]> gcc.gnu.org Git - gcc.git/blame - gcc/jump.c
Remove trailing white spaces.
[gcc.git] / gcc / jump.c
CommitLineData
15a63be1 1/* Optimize jump instructions, for GNU compiler.
3b708058 2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
8592acaf 3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
25f99665 4 Free Software Foundation, Inc.
15a63be1 5
1322177d 6This file is part of GCC.
15a63be1 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
15a63be1 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
15a63be1
RK
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
15a63be1 21
0045d504 22/* This is the pathetic reminder of old fame of the jump-optimization pass
75c40d56 23 of the compiler. Now it contains basically a set of utility functions to
0045d504 24 operate with jumps.
15a63be1
RK
25
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes.
33
9a5a17f3 34 The subroutines redirect_jump and invert_jump are used
15a63be1
RK
35 from other passes as well. */
36
37#include "config.h"
670ee920 38#include "system.h"
4977bab6
ZW
39#include "coretypes.h"
40#include "tm.h"
15a63be1 41#include "rtl.h"
6baf1cc8 42#include "tm_p.h"
15a63be1
RK
43#include "flags.h"
44#include "hard-reg-set.h"
45#include "regs.h"
15a63be1 46#include "insn-config.h"
0c63f729 47#include "insn-attr.h"
e9a25f70 48#include "recog.h"
49ad7cfa 49#include "function.h"
3c86a619 50#include "expr.h"
15a63be1 51#include "real.h"
6adb4e3a 52#include "except.h"
5f1989e6 53#include "diagnostic.h"
2e107e9e 54#include "toplev.h"
8461e984 55#include "reload.h"
4db384c9 56#include "predict.h"
0d446150 57#include "timevar.h"
ef330312 58#include "tree-pass.h"
8ddf681a 59#include "target.h"
15a63be1 60
15a63be1
RK
61/* Optimize jump y; x: ... y: jumpif... x?
62 Don't know if it is worth bothering with. */
63/* Optimize two cases of conditional jump to conditional jump?
64 This can never delete any instruction or make anything dead,
65 or even change what is live at any point.
66 So perhaps let combiner do it. */
67
0c20a65f
AJ
68static void init_label_info (rtx);
69static void mark_all_labels (rtx);
cf7c4aa6 70static void mark_jump_label_1 (rtx, rtx, bool, bool);
1c384bf1 71static void mark_jump_label_asm (rtx, rtx);
0c20a65f 72static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
0a634832 73static int invert_exp_1 (rtx, rtx);
0c20a65f 74static int returnjump_p_1 (rtx *, void *);
0a1c58a2 75\f
cf7c4aa6
HPN
76/* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
77 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
78 instructions and jumping insns that have labels as operands
79 (e.g. cbranchsi4). */
c4403371 80void
0c20a65f 81rebuild_jump_labels (rtx f)
c4403371 82{
b3694847 83 rtx insn;
15a63be1 84
0d446150 85 timevar_push (TV_REBUILD_JUMP);
4977bab6 86 init_label_info (f);
1e5fd094 87 mark_all_labels (f);
15a63be1 88
f5540cd4
RH
89 /* Keep track of labels used from static data; we don't track them
90 closely enough to delete them here, so make sure their reference
91 count doesn't drop to zero. */
15a63be1
RK
92
93 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
4b4bf941 94 if (LABEL_P (XEXP (insn, 0)))
f5540cd4 95 LABEL_NUSES (XEXP (insn, 0))++;
0d446150 96 timevar_pop (TV_REBUILD_JUMP);
0045d504
JH
97}
98\f
01f62f01
JH
99/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
100 non-fallthru insn. This is not generally true, as multiple barriers
101 may have crept in, or the BARRIER may be separated from the last
102 real insn by one or more NOTEs.
103
104 This simple pass moves barriers and removes duplicates so that the
105 old code is happy.
106 */
c2924966 107unsigned int
0c20a65f 108cleanup_barriers (void)
01f62f01
JH
109{
110 rtx insn, next, prev;
111 for (insn = get_insns (); insn; insn = next)
112 {
113 next = NEXT_INSN (insn);
4b4bf941 114 if (BARRIER_P (insn))
01f62f01
JH
115 {
116 prev = prev_nonnote_insn (insn);
2cb0a60d
DD
117 if (!prev)
118 continue;
4b4bf941 119 if (BARRIER_P (prev))
f014fc47 120 delete_insn (insn);
01f62f01
JH
121 else if (prev != PREV_INSN (insn))
122 reorder_insns (insn, insn, prev);
123 }
124 }
c2924966 125 return 0;
01f62f01 126}
15a63be1 127
8ddbbcae 128struct rtl_opt_pass pass_cleanup_barriers =
ef330312 129{
8ddbbcae
JH
130 {
131 RTL_PASS,
defb77dc 132 "barriers", /* name */
ef330312
PB
133 NULL, /* gate */
134 cleanup_barriers, /* execute */
135 NULL, /* sub */
136 NULL, /* next */
137 0, /* static_pass_number */
7072a650 138 TV_NONE, /* tv_id */
ef330312
PB
139 0, /* properties_required */
140 0, /* properties_provided */
141 0, /* properties_destroyed */
142 0, /* todo_flags_start */
8ddbbcae
JH
143 TODO_dump_func /* todo_flags_finish */
144 }
ef330312
PB
145};
146
269ef46c 147\f
cf7c4aa6
HPN
148/* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
149 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
150 notes whose labels don't occur in the insn any more. */
151
4977bab6 152static void
0c20a65f 153init_label_info (rtx f)
269ef46c 154{
269ef46c
DM
155 rtx insn;
156
157 for (insn = f; insn; insn = NEXT_INSN (insn))
cf7c4aa6
HPN
158 {
159 if (LABEL_P (insn))
160 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
161
162 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
163 sticky and not reset here; that way we won't lose association
164 with a label when e.g. the source for a target register
165 disappears out of reach for targets that may use jump-target
166 registers. Jump transformations are supposed to transform
167 any REG_LABEL_TARGET notes. The target label reference in a
168 branch may disappear from the branch (and from the
169 instruction before it) for other reasons, like register
170 allocation. */
171
172 if (INSN_P (insn))
173 {
174 rtx note, next;
269ef46c 175
cf7c4aa6
HPN
176 for (note = REG_NOTES (insn); note; note = next)
177 {
178 next = XEXP (note, 1);
179 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
180 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
181 remove_note (insn, note);
182 }
183 }
184 }
269ef46c
DM
185}
186
269ef46c 187/* Mark the label each jump jumps to.
0045d504 188 Combine consecutive labels, and count uses of labels. */
269ef46c
DM
189
190static void
0c20a65f 191mark_all_labels (rtx f)
269ef46c
DM
192{
193 rtx insn;
cf7c4aa6 194 rtx prev_nonjump_insn = NULL;
269ef46c
DM
195
196 for (insn = f; insn; insn = NEXT_INSN (insn))
2c3c49de 197 if (INSN_P (insn))
269ef46c 198 {
1e5fd094 199 mark_jump_label (PATTERN (insn), insn, 0);
cf7c4aa6
HPN
200
201 /* If the previous non-jump insn sets something to a label,
202 something that this jump insn uses, make that label the primary
203 target of this insn if we don't yet have any. That previous
204 insn must be a single_set and not refer to more than one label.
205 The jump insn must not refer to other labels as jump targets
206 and must be a plain (set (pc) ...), maybe in a parallel, and
207 may refer to the item being set only directly or as one of the
208 arms in an IF_THEN_ELSE. */
209 if (! INSN_DELETED_P (insn)
210 && JUMP_P (insn)
211 && JUMP_LABEL (insn) == NULL)
269ef46c 212 {
cf7c4aa6
HPN
213 rtx label_note = NULL;
214 rtx pc = pc_set (insn);
215 rtx pc_src = pc != NULL ? SET_SRC (pc) : NULL;
216
217 if (prev_nonjump_insn != NULL)
218 label_note
219 = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
220
221 if (label_note != NULL && pc_src != NULL)
f759eb8b 222 {
cf7c4aa6
HPN
223 rtx label_set = single_set (prev_nonjump_insn);
224 rtx label_dest
225 = label_set != NULL ? SET_DEST (label_set) : NULL;
226
227 if (label_set != NULL
228 /* The source must be the direct LABEL_REF, not a
229 PLUS, UNSPEC, IF_THEN_ELSE etc. */
230 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
231 && (rtx_equal_p (label_dest, pc_src)
232 || (GET_CODE (pc_src) == IF_THEN_ELSE
233 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
234 || rtx_equal_p (label_dest,
235 XEXP (pc_src, 2))))))
b8698a0f 236
f759eb8b 237 {
cf7c4aa6
HPN
238 /* The CODE_LABEL referred to in the note must be the
239 CODE_LABEL in the LABEL_REF of the "set". We can
240 conveniently use it for the marker function, which
241 requires a LABEL_REF wrapping. */
242 gcc_assert (XEXP (label_note, 0)
243 == XEXP (SET_SRC (label_set), 0));
244
245 mark_jump_label_1 (label_set, insn, false, true);
246 gcc_assert (JUMP_LABEL (insn)
247 == XEXP (SET_SRC (label_set), 0));
f759eb8b
AO
248 }
249 }
269ef46c 250 }
cf7c4aa6
HPN
251 else if (! INSN_DELETED_P (insn))
252 prev_nonjump_insn = insn;
269ef46c 253 }
cf7c4aa6
HPN
254 else if (LABEL_P (insn))
255 prev_nonjump_insn = NULL;
256
05549c96
SB
257 /* If we are in cfglayout mode, there may be non-insns between the
258 basic blocks. If those non-insns represent tablejump data, they
259 contain label references that we must record. */
260 if (current_ir_type () == IR_RTL_CFGLAYOUT)
261 {
262 basic_block bb;
263 rtx insn;
264 FOR_EACH_BB (bb)
265 {
266 for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
267 if (INSN_P (insn))
268 {
269 gcc_assert (JUMP_TABLE_DATA_P (insn));
270 mark_jump_label (PATTERN (insn), insn, 0);
271 }
272
273 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
274 if (INSN_P (insn))
275 {
276 gcc_assert (JUMP_TABLE_DATA_P (insn));
277 mark_jump_label (PATTERN (insn), insn, 0);
278 }
279 }
280 }
269ef46c 281}
15a63be1 282\f
5a4aeb03 283/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
ab94bc48
JH
284 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
285 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
286 know whether it's source is floating point or integer comparison. Machine
287 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
288 to help this function avoid overhead in these cases. */
289enum rtx_code
9678086d
KG
290reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
291 const_rtx arg1, const_rtx insn)
15a63be1 292{
ab94bc48 293 enum machine_mode mode;
15a63be1
RK
294
295 /* If this is not actually a comparison, we can't reverse it. */
ec8e098d
PB
296 if (GET_RTX_CLASS (code) != RTX_COMPARE
297 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
ab94bc48
JH
298 return UNKNOWN;
299
300 mode = GET_MODE (arg0);
301 if (mode == VOIDmode)
302 mode = GET_MODE (arg1);
303
d1a6adeb
KH
304 /* First see if machine description supplies us way to reverse the
305 comparison. Give it priority over everything else to allow
306 machine description to do tricks. */
3799607a 307 if (GET_MODE_CLASS (mode) == MODE_CC
ab94bc48
JH
308 && REVERSIBLE_CC_MODE (mode))
309 {
310#ifdef REVERSE_CONDITION
5d0cab94 311 return REVERSE_CONDITION (code, mode);
ab94bc48 312#endif
5d0cab94
KH
313 return reverse_condition (code);
314 }
15a63be1 315
5a4aeb03 316 /* Try a few special cases based on the comparison code. */
ab94bc48
JH
317 switch (code)
318 {
5d0cab94
KH
319 case GEU:
320 case GTU:
321 case LEU:
322 case LTU:
323 case NE:
324 case EQ:
325 /* It is always safe to reverse EQ and NE, even for the floating
4d6922ee 326 point. Similarly the unsigned comparisons are never used for
5d0cab94
KH
327 floating point so we can reverse them in the default way. */
328 return reverse_condition (code);
329 case ORDERED:
330 case UNORDERED:
331 case LTGT:
332 case UNEQ:
333 /* In case we already see unordered comparison, we can be sure to
334 be dealing with floating point so we don't need any more tests. */
335 return reverse_condition_maybe_unordered (code);
336 case UNLT:
337 case UNLE:
338 case UNGT:
339 case UNGE:
340 /* We don't have safe way to reverse these yet. */
341 return UNKNOWN;
342 default:
343 break;
ab94bc48
JH
344 }
345
8beccec8 346 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
15a63be1 347 {
9678086d 348 const_rtx prev;
ab94bc48
JH
349 /* Try to search for the comparison to determine the real mode.
350 This code is expensive, but with sane machine description it
351 will be never used, since REVERSIBLE_CC_MODE will return true
352 in all cases. */
0dab8f8a 353 if (! insn)
ab94bc48 354 return UNKNOWN;
48b881a3 355
75547801 356 /* These CONST_CAST's are okay because prev_nonnote_insn just
4e9b57fa 357 returns its argument and we assign it to a const_rtx
75547801 358 variable. */
b1d5455a 359 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
4b4bf941 360 prev != 0 && !LABEL_P (prev);
b1d5455a 361 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
ab94bc48 362 {
7bc980e1 363 const_rtx set = set_of (arg0, prev);
ab94bc48
JH
364 if (set && GET_CODE (set) == SET
365 && rtx_equal_p (SET_DEST (set), arg0))
366 {
367 rtx src = SET_SRC (set);
15a63be1 368
ab94bc48
JH
369 if (GET_CODE (src) == COMPARE)
370 {
371 rtx comparison = src;
372 arg0 = XEXP (src, 0);
373 mode = GET_MODE (arg0);
374 if (mode == VOIDmode)
375 mode = GET_MODE (XEXP (comparison, 1));
376 break;
377 }
f63d1bf7 378 /* We can get past reg-reg moves. This may be useful for model
ab94bc48
JH
379 of i387 comparisons that first move flag registers around. */
380 if (REG_P (src))
381 {
382 arg0 = src;
383 continue;
384 }
385 }
386 /* If register is clobbered in some ununderstandable way,
387 give up. */
388 if (set)
389 return UNKNOWN;
390 }
15a63be1
RK
391 }
392
71925bc0
RS
393 /* Test for an integer condition, or a floating-point comparison
394 in which NaNs can be ignored. */
481683e1 395 if (CONST_INT_P (arg0)
ab94bc48
JH
396 || (GET_MODE (arg0) != VOIDmode
397 && GET_MODE_CLASS (mode) != MODE_CC
71925bc0 398 && !HONOR_NANS (mode)))
ab94bc48
JH
399 return reverse_condition (code);
400
401 return UNKNOWN;
402}
403
b20b352b 404/* A wrapper around the previous function to take COMPARISON as rtx
ab94bc48
JH
405 expression. This simplifies many callers. */
406enum rtx_code
9678086d 407reversed_comparison_code (const_rtx comparison, const_rtx insn)
ab94bc48 408{
ec8e098d 409 if (!COMPARISON_P (comparison))
ab94bc48
JH
410 return UNKNOWN;
411 return reversed_comparison_code_parts (GET_CODE (comparison),
412 XEXP (comparison, 0),
413 XEXP (comparison, 1), insn);
414}
14f02e73
PB
415
416/* Return comparison with reversed code of EXP.
417 Return NULL_RTX in case we fail to do the reversal. */
418rtx
9678086d 419reversed_comparison (const_rtx exp, enum machine_mode mode)
14f02e73
PB
420{
421 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
422 if (reversed_code == UNKNOWN)
423 return NULL_RTX;
424 else
425 return simplify_gen_relational (reversed_code, mode, VOIDmode,
426 XEXP (exp, 0), XEXP (exp, 1));
427}
428
ab94bc48 429\f
1eb8759b
RH
430/* Given an rtx-code for a comparison, return the code for the negated
431 comparison. If no such code exists, return UNKNOWN.
432
433 WATCH OUT! reverse_condition is not safe to use on a jump that might
434 be acting on the results of an IEEE floating point comparison, because
48b881a3 435 of the special treatment of non-signaling nans in comparisons.
ab94bc48 436 Use reversed_comparison_code instead. */
15a63be1
RK
437
438enum rtx_code
0c20a65f 439reverse_condition (enum rtx_code code)
15a63be1
RK
440{
441 switch (code)
442 {
443 case EQ:
444 return NE;
15a63be1
RK
445 case NE:
446 return EQ;
15a63be1
RK
447 case GT:
448 return LE;
15a63be1
RK
449 case GE:
450 return LT;
15a63be1
RK
451 case LT:
452 return GE;
15a63be1
RK
453 case LE:
454 return GT;
15a63be1
RK
455 case GTU:
456 return LEU;
15a63be1
RK
457 case GEU:
458 return LTU;
15a63be1
RK
459 case LTU:
460 return GEU;
15a63be1
RK
461 case LEU:
462 return GTU;
1eb8759b
RH
463 case UNORDERED:
464 return ORDERED;
465 case ORDERED:
466 return UNORDERED;
467
468 case UNLT:
469 case UNLE:
470 case UNGT:
471 case UNGE:
472 case UNEQ:
7913f3d0 473 case LTGT:
1eb8759b 474 return UNKNOWN;
15a63be1
RK
475
476 default:
41806d92 477 gcc_unreachable ();
15a63be1
RK
478 }
479}
480
7913f3d0
RH
481/* Similar, but we're allowed to generate unordered comparisons, which
482 makes it safe for IEEE floating-point. Of course, we have to recognize
483 that the target will support them too... */
484
485enum rtx_code
0c20a65f 486reverse_condition_maybe_unordered (enum rtx_code code)
7913f3d0 487{
7913f3d0
RH
488 switch (code)
489 {
490 case EQ:
491 return NE;
492 case NE:
493 return EQ;
494 case GT:
495 return UNLE;
496 case GE:
497 return UNLT;
498 case LT:
499 return UNGE;
500 case LE:
501 return UNGT;
502 case LTGT:
503 return UNEQ;
7913f3d0
RH
504 case UNORDERED:
505 return ORDERED;
506 case ORDERED:
507 return UNORDERED;
508 case UNLT:
509 return GE;
510 case UNLE:
511 return GT;
512 case UNGT:
513 return LE;
514 case UNGE:
515 return LT;
516 case UNEQ:
517 return LTGT;
518
519 default:
41806d92 520 gcc_unreachable ();
7913f3d0
RH
521 }
522}
523
15a63be1
RK
524/* Similar, but return the code when two operands of a comparison are swapped.
525 This IS safe for IEEE floating-point. */
526
527enum rtx_code
0c20a65f 528swap_condition (enum rtx_code code)
15a63be1
RK
529{
530 switch (code)
531 {
532 case EQ:
533 case NE:
1eb8759b
RH
534 case UNORDERED:
535 case ORDERED:
536 case UNEQ:
7913f3d0 537 case LTGT:
15a63be1
RK
538 return code;
539
540 case GT:
541 return LT;
15a63be1
RK
542 case GE:
543 return LE;
15a63be1
RK
544 case LT:
545 return GT;
15a63be1
RK
546 case LE:
547 return GE;
15a63be1
RK
548 case GTU:
549 return LTU;
15a63be1
RK
550 case GEU:
551 return LEU;
15a63be1
RK
552 case LTU:
553 return GTU;
15a63be1
RK
554 case LEU:
555 return GEU;
1eb8759b
RH
556 case UNLT:
557 return UNGT;
558 case UNLE:
559 return UNGE;
560 case UNGT:
561 return UNLT;
562 case UNGE:
563 return UNLE;
564
15a63be1 565 default:
41806d92 566 gcc_unreachable ();
15a63be1
RK
567 }
568}
569
570/* Given a comparison CODE, return the corresponding unsigned comparison.
571 If CODE is an equality comparison or already an unsigned comparison,
572 CODE is returned. */
573
574enum rtx_code
0c20a65f 575unsigned_condition (enum rtx_code code)
15a63be1
RK
576{
577 switch (code)
578 {
579 case EQ:
580 case NE:
581 case GTU:
582 case GEU:
583 case LTU:
584 case LEU:
585 return code;
586
587 case GT:
588 return GTU;
15a63be1
RK
589 case GE:
590 return GEU;
15a63be1
RK
591 case LT:
592 return LTU;
15a63be1
RK
593 case LE:
594 return LEU;
595
596 default:
41806d92 597 gcc_unreachable ();
15a63be1
RK
598 }
599}
600
601/* Similarly, return the signed version of a comparison. */
602
603enum rtx_code
0c20a65f 604signed_condition (enum rtx_code code)
15a63be1
RK
605{
606 switch (code)
607 {
608 case EQ:
609 case NE:
610 case GT:
611 case GE:
612 case LT:
613 case LE:
614 return code;
615
616 case GTU:
617 return GT;
15a63be1
RK
618 case GEU:
619 return GE;
15a63be1
RK
620 case LTU:
621 return LT;
15a63be1
RK
622 case LEU:
623 return LE;
624
625 default:
41806d92 626 gcc_unreachable ();
15a63be1
RK
627 }
628}
629\f
cc2902df 630/* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
15a63be1
RK
631 truth of CODE1 implies the truth of CODE2. */
632
633int
0c20a65f 634comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
15a63be1 635{
1e738f74
FS
636 /* UNKNOWN comparison codes can happen as a result of trying to revert
637 comparison codes.
638 They can't match anything, so we have to reject them here. */
639 if (code1 == UNKNOWN || code2 == UNKNOWN)
640 return 0;
641
15a63be1
RK
642 if (code1 == code2)
643 return 1;
644
645 switch (code1)
646 {
b34878a3
JH
647 case UNEQ:
648 if (code2 == UNLE || code2 == UNGE)
649 return 1;
650 break;
651
15a63be1 652 case EQ:
7913f3d0
RH
653 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
654 || code2 == ORDERED)
15a63be1
RK
655 return 1;
656 break;
657
b34878a3
JH
658 case UNLT:
659 if (code2 == UNLE || code2 == NE)
660 return 1;
661 break;
662
15a63be1 663 case LT:
b34878a3
JH
664 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
665 return 1;
666 break;
667
668 case UNGT:
669 if (code2 == UNGE || code2 == NE)
15a63be1
RK
670 return 1;
671 break;
672
673 case GT:
b34878a3 674 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
7913f3d0
RH
675 return 1;
676 break;
677
678 case GE:
679 case LE:
680 if (code2 == ORDERED)
681 return 1;
682 break;
683
684 case LTGT:
685 if (code2 == NE || code2 == ORDERED)
15a63be1
RK
686 return 1;
687 break;
688
689 case LTU:
b0c38416 690 if (code2 == LEU || code2 == NE)
15a63be1
RK
691 return 1;
692 break;
693
694 case GTU:
b0c38416 695 if (code2 == GEU || code2 == NE)
15a63be1
RK
696 return 1;
697 break;
7913f3d0
RH
698
699 case UNORDERED:
b34878a3
JH
700 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
701 || code2 == UNGE || code2 == UNGT)
7913f3d0
RH
702 return 1;
703 break;
48b881a3 704
e9a25f70
JL
705 default:
706 break;
15a63be1
RK
707 }
708
709 return 0;
710}
711\f
712/* Return 1 if INSN is an unconditional jump and nothing else. */
713
714int
4f588890 715simplejump_p (const_rtx insn)
15a63be1 716{
4b4bf941 717 return (JUMP_P (insn)
3c74f8f9
RH
718 && GET_CODE (PATTERN (insn)) == SET
719 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
720 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
15a63be1
RK
721}
722
723/* Return nonzero if INSN is a (possibly) conditional jump
48b881a3
KH
724 and nothing more.
725
1f52178b 726 Use of this function is deprecated, since we need to support combined
d781a164 727 branch and compare insns. Use any_condjump_p instead whenever possible. */
15a63be1
RK
728
729int
4f588890 730condjump_p (const_rtx insn)
15a63be1 731{
4f588890 732 const_rtx x = PATTERN (insn);
c5c76735
JL
733
734 if (GET_CODE (x) != SET
735 || GET_CODE (SET_DEST (x)) != PC)
3480bb98 736 return 0;
c5c76735
JL
737
738 x = SET_SRC (x);
739 if (GET_CODE (x) == LABEL_REF)
3480bb98 740 return 1;
48b881a3
KH
741 else
742 return (GET_CODE (x) == IF_THEN_ELSE
743 && ((GET_CODE (XEXP (x, 2)) == PC
744 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
745 || GET_CODE (XEXP (x, 1)) == RETURN))
746 || (GET_CODE (XEXP (x, 1)) == PC
747 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
748 || GET_CODE (XEXP (x, 2)) == RETURN))));
3480bb98
JL
749}
750
c5c76735 751/* Return nonzero if INSN is a (possibly) conditional jump inside a
e4c85816 752 PARALLEL.
48b881a3 753
d781a164
RH
754 Use this function is deprecated, since we need to support combined
755 branch and compare insns. Use any_condjump_p instead whenever possible. */
3480bb98
JL
756
757int
4f588890 758condjump_in_parallel_p (const_rtx insn)
3480bb98 759{
4f588890 760 const_rtx x = PATTERN (insn);
3480bb98
JL
761
762 if (GET_CODE (x) != PARALLEL)
763 return 0;
764 else
765 x = XVECEXP (x, 0, 0);
766
15a63be1
RK
767 if (GET_CODE (x) != SET)
768 return 0;
769 if (GET_CODE (SET_DEST (x)) != PC)
770 return 0;
771 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
772 return 1;
773 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
774 return 0;
775 if (XEXP (SET_SRC (x), 2) == pc_rtx
776 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
777 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
778 return 1;
779 if (XEXP (SET_SRC (x), 1) == pc_rtx
780 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
781 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
782 return 1;
783 return 0;
784}
785
d781a164
RH
786/* Return set of PC, otherwise NULL. */
787
e4c85816 788rtx
4f588890 789pc_set (const_rtx insn)
e4c85816
JH
790{
791 rtx pat;
4b4bf941 792 if (!JUMP_P (insn))
d781a164 793 return NULL_RTX;
e4c85816 794 pat = PATTERN (insn);
d781a164
RH
795
796 /* The set is allowed to appear either as the insn pattern or
797 the first set in a PARALLEL. */
798 if (GET_CODE (pat) == PARALLEL)
799 pat = XVECEXP (pat, 0, 0);
e4c85816
JH
800 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
801 return pat;
d781a164
RH
802
803 return NULL_RTX;
e4c85816
JH
804}
805
d781a164
RH
806/* Return true when insn is an unconditional direct jump,
807 possibly bundled inside a PARALLEL. */
808
e4c85816 809int
4f588890 810any_uncondjump_p (const_rtx insn)
e4c85816 811{
4f588890 812 const_rtx x = pc_set (insn);
e4c85816
JH
813 if (!x)
814 return 0;
815 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
816 return 0;
6de9cd9a
DN
817 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
818 return 0;
e4c85816
JH
819 return 1;
820}
821
d781a164 822/* Return true when insn is a conditional jump. This function works for
e4c85816
JH
823 instructions containing PC sets in PARALLELs. The instruction may have
824 various other effects so before removing the jump you must verify
5527bf14 825 onlyjump_p.
e4c85816 826
d781a164
RH
827 Note that unlike condjump_p it returns false for unconditional jumps. */
828
e4c85816 829int
4f588890 830any_condjump_p (const_rtx insn)
e4c85816 831{
4f588890 832 const_rtx x = pc_set (insn);
d781a164
RH
833 enum rtx_code a, b;
834
e4c85816
JH
835 if (!x)
836 return 0;
d781a164
RH
837 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
838 return 0;
e4c85816 839
d781a164
RH
840 a = GET_CODE (XEXP (SET_SRC (x), 1));
841 b = GET_CODE (XEXP (SET_SRC (x), 2));
e4c85816 842
d781a164 843 return ((b == PC && (a == LABEL_REF || a == RETURN))
48b881a3 844 || (a == PC && (b == LABEL_REF || b == RETURN)));
e4c85816
JH
845}
846
d804ed43
RH
847/* Return the label of a conditional jump. */
848
849rtx
9678086d 850condjump_label (const_rtx insn)
d804ed43 851{
d781a164 852 rtx x = pc_set (insn);
d804ed43 853
d781a164 854 if (!x)
d804ed43
RH
855 return NULL_RTX;
856 x = SET_SRC (x);
857 if (GET_CODE (x) == LABEL_REF)
858 return x;
859 if (GET_CODE (x) != IF_THEN_ELSE)
860 return NULL_RTX;
861 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
862 return XEXP (x, 1);
863 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
864 return XEXP (x, 2);
865 return NULL_RTX;
866}
867
e881bb1b
RH
868/* Return true if INSN is a (possibly conditional) return insn. */
869
870static int
0c20a65f 871returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
e881bb1b
RH
872{
873 rtx x = *loc;
3258e996 874
cd9c1ca8
RH
875 if (x == NULL)
876 return false;
877
878 switch (GET_CODE (x))
879 {
880 case RETURN:
881 case EH_RETURN:
882 return true;
883
884 case SET:
885 return SET_IS_RETURN_P (x);
886
887 default:
888 return false;
889 }
e881bb1b
RH
890}
891
72e48218
AN
892/* Return TRUE if INSN is a return jump. */
893
e881bb1b 894int
0c20a65f 895returnjump_p (rtx insn)
e881bb1b 896{
4b4bf941 897 if (!JUMP_P (insn))
f5540cd4 898 return 0;
e881bb1b
RH
899 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
900}
901
cd9c1ca8
RH
902/* Return true if INSN is a (possibly conditional) return insn. */
903
904static int
905eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
906{
907 return *loc && GET_CODE (*loc) == EH_RETURN;
908}
909
910int
911eh_returnjump_p (rtx insn)
912{
913 if (!JUMP_P (insn))
914 return 0;
915 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
916}
917
d0e80719
RH
918/* Return true if INSN is a jump that only transfers control and
919 nothing more. */
920
921int
4f588890 922onlyjump_p (const_rtx insn)
d0e80719
RH
923{
924 rtx set;
925
4b4bf941 926 if (!JUMP_P (insn))
d0e80719
RH
927 return 0;
928
929 set = single_set (insn);
930 if (set == NULL)
931 return 0;
932 if (GET_CODE (SET_DEST (set)) != PC)
933 return 0;
934 if (side_effects_p (SET_SRC (set)))
935 return 0;
936
937 return 1;
938}
939
51d87cd9
BS
940#ifdef HAVE_cc0
941
cc2902df 942/* Return nonzero if X is an RTX that only sets the condition codes
44ce0063
JW
943 and has no side effects. */
944
945int
4f588890 946only_sets_cc0_p (const_rtx x)
44ce0063 947{
44ce0063
JW
948 if (! x)
949 return 0;
950
951 if (INSN_P (x))
952 x = PATTERN (x);
953
954 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
955}
956
15a63be1
RK
957/* Return 1 if X is an RTX that does nothing but set the condition codes
958 and CLOBBER or USE registers.
959 Return -1 if X does explicitly set the condition codes,
960 but also does other things. */
961
962int
4f588890 963sets_cc0_p (const_rtx x)
15a63be1 964{
44ce0063
JW
965 if (! x)
966 return 0;
967
968 if (INSN_P (x))
969 x = PATTERN (x);
970
15a63be1
RK
971 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
972 return 1;
973 if (GET_CODE (x) == PARALLEL)
974 {
975 int i;
976 int sets_cc0 = 0;
977 int other_things = 0;
978 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
979 {
980 if (GET_CODE (XVECEXP (x, 0, i)) == SET
981 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
982 sets_cc0 = 1;
983 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
984 other_things = 1;
985 }
986 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
987 }
988 return 0;
15a63be1 989}
51d87cd9 990#endif
15a63be1 991\f
cf7c4aa6
HPN
992/* Find all CODE_LABELs referred to in X, and increment their use
993 counts. If INSN is a JUMP_INSN and there is at least one
994 CODE_LABEL referenced in INSN as a jump target, then store the last
995 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
996 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
997 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
998 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
999 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
15a63be1
RK
1000
1001 Note that two labels separated by a loop-beginning note
1002 must be kept distinct if we have not yet done loop-optimization,
1003 because the gap between them is where loop-optimize
1004 will want to move invariant code to. CROSS_JUMP tells us
1e5fd094 1005 that loop-optimization is done with. */
15a63be1 1006
90a74703 1007void
0c20a65f 1008mark_jump_label (rtx x, rtx insn, int in_mem)
cf7c4aa6 1009{
1c384bf1
RH
1010 rtx asmop = extract_asm_operands (x);
1011 if (asmop)
1012 mark_jump_label_asm (asmop, insn);
1013 else
1014 mark_jump_label_1 (x, insn, in_mem != 0,
1015 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
cf7c4aa6
HPN
1016}
1017
84fbffb2 1018/* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
cf7c4aa6
HPN
1019 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1020 jump-target; when the JUMP_LABEL field of INSN should be set or a
1021 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1022 note. */
1023
1024static void
1025mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
15a63be1 1026{
b3694847
SS
1027 RTX_CODE code = GET_CODE (x);
1028 int i;
1029 const char *fmt;
15a63be1
RK
1030
1031 switch (code)
1032 {
1033 case PC:
1034 case CC0:
1035 case REG:
15a63be1 1036 case CONST_INT:
15a63be1
RK
1037 case CONST_DOUBLE:
1038 case CLOBBER:
1039 case CALL:
1040 return;
1041
d7ea4cf6 1042 case MEM:
cf7c4aa6 1043 in_mem = true;
a76063a6
CP
1044 break;
1045
5dab4eb7
BS
1046 case SEQUENCE:
1047 for (i = 0; i < XVECLEN (x, 0); i++)
1048 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1049 XVECEXP (x, 0, i), 0);
1050 return;
1051
a76063a6
CP
1052 case SYMBOL_REF:
1053 if (!in_mem)
48b881a3 1054 return;
a76063a6 1055
d7ea4cf6 1056 /* If this is a constant-pool reference, see if it is a label. */
a76063a6 1057 if (CONSTANT_POOL_ADDRESS_P (x))
cf7c4aa6 1058 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
d7ea4cf6
RK
1059 break;
1060
cf7c4aa6
HPN
1061 /* Handle operands in the condition of an if-then-else as for a
1062 non-jump insn. */
1063 case IF_THEN_ELSE:
1064 if (!is_target)
1065 break;
1066 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1067 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1068 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1069 return;
1070
15a63be1
RK
1071 case LABEL_REF:
1072 {
5c5e36c5 1073 rtx label = XEXP (x, 0);
5c5e36c5 1074
be1bb652
RH
1075 /* Ignore remaining references to unreachable labels that
1076 have been deleted. */
4b4bf941 1077 if (NOTE_P (label)
a38e7aa5 1078 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
be1bb652
RH
1079 break;
1080
41806d92 1081 gcc_assert (LABEL_P (label));
5c5e36c5 1082
705f26cf
RS
1083 /* Ignore references to labels of containing functions. */
1084 if (LABEL_REF_NONLOCAL_P (x))
1085 break;
5c5e36c5 1086
15a63be1 1087 XEXP (x, 0) = label;
ac9b3c97
R
1088 if (! insn || ! INSN_DELETED_P (insn))
1089 ++LABEL_NUSES (label);
5c5e36c5 1090
15a63be1
RK
1091 if (insn)
1092 {
cf7c4aa6 1093 if (is_target
cb2f563b
HPN
1094 /* Do not change a previous setting of JUMP_LABEL. If the
1095 JUMP_LABEL slot is occupied by a different label,
1096 create a note for this label. */
cf7c4aa6 1097 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
15a63be1 1098 JUMP_LABEL (insn) = label;
834452d2 1099 else
85b94003 1100 {
cf7c4aa6
HPN
1101 enum reg_note kind
1102 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1103
1104 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1105 for LABEL unless there already is one. All uses of
1106 a label, except for the primary target of a jump,
1107 must have such a note. */
1108 if (! find_reg_note (insn, kind, label))
65c5f2a6 1109 add_reg_note (insn, kind, label);
15a63be1
RK
1110 }
1111 }
1112 return;
1113 }
1114
1115 /* Do walk the labels in a vector, but not the first operand of an
1116 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1117 case ADDR_VEC:
1118 case ADDR_DIFF_VEC:
ac9b3c97
R
1119 if (! INSN_DELETED_P (insn))
1120 {
1121 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
15a63be1 1122
ac9b3c97 1123 for (i = 0; i < XVECLEN (x, eltnum); i++)
cf7c4aa6
HPN
1124 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1125 is_target);
ac9b3c97 1126 }
e9a25f70 1127 return;
48b881a3 1128
e9a25f70
JL
1129 default:
1130 break;
15a63be1
RK
1131 }
1132
1133 fmt = GET_RTX_FORMAT (code);
cf7c4aa6
HPN
1134
1135 /* The primary target of a tablejump is the label of the ADDR_VEC,
1136 which is canonically mentioned *last* in the insn. To get it
1137 marked as JUMP_LABEL, we iterate over items in reverse order. */
15a63be1
RK
1138 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1139 {
1140 if (fmt[i] == 'e')
cf7c4aa6 1141 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
15a63be1
RK
1142 else if (fmt[i] == 'E')
1143 {
b3694847 1144 int j;
cf7c4aa6
HPN
1145
1146 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1147 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1148 is_target);
15a63be1
RK
1149 }
1150 }
1151}
1152
1c384bf1
RH
1153/* Worker function for mark_jump_label. Handle asm insns specially.
1154 In particular, output operands need not be considered so we can
1155 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1156 need to be considered targets. */
1157
1158static void
1159mark_jump_label_asm (rtx asmop, rtx insn)
1160{
1161 int i;
1162
1163 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1164 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1165
1166 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1167 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1168}
15a63be1 1169\f
53c17031 1170/* Delete insn INSN from the chain of insns and update label ref counts
b6553814 1171 and delete insns now unreachable.
53c17031 1172
b6553814 1173 Returns the first insn after INSN that was not deleted.
15a63be1 1174
53c17031
JH
1175 Usage of this instruction is deprecated. Use delete_insn instead and
1176 subsequent cfg_cleanup pass to delete unreachable code if needed. */
15a63be1
RK
1177
1178rtx
0c20a65f 1179delete_related_insns (rtx insn)
15a63be1 1180{
4b4bf941 1181 int was_code_label = (LABEL_P (insn));
692dc9c6 1182 rtx note;
53c17031 1183 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
15a63be1
RK
1184
1185 while (next && INSN_DELETED_P (next))
1186 next = NEXT_INSN (next);
1187
1188 /* This insn is already deleted => return first following nondeleted. */
1189 if (INSN_DELETED_P (insn))
1190 return next;
1191
53c17031 1192 delete_insn (insn);
15a63be1 1193
15a63be1
RK
1194 /* If instruction is followed by a barrier,
1195 delete the barrier too. */
1196
4b4bf941 1197 if (next != 0 && BARRIER_P (next))
53c17031 1198 delete_insn (next);
15a63be1
RK
1199
1200 /* If deleting a jump, decrement the count of the label,
1201 and delete the label if it is now unused. */
1202
4b4bf941 1203 if (JUMP_P (insn) && JUMP_LABEL (insn))
1fe65930
RH
1204 {
1205 rtx lab = JUMP_LABEL (insn), lab_next;
1206
53c17031 1207 if (LABEL_NUSES (lab) == 0)
cf7c4aa6
HPN
1208 /* This can delete NEXT or PREV,
1209 either directly if NEXT is JUMP_LABEL (INSN),
1210 or indirectly through more levels of jumps. */
1211 delete_related_insns (lab);
e1233a7d 1212 else if (tablejump_p (insn, NULL, &lab_next))
1fe65930
RH
1213 {
1214 /* If we're deleting the tablejump, delete the dispatch table.
eaec9b3d 1215 We may not be able to kill the label immediately preceding
1fe65930
RH
1216 just yet, as it might be referenced in code leading up to
1217 the tablejump. */
53c17031 1218 delete_related_insns (lab_next);
1fe65930
RH
1219 }
1220 }
15a63be1 1221
3c7d7a4a
DE
1222 /* Likewise if we're deleting a dispatch table. */
1223
481683e1 1224 if (JUMP_TABLE_DATA_P (insn))
3c7d7a4a
DE
1225 {
1226 rtx pat = PATTERN (insn);
1227 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1228 int len = XVECLEN (pat, diff_vec_p);
1229
1230 for (i = 0; i < len; i++)
53c17031
JH
1231 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1232 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
3c7d7a4a
DE
1233 while (next && INSN_DELETED_P (next))
1234 next = NEXT_INSN (next);
1235 return next;
1236 }
1237
cf7c4aa6
HPN
1238 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1239 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1240 if (INSN_P (insn))
692dc9c6 1241 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
cf7c4aa6
HPN
1242 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1243 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
f423a6a7 1244 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
4b4bf941 1245 && LABEL_P (XEXP (note, 0)))
53c17031
JH
1246 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1247 delete_related_insns (XEXP (note, 0));
692dc9c6 1248
4b4bf941 1249 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
15a63be1
RK
1250 prev = PREV_INSN (prev);
1251
1252 /* If INSN was a label and a dispatch table follows it,
1253 delete the dispatch table. The tablejump must have gone already.
1254 It isn't useful to fall through into a table. */
1255
196cedd0 1256 if (was_code_label
15a63be1 1257 && NEXT_INSN (insn) != 0
481683e1 1258 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
53c17031 1259 next = delete_related_insns (NEXT_INSN (insn));
15a63be1
RK
1260
1261 /* If INSN was a label, delete insns following it if now unreachable. */
1262
4b4bf941 1263 if (was_code_label && prev && BARRIER_P (prev))
15a63be1 1264 {
ec8e098d
PB
1265 enum rtx_code code;
1266 while (next)
15a63be1 1267 {
ec8e098d 1268 code = GET_CODE (next);
071a42f9 1269 if (code == NOTE)
15a63be1 1270 next = NEXT_INSN (next);
2e1dbf22
RS
1271 /* Keep going past other deleted labels to delete what follows. */
1272 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1273 next = NEXT_INSN (next);
ec8e098d 1274 else if (code == BARRIER || INSN_P (next))
15a63be1
RK
1275 /* Note: if this deletes a jump, it can cause more
1276 deletion of unreachable code, after a different label.
1277 As long as the value from this recursive call is correct,
1278 this invocation functions correctly. */
53c17031 1279 next = delete_related_insns (next);
ec8e098d
PB
1280 else
1281 break;
15a63be1
RK
1282 }
1283 }
1284
cf7c4aa6
HPN
1285 /* I feel a little doubtful about this loop,
1286 but I see no clean and sure alternative way
1287 to find the first insn after INSN that is not now deleted.
1288 I hope this works. */
1289 while (next && INSN_DELETED_P (next))
1290 next = NEXT_INSN (next);
15a63be1
RK
1291 return next;
1292}
15a63be1
RK
1293\f
1294/* Delete a range of insns from FROM to TO, inclusive.
1295 This is for the sake of peephole optimization, so assume
1296 that whatever these insns do will still be done by a new
1297 peephole insn that will replace them. */
1298
1299void
0c20a65f 1300delete_for_peephole (rtx from, rtx to)
15a63be1 1301{
b3694847 1302 rtx insn = from;
15a63be1
RK
1303
1304 while (1)
1305 {
b3694847
SS
1306 rtx next = NEXT_INSN (insn);
1307 rtx prev = PREV_INSN (insn);
15a63be1 1308
4b4bf941 1309 if (!NOTE_P (insn))
15a63be1
RK
1310 {
1311 INSN_DELETED_P (insn) = 1;
1312
1313 /* Patch this insn out of the chain. */
1314 /* We don't do this all at once, because we
1315 must preserve all NOTEs. */
1316 if (prev)
1317 NEXT_INSN (prev) = next;
1318
1319 if (next)
1320 PREV_INSN (next) = prev;
1321 }
1322
1323 if (insn == to)
1324 break;
1325 insn = next;
1326 }
1327
1328 /* Note that if TO is an unconditional jump
1329 we *do not* delete the BARRIER that follows,
1330 since the peephole that replaces this sequence
1331 is also an unconditional jump in that case. */
1332}
1333\f
2ea64f10
RH
1334/* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1335 NLABEL as a return. Accrue modifications into the change group. */
15a63be1 1336
2ea64f10 1337static void
0c20a65f 1338redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
15a63be1 1339{
b3694847
SS
1340 rtx x = *loc;
1341 RTX_CODE code = GET_CODE (x);
1342 int i;
1343 const char *fmt;
15a63be1 1344
2ea64f10 1345 if (code == LABEL_REF)
15a63be1 1346 {
2ea64f10
RH
1347 if (XEXP (x, 0) == olabel)
1348 {
1349 rtx n;
1350 if (nlabel)
4c33cb26 1351 n = gen_rtx_LABEL_REF (Pmode, nlabel);
2ea64f10 1352 else
48b881a3 1353 n = gen_rtx_RETURN (VOIDmode);
15a63be1 1354
2ea64f10
RH
1355 validate_change (insn, loc, n, 1);
1356 return;
1357 }
1358 }
1359 else if (code == RETURN && olabel == 0)
1360 {
9550206b 1361 if (nlabel)
4c33cb26 1362 x = gen_rtx_LABEL_REF (Pmode, nlabel);
9550206b
RS
1363 else
1364 x = gen_rtx_RETURN (VOIDmode);
2ea64f10
RH
1365 if (loc == &PATTERN (insn))
1366 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1367 validate_change (insn, loc, x, 1);
1368 return;
1369 }
15a63be1 1370
2ea64f10
RH
1371 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
1372 && GET_CODE (SET_SRC (x)) == LABEL_REF
1373 && XEXP (SET_SRC (x), 0) == olabel)
1374 {
1375 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
1376 return;
15a63be1
RK
1377 }
1378
ba03a350
UB
1379 if (code == IF_THEN_ELSE)
1380 {
1381 /* Skip the condition of an IF_THEN_ELSE. We only want to
1382 change jump destinations, not eventual label comparisons. */
1383 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1384 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1385 return;
1386 }
1387
15a63be1
RK
1388 fmt = GET_RTX_FORMAT (code);
1389 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1390 {
1391 if (fmt[i] == 'e')
2ea64f10 1392 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
d4757e6a 1393 else if (fmt[i] == 'E')
15a63be1 1394 {
b3694847 1395 int j;
15a63be1 1396 for (j = 0; j < XVECLEN (x, i); j++)
2ea64f10 1397 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
15a63be1
RK
1398 }
1399 }
2ea64f10 1400}
15a63be1 1401
2ea64f10
RH
1402/* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1403 the modifications into the change group. Return false if we did
1404 not see how to do that. */
1405
1406int
0c20a65f 1407redirect_jump_1 (rtx jump, rtx nlabel)
2ea64f10
RH
1408{
1409 int ochanges = num_validated_changes ();
1c384bf1 1410 rtx *loc, asmop;
742dff15 1411
1c384bf1
RH
1412 asmop = extract_asm_operands (PATTERN (jump));
1413 if (asmop)
1414 {
1415 if (nlabel == NULL)
1416 return 0;
1417 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1418 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1419 }
1420 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
742dff15
JH
1421 loc = &XVECEXP (PATTERN (jump), 0, 0);
1422 else
1423 loc = &PATTERN (jump);
1424
1425 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
2ea64f10
RH
1426 return num_validated_changes () > ochanges;
1427}
1428
1429/* Make JUMP go to NLABEL instead of where it jumps now. If the old
1430 jump target label is unused as a result, it and the code following
1431 it may be deleted.
15a63be1
RK
1432
1433 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1434 RETURN insn.
1435
2ea64f10
RH
1436 The return value will be 1 if the change was made, 0 if it wasn't
1437 (this can only occur for NLABEL == 0). */
15a63be1
RK
1438
1439int
0c20a65f 1440redirect_jump (rtx jump, rtx nlabel, int delete_unused)
15a63be1 1441{
b3694847 1442 rtx olabel = JUMP_LABEL (jump);
15a63be1
RK
1443
1444 if (nlabel == olabel)
1445 return 1;
1446
0a634832 1447 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
15a63be1
RK
1448 return 0;
1449
0a634832
R
1450 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1451 return 1;
1452}
1453
1454/* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
b8698a0f 1455 NLABEL in JUMP.
0a634832
R
1456 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1457 count has dropped to zero. */
1458void
1459redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1460 int invert)
1461{
1462 rtx note;
1463
cf7c4aa6
HPN
1464 gcc_assert (JUMP_LABEL (jump) == olabel);
1465
9f5ed61a 1466 /* Negative DELETE_UNUSED used to be used to signalize behavior on
071a42f9
JH
1467 moving FUNCTION_END note. Just sanity check that no user still worry
1468 about this. */
1469 gcc_assert (delete_unused >= 0);
15a63be1
RK
1470 JUMP_LABEL (jump) = nlabel;
1471 if (nlabel)
1472 ++LABEL_NUSES (nlabel);
1473
bc6688b4
RS
1474 /* Update labels in any REG_EQUAL note. */
1475 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1476 {
0a634832
R
1477 if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1478 remove_note (jump, note);
1479 else
bc6688b4 1480 {
0a634832
R
1481 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1482 confirm_change_group ();
bc6688b4 1483 }
bc6688b4
RS
1484 }
1485
0a634832 1486 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
31fbaad4
R
1487 /* Undefined labels will remain outside the insn stream. */
1488 && INSN_UID (olabel))
53c17031 1489 delete_related_insns (olabel);
0a634832
R
1490 if (invert)
1491 invert_br_probabilities (jump);
15a63be1
RK
1492}
1493
0a634832
R
1494/* Invert the jump condition X contained in jump insn INSN. Accrue the
1495 modifications into the change group. Return nonzero for success. */
1496static int
1497invert_exp_1 (rtx x, rtx insn)
2ea64f10 1498{
0a634832 1499 RTX_CODE code = GET_CODE (x);
2ea64f10
RH
1500
1501 if (code == IF_THEN_ELSE)
1502 {
b3694847
SS
1503 rtx comp = XEXP (x, 0);
1504 rtx tem;
261efdef 1505 enum rtx_code reversed_code;
2ea64f10
RH
1506
1507 /* We can do this in two ways: The preferable way, which can only
1508 be done if this is not an integer comparison, is to reverse
1509 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1510 of the IF_THEN_ELSE. If we can't do either, fail. */
1511
261efdef
JH
1512 reversed_code = reversed_comparison_code (comp, insn);
1513
1514 if (reversed_code != UNKNOWN)
2ea64f10
RH
1515 {
1516 validate_change (insn, &XEXP (x, 0),
261efdef 1517 gen_rtx_fmt_ee (reversed_code,
2ea64f10
RH
1518 GET_MODE (comp), XEXP (comp, 0),
1519 XEXP (comp, 1)),
1520 1);
0a634832 1521 return 1;
2ea64f10 1522 }
48b881a3 1523
2ea64f10
RH
1524 tem = XEXP (x, 1);
1525 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1526 validate_change (insn, &XEXP (x, 2), tem, 1);
0a634832 1527 return 1;
2ea64f10 1528 }
742dff15 1529 else
2ea64f10 1530 return 0;
2ea64f10
RH
1531}
1532
1533/* Invert the condition of the jump JUMP, and make it jump to label
1534 NLABEL instead of where it jumps now. Accrue changes into the
1535 change group. Return false if we didn't see how to perform the
1536 inversion and redirection. */
1537
1538int
0c20a65f 1539invert_jump_1 (rtx jump, rtx nlabel)
2ea64f10 1540{
0a634832 1541 rtx x = pc_set (jump);
2ea64f10 1542 int ochanges;
41806d92 1543 int ok;
2ea64f10
RH
1544
1545 ochanges = num_validated_changes ();
1c384bf1
RH
1546 if (x == NULL)
1547 return 0;
41806d92
NS
1548 ok = invert_exp_1 (SET_SRC (x), jump);
1549 gcc_assert (ok);
b8698a0f 1550
2ea64f10
RH
1551 if (num_validated_changes () == ochanges)
1552 return 0;
1553
77fb4cc1
R
1554 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1555 in Pmode, so checking this is not merely an optimization. */
1556 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
2ea64f10
RH
1557}
1558
1559/* Invert the condition of the jump JUMP, and make it jump to label
1560 NLABEL instead of where it jumps now. Return true if successful. */
1561
1562int
0c20a65f 1563invert_jump (rtx jump, rtx nlabel, int delete_unused)
2ea64f10 1564{
0a634832 1565 rtx olabel = JUMP_LABEL (jump);
2ea64f10 1566
0a634832 1567 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
2ea64f10 1568 {
0a634832 1569 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
2ea64f10
RH
1570 return 1;
1571 }
0a634832 1572 cancel_changes (0);
2ea64f10
RH
1573 return 0;
1574}
1575
15a63be1
RK
1576\f
1577/* Like rtx_equal_p except that it considers two REGs as equal
4fe73cc1
RK
1578 if they renumber to the same value and considers two commutative
1579 operations to be the same if the order of the operands has been
8ddf681a 1580 reversed. */
15a63be1
RK
1581
1582int
3101faab 1583rtx_renumbered_equal_p (const_rtx x, const_rtx y)
15a63be1 1584{
b3694847 1585 int i;
4f588890 1586 const enum rtx_code code = GET_CODE (x);
b3694847 1587 const char *fmt;
48b881a3 1588
15a63be1
RK
1589 if (x == y)
1590 return 1;
4fe73cc1 1591
f8cfc6aa
JQ
1592 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1593 && (REG_P (y) || (GET_CODE (y) == SUBREG
1594 && REG_P (SUBREG_REG (y)))))
15a63be1 1595 {
4fe73cc1 1596 int reg_x = -1, reg_y = -1;
ddef6bc7 1597 int byte_x = 0, byte_y = 0;
c619e982 1598 struct subreg_info info;
15a63be1
RK
1599
1600 if (GET_MODE (x) != GET_MODE (y))
1601 return 0;
1602
1603 /* If we haven't done any renumbering, don't
1604 make any assumptions. */
1605 if (reg_renumber == 0)
1606 return rtx_equal_p (x, y);
1607
1608 if (code == SUBREG)
1609 {
4fe73cc1 1610 reg_x = REGNO (SUBREG_REG (x));
ddef6bc7 1611 byte_x = SUBREG_BYTE (x);
4fe73cc1
RK
1612
1613 if (reg_renumber[reg_x] >= 0)
1614 {
c619e982
L
1615 subreg_get_info (reg_renumber[reg_x],
1616 GET_MODE (SUBREG_REG (x)), byte_x,
1617 GET_MODE (x), &info);
1618 if (!info.representable_p)
e088f04b 1619 return 0;
c619e982 1620 reg_x = info.offset;
ddef6bc7 1621 byte_x = 0;
4fe73cc1 1622 }
15a63be1
RK
1623 }
1624 else
1625 {
4fe73cc1
RK
1626 reg_x = REGNO (x);
1627 if (reg_renumber[reg_x] >= 0)
1628 reg_x = reg_renumber[reg_x];
15a63be1 1629 }
4fe73cc1 1630
15a63be1
RK
1631 if (GET_CODE (y) == SUBREG)
1632 {
4fe73cc1 1633 reg_y = REGNO (SUBREG_REG (y));
ddef6bc7 1634 byte_y = SUBREG_BYTE (y);
4fe73cc1
RK
1635
1636 if (reg_renumber[reg_y] >= 0)
1637 {
c619e982
L
1638 subreg_get_info (reg_renumber[reg_y],
1639 GET_MODE (SUBREG_REG (y)), byte_y,
1640 GET_MODE (y), &info);
1641 if (!info.representable_p)
e088f04b 1642 return 0;
c619e982 1643 reg_y = info.offset;
ddef6bc7 1644 byte_y = 0;
4fe73cc1 1645 }
15a63be1
RK
1646 }
1647 else
1648 {
4fe73cc1
RK
1649 reg_y = REGNO (y);
1650 if (reg_renumber[reg_y] >= 0)
1651 reg_y = reg_renumber[reg_y];
15a63be1 1652 }
4fe73cc1 1653
ddef6bc7 1654 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
15a63be1 1655 }
4fe73cc1 1656
48b881a3 1657 /* Now we have disposed of all the cases
15a63be1
RK
1658 in which different rtx codes can match. */
1659 if (code != GET_CODE (y))
1660 return 0;
4fe73cc1 1661
15a63be1
RK
1662 switch (code)
1663 {
1664 case PC:
1665 case CC0:
1666 case ADDR_VEC:
1667 case ADDR_DIFF_VEC:
15a63be1 1668 case CONST_INT:
37cf6116 1669 case CONST_DOUBLE:
47c7b4d2 1670 return 0;
15a63be1
RK
1671
1672 case LABEL_REF:
705f26cf
RS
1673 /* We can't assume nonlocal labels have their following insns yet. */
1674 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1675 return XEXP (x, 0) == XEXP (y, 0);
4fe73cc1 1676
15a63be1
RK
1677 /* Two label-refs are equivalent if they point at labels
1678 in the same position in the instruction stream. */
1679 return (next_real_insn (XEXP (x, 0))
1680 == next_real_insn (XEXP (y, 0)));
1681
1682 case SYMBOL_REF:
1683 return XSTR (x, 0) == XSTR (y, 0);
e9a25f70 1684
bba596a3
RH
1685 case CODE_LABEL:
1686 /* If we didn't match EQ equality above, they aren't the same. */
1687 return 0;
1688
e9a25f70
JL
1689 default:
1690 break;
15a63be1
RK
1691 }
1692
1693 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1694
1695 if (GET_MODE (x) != GET_MODE (y))
1696 return 0;
1697
09e881c9
BE
1698 /* MEMs refering to different address space are not equivalent. */
1699 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1700 return 0;
1701
4fe73cc1 1702 /* For commutative operations, the RTX match if the operand match in any
8ddf681a
R
1703 order. Also handle the simple binary and unary cases without a loop. */
1704 if (targetm.commutative_p (x, UNKNOWN))
4fe73cc1
RK
1705 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1706 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1707 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1708 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
ec8e098d 1709 else if (NON_COMMUTATIVE_P (x))
4fe73cc1
RK
1710 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1711 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
ec8e098d 1712 else if (UNARY_P (x))
4fe73cc1
RK
1713 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1714
15a63be1
RK
1715 /* Compare the elements. If any pair of corresponding elements
1716 fail to match, return 0 for the whole things. */
1717
1718 fmt = GET_RTX_FORMAT (code);
1719 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1720 {
b3694847 1721 int j;
15a63be1
RK
1722 switch (fmt[i])
1723 {
5f4f0e22
CH
1724 case 'w':
1725 if (XWINT (x, i) != XWINT (y, i))
1726 return 0;
1727 break;
1728
15a63be1
RK
1729 case 'i':
1730 if (XINT (x, i) != XINT (y, i))
1731 return 0;
1732 break;
1733
46fac664
JH
1734 case 't':
1735 if (XTREE (x, i) != XTREE (y, i))
1736 return 0;
1737 break;
1738
15a63be1
RK
1739 case 's':
1740 if (strcmp (XSTR (x, i), XSTR (y, i)))
1741 return 0;
1742 break;
1743
1744 case 'e':
1745 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1746 return 0;
1747 break;
1748
1749 case 'u':
1750 if (XEXP (x, i) != XEXP (y, i))
1751 return 0;
938d968e 1752 /* Fall through. */
15a63be1
RK
1753 case '0':
1754 break;
1755
1756 case 'E':
1757 if (XVECLEN (x, i) != XVECLEN (y, i))
1758 return 0;
1759 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1760 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1761 return 0;
1762 break;
1763
1764 default:
41806d92 1765 gcc_unreachable ();
15a63be1
RK
1766 }
1767 }
1768 return 1;
1769}
1770\f
1771/* If X is a hard register or equivalent to one or a subregister of one,
1772 return the hard register number. If X is a pseudo register that was not
1773 assigned a hard register, return the pseudo register number. Otherwise,
1774 return -1. Any rtx is valid for X. */
1775
1776int
4f588890 1777true_regnum (const_rtx x)
15a63be1 1778{
f8cfc6aa 1779 if (REG_P (x))
15a63be1
RK
1780 {
1781 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1782 return reg_renumber[REGNO (x)];
1783 return REGNO (x);
1784 }
1785 if (GET_CODE (x) == SUBREG)
1786 {
1787 int base = true_regnum (SUBREG_REG (x));
14502dad 1788 if (base >= 0
c619e982
L
1789 && base < FIRST_PSEUDO_REGISTER)
1790 {
1791 struct subreg_info info;
1792
1793 subreg_get_info (REGNO (SUBREG_REG (x)),
1794 GET_MODE (SUBREG_REG (x)),
1795 SUBREG_BYTE (x), GET_MODE (x), &info);
1796
1797 if (info.representable_p)
1798 return base + info.offset;
1799 }
15a63be1
RK
1800 }
1801 return -1;
1802}
344b78b8
JH
1803
1804/* Return regno of the register REG and handle subregs too. */
1805unsigned int
4f588890 1806reg_or_subregno (const_rtx reg)
344b78b8 1807{
344b78b8 1808 if (GET_CODE (reg) == SUBREG)
41806d92
NS
1809 reg = SUBREG_REG (reg);
1810 gcc_assert (REG_P (reg));
1811 return REGNO (reg);
344b78b8 1812}
This page took 4.31246 seconds and 5 git commands to generate.