]> gcc.gnu.org Git - gcc.git/blame - gcc/jump.c
*** empty log message ***
[gcc.git] / gcc / jump.c
CommitLineData
15a63be1
RK
1/* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This is the jump-optimization pass of the compiler.
22 It is run two or three times: once before cse, sometimes once after cse,
23 and once after reload (before final).
24
25 jump_optimize deletes unreachable code and labels that are not used.
26 It also deletes jumps that jump to the following insn,
27 and simplifies jumps around unconditional jumps and jumps
28 to unconditional jumps.
29
30 Each CODE_LABEL has a count of the times it is used
31 stored in the LABEL_NUSES internal field, and each JUMP_INSN
32 has one label that it refers to stored in the
33 JUMP_LABEL internal field. With this we can detect labels that
34 become unused because of the deletion of all the jumps that
35 formerly used them. The JUMP_LABEL info is sometimes looked
36 at by later passes.
37
38 Optionally, cross-jumping can be done. Currently it is done
39 only the last time (when after reload and before final).
40 In fact, the code for cross-jumping now assumes that register
41 allocation has been done, since it uses `rtx_renumbered_equal_p'.
42
43 Jump optimization is done after cse when cse's constant-propagation
44 causes jumps to become unconditional or to be deleted.
45
46 Unreachable loops are not detected here, because the labels
47 have references and the insns appear reachable from the labels.
48 find_basic_blocks in flow.c finds and deletes such loops.
49
50 The subroutines delete_insn, redirect_jump, and invert_jump are used
51 from other passes as well. */
52
53#include "config.h"
54#include "rtl.h"
55#include "flags.h"
56#include "hard-reg-set.h"
57#include "regs.h"
58#include "expr.h"
59#include "insn-config.h"
60#include "insn-flags.h"
61#include "real.h"
62
63/* ??? Eventually must record somehow the labels used by jumps
64 from nested functions. */
65/* Pre-record the next or previous real insn for each label?
66 No, this pass is very fast anyway. */
67/* Condense consecutive labels?
68 This would make life analysis faster, maybe. */
69/* Optimize jump y; x: ... y: jumpif... x?
70 Don't know if it is worth bothering with. */
71/* Optimize two cases of conditional jump to conditional jump?
72 This can never delete any instruction or make anything dead,
73 or even change what is live at any point.
74 So perhaps let combiner do it. */
75
76/* Vector indexed by uid.
77 For each CODE_LABEL, index by its uid to get first unconditional jump
78 that jumps to the label.
79 For each JUMP_INSN, index by its uid to get the next unconditional jump
80 that jumps to the same label.
81 Element 0 is the start of a chain of all return insns.
82 (It is safe to use element 0 because insn uid 0 is not used. */
83
84static rtx *jump_chain;
85
86/* List of labels referred to from initializers.
87 These can never be deleted. */
88rtx forced_labels;
89
90/* Maximum index in jump_chain. */
91
92static int max_jump_chain;
93
94/* Set nonzero by jump_optimize if control can fall through
95 to the end of the function. */
96int can_reach_end;
97
98/* Indicates whether death notes are significant in cross jump analysis.
99 Normally they are not significant, because of A and B jump to C,
100 and R dies in A, it must die in B. But this might not be true after
101 stack register conversion, and we must compare death notes in that
102 case. */
103
104static int cross_jump_death_matters = 0;
105
106static int duplicate_loop_exit_test ();
107rtx delete_insn ();
108int redirect_jump ();
109static int redirect_exp ();
110void redirect_tablejump ();
111static int delete_labelref_insn ();
112int invert_jump ();
113static int invert_exp ();
114int condjump_p ();
115int simplejump_p ();
116
117extern rtx gen_jump ();
118
15a63be1
RK
119static void mark_jump_label ();
120void delete_jump ();
121static void delete_from_jump_chain ();
122static int tension_vector_labels ();
123static void find_cross_jump ();
124static void do_cross_jump ();
125static int jump_back_p ();
126\f
127/* Delete no-op jumps and optimize jumps to jumps
128 and jumps around jumps.
129 Delete unused labels and unreachable code.
130
131 If CROSS_JUMP is 1, detect matching code
132 before a jump and its destination and unify them.
133 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
134
135 If NOOP_MOVES is nonzero, delete no-op move insns.
136
137 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
138 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
139
140 If `optimize' is zero, don't change any code,
141 just determine whether control drops off the end of the function.
142 This case occurs when we have -W and not -O.
143 It works because `delete_insn' checks the value of `optimize'
144 and refrains from actually deleting when that is 0. */
145
146void
147jump_optimize (f, cross_jump, noop_moves, after_regscan)
148 rtx f;
149 int cross_jump;
150 int noop_moves;
151 int after_regscan;
152{
153 register rtx insn;
154 int changed;
155 int first = 1;
156 int max_uid = 0;
157 rtx last_insn;
158
159 cross_jump_death_matters = (cross_jump == 2);
160
161 /* Initialize LABEL_NUSES and JUMP_LABEL fields. */
162
163 for (insn = f; insn; insn = NEXT_INSN (insn))
164 {
165 if (GET_CODE (insn) == CODE_LABEL)
166 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
167 else if (GET_CODE (insn) == JUMP_INSN)
168 JUMP_LABEL (insn) = 0;
169 if (INSN_UID (insn) > max_uid)
170 max_uid = INSN_UID (insn);
171 }
172
173 max_uid++;
174
175 /* Delete insns following barriers, up to next label. */
176
177 for (insn = f; insn;)
178 {
179 if (GET_CODE (insn) == BARRIER)
180 {
181 insn = NEXT_INSN (insn);
182 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
183 {
184 if (GET_CODE (insn) == NOTE
185 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
186 insn = NEXT_INSN (insn);
187 else
188 insn = delete_insn (insn);
189 }
190 /* INSN is now the code_label. */
191 }
192 else
193 insn = NEXT_INSN (insn);
194 }
195
196 /* Leave some extra room for labels and duplicate exit test insns
197 we make. */
198 max_jump_chain = max_uid * 14 / 10;
199 jump_chain = (rtx *) alloca (max_jump_chain * sizeof (rtx));
200 bzero (jump_chain, max_jump_chain * sizeof (rtx));
201
202 /* Mark the label each jump jumps to.
203 Combine consecutive labels, and count uses of labels.
204
205 For each label, make a chain (using `jump_chain')
206 of all the *unconditional* jumps that jump to it;
207 also make a chain of all returns. */
208
209 for (insn = f; insn; insn = NEXT_INSN (insn))
210 if ((GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN
211 || GET_CODE (insn) == CALL_INSN)
212 && ! INSN_DELETED_P (insn))
213 {
214 mark_jump_label (PATTERN (insn), insn, cross_jump);
215 if (GET_CODE (insn) == JUMP_INSN)
216 {
217 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
218 {
219 jump_chain[INSN_UID (insn)]
220 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
221 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
222 }
223 if (GET_CODE (PATTERN (insn)) == RETURN)
224 {
225 jump_chain[INSN_UID (insn)] = jump_chain[0];
226 jump_chain[0] = insn;
227 }
228 }
229 }
230
231 /* Keep track of labels used from static data;
232 they cannot ever be deleted. */
233
234 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
235 LABEL_NUSES (XEXP (insn, 0))++;
236
237 /* Delete all labels already not referenced.
238 Also find the last insn. */
239
240 last_insn = 0;
241 for (insn = f; insn; )
242 {
243 if (GET_CODE (insn) == CODE_LABEL && LABEL_NUSES (insn) == 0)
244 insn = delete_insn (insn);
245 else
246 {
247 last_insn = insn;
248 insn = NEXT_INSN (insn);
249 }
250 }
251
252 if (!optimize)
253 {
254 /* See if there is still a NOTE_INSN_FUNCTION_END in this function.
255 If so record that this function can drop off the end. */
256
257 insn = last_insn;
258 {
259 int n_labels = 1;
260 while (insn
261 /* One label can follow the end-note: the return label. */
262 && ((GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
263 /* Ordinary insns can follow it if returning a structure. */
264 || GET_CODE (insn) == INSN
265 /* If machine uses explicit RETURN insns, no epilogue,
266 then one of them follows the note. */
267 || (GET_CODE (insn) == JUMP_INSN
268 && GET_CODE (PATTERN (insn)) == RETURN)
269 /* Other kinds of notes can follow also. */
270 || (GET_CODE (insn) == NOTE
271 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)))
272 insn = PREV_INSN (insn);
273 }
274
275 /* Report if control can fall through at the end of the function. */
276 if (insn && GET_CODE (insn) == NOTE
277 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END
278 && ! INSN_DELETED_P (insn))
279 can_reach_end = 1;
280
281 /* Zero the "deleted" flag of all the "deleted" insns. */
282 for (insn = f; insn; insn = NEXT_INSN (insn))
283 INSN_DELETED_P (insn) = 0;
284 return;
285 }
286
287#ifdef HAVE_return
288 if (HAVE_return)
289 {
290 /* If we fall through to the epilogue, see if we can insert a RETURN insn
291 in front of it. If the machine allows it at this point (we might be
292 after reload for a leaf routine), it will improve optimization for it
293 to be there. */
294 insn = get_last_insn ();
295 while (insn && GET_CODE (insn) == NOTE)
296 insn = PREV_INSN (insn);
297
298 if (insn && GET_CODE (insn) != BARRIER)
299 {
300 emit_jump_insn (gen_return ());
301 emit_barrier ();
302 }
303 }
304#endif
305
306 if (noop_moves)
307 for (insn = f; insn; )
308 {
309 register rtx next = NEXT_INSN (insn);
310
311 if (GET_CODE (insn) == INSN)
312 {
313 register rtx body = PATTERN (insn);
314
315/* Combine stack_adjusts with following push_insns. */
316#ifdef PUSH_ROUNDING
317 if (GET_CODE (body) == SET
318 && SET_DEST (body) == stack_pointer_rtx
319 && GET_CODE (SET_SRC (body)) == PLUS
320 && XEXP (SET_SRC (body), 0) == stack_pointer_rtx
321 && GET_CODE (XEXP (SET_SRC (body), 1)) == CONST_INT
322 && INTVAL (XEXP (SET_SRC (body), 1)) > 0)
323 {
324 rtx p;
325 rtx stack_adjust_insn = insn;
326 int stack_adjust_amount = INTVAL (XEXP (SET_SRC (body), 1));
327 int total_pushed = 0;
328 int pushes = 0;
329
330 /* Find all successive push insns. */
331 p = insn;
332 /* Don't convert more than three pushes;
333 that starts adding too many displaced addresses
334 and the whole thing starts becoming a losing
335 proposition. */
336 while (pushes < 3)
337 {
338 rtx pbody, dest;
339 p = next_nonnote_insn (p);
340 if (p == 0 || GET_CODE (p) != INSN)
341 break;
342 pbody = PATTERN (p);
343 if (GET_CODE (pbody) != SET)
344 break;
345 dest = SET_DEST (pbody);
346 /* Allow a no-op move between the adjust and the push. */
347 if (GET_CODE (dest) == REG
348 && GET_CODE (SET_SRC (pbody)) == REG
349 && REGNO (dest) == REGNO (SET_SRC (pbody)))
350 continue;
351 if (! (GET_CODE (dest) == MEM
352 && GET_CODE (XEXP (dest, 0)) == POST_INC
353 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
354 break;
355 pushes++;
356 if (total_pushed + GET_MODE_SIZE (SET_DEST (pbody))
357 > stack_adjust_amount)
358 break;
359 total_pushed += GET_MODE_SIZE (SET_DEST (pbody));
360 }
361
362 /* Discard the amount pushed from the stack adjust;
363 maybe eliminate it entirely. */
364 if (total_pushed >= stack_adjust_amount)
365 {
366 delete_insn (stack_adjust_insn);
367 total_pushed = stack_adjust_amount;
368 }
369 else
370 XEXP (SET_SRC (PATTERN (stack_adjust_insn)), 1)
371 = gen_rtx (CONST_INT, VOIDmode,
372 stack_adjust_amount - total_pushed);
373
374 /* Change the appropriate push insns to ordinary stores. */
375 p = insn;
376 while (total_pushed > 0)
377 {
378 rtx pbody, dest;
379 p = next_nonnote_insn (p);
380 if (GET_CODE (p) != INSN)
381 break;
382 pbody = PATTERN (p);
383 if (GET_CODE (pbody) == SET)
384 break;
385 dest = SET_DEST (pbody);
386 if (! (GET_CODE (dest) == MEM
387 && GET_CODE (XEXP (dest, 0)) == POST_INC
388 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
389 break;
390 total_pushed -= GET_MODE_SIZE (SET_DEST (pbody));
391 /* If this push doesn't fully fit in the space
392 of the stack adjust that we deleted,
393 make another stack adjust here for what we
394 didn't use up. There should be peepholes
395 to recognize the resulting sequence of insns. */
396 if (total_pushed < 0)
397 {
398 emit_insn_before (gen_add2_insn (stack_pointer_rtx,
399 gen_rtx (CONST_INT, VOIDmode, - total_pushed)),
400 p);
401 break;
402 }
403 XEXP (dest, 0)
404 = plus_constant (stack_pointer_rtx, total_pushed);
405 }
406 }
407#endif
408
409 /* Detect and delete no-op move instructions
410 resulting from not allocating a parameter in a register. */
411
412 if (GET_CODE (body) == SET
413 && (SET_DEST (body) == SET_SRC (body)
414 || (GET_CODE (SET_DEST (body)) == MEM
415 && GET_CODE (SET_SRC (body)) == MEM
416 && rtx_equal_p (SET_SRC (body), SET_DEST (body))))
417 && ! (GET_CODE (SET_DEST (body)) == MEM
418 && MEM_VOLATILE_P (SET_DEST (body)))
419 && ! (GET_CODE (SET_SRC (body)) == MEM
420 && MEM_VOLATILE_P (SET_SRC (body))))
421 delete_insn (insn);
422
423 /* Detect and ignore no-op move instructions
424 resulting from smart or fortuitous register allocation. */
425
426 else if (GET_CODE (body) == SET)
427 {
428 int sreg = true_regnum (SET_SRC (body));
429 int dreg = true_regnum (SET_DEST (body));
430
431 if (sreg == dreg && sreg >= 0)
432 delete_insn (insn);
433 else if (sreg >= 0 && dreg >= 0)
434 {
435 rtx trial;
436 rtx tem = find_equiv_reg (0, insn, 0,
437 sreg, 0, dreg,
438 GET_MODE (SET_SRC (body)));
439
440#ifdef PRESERVE_DEATH_INFO_REGNO_P
441 /* Deleting insn could lose a death-note for SREG or DREG
442 so don't do it if final needs accurate death-notes. */
443 if (! PRESERVE_DEATH_INFO_REGNO_P (sreg)
444 && ! PRESERVE_DEATH_INFO_REGNO_P (dreg))
445#endif
446 {
447 /* DREG may have been the target of a REG_DEAD note in
448 the insn which makes INSN redundant. If so, reorg
449 would still think it is dead. So search for such a
450 note and delete it if we find it. */
451 for (trial = prev_nonnote_insn (insn);
452 trial && GET_CODE (trial) != CODE_LABEL;
453 trial = prev_nonnote_insn (trial))
454 if (find_regno_note (trial, REG_DEAD, dreg))
455 {
456 remove_death (dreg, trial);
457 break;
458 }
459
460 if (tem != 0
461 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
462 delete_insn (insn);
463 }
464 }
465 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
466 && find_equiv_reg (SET_SRC (body), insn, 0, dreg, 0,
467 0, GET_MODE (SET_DEST (body))))
468 {
469 /* This handles the case where we have two consecutive
470 assignments of the same constant to pseudos that didn't
471 get a hard reg. Each SET from the constant will be
472 converted into a SET of the spill register and an
473 output reload will be made following it. This produces
474 two loads of the same constant into the same spill
475 register. */
476
477 rtx in_insn = insn;
478
479 /* Look back for a death note for the first reg.
480 If there is one, it is no longer accurate. */
481 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
482 {
483 if ((GET_CODE (in_insn) == INSN
484 || GET_CODE (in_insn) == JUMP_INSN)
485 && find_regno_note (in_insn, REG_DEAD, dreg))
486 {
487 remove_death (dreg, in_insn);
488 break;
489 }
490 in_insn = PREV_INSN (in_insn);
491 }
492
493 /* Delete the second load of the value. */
494 delete_insn (insn);
495 }
496 }
497 else if (GET_CODE (body) == PARALLEL)
498 {
499 /* If each part is a set between two identical registers or
500 a USE or CLOBBER, delete the insn. */
501 int i, sreg, dreg;
502 rtx tem;
503
504 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
505 {
506 tem = XVECEXP (body, 0, i);
507 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
508 continue;
509
510 if (GET_CODE (tem) != SET
511 || (sreg = true_regnum (SET_SRC (tem))) < 0
512 || (dreg = true_regnum (SET_DEST (tem))) < 0
513 || dreg != sreg)
514 break;
515 }
516
517 if (i < 0)
518 delete_insn (insn);
519 }
520#if !BYTES_BIG_ENDIAN /* Not worth the hair to detect this
521 in the big-endian case. */
522 /* Also delete insns to store bit fields if they are no-ops. */
523 else if (GET_CODE (body) == SET
524 && GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
525 && XEXP (SET_DEST (body), 2) == const0_rtx
526 && XEXP (SET_DEST (body), 0) == SET_SRC (body)
527 && ! (GET_CODE (SET_SRC (body)) == MEM
528 && MEM_VOLATILE_P (SET_SRC (body))))
529 delete_insn (insn);
530#endif /* not BYTES_BIG_ENDIAN */
531 }
532 insn = next;
533 }
534
535 /* Now iterate optimizing jumps until nothing changes over one pass. */
536 changed = 1;
537 while (changed)
538 {
539 register rtx next;
540 changed = 0;
541
542 for (insn = f; insn; insn = next)
543 {
544 rtx reallabelprev;
545 rtx temp, temp1, temp2, temp3, temp4, temp5;
546 rtx nlabel;
547 int this_is_simplejump, this_is_condjump;
548#if 0
549 /* If NOT the first iteration, if this is the last jump pass
550 (just before final), do the special peephole optimizations.
551 Avoiding the first iteration gives ordinary jump opts
552 a chance to work before peephole opts. */
553
554 if (reload_completed && !first && !flag_no_peephole)
555 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
556 peephole (insn);
557#endif
558
559 /* That could have deleted some insns after INSN, so check now
560 what the following insn is. */
561
562 next = NEXT_INSN (insn);
563
564 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
565 jump. Try to optimize by duplicating the loop exit test if so.
566 This is only safe immediately after regscan, because it uses
567 the values of regno_first_uid and regno_last_uid. */
568 if (after_regscan && GET_CODE (insn) == NOTE
569 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
570 && (temp1 = next_nonnote_insn (insn)) != 0
571 && simplejump_p (temp1))
572 {
573 temp = PREV_INSN (insn);
574 if (duplicate_loop_exit_test (insn))
575 {
576 changed = 1;
577 next = NEXT_INSN (temp);
578 continue;
579 }
580 }
581
582 if (GET_CODE (insn) != JUMP_INSN)
583 continue;
584
585 this_is_simplejump = simplejump_p (insn);
586 this_is_condjump = condjump_p (insn);
587
588 /* Tension the labels in dispatch tables. */
589
590 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
591 changed |= tension_vector_labels (PATTERN (insn), 0);
592 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
593 changed |= tension_vector_labels (PATTERN (insn), 1);
594
595 /* If a dispatch table always goes to the same place,
596 get rid of it and replace the insn that uses it. */
597
598 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
599 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
600 {
601 int i;
602 rtx pat = PATTERN (insn);
603 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
604 int len = XVECLEN (pat, diff_vec_p);
605 rtx dispatch = prev_real_insn (insn);
606
607 for (i = 0; i < len; i++)
608 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
609 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
610 break;
611 if (i == len
612 && GET_CODE (dispatch) == JUMP_INSN
613 && JUMP_LABEL (dispatch) != 0
614 /* Don't mess with a casesi insn. */
615 && !(GET_CODE (PATTERN (dispatch)) == SET
616 && (GET_CODE (SET_SRC (PATTERN (dispatch)))
617 == IF_THEN_ELSE))
618 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
619 {
620 redirect_tablejump (dispatch,
621 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
622 changed = 1;
623 }
624 }
625
626 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
627
628 /* If a jump references the end of the function, try to turn
629 it into a RETURN insn, possibly a conditional one. */
630 if (JUMP_LABEL (insn)
631 && next_active_insn (JUMP_LABEL (insn)) == 0)
632 changed |= redirect_jump (insn, 0);
633
634 /* Detect jump to following insn. */
635 if (reallabelprev == insn && condjump_p (insn))
636 {
637 delete_jump (insn);
638 changed = 1;
639 continue;
640 }
641
d45cf215 642 /* If we have an unconditional jump preceded by a USE, try to put
15a63be1
RK
643 the USE before the target and jump there. This simplifies many
644 of the optimizations below since we don't have to worry about
645 dealing with these USE insns. We only do this if the label
646 being branch to already has the identical USE or if code
647 never falls through to that label. */
648
649 if (this_is_simplejump
650 && (temp = prev_nonnote_insn (insn)) != 0
651 && GET_CODE (temp) == INSN && GET_CODE (PATTERN (temp)) == USE
652 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
653 && (GET_CODE (temp1) == BARRIER
654 || (GET_CODE (temp1) == INSN
655 && rtx_equal_p (PATTERN (temp), PATTERN (temp1)))))
656 {
657 if (GET_CODE (temp1) == BARRIER)
658 {
659 reorder_insns (temp, temp, temp1);
660 temp1 = NEXT_INSN (temp1);
661 }
662 else
663 delete_insn (temp);
664
665 redirect_jump (insn, get_label_before (temp1));
666 reallabelprev = prev_real_insn (temp1);
667 changed = 1;
668 }
669
670 /* Simplify if (...) x = a; else x = b; by converting it
671 to x = b; if (...) x = a;
672 if B is sufficiently simple, the test doesn't involve X,
673 and nothing in the test modifies B or X.
674
675 If we have small register classes, we also can't do this if X
676 is a hard register.
677
678 If the "x = b;" insn has any REG_NOTES, we don't do this because
679 of the possibility that we are running after CSE and there is a
680 REG_EQUAL note that is only valid if the branch has already been
681 taken. If we move the insn with the REG_EQUAL note, we may
682 fold the comparison to always be false in a later CSE pass.
683 (We could also delete the REG_NOTES when moving the insn, but it
684 seems simpler to not move it.) An exception is that we can move
685 the insn if the only note is a REG_EQUAL or REG_EQUIV whose
686 value is the same as "b".
687
688 INSN is the branch over the `else' part.
689
690 We set:
691
d45cf215 692 TEMP to the jump insn preceding "x = a;"
15a63be1
RK
693 TEMP1 to X
694 TEMP2 to the insn that sets "x = b;"
695 TEMP3 to the insn that sets "x = a;" */
696
697 if (this_is_simplejump
698 && (temp3 = prev_active_insn (insn)) != 0
699 && GET_CODE (temp3) == INSN
700 && GET_CODE (PATTERN (temp3)) == SET
701 && GET_CODE (temp1 = SET_DEST (PATTERN (temp3))) == REG
702#ifdef SMALL_REGISTER_CLASSES
703 && REGNO (temp1) >= FIRST_PSEUDO_REGISTER
704#endif
705 && (temp2 = next_active_insn (insn)) != 0
706 && GET_CODE (temp2) == INSN
707 && GET_CODE (PATTERN (temp2)) == SET
708 && rtx_equal_p (SET_DEST (PATTERN (temp2)), temp1)
709 && (GET_CODE (SET_SRC (PATTERN (temp2))) == REG
710 || CONSTANT_P (SET_SRC (PATTERN (temp2))))
711 && (REG_NOTES (temp2) == 0
712 || ((REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUAL
713 || REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUIV)
714 && XEXP (REG_NOTES (temp2), 1) == 0
715 && rtx_equal_p (XEXP (REG_NOTES (temp2), 0),
716 SET_SRC (PATTERN (temp2)))))
717 && (temp = prev_active_insn (temp3)) != 0
718 && condjump_p (temp) && ! simplejump_p (temp)
719 /* TEMP must skip over the "x = a;" insn */
720 && prev_real_insn (JUMP_LABEL (temp)) == insn
721 && no_labels_between_p (insn, JUMP_LABEL (temp))
722 /* There must be no other entries to the "x = b;" insn. */
723 && no_labels_between_p (JUMP_LABEL (temp), temp2)
724 /* INSN must either branch to the insn after TEMP2 or the insn
725 after TEMP2 must branch to the same place as INSN. */
726 && (reallabelprev == temp2
727 || ((temp4 = next_active_insn (temp2)) != 0
728 && simplejump_p (temp4)
729 && JUMP_LABEL (temp4) == JUMP_LABEL (insn))))
730 {
731 /* The test expression, X, may be a complicated test with
732 multiple branches. See if we can find all the uses of
733 the label that TEMP branches to without hitting a CALL_INSN
734 or a jump to somewhere else. */
735 rtx target = JUMP_LABEL (temp);
736 int nuses = LABEL_NUSES (target);
737 rtx p, q;
738
739 /* Set P to the first jump insn that goes around "x = a;". */
740 for (p = temp; nuses && p; p = prev_nonnote_insn (p))
741 {
742 if (GET_CODE (p) == JUMP_INSN)
743 {
744 if (condjump_p (p) && ! simplejump_p (p)
745 && JUMP_LABEL (p) == target)
746 {
747 nuses--;
748 if (nuses == 0)
749 break;
750 }
751 else
752 break;
753 }
754 else if (GET_CODE (p) == CALL_INSN)
755 break;
756 }
757
758#ifdef HAVE_cc0
759 /* We cannot insert anything between a set of cc and its use
760 so if P uses cc0, we must back up to the previous insn. */
761 q = prev_nonnote_insn (p);
762 if (q && GET_RTX_CLASS (GET_CODE (q)) == 'i'
763 && sets_cc0_p (PATTERN (q)))
764 p = q;
765#endif
766
767 if (p)
768 p = PREV_INSN (p);
769
770 /* If we found all the uses and there was no data conflict, we
771 can move the assignment unless we can branch into the middle
772 from somewhere. */
773 if (nuses == 0 && p
774 && no_labels_between_p (p, insn)
775 && ! reg_referenced_between_p (temp1, p, NEXT_INSN (temp3))
776 && ! reg_set_between_p (temp1, p, temp3)
777 && (GET_CODE (SET_SRC (PATTERN (temp2))) == CONST_INT
778 || ! reg_set_between_p (SET_SRC (PATTERN (temp2)),
779 p, temp2)))
780 {
781 reorder_insns_with_line_notes (temp2, temp2, p);
782
783 /* Set NEXT to an insn that we know won't go away. */
784 next = next_active_insn (insn);
785
786 /* Delete the jump around the set. Note that we must do
787 this before we redirect the test jumps so that it won't
788 delete the code immediately following the assignment
789 we moved (which might be a jump). */
790
791 delete_insn (insn);
792
793 /* We either have two consecutive labels or a jump to
794 a jump, so adjust all the JUMP_INSNs to branch to where
795 INSN branches to. */
796 for (p = NEXT_INSN (p); p != next; p = NEXT_INSN (p))
797 if (GET_CODE (p) == JUMP_INSN)
798 redirect_jump (p, target);
799
800 changed = 1;
801 continue;
802 }
803 }
804
805 /* If we have x = a; if (...) x = b;
806 and either A or B is zero, or if we have if (...) x = 0;
807 and jumps are expensive, try to use a store-flag insn to
808 avoid the jump. (If the jump would be faster, the machine
809 should not have defined the scc insns!). These cases are often
810 made by the previous optimization.
811
812 INSN here is the jump around the store. We set:
813
814 TEMP to the "x = b;" insn.
815 TEMP1 to X.
816 TEMP2 to B (const0_rtx in the second case).
817 TEMP3 to A (X in the second case).
818 TEMP4 to the condition being tested.
819 TEMP5 to the earliest insn used to find the condition. */
820
821 if (/* We can't do this after reload has completed. */
822 ! reload_completed
823 && this_is_condjump && ! this_is_simplejump
824 /* Set TEMP to the "x = b;" insn. */
825 && (temp = next_nonnote_insn (insn)) != 0
826 && GET_CODE (temp) == INSN
827 && GET_CODE (PATTERN (temp)) == SET
828 && GET_CODE (temp1 = SET_DEST (PATTERN (temp))) == REG
829#ifdef SMALL_REGISTER_CLASSES
830 && REGNO (temp1) >= FIRST_PSEUDO_REGISTER
831#endif
832 && GET_MODE_CLASS (GET_MODE (temp1)) == MODE_INT
833 && (GET_CODE (temp2 = SET_SRC (PATTERN (temp))) == REG
834 || GET_CODE (temp2) == CONST_INT)
835 /* Allow either form, but prefer the former if both apply. */
836 && (((temp3 = reg_set_last (temp1, insn)) != 0
837 && ((GET_CODE (temp3) == REG
838#ifdef SMALL_REGISTER_CLASSES
839 && REGNO (temp3) >= FIRST_PSEUDO_REGISTER
840#endif
841 )
842 || GET_CODE (temp3) == CONST_INT))
843 /* Make the latter case look like x = x; if (...) x = 0; */
844 || ((temp3 = temp1, BRANCH_COST > 1)
845 && temp2 == const0_rtx))
846 /* INSN must either branch to the insn after TEMP or the insn
847 after TEMP must branch to the same place as INSN. */
848 && (reallabelprev == temp
849 || ((temp4 = next_active_insn (temp)) != 0
850 && simplejump_p (temp4)
851 && JUMP_LABEL (temp4) == JUMP_LABEL (insn)))
852 && (temp4 = get_condition (insn, &temp5)) != 0
853
854 /* If B is zero, OK; if A is zero, can only do this if we
855 can reverse the condition. */
856 && (temp2 == const0_rtx
857 || (temp3 == const0_rtx
858 && (can_reverse_comparison_p (temp4, insn)))))
859 {
860 enum rtx_code code = GET_CODE (temp4);
861 rtx yes = temp3, var = temp1;
862 int normalizep;
863 rtx target;
864
865 /* If necessary, reverse the condition. */
866 if (temp3 == const0_rtx)
867 code = reverse_condition (code), yes = temp2;
868
869 /* See if we can do this with a store-flag insn. */
870 start_sequence ();
871
872 /* If YES is the constant 1, it is best to just compute
873 the result directly. If YES is constant and STORE_FLAG_VALUE
874 includes all of its bits, it is best to compute the flag
875 value unnormalized and `and' it with YES. Otherwise,
876 normalize to -1 and `and' with YES. */
877 normalizep = (yes == const1_rtx ? 1
878 : (GET_CODE (yes) == CONST_INT
879 && (INTVAL (yes) & ~ STORE_FLAG_VALUE) == 0) ? 0
880 : -1);
881
882 /* We will be putting the store-flag insn immediately in
883 front of the comparison that was originally being done,
884 so we know all the variables in TEMP4 will be valid.
885 However, this might be in front of the assignment of
886 A to VAR. If it is, it would clobber the store-flag
887 we will be emitting.
888
889 Therefore, emit into a temporary which will be copied to
890 VAR immediately after TEMP. */
891
892 target = emit_store_flag (gen_reg_rtx (GET_MODE (var)), code,
893 XEXP (temp4, 0), XEXP (temp4, 1),
894 VOIDmode,
895 (code == LTU || code == LEU
896 || code == GEU || code == GTU),
897 normalizep);
898 if (target)
899 {
900 rtx seq;
901
902 if (normalizep != 1)
903 target = expand_and (yes, target,
904 (GET_CODE (target) == REG
905 ? target : 0));
906 seq = gen_sequence ();
907 end_sequence ();
908 emit_insn_before (seq, temp5);
909 emit_insn_after (gen_move_insn (var, target), insn);
910 delete_insn (temp);
911 next = NEXT_INSN (insn);
912#ifdef HAVE_cc0
913 delete_insn (prev_nonnote_insn (insn));
914#endif
915 delete_insn (insn);
916 changed = 1;
917 continue;
918 }
919 else
920 end_sequence ();
921 }
922
923 /* If branches are expensive, convert
924 if (foo) bar++; to bar += (foo != 0);
925 and similarly for "bar--;"
926
927 INSN is the conditional branch around the arithmetic. We set:
928
929 TEMP is the arithmetic insn.
6dc42e49 930 TEMP1 is the SET doing the arithmetic.
15a63be1
RK
931 TEMP2 is the operand being incremented or decremented.
932 TEMP3 to the condition being tested.
933 TEMP4 to the earliest insn used to find the condition. */
934
935 if (BRANCH_COST >= 2
936 && ! reload_completed
937 && this_is_condjump && ! this_is_simplejump
938 && (temp = next_nonnote_insn (insn)) != 0
939 && (temp1 = single_set (temp)) != 0
940 && (temp2 = SET_DEST (temp1),
941 GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT)
942 && GET_CODE (SET_SRC (temp1)) == PLUS
943 && (XEXP (SET_SRC (temp1), 1) == const1_rtx
944 || XEXP (SET_SRC (temp1), 1) == constm1_rtx)
945 && rtx_equal_p (temp2, XEXP (SET_SRC (temp1), 0))
946 /* INSN must either branch to the insn after TEMP or the insn
947 after TEMP must branch to the same place as INSN. */
948 && (reallabelprev == temp
949 || ((temp3 = next_active_insn (temp)) != 0
950 && simplejump_p (temp3)
951 && JUMP_LABEL (temp3) == JUMP_LABEL (insn)))
952 && (temp3 = get_condition (insn, &temp4)) != 0
953 && can_reverse_comparison_p (temp3, insn))
954 {
626d0d1d 955 rtx temp6, target = 0, seq, init_insn = 0, init = temp2;
15a63be1
RK
956 enum rtx_code code = reverse_condition (GET_CODE (temp3));
957
958 start_sequence ();
959
626d0d1d
RK
960 /* It must be the case that TEMP2 is not modified in the range
961 [TEMP4, INSN). The one exception we make is if the insn
962 before INSN sets TEMP2 to something which is also unchanged
963 in that range. In that case, we can move the initialization
964 into our sequence. */
965
966 if ((temp5 = prev_active_insn (insn)) != 0
967 && GET_CODE (temp5) == INSN
968 && (temp6 = single_set (temp5)) != 0
969 && rtx_equal_p (temp2, SET_DEST (temp6))
970 && (CONSTANT_P (SET_SRC (temp6))
971 || GET_CODE (SET_SRC (temp6)) == REG
972 || GET_CODE (SET_SRC (temp6)) == SUBREG))
973 {
974 emit_insn (PATTERN (temp5));
975 init_insn = temp5;
976 init = SET_SRC (temp6);
977 }
978
979 if (CONSTANT_P (init)
980 || ! reg_set_between_p (init, PREV_INSN (temp4), insn))
981 target = emit_store_flag (gen_reg_rtx (GET_MODE (temp2)), code,
982 XEXP (temp3, 0), XEXP (temp3, 1),
983 VOIDmode,
984 (code == LTU || code == LEU
985 || code == GTU || code == GEU), 1);
15a63be1
RK
986
987 /* If we can do the store-flag, do the addition or
988 subtraction. */
989
990 if (target)
991 target = expand_binop (GET_MODE (temp2),
992 (XEXP (SET_SRC (temp1), 1) == const1_rtx
993 ? add_optab : sub_optab),
994 temp2, target, temp2, OPTAB_WIDEN);
995
996 if (target != 0)
997 {
998 /* Put the result back in temp2 in case it isn't already.
999 Then replace the jump, possible a CC0-setting insn in
1000 front of the jump, and TEMP, with the sequence we have
1001 made. */
1002
1003 if (target != temp2)
1004 emit_move_insn (temp2, target);
1005
1006 seq = get_insns ();
1007 end_sequence ();
1008
1009 emit_insns_before (seq, temp4);
1010 delete_insn (temp);
626d0d1d
RK
1011
1012 if (init_insn)
1013 delete_insn (init_insn);
1014
15a63be1
RK
1015 next = NEXT_INSN (insn);
1016#ifdef HAVE_cc0
1017 delete_insn (prev_nonnote_insn (insn));
1018#endif
1019 delete_insn (insn);
1020 changed = 1;
1021 continue;
1022 }
1023 else
1024 end_sequence ();
1025 }
1026
1027 /* Simplify if (...) x = 1; else {...} if (x) ...
1028 We recognize this case scanning backwards as well.
1029
1030 TEMP is the assignment to x;
1031 TEMP1 is the label at the head of the second if. */
1032 /* ?? This should call get_condition to find the values being
1033 compared, instead of looking for a COMPARE insn when HAVE_cc0
1034 is not defined. This would allow it to work on the m88k. */
1035 /* ?? This optimization is only safe before cse is run if HAVE_cc0
1036 is not defined and the condition is tested by a separate compare
1037 insn. This is because the code below assumes that the result
1038 of the compare dies in the following branch.
1039
1040 Not only that, but there might be other insns between the
1041 compare and branch whose results are live. Those insns need
1042 to be executed.
1043
1044 A way to fix this is to move the insns at JUMP_LABEL (insn)
1045 to before INSN. If we are running before flow, they will
1046 be deleted if they aren't needed. But this doesn't work
1047 well after flow.
1048
1049 This is really a special-case of jump threading, anyway. The
1050 right thing to do is to replace this and jump threading with
1051 much simpler code in cse.
1052
1053 This code has been turned off in the non-cc0 case in the
1054 meantime. */
1055
1056#ifdef HAVE_cc0
1057 else if (this_is_simplejump
1058 /* Safe to skip USE and CLOBBER insns here
1059 since they will not be deleted. */
1060 && (temp = prev_active_insn (insn))
1061 && no_labels_between_p (temp, insn)
1062 && GET_CODE (temp) == INSN
1063 && GET_CODE (PATTERN (temp)) == SET
1064 && GET_CODE (SET_DEST (PATTERN (temp))) == REG
1065 && CONSTANT_P (SET_SRC (PATTERN (temp)))
1066 && (temp1 = next_active_insn (JUMP_LABEL (insn)))
1067 /* If we find that the next value tested is `x'
1068 (TEMP1 is the insn where this happens), win. */
1069 && GET_CODE (temp1) == INSN
1070 && GET_CODE (PATTERN (temp1)) == SET
1071#ifdef HAVE_cc0
1072 /* Does temp1 `tst' the value of x? */
1073 && SET_SRC (PATTERN (temp1)) == SET_DEST (PATTERN (temp))
1074 && SET_DEST (PATTERN (temp1)) == cc0_rtx
1075 && (temp1 = next_nonnote_insn (temp1))
1076#else
1077 /* Does temp1 compare the value of x against zero? */
1078 && GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
1079 && XEXP (SET_SRC (PATTERN (temp1)), 1) == const0_rtx
1080 && (XEXP (SET_SRC (PATTERN (temp1)), 0)
1081 == SET_DEST (PATTERN (temp)))
1082 && GET_CODE (SET_DEST (PATTERN (temp1))) == REG
1083 && (temp1 = find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
1084#endif
1085 && condjump_p (temp1))
1086 {
1087 /* Get the if_then_else from the condjump. */
1088 rtx choice = SET_SRC (PATTERN (temp1));
1089 if (GET_CODE (choice) == IF_THEN_ELSE)
1090 {
1091 enum rtx_code code = GET_CODE (XEXP (choice, 0));
1092 rtx val = SET_SRC (PATTERN (temp));
1093 rtx cond
1094 = simplify_relational_operation (code, GET_MODE (SET_DEST (PATTERN (temp))),
1095 val, const0_rtx);
1096 rtx ultimate;
1097
1098 if (cond == const_true_rtx)
1099 ultimate = XEXP (choice, 1);
1100 else if (cond == const0_rtx)
1101 ultimate = XEXP (choice, 2);
1102 else
1103 ultimate = 0;
1104
1105 if (ultimate == pc_rtx)
1106 ultimate = get_label_after (temp1);
1107 else if (ultimate && GET_CODE (ultimate) != RETURN)
1108 ultimate = XEXP (ultimate, 0);
1109
1110 if (ultimate)
1111 changed |= redirect_jump (insn, ultimate);
1112 }
1113 }
1114#endif
1115
1116#if 0
1117 /* @@ This needs a bit of work before it will be right.
1118
1119 Any type of comparison can be accepted for the first and
1120 second compare. When rewriting the first jump, we must
1121 compute the what conditions can reach label3, and use the
1122 appropriate code. We can not simply reverse/swap the code
1123 of the first jump. In some cases, the second jump must be
1124 rewritten also.
1125
1126 For example,
1127 < == converts to > ==
1128 < != converts to == >
1129 etc.
1130
1131 If the code is written to only accept an '==' test for the second
1132 compare, then all that needs to be done is to swap the condition
1133 of the first branch.
1134
1135 It is questionable whether we want this optimization anyways,
1136 since if the user wrote code like this because he/she knew that
6dc42e49 1137 the jump to label1 is taken most of the time, then rewriting
15a63be1
RK
1138 this gives slower code. */
1139 /* @@ This should call get_condition to find the values being
1140 compared, instead of looking for a COMPARE insn when HAVE_cc0
1141 is not defined. This would allow it to work on the m88k. */
1142 /* @@ This optimization is only safe before cse is run if HAVE_cc0
1143 is not defined and the condition is tested by a separate compare
1144 insn. This is because the code below assumes that the result
1145 of the compare dies in the following branch. */
1146
1147 /* Simplify test a ~= b
1148 condjump label1;
1149 test a == b
1150 condjump label2;
1151 jump label3;
1152 label1:
1153
1154 rewriting as
1155 test a ~~= b
1156 condjump label3
1157 test a == b
1158 condjump label2
1159 label1:
1160
1161 where ~= is an inequality, e.g. >, and ~~= is the swapped
1162 inequality, e.g. <.
1163
1164 We recognize this case scanning backwards.
1165
1166 TEMP is the conditional jump to `label2';
1167 TEMP1 is the test for `a == b';
1168 TEMP2 is the conditional jump to `label1';
1169 TEMP3 is the test for `a ~= b'. */
1170 else if (this_is_simplejump
1171 && (temp = prev_active_insn (insn))
1172 && no_labels_between_p (temp, insn)
1173 && condjump_p (temp)
1174 && (temp1 = prev_active_insn (temp))
1175 && no_labels_between_p (temp1, temp)
1176 && GET_CODE (temp1) == INSN
1177 && GET_CODE (PATTERN (temp1)) == SET
1178#ifdef HAVE_cc0
1179 && sets_cc0_p (PATTERN (temp1)) == 1
1180#else
1181 && GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
1182 && GET_CODE (SET_DEST (PATTERN (temp1))) == REG
1183 && (temp == find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
1184#endif
1185 && (temp2 = prev_active_insn (temp1))
1186 && no_labels_between_p (temp2, temp1)
1187 && condjump_p (temp2)
1188 && JUMP_LABEL (temp2) == next_nonnote_insn (NEXT_INSN (insn))
1189 && (temp3 = prev_active_insn (temp2))
1190 && no_labels_between_p (temp3, temp2)
1191 && GET_CODE (PATTERN (temp3)) == SET
1192 && rtx_equal_p (SET_DEST (PATTERN (temp3)),
1193 SET_DEST (PATTERN (temp1)))
1194 && rtx_equal_p (SET_SRC (PATTERN (temp1)),
1195 SET_SRC (PATTERN (temp3)))
1196 && ! inequality_comparisons_p (PATTERN (temp))
1197 && inequality_comparisons_p (PATTERN (temp2)))
1198 {
1199 rtx fallthrough_label = JUMP_LABEL (temp2);
1200
1201 ++LABEL_NUSES (fallthrough_label);
1202 if (swap_jump (temp2, JUMP_LABEL (insn)))
1203 {
1204 delete_insn (insn);
1205 changed = 1;
1206 }
1207
1208 if (--LABEL_NUSES (fallthrough_label) == 0)
1209 delete_insn (fallthrough_label);
1210 }
1211#endif
1212 /* Simplify if (...) {... x = 1;} if (x) ...
1213
1214 We recognize this case backwards.
1215
1216 TEMP is the test of `x';
1217 TEMP1 is the assignment to `x' at the end of the
1218 previous statement. */
1219 /* @@ This should call get_condition to find the values being
1220 compared, instead of looking for a COMPARE insn when HAVE_cc0
1221 is not defined. This would allow it to work on the m88k. */
1222 /* @@ This optimization is only safe before cse is run if HAVE_cc0
1223 is not defined and the condition is tested by a separate compare
1224 insn. This is because the code below assumes that the result
1225 of the compare dies in the following branch. */
2d20b9df
RS
1226
1227 /* ??? This has to be turned off. The problem is that the
1228 unconditional jump might indirectly end up branching to the
1229 label between TEMP1 and TEMP. We can't detect this, in general,
1230 since it may become a jump to there after further optimizations.
1231 If that jump is done, it will be deleted, so we will retry
1232 this optimization in the next pass, thus an infinite loop.
1233
1234 The present code prevents this by putting the jump after the
1235 label, but this is not logically correct. */
1236#if 0
15a63be1
RK
1237 else if (this_is_condjump
1238 /* Safe to skip USE and CLOBBER insns here
1239 since they will not be deleted. */
1240 && (temp = prev_active_insn (insn))
1241 && no_labels_between_p (temp, insn)
1242 && GET_CODE (temp) == INSN
1243 && GET_CODE (PATTERN (temp)) == SET
1244#ifdef HAVE_cc0
1245 && sets_cc0_p (PATTERN (temp)) == 1
1246 && GET_CODE (SET_SRC (PATTERN (temp))) == REG
1247#else
1248 /* Temp must be a compare insn, we can not accept a register
1249 to register move here, since it may not be simply a
1250 tst insn. */
1251 && GET_CODE (SET_SRC (PATTERN (temp))) == COMPARE
1252 && XEXP (SET_SRC (PATTERN (temp)), 1) == const0_rtx
1253 && GET_CODE (XEXP (SET_SRC (PATTERN (temp)), 0)) == REG
1254 && GET_CODE (SET_DEST (PATTERN (temp))) == REG
1255 && insn == find_next_ref (SET_DEST (PATTERN (temp)), temp)
1256#endif
1257 /* May skip USE or CLOBBER insns here
1258 for checking for opportunity, since we
1259 take care of them later. */
1260 && (temp1 = prev_active_insn (temp))
1261 && GET_CODE (temp1) == INSN
1262 && GET_CODE (PATTERN (temp1)) == SET
1263#ifdef HAVE_cc0
1264 && SET_SRC (PATTERN (temp)) == SET_DEST (PATTERN (temp1))
1265#else
1266 && (XEXP (SET_SRC (PATTERN (temp)), 0)
1267 == SET_DEST (PATTERN (temp1)))
1268#endif
1269 && CONSTANT_P (SET_SRC (PATTERN (temp1)))
1270 /* If this isn't true, cse will do the job. */
1271 && ! no_labels_between_p (temp1, temp))
1272 {
1273 /* Get the if_then_else from the condjump. */
1274 rtx choice = SET_SRC (PATTERN (insn));
1275 if (GET_CODE (choice) == IF_THEN_ELSE
1276 && (GET_CODE (XEXP (choice, 0)) == EQ
1277 || GET_CODE (XEXP (choice, 0)) == NE))
1278 {
1279 int want_nonzero = (GET_CODE (XEXP (choice, 0)) == NE);
1280 rtx last_insn;
1281 rtx ultimate;
1282 rtx p;
1283
1284 /* Get the place that condjump will jump to
1285 if it is reached from here. */
1286 if ((SET_SRC (PATTERN (temp1)) != const0_rtx)
1287 == want_nonzero)
1288 ultimate = XEXP (choice, 1);
1289 else
1290 ultimate = XEXP (choice, 2);
1291 /* Get it as a CODE_LABEL. */
1292 if (ultimate == pc_rtx)
1293 ultimate = get_label_after (insn);
1294 else
1295 /* Get the label out of the LABEL_REF. */
1296 ultimate = XEXP (ultimate, 0);
1297
2d20b9df
RS
1298 /* Insert the jump immediately before TEMP, specifically
1299 after the label that is between TEMP1 and TEMP. */
1300 last_insn = PREV_INSN (temp);
15a63be1
RK
1301
1302 /* If we would be branching to the next insn, the jump
1303 would immediately be deleted and the re-inserted in
1304 a subsequent pass over the code. So don't do anything
1305 in that case. */
1306 if (next_active_insn (last_insn)
1307 != next_active_insn (ultimate))
1308 {
1309 emit_barrier_after (last_insn);
1310 p = emit_jump_insn_after (gen_jump (ultimate),
1311 last_insn);
1312 JUMP_LABEL (p) = ultimate;
1313 ++LABEL_NUSES (ultimate);
1314 if (INSN_UID (ultimate) < max_jump_chain
1315 && INSN_CODE (p) < max_jump_chain)
1316 {
1317 jump_chain[INSN_UID (p)]
1318 = jump_chain[INSN_UID (ultimate)];
1319 jump_chain[INSN_UID (ultimate)] = p;
1320 }
1321 changed = 1;
1322 continue;
1323 }
1324 }
1325 }
2d20b9df 1326#endif
15a63be1
RK
1327 /* Detect a conditional jump going to the same place
1328 as an immediately following unconditional jump. */
1329 else if (this_is_condjump
1330 && (temp = next_active_insn (insn)) != 0
1331 && simplejump_p (temp)
1332 && (next_active_insn (JUMP_LABEL (insn))
1333 == next_active_insn (JUMP_LABEL (temp))))
1334 {
1335 delete_jump (insn);
1336 changed = 1;
1337 continue;
1338 }
1339 /* Detect a conditional jump jumping over an unconditional jump. */
1340
1341 else if (this_is_condjump && ! this_is_simplejump
1342 && reallabelprev != 0
1343 && GET_CODE (reallabelprev) == JUMP_INSN
1344 && prev_active_insn (reallabelprev) == insn
1345 && no_labels_between_p (insn, reallabelprev)
1346 && simplejump_p (reallabelprev))
1347 {
1348 /* When we invert the unconditional jump, we will be
1349 decrementing the usage count of its old label.
1350 Make sure that we don't delete it now because that
1351 might cause the following code to be deleted. */
1352 rtx prev_uses = prev_nonnote_insn (reallabelprev);
1353 rtx prev_label = JUMP_LABEL (insn);
1354
1355 ++LABEL_NUSES (prev_label);
1356
1357 if (invert_jump (insn, JUMP_LABEL (reallabelprev)))
1358 {
1359 /* It is very likely that if there are USE insns before
1360 this jump, they hold REG_DEAD notes. These REG_DEAD
1361 notes are no longer valid due to this optimization,
1362 and will cause the life-analysis that following passes
1363 (notably delayed-branch scheduling) to think that
1364 these registers are dead when they are not.
1365
1366 To prevent this trouble, we just remove the USE insns
1367 from the insn chain. */
1368
1369 while (prev_uses && GET_CODE (prev_uses) == INSN
1370 && GET_CODE (PATTERN (prev_uses)) == USE)
1371 {
1372 rtx useless = prev_uses;
1373 prev_uses = prev_nonnote_insn (prev_uses);
1374 delete_insn (useless);
1375 }
1376
1377 delete_insn (reallabelprev);
1378 next = insn;
1379 changed = 1;
1380 }
1381
1382 /* We can now safely delete the label if it is unreferenced
1383 since the delete_insn above has deleted the BARRIER. */
1384 if (--LABEL_NUSES (prev_label) == 0)
1385 delete_insn (prev_label);
1386 continue;
1387 }
1388 else
1389 {
1390 /* Detect a jump to a jump. */
1391
1392 nlabel = follow_jumps (JUMP_LABEL (insn));
1393 if (nlabel != JUMP_LABEL (insn)
1394 && redirect_jump (insn, nlabel))
1395 {
1396 changed = 1;
1397 next = insn;
1398 }
1399
1400 /* Look for if (foo) bar; else break; */
1401 /* The insns look like this:
1402 insn = condjump label1;
1403 ...range1 (some insns)...
1404 jump label2;
1405 label1:
1406 ...range2 (some insns)...
1407 jump somewhere unconditionally
1408 label2: */
1409 {
1410 rtx label1 = next_label (insn);
1411 rtx range1end = label1 ? prev_active_insn (label1) : 0;
1412 /* Don't do this optimization on the first round, so that
1413 jump-around-a-jump gets simplified before we ask here
1414 whether a jump is unconditional.
1415
1416 Also don't do it when we are called after reload since
1417 it will confuse reorg. */
1418 if (! first
1419 && (reload_completed ? ! flag_delayed_branch : 1)
1420 /* Make sure INSN is something we can invert. */
1421 && condjump_p (insn)
1422 && label1 != 0
1423 && JUMP_LABEL (insn) == label1
1424 && LABEL_NUSES (label1) == 1
1425 && GET_CODE (range1end) == JUMP_INSN
1426 && simplejump_p (range1end))
1427 {
1428 rtx label2 = next_label (label1);
1429 rtx range2end = label2 ? prev_active_insn (label2) : 0;
1430 if (range1end != range2end
1431 && JUMP_LABEL (range1end) == label2
1432 && GET_CODE (range2end) == JUMP_INSN
1433 && GET_CODE (NEXT_INSN (range2end)) == BARRIER
1434 /* Invert the jump condition, so we
1435 still execute the same insns in each case. */
1436 && invert_jump (insn, label1))
1437 {
1438 rtx range1beg = next_active_insn (insn);
1439 rtx range2beg = next_active_insn (label1);
1440 rtx range1after, range2after;
1441 rtx range1before, range2before;
1442
0e690bdb
RS
1443 /* Include in each range any line number before it. */
1444 while (PREV_INSN (range1beg)
d45cf215
RS
1445 && GET_CODE (PREV_INSN (range1beg)) == NOTE
1446 && NOTE_LINE_NUMBER (PREV_INSN (range1beg)) > 0)
0e690bdb
RS
1447 range1beg = PREV_INSN (range1beg);
1448
1449 while (PREV_INSN (range2beg)
d45cf215
RS
1450 && GET_CODE (PREV_INSN (range2beg)) == NOTE
1451 && NOTE_LINE_NUMBER (PREV_INSN (range2beg)) > 0)
0e690bdb
RS
1452 range2beg = PREV_INSN (range2beg);
1453
15a63be1
RK
1454 /* Don't move NOTEs for blocks or loops; shift them
1455 outside the ranges, where they'll stay put. */
915f619f
JW
1456 range1beg = squeeze_notes (range1beg, range1end);
1457 range2beg = squeeze_notes (range2beg, range2end);
15a63be1
RK
1458
1459 /* Get current surrounds of the 2 ranges. */
1460 range1before = PREV_INSN (range1beg);
1461 range2before = PREV_INSN (range2beg);
1462 range1after = NEXT_INSN (range1end);
1463 range2after = NEXT_INSN (range2end);
1464
1465 /* Splice range2 where range1 was. */
1466 NEXT_INSN (range1before) = range2beg;
1467 PREV_INSN (range2beg) = range1before;
1468 NEXT_INSN (range2end) = range1after;
1469 PREV_INSN (range1after) = range2end;
1470 /* Splice range1 where range2 was. */
1471 NEXT_INSN (range2before) = range1beg;
1472 PREV_INSN (range1beg) = range2before;
1473 NEXT_INSN (range1end) = range2after;
1474 PREV_INSN (range2after) = range1end;
1475 changed = 1;
1476 continue;
1477 }
1478 }
1479 }
1480
1481 /* Now that the jump has been tensioned,
1482 try cross jumping: check for identical code
1483 before the jump and before its target label. */
1484
1485 /* First, cross jumping of conditional jumps: */
1486
1487 if (cross_jump && condjump_p (insn))
1488 {
1489 rtx newjpos, newlpos;
1490 rtx x = prev_real_insn (JUMP_LABEL (insn));
1491
1492 /* A conditional jump may be crossjumped
1493 only if the place it jumps to follows
1494 an opposing jump that comes back here. */
1495
1496 if (x != 0 && ! jump_back_p (x, insn))
1497 /* We have no opposing jump;
1498 cannot cross jump this insn. */
1499 x = 0;
1500
1501 newjpos = 0;
1502 /* TARGET is nonzero if it is ok to cross jump
1503 to code before TARGET. If so, see if matches. */
1504 if (x != 0)
1505 find_cross_jump (insn, x, 2,
1506 &newjpos, &newlpos);
1507
1508 if (newjpos != 0)
1509 {
1510 do_cross_jump (insn, newjpos, newlpos);
1511 /* Make the old conditional jump
1512 into an unconditional one. */
1513 SET_SRC (PATTERN (insn))
1514 = gen_rtx (LABEL_REF, VOIDmode, JUMP_LABEL (insn));
1515 INSN_CODE (insn) = -1;
1516 emit_barrier_after (insn);
1517 /* Add to jump_chain unless this is a new label
1518 whose UID is too large. */
1519 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
1520 {
1521 jump_chain[INSN_UID (insn)]
1522 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
1523 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
1524 }
1525 changed = 1;
1526 next = insn;
1527 }
1528 }
1529
1530 /* Cross jumping of unconditional jumps:
1531 a few differences. */
1532
1533 if (cross_jump && simplejump_p (insn))
1534 {
1535 rtx newjpos, newlpos;
1536 rtx target;
1537
1538 newjpos = 0;
1539
1540 /* TARGET is nonzero if it is ok to cross jump
1541 to code before TARGET. If so, see if matches. */
1542 find_cross_jump (insn, JUMP_LABEL (insn), 1,
1543 &newjpos, &newlpos);
1544
1545 /* If cannot cross jump to code before the label,
1546 see if we can cross jump to another jump to
1547 the same label. */
1548 /* Try each other jump to this label. */
1549 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
1550 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
1551 target != 0 && newjpos == 0;
1552 target = jump_chain[INSN_UID (target)])
1553 if (target != insn
1554 && JUMP_LABEL (target) == JUMP_LABEL (insn)
1555 /* Ignore TARGET if it's deleted. */
1556 && ! INSN_DELETED_P (target))
1557 find_cross_jump (insn, target, 2,
1558 &newjpos, &newlpos);
1559
1560 if (newjpos != 0)
1561 {
1562 do_cross_jump (insn, newjpos, newlpos);
1563 changed = 1;
1564 next = insn;
1565 }
1566 }
1567
1568 /* This code was dead in the previous jump.c! */
1569 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
1570 {
1571 /* Return insns all "jump to the same place"
1572 so we can cross-jump between any two of them. */
1573
1574 rtx newjpos, newlpos, target;
1575
1576 newjpos = 0;
1577
1578 /* If cannot cross jump to code before the label,
1579 see if we can cross jump to another jump to
1580 the same label. */
1581 /* Try each other jump to this label. */
1582 for (target = jump_chain[0];
1583 target != 0 && newjpos == 0;
1584 target = jump_chain[INSN_UID (target)])
1585 if (target != insn
1586 && ! INSN_DELETED_P (target)
1587 && GET_CODE (PATTERN (target)) == RETURN)
1588 find_cross_jump (insn, target, 2,
1589 &newjpos, &newlpos);
1590
1591 if (newjpos != 0)
1592 {
1593 do_cross_jump (insn, newjpos, newlpos);
1594 changed = 1;
1595 next = insn;
1596 }
1597 }
1598 }
1599 }
1600
1601 first = 0;
1602 }
1603
1604 /* Delete extraneous line number notes.
1605 Note that two consecutive notes for different lines are not really
1606 extraneous. There should be some indication where that line belonged,
1607 even if it became empty. */
1608
1609 {
1610 rtx last_note = 0;
1611
1612 for (insn = f; insn; insn = NEXT_INSN (insn))
1613 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0)
1614 {
1615 /* Delete this note if it is identical to previous note. */
1616 if (last_note
1617 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
1618 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
1619 {
1620 delete_insn (insn);
1621 continue;
1622 }
1623
1624 last_note = insn;
1625 }
1626 }
1627
1628 /* See if there is still a NOTE_INSN_FUNCTION_END in this function.
1629 If so, delete it, and record that this function can drop off the end. */
1630
1631 insn = last_insn;
1632 {
1633 int n_labels = 1;
1634 while (insn
1635 /* One label can follow the end-note: the return label. */
1636 && ((GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
1637 /* Ordinary insns can follow it if returning a structure. */
1638 || GET_CODE (insn) == INSN
1639 /* If machine uses explicit RETURN insns, no epilogue,
1640 then one of them follows the note. */
1641 || (GET_CODE (insn) == JUMP_INSN
1642 && GET_CODE (PATTERN (insn)) == RETURN)
1643 /* Other kinds of notes can follow also. */
1644 || (GET_CODE (insn) == NOTE
1645 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)))
1646 insn = PREV_INSN (insn);
1647 }
1648
1649 /* Report if control can fall through at the end of the function. */
1650 if (insn && GET_CODE (insn) == NOTE
1651 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END)
1652 {
1653 can_reach_end = 1;
1654 delete_insn (insn);
1655 }
1656
1657 /* Show JUMP_CHAIN no longer valid. */
1658 jump_chain = 0;
1659}
1660\f
1661/* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1662 jump. Assume that this unconditional jump is to the exit test code. If
1663 the code is sufficiently simple, make a copy of it before INSN,
1664 followed by a jump to the exit of the loop. Then delete the unconditional
1665 jump after INSN.
1666
1667 Note that it is possible we can get confused here if the jump immediately
1668 after the loop start branches outside the loop but within an outer loop.
1669 If we are near the exit of that loop, we will copy its exit test. This
1670 will not generate incorrect code, but could suppress some optimizations.
1671 However, such cases are degenerate loops anyway.
1672
1673 Return 1 if we made the change, else 0.
1674
1675 This is only safe immediately after a regscan pass because it uses the
1676 values of regno_first_uid and regno_last_uid. */
1677
1678static int
1679duplicate_loop_exit_test (loop_start)
1680 rtx loop_start;
1681{
1682 rtx insn, set, p;
1683 rtx copy, link;
1684 int num_insns = 0;
1685 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
1686 rtx lastexit;
1687 int max_reg = max_reg_num ();
1688 rtx *reg_map = 0;
1689
1690 /* Scan the exit code. We do not perform this optimization if any insn:
1691
1692 is a CALL_INSN
1693 is a CODE_LABEL
1694 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1695 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1696 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1697 are not valid
1698
1699 Also, don't do this if the exit code is more than 20 insns. */
1700
1701 for (insn = exitcode;
1702 insn
1703 && ! (GET_CODE (insn) == NOTE
1704 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
1705 insn = NEXT_INSN (insn))
1706 {
1707 switch (GET_CODE (insn))
1708 {
1709 case CODE_LABEL:
1710 case CALL_INSN:
1711 return 0;
1712 case NOTE:
1713 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1714 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1715 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
1716 return 0;
1717 break;
1718 case JUMP_INSN:
1719 case INSN:
1720 if (++num_insns > 20
1721 || find_reg_note (insn, REG_RETVAL, 0)
1722 || find_reg_note (insn, REG_LIBCALL, 0))
1723 return 0;
1724 break;
1725 }
1726 }
1727
1728 /* Unless INSN is zero, we can do the optimization. */
1729 if (insn == 0)
1730 return 0;
1731
1732 lastexit = insn;
1733
1734 /* See if any insn sets a register only used in the loop exit code and
1735 not a user variable. If so, replace it with a new register. */
1736 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1737 if (GET_CODE (insn) == INSN
1738 && (set = single_set (insn)) != 0
1739 && GET_CODE (SET_DEST (set)) == REG
1740 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
1741 && regno_first_uid[REGNO (SET_DEST (set))] == INSN_UID (insn))
1742 {
1743 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
1744 if (regno_last_uid[REGNO (SET_DEST (set))] == INSN_UID (p))
1745 break;
1746
1747 if (p != lastexit)
1748 {
1749 /* We can do the replacement. Allocate reg_map if this is the
1750 first replacement we found. */
1751 if (reg_map == 0)
1752 {
1753 reg_map = (rtx *) alloca (max_reg * sizeof (rtx));
1754 bzero (reg_map, max_reg * sizeof (rtx));
1755 }
1756
1757 REG_LOOP_TEST_P (SET_DEST (set)) = 1;
1758
1759 reg_map[REGNO (SET_DEST (set))]
1760 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
1761 }
1762 }
1763
1764 /* Now copy each insn. */
1765 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1766 switch (GET_CODE (insn))
1767 {
1768 case BARRIER:
1769 copy = emit_barrier_before (loop_start);
1770 break;
1771 case NOTE:
1772 /* Only copy line-number notes. */
1773 if (NOTE_LINE_NUMBER (insn) >= 0)
1774 {
1775 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
1776 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
1777 }
1778 break;
1779
1780 case INSN:
1781 copy = emit_insn_before (copy_rtx (PATTERN (insn)), loop_start);
1782 if (reg_map)
1783 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1784
1785 mark_jump_label (PATTERN (copy), copy, 0);
1786
1787 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
1788 make them. */
1789 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1790 if (REG_NOTE_KIND (link) != REG_LABEL)
1791 REG_NOTES (copy)
1792 = copy_rtx (gen_rtx (EXPR_LIST, REG_NOTE_KIND (link),
1793 XEXP (link, 0), REG_NOTES (copy)));
1794 if (reg_map && REG_NOTES (copy))
1795 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1796 break;
1797
1798 case JUMP_INSN:
1799 copy = emit_jump_insn_before (copy_rtx (PATTERN (insn)), loop_start);
1800 if (reg_map)
1801 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1802 mark_jump_label (PATTERN (copy), copy, 0);
1803 if (REG_NOTES (insn))
1804 {
1805 REG_NOTES (copy) = copy_rtx (REG_NOTES (insn));
1806 if (reg_map)
1807 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1808 }
1809
1810 /* If this is a simple jump, add it to the jump chain. */
1811
1812 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
1813 && simplejump_p (copy))
1814 {
1815 jump_chain[INSN_UID (copy)]
1816 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1817 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1818 }
1819 break;
1820
1821 default:
1822 abort ();
1823 }
1824
1825 /* Now clean up by emitting a jump to the end label and deleting the jump
1826 at the start of the loop. */
1827 if (GET_CODE (copy) != BARRIER)
1828 {
1829 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
1830 loop_start);
1831 mark_jump_label (PATTERN (copy), copy, 0);
1832 if (INSN_UID (copy) < max_jump_chain
1833 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
1834 {
1835 jump_chain[INSN_UID (copy)]
1836 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1837 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1838 }
1839 emit_barrier_before (loop_start);
1840 }
1841
1842 delete_insn (next_nonnote_insn (loop_start));
1843
1844 /* Mark the exit code as the virtual top of the converted loop. */
1845 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
1846
1847 return 1;
1848}
1849\f
1850/* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, and
915f619f
JW
1851 loop-end notes between START and END out before START. Assume that
1852 END is not such a note. START may be such a note. Returns the value
1853 of the new starting insn, which may be different if the original start
1854 was such a note. */
15a63be1 1855
915f619f 1856rtx
15a63be1
RK
1857squeeze_notes (start, end)
1858 rtx start, end;
1859{
1860 rtx insn;
1861 rtx next;
1862
1863 for (insn = start; insn != end; insn = next)
1864 {
1865 next = NEXT_INSN (insn);
1866 if (GET_CODE (insn) == NOTE
1867 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
1868 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1869 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1870 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
1871 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
1872 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
1873 {
915f619f
JW
1874 if (insn == start)
1875 start = next;
1876 else
1877 {
1878 rtx prev = PREV_INSN (insn);
1879 PREV_INSN (insn) = PREV_INSN (start);
1880 NEXT_INSN (insn) = start;
1881 NEXT_INSN (PREV_INSN (insn)) = insn;
1882 PREV_INSN (NEXT_INSN (insn)) = insn;
1883 NEXT_INSN (prev) = next;
1884 PREV_INSN (next) = prev;
1885 }
15a63be1
RK
1886 }
1887 }
915f619f
JW
1888
1889 return start;
15a63be1
RK
1890}
1891\f
1892/* Compare the instructions before insn E1 with those before E2
1893 to find an opportunity for cross jumping.
1894 (This means detecting identical sequences of insns followed by
1895 jumps to the same place, or followed by a label and a jump
1896 to that label, and replacing one with a jump to the other.)
1897
1898 Assume E1 is a jump that jumps to label E2
1899 (that is not always true but it might as well be).
1900 Find the longest possible equivalent sequences
1901 and store the first insns of those sequences into *F1 and *F2.
1902 Store zero there if no equivalent preceding instructions are found.
1903
1904 We give up if we find a label in stream 1.
1905 Actually we could transfer that label into stream 2. */
1906
1907static void
1908find_cross_jump (e1, e2, minimum, f1, f2)
1909 rtx e1, e2;
1910 int minimum;
1911 rtx *f1, *f2;
1912{
1913 register rtx i1 = e1, i2 = e2;
1914 register rtx p1, p2;
1915 int lose = 0;
1916
1917 rtx last1 = 0, last2 = 0;
1918 rtx afterlast1 = 0, afterlast2 = 0;
1919 rtx prev1;
1920
1921 *f1 = 0;
1922 *f2 = 0;
1923
1924 while (1)
1925 {
1926 i1 = prev_nonnote_insn (i1);
1927
1928 i2 = PREV_INSN (i2);
1929 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
1930 i2 = PREV_INSN (i2);
1931
1932 if (i1 == 0)
1933 break;
1934
1935 /* Don't allow the range of insns preceding E1 or E2
1936 to include the other (E2 or E1). */
1937 if (i2 == e1 || i1 == e2)
1938 break;
1939
1940 /* If we will get to this code by jumping, those jumps will be
1941 tensioned to go directly to the new label (before I2),
1942 so this cross-jumping won't cost extra. So reduce the minimum. */
1943 if (GET_CODE (i1) == CODE_LABEL)
1944 {
1945 --minimum;
1946 break;
1947 }
1948
1949 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
1950 break;
1951
1952 p1 = PATTERN (i1);
1953 p2 = PATTERN (i2);
1954
1955#ifdef STACK_REGS
1956 /* If cross_jump_death_matters is not 0, the insn's mode
1957 indicates whether or not the insn contains any stack-like
1958 regs. */
1959
1960 if (cross_jump_death_matters && GET_MODE (i1) == QImode)
1961 {
1962 /* If register stack conversion has already been done, then
1963 death notes must also be compared before it is certain that
1964 the two instruction streams match. */
1965
1966 rtx note;
1967 HARD_REG_SET i1_regset, i2_regset;
1968
1969 CLEAR_HARD_REG_SET (i1_regset);
1970 CLEAR_HARD_REG_SET (i2_regset);
1971
1972 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1973 if (REG_NOTE_KIND (note) == REG_DEAD
1974 && STACK_REG_P (XEXP (note, 0)))
1975 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1976
1977 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1978 if (REG_NOTE_KIND (note) == REG_DEAD
1979 && STACK_REG_P (XEXP (note, 0)))
1980 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1981
1982 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1983
1984 lose = 1;
1985
1986 done:
1987 ;
1988 }
1989#endif
1990
1991 if (lose || GET_CODE (p1) != GET_CODE (p2)
1992 || ! rtx_renumbered_equal_p (p1, p2))
1993 {
1994 /* The following code helps take care of G++ cleanups. */
1995 rtx equiv1;
1996 rtx equiv2;
1997
1998 if (!lose && GET_CODE (p1) == GET_CODE (p2)
1999 && ((equiv1 = find_reg_note (i1, REG_EQUAL, 0)) != 0
2000 || (equiv1 = find_reg_note (i1, REG_EQUIV, 0)) != 0)
2001 && ((equiv2 = find_reg_note (i2, REG_EQUAL, 0)) != 0
2002 || (equiv2 = find_reg_note (i2, REG_EQUIV, 0)) != 0)
2003 /* If the equivalences are not to a constant, they may
2004 reference pseudos that no longer exist, so we can't
2005 use them. */
2006 && CONSTANT_P (XEXP (equiv1, 0))
2007 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
2008 {
2009 rtx s1 = single_set (i1);
2010 rtx s2 = single_set (i2);
2011 if (s1 != 0 && s2 != 0
2012 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
2013 {
2014 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
2015 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
2016 if (! rtx_renumbered_equal_p (p1, p2))
2017 cancel_changes (0);
2018 else if (apply_change_group ())
2019 goto win;
2020 }
2021 }
2022
2023 /* Insns fail to match; cross jumping is limited to the following
2024 insns. */
2025
2026#ifdef HAVE_cc0
2027 /* Don't allow the insn after a compare to be shared by
2028 cross-jumping unless the compare is also shared.
2029 Here, if either of these non-matching insns is a compare,
2030 exclude the following insn from possible cross-jumping. */
2031 if (sets_cc0_p (p1) || sets_cc0_p (p2))
2032 last1 = afterlast1, last2 = afterlast2, ++minimum;
2033#endif
2034
2035 /* If cross-jumping here will feed a jump-around-jump
2036 optimization, this jump won't cost extra, so reduce
2037 the minimum. */
2038 if (GET_CODE (i1) == JUMP_INSN
2039 && JUMP_LABEL (i1)
2040 && prev_real_insn (JUMP_LABEL (i1)) == e1)
2041 --minimum;
2042 break;
2043 }
2044
2045 win:
2046 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
2047 {
2048 /* Ok, this insn is potentially includable in a cross-jump here. */
2049 afterlast1 = last1, afterlast2 = last2;
2050 last1 = i1, last2 = i2, --minimum;
2051 }
2052 }
2053
2054 /* We have to be careful that we do not cross-jump into the middle of
2055 USE-CALL_INSN-CLOBBER sequence. This sequence is used instead of
2056 putting the USE and CLOBBERs inside the CALL_INSN. The delay slot
2057 scheduler needs to know what registers are used and modified by the
2058 CALL_INSN and needs the adjacent USE and CLOBBERs to do so.
2059
2060 ??? At some point we should probably change this so that these are
2061 part of the CALL_INSN. The way we are doing it now is a kludge that
2062 is now causing trouble. */
2063
2064 if (last1 != 0 && GET_CODE (last1) == CALL_INSN
2065 && (prev1 = prev_nonnote_insn (last1))
2066 && GET_CODE (prev1) == INSN
2067 && GET_CODE (PATTERN (prev1)) == USE)
2068 {
2069 /* Remove this CALL_INSN from the range we can cross-jump. */
2070 last1 = next_real_insn (last1);
2071 last2 = next_real_insn (last2);
2072
2073 minimum++;
2074 }
2075
2076 /* Skip past CLOBBERS since they may be right after a CALL_INSN. It
2077 isn't worth checking for the CALL_INSN. */
2078 while (last1 != 0 && GET_CODE (PATTERN (last1)) == CLOBBER)
2079 last1 = next_real_insn (last1), last2 = next_real_insn (last2);
2080
2081 if (minimum <= 0 && last1 != 0 && last1 != e1)
2082 *f1 = last1, *f2 = last2;
2083}
2084
2085static void
2086do_cross_jump (insn, newjpos, newlpos)
2087 rtx insn, newjpos, newlpos;
2088{
2089 /* Find an existing label at this point
2090 or make a new one if there is none. */
2091 register rtx label = get_label_before (newlpos);
2092
2093 /* Make the same jump insn jump to the new point. */
2094 if (GET_CODE (PATTERN (insn)) == RETURN)
2095 {
2096 /* Remove from jump chain of returns. */
2097 delete_from_jump_chain (insn);
2098 /* Change the insn. */
2099 PATTERN (insn) = gen_jump (label);
2100 INSN_CODE (insn) = -1;
2101 JUMP_LABEL (insn) = label;
2102 LABEL_NUSES (label)++;
2103 /* Add to new the jump chain. */
2104 if (INSN_UID (label) < max_jump_chain
2105 && INSN_UID (insn) < max_jump_chain)
2106 {
2107 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
2108 jump_chain[INSN_UID (label)] = insn;
2109 }
2110 }
2111 else
2112 redirect_jump (insn, label);
2113
2114 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
2115 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
2116 the NEWJPOS stream. */
2117
2118 while (newjpos != insn)
2119 {
2120 rtx lnote;
2121
2122 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
2123 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
2124 || REG_NOTE_KIND (lnote) == REG_EQUIV)
2125 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
2126 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
2127 remove_note (newlpos, lnote);
2128
2129 delete_insn (newjpos);
2130 newjpos = next_real_insn (newjpos);
2131 newlpos = next_real_insn (newlpos);
2132 }
2133}
2134\f
2135/* Return the label before INSN, or put a new label there. */
2136
2137rtx
2138get_label_before (insn)
2139 rtx insn;
2140{
2141 rtx label;
2142
2143 /* Find an existing label at this point
2144 or make a new one if there is none. */
2145 label = prev_nonnote_insn (insn);
2146
2147 if (label == 0 || GET_CODE (label) != CODE_LABEL)
2148 {
2149 rtx prev = PREV_INSN (insn);
2150
6dc42e49 2151 /* Don't put a label between a CALL_INSN and USE insns that precede
15a63be1
RK
2152 it. */
2153
2154 if (GET_CODE (insn) == CALL_INSN
2155 || (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE
2156 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN))
2157 while (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == USE)
2158 prev = PREV_INSN (prev);
2159
2160 label = gen_label_rtx ();
2161 emit_label_after (label, prev);
2162 LABEL_NUSES (label) = 0;
2163 }
2164 return label;
2165}
2166
2167/* Return the label after INSN, or put a new label there. */
2168
2169rtx
2170get_label_after (insn)
2171 rtx insn;
2172{
2173 rtx label;
2174
2175 /* Find an existing label at this point
2176 or make a new one if there is none. */
2177 label = next_nonnote_insn (insn);
2178
2179 if (label == 0 || GET_CODE (label) != CODE_LABEL)
2180 {
2181 /* Don't put a label between a CALL_INSN and CLOBBER insns
2182 following it. */
2183
2184 if (GET_CODE (insn) == CALL_INSN
2185 || (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE
2186 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN))
2187 while (GET_CODE (NEXT_INSN (insn)) == INSN
2188 && GET_CODE (PATTERN (NEXT_INSN (insn))) == CLOBBER)
2189 insn = NEXT_INSN (insn);
2190
2191 label = gen_label_rtx ();
2192 emit_label_after (label, insn);
2193 LABEL_NUSES (label) = 0;
2194 }
2195 return label;
2196}
2197\f
2198/* Return 1 if INSN is a jump that jumps to right after TARGET
2199 only on the condition that TARGET itself would drop through.
2200 Assumes that TARGET is a conditional jump. */
2201
2202static int
2203jump_back_p (insn, target)
2204 rtx insn, target;
2205{
2206 rtx cinsn, ctarget;
2207 enum rtx_code codei, codet;
2208
2209 if (simplejump_p (insn) || ! condjump_p (insn)
2210 || simplejump_p (target)
2211 || target != prev_real_insn (JUMP_LABEL (insn)))
2212 return 0;
2213
2214 cinsn = XEXP (SET_SRC (PATTERN (insn)), 0);
2215 ctarget = XEXP (SET_SRC (PATTERN (target)), 0);
2216
2217 codei = GET_CODE (cinsn);
2218 codet = GET_CODE (ctarget);
2219
2220 if (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx)
2221 {
2222 if (! can_reverse_comparison_p (cinsn, insn))
2223 return 0;
2224 codei = reverse_condition (codei);
2225 }
2226
2227 if (XEXP (SET_SRC (PATTERN (target)), 2) == pc_rtx)
2228 {
2229 if (! can_reverse_comparison_p (ctarget, target))
2230 return 0;
2231 codet = reverse_condition (codet);
2232 }
2233
2234 return (codei == codet
2235 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
2236 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
2237}
2238\f
2239/* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
2240 return non-zero if it is safe to reverse this comparison. It is if our
2241 floating-point is not IEEE, if this is an NE or EQ comparison, or if
2242 this is known to be an integer comparison. */
2243
2244int
2245can_reverse_comparison_p (comparison, insn)
2246 rtx comparison;
2247 rtx insn;
2248{
2249 rtx arg0;
2250
2251 /* If this is not actually a comparison, we can't reverse it. */
2252 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
2253 return 0;
2254
2255 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
2256 /* If this is an NE comparison, it is safe to reverse it to an EQ
2257 comparison and vice versa, even for floating point. If no operands
2258 are NaNs, the reversal is valid. If some operand is a NaN, EQ is
2259 always false and NE is always true, so the reversal is also valid. */
2260 || GET_CODE (comparison) == NE
2261 || GET_CODE (comparison) == EQ)
2262 return 1;
2263
2264 arg0 = XEXP (comparison, 0);
2265
2266 /* Make sure ARG0 is one of the actual objects being compared. If we
2267 can't do this, we can't be sure the comparison can be reversed.
2268
2269 Handle cc0 and a MODE_CC register. */
2270 if ((GET_CODE (arg0) == REG && GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC)
2271#ifdef HAVE_cc0
2272 || arg0 == cc0_rtx
2273#endif
2274 )
2275 {
2276 rtx prev = prev_nonnote_insn (insn);
2277 rtx set = single_set (prev);
2278
2279 if (set == 0 || SET_DEST (set) != arg0)
2280 return 0;
2281
2282 arg0 = SET_SRC (set);
2283
2284 if (GET_CODE (arg0) == COMPARE)
2285 arg0 = XEXP (arg0, 0);
2286 }
2287
2288 /* We can reverse this if ARG0 is a CONST_INT or if its mode is
2289 not VOIDmode and neither a MODE_CC nor MODE_FLOAT type. */
2290 return (GET_CODE (arg0) == CONST_INT
2291 || (GET_MODE (arg0) != VOIDmode
2292 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_CC
2293 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_FLOAT));
2294}
2295
2296/* Given an rtx-code for a comparison, return the code
2297 for the negated comparison.
2298 WATCH OUT! reverse_condition is not safe to use on a jump
2299 that might be acting on the results of an IEEE floating point comparison,
2300 because of the special treatment of non-signaling nans in comparisons.
2301 Use can_reverse_comparison_p to be sure. */
2302
2303enum rtx_code
2304reverse_condition (code)
2305 enum rtx_code code;
2306{
2307 switch (code)
2308 {
2309 case EQ:
2310 return NE;
2311
2312 case NE:
2313 return EQ;
2314
2315 case GT:
2316 return LE;
2317
2318 case GE:
2319 return LT;
2320
2321 case LT:
2322 return GE;
2323
2324 case LE:
2325 return GT;
2326
2327 case GTU:
2328 return LEU;
2329
2330 case GEU:
2331 return LTU;
2332
2333 case LTU:
2334 return GEU;
2335
2336 case LEU:
2337 return GTU;
2338
2339 default:
2340 abort ();
2341 return UNKNOWN;
2342 }
2343}
2344
2345/* Similar, but return the code when two operands of a comparison are swapped.
2346 This IS safe for IEEE floating-point. */
2347
2348enum rtx_code
2349swap_condition (code)
2350 enum rtx_code code;
2351{
2352 switch (code)
2353 {
2354 case EQ:
2355 case NE:
2356 return code;
2357
2358 case GT:
2359 return LT;
2360
2361 case GE:
2362 return LE;
2363
2364 case LT:
2365 return GT;
2366
2367 case LE:
2368 return GE;
2369
2370 case GTU:
2371 return LTU;
2372
2373 case GEU:
2374 return LEU;
2375
2376 case LTU:
2377 return GTU;
2378
2379 case LEU:
2380 return GEU;
2381
2382 default:
2383 abort ();
2384 return UNKNOWN;
2385 }
2386}
2387
2388/* Given a comparison CODE, return the corresponding unsigned comparison.
2389 If CODE is an equality comparison or already an unsigned comparison,
2390 CODE is returned. */
2391
2392enum rtx_code
2393unsigned_condition (code)
2394 enum rtx_code code;
2395{
2396 switch (code)
2397 {
2398 case EQ:
2399 case NE:
2400 case GTU:
2401 case GEU:
2402 case LTU:
2403 case LEU:
2404 return code;
2405
2406 case GT:
2407 return GTU;
2408
2409 case GE:
2410 return GEU;
2411
2412 case LT:
2413 return LTU;
2414
2415 case LE:
2416 return LEU;
2417
2418 default:
2419 abort ();
2420 }
2421}
2422
2423/* Similarly, return the signed version of a comparison. */
2424
2425enum rtx_code
2426signed_condition (code)
2427 enum rtx_code code;
2428{
2429 switch (code)
2430 {
2431 case EQ:
2432 case NE:
2433 case GT:
2434 case GE:
2435 case LT:
2436 case LE:
2437 return code;
2438
2439 case GTU:
2440 return GT;
2441
2442 case GEU:
2443 return GE;
2444
2445 case LTU:
2446 return LT;
2447
2448 case LEU:
2449 return LE;
2450
2451 default:
2452 abort ();
2453 }
2454}
2455\f
2456/* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
2457 truth of CODE1 implies the truth of CODE2. */
2458
2459int
2460comparison_dominates_p (code1, code2)
2461 enum rtx_code code1, code2;
2462{
2463 if (code1 == code2)
2464 return 1;
2465
2466 switch (code1)
2467 {
2468 case EQ:
2469 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU)
2470 return 1;
2471 break;
2472
2473 case LT:
2474 if (code2 == LE)
2475 return 1;
2476 break;
2477
2478 case GT:
2479 if (code2 == GE)
2480 return 1;
2481 break;
2482
2483 case LTU:
2484 if (code2 == LEU)
2485 return 1;
2486 break;
2487
2488 case GTU:
2489 if (code2 == GEU)
2490 return 1;
2491 break;
2492 }
2493
2494 return 0;
2495}
2496\f
2497/* Return 1 if INSN is an unconditional jump and nothing else. */
2498
2499int
2500simplejump_p (insn)
2501 rtx insn;
2502{
2503 return (GET_CODE (insn) == JUMP_INSN
2504 && GET_CODE (PATTERN (insn)) == SET
2505 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
2506 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
2507}
2508
2509/* Return nonzero if INSN is a (possibly) conditional jump
2510 and nothing more. */
2511
2512int
2513condjump_p (insn)
2514 rtx insn;
2515{
2516 register rtx x = PATTERN (insn);
2517 if (GET_CODE (x) != SET)
2518 return 0;
2519 if (GET_CODE (SET_DEST (x)) != PC)
2520 return 0;
2521 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
2522 return 1;
2523 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2524 return 0;
2525 if (XEXP (SET_SRC (x), 2) == pc_rtx
2526 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2527 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2528 return 1;
2529 if (XEXP (SET_SRC (x), 1) == pc_rtx
2530 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2531 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2532 return 1;
2533 return 0;
2534}
2535
2536/* Return 1 if X is an RTX that does nothing but set the condition codes
2537 and CLOBBER or USE registers.
2538 Return -1 if X does explicitly set the condition codes,
2539 but also does other things. */
2540
2541int
2542sets_cc0_p (x)
2543 rtx x;
2544{
2545#ifdef HAVE_cc0
2546 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
2547 return 1;
2548 if (GET_CODE (x) == PARALLEL)
2549 {
2550 int i;
2551 int sets_cc0 = 0;
2552 int other_things = 0;
2553 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2554 {
2555 if (GET_CODE (XVECEXP (x, 0, i)) == SET
2556 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
2557 sets_cc0 = 1;
2558 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
2559 other_things = 1;
2560 }
2561 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
2562 }
2563 return 0;
2564#else
2565 abort ();
2566#endif
2567}
2568\f
2569/* Follow any unconditional jump at LABEL;
2570 return the ultimate label reached by any such chain of jumps.
2571 If LABEL is not followed by a jump, return LABEL.
2d20b9df
RS
2572 If the chain loops or we can't find end, return LABEL,
2573 since that tells caller to avoid changing the insn.
15a63be1
RK
2574
2575 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2576 a USE or CLOBBER. */
2577
2578rtx
2579follow_jumps (label)
2580 rtx label;
2581{
2582 register rtx insn;
2583 register rtx next;
2584 register rtx value = label;
2585 register int depth;
2586
2587 for (depth = 0;
2588 (depth < 10
2589 && (insn = next_active_insn (value)) != 0
2590 && GET_CODE (insn) == JUMP_INSN
2591 && (JUMP_LABEL (insn) != 0 || GET_CODE (PATTERN (insn)) == RETURN)
2592 && (next = NEXT_INSN (insn))
2593 && GET_CODE (next) == BARRIER);
2594 depth++)
2595 {
2596 /* Don't chain through the insn that jumps into a loop
2597 from outside the loop,
2598 since that would create multiple loop entry jumps
2599 and prevent loop optimization. */
2600 rtx tem;
2601 if (!reload_completed)
2602 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
2603 if (GET_CODE (tem) == NOTE
2604 && NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG)
2605 return value;
2606
2607 /* If we have found a cycle, make the insn jump to itself. */
2608 if (JUMP_LABEL (insn) == label)
2d20b9df 2609 return label;
15a63be1
RK
2610 value = JUMP_LABEL (insn);
2611 }
2d20b9df
RS
2612 if (depth == 10)
2613 return label;
15a63be1
RK
2614 return value;
2615}
2616
2617/* Assuming that field IDX of X is a vector of label_refs,
2618 replace each of them by the ultimate label reached by it.
2619 Return nonzero if a change is made.
2620 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2621
2622static int
2623tension_vector_labels (x, idx)
2624 register rtx x;
2625 register int idx;
2626{
2627 int changed = 0;
2628 register int i;
2629 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
2630 {
2631 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
2632 register rtx nlabel = follow_jumps (olabel);
2633 if (nlabel && nlabel != olabel)
2634 {
2635 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
2636 ++LABEL_NUSES (nlabel);
2637 if (--LABEL_NUSES (olabel) == 0)
2638 delete_insn (olabel);
2639 changed = 1;
2640 }
2641 }
2642 return changed;
2643}
2644\f
2645/* Find all CODE_LABELs referred to in X, and increment their use counts.
2646 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2647 in INSN, then store one of them in JUMP_LABEL (INSN).
2648 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2649 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2650 Also, when there are consecutive labels, canonicalize on the last of them.
2651
2652 Note that two labels separated by a loop-beginning note
2653 must be kept distinct if we have not yet done loop-optimization,
2654 because the gap between them is where loop-optimize
2655 will want to move invariant code to. CROSS_JUMP tells us
2656 that loop-optimization is done with.
2657
2658 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2659 two labels distinct if they are separated by only USE or CLOBBER insns. */
2660
2661static void
2662mark_jump_label (x, insn, cross_jump)
2663 register rtx x;
2664 rtx insn;
2665 int cross_jump;
2666{
2667 register RTX_CODE code = GET_CODE (x);
2668 register int i;
2669 register char *fmt;
2670
2671 switch (code)
2672 {
2673 case PC:
2674 case CC0:
2675 case REG:
2676 case SUBREG:
2677 case CONST_INT:
2678 case SYMBOL_REF:
2679 case CONST_DOUBLE:
2680 case CLOBBER:
2681 case CALL:
2682 return;
2683
d7ea4cf6
RK
2684 case MEM:
2685 /* If this is a constant-pool reference, see if it is a label. */
2686 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2687 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
2688 mark_jump_label (get_pool_constant (XEXP (x, 0)), insn, cross_jump);
2689 break;
2690
15a63be1
RK
2691 case LABEL_REF:
2692 {
2693 register rtx label = XEXP (x, 0);
2694 register rtx next;
2695 if (GET_CODE (label) != CODE_LABEL)
2696 abort ();
2697 /* If there are other labels following this one,
2698 replace it with the last of the consecutive labels. */
2699 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
2700 {
2701 if (GET_CODE (next) == CODE_LABEL)
2702 label = next;
2703 else if (cross_jump && GET_CODE (next) == INSN
2704 && (GET_CODE (PATTERN (next)) == USE
2705 || GET_CODE (PATTERN (next)) == CLOBBER))
2706 continue;
2707 else if (GET_CODE (next) != NOTE)
2708 break;
2709 else if (! cross_jump
2710 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
2711 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END))
2712 break;
2713 }
2714 XEXP (x, 0) = label;
2715 ++LABEL_NUSES (label);
2716 if (insn)
2717 {
2718 if (GET_CODE (insn) == JUMP_INSN)
2719 JUMP_LABEL (insn) = label;
0e690bdb 2720 else if (! find_reg_note (insn, REG_LABEL, label))
15a63be1
RK
2721 {
2722 rtx next = next_real_insn (label);
2723 /* Don't record labels that refer to dispatch tables.
2724 This is not necessary, since the tablejump
2725 references the same label.
2726 And if we did record them, flow.c would make worse code. */
2727 if (next == 0
2728 || ! (GET_CODE (next) == JUMP_INSN
2729 && (GET_CODE (PATTERN (next)) == ADDR_VEC
2730 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
2731 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, label,
2732 REG_NOTES (insn));
2733 }
2734 }
2735 return;
2736 }
2737
2738 /* Do walk the labels in a vector, but not the first operand of an
2739 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
2740 case ADDR_VEC:
2741 case ADDR_DIFF_VEC:
2742 {
2743 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
2744
2745 for (i = 0; i < XVECLEN (x, eltnum); i++)
2746 mark_jump_label (XVECEXP (x, eltnum, i), 0, cross_jump);
2747 return;
2748 }
2749 }
2750
2751 fmt = GET_RTX_FORMAT (code);
2752 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2753 {
2754 if (fmt[i] == 'e')
2755 mark_jump_label (XEXP (x, i), insn, cross_jump);
2756 else if (fmt[i] == 'E')
2757 {
2758 register int j;
2759 for (j = 0; j < XVECLEN (x, i); j++)
2760 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump);
2761 }
2762 }
2763}
2764
2765/* If all INSN does is set the pc, delete it,
2766 and delete the insn that set the condition codes for it
2767 if that's what the previous thing was. */
2768
2769void
2770delete_jump (insn)
2771 rtx insn;
2772{
2773 register rtx x = PATTERN (insn);
2774 register rtx prev;
2775
2776 if (GET_CODE (x) == SET
2777 && GET_CODE (SET_DEST (x)) == PC)
2778 {
2779 prev = prev_nonnote_insn (insn);
2780#ifdef HAVE_cc0
2781 /* We assume that at this stage
2782 CC's are always set explicitly
2783 and always immediately before the jump that
2784 will use them. So if the previous insn
2785 exists to set the CC's, delete it
2786 (unless it performs auto-increments, etc.). */
2787 if (prev && GET_CODE (prev) == INSN
2788 && sets_cc0_p (PATTERN (prev)))
2789 {
2790 if (sets_cc0_p (PATTERN (prev)) > 0
2791 && !FIND_REG_INC_NOTE (prev, 0))
2792 delete_insn (prev);
2793 else
2794 /* Otherwise, show that cc0 won't be used. */
2795 REG_NOTES (prev) = gen_rtx (EXPR_LIST, REG_UNUSED,
2796 cc0_rtx, REG_NOTES (prev));
2797 }
2798#else
2799 {
2800 rtx note;
2801
2802 /* If we are running before flow.c, we need do nothing since flow.c
2803 will delete the set of the condition code if it is dead. We also
2804 can't know if the register being used as the condition code is
2805 dead or not at this point.
2806
2807 Otherwise, look at all our REG_DEAD notes. If a previous insn
2808 does nothing other than set a register that dies in this jump,
2809 we can delete the insn. */
2810
2811 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2812 {
2813 rtx our_prev;
2814
2815 if (REG_NOTE_KIND (note) != REG_DEAD
2816 /* Verify that the REG_NOTE has a legal value. */
2817 || GET_CODE (XEXP (note, 0)) != REG)
2818 continue;
2819
2820 for (our_prev = prev_nonnote_insn (insn);
2821 our_prev && GET_CODE (our_prev) == INSN;
2822 our_prev = prev_nonnote_insn (our_prev))
2823 {
2824 /* If we reach a SEQUENCE, it is too complex to try to
2825 do anything with it, so give up. */
2826 if (GET_CODE (PATTERN (our_prev)) == SEQUENCE)
2827 break;
2828
2829 if (GET_CODE (PATTERN (our_prev)) == USE
2830 && GET_CODE (XEXP (PATTERN (our_prev), 0)) == INSN)
2831 /* reorg creates USEs that look like this. We leave them
2832 alone because reorg needs them for its own purposes. */
2833 break;
2834
2835 if (reg_set_p (XEXP (note, 0), PATTERN (our_prev)))
2836 {
2837 if (FIND_REG_INC_NOTE (our_prev, 0))
2838 break;
2839
2840 if (GET_CODE (PATTERN (our_prev)) == PARALLEL)
2841 {
2842 /* If we find a SET of something else, we can't
2843 delete the insn. */
2844
2845 int i;
2846
2847 for (i = 0; i < XVECLEN (PATTERN (our_prev), 0); i++)
2848 {
2849 rtx part = XVECEXP (PATTERN (our_prev), 0, i);
2850
2851 if (GET_CODE (part) == SET
2852 && SET_DEST (part) != XEXP (note, 0))
2853 break;
2854 }
2855
2856 if (i == XVECLEN (PATTERN (our_prev), 0))
2857 delete_insn (our_prev);
2858 }
2859 else if (GET_CODE (PATTERN (our_prev)) == SET
2860 && SET_DEST (PATTERN (our_prev)) == XEXP (note, 0))
2861 delete_insn (our_prev);
2862
2863 break;
2864 }
2865
2866 /* If OUR_PREV references the register that dies here,
2867 it is an additional use. Hence any prior SET isn't
2868 dead. */
2869 if (reg_overlap_mentioned_p (XEXP (note, 0),
2870 PATTERN (our_prev)))
2871 break;
2872 }
2873 }
2874 }
2875#endif
2876 /* Now delete the jump insn itself. */
2877 delete_insn (insn);
2878 }
2879}
2880\f
2881/* Delete insn INSN from the chain of insns and update label ref counts.
2882 May delete some following insns as a consequence; may even delete
2883 a label elsewhere and insns that follow it.
2884
2885 Returns the first insn after INSN that was not deleted. */
2886
2887rtx
2888delete_insn (insn)
2889 register rtx insn;
2890{
2891 register rtx next = NEXT_INSN (insn);
2892 register rtx prev = PREV_INSN (insn);
2893
2894 while (next && INSN_DELETED_P (next))
2895 next = NEXT_INSN (next);
2896
2897 /* This insn is already deleted => return first following nondeleted. */
2898 if (INSN_DELETED_P (insn))
2899 return next;
2900
2901 /* Mark this insn as deleted. */
2902
2903 INSN_DELETED_P (insn) = 1;
2904
2905 /* If this is an unconditional jump, delete it from the jump chain. */
2906 if (simplejump_p (insn))
2907 delete_from_jump_chain (insn);
2908
2909 /* If instruction is followed by a barrier,
2910 delete the barrier too. */
2911
2912 if (next != 0 && GET_CODE (next) == BARRIER)
2913 {
2914 INSN_DELETED_P (next) = 1;
2915 next = NEXT_INSN (next);
2916 }
2917
2918 /* Patch out INSN (and the barrier if any) */
2919
2920 if (optimize)
2921 {
2922 if (prev)
2923 {
2924 NEXT_INSN (prev) = next;
2925 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2926 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
2927 XVECLEN (PATTERN (prev), 0) - 1)) = next;
2928 }
2929
2930 if (next)
2931 {
2932 PREV_INSN (next) = prev;
2933 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2934 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2935 }
2936
2937 if (prev && NEXT_INSN (prev) == 0)
2938 set_last_insn (prev);
2939 }
2940
2941 /* If deleting a jump, decrement the count of the label,
2942 and delete the label if it is now unused. */
2943
2944 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
2945 if (--LABEL_NUSES (JUMP_LABEL (insn)) == 0)
2946 {
2947 /* This can delete NEXT or PREV,
2948 either directly if NEXT is JUMP_LABEL (INSN),
2949 or indirectly through more levels of jumps. */
2950 delete_insn (JUMP_LABEL (insn));
2951 /* I feel a little doubtful about this loop,
2952 but I see no clean and sure alternative way
2953 to find the first insn after INSN that is not now deleted.
2954 I hope this works. */
2955 while (next && INSN_DELETED_P (next))
2956 next = NEXT_INSN (next);
2957 return next;
2958 }
2959
2960 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
2961 prev = PREV_INSN (prev);
2962
2963 /* If INSN was a label and a dispatch table follows it,
2964 delete the dispatch table. The tablejump must have gone already.
2965 It isn't useful to fall through into a table. */
2966
2967 if (GET_CODE (insn) == CODE_LABEL
2968 && NEXT_INSN (insn) != 0
2969 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
2970 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
2971 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
2972 next = delete_insn (NEXT_INSN (insn));
2973
2974 /* If INSN was a label, delete insns following it if now unreachable. */
2975
2976 if (GET_CODE (insn) == CODE_LABEL && prev
2977 && GET_CODE (prev) == BARRIER)
2978 {
2979 register RTX_CODE code;
2980 while (next != 0
2981 && ((code = GET_CODE (next)) == INSN
2982 || code == JUMP_INSN || code == CALL_INSN
2e1dbf22
RS
2983 || code == NOTE
2984 || (code == CODE_LABEL && INSN_DELETED_P (next))))
15a63be1
RK
2985 {
2986 if (code == NOTE
2987 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
2988 next = NEXT_INSN (next);
2e1dbf22
RS
2989 /* Keep going past other deleted labels to delete what follows. */
2990 else if (code == CODE_LABEL && INSN_DELETED_P (next))
2991 next = NEXT_INSN (next);
15a63be1
RK
2992 else
2993 /* Note: if this deletes a jump, it can cause more
2994 deletion of unreachable code, after a different label.
2995 As long as the value from this recursive call is correct,
2996 this invocation functions correctly. */
2997 next = delete_insn (next);
2998 }
2999 }
3000
3001 return next;
3002}
3003
3004/* Advance from INSN till reaching something not deleted
3005 then return that. May return INSN itself. */
3006
3007rtx
3008next_nondeleted_insn (insn)
3009 rtx insn;
3010{
3011 while (INSN_DELETED_P (insn))
3012 insn = NEXT_INSN (insn);
3013 return insn;
3014}
3015\f
3016/* Delete a range of insns from FROM to TO, inclusive.
3017 This is for the sake of peephole optimization, so assume
3018 that whatever these insns do will still be done by a new
3019 peephole insn that will replace them. */
3020
3021void
3022delete_for_peephole (from, to)
3023 register rtx from, to;
3024{
3025 register rtx insn = from;
3026
3027 while (1)
3028 {
3029 register rtx next = NEXT_INSN (insn);
3030 register rtx prev = PREV_INSN (insn);
3031
3032 if (GET_CODE (insn) != NOTE)
3033 {
3034 INSN_DELETED_P (insn) = 1;
3035
3036 /* Patch this insn out of the chain. */
3037 /* We don't do this all at once, because we
3038 must preserve all NOTEs. */
3039 if (prev)
3040 NEXT_INSN (prev) = next;
3041
3042 if (next)
3043 PREV_INSN (next) = prev;
3044 }
3045
3046 if (insn == to)
3047 break;
3048 insn = next;
3049 }
3050
3051 /* Note that if TO is an unconditional jump
3052 we *do not* delete the BARRIER that follows,
3053 since the peephole that replaces this sequence
3054 is also an unconditional jump in that case. */
3055}
3056\f
3057/* Invert the condition of the jump JUMP, and make it jump
3058 to label NLABEL instead of where it jumps now. */
3059
3060int
3061invert_jump (jump, nlabel)
3062 rtx jump, nlabel;
3063{
3064 register rtx olabel = JUMP_LABEL (jump);
3065
3066 /* We have to either invert the condition and change the label or
3067 do neither. Either operation could fail. We first try to invert
3068 the jump. If that succeeds, we try changing the label. If that fails,
3069 we invert the jump back to what it was. */
3070
3071 if (! invert_exp (PATTERN (jump), jump))
3072 return 0;
3073
3074 if (redirect_jump (jump, nlabel))
3075 return 1;
3076
3077 if (! invert_exp (PATTERN (jump), jump))
3078 /* This should just be putting it back the way it was. */
3079 abort ();
3080
3081 return 0;
3082}
3083
3084/* Invert the jump condition of rtx X contained in jump insn, INSN.
3085
3086 Return 1 if we can do so, 0 if we cannot find a way to do so that
3087 matches a pattern. */
3088
3089static int
3090invert_exp (x, insn)
3091 rtx x;
3092 rtx insn;
3093{
3094 register RTX_CODE code;
3095 register int i;
3096 register char *fmt;
3097
3098 code = GET_CODE (x);
3099
3100 if (code == IF_THEN_ELSE)
3101 {
3102 register rtx comp = XEXP (x, 0);
3103 register rtx tem;
3104
3105 /* We can do this in two ways: The preferable way, which can only
3106 be done if this is not an integer comparison, is to reverse
3107 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3108 of the IF_THEN_ELSE. If we can't do either, fail. */
3109
3110 if (can_reverse_comparison_p (comp, insn)
3111 && validate_change (insn, &XEXP (x, 0),
3112 gen_rtx (reverse_condition (GET_CODE (comp)),
3113 GET_MODE (comp), XEXP (comp, 0),
3114 XEXP (comp, 1)), 0))
3115 return 1;
3116
3117 tem = XEXP (x, 1);
3118 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
3119 validate_change (insn, &XEXP (x, 2), tem, 1);
3120 return apply_change_group ();
3121 }
3122
3123 fmt = GET_RTX_FORMAT (code);
3124 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3125 {
3126 if (fmt[i] == 'e')
3127 if (! invert_exp (XEXP (x, i), insn))
3128 return 0;
3129 if (fmt[i] == 'E')
3130 {
3131 register int j;
3132 for (j = 0; j < XVECLEN (x, i); j++)
3133 if (!invert_exp (XVECEXP (x, i, j), insn))
3134 return 0;
3135 }
3136 }
3137
3138 return 1;
3139}
3140\f
3141/* Make jump JUMP jump to label NLABEL instead of where it jumps now.
3142 If the old jump target label is unused as a result,
3143 it and the code following it may be deleted.
3144
3145 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3146 RETURN insn.
3147
3148 The return value will be 1 if the change was made, 0 if it wasn't (this
3149 can only occur for NLABEL == 0). */
3150
3151int
3152redirect_jump (jump, nlabel)
3153 rtx jump, nlabel;
3154{
3155 register rtx olabel = JUMP_LABEL (jump);
3156
3157 if (nlabel == olabel)
3158 return 1;
3159
3160 if (! redirect_exp (&PATTERN (jump), olabel, nlabel, jump))
3161 return 0;
3162
3163 /* If this is an unconditional branch, delete it from the jump_chain of
3164 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3165 have UID's in range and JUMP_CHAIN is valid). */
3166 if (jump_chain && (simplejump_p (jump)
3167 || GET_CODE (PATTERN (jump)) == RETURN))
3168 {
3169 int label_index = nlabel ? INSN_UID (nlabel) : 0;
3170
3171 delete_from_jump_chain (jump);
2d20b9df
RS
3172 if (label_index < max_jump_chain
3173 && INSN_UID (jump) < max_jump_chain)
15a63be1
RK
3174 {
3175 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
3176 jump_chain[label_index] = jump;
3177 }
3178 }
3179
3180 JUMP_LABEL (jump) = nlabel;
3181 if (nlabel)
3182 ++LABEL_NUSES (nlabel);
3183
3184 if (olabel && --LABEL_NUSES (olabel) == 0)
3185 delete_insn (olabel);
3186
3187 return 1;
3188}
3189
3190/* Delete the instruction JUMP from any jump chain it might be on. */
3191
3192static void
3193delete_from_jump_chain (jump)
3194 rtx jump;
3195{
3196 int index;
3197 rtx olabel = JUMP_LABEL (jump);
3198
3199 /* Handle unconditional jumps. */
3200 if (jump_chain && olabel != 0
3201 && INSN_UID (olabel) < max_jump_chain
3202 && simplejump_p (jump))
3203 index = INSN_UID (olabel);
3204 /* Handle return insns. */
3205 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
3206 index = 0;
3207 else return;
3208
3209 if (jump_chain[index] == jump)
3210 jump_chain[index] = jump_chain[INSN_UID (jump)];
3211 else
3212 {
3213 rtx insn;
3214
3215 for (insn = jump_chain[index];
3216 insn != 0;
3217 insn = jump_chain[INSN_UID (insn)])
3218 if (jump_chain[INSN_UID (insn)] == jump)
3219 {
3220 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
3221 break;
3222 }
3223 }
3224}
3225
3226/* If NLABEL is nonzero, throughout the rtx at LOC,
3227 alter (LABEL_REF OLABEL) to (LABEL_REF NLABEL). If OLABEL is
3228 zero, alter (RETURN) to (LABEL_REF NLABEL).
3229
3230 If NLABEL is zero, alter (LABEL_REF OLABEL) to (RETURN) and check
3231 validity with validate_change. Convert (set (pc) (label_ref olabel))
3232 to (return).
3233
3234 Return 0 if we found a change we would like to make but it is invalid.
3235 Otherwise, return 1. */
3236
3237static int
3238redirect_exp (loc, olabel, nlabel, insn)
3239 rtx *loc;
3240 rtx olabel, nlabel;
3241 rtx insn;
3242{
3243 register rtx x = *loc;
3244 register RTX_CODE code = GET_CODE (x);
3245 register int i;
3246 register char *fmt;
3247
3248 if (code == LABEL_REF)
3249 {
3250 if (XEXP (x, 0) == olabel)
3251 {
3252 if (nlabel)
3253 XEXP (x, 0) = nlabel;
3254 else
3255 return validate_change (insn, loc, gen_rtx (RETURN, VOIDmode), 0);
3256 return 1;
3257 }
3258 }
3259 else if (code == RETURN && olabel == 0)
3260 {
3261 x = gen_rtx (LABEL_REF, VOIDmode, nlabel);
3262 if (loc == &PATTERN (insn))
3263 x = gen_rtx (SET, VOIDmode, pc_rtx, x);
3264 return validate_change (insn, loc, x, 0);
3265 }
3266
3267 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
3268 && GET_CODE (SET_SRC (x)) == LABEL_REF
3269 && XEXP (SET_SRC (x), 0) == olabel)
3270 return validate_change (insn, loc, gen_rtx (RETURN, VOIDmode), 0);
3271
3272 fmt = GET_RTX_FORMAT (code);
3273 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3274 {
3275 if (fmt[i] == 'e')
3276 if (! redirect_exp (&XEXP (x, i), olabel, nlabel, insn))
3277 return 0;
3278 if (fmt[i] == 'E')
3279 {
3280 register int j;
3281 for (j = 0; j < XVECLEN (x, i); j++)
3282 if (! redirect_exp (&XVECEXP (x, i, j), olabel, nlabel, insn))
3283 return 0;
3284 }
3285 }
3286
3287 return 1;
3288}
3289\f
3290/* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3291
3292 If the old jump target label (before the dispatch table) becomes unused,
3293 it and the dispatch table may be deleted. In that case, find the insn
6dc42e49 3294 before the jump references that label and delete it and logical successors
15a63be1
RK
3295 too. */
3296
3297void
3298redirect_tablejump (jump, nlabel)
3299 rtx jump, nlabel;
3300{
3301 register rtx olabel = JUMP_LABEL (jump);
3302
3303 /* Add this jump to the jump_chain of NLABEL. */
3304 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
3305 && INSN_UID (jump) < max_jump_chain)
3306 {
3307 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
3308 jump_chain[INSN_UID (nlabel)] = jump;
3309 }
3310
3311 PATTERN (jump) = gen_jump (nlabel);
3312 JUMP_LABEL (jump) = nlabel;
3313 ++LABEL_NUSES (nlabel);
3314 INSN_CODE (jump) = -1;
3315
3316 if (--LABEL_NUSES (olabel) == 0)
3317 {
3318 delete_labelref_insn (jump, olabel, 0);
3319 delete_insn (olabel);
3320 }
3321}
3322
3323/* Find the insn referencing LABEL that is a logical predecessor of INSN.
3324 If we found one, delete it and then delete this insn if DELETE_THIS is
3325 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3326
3327static int
3328delete_labelref_insn (insn, label, delete_this)
3329 rtx insn, label;
3330 int delete_this;
3331{
3332 int deleted = 0;
3333 rtx link;
3334
3335 if (GET_CODE (insn) != NOTE
3336 && reg_mentioned_p (label, PATTERN (insn)))
3337 {
3338 if (delete_this)
3339 {
3340 delete_insn (insn);
3341 deleted = 1;
3342 }
3343 else
3344 return 1;
3345 }
3346
3347 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3348 if (delete_labelref_insn (XEXP (link, 0), label, 1))
3349 {
3350 if (delete_this)
3351 {
3352 delete_insn (insn);
3353 deleted = 1;
3354 }
3355 else
3356 return 1;
3357 }
3358
3359 return deleted;
3360}
3361\f
3362/* Like rtx_equal_p except that it considers two REGs as equal
3363 if they renumber to the same value. */
3364
3365int
3366rtx_renumbered_equal_p (x, y)
3367 rtx x, y;
3368{
3369 register int i;
3370 register RTX_CODE code = GET_CODE (x);
3371 register char *fmt;
3372
3373 if (x == y)
3374 return 1;
3375 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
3376 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
3377 && GET_CODE (SUBREG_REG (y)) == REG)))
3378 {
3379 register int j;
3380
3381 if (GET_MODE (x) != GET_MODE (y))
3382 return 0;
3383
3384 /* If we haven't done any renumbering, don't
3385 make any assumptions. */
3386 if (reg_renumber == 0)
3387 return rtx_equal_p (x, y);
3388
3389 if (code == SUBREG)
3390 {
3391 i = REGNO (SUBREG_REG (x));
3392 if (reg_renumber[i] >= 0)
3393 i = reg_renumber[i];
3394 i += SUBREG_WORD (x);
3395 }
3396 else
3397 {
3398 i = REGNO (x);
3399 if (reg_renumber[i] >= 0)
3400 i = reg_renumber[i];
3401 }
3402 if (GET_CODE (y) == SUBREG)
3403 {
3404 j = REGNO (SUBREG_REG (y));
3405 if (reg_renumber[j] >= 0)
3406 j = reg_renumber[j];
3407 j += SUBREG_WORD (y);
3408 }
3409 else
3410 {
3411 j = REGNO (y);
3412 if (reg_renumber[j] >= 0)
3413 j = reg_renumber[j];
3414 }
3415 return i == j;
3416 }
3417 /* Now we have disposed of all the cases
3418 in which different rtx codes can match. */
3419 if (code != GET_CODE (y))
3420 return 0;
3421 switch (code)
3422 {
3423 case PC:
3424 case CC0:
3425 case ADDR_VEC:
3426 case ADDR_DIFF_VEC:
3427 return 0;
3428
3429 case CONST_INT:
3430 return XINT (x, 0) == XINT (y, 0);
3431
3432 case LABEL_REF:
3433 /* Two label-refs are equivalent if they point at labels
3434 in the same position in the instruction stream. */
3435 return (next_real_insn (XEXP (x, 0))
3436 == next_real_insn (XEXP (y, 0)));
3437
3438 case SYMBOL_REF:
3439 return XSTR (x, 0) == XSTR (y, 0);
3440 }
3441
3442 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3443
3444 if (GET_MODE (x) != GET_MODE (y))
3445 return 0;
3446
3447 /* Compare the elements. If any pair of corresponding elements
3448 fail to match, return 0 for the whole things. */
3449
3450 fmt = GET_RTX_FORMAT (code);
3451 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3452 {
3453 register int j;
3454 switch (fmt[i])
3455 {
3456 case 'i':
3457 if (XINT (x, i) != XINT (y, i))
3458 return 0;
3459 break;
3460
3461 case 's':
3462 if (strcmp (XSTR (x, i), XSTR (y, i)))
3463 return 0;
3464 break;
3465
3466 case 'e':
3467 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
3468 return 0;
3469 break;
3470
3471 case 'u':
3472 if (XEXP (x, i) != XEXP (y, i))
3473 return 0;
3474 /* fall through. */
3475 case '0':
3476 break;
3477
3478 case 'E':
3479 if (XVECLEN (x, i) != XVECLEN (y, i))
3480 return 0;
3481 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3482 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
3483 return 0;
3484 break;
3485
3486 default:
3487 abort ();
3488 }
3489 }
3490 return 1;
3491}
3492\f
3493/* If X is a hard register or equivalent to one or a subregister of one,
3494 return the hard register number. If X is a pseudo register that was not
3495 assigned a hard register, return the pseudo register number. Otherwise,
3496 return -1. Any rtx is valid for X. */
3497
3498int
3499true_regnum (x)
3500 rtx x;
3501{
3502 if (GET_CODE (x) == REG)
3503 {
3504 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
3505 return reg_renumber[REGNO (x)];
3506 return REGNO (x);
3507 }
3508 if (GET_CODE (x) == SUBREG)
3509 {
3510 int base = true_regnum (SUBREG_REG (x));
3511 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
3512 return SUBREG_WORD (x) + base;
3513 }
3514 return -1;
3515}
3516\f
3517/* Optimize code of the form:
3518
3519 for (x = a[i]; x; ...)
3520 ...
3521 for (x = a[i]; x; ...)
3522 ...
3523 foo:
3524
3525 Loop optimize will change the above code into
3526
3527 if (x = a[i])
3528 for (;;)
3529 { ...; if (! (x = ...)) break; }
3530 if (x = a[i])
3531 for (;;)
3532 { ...; if (! (x = ...)) break; }
3533 foo:
3534
3535 In general, if the first test fails, the program can branch
3536 directly to `foo' and skip the second try which is doomed to fail.
3537 We run this after loop optimization and before flow analysis. */
3538
3539/* When comparing the insn patterns, we track the fact that different
3540 pseudo-register numbers may have been used in each computation.
3541 The following array stores an equivalence -- same_regs[I] == J means
3542 that pseudo register I was used in the first set of tests in a context
3543 where J was used in the second set. We also count the number of such
3544 pending equivalences. If nonzero, the expressions really aren't the
3545 same. */
3546
3547static short *same_regs;
3548
3549static int num_same_regs;
3550
3551/* Track any registers modified between the target of the first jump and
3552 the second jump. They never compare equal. */
3553
3554static char *modified_regs;
3555
3556/* Record if memory was modified. */
3557
3558static int modified_mem;
3559
3560/* Called via note_stores on each insn between the target of the first
3561 branch and the second branch. It marks any changed registers. */
3562
3563static void
3564mark_modified_reg (dest, x)
3565 rtx dest;
3566 rtx x;
3567{
3568 int regno, i;
3569
3570 if (GET_CODE (dest) == SUBREG)
3571 dest = SUBREG_REG (dest);
3572
3573 if (GET_CODE (dest) == MEM)
3574 modified_mem = 1;
3575
3576 if (GET_CODE (dest) != REG)
3577 return;
3578
3579 regno = REGNO (dest);
3580 if (regno >= FIRST_PSEUDO_REGISTER)
3581 modified_regs[regno] = 1;
3582 else
3583 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
3584 modified_regs[regno + i] = 1;
3585}
3586
3587/* F is the first insn in the chain of insns. */
3588
3589void
3590thread_jumps (f, max_reg, verbose)
3591 rtx f;
3592 int max_reg;
3593 int verbose;
3594{
3595 /* Basic algorithm is to find a conditional branch,
3596 the label it may branch to, and the branch after
3597 that label. If the two branches test the same condition,
3598 walk back from both branch paths until the insn patterns
3599 differ, or code labels are hit. If we make it back to
3600 the target of the first branch, then we know that the first branch
3601 will either always succeed or always fail depending on the relative
3602 senses of the two branches. So adjust the first branch accordingly
3603 in this case. */
3604
3605 rtx label, b1, b2, t1, t2;
3606 enum rtx_code code1, code2;
3607 rtx b1op0, b1op1, b2op0, b2op1;
3608 int changed = 1;
3609 int i;
3610 short *all_reset;
3611
3612 /* Allocate register tables and quick-reset table. */
3613 modified_regs = (char *) alloca (max_reg * sizeof (char));
3614 same_regs = (short *) alloca (max_reg * sizeof (short));
3615 all_reset = (short *) alloca (max_reg * sizeof (short));
3616 for (i = 0; i < max_reg; i++)
3617 all_reset[i] = -1;
3618
3619 while (changed)
3620 {
3621 changed = 0;
3622
3623 for (b1 = f; b1; b1 = NEXT_INSN (b1))
3624 {
3625 /* Get to a candidate branch insn. */
3626 if (GET_CODE (b1) != JUMP_INSN
3627 || ! condjump_p (b1) || simplejump_p (b1)
3628 || JUMP_LABEL (b1) == 0)
3629 continue;
3630
3631 bzero (modified_regs, max_reg * sizeof (char));
3632 modified_mem = 0;
3633
3634 bcopy (all_reset, same_regs, max_reg * sizeof (short));
3635 num_same_regs = 0;
3636
3637 label = JUMP_LABEL (b1);
3638
3639 /* Look for a branch after the target. Record any registers and
3640 memory modified between the target and the branch. Stop when we
3641 get to a label since we can't know what was changed there. */
3642 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
3643 {
3644 if (GET_CODE (b2) == CODE_LABEL)
3645 break;
3646
3647 else if (GET_CODE (b2) == JUMP_INSN)
3648 {
3649 /* If this is an unconditional jump and is the only use of
3650 its target label, we can follow it. */
3651 if (simplejump_p (b2)
3652 && JUMP_LABEL (b2) != 0
3653 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
3654 {
3655 b2 = JUMP_LABEL (b2);
3656 continue;
3657 }
3658 else
3659 break;
3660 }
3661
3662 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
3663 continue;
3664
3665 if (GET_CODE (b2) == CALL_INSN)
3666 {
3667 modified_mem = 1;
3668 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3669 if (call_used_regs[i] && ! fixed_regs[i]
3670 && i != STACK_POINTER_REGNUM
3671 && i != FRAME_POINTER_REGNUM
3672 && i != ARG_POINTER_REGNUM)
3673 modified_regs[i] = 1;
3674 }
3675
3676 note_stores (PATTERN (b2), mark_modified_reg);
3677 }
3678
3679 /* Check the next candidate branch insn from the label
3680 of the first. */
3681 if (b2 == 0
3682 || GET_CODE (b2) != JUMP_INSN
3683 || b2 == b1
3684 || ! condjump_p (b2)
3685 || simplejump_p (b2))
3686 continue;
3687
3688 /* Get the comparison codes and operands, reversing the
3689 codes if appropriate. If we don't have comparison codes,
3690 we can't do anything. */
3691 b1op0 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 0);
3692 b1op1 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 1);
3693 code1 = GET_CODE (XEXP (SET_SRC (PATTERN (b1)), 0));
3694 if (XEXP (SET_SRC (PATTERN (b1)), 1) == pc_rtx)
3695 code1 = reverse_condition (code1);
3696
3697 b2op0 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 0);
3698 b2op1 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 1);
3699 code2 = GET_CODE (XEXP (SET_SRC (PATTERN (b2)), 0));
3700 if (XEXP (SET_SRC (PATTERN (b2)), 1) == pc_rtx)
3701 code2 = reverse_condition (code2);
3702
3703 /* If they test the same things and knowing that B1 branches
3704 tells us whether or not B2 branches, check if we
3705 can thread the branch. */
3706 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
3707 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
3708 && (comparison_dominates_p (code1, code2)
3709 || comparison_dominates_p (code1, reverse_condition (code2))))
3710 {
3711 t1 = prev_nonnote_insn (b1);
3712 t2 = prev_nonnote_insn (b2);
3713
3714 while (t1 != 0 && t2 != 0)
3715 {
3716 if (t1 == 0 || t2 == 0)
3717 break;
3718
3719 if (t2 == label)
3720 {
3721 /* We have reached the target of the first branch.
3722 If there are no pending register equivalents,
3723 we know that this branch will either always
3724 succeed (if the senses of the two branches are
3725 the same) or always fail (if not). */
3726 rtx new_label;
3727
3728 if (num_same_regs != 0)
3729 break;
3730
3731 if (comparison_dominates_p (code1, code2))
3732 new_label = JUMP_LABEL (b2);
3733 else
3734 new_label = get_label_after (b2);
3735
3736 if (JUMP_LABEL (b1) != new_label
3737 && redirect_jump (b1, new_label))
3738 changed = 1;
3739 break;
3740 }
3741
3742 /* If either of these is not a normal insn (it might be
3743 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
3744 have already been skipped above.) Similarly, fail
3745 if the insns are different. */
3746 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
3747 || recog_memoized (t1) != recog_memoized (t2)
3748 || ! rtx_equal_for_thread_p (PATTERN (t1),
3749 PATTERN (t2), t2))
3750 break;
3751
3752 t1 = prev_nonnote_insn (t1);
3753 t2 = prev_nonnote_insn (t2);
3754 }
3755 }
3756 }
3757 }
3758}
3759\f
3760/* This is like RTX_EQUAL_P except that it knows about our handling of
3761 possibly equivalent registers and knows to consider volatile and
3762 modified objects as not equal.
3763
3764 YINSN is the insn containing Y. */
3765
3766int
3767rtx_equal_for_thread_p (x, y, yinsn)
3768 rtx x, y;
3769 rtx yinsn;
3770{
3771 register int i;
3772 register int j;
3773 register enum rtx_code code;
3774 register char *fmt;
3775
3776 code = GET_CODE (x);
3777 /* Rtx's of different codes cannot be equal. */
3778 if (code != GET_CODE (y))
3779 return 0;
3780
3781 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
3782 (REG:SI x) and (REG:HI x) are NOT equivalent. */
3783
3784 if (GET_MODE (x) != GET_MODE (y))
3785 return 0;
3786
3787 /* Handle special-cases first. */
3788 switch (code)
3789 {
3790 case REG:
3791 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
3792 return 1;
3793
3794 /* If neither is user variable or hard register, check for possible
3795 equivalence. */
3796 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
3797 || REGNO (x) < FIRST_PSEUDO_REGISTER
3798 || REGNO (y) < FIRST_PSEUDO_REGISTER)
3799 return 0;
3800
3801 if (same_regs[REGNO (x)] == -1)
3802 {
3803 same_regs[REGNO (x)] = REGNO (y);
3804 num_same_regs++;
3805
3806 /* If this is the first time we are seeing a register on the `Y'
3807 side, see if it is the last use. If not, we can't thread the
3808 jump, so mark it as not equivalent. */
3809 if (regno_last_uid[REGNO (y)] != INSN_UID (yinsn))
3810 return 0;
3811
3812 return 1;
3813 }
3814 else
3815 return (same_regs[REGNO (x)] == REGNO (y));
3816
3817 break;
3818
3819 case MEM:
6dc42e49 3820 /* If memory modified or either volatile, not equivalent.
15a63be1
RK
3821 Else, check address. */
3822 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
3823 return 0;
3824
3825 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
3826
3827 case ASM_INPUT:
3828 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
3829 return 0;
3830
3831 break;
3832
3833 case SET:
3834 /* Cancel a pending `same_regs' if setting equivalenced registers.
3835 Then process source. */
3836 if (GET_CODE (SET_DEST (x)) == REG
3837 && GET_CODE (SET_DEST (y)) == REG)
3838 {
3839 if (same_regs[REGNO (SET_DEST (x))] == REGNO (SET_DEST (y)))
3840 {
3841 same_regs[REGNO (SET_DEST (x))] = -1;
3842 num_same_regs--;
3843 }
3844 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
3845 return 0;
3846 }
3847 else
3848 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
3849 return 0;
3850
3851 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
3852
3853 case LABEL_REF:
3854 return XEXP (x, 0) == XEXP (y, 0);
3855
3856 case SYMBOL_REF:
3857 return XSTR (x, 0) == XSTR (y, 0);
3858 }
3859
3860 if (x == y)
3861 return 1;
3862
3863 fmt = GET_RTX_FORMAT (code);
3864 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3865 {
3866 switch (fmt[i])
3867 {
3868 case 'n':
3869 case 'i':
3870 if (XINT (x, i) != XINT (y, i))
3871 return 0;
3872 break;
3873
3874 case 'V':
3875 case 'E':
3876 /* Two vectors must have the same length. */
3877 if (XVECLEN (x, i) != XVECLEN (y, i))
3878 return 0;
3879
3880 /* And the corresponding elements must match. */
3881 for (j = 0; j < XVECLEN (x, i); j++)
3882 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
3883 XVECEXP (y, i, j), yinsn) == 0)
3884 return 0;
3885 break;
3886
3887 case 'e':
3888 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
3889 return 0;
3890 break;
3891
3892 case 'S':
3893 case 's':
3894 if (strcmp (XSTR (x, i), XSTR (y, i)))
3895 return 0;
3896 break;
3897
3898 case 'u':
3899 /* These are just backpointers, so they don't matter. */
3900 break;
3901
3902 case '0':
3903 break;
3904
3905 /* It is believed that rtx's at this level will never
3906 contain anything but integers and other rtx's,
3907 except for within LABEL_REFs and SYMBOL_REFs. */
3908 default:
3909 abort ();
3910 }
3911 }
3912 return 1;
3913}
This page took 0.393354 seconds and 5 git commands to generate.