is called for quantities that have suggested hard registers. First priority
1624 goes to quantities that have copy preferences, then to those that have
1625 normal preferences. Within those groups, quantities with the lower
1626 number of preferenes have the highest priority. Of those, we use the same
1627 algorithm as above. */
1628
1629static int
1630qty_sugg_compare (q1, q2)
1631 int q1, q2;
1632{
1633 register int sugg1 = (qty_phys_num_copy_sugg[q1]
1634 ? qty_phys_num_copy_sugg[q1]
1635 : qty_phys_num_sugg[q1] * FIRST_PSEUDO_REGISTER);
1636 register int sugg2 = (qty_phys_num_copy_sugg[q2]
1637 ? qty_phys_num_copy_sugg[q2]
1638 : qty_phys_num_sugg[q2] * FIRST_PSEUDO_REGISTER);
1639 /* Note that the quotient will never be bigger than
1640 the value of floor_log2 times the maximum number of
1641 times a register can occur in one insn (surely less than 100).
1642 Multiplying this by 10000 can't overflow. */
1643 register int pri1
1644 = (((double) (floor_log2 (qty_n_refs[q1]) * qty_n_refs[q1] * qty_size[q1])
1645 / (qty_death[q1] - qty_birth[q1]))
1646 * 10000);
1647 register int pri2
1648 = (((double) (floor_log2 (qty_n_refs[q2]) * qty_n_refs[q2] * qty_size[q2])
1649 / (qty_death[q2] - qty_birth[q2]))
1650 * 10000);
1651
1652 if (sugg1 != sugg2)
1653 return sugg1 - sugg2;
1654
1655 return pri2 - pri1;
1656}
1657
1658static int
1659qty_sugg_compare_1 (q1, q2)
1660 int *q1, *q2;
1661{
1662 register int sugg1 = (qty_phys_num_copy_sugg[*q1]
1663 ? qty_phys_num_copy_sugg[*q1]
1664 : qty_phys_num_sugg[*q1] * FIRST_PSEUDO_REGISTER);
1665 register int sugg2 = (qty_phys_num_copy_sugg[*q2]
1666 ? qty_phys_num_copy_sugg[*q2]
a6ba1470 1667 : qty_phys_num_sugg[*q2] * FIRST_PSEUDO_REGISTER);
51b86d8b
RK
1668
1669 /* Note that the quotient will never be bigger than
1670 the value of floor_log2 times the maximum number of
1671 times a register can occur in one insn (surely less than 100).
1672 Multiplying this by 10000 can't overflow. */
1673 register int pri1
1674 = (((double) (floor_log2 (qty_n_refs[*q1]) * qty_n_refs[*q1]
1675 * qty_size[*q1])
1676 / (qty_death[*q1] - qty_birth[*q1]))
1677 * 10000);
1678 register int pri2
1679 = (((double) (floor_log2 (qty_n_refs[*q2]) * qty_n_refs[*q2]
1680 * qty_size[*q2])
1681 / (qty_death[*q2] - qty_birth[*q2]))
1682 * 10000);
1683
1684 if (sugg1 != sugg2)
1685 return sugg1 - sugg2;
1686
1687 if (pri1 != pri2)
1688 return pri2 - pri1;
1689
1690 /* If qtys are equally good, sort by qty number,
1691 so that the results of qsort leave nothing to chance. */
1692 return *q1 - *q2;
1693}
1694\f
2bbd3819
RS
1695/* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1696 Returns 1 if have done so, or 0 if cannot.
1697
1698 Combining registers means marking them as having the same quantity
1699 and adjusting the offsets within the quantity if either of
1700 them is a SUBREG).
1701
1702 We don't actually combine a hard reg with a pseudo; instead
1703 we just record the hard reg as the suggestion for the pseudo's quantity.
1704 If we really combined them, we could lose if the pseudo lives
1705 across an insn that clobbers the hard reg (eg, movstr).
1706
1707 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1708 there is no REG_DEAD note on INSN. This occurs during the processing
1709 of REG_NO_CONFLICT blocks.
1710
1711 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1712 SETREG or if the input and output must share a register.
1713 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1714
1715 There are elaborate checks for the validity of combining. */
1716
1717
1718static int
1719combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1720 rtx usedreg, setreg;
1721 int may_save_copy;
1722 int insn_number;
1723 rtx insn;
1724 int already_dead;
1725{
1726 register int ureg, sreg;
1727 register int offset = 0;
1728 int usize, ssize;
1729 register int sqty;
1730
1731 /* Determine the numbers and sizes of registers being used. If a subreg
6dc42e49 1732 is present that does not change the entire register, don't consider
2bbd3819
RS
1733 this a copy insn. */
1734
1735 while (GET_CODE (usedreg) == SUBREG)
1736 {
1737 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1738 may_save_copy = 0;
1739 offset += SUBREG_WORD (usedreg);
1740 usedreg = SUBREG_REG (usedreg);
1741 }
1742 if (GET_CODE (usedreg) != REG)
1743 return 0;
1744 ureg = REGNO (usedreg);
1745 usize = REG_SIZE (usedreg);
1746
1747 while (GET_CODE (setreg) == SUBREG)
1748 {
1749 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1750 may_save_copy = 0;
1751 offset -= SUBREG_WORD (setreg);
1752 setreg = SUBREG_REG (setreg);
1753 }
1754 if (GET_CODE (setreg) != REG)
1755 return 0;
1756 sreg = REGNO (setreg);
1757 ssize = REG_SIZE (setreg);
1758
1759 /* If UREG is a pseudo-register that hasn't already been assigned a
1760 quantity number, it means that it is not local to this block or dies
1761 more than once. In either event, we can't do anything with it. */
1762 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1763 /* Do not combine registers unless one fits within the other. */
1764 || (offset > 0 && usize + offset > ssize)
1765 || (offset < 0 && usize + offset < ssize)
1766 /* Do not combine with a smaller already-assigned object
1767 if that smaller object is already combined with something bigger. */
1768 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1769 && usize < qty_size[reg_qty[ureg]])
1770 /* Can't combine if SREG is not a register we can allocate. */
1771 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1772 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1773 These have already been taken care of. This probably wouldn't
1774 combine anyway, but don't take any chances. */
1775 || (ureg >= FIRST_PSEUDO_REGISTER
1776 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1777 /* Don't tie something to itself. In most cases it would make no
1778 difference, but it would screw up if the reg being tied to itself
1779 also dies in this insn. */
1780 || ureg == sreg
1781 /* Don't try to connect two different hardware registers. */
1782 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1783 /* Don't connect two different machine modes if they have different
1784 implications as to which registers may be used. */
1785 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1786 return 0;
1787
1788 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1789 qty_phys_sugg for the pseudo instead of tying them.
1790
1791 Return "failure" so that the lifespan of UREG is terminated here;
1792 that way the two lifespans will be disjoint and nothing will prevent
1793 the pseudo reg from being given this hard reg. */
1794
1795 if (ureg < FIRST_PSEUDO_REGISTER)
1796 {
1797 /* Allocate a quantity number so we have a place to put our
1798 suggestions. */
1799 if (reg_qty[sreg] == -2)
1800 reg_is_born (setreg, 2 * insn_number);
1801
1802 if (reg_qty[sreg] >= 0)
1803 {
51b86d8b
RK
1804 if (may_save_copy
1805 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
2bbd3819
RS
1806 {
1807 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
51b86d8b 1808 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
2bbd3819 1809 }
51b86d8b 1810 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
2bbd3819
RS
1811 {
1812 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
51b86d8b 1813 qty_phys_num_sugg[reg_qty[sreg]]++;
2bbd3819
RS
1814 }
1815 }
1816 return 0;
1817 }
1818
1819 /* Similarly for SREG a hard register and UREG a pseudo register. */
1820
1821 if (sreg < FIRST_PSEUDO_REGISTER)
1822 {
51b86d8b
RK
1823 if (may_save_copy
1824 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
2bbd3819
RS
1825 {
1826 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
51b86d8b 1827 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
2bbd3819 1828 }
51b86d8b 1829 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
2bbd3819
RS
1830 {
1831 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
51b86d8b 1832 qty_phys_num_sugg[reg_qty[ureg]]++;
2bbd3819
RS
1833 }
1834 return 0;
1835 }
1836
1837 /* At this point we know that SREG and UREG are both pseudos.
1838 Do nothing if SREG already has a quantity or is a register that we
1839 don't allocate. */
1840 if (reg_qty[sreg] >= -1
1841 /* If we are not going to let any regs live across calls,
1842 don't tie a call-crossing reg to a non-call-crossing reg. */
1843 || (current_function_has_nonlocal_label
1844 && ((reg_n_calls_crossed[ureg] > 0)
1845 != (reg_n_calls_crossed[sreg] > 0))))
1846 return 0;
1847
1848 /* We don't already know about SREG, so tie it to UREG
1849 if this is the last use of UREG, provided the classes they want
1850 are compatible. */
1851
1852 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1853 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1854 {
1855 /* Add SREG to UREG's quantity. */
1856 sqty = reg_qty[ureg];
1857 reg_qty[sreg] = sqty;
1858 reg_offset[sreg] = reg_offset[ureg] + offset;
1859 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1860 qty_first_reg[sqty] = sreg;
1861
1862 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1863 update_qty_class (sqty, sreg);
1864
1865 /* Update info about quantity SQTY. */
1866 qty_n_calls_crossed[sqty] += reg_n_calls_crossed[sreg];
1867 qty_n_refs[sqty] += reg_n_refs[sreg];
2bbd3819
RS
1868 if (usize < ssize)
1869 {
1870 register int i;
1871
1872 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1873 reg_offset[i] -= offset;
1874
1875 qty_size[sqty] = ssize;
1876 qty_mode[sqty] = GET_MODE (setreg);
1877 }
1878 }
1879 else
1880 return 0;
1881
1882 return 1;
1883}
1884\f
1885/* Return 1 if the preferred class of REG allows it to be tied
1886 to a quantity or register whose class is CLASS.
1887 True if REG's reg class either contains or is contained in CLASS. */
1888
1889static int
1890reg_meets_class_p (reg, class)
1891 int reg;
1892 enum reg_class class;
1893{
1894 register enum reg_class rclass = reg_preferred_class (reg);
1895 return (reg_class_subset_p (rclass, class)
1896 || reg_class_subset_p (class, rclass));
1897}
1898
1899/* Return 1 if the two specified classes have registers in common.
1900 If CALL_SAVED, then consider only call-saved registers. */
1901
1902static int
1903reg_classes_overlap_p (c1, c2, call_saved)
1904 register enum reg_class c1;
1905 register enum reg_class c2;
1906 int call_saved;
1907{
1908 HARD_REG_SET c;
1909 int i;
1910
1911 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
1912 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
1913
1914 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1915 if (TEST_HARD_REG_BIT (c, i)
1916 && (! call_saved || ! call_used_regs[i]))
1917 return 1;
1918
1919 return 0;
1920}
1921
1922/* Update the class of QTY assuming that REG is being tied to it. */
1923
1924static void
1925update_qty_class (qty, reg)
1926 int qty;
1927 int reg;
1928{
1929 enum reg_class rclass = reg_preferred_class (reg);
1930 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1931 qty_min_class[qty] = rclass;
e4600702
RK
1932
1933 rclass = reg_alternate_class (reg);
1934 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1935 qty_alternate_class[qty] = rclass;
0f64b8f6
RK
1936
1937 if (reg_changes_size[reg])
1938 qty_changes_size[qty] = 1;
2bbd3819
RS
1939}
1940\f
1941/* Handle something which alters the value of an rtx REG.
1942
1943 REG is whatever is set or clobbered. SETTER is the rtx that
1944 is modifying the register.
1945
1946 If it is not really a register, we do nothing.
1947 The file-global variables `this_insn' and `this_insn_number'
1948 carry info from `block_alloc'. */
1949
1950static void
1951reg_is_set (reg, setter)
1952 rtx reg;
1953 rtx setter;
1954{
1955 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1956 a hard register. These may actually not exist any more. */
1957
1958 if (GET_CODE (reg) != SUBREG
1959 && GET_CODE (reg) != REG)
1960 return;
1961
1962 /* Mark this register as being born. If it is used in a CLOBBER, mark
1963 it as being born halfway between the previous insn and this insn so that
1964 it conflicts with our inputs but not the outputs of the previous insn. */
1965
1966 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1967}
1968\f
1969/* Handle beginning of the life of register REG.
1970 BIRTH is the index at which this is happening. */
1971
1972static void
1973reg_is_born (reg, birth)
1974 rtx reg;
1975 int birth;
1976{
1977 register int regno;
1978
1979 if (GET_CODE (reg) == SUBREG)
1980 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1981 else
1982 regno = REGNO (reg);
1983
1984 if (regno < FIRST_PSEUDO_REGISTER)
1985 {
1986 mark_life (regno, GET_MODE (reg), 1);
1987
1988 /* If the register was to have been born earlier that the present
1989 insn, mark it as live where it is actually born. */
1990 if (birth < 2 * this_insn_number)
1991 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1992 }
1993 else
1994 {
1995 if (reg_qty[regno] == -2)
1996 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1997
1998 /* If this register has a quantity number, show that it isn't dead. */
1999 if (reg_qty[regno] >= 0)
2000 qty_death[reg_qty[regno]] = -1;
2001 }
2002}
2003
2004/* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2005 REG is an output that is dying (i.e., it is never used), otherwise it
333e0f7d
RS
2006 is an input (the normal case).
2007 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2bbd3819
RS
2008
2009static void
2010wipe_dead_reg (reg, output_p)
2011 register rtx reg;
2012 int output_p;
2013{
2014 register int regno = REGNO (reg);
2015
333e0f7d
RS
2016 /* If this insn has multiple results,
2017 and the dead reg is used in one of the results,
2018 extend its life to after this insn,
2019 so it won't get allocated together with any other result of this insn. */
2020 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2021 && !single_set (this_insn))
2022 {
2023 int i;
2024 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2025 {
2026 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2027 if (GET_CODE (set) == SET
2028 && GET_CODE (SET_DEST (set)) != REG
2029 && !rtx_equal_p (reg, SET_DEST (set))
2030 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2031 output_p = 1;
2032 }
2033 }
2034
2bbd3819
RS
2035 if (regno < FIRST_PSEUDO_REGISTER)
2036 {
2037 mark_life (regno, GET_MODE (reg), 0);
2038
2039 /* If a hard register is dying as an output, mark it as in use at
2040 the beginning of this insn (the above statement would cause this
2041 not to happen). */
2042 if (output_p)
2043 post_mark_life (regno, GET_MODE (reg), 1,
2044 2 * this_insn_number, 2 * this_insn_number+ 1);
2045 }
2046
2047 else if (reg_qty[regno] >= 0)
2048 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
2049}
2050\f
2051/* Find a block of SIZE words of hard regs in reg_class CLASS
2052 that can hold something of machine-mode MODE
2053 (but actually we test only the first of the block for holding MODE)
2054 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2055 and return the number of the first of them.
2056 Return -1 if such a block cannot be found.
2057 If QTY crosses calls, insist on a register preserved by calls,
2058 unless ACCEPT_CALL_CLOBBERED is nonzero.
2059
2060 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2061 register is available. If not, return -1. */
2062
2063static int
2064find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
2065 born_index, dead_index)
2066 enum reg_class class;
2067 enum machine_mode mode;
82c68a78 2068 int qty;
2bbd3819
RS
2069 int accept_call_clobbered;
2070 int just_try_suggested;
2bbd3819
RS
2071 int born_index, dead_index;
2072{
2073 register int i, ins;
2074#ifdef HARD_REG_SET
2075 register /* Declare it register if it's a scalar. */
2076#endif
2077 HARD_REG_SET used, first_used;
2078#ifdef ELIMINABLE_REGS
2079 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2080#endif
2081
2082 /* Validate our parameters. */
2083 if (born_index < 0 || born_index > dead_index)
2084 abort ();
2085
2086 /* Don't let a pseudo live in a reg across a function call
2087 if we might get a nonlocal goto. */
2088 if (current_function_has_nonlocal_label
2089 && qty_n_calls_crossed[qty] > 0)
2090 return -1;
2091
2092 if (accept_call_clobbered)
2093 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2094 else if (qty_n_calls_crossed[qty] == 0)
2095 COPY_HARD_REG_SET (used, fixed_reg_set);
2096 else
2097 COPY_HARD_REG_SET (used, call_used_reg_set);
2098
2099 for (ins = born_index; ins < dead_index; ins++)
2100 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2101
2102 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2103
2104 /* Don't use the frame pointer reg in local-alloc even if
2105 we may omit the frame pointer, because if we do that and then we
2106 need a frame pointer, reload won't know how to move the pseudo
2107 to another hard reg. It can move only regs made by global-alloc.
2108
2109 This is true of any register that can be eliminated. */
2110#ifdef ELIMINABLE_REGS
2111 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
2112 SET_HARD_REG_BIT (used, eliminables[i].from);
c2618f05
DE
2113#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2114 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2115 that it might be eliminated into. */
2116 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2117#endif
2bbd3819
RS
2118#else
2119 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2120#endif
2121
0f64b8f6
RK
2122#ifdef CLASS_CANNOT_CHANGE_SIZE
2123 if (qty_changes_size[qty])
899d4140 2124 IOR_HARD_REG_SET (used,
0f64b8f6
RK
2125 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
2126#endif
2127
2bbd3819
RS
2128 /* Normally, the registers that can be used for the first register in
2129 a multi-register quantity are the same as those that can be used for
2130 subsequent registers. However, if just trying suggested registers,
2131 restrict our consideration to them. If there are copy-suggested
2132 register, try them. Otherwise, try the arithmetic-suggested
2133 registers. */
2134 COPY_HARD_REG_SET (first_used, used);
2135
2136 if (just_try_suggested)
2137 {
51b86d8b 2138 if (qty_phys_num_copy_sugg[qty] != 0)
2bbd3819
RS
2139 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2140 else
2141 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2142 }
2143
2144 /* If all registers are excluded, we can't do anything. */
2145 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2146
2147 /* If at least one would be suitable, test each hard reg. */
2148
2149 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2150 {
2151#ifdef REG_ALLOC_ORDER
2152 int regno = reg_alloc_order[i];
2153#else
2154 int regno = i;
2155#endif
2156 if (! TEST_HARD_REG_BIT (first_used, regno)
2157 && HARD_REGNO_MODE_OK (regno, mode))
2158 {
2159 register int j;
2160 register int size1 = HARD_REGNO_NREGS (regno, mode);
2161 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2162 if (j == size1)
2163 {
2164 /* Mark that this register is in use between its birth and death
2165 insns. */
2166 post_mark_life (regno, mode, 1, born_index, dead_index);
2167 return regno;
2168 }
2169#ifndef REG_ALLOC_ORDER
2170 i += j; /* Skip starting points we know will lose */
2171#endif
2172 }
2173 }
2174
2175 fail:
2176
2177 /* If we are just trying suggested register, we have just tried copy-
2178 suggested registers, and there are arithmetic-suggested registers,
2179 try them. */
2180
2181 /* If it would be profitable to allocate a call-clobbered register
2182 and save and restore it around calls, do that. */
51b86d8b
RK
2183 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2184 && qty_phys_num_sugg[qty] != 0)
2bbd3819
RS
2185 {
2186 /* Don't try the copy-suggested regs again. */
51b86d8b 2187 qty_phys_num_copy_sugg[qty] = 0;
2bbd3819
RS
2188 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2189 born_index, dead_index);
2190 }
2191
e19f5192
RK
2192 /* We need not check to see if the current function has nonlocal
2193 labels because we don't put any pseudos that are live over calls in
2194 registers in that case. */
2195
2bbd3819
RS
2196 if (! accept_call_clobbered
2197 && flag_caller_saves
2198 && ! just_try_suggested
2199 && qty_n_calls_crossed[qty] != 0
2200 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2201 {
2202 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2203 if (i >= 0)
2204 caller_save_needed = 1;
2205 return i;
2206 }
2207 return -1;
2208}
2209\f
2210/* Mark that REGNO with machine-mode MODE is live starting from the current
2211 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2212 is zero). */
2213
2214static void
2215mark_life (regno, mode, life)
2216 register int regno;
2217 enum machine_mode mode;
2218 int life;
2219{
2220 register int j = HARD_REGNO_NREGS (regno, mode);
2221 if (life)
2222 while (--j >= 0)
2223 SET_HARD_REG_BIT (regs_live, regno + j);
2224 else
2225 while (--j >= 0)
2226 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2227}
2228
2229/* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2230 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2231 to insn number DEATH (exclusive). */
2232
2233static void
2234post_mark_life (regno, mode, life, birth, death)
82c68a78 2235 int regno;
2bbd3819 2236 enum machine_mode mode;
82c68a78 2237 int life, birth, death;
2bbd3819
RS
2238{
2239 register int j = HARD_REGNO_NREGS (regno, mode);
2240#ifdef HARD_REG_SET
2241 register /* Declare it register if it's a scalar. */
2242#endif
2243 HARD_REG_SET this_reg;
2244
2245 CLEAR_HARD_REG_SET (this_reg);
2246 while (--j >= 0)
2247 SET_HARD_REG_BIT (this_reg, regno + j);
2248
2249 if (life)
2250 while (birth < death)
2251 {
2252 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2253 birth++;
2254 }
2255 else
2256 while (birth < death)
2257 {
2258 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2259 birth++;
2260 }
2261}
2262\f
2263/* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2264 is the register being clobbered, and R1 is a register being used in
2265 the equivalent expression.
2266
2267 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2268 in which it is used, return 1.
2269
2270 Otherwise, return 0. */
2271
2272static int
2273no_conflict_p (insn, r0, r1)
2274 rtx insn, r0, r1;
2275{
2276 int ok = 0;
b1ec3c92 2277 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2bbd3819
RS
2278 rtx p, last;
2279
2280 /* If R1 is a hard register, return 0 since we handle this case
2281 when we scan the insns that actually use it. */
2282
2283 if (note == 0
2284 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2285 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2286 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2287 return 0;
2288
2289 last = XEXP (note, 0);
2290
2291 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2292 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2293 {
2294 if (find_reg_note (p, REG_DEAD, r1))
2295 ok = 1;
2296
2297 if (reg_mentioned_p (r1, PATTERN (p))
2298 && ! find_reg_note (p, REG_NO_CONFLICT, r1))
2299 return 0;
2300 }
2301
2302 return ok;
2303}
2304\f
7fe4336e
RK
2305#ifdef REGISTER_CONSTRAINTS
2306
3061cc54
RK
2307/* Return the number of alternatives for which the constraint string P
2308 indicates that the operand must be equal to operand 0 and that no register
2309 is acceptable. */
2bbd3819
RS
2310
2311static int
3061cc54 2312requires_inout (p)
2bbd3819
RS
2313 char *p;
2314{
2315 char c;
2316 int found_zero = 0;
3061cc54
RK
2317 int reg_allowed = 0;
2318 int num_matching_alts = 0;
2bbd3819
RS
2319
2320 while (c = *p++)
2321 switch (c)
2322 {
2bbd3819
RS
2323 case '=': case '+': case '?':
2324 case '#': case '&': case '!':
3061cc54 2325 case '*': case '%':
2bbd3819
RS
2326 case '1': case '2': case '3': case '4':
2327 case 'm': case '<': case '>': case 'V': case 'o':
2328 case 'E': case 'F': case 'G': case 'H':
2329 case 's': case 'i': case 'n':
2330 case 'I': case 'J': case 'K': case 'L':
2331 case 'M': case 'N': case 'O': case 'P':
2332#ifdef EXTRA_CONSTRAINT
2333 case 'Q': case 'R': case 'S': case 'T': case 'U':
2334#endif
2335 case 'X':
2336 /* These don't say anything we care about. */
2337 break;
2338
3061cc54
RK
2339 case ',':
2340 if (found_zero && ! reg_allowed)
2341 num_matching_alts++;
2342
2343 found_zero = reg_allowed = 0;
2344 break;
2345
2346 case '0':
2347 found_zero = 1;
2348 break;
2349
2bbd3819
RS
2350 case 'p':
2351 case 'g': case 'r':
2352 default:
3061cc54
RK
2353 reg_allowed = 1;
2354 break;
2bbd3819
RS
2355 }
2356
3061cc54
RK
2357 if (found_zero && ! reg_allowed)
2358 num_matching_alts++;
2359
2360 return num_matching_alts;
2bbd3819 2361}
7fe4336e 2362#endif /* REGISTER_CONSTRAINTS */
2bbd3819
RS
2363\f
2364void
2365dump_local_alloc (file)
2366 FILE *file;
2367{
2368 register int i;
2369 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2370 if (reg_renumber[i] != -1)
2371 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2372}
This page took 0.544575 seconds and 5 git commands to generate.