]> gcc.gnu.org Git - gcc.git/blame - gcc/ira.c
Remove trailing white spaces.
[gcc.git] / gcc / ira.c
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) entry point.
66647d44 2 Copyright (C) 2006, 2007, 2008, 2009
058e97ec
VM
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22/* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
31
32 Major IRA notions are:
33
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
40
41 o *Cover class* is a register class belonging to a set of
42 non-intersecting register classes containing all of the
43 hard-registers available for register allocation. The set of
44 all cover classes for a target is defined in the corresponding
45 machine-description file according some criteria. Such notion
46 is needed because Chaitin-Briggs algorithm works on
47 non-intersected register classes.
48
49 o *Allocno* represents the live range of a pseudo-register in a
50 region. Besides the obvious attributes like the corresponding
51 pseudo-register number, cover class, conflicting allocnos and
52 conflicting hard-registers, there are a few allocno attributes
53 which are important for understanding the allocation algorithm:
54
55 - *Live ranges*. This is a list of ranges of *program
56 points* where the allocno lives. Program points represent
57 places where a pseudo can be born or become dead (there are
58 approximately two times more program points than the insns)
59 and they are represented by integers starting with 0. The
60 live ranges are used to find conflicts between allocnos of
61 different cover classes. They also play very important role
62 for the transformation of the IRA internal representation of
63 several regions into a one region representation. The later is
64 used during the reload pass work because each allocno
65 represents all of the corresponding pseudo-registers.
66
67 - *Hard-register costs*. This is a vector of size equal to the
68 number of available hard-registers of the allocno's cover
69 class. The cost of a callee-clobbered hard-register for an
70 allocno is increased by the cost of save/restore code around
71 the calls through the given allocno's life. If the allocno
72 is a move instruction operand and another operand is a
73 hard-register of the allocno's cover class, the cost of the
74 hard-register is decreased by the move cost.
75
76 When an allocno is assigned, the hard-register with minimal
77 full cost is used. Initially, a hard-register's full cost is
78 the corresponding value from the hard-register's cost vector.
79 If the allocno is connected by a *copy* (see below) to
80 another allocno which has just received a hard-register, the
81 cost of the hard-register is decreased. Before choosing a
82 hard-register for an allocno, the allocno's current costs of
83 the hard-registers are modified by the conflict hard-register
84 costs of all of the conflicting allocnos which are not
85 assigned yet.
86
87 - *Conflict hard-register costs*. This is a vector of the same
88 size as the hard-register costs vector. To permit an
89 unassigned allocno to get a better hard-register, IRA uses
90 this vector to calculate the final full cost of the
91 available hard-registers. Conflict hard-register costs of an
92 unassigned allocno are also changed with a change of the
93 hard-register cost of the allocno when a copy involving the
94 allocno is processed as described above. This is done to
95 show other unassigned allocnos that a given allocno prefers
96 some hard-registers in order to remove the move instruction
97 corresponding to the copy.
98
99 o *Cap*. If a pseudo-register does not live in a region but
100 lives in a nested region, IRA creates a special allocno called
101 a cap in the outer region. A region cap is also created for a
102 subregion cap.
103
104 o *Copy*. Allocnos can be connected by copies. Copies are used
105 to modify hard-register costs for allocnos during coloring.
106 Such modifications reflects a preference to use the same
107 hard-register for the allocnos connected by copies. Usually
108 copies are created for move insns (in this case it results in
109 register coalescing). But IRA also creates copies for operands
110 of an insn which should be assigned to the same hard-register
111 due to constraints in the machine description (it usually
112 results in removing a move generated in reload to satisfy
113 the constraints) and copies referring to the allocno which is
114 the output operand of an instruction and the allocno which is
115 an input operand dying in the instruction (creation of such
116 copies results in less register shuffling). IRA *does not*
117 create copies between the same register allocnos from different
118 regions because we use another technique for propagating
119 hard-register preference on the borders of regions.
120
121 Allocnos (including caps) for the upper region in the region tree
122 *accumulate* information important for coloring from allocnos with
123 the same pseudo-register from nested regions. This includes
124 hard-register and memory costs, conflicts with hard-registers,
125 allocno conflicts, allocno copies and more. *Thus, attributes for
126 allocnos in a region have the same values as if the region had no
127 subregions*. It means that attributes for allocnos in the
128 outermost region corresponding to the function have the same values
129 as though the allocation used only one region which is the entire
130 function. It also means that we can look at IRA work as if the
131 first IRA did allocation for all function then it improved the
132 allocation for loops then their subloops and so on.
133
134 IRA major passes are:
135
136 o Building IRA internal representation which consists of the
137 following subpasses:
138
139 * First, IRA builds regions and creates allocnos (file
140 ira-build.c) and initializes most of their attributes.
141
142 * Then IRA finds a cover class for each allocno and calculates
143 its initial (non-accumulated) cost of memory and each
144 hard-register of its cover class (file ira-cost.c).
145
146 * IRA creates live ranges of each allocno, calulates register
147 pressure for each cover class in each region, sets up
148 conflict hard registers for each allocno and info about calls
149 the allocno lives through (file ira-lives.c).
150
151 * IRA removes low register pressure loops from the regions
152 mostly to speed IRA up (file ira-build.c).
153
154 * IRA propagates accumulated allocno info from lower region
155 allocnos to corresponding upper region allocnos (file
156 ira-build.c).
157
158 * IRA creates all caps (file ira-build.c).
159
160 * Having live-ranges of allocnos and their cover classes, IRA
161 creates conflicting allocnos of the same cover class for each
162 allocno. Conflicting allocnos are stored as a bit vector or
163 array of pointers to the conflicting allocnos whatever is
164 more profitable (file ira-conflicts.c). At this point IRA
165 creates allocno copies.
166
167 o Coloring. Now IRA has all necessary info to start graph coloring
168 process. It is done in each region on top-down traverse of the
169 region tree (file ira-color.c). There are following subpasses:
b8698a0f 170
058e97ec
VM
171 * Optional aggressive coalescing of allocnos in the region.
172
173 * Putting allocnos onto the coloring stack. IRA uses Briggs
174 optimistic coloring which is a major improvement over
175 Chaitin's coloring. Therefore IRA does not spill allocnos at
176 this point. There is some freedom in the order of putting
177 allocnos on the stack which can affect the final result of
178 the allocation. IRA uses some heuristics to improve the order.
179
180 * Popping the allocnos from the stack and assigning them hard
181 registers. If IRA can not assign a hard register to an
182 allocno and the allocno is coalesced, IRA undoes the
183 coalescing and puts the uncoalesced allocnos onto the stack in
184 the hope that some such allocnos will get a hard register
185 separately. If IRA fails to assign hard register or memory
186 is more profitable for it, IRA spills the allocno. IRA
187 assigns the allocno the hard-register with minimal full
188 allocation cost which reflects the cost of usage of the
189 hard-register for the allocno and cost of usage of the
190 hard-register for allocnos conflicting with given allocno.
191
192 * After allono assigning in the region, IRA modifies the hard
193 register and memory costs for the corresponding allocnos in
194 the subregions to reflect the cost of possible loads, stores,
195 or moves on the border of the region and its subregions.
196 When default regional allocation algorithm is used
197 (-fira-algorithm=mixed), IRA just propagates the assignment
198 for allocnos if the register pressure in the region for the
199 corresponding cover class is less than number of available
200 hard registers for given cover class.
201
202 o Spill/restore code moving. When IRA performs an allocation
203 by traversing regions in top-down order, it does not know what
204 happens below in the region tree. Therefore, sometimes IRA
205 misses opportunities to perform a better allocation. A simple
206 optimization tries to improve allocation in a region having
207 subregions and containing in another region. If the
208 corresponding allocnos in the subregion are spilled, it spills
209 the region allocno if it is profitable. The optimization
210 implements a simple iterative algorithm performing profitable
211 transformations while they are still possible. It is fast in
212 practice, so there is no real need for a better time complexity
213 algorithm.
214
215 o Code change. After coloring, two allocnos representing the same
216 pseudo-register outside and inside a region respectively may be
217 assigned to different locations (hard-registers or memory). In
218 this case IRA creates and uses a new pseudo-register inside the
219 region and adds code to move allocno values on the region's
220 borders. This is done during top-down traversal of the regions
221 (file ira-emit.c). In some complicated cases IRA can create a
222 new allocno to move allocno values (e.g. when a swap of values
223 stored in two hard-registers is needed). At this stage, the
224 new allocno is marked as spilled. IRA still creates the
225 pseudo-register and the moves on the region borders even when
226 both allocnos were assigned to the same hard-register. If the
227 reload pass spills a pseudo-register for some reason, the
228 effect will be smaller because another allocno will still be in
229 the hard-register. In most cases, this is better then spilling
230 both allocnos. If reload does not change the allocation
231 for the two pseudo-registers, the trivial move will be removed
232 by post-reload optimizations. IRA does not generate moves for
233 allocnos assigned to the same hard register when the default
234 regional allocation algorithm is used and the register pressure
235 in the region for the corresponding allocno cover class is less
236 than number of available hard registers for given cover class.
237 IRA also does some optimizations to remove redundant stores and
238 to reduce code duplication on the region borders.
239
240 o Flattening internal representation. After changing code, IRA
241 transforms its internal representation for several regions into
242 one region representation (file ira-build.c). This process is
243 called IR flattening. Such process is more complicated than IR
244 rebuilding would be, but is much faster.
245
246 o After IR flattening, IRA tries to assign hard registers to all
247 spilled allocnos. This is impelemented by a simple and fast
248 priority coloring algorithm (see function
249 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
250 created during the code change pass can be assigned to hard
251 registers.
252
253 o At the end IRA calls the reload pass. The reload pass
254 communicates with IRA through several functions in file
255 ira-color.c to improve its decisions in
256
257 * sharing stack slots for the spilled pseudos based on IRA info
258 about pseudo-register conflicts.
259
260 * reassigning hard-registers to all spilled pseudos at the end
261 of each reload iteration.
262
263 * choosing a better hard-register to spill based on IRA info
264 about pseudo-register live ranges and the register pressure
265 in places where the pseudo-register lives.
266
267 IRA uses a lot of data representing the target processors. These
268 data are initilized in file ira.c.
269
270 If function has no loops (or the loops are ignored when
271 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
272 coloring (only instead of separate pass of coalescing, we use hard
273 register preferencing). In such case, IRA works much faster
274 because many things are not made (like IR flattening, the
275 spill/restore optimization, and the code change).
276
277 Literature is worth to read for better understanding the code:
278
279 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
280 Graph Coloring Register Allocation.
281
282 o David Callahan, Brian Koblenz. Register allocation via
283 hierarchical graph coloring.
284
285 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
286 Coloring Register Allocation: A Study of the Chaitin-Briggs and
287 Callahan-Koblenz Algorithms.
288
289 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
290 Register Allocation Based on Graph Fusion.
291
292 o Vladimir Makarov. The Integrated Register Allocator for GCC.
293
294 o Vladimir Makarov. The top-down register allocator for irregular
295 register file architectures.
296
297*/
298
299
300#include "config.h"
301#include "system.h"
302#include "coretypes.h"
303#include "tm.h"
304#include "regs.h"
305#include "rtl.h"
306#include "tm_p.h"
307#include "target.h"
308#include "flags.h"
309#include "obstack.h"
310#include "bitmap.h"
311#include "hard-reg-set.h"
312#include "basic-block.h"
313#include "expr.h"
314#include "recog.h"
315#include "params.h"
316#include "timevar.h"
317#include "tree-pass.h"
318#include "output.h"
2af2dbdc 319#include "except.h"
058e97ec
VM
320#include "reload.h"
321#include "errors.h"
322#include "integrate.h"
323#include "df.h"
324#include "ggc.h"
325#include "ira-int.h"
326
327
328/* A modified value of flag `-fira-verbose' used internally. */
329int internal_flag_ira_verbose;
330
331/* Dump file of the allocator if it is not NULL. */
332FILE *ira_dump_file;
333
334/* Pools for allocnos, copies, allocno live ranges. */
335alloc_pool allocno_pool, copy_pool, allocno_live_range_pool;
336
337/* The number of elements in the following array. */
338int ira_spilled_reg_stack_slots_num;
339
340/* The following array contains info about spilled pseudo-registers
341 stack slots used in current function so far. */
342struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
343
344/* Correspondingly overall cost of the allocation, cost of the
345 allocnos assigned to hard-registers, cost of the allocnos assigned
346 to memory, cost of loads, stores and register move insns generated
347 for pseudo-register live range splitting (see ira-emit.c). */
348int ira_overall_cost;
349int ira_reg_cost, ira_mem_cost;
350int ira_load_cost, ira_store_cost, ira_shuffle_cost;
351int ira_move_loops_num, ira_additional_jumps_num;
352
2af2dbdc
VM
353/* All registers that can be eliminated. */
354
355HARD_REG_SET eliminable_regset;
356
058e97ec
VM
357/* Map: hard regs X modes -> set of hard registers for storing value
358 of given mode starting with given hard register. */
359HARD_REG_SET ira_reg_mode_hard_regset[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
360
361/* The following two variables are array analogs of the macros
362 MEMORY_MOVE_COST and REGISTER_MOVE_COST. */
363short int ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
364move_table *ira_register_move_cost[MAX_MACHINE_MODE];
365
366/* Similar to may_move_in_cost but it is calculated in IRA instead of
367 regclass. Another difference is that we take only available hard
368 registers into account to figure out that one register class is a
369 subset of the another one. */
370move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
371
372/* Similar to may_move_out_cost but it is calculated in IRA instead of
373 regclass. Another difference is that we take only available hard
374 registers into account to figure out that one register class is a
375 subset of the another one. */
376move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
377
378/* Register class subset relation: TRUE if the first class is a subset
379 of the second one considering only hard registers available for the
380 allocation. */
381int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
382
383/* Temporary hard reg set used for a different calculation. */
384static HARD_REG_SET temp_hard_regset;
385
386\f
387
388/* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
389static void
390setup_reg_mode_hard_regset (void)
391{
392 int i, m, hard_regno;
393
394 for (m = 0; m < NUM_MACHINE_MODES; m++)
395 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
396 {
397 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
398 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
399 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
400 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
401 hard_regno + i);
402 }
403}
404
405\f
406
407/* Hard registers that can not be used for the register allocator for
408 all functions of the current compilation unit. */
409static HARD_REG_SET no_unit_alloc_regs;
410
411/* Array of the number of hard registers of given class which are
412 available for allocation. The order is defined by the
413 allocation order. */
414short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
415
416/* The number of elements of the above array for given register
417 class. */
418int ira_class_hard_regs_num[N_REG_CLASSES];
419
420/* Index (in ira_class_hard_regs) for given register class and hard
421 register (in general case a hard register can belong to several
422 register classes). The index is negative for hard registers
423 unavailable for the allocation. */
424short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
425
426/* The function sets up the three arrays declared above. */
427static void
428setup_class_hard_regs (void)
429{
430 int cl, i, hard_regno, n;
431 HARD_REG_SET processed_hard_reg_set;
432
433 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
434 /* We could call ORDER_REGS_FOR_LOCAL_ALLOC here (it is usually
435 putting hard callee-used hard registers first). But our
436 heuristics work better. */
437 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
438 {
439 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
440 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
441 CLEAR_HARD_REG_SET (processed_hard_reg_set);
7db7ed3c
VM
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
443 ira_class_hard_reg_index[cl][0] = -1;
058e97ec
VM
444 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
445 {
446#ifdef REG_ALLOC_ORDER
447 hard_regno = reg_alloc_order[i];
448#else
449 hard_regno = i;
b8698a0f 450#endif
058e97ec
VM
451 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
452 continue;
453 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
454 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
455 ira_class_hard_reg_index[cl][hard_regno] = -1;
456 else
457 {
458 ira_class_hard_reg_index[cl][hard_regno] = n;
459 ira_class_hard_regs[cl][n++] = hard_regno;
460 }
461 }
462 ira_class_hard_regs_num[cl] = n;
463 }
464}
465
466/* Number of given class hard registers available for the register
467 allocation for given classes. */
468int ira_available_class_regs[N_REG_CLASSES];
469
470/* Set up IRA_AVAILABLE_CLASS_REGS. */
471static void
472setup_available_class_regs (void)
473{
474 int i, j;
475
476 memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
477 for (i = 0; i < N_REG_CLASSES; i++)
478 {
479 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
480 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
481 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
482 if (TEST_HARD_REG_BIT (temp_hard_regset, j))
483 ira_available_class_regs[i]++;
484 }
485}
486
487/* Set up global variables defining info about hard registers for the
488 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
489 that we can use the hard frame pointer for the allocation. */
490static void
491setup_alloc_regs (bool use_hard_frame_p)
492{
493 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
494 if (! use_hard_frame_p)
495 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
496 setup_class_hard_regs ();
497 setup_available_class_regs ();
498}
499
500\f
501
502/* Set up IRA_MEMORY_MOVE_COST, IRA_REGISTER_MOVE_COST. */
503static void
504setup_class_subset_and_memory_move_costs (void)
505{
32e8bb8e 506 int cl, cl2, mode;
058e97ec
VM
507 HARD_REG_SET temp_hard_regset2;
508
509 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
510 ira_memory_move_cost[mode][NO_REGS][0]
511 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
512 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
513 {
514 if (cl != (int) NO_REGS)
515 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
516 {
bbbbb16a 517 ira_memory_move_cost[mode][cl][0] =
32e8bb8e
ILT
518 MEMORY_MOVE_COST ((enum machine_mode) mode,
519 (enum reg_class) cl, 0);
bbbbb16a 520 ira_memory_move_cost[mode][cl][1] =
32e8bb8e
ILT
521 MEMORY_MOVE_COST ((enum machine_mode) mode,
522 (enum reg_class) cl, 1);
058e97ec
VM
523 /* Costs for NO_REGS are used in cost calculation on the
524 1st pass when the preferred register classes are not
525 known yet. In this case we take the best scenario. */
526 if (ira_memory_move_cost[mode][NO_REGS][0]
527 > ira_memory_move_cost[mode][cl][0])
528 ira_memory_move_cost[mode][NO_REGS][0]
529 = ira_memory_move_cost[mode][cl][0];
530 if (ira_memory_move_cost[mode][NO_REGS][1]
531 > ira_memory_move_cost[mode][cl][1])
532 ira_memory_move_cost[mode][NO_REGS][1]
533 = ira_memory_move_cost[mode][cl][1];
534 }
535 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
536 {
537 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
538 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
539 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
540 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
541 ira_class_subset_p[cl][cl2]
542 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
543 }
544 }
545}
546
547\f
548
549/* Define the following macro if allocation through malloc if
550 preferable. */
551#define IRA_NO_OBSTACK
552
553#ifndef IRA_NO_OBSTACK
554/* Obstack used for storing all dynamic data (except bitmaps) of the
555 IRA. */
556static struct obstack ira_obstack;
557#endif
558
559/* Obstack used for storing all bitmaps of the IRA. */
560static struct bitmap_obstack ira_bitmap_obstack;
561
562/* Allocate memory of size LEN for IRA data. */
563void *
564ira_allocate (size_t len)
565{
566 void *res;
567
568#ifndef IRA_NO_OBSTACK
569 res = obstack_alloc (&ira_obstack, len);
570#else
571 res = xmalloc (len);
572#endif
573 return res;
574}
575
576/* Reallocate memory PTR of size LEN for IRA data. */
577void *
578ira_reallocate (void *ptr, size_t len)
579{
580 void *res;
581
582#ifndef IRA_NO_OBSTACK
583 res = obstack_alloc (&ira_obstack, len);
584#else
585 res = xrealloc (ptr, len);
586#endif
587 return res;
588}
589
590/* Free memory ADDR allocated for IRA data. */
591void
592ira_free (void *addr ATTRIBUTE_UNUSED)
593{
594#ifndef IRA_NO_OBSTACK
595 /* do nothing */
596#else
597 free (addr);
598#endif
599}
600
601
602/* Allocate and returns bitmap for IRA. */
603bitmap
604ira_allocate_bitmap (void)
605{
606 return BITMAP_ALLOC (&ira_bitmap_obstack);
607}
608
609/* Free bitmap B allocated for IRA. */
610void
611ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
612{
613 /* do nothing */
614}
615
616\f
617
618/* Output information about allocation of all allocnos (except for
619 caps) into file F. */
620void
621ira_print_disposition (FILE *f)
622{
623 int i, n, max_regno;
624 ira_allocno_t a;
625 basic_block bb;
626
627 fprintf (f, "Disposition:");
628 max_regno = max_reg_num ();
629 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
630 for (a = ira_regno_allocno_map[i];
631 a != NULL;
632 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
633 {
634 if (n % 4 == 0)
635 fprintf (f, "\n");
636 n++;
637 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
638 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
639 fprintf (f, "b%-3d", bb->index);
640 else
641 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
642 if (ALLOCNO_HARD_REGNO (a) >= 0)
643 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
644 else
645 fprintf (f, " mem");
646 }
647 fprintf (f, "\n");
648}
649
650/* Outputs information about allocation of all allocnos into
651 stderr. */
652void
653ira_debug_disposition (void)
654{
655 ira_print_disposition (stderr);
656}
657
658\f
659
660/* For each reg class, table listing all the classes contained in it
661 (excluding the class itself. Non-allocatable registers are
662 excluded from the consideration). */
663static enum reg_class alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
664
665/* Initialize the table of subclasses of each reg class. */
666static void
667setup_reg_subclasses (void)
668{
669 int i, j;
670 HARD_REG_SET temp_hard_regset2;
671
672 for (i = 0; i < N_REG_CLASSES; i++)
673 for (j = 0; j < N_REG_CLASSES; j++)
674 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
675
676 for (i = 0; i < N_REG_CLASSES; i++)
677 {
678 if (i == (int) NO_REGS)
679 continue;
680
681 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
682 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
4f341ea0 683 if (hard_reg_set_empty_p (temp_hard_regset))
058e97ec
VM
684 continue;
685 for (j = 0; j < N_REG_CLASSES; j++)
686 if (i != j)
687 {
688 enum reg_class *p;
689
690 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
691 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
692 if (! hard_reg_set_subset_p (temp_hard_regset,
693 temp_hard_regset2))
694 continue;
695 p = &alloc_reg_class_subclasses[j][0];
696 while (*p != LIM_REG_CLASSES) p++;
697 *p = (enum reg_class) i;
698 }
699 }
700}
701
702\f
703
704/* Number of cover classes. Cover classes is non-intersected register
705 classes containing all hard-registers available for the
706 allocation. */
707int ira_reg_class_cover_size;
708
709/* The array containing cover classes (see also comments for macro
710 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
711 used for this. */
712enum reg_class ira_reg_class_cover[N_REG_CLASSES];
713
714/* The number of elements in the subsequent array. */
715int ira_important_classes_num;
716
717/* The array containing non-empty classes (including non-empty cover
718 classes) which are subclasses of cover classes. Such classes is
719 important for calculation of the hard register usage costs. */
720enum reg_class ira_important_classes[N_REG_CLASSES];
721
722/* The array containing indexes of important classes in the previous
723 array. The array elements are defined only for important
724 classes. */
725int ira_important_class_nums[N_REG_CLASSES];
726
7db7ed3c 727/* Set the four global variables defined above. */
058e97ec
VM
728static void
729setup_cover_and_important_classes (void)
730{
32e8bb8e 731 int i, j, n, cl;
db1a8d98 732 bool set_p;
7db7ed3c 733 const enum reg_class *cover_classes;
058e97ec 734 HARD_REG_SET temp_hard_regset2;
7db7ed3c
VM
735 static enum reg_class classes[LIM_REG_CLASSES + 1];
736
737 if (targetm.ira_cover_classes == NULL)
738 cover_classes = NULL;
739 else
740 cover_classes = targetm.ira_cover_classes ();
741 if (cover_classes == NULL)
742 ira_assert (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY);
743 else
744 {
745 for (i = 0; (cl = cover_classes[i]) != LIM_REG_CLASSES; i++)
32e8bb8e 746 classes[i] = (enum reg_class) cl;
7db7ed3c
VM
747 classes[i] = LIM_REG_CLASSES;
748 }
749
750 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
751 {
752 n = 0;
753 for (i = 0; i <= LIM_REG_CLASSES; i++)
754 {
755 if (i == NO_REGS)
756 continue;
ff3cb468 757#ifdef CONSTRAINT_NUM_DEFINED_P
7db7ed3c 758 for (j = 0; j < CONSTRAINT__LIMIT; j++)
b65d6744 759 if ((int) REG_CLASS_FOR_CONSTRAINT ((enum constraint_num) j) == i)
7db7ed3c
VM
760 break;
761 if (j < CONSTRAINT__LIMIT)
762 {
569c72fc 763 classes[n++] = (enum reg_class) i;
7db7ed3c
VM
764 continue;
765 }
766#endif
767 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
768 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
769 for (j = 0; j < LIM_REG_CLASSES; j++)
770 {
771 if (i == j)
772 continue;
773 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
774 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
775 no_unit_alloc_regs);
776 if (hard_reg_set_equal_p (temp_hard_regset,
777 temp_hard_regset2))
778 break;
779 }
780 if (j >= i)
32e8bb8e 781 classes[n++] = (enum reg_class) i;
7db7ed3c
VM
782 }
783 classes[n] = LIM_REG_CLASSES;
784 }
058e97ec
VM
785
786 ira_reg_class_cover_size = 0;
787 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
788 {
789 for (j = 0; j < i; j++)
7db7ed3c 790 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY
32e8bb8e 791 && reg_classes_intersect_p ((enum reg_class) cl, classes[j]))
058e97ec
VM
792 gcc_unreachable ();
793 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
794 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
4f341ea0 795 if (! hard_reg_set_empty_p (temp_hard_regset))
32e8bb8e 796 ira_reg_class_cover[ira_reg_class_cover_size++] = (enum reg_class) cl;
058e97ec
VM
797 }
798 ira_important_classes_num = 0;
799 for (cl = 0; cl < N_REG_CLASSES; cl++)
800 {
801 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
802 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
4f341ea0 803 if (! hard_reg_set_empty_p (temp_hard_regset))
7db7ed3c 804 {
db1a8d98 805 set_p = false;
7db7ed3c
VM
806 for (j = 0; j < ira_reg_class_cover_size; j++)
807 {
808 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
809 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
810 COPY_HARD_REG_SET (temp_hard_regset2,
811 reg_class_contents[ira_reg_class_cover[j]]);
812 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
db1a8d98
VM
813 if ((enum reg_class) cl == ira_reg_class_cover[j]
814 || hard_reg_set_equal_p (temp_hard_regset,
815 temp_hard_regset2))
816 break;
7db7ed3c
VM
817 else if (hard_reg_set_subset_p (temp_hard_regset,
818 temp_hard_regset2))
819 set_p = true;
820 }
db1a8d98
VM
821 if (set_p && j >= ira_reg_class_cover_size)
822 ira_important_classes[ira_important_classes_num++]
823 = (enum reg_class) cl;
7db7ed3c 824 }
058e97ec 825 }
db1a8d98
VM
826 for (j = 0; j < ira_reg_class_cover_size; j++)
827 ira_important_classes[ira_important_classes_num++]
828 = ira_reg_class_cover[j];
058e97ec 829}
058e97ec
VM
830
831/* Map of all register classes to corresponding cover class containing
832 the given class. If given class is not a subset of a cover class,
833 we translate it into the cheapest cover class. */
834enum reg_class ira_class_translate[N_REG_CLASSES];
835
058e97ec
VM
836/* Set up array IRA_CLASS_TRANSLATE. */
837static void
838setup_class_translate (void)
839{
32e8bb8e
ILT
840 int cl, mode;
841 enum reg_class cover_class, best_class, *cl_ptr;
058e97ec
VM
842 int i, cost, min_cost, best_cost;
843
844 for (cl = 0; cl < N_REG_CLASSES; cl++)
845 ira_class_translate[cl] = NO_REGS;
b8698a0f 846
7db7ed3c
VM
847 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
848 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
849 {
850 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
851 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
852 for (i = 0; i < ira_reg_class_cover_size; i++)
853 {
854 HARD_REG_SET temp_hard_regset2;
b8698a0f 855
7db7ed3c
VM
856 cover_class = ira_reg_class_cover[i];
857 COPY_HARD_REG_SET (temp_hard_regset2,
858 reg_class_contents[cover_class]);
859 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
860 if (hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2))
861 ira_class_translate[cl] = cover_class;
862 }
863 }
058e97ec
VM
864 for (i = 0; i < ira_reg_class_cover_size; i++)
865 {
866 cover_class = ira_reg_class_cover[i];
7db7ed3c
VM
867 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY)
868 for (cl_ptr = &alloc_reg_class_subclasses[cover_class][0];
869 (cl = *cl_ptr) != LIM_REG_CLASSES;
870 cl_ptr++)
871 {
872 if (ira_class_translate[cl] == NO_REGS)
873 ira_class_translate[cl] = cover_class;
058e97ec 874#ifdef ENABLE_IRA_CHECKING
7db7ed3c
VM
875 else
876 {
877 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
878 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
879 if (! hard_reg_set_empty_p (temp_hard_regset))
880 gcc_unreachable ();
881 }
058e97ec 882#endif
7db7ed3c 883 }
058e97ec
VM
884 ira_class_translate[cover_class] = cover_class;
885 }
886 /* For classes which are not fully covered by a cover class (in
887 other words covered by more one cover class), use the cheapest
888 cover class. */
889 for (cl = 0; cl < N_REG_CLASSES; cl++)
890 {
891 if (cl == NO_REGS || ira_class_translate[cl] != NO_REGS)
892 continue;
893 best_class = NO_REGS;
894 best_cost = INT_MAX;
895 for (i = 0; i < ira_reg_class_cover_size; i++)
896 {
897 cover_class = ira_reg_class_cover[i];
898 COPY_HARD_REG_SET (temp_hard_regset,
899 reg_class_contents[cover_class]);
900 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
901 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
4f341ea0 902 if (! hard_reg_set_empty_p (temp_hard_regset))
058e97ec
VM
903 {
904 min_cost = INT_MAX;
905 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
906 {
907 cost = (ira_memory_move_cost[mode][cl][0]
908 + ira_memory_move_cost[mode][cl][1]);
909 if (min_cost > cost)
910 min_cost = cost;
911 }
912 if (best_class == NO_REGS || best_cost > min_cost)
913 {
914 best_class = cover_class;
915 best_cost = min_cost;
916 }
917 }
918 }
919 ira_class_translate[cl] = best_class;
920 }
921}
058e97ec 922
db1a8d98 923/* Order numbers of cover classes in original target cover class
b8698a0f 924 array, -1 for non-cover classes. */
db1a8d98
VM
925static int cover_class_order[N_REG_CLASSES];
926
927/* The function used to sort the important classes. */
928static int
929comp_reg_classes_func (const void *v1p, const void *v2p)
930{
931 enum reg_class cl1 = *(const enum reg_class *) v1p;
932 enum reg_class cl2 = *(const enum reg_class *) v2p;
933 int diff;
934
935 cl1 = ira_class_translate[cl1];
936 cl2 = ira_class_translate[cl2];
937 if (cl1 != NO_REGS && cl2 != NO_REGS
938 && (diff = cover_class_order[cl1] - cover_class_order[cl2]) != 0)
939 return diff;
940 return (int) cl1 - (int) cl2;
941}
942
943/* Reorder important classes according to the order of their cover
944 classes. Set up array ira_important_class_nums too. */
945static void
946reorder_important_classes (void)
947{
948 int i;
949
950 for (i = 0; i < N_REG_CLASSES; i++)
951 cover_class_order[i] = -1;
952 for (i = 0; i < ira_reg_class_cover_size; i++)
953 cover_class_order[ira_reg_class_cover[i]] = i;
954 qsort (ira_important_classes, ira_important_classes_num,
955 sizeof (enum reg_class), comp_reg_classes_func);
956 for (i = 0; i < ira_important_classes_num; i++)
957 ira_important_class_nums[ira_important_classes[i]] = i;
958}
959
058e97ec
VM
960/* The biggest important reg_class inside of intersection of the two
961 reg_classes (that is calculated taking only hard registers
962 available for allocation into account). If the both reg_classes
963 contain no hard registers available for allocation, the value is
964 calculated by taking all hard-registers including fixed ones into
965 account. */
966enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
967
7db7ed3c
VM
968/* True if the two classes (that is calculated taking only hard
969 registers available for allocation into account) are
970 intersected. */
971bool ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
972
973/* Important classes with end marker LIM_REG_CLASSES which are
974 supersets with given important class (the first index). That
975 includes given class itself. This is calculated taking only hard
976 registers available for allocation into account. */
977enum reg_class ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
978
058e97ec
VM
979/* The biggest important reg_class inside of union of the two
980 reg_classes (that is calculated taking only hard registers
981 available for allocation into account). If the both reg_classes
982 contain no hard registers available for allocation, the value is
983 calculated by taking all hard-registers including fixed ones into
984 account. In other words, the value is the corresponding
985 reg_class_subunion value. */
986enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
987
7db7ed3c 988/* Set up the above reg class relations. */
058e97ec 989static void
7db7ed3c 990setup_reg_class_relations (void)
058e97ec
VM
991{
992 int i, cl1, cl2, cl3;
993 HARD_REG_SET intersection_set, union_set, temp_set2;
7db7ed3c 994 bool important_class_p[N_REG_CLASSES];
058e97ec 995
7db7ed3c
VM
996 memset (important_class_p, 0, sizeof (important_class_p));
997 for (i = 0; i < ira_important_classes_num; i++)
998 important_class_p[ira_important_classes[i]] = true;
058e97ec
VM
999 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1000 {
7db7ed3c 1001 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
058e97ec
VM
1002 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1003 {
7db7ed3c 1004 ira_reg_classes_intersect_p[cl1][cl2] = false;
058e97ec
VM
1005 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1006 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1007 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1008 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1009 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
4f341ea0
RS
1010 if (hard_reg_set_empty_p (temp_hard_regset)
1011 && hard_reg_set_empty_p (temp_set2))
058e97ec
VM
1012 {
1013 for (i = 0;; i++)
1014 {
1015 cl3 = reg_class_subclasses[cl1][i];
1016 if (cl3 == LIM_REG_CLASSES)
1017 break;
1018 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
bbbbb16a
ILT
1019 (enum reg_class) cl3))
1020 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
058e97ec
VM
1021 }
1022 ira_reg_class_union[cl1][cl2] = reg_class_subunion[cl1][cl2];
1023 continue;
1024 }
7db7ed3c
VM
1025 ira_reg_classes_intersect_p[cl1][cl2]
1026 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1027 if (important_class_p[cl1] && important_class_p[cl2]
1028 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1029 {
1030 enum reg_class *p;
1031
1032 p = &ira_reg_class_super_classes[cl1][0];
1033 while (*p != LIM_REG_CLASSES)
1034 p++;
1035 *p++ = (enum reg_class) cl2;
1036 *p = LIM_REG_CLASSES;
1037 }
058e97ec
VM
1038 ira_reg_class_union[cl1][cl2] = NO_REGS;
1039 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1040 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1041 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1042 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1043 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1044 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1045 for (i = 0; i < ira_important_classes_num; i++)
1046 {
1047 cl3 = ira_important_classes[i];
1048 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1049 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1050 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1051 {
1052 COPY_HARD_REG_SET
1053 (temp_set2,
1054 reg_class_contents[(int)
1055 ira_reg_class_intersect[cl1][cl2]]);
1056 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1057 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1058 /* Ignore unavailable hard registers and prefer
1059 smallest class for debugging purposes. */
1060 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1061 && hard_reg_set_subset_p
1062 (reg_class_contents[cl3],
1063 reg_class_contents
1064 [(int) ira_reg_class_intersect[cl1][cl2]])))
1065 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1066 }
1067 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
1068 {
1069 COPY_HARD_REG_SET
1070 (temp_set2,
1071 reg_class_contents[(int) ira_reg_class_union[cl1][cl2]]);
1072 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1073 if (ira_reg_class_union[cl1][cl2] == NO_REGS
1074 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
b8698a0f 1075
058e97ec
VM
1076 && (! hard_reg_set_equal_p (temp_set2,
1077 temp_hard_regset)
1078 /* Ignore unavailable hard registers and
1079 prefer smallest class for debugging
1080 purposes. */
1081 || hard_reg_set_subset_p
1082 (reg_class_contents[cl3],
1083 reg_class_contents
1084 [(int) ira_reg_class_union[cl1][cl2]]))))
1085 ira_reg_class_union[cl1][cl2] = (enum reg_class) cl3;
1086 }
1087 }
1088 }
1089 }
1090}
1091
058e97ec
VM
1092/* Output all cover classes and the translation map into file F. */
1093static void
1094print_class_cover (FILE *f)
1095{
1096 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1097 int i;
1098
1099 fprintf (f, "Class cover:\n");
1100 for (i = 0; i < ira_reg_class_cover_size; i++)
1101 fprintf (f, " %s", reg_class_names[ira_reg_class_cover[i]]);
1102 fprintf (f, "\nClass translation:\n");
1103 for (i = 0; i < N_REG_CLASSES; i++)
1104 fprintf (f, " %s -> %s\n", reg_class_names[i],
1105 reg_class_names[ira_class_translate[i]]);
1106}
1107
1108/* Output all cover classes and the translation map into
1109 stderr. */
1110void
1111ira_debug_class_cover (void)
1112{
1113 print_class_cover (stderr);
1114}
1115
1116/* Set up different arrays concerning class subsets, cover and
1117 important classes. */
1118static void
1119find_reg_class_closure (void)
1120{
1121 setup_reg_subclasses ();
7db7ed3c
VM
1122 setup_cover_and_important_classes ();
1123 setup_class_translate ();
db1a8d98 1124 reorder_important_classes ();
7db7ed3c 1125 setup_reg_class_relations ();
058e97ec
VM
1126}
1127
1128\f
1129
c0683a82
VM
1130/* Map: hard register number -> cover class it belongs to. If the
1131 corresponding class is NO_REGS, the hard register is not available
1132 for allocation. */
1133enum reg_class ira_hard_regno_cover_class[FIRST_PSEUDO_REGISTER];
1134
1135/* Set up the array above. */
1136static void
1137setup_hard_regno_cover_class (void)
1138{
1139 int i, j;
1140 enum reg_class cl;
1141
1142 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1143 {
1144 ira_hard_regno_cover_class[i] = NO_REGS;
1145 for (j = 0; j < ira_reg_class_cover_size; j++)
1146 {
1147 cl = ira_reg_class_cover[j];
1148 if (ira_class_hard_reg_index[cl][i] >= 0)
1149 {
1150 ira_hard_regno_cover_class[i] = cl;
1151 break;
1152 }
1153 }
b8698a0f 1154
c0683a82
VM
1155 }
1156}
1157
1158\f
1159
058e97ec
VM
1160/* Map: register class x machine mode -> number of hard registers of
1161 given class needed to store value of given mode. If the number is
1162 different, the size will be negative. */
1163int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
1164
1165/* Maximal value of the previous array elements. */
1166int ira_max_nregs;
1167
1168/* Form IRA_REG_CLASS_NREGS map. */
1169static void
1170setup_reg_class_nregs (void)
1171{
bbbbb16a 1172 int cl, m;
058e97ec
VM
1173
1174 ira_max_nregs = -1;
1175 for (cl = 0; cl < N_REG_CLASSES; cl++)
1176 for (m = 0; m < MAX_MACHINE_MODE; m++)
1177 {
bbbbb16a
ILT
1178 ira_reg_class_nregs[cl][m] = CLASS_MAX_NREGS ((enum reg_class) cl,
1179 (enum machine_mode) m);
058e97ec
VM
1180 if (ira_max_nregs < ira_reg_class_nregs[cl][m])
1181 ira_max_nregs = ira_reg_class_nregs[cl][m];
1182 }
1183}
1184
1185\f
1186
1187/* Array whose values are hard regset of hard registers available for
1188 the allocation of given register class whose HARD_REGNO_MODE_OK
1189 values for given mode are zero. */
1190HARD_REG_SET prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
1191
1192/* Set up PROHIBITED_CLASS_MODE_REGS. */
1193static void
1194setup_prohibited_class_mode_regs (void)
1195{
1196 int i, j, k, hard_regno;
1197 enum reg_class cl;
1198
1199 for (i = 0; i < ira_reg_class_cover_size; i++)
1200 {
1201 cl = ira_reg_class_cover[i];
1202 for (j = 0; j < NUM_MACHINE_MODES; j++)
1203 {
1204 CLEAR_HARD_REG_SET (prohibited_class_mode_regs[cl][j]);
1205 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1206 {
1207 hard_regno = ira_class_hard_regs[cl][k];
bbbbb16a 1208 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
058e97ec
VM
1209 SET_HARD_REG_BIT (prohibited_class_mode_regs[cl][j],
1210 hard_regno);
1211 }
1212 }
1213 }
1214}
1215
1216\f
1217
1218/* Allocate and initialize IRA_REGISTER_MOVE_COST,
1219 IRA_MAY_MOVE_IN_COST, and IRA_MAY_MOVE_OUT_COST for MODE if it is
1220 not done yet. */
1221void
1222ira_init_register_move_cost (enum machine_mode mode)
1223{
1224 int cl1, cl2;
1225
1226 ira_assert (ira_register_move_cost[mode] == NULL
1227 && ira_may_move_in_cost[mode] == NULL
1228 && ira_may_move_out_cost[mode] == NULL);
1229 if (move_cost[mode] == NULL)
1230 init_move_cost (mode);
1231 ira_register_move_cost[mode] = move_cost[mode];
1232 /* Don't use ira_allocate because the tables exist out of scope of a
1233 IRA call. */
1234 ira_may_move_in_cost[mode]
1235 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1236 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1237 sizeof (move_table) * N_REG_CLASSES);
1238 ira_may_move_out_cost[mode]
1239 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1240 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1241 sizeof (move_table) * N_REG_CLASSES);
1242 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1243 {
1244 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1245 {
1246 if (ira_class_subset_p[cl1][cl2])
1247 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1248 if (ira_class_subset_p[cl2][cl1])
1249 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1250 }
1251 }
1252}
1253
1254\f
1255
058e97ec
VM
1256/* This is called once during compiler work. It sets up
1257 different arrays whose values don't depend on the compiled
1258 function. */
1259void
1260ira_init_once (void)
1261{
32e8bb8e 1262 int mode;
058e97ec 1263
058e97ec
VM
1264 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1265 {
1266 ira_register_move_cost[mode] = NULL;
1267 ira_may_move_in_cost[mode] = NULL;
1268 ira_may_move_out_cost[mode] = NULL;
1269 }
1270 ira_init_costs_once ();
1271}
1272
1273/* Free ira_register_move_cost, ira_may_move_in_cost, and
1274 ira_may_move_out_cost for each mode. */
1275static void
1276free_register_move_costs (void)
1277{
32e8bb8e 1278 int mode;
058e97ec
VM
1279
1280 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1281 {
1282 if (ira_may_move_in_cost[mode] != NULL)
1283 free (ira_may_move_in_cost[mode]);
1284 if (ira_may_move_out_cost[mode] != NULL)
1285 free (ira_may_move_out_cost[mode]);
1286 ira_register_move_cost[mode] = NULL;
1287 ira_may_move_in_cost[mode] = NULL;
1288 ira_may_move_out_cost[mode] = NULL;
1289 }
1290}
1291
1292/* This is called every time when register related information is
1293 changed. */
1294void
1295ira_init (void)
1296{
1297 free_register_move_costs ();
1298 setup_reg_mode_hard_regset ();
1299 setup_alloc_regs (flag_omit_frame_pointer != 0);
1300 setup_class_subset_and_memory_move_costs ();
1301 find_reg_class_closure ();
c0683a82 1302 setup_hard_regno_cover_class ();
058e97ec
VM
1303 setup_reg_class_nregs ();
1304 setup_prohibited_class_mode_regs ();
1305 ira_init_costs ();
1306}
1307
1308/* Function called once at the end of compiler work. */
1309void
1310ira_finish_once (void)
1311{
1312 ira_finish_costs_once ();
1313 free_register_move_costs ();
1314}
1315
1316\f
1317
1318/* Array whose values are hard regset of hard registers for which
1319 move of the hard register in given mode into itself is
1320 prohibited. */
1321HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
1322
1323/* Flag of that the above array has been initialized. */
1324static bool ira_prohibited_mode_move_regs_initialized_p = false;
1325
1326/* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1327static void
1328setup_prohibited_mode_move_regs (void)
1329{
1330 int i, j;
1331 rtx test_reg1, test_reg2, move_pat, move_insn;
1332
1333 if (ira_prohibited_mode_move_regs_initialized_p)
1334 return;
1335 ira_prohibited_mode_move_regs_initialized_p = true;
1336 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1337 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1338 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1339 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, move_pat, -1, 0);
1340 for (i = 0; i < NUM_MACHINE_MODES; i++)
1341 {
1342 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1343 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1344 {
bbbbb16a 1345 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
058e97ec
VM
1346 continue;
1347 SET_REGNO (test_reg1, j);
32e8bb8e 1348 PUT_MODE (test_reg1, (enum machine_mode) i);
058e97ec 1349 SET_REGNO (test_reg2, j);
32e8bb8e 1350 PUT_MODE (test_reg2, (enum machine_mode) i);
058e97ec
VM
1351 INSN_CODE (move_insn) = -1;
1352 recog_memoized (move_insn);
1353 if (INSN_CODE (move_insn) < 0)
1354 continue;
1355 extract_insn (move_insn);
1356 if (! constrain_operands (1))
1357 continue;
1358 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1359 }
1360 }
1361}
1362
1363\f
1364
1365/* Function specific hard registers that can not be used for the
1366 register allocation. */
1367HARD_REG_SET ira_no_alloc_regs;
1368
1369/* Return TRUE if *LOC contains an asm. */
1370static int
1371insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1372{
1373 if ( !*loc)
1374 return FALSE;
1375 if (GET_CODE (*loc) == ASM_OPERANDS)
1376 return TRUE;
1377 return FALSE;
1378}
1379
1380
1381/* Return TRUE if INSN contains an ASM. */
1382static bool
1383insn_contains_asm (rtx insn)
1384{
1385 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1386}
1387
1388/* Set up regs_asm_clobbered. */
1389static void
1390compute_regs_asm_clobbered (char *regs_asm_clobbered)
1391{
1392 basic_block bb;
1393
1394 memset (regs_asm_clobbered, 0, sizeof (char) * FIRST_PSEUDO_REGISTER);
b8698a0f 1395
058e97ec
VM
1396 FOR_EACH_BB (bb)
1397 {
1398 rtx insn;
1399 FOR_BB_INSNS_REVERSE (bb, insn)
1400 {
57512f53 1401 df_ref *def_rec;
058e97ec
VM
1402
1403 if (insn_contains_asm (insn))
1404 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1405 {
57512f53 1406 df_ref def = *def_rec;
058e97ec
VM
1407 unsigned int dregno = DF_REF_REGNO (def);
1408 if (dregno < FIRST_PSEUDO_REGISTER)
1409 {
1410 unsigned int i;
1411 enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
b8698a0f 1412 unsigned int end = dregno
058e97ec
VM
1413 + hard_regno_nregs[dregno][mode] - 1;
1414
1415 for (i = dregno; i <= end; ++i)
1416 regs_asm_clobbered[i] = 1;
1417 }
1418 }
1419 }
1420 }
1421}
1422
1423
1424/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
ce18efcb
VM
1425void
1426ira_setup_eliminable_regset (void)
058e97ec 1427{
058e97ec
VM
1428 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an
1429 asm. Unlike regs_ever_live, elements of this array corresponding
1430 to eliminable regs (like the frame pointer) are set if an asm
1431 sets them. */
1432 char *regs_asm_clobbered
1433 = (char *) alloca (FIRST_PSEUDO_REGISTER * sizeof (char));
1434#ifdef ELIMINABLE_REGS
89ceba31 1435 int i;
058e97ec
VM
1436 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1437#endif
1438 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1439 sp for alloca. So we can't eliminate the frame pointer in that
1440 case. At some point, we should improve this by emitting the
1441 sp-adjusting insns for this case. */
1442 int need_fp
1443 = (! flag_omit_frame_pointer
1444 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
d809253a
EB
1445 /* We need the frame pointer to catch stack overflow exceptions
1446 if the stack pointer is moving. */
1447 || (flag_stack_check && STACK_CHECK_MOVING_SP)
058e97ec
VM
1448 || crtl->accesses_prior_frames
1449 || crtl->stack_realign_needed
b52b1749 1450 || targetm.frame_pointer_required ());
058e97ec
VM
1451
1452 frame_pointer_needed = need_fp;
1453
1454 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1455 CLEAR_HARD_REG_SET (eliminable_regset);
1456
1457 compute_regs_asm_clobbered (regs_asm_clobbered);
1458 /* Build the regset of all eliminable registers and show we can't
1459 use those that we already know won't be eliminated. */
1460#ifdef ELIMINABLE_REGS
1461 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1462 {
1463 bool cannot_elim
7b5cbb57 1464 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
058e97ec
VM
1465 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1466
1467 if (! regs_asm_clobbered[eliminables[i].from])
1468 {
1469 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1470
1471 if (cannot_elim)
1472 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1473 }
1474 else if (cannot_elim)
1475 error ("%s cannot be used in asm here",
1476 reg_names[eliminables[i].from]);
1477 else
1478 df_set_regs_ever_live (eliminables[i].from, true);
1479 }
1480#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1481 if (! regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM])
1482 {
1483 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1484 if (need_fp)
1485 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1486 }
1487 else if (need_fp)
1488 error ("%s cannot be used in asm here",
1489 reg_names[HARD_FRAME_POINTER_REGNUM]);
1490 else
1491 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1492#endif
1493
1494#else
1495 if (! regs_asm_clobbered[FRAME_POINTER_REGNUM])
1496 {
1497 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1498 if (need_fp)
1499 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1500 }
1501 else if (need_fp)
1502 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1503 else
1504 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1505#endif
1506}
1507
1508\f
1509
1510/* The length of the following two arrays. */
1511int ira_reg_equiv_len;
1512
1513/* The element value is TRUE if the corresponding regno value is
1514 invariant. */
1515bool *ira_reg_equiv_invariant_p;
1516
1517/* The element value is equiv constant of given pseudo-register or
1518 NULL_RTX. */
1519rtx *ira_reg_equiv_const;
1520
1521/* Set up the two arrays declared above. */
1522static void
1523find_reg_equiv_invariant_const (void)
1524{
1525 int i;
1526 bool invariant_p;
1527 rtx list, insn, note, constant, x;
1528
1529 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1530 {
1531 constant = NULL_RTX;
1532 invariant_p = false;
1533 for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
1534 {
1535 insn = XEXP (list, 0);
1536 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
b8698a0f 1537
058e97ec
VM
1538 if (note == NULL_RTX)
1539 continue;
1540
1541 x = XEXP (note, 0);
b8698a0f 1542
058e97ec
VM
1543 if (! function_invariant_p (x)
1544 || ! flag_pic
1545 /* A function invariant is often CONSTANT_P but may
1546 include a register. We promise to only pass CONSTANT_P
1547 objects to LEGITIMATE_PIC_OPERAND_P. */
1548 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
1549 {
1550 /* It can happen that a REG_EQUIV note contains a MEM
1551 that is not a legitimate memory operand. As later
1552 stages of the reload assume that all addresses found
1553 in the reg_equiv_* arrays were originally legitimate,
1554 we ignore such REG_EQUIV notes. */
1555 if (memory_operand (x, VOIDmode))
1556 invariant_p = MEM_READONLY_P (x);
1557 else if (function_invariant_p (x))
1558 {
1559 if (GET_CODE (x) == PLUS
1560 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1561 invariant_p = true;
1562 else
1563 constant = x;
1564 }
1565 }
1566 }
1567 ira_reg_equiv_invariant_p[i] = invariant_p;
1568 ira_reg_equiv_const[i] = constant;
1569 }
1570}
1571
1572\f
1573
2af2dbdc
VM
1574/* Vector of substitutions of register numbers,
1575 used to map pseudo regs into hardware regs.
1576 This is set up as a result of register allocation.
1577 Element N is the hard reg assigned to pseudo reg N,
1578 or is -1 if no hard reg was assigned.
1579 If N is a hard reg number, element N is N. */
1580short *reg_renumber;
1581
058e97ec
VM
1582/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1583 the allocation found by IRA. */
1584static void
1585setup_reg_renumber (void)
1586{
1587 int regno, hard_regno;
1588 ira_allocno_t a;
1589 ira_allocno_iterator ai;
1590
1591 caller_save_needed = 0;
1592 FOR_EACH_ALLOCNO (a, ai)
1593 {
1594 /* There are no caps at this point. */
1595 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1596 if (! ALLOCNO_ASSIGNED_P (a))
1597 /* It can happen if A is not referenced but partially anticipated
1598 somewhere in a region. */
1599 ALLOCNO_ASSIGNED_P (a) = true;
1600 ira_free_allocno_updated_costs (a);
1601 hard_regno = ALLOCNO_HARD_REGNO (a);
1602 regno = (int) REGNO (ALLOCNO_REG (a));
1603 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1604 if (hard_regno >= 0 && ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1605 && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1606 call_used_reg_set))
1607 {
1608 ira_assert (!optimize || flag_caller_saves
1609 || regno >= ira_reg_equiv_len
1610 || ira_reg_equiv_const[regno]
1611 || ira_reg_equiv_invariant_p[regno]);
1612 caller_save_needed = 1;
1613 }
1614 }
1615}
1616
1617/* Set up allocno assignment flags for further allocation
1618 improvements. */
1619static void
1620setup_allocno_assignment_flags (void)
1621{
1622 int hard_regno;
1623 ira_allocno_t a;
1624 ira_allocno_iterator ai;
1625
1626 FOR_EACH_ALLOCNO (a, ai)
1627 {
1628 if (! ALLOCNO_ASSIGNED_P (a))
1629 /* It can happen if A is not referenced but partially anticipated
1630 somewhere in a region. */
1631 ira_free_allocno_updated_costs (a);
1632 hard_regno = ALLOCNO_HARD_REGNO (a);
1633 /* Don't assign hard registers to allocnos which are destination
1634 of removed store at the end of loop. It has no sense to keep
1635 the same value in different hard registers. It is also
1636 impossible to assign hard registers correctly to such
1637 allocnos because the cost info and info about intersected
1638 calls are incorrect for them. */
1639 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1640 || ALLOCNO_MEM_OPTIMIZED_DEST_P (a)
1641 || (ALLOCNO_MEMORY_COST (a)
1642 - ALLOCNO_COVER_CLASS_COST (a)) < 0);
1643 ira_assert (hard_regno < 0
1644 || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1645 reg_class_contents
1646 [ALLOCNO_COVER_CLASS (a)]));
1647 }
1648}
1649
1650/* Evaluate overall allocation cost and the costs for using hard
1651 registers and memory for allocnos. */
1652static void
1653calculate_allocation_cost (void)
1654{
1655 int hard_regno, cost;
1656 ira_allocno_t a;
1657 ira_allocno_iterator ai;
1658
1659 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1660 FOR_EACH_ALLOCNO (a, ai)
1661 {
1662 hard_regno = ALLOCNO_HARD_REGNO (a);
1663 ira_assert (hard_regno < 0
1664 || ! ira_hard_reg_not_in_set_p
1665 (hard_regno, ALLOCNO_MODE (a),
b8698a0f 1666 reg_class_contents[ALLOCNO_COVER_CLASS (a)]));
058e97ec
VM
1667 if (hard_regno < 0)
1668 {
1669 cost = ALLOCNO_MEMORY_COST (a);
1670 ira_mem_cost += cost;
1671 }
1672 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1673 {
1674 cost = (ALLOCNO_HARD_REG_COSTS (a)
1675 [ira_class_hard_reg_index
1676 [ALLOCNO_COVER_CLASS (a)][hard_regno]]);
1677 ira_reg_cost += cost;
1678 }
1679 else
1680 {
1681 cost = ALLOCNO_COVER_CLASS_COST (a);
1682 ira_reg_cost += cost;
1683 }
1684 ira_overall_cost += cost;
1685 }
1686
1687 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1688 {
1689 fprintf (ira_dump_file,
1690 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
1691 ira_overall_cost, ira_reg_cost, ira_mem_cost,
1692 ira_load_cost, ira_store_cost, ira_shuffle_cost);
1693 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
1694 ira_move_loops_num, ira_additional_jumps_num);
1695 }
1696
1697}
1698
1699#ifdef ENABLE_IRA_CHECKING
1700/* Check the correctness of the allocation. We do need this because
1701 of complicated code to transform more one region internal
1702 representation into one region representation. */
1703static void
1704check_allocation (void)
1705{
1706 ira_allocno_t a, conflict_a;
1707 int hard_regno, conflict_hard_regno, nregs, conflict_nregs;
1708 ira_allocno_conflict_iterator aci;
1709 ira_allocno_iterator ai;
1710
1711 FOR_EACH_ALLOCNO (a, ai)
1712 {
1713 if (ALLOCNO_CAP_MEMBER (a) != NULL
1714 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
1715 continue;
1716 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
1717 FOR_EACH_ALLOCNO_CONFLICT (a, conflict_a, aci)
1718 if ((conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a)) >= 0)
1719 {
1720 conflict_nregs
1721 = (hard_regno_nregs
1722 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
1723 if ((conflict_hard_regno <= hard_regno
1724 && hard_regno < conflict_hard_regno + conflict_nregs)
1725 || (hard_regno <= conflict_hard_regno
1726 && conflict_hard_regno < hard_regno + nregs))
1727 {
1728 fprintf (stderr, "bad allocation for %d and %d\n",
1729 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
1730 gcc_unreachable ();
1731 }
1732 }
1733 }
1734}
1735#endif
1736
1737/* Fix values of array REG_EQUIV_INIT after live range splitting done
1738 by IRA. */
1739static void
1740fix_reg_equiv_init (void)
1741{
1742 int max_regno = max_reg_num ();
1743 int i, new_regno;
1744 rtx x, prev, next, insn, set;
b8698a0f 1745
058e97ec
VM
1746 if (reg_equiv_init_size < max_regno)
1747 {
1748 reg_equiv_init
1749 = (rtx *) ggc_realloc (reg_equiv_init, max_regno * sizeof (rtx));
1750 while (reg_equiv_init_size < max_regno)
1751 reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
1752 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1753 for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
1754 {
1755 next = XEXP (x, 1);
1756 insn = XEXP (x, 0);
1757 set = single_set (insn);
1758 ira_assert (set != NULL_RTX
1759 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
1760 if (REG_P (SET_DEST (set))
1761 && ((int) REGNO (SET_DEST (set)) == i
1762 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
1763 new_regno = REGNO (SET_DEST (set));
1764 else if (REG_P (SET_SRC (set))
1765 && ((int) REGNO (SET_SRC (set)) == i
1766 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
1767 new_regno = REGNO (SET_SRC (set));
1768 else
1769 gcc_unreachable ();
1770 if (new_regno == i)
1771 prev = x;
1772 else
1773 {
1774 if (prev == NULL_RTX)
1775 reg_equiv_init[i] = next;
1776 else
1777 XEXP (prev, 1) = next;
1778 XEXP (x, 1) = reg_equiv_init[new_regno];
1779 reg_equiv_init[new_regno] = x;
1780 }
1781 }
1782 }
1783}
1784
1785#ifdef ENABLE_IRA_CHECKING
1786/* Print redundant memory-memory copies. */
1787static void
1788print_redundant_copies (void)
1789{
1790 int hard_regno;
1791 ira_allocno_t a;
1792 ira_copy_t cp, next_cp;
1793 ira_allocno_iterator ai;
b8698a0f 1794
058e97ec
VM
1795 FOR_EACH_ALLOCNO (a, ai)
1796 {
1797 if (ALLOCNO_CAP_MEMBER (a) != NULL)
1798 /* It is a cap. */
1799 continue;
1800 hard_regno = ALLOCNO_HARD_REGNO (a);
1801 if (hard_regno >= 0)
1802 continue;
1803 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
1804 if (cp->first == a)
1805 next_cp = cp->next_first_allocno_copy;
1806 else
1807 {
1808 next_cp = cp->next_second_allocno_copy;
1809 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
1810 && cp->insn != NULL_RTX
1811 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
1812 fprintf (ira_dump_file,
1813 " Redundant move from %d(freq %d):%d\n",
1814 INSN_UID (cp->insn), cp->freq, hard_regno);
1815 }
1816 }
1817}
1818#endif
1819
1820/* Setup preferred and alternative classes for new pseudo-registers
1821 created by IRA starting with START. */
1822static void
1823setup_preferred_alternate_classes_for_new_pseudos (int start)
1824{
1825 int i, old_regno;
1826 int max_regno = max_reg_num ();
1827
1828 for (i = start; i < max_regno; i++)
1829 {
1830 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
b8698a0f 1831 ira_assert (i != old_regno);
058e97ec 1832 setup_reg_classes (i, reg_preferred_class (old_regno),
ce18efcb
VM
1833 reg_alternate_class (old_regno),
1834 reg_cover_class (old_regno));
058e97ec
VM
1835 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1836 fprintf (ira_dump_file,
1837 " New r%d: setting preferred %s, alternative %s\n",
1838 i, reg_class_names[reg_preferred_class (old_regno)],
1839 reg_class_names[reg_alternate_class (old_regno)]);
1840 }
1841}
1842
1843\f
1844
1845/* Regional allocation can create new pseudo-registers. This function
1846 expands some arrays for pseudo-registers. */
1847static void
1848expand_reg_info (int old_size)
1849{
1850 int i;
1851 int size = max_reg_num ();
1852
1853 resize_reg_info ();
1854 for (i = old_size; i < size; i++)
ce18efcb 1855 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
058e97ec
VM
1856}
1857
3553f0bb
VM
1858/* Return TRUE if there is too high register pressure in the function.
1859 It is used to decide when stack slot sharing is worth to do. */
1860static bool
1861too_high_register_pressure_p (void)
1862{
1863 int i;
1864 enum reg_class cover_class;
b8698a0f 1865
3553f0bb
VM
1866 for (i = 0; i < ira_reg_class_cover_size; i++)
1867 {
1868 cover_class = ira_reg_class_cover[i];
1869 if (ira_loop_tree_root->reg_pressure[cover_class] > 10000)
1870 return true;
1871 }
1872 return false;
1873}
1874
058e97ec
VM
1875\f
1876
2af2dbdc
VM
1877/* Indicate that hard register number FROM was eliminated and replaced with
1878 an offset from hard register number TO. The status of hard registers live
1879 at the start of a basic block is updated by replacing a use of FROM with
1880 a use of TO. */
1881
1882void
1883mark_elimination (int from, int to)
1884{
1885 basic_block bb;
1886
1887 FOR_EACH_BB (bb)
1888 {
1889 /* We don't use LIVE info in IRA. */
1890 regset r = DF_LR_IN (bb);
1891
1892 if (REGNO_REG_SET_P (r, from))
1893 {
1894 CLEAR_REGNO_REG_SET (r, from);
1895 SET_REGNO_REG_SET (r, to);
1896 }
1897 }
1898}
1899
1900\f
1901
1902struct equivalence
1903{
2af2dbdc
VM
1904 /* Set when a REG_EQUIV note is found or created. Use to
1905 keep track of what memory accesses might be created later,
1906 e.g. by reload. */
1907 rtx replacement;
1908 rtx *src_p;
8f5929e1
JJ
1909 /* The list of each instruction which initializes this register. */
1910 rtx init_insns;
2af2dbdc
VM
1911 /* Loop depth is used to recognize equivalences which appear
1912 to be present within the same loop (or in an inner loop). */
1913 int loop_depth;
2af2dbdc
VM
1914 /* Nonzero if this had a preexisting REG_EQUIV note. */
1915 int is_arg_equivalence;
8f5929e1
JJ
1916 /* Set when an attempt should be made to replace a register
1917 with the associated src_p entry. */
1918 char replace;
2af2dbdc
VM
1919};
1920
1921/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
1922 structure for that register. */
1923static struct equivalence *reg_equiv;
1924
1925/* Used for communication between the following two functions: contains
1926 a MEM that we wish to ensure remains unchanged. */
1927static rtx equiv_mem;
1928
1929/* Set nonzero if EQUIV_MEM is modified. */
1930static int equiv_mem_modified;
1931
1932/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
1933 Called via note_stores. */
1934static void
1935validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
1936 void *data ATTRIBUTE_UNUSED)
1937{
1938 if ((REG_P (dest)
1939 && reg_overlap_mentioned_p (dest, equiv_mem))
1940 || (MEM_P (dest)
1941 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
1942 equiv_mem_modified = 1;
1943}
1944
1945/* Verify that no store between START and the death of REG invalidates
1946 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
1947 by storing into an overlapping memory location, or with a non-const
1948 CALL_INSN.
1949
1950 Return 1 if MEMREF remains valid. */
1951static int
1952validate_equiv_mem (rtx start, rtx reg, rtx memref)
1953{
1954 rtx insn;
1955 rtx note;
1956
1957 equiv_mem = memref;
1958 equiv_mem_modified = 0;
1959
1960 /* If the memory reference has side effects or is volatile, it isn't a
1961 valid equivalence. */
1962 if (side_effects_p (memref))
1963 return 0;
1964
1965 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
1966 {
1967 if (! INSN_P (insn))
1968 continue;
1969
1970 if (find_reg_note (insn, REG_DEAD, reg))
1971 return 1;
1972
1973 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
1974 && ! RTL_CONST_OR_PURE_CALL_P (insn))
1975 return 0;
1976
1977 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
1978
1979 /* If a register mentioned in MEMREF is modified via an
1980 auto-increment, we lose the equivalence. Do the same if one
1981 dies; although we could extend the life, it doesn't seem worth
1982 the trouble. */
1983
1984 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1985 if ((REG_NOTE_KIND (note) == REG_INC
1986 || REG_NOTE_KIND (note) == REG_DEAD)
1987 && REG_P (XEXP (note, 0))
1988 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
1989 return 0;
1990 }
1991
1992 return 0;
1993}
1994
1995/* Returns zero if X is known to be invariant. */
1996static int
1997equiv_init_varies_p (rtx x)
1998{
1999 RTX_CODE code = GET_CODE (x);
2000 int i;
2001 const char *fmt;
2002
2003 switch (code)
2004 {
2005 case MEM:
2006 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
2007
2008 case CONST:
2009 case CONST_INT:
2010 case CONST_DOUBLE:
2011 case CONST_FIXED:
2012 case CONST_VECTOR:
2013 case SYMBOL_REF:
2014 case LABEL_REF:
2015 return 0;
2016
2017 case REG:
2018 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
2019
2020 case ASM_OPERANDS:
2021 if (MEM_VOLATILE_P (x))
2022 return 1;
2023
2024 /* Fall through. */
2025
2026 default:
2027 break;
2028 }
2029
2030 fmt = GET_RTX_FORMAT (code);
2031 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2032 if (fmt[i] == 'e')
2033 {
2034 if (equiv_init_varies_p (XEXP (x, i)))
2035 return 1;
2036 }
2037 else if (fmt[i] == 'E')
2038 {
2039 int j;
2040 for (j = 0; j < XVECLEN (x, i); j++)
2041 if (equiv_init_varies_p (XVECEXP (x, i, j)))
2042 return 1;
2043 }
2044
2045 return 0;
2046}
2047
2048/* Returns nonzero if X (used to initialize register REGNO) is movable.
2049 X is only movable if the registers it uses have equivalent initializations
2050 which appear to be within the same loop (or in an inner loop) and movable
2051 or if they are not candidates for local_alloc and don't vary. */
2052static int
2053equiv_init_movable_p (rtx x, int regno)
2054{
2055 int i, j;
2056 const char *fmt;
2057 enum rtx_code code = GET_CODE (x);
2058
2059 switch (code)
2060 {
2061 case SET:
2062 return equiv_init_movable_p (SET_SRC (x), regno);
2063
2064 case CC0:
2065 case CLOBBER:
2066 return 0;
2067
2068 case PRE_INC:
2069 case PRE_DEC:
2070 case POST_INC:
2071 case POST_DEC:
2072 case PRE_MODIFY:
2073 case POST_MODIFY:
2074 return 0;
2075
2076 case REG:
2077 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2078 && reg_equiv[REGNO (x)].replace)
2079 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));
2080
2081 case UNSPEC_VOLATILE:
2082 return 0;
2083
2084 case ASM_OPERANDS:
2085 if (MEM_VOLATILE_P (x))
2086 return 0;
2087
2088 /* Fall through. */
2089
2090 default:
2091 break;
2092 }
2093
2094 fmt = GET_RTX_FORMAT (code);
2095 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2096 switch (fmt[i])
2097 {
2098 case 'e':
2099 if (! equiv_init_movable_p (XEXP (x, i), regno))
2100 return 0;
2101 break;
2102 case 'E':
2103 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2104 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2105 return 0;
2106 break;
2107 }
2108
2109 return 1;
2110}
2111
2112/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
2113static int
2114contains_replace_regs (rtx x)
2115{
2116 int i, j;
2117 const char *fmt;
2118 enum rtx_code code = GET_CODE (x);
2119
2120 switch (code)
2121 {
2122 case CONST_INT:
2123 case CONST:
2124 case LABEL_REF:
2125 case SYMBOL_REF:
2126 case CONST_DOUBLE:
2127 case CONST_FIXED:
2128 case CONST_VECTOR:
2129 case PC:
2130 case CC0:
2131 case HIGH:
2132 return 0;
2133
2134 case REG:
2135 return reg_equiv[REGNO (x)].replace;
2136
2137 default:
2138 break;
2139 }
2140
2141 fmt = GET_RTX_FORMAT (code);
2142 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2143 switch (fmt[i])
2144 {
2145 case 'e':
2146 if (contains_replace_regs (XEXP (x, i)))
2147 return 1;
2148 break;
2149 case 'E':
2150 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2151 if (contains_replace_regs (XVECEXP (x, i, j)))
2152 return 1;
2153 break;
2154 }
2155
2156 return 0;
2157}
2158
2159/* TRUE if X references a memory location that would be affected by a store
2160 to MEMREF. */
2161static int
2162memref_referenced_p (rtx memref, rtx x)
2163{
2164 int i, j;
2165 const char *fmt;
2166 enum rtx_code code = GET_CODE (x);
2167
2168 switch (code)
2169 {
2170 case CONST_INT:
2171 case CONST:
2172 case LABEL_REF:
2173 case SYMBOL_REF:
2174 case CONST_DOUBLE:
2175 case CONST_FIXED:
2176 case CONST_VECTOR:
2177 case PC:
2178 case CC0:
2179 case HIGH:
2180 case LO_SUM:
2181 return 0;
2182
2183 case REG:
2184 return (reg_equiv[REGNO (x)].replacement
2185 && memref_referenced_p (memref,
2186 reg_equiv[REGNO (x)].replacement));
2187
2188 case MEM:
2189 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
2190 return 1;
2191 break;
2192
2193 case SET:
2194 /* If we are setting a MEM, it doesn't count (its address does), but any
2195 other SET_DEST that has a MEM in it is referencing the MEM. */
2196 if (MEM_P (SET_DEST (x)))
2197 {
2198 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2199 return 1;
2200 }
2201 else if (memref_referenced_p (memref, SET_DEST (x)))
2202 return 1;
2203
2204 return memref_referenced_p (memref, SET_SRC (x));
2205
2206 default:
2207 break;
2208 }
2209
2210 fmt = GET_RTX_FORMAT (code);
2211 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2212 switch (fmt[i])
2213 {
2214 case 'e':
2215 if (memref_referenced_p (memref, XEXP (x, i)))
2216 return 1;
2217 break;
2218 case 'E':
2219 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2220 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2221 return 1;
2222 break;
2223 }
2224
2225 return 0;
2226}
2227
2228/* TRUE if some insn in the range (START, END] references a memory location
2229 that would be affected by a store to MEMREF. */
2230static int
2231memref_used_between_p (rtx memref, rtx start, rtx end)
2232{
2233 rtx insn;
2234
2235 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2236 insn = NEXT_INSN (insn))
2237 {
b5b8b0ac 2238 if (!NONDEBUG_INSN_P (insn))
2af2dbdc 2239 continue;
b8698a0f 2240
2af2dbdc
VM
2241 if (memref_referenced_p (memref, PATTERN (insn)))
2242 return 1;
2243
2244 /* Nonconst functions may access memory. */
2245 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2246 return 1;
2247 }
2248
2249 return 0;
2250}
2251
2252/* Mark REG as having no known equivalence.
2253 Some instructions might have been processed before and furnished
2254 with REG_EQUIV notes for this register; these notes will have to be
2255 removed.
2256 STORE is the piece of RTL that does the non-constant / conflicting
2257 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2258 but needs to be there because this function is called from note_stores. */
2259static void
2260no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
2261{
2262 int regno;
2263 rtx list;
2264
2265 if (!REG_P (reg))
2266 return;
2267 regno = REGNO (reg);
2268 list = reg_equiv[regno].init_insns;
2269 if (list == const0_rtx)
2270 return;
2271 reg_equiv[regno].init_insns = const0_rtx;
2272 reg_equiv[regno].replacement = NULL_RTX;
2273 /* This doesn't matter for equivalences made for argument registers, we
2274 should keep their initialization insns. */
2275 if (reg_equiv[regno].is_arg_equivalence)
2276 return;
2277 reg_equiv_init[regno] = NULL_RTX;
2278 for (; list; list = XEXP (list, 1))
2279 {
2280 rtx insn = XEXP (list, 0);
2281 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2282 }
2283}
2284
2285/* Nonzero if we recorded an equivalence for a LABEL_REF. */
2286static int recorded_label_ref;
2287
2288/* Find registers that are equivalent to a single value throughout the
2289 compilation (either because they can be referenced in memory or are set once
2290 from a single constant). Lower their priority for a register.
2291
2292 If such a register is only referenced once, try substituting its value
2293 into the using insn. If it succeeds, we can eliminate the register
2294 completely.
2295
2296 Initialize the REG_EQUIV_INIT array of initializing insns.
2297
2298 Return non-zero if jump label rebuilding should be done. */
2299static int
2300update_equiv_regs (void)
2301{
2302 rtx insn;
2303 basic_block bb;
2304 int loop_depth;
2305 bitmap cleared_regs;
b8698a0f 2306
2af2dbdc
VM
2307 /* We need to keep track of whether or not we recorded a LABEL_REF so
2308 that we know if the jump optimizer needs to be rerun. */
2309 recorded_label_ref = 0;
2310
2311 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2312 reg_equiv_init = GGC_CNEWVEC (rtx, max_regno);
2313 reg_equiv_init_size = max_regno;
2314
2315 init_alias_analysis ();
2316
2317 /* Scan the insns and find which registers have equivalences. Do this
2318 in a separate scan of the insns because (due to -fcse-follow-jumps)
2319 a register can be set below its use. */
2320 FOR_EACH_BB (bb)
2321 {
2322 loop_depth = bb->loop_depth;
2323
2324 for (insn = BB_HEAD (bb);
2325 insn != NEXT_INSN (BB_END (bb));
2326 insn = NEXT_INSN (insn))
2327 {
2328 rtx note;
2329 rtx set;
2330 rtx dest, src;
2331 int regno;
2332
2333 if (! INSN_P (insn))
2334 continue;
2335
2336 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2337 if (REG_NOTE_KIND (note) == REG_INC)
2338 no_equiv (XEXP (note, 0), note, NULL);
2339
2340 set = single_set (insn);
2341
2342 /* If this insn contains more (or less) than a single SET,
2343 only mark all destinations as having no known equivalence. */
2344 if (set == 0)
2345 {
2346 note_stores (PATTERN (insn), no_equiv, NULL);
2347 continue;
2348 }
2349 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2350 {
2351 int i;
2352
2353 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2354 {
2355 rtx part = XVECEXP (PATTERN (insn), 0, i);
2356 if (part != set)
2357 note_stores (part, no_equiv, NULL);
2358 }
2359 }
2360
2361 dest = SET_DEST (set);
2362 src = SET_SRC (set);
2363
2364 /* See if this is setting up the equivalence between an argument
2365 register and its stack slot. */
2366 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2367 if (note)
2368 {
2369 gcc_assert (REG_P (dest));
2370 regno = REGNO (dest);
2371
2372 /* Note that we don't want to clear reg_equiv_init even if there
2373 are multiple sets of this register. */
2374 reg_equiv[regno].is_arg_equivalence = 1;
2375
2376 /* Record for reload that this is an equivalencing insn. */
2377 if (rtx_equal_p (src, XEXP (note, 0)))
2378 reg_equiv_init[regno]
2379 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2380
2381 /* Continue normally in case this is a candidate for
2382 replacements. */
2383 }
2384
2385 if (!optimize)
2386 continue;
2387
2388 /* We only handle the case of a pseudo register being set
2389 once, or always to the same value. */
1fe28116
VM
2390 /* ??? The mn10200 port breaks if we add equivalences for
2391 values that need an ADDRESS_REGS register and set them equivalent
2392 to a MEM of a pseudo. The actual problem is in the over-conservative
2393 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2394 calculate_needs, but we traditionally work around this problem
2395 here by rejecting equivalences when the destination is in a register
2396 that's likely spilled. This is fragile, of course, since the
2397 preferred class of a pseudo depends on all instructions that set
2398 or use it. */
2399
2af2dbdc
VM
2400 if (!REG_P (dest)
2401 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
1fe28116
VM
2402 || reg_equiv[regno].init_insns == const0_rtx
2403 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
2404 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2af2dbdc
VM
2405 {
2406 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2407 also set somewhere else to a constant. */
2408 note_stores (set, no_equiv, NULL);
2409 continue;
2410 }
2411
2412 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2413
2414 /* cse sometimes generates function invariants, but doesn't put a
2415 REG_EQUAL note on the insn. Since this note would be redundant,
2416 there's no point creating it earlier than here. */
2417 if (! note && ! rtx_varies_p (src, 0))
2418 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2419
2420 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2421 since it represents a function call */
2422 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2423 note = NULL_RTX;
2424
2425 if (DF_REG_DEF_COUNT (regno) != 1
2426 && (! note
2427 || rtx_varies_p (XEXP (note, 0), 0)
2428 || (reg_equiv[regno].replacement
2429 && ! rtx_equal_p (XEXP (note, 0),
2430 reg_equiv[regno].replacement))))
2431 {
2432 no_equiv (dest, set, NULL);
2433 continue;
2434 }
2435 /* Record this insn as initializing this register. */
2436 reg_equiv[regno].init_insns
2437 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2438
2439 /* If this register is known to be equal to a constant, record that
2440 it is always equivalent to the constant. */
2441 if (DF_REG_DEF_COUNT (regno) == 1
2442 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2443 {
2444 rtx note_value = XEXP (note, 0);
2445 remove_note (insn, note);
2446 set_unique_reg_note (insn, REG_EQUIV, note_value);
2447 }
2448
2449 /* If this insn introduces a "constant" register, decrease the priority
2450 of that register. Record this insn if the register is only used once
2451 more and the equivalence value is the same as our source.
2452
2453 The latter condition is checked for two reasons: First, it is an
2454 indication that it may be more efficient to actually emit the insn
2455 as written (if no registers are available, reload will substitute
2456 the equivalence). Secondly, it avoids problems with any registers
2457 dying in this insn whose death notes would be missed.
2458
2459 If we don't have a REG_EQUIV note, see if this insn is loading
2460 a register used only in one basic block from a MEM. If so, and the
2461 MEM remains unchanged for the life of the register, add a REG_EQUIV
2462 note. */
2463
2464 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2465
2466 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2467 && MEM_P (SET_SRC (set))
2468 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2469 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2470
2471 if (note)
2472 {
2473 int regno = REGNO (dest);
2474 rtx x = XEXP (note, 0);
2475
2476 /* If we haven't done so, record for reload that this is an
2477 equivalencing insn. */
2478 if (!reg_equiv[regno].is_arg_equivalence)
2479 reg_equiv_init[regno]
2480 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2481
2482 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2483 We might end up substituting the LABEL_REF for uses of the
2484 pseudo here or later. That kind of transformation may turn an
2485 indirect jump into a direct jump, in which case we must rerun the
2486 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
2487 if (GET_CODE (x) == LABEL_REF
2488 || (GET_CODE (x) == CONST
2489 && GET_CODE (XEXP (x, 0)) == PLUS
2490 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2491 recorded_label_ref = 1;
2492
2493 reg_equiv[regno].replacement = x;
2494 reg_equiv[regno].src_p = &SET_SRC (set);
2495 reg_equiv[regno].loop_depth = loop_depth;
2496
2497 /* Don't mess with things live during setjmp. */
2498 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2499 {
2500 /* Note that the statement below does not affect the priority
2501 in local-alloc! */
2502 REG_LIVE_LENGTH (regno) *= 2;
2503
2504 /* If the register is referenced exactly twice, meaning it is
2505 set once and used once, indicate that the reference may be
2506 replaced by the equivalence we computed above. Do this
2507 even if the register is only used in one block so that
2508 dependencies can be handled where the last register is
2509 used in a different block (i.e. HIGH / LO_SUM sequences)
2510 and to reduce the number of registers alive across
2511 calls. */
2512
2513 if (REG_N_REFS (regno) == 2
2514 && (rtx_equal_p (x, src)
2515 || ! equiv_init_varies_p (src))
2516 && NONJUMP_INSN_P (insn)
2517 && equiv_init_movable_p (PATTERN (insn), regno))
2518 reg_equiv[regno].replace = 1;
2519 }
2520 }
2521 }
2522 }
2523
2524 if (!optimize)
2525 goto out;
2526
2527 /* A second pass, to gather additional equivalences with memory. This needs
2528 to be done after we know which registers we are going to replace. */
2529
2530 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2531 {
2532 rtx set, src, dest;
2533 unsigned regno;
2534
2535 if (! INSN_P (insn))
2536 continue;
2537
2538 set = single_set (insn);
2539 if (! set)
2540 continue;
2541
2542 dest = SET_DEST (set);
2543 src = SET_SRC (set);
2544
2545 /* If this sets a MEM to the contents of a REG that is only used
2546 in a single basic block, see if the register is always equivalent
2547 to that memory location and if moving the store from INSN to the
2548 insn that set REG is safe. If so, put a REG_EQUIV note on the
2549 initializing insn.
2550
2551 Don't add a REG_EQUIV note if the insn already has one. The existing
2552 REG_EQUIV is likely more useful than the one we are adding.
2553
2554 If one of the regs in the address has reg_equiv[REGNO].replace set,
2555 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
2556 optimization may move the set of this register immediately before
2557 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
2558 the mention in the REG_EQUIV note would be to an uninitialized
2559 pseudo. */
2560
2561 if (MEM_P (dest) && REG_P (src)
2562 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
2563 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2564 && DF_REG_DEF_COUNT (regno) == 1
2565 && reg_equiv[regno].init_insns != 0
2566 && reg_equiv[regno].init_insns != const0_rtx
2567 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
2568 REG_EQUIV, NULL_RTX)
2569 && ! contains_replace_regs (XEXP (dest, 0)))
2570 {
2571 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
2572 if (validate_equiv_mem (init_insn, src, dest)
2573 && ! memref_used_between_p (dest, init_insn, insn)
2574 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
2575 multiple sets. */
2576 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2577 {
2578 /* This insn makes the equivalence, not the one initializing
2579 the register. */
2580 reg_equiv_init[regno]
2581 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
2582 df_notes_rescan (init_insn);
2583 }
2584 }
2585 }
2586
2587 cleared_regs = BITMAP_ALLOC (NULL);
2588 /* Now scan all regs killed in an insn to see if any of them are
2589 registers only used that once. If so, see if we can replace the
2590 reference with the equivalent form. If we can, delete the
2591 initializing reference and this register will go away. If we
2592 can't replace the reference, and the initializing reference is
2593 within the same loop (or in an inner loop), then move the register
2594 initialization just before the use, so that they are in the same
2595 basic block. */
2596 FOR_EACH_BB_REVERSE (bb)
2597 {
2598 loop_depth = bb->loop_depth;
2599 for (insn = BB_END (bb);
2600 insn != PREV_INSN (BB_HEAD (bb));
2601 insn = PREV_INSN (insn))
2602 {
2603 rtx link;
2604
2605 if (! INSN_P (insn))
2606 continue;
2607
2608 /* Don't substitute into a non-local goto, this confuses CFG. */
2609 if (JUMP_P (insn)
2610 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2611 continue;
2612
2613 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2614 {
2615 if (REG_NOTE_KIND (link) == REG_DEAD
2616 /* Make sure this insn still refers to the register. */
2617 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
2618 {
2619 int regno = REGNO (XEXP (link, 0));
2620 rtx equiv_insn;
2621
2622 if (! reg_equiv[regno].replace
2623 || reg_equiv[regno].loop_depth < loop_depth)
2624 continue;
2625
2626 /* reg_equiv[REGNO].replace gets set only when
2627 REG_N_REFS[REGNO] is 2, i.e. the register is set
2628 once and used once. (If it were only set, but not used,
2629 flow would have deleted the setting insns.) Hence
2630 there can only be one insn in reg_equiv[REGNO].init_insns. */
2631 gcc_assert (reg_equiv[regno].init_insns
2632 && !XEXP (reg_equiv[regno].init_insns, 1));
2633 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
2634
2635 /* We may not move instructions that can throw, since
2636 that changes basic block boundaries and we are not
2637 prepared to adjust the CFG to match. */
2638 if (can_throw_internal (equiv_insn))
2639 continue;
2640
2641 if (asm_noperands (PATTERN (equiv_insn)) < 0
2642 && validate_replace_rtx (regno_reg_rtx[regno],
2643 *(reg_equiv[regno].src_p), insn))
2644 {
2645 rtx equiv_link;
2646 rtx last_link;
2647 rtx note;
2648
2649 /* Find the last note. */
2650 for (last_link = link; XEXP (last_link, 1);
2651 last_link = XEXP (last_link, 1))
2652 ;
2653
2654 /* Append the REG_DEAD notes from equiv_insn. */
2655 equiv_link = REG_NOTES (equiv_insn);
2656 while (equiv_link)
2657 {
2658 note = equiv_link;
2659 equiv_link = XEXP (equiv_link, 1);
2660 if (REG_NOTE_KIND (note) == REG_DEAD)
2661 {
2662 remove_note (equiv_insn, note);
2663 XEXP (last_link, 1) = note;
2664 XEXP (note, 1) = NULL_RTX;
2665 last_link = note;
2666 }
2667 }
2668
2669 remove_death (regno, insn);
2670 SET_REG_N_REFS (regno, 0);
2671 REG_FREQ (regno) = 0;
2672 delete_insn (equiv_insn);
2673
2674 reg_equiv[regno].init_insns
2675 = XEXP (reg_equiv[regno].init_insns, 1);
2676
2677 reg_equiv_init[regno] = NULL_RTX;
2678 bitmap_set_bit (cleared_regs, regno);
2679 }
2680 /* Move the initialization of the register to just before
2681 INSN. Update the flow information. */
b5b8b0ac 2682 else if (prev_nondebug_insn (insn) != equiv_insn)
2af2dbdc
VM
2683 {
2684 rtx new_insn;
2685
2686 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
2687 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
2688 REG_NOTES (equiv_insn) = 0;
2689 /* Rescan it to process the notes. */
2690 df_insn_rescan (new_insn);
2691
2692 /* Make sure this insn is recognized before
2693 reload begins, otherwise
2694 eliminate_regs_in_insn will die. */
2695 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
2696
2697 delete_insn (equiv_insn);
2698
2699 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
2700
2701 REG_BASIC_BLOCK (regno) = bb->index;
2702 REG_N_CALLS_CROSSED (regno) = 0;
2703 REG_FREQ_CALLS_CROSSED (regno) = 0;
2704 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
2705 REG_LIVE_LENGTH (regno) = 2;
2706
2707 if (insn == BB_HEAD (bb))
2708 BB_HEAD (bb) = PREV_INSN (insn);
2709
2710 reg_equiv_init[regno]
2711 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
2712 bitmap_set_bit (cleared_regs, regno);
2713 }
2714 }
2715 }
2716 }
2717 }
2718
2719 if (!bitmap_empty_p (cleared_regs))
2720 FOR_EACH_BB (bb)
2721 {
2722 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
2723 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
2724 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
2725 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
2726 }
2727
2728 BITMAP_FREE (cleared_regs);
2729
2730 out:
2731 /* Clean up. */
2732
2733 end_alias_analysis ();
2734 free (reg_equiv);
2735 return recorded_label_ref;
2736}
2737
2738\f
2739
2740/* Print chain C to FILE. */
2741static void
2742print_insn_chain (FILE *file, struct insn_chain *c)
2743{
2744 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
2745 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
2746 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
2747}
2748
2749
2750/* Print all reload_insn_chains to FILE. */
2751static void
2752print_insn_chains (FILE *file)
2753{
2754 struct insn_chain *c;
2755 for (c = reload_insn_chain; c ; c = c->next)
2756 print_insn_chain (file, c);
2757}
2758
2759/* Return true if pseudo REGNO should be added to set live_throughout
2760 or dead_or_set of the insn chains for reload consideration. */
2761static bool
2762pseudo_for_reload_consideration_p (int regno)
2763{
2764 /* Consider spilled pseudos too for IRA because they still have a
2765 chance to get hard-registers in the reload when IRA is used. */
2766 return (reg_renumber[regno] >= 0
2767 || (ira_conflicts_p && flag_ira_share_spill_slots));
2768}
2769
2770/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
2771 REG to the number of nregs, and INIT_VALUE to get the
2772 initialization. ALLOCNUM need not be the regno of REG. */
2773static void
2774init_live_subregs (bool init_value, sbitmap *live_subregs,
2775 int *live_subregs_used, int allocnum, rtx reg)
2776{
2777 unsigned int regno = REGNO (SUBREG_REG (reg));
2778 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
2779
2780 gcc_assert (size > 0);
2781
2782 /* Been there, done that. */
2783 if (live_subregs_used[allocnum])
2784 return;
2785
2786 /* Create a new one with zeros. */
2787 if (live_subregs[allocnum] == NULL)
2788 live_subregs[allocnum] = sbitmap_alloc (size);
2789
2790 /* If the entire reg was live before blasting into subregs, we need
2791 to init all of the subregs to ones else init to 0. */
2792 if (init_value)
2793 sbitmap_ones (live_subregs[allocnum]);
b8698a0f 2794 else
2af2dbdc
VM
2795 sbitmap_zero (live_subregs[allocnum]);
2796
2797 /* Set the number of bits that we really want. */
2798 live_subregs_used[allocnum] = size;
2799}
2800
2801/* Walk the insns of the current function and build reload_insn_chain,
2802 and record register life information. */
2803static void
2804build_insn_chain (void)
2805{
2806 unsigned int i;
2807 struct insn_chain **p = &reload_insn_chain;
2808 basic_block bb;
2809 struct insn_chain *c = NULL;
2810 struct insn_chain *next = NULL;
2811 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
2812 bitmap elim_regset = BITMAP_ALLOC (NULL);
2813 /* live_subregs is a vector used to keep accurate information about
2814 which hardregs are live in multiword pseudos. live_subregs and
2815 live_subregs_used are indexed by pseudo number. The live_subreg
2816 entry for a particular pseudo is only used if the corresponding
2817 element is non zero in live_subregs_used. The value in
2818 live_subregs_used is number of bytes that the pseudo can
2819 occupy. */
2820 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
2821 int *live_subregs_used = XNEWVEC (int, max_regno);
2822
2823 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2824 if (TEST_HARD_REG_BIT (eliminable_regset, i))
2825 bitmap_set_bit (elim_regset, i);
2826 FOR_EACH_BB_REVERSE (bb)
2827 {
2828 bitmap_iterator bi;
2829 rtx insn;
b8698a0f 2830
2af2dbdc
VM
2831 CLEAR_REG_SET (live_relevant_regs);
2832 memset (live_subregs_used, 0, max_regno * sizeof (int));
b8698a0f 2833
54a0ac2d 2834 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
2af2dbdc
VM
2835 {
2836 if (i >= FIRST_PSEUDO_REGISTER)
2837 break;
2838 bitmap_set_bit (live_relevant_regs, i);
2839 }
2840
54a0ac2d 2841 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
2af2dbdc
VM
2842 FIRST_PSEUDO_REGISTER, i, bi)
2843 {
2844 if (pseudo_for_reload_consideration_p (i))
2845 bitmap_set_bit (live_relevant_regs, i);
2846 }
2847
2848 FOR_BB_INSNS_REVERSE (bb, insn)
2849 {
2850 if (!NOTE_P (insn) && !BARRIER_P (insn))
2851 {
2852 unsigned int uid = INSN_UID (insn);
2853 df_ref *def_rec;
2854 df_ref *use_rec;
2855
2856 c = new_insn_chain ();
2857 c->next = next;
2858 next = c;
2859 *p = c;
2860 p = &c->prev;
b8698a0f 2861
2af2dbdc
VM
2862 c->insn = insn;
2863 c->block = bb->index;
2864
2865 if (INSN_P (insn))
2866 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
2867 {
2868 df_ref def = *def_rec;
2869 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 2870
2af2dbdc
VM
2871 /* Ignore may clobbers because these are generated
2872 from calls. However, every other kind of def is
2873 added to dead_or_set. */
2874 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2875 {
2876 if (regno < FIRST_PSEUDO_REGISTER)
2877 {
2878 if (!fixed_regs[regno])
2879 bitmap_set_bit (&c->dead_or_set, regno);
2880 }
2881 else if (pseudo_for_reload_consideration_p (regno))
2882 bitmap_set_bit (&c->dead_or_set, regno);
2883 }
2884
2885 if ((regno < FIRST_PSEUDO_REGISTER
2886 || reg_renumber[regno] >= 0
2887 || ira_conflicts_p)
2888 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
2889 {
2890 rtx reg = DF_REF_REG (def);
2891
2892 /* We can model subregs, but not if they are
2893 wrapped in ZERO_EXTRACTS. */
2894 if (GET_CODE (reg) == SUBREG
2895 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
2896 {
2897 unsigned int start = SUBREG_BYTE (reg);
b8698a0f 2898 unsigned int last = start
2af2dbdc
VM
2899 + GET_MODE_SIZE (GET_MODE (reg));
2900
2901 init_live_subregs
b8698a0f 2902 (bitmap_bit_p (live_relevant_regs, regno),
2af2dbdc
VM
2903 live_subregs, live_subregs_used, regno, reg);
2904
2905 if (!DF_REF_FLAGS_IS_SET
2906 (def, DF_REF_STRICT_LOW_PART))
2907 {
2908 /* Expand the range to cover entire words.
2909 Bytes added here are "don't care". */
2910 start
2911 = start / UNITS_PER_WORD * UNITS_PER_WORD;
2912 last = ((last + UNITS_PER_WORD - 1)
2913 / UNITS_PER_WORD * UNITS_PER_WORD);
2914 }
2915
2916 /* Ignore the paradoxical bits. */
2917 if ((int)last > live_subregs_used[regno])
2918 last = live_subregs_used[regno];
2919
2920 while (start < last)
2921 {
2922 RESET_BIT (live_subregs[regno], start);
2923 start++;
2924 }
b8698a0f 2925
2af2dbdc
VM
2926 if (sbitmap_empty_p (live_subregs[regno]))
2927 {
2928 live_subregs_used[regno] = 0;
2929 bitmap_clear_bit (live_relevant_regs, regno);
2930 }
2931 else
2932 /* Set live_relevant_regs here because
2933 that bit has to be true to get us to
2934 look at the live_subregs fields. */
2935 bitmap_set_bit (live_relevant_regs, regno);
2936 }
2937 else
2938 {
2939 /* DF_REF_PARTIAL is generated for
2940 subregs, STRICT_LOW_PART, and
2941 ZERO_EXTRACT. We handle the subreg
2942 case above so here we have to keep from
2943 modeling the def as a killing def. */
2944 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
2945 {
2946 bitmap_clear_bit (live_relevant_regs, regno);
2947 live_subregs_used[regno] = 0;
2948 }
2949 }
2950 }
2951 }
b8698a0f 2952
2af2dbdc
VM
2953 bitmap_and_compl_into (live_relevant_regs, elim_regset);
2954 bitmap_copy (&c->live_throughout, live_relevant_regs);
2955
2956 if (INSN_P (insn))
2957 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
2958 {
2959 df_ref use = *use_rec;
2960 unsigned int regno = DF_REF_REGNO (use);
2961 rtx reg = DF_REF_REG (use);
b8698a0f 2962
2af2dbdc
VM
2963 /* DF_REF_READ_WRITE on a use means that this use
2964 is fabricated from a def that is a partial set
2965 to a multiword reg. Here, we only model the
2966 subreg case that is not wrapped in ZERO_EXTRACT
2967 precisely so we do not need to look at the
2968 fabricated use. */
b8698a0f
L
2969 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
2970 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
2af2dbdc
VM
2971 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
2972 continue;
b8698a0f 2973
2af2dbdc
VM
2974 /* Add the last use of each var to dead_or_set. */
2975 if (!bitmap_bit_p (live_relevant_regs, regno))
2976 {
2977 if (regno < FIRST_PSEUDO_REGISTER)
2978 {
2979 if (!fixed_regs[regno])
2980 bitmap_set_bit (&c->dead_or_set, regno);
2981 }
2982 else if (pseudo_for_reload_consideration_p (regno))
2983 bitmap_set_bit (&c->dead_or_set, regno);
2984 }
b8698a0f 2985
2af2dbdc
VM
2986 if (regno < FIRST_PSEUDO_REGISTER
2987 || pseudo_for_reload_consideration_p (regno))
2988 {
2989 if (GET_CODE (reg) == SUBREG
2990 && !DF_REF_FLAGS_IS_SET (use,
2991 DF_REF_SIGN_EXTRACT
b8698a0f 2992 | DF_REF_ZERO_EXTRACT))
2af2dbdc
VM
2993 {
2994 unsigned int start = SUBREG_BYTE (reg);
b8698a0f 2995 unsigned int last = start
2af2dbdc 2996 + GET_MODE_SIZE (GET_MODE (reg));
b8698a0f 2997
2af2dbdc 2998 init_live_subregs
b8698a0f 2999 (bitmap_bit_p (live_relevant_regs, regno),
2af2dbdc 3000 live_subregs, live_subregs_used, regno, reg);
b8698a0f 3001
2af2dbdc
VM
3002 /* Ignore the paradoxical bits. */
3003 if ((int)last > live_subregs_used[regno])
3004 last = live_subregs_used[regno];
3005
3006 while (start < last)
3007 {
3008 SET_BIT (live_subregs[regno], start);
3009 start++;
3010 }
3011 }
3012 else
3013 /* Resetting the live_subregs_used is
3014 effectively saying do not use the subregs
3015 because we are reading the whole
3016 pseudo. */
3017 live_subregs_used[regno] = 0;
3018 bitmap_set_bit (live_relevant_regs, regno);
3019 }
3020 }
3021 }
3022 }
3023
3024 /* FIXME!! The following code is a disaster. Reload needs to see the
3025 labels and jump tables that are just hanging out in between
3026 the basic blocks. See pr33676. */
3027 insn = BB_HEAD (bb);
b8698a0f 3028
2af2dbdc 3029 /* Skip over the barriers and cruft. */
b8698a0f 3030 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
2af2dbdc
VM
3031 || BLOCK_FOR_INSN (insn) == bb))
3032 insn = PREV_INSN (insn);
b8698a0f 3033
2af2dbdc
VM
3034 /* While we add anything except barriers and notes, the focus is
3035 to get the labels and jump tables into the
3036 reload_insn_chain. */
3037 while (insn)
3038 {
3039 if (!NOTE_P (insn) && !BARRIER_P (insn))
3040 {
3041 if (BLOCK_FOR_INSN (insn))
3042 break;
b8698a0f 3043
2af2dbdc
VM
3044 c = new_insn_chain ();
3045 c->next = next;
3046 next = c;
3047 *p = c;
3048 p = &c->prev;
b8698a0f 3049
2af2dbdc
VM
3050 /* The block makes no sense here, but it is what the old
3051 code did. */
3052 c->block = bb->index;
3053 c->insn = insn;
3054 bitmap_copy (&c->live_throughout, live_relevant_regs);
b8698a0f 3055 }
2af2dbdc
VM
3056 insn = PREV_INSN (insn);
3057 }
3058 }
3059
3060 for (i = 0; i < (unsigned int) max_regno; i++)
3061 if (live_subregs[i])
3062 free (live_subregs[i]);
3063
3064 reload_insn_chain = c;
3065 *p = NULL;
3066
3067 free (live_subregs);
3068 free (live_subregs_used);
3069 BITMAP_FREE (live_relevant_regs);
3070 BITMAP_FREE (elim_regset);
3071
3072 if (dump_file)
3073 print_insn_chains (dump_file);
3074}
3075
3076\f
3077
058e97ec
VM
3078/* All natural loops. */
3079struct loops ira_loops;
3080
311aab06
VM
3081/* True if we have allocno conflicts. It is false for non-optimized
3082 mode or when the conflict table is too big. */
3083bool ira_conflicts_p;
3084
058e97ec
VM
3085/* This is the main entry of IRA. */
3086static void
3087ira (FILE *f)
3088{
3089 int overall_cost_before, allocated_reg_info_size;
3090 bool loops_p;
3091 int max_regno_before_ira, ira_max_point_before_emit;
3092 int rebuild_p;
3553f0bb 3093 int saved_flag_ira_share_spill_slots;
058e97ec
VM
3094 basic_block bb;
3095
3096 timevar_push (TV_IRA);
3097
3098 if (flag_ira_verbose < 10)
3099 {
3100 internal_flag_ira_verbose = flag_ira_verbose;
3101 ira_dump_file = f;
3102 }
3103 else
3104 {
3105 internal_flag_ira_verbose = flag_ira_verbose - 10;
3106 ira_dump_file = stderr;
3107 }
3108
311aab06 3109 ira_conflicts_p = optimize > 0;
058e97ec
VM
3110 setup_prohibited_mode_move_regs ();
3111
3112 df_note_add_problem ();
3113
3114 if (optimize == 1)
3115 {
3116 df_live_add_problem ();
3117 df_live_set_all_dirty ();
3118 }
3119#ifdef ENABLE_CHECKING
3120 df->changeable_flags |= DF_VERIFY_SCHEDULED;
3121#endif
3122 df_analyze ();
3123 df_clear_flags (DF_NO_INSN_RESCAN);
3124 regstat_init_n_sets_and_refs ();
3125 regstat_compute_ri ();
3126
3127 /* If we are not optimizing, then this is the only place before
3128 register allocation where dataflow is done. And that is needed
3129 to generate these warnings. */
3130 if (warn_clobbered)
3131 generate_setjmp_warnings ();
3132
ace984c8
RS
3133 /* Determine if the current function is a leaf before running IRA
3134 since this can impact optimizations done by the prologue and
3135 epilogue thus changing register elimination offsets. */
3136 current_function_is_leaf = leaf_function_p ();
3137
1833192f
VM
3138 if (resize_reg_info () && flag_ira_loop_pressure)
3139 ira_set_pseudo_classes (ira_dump_file);
3140
058e97ec
VM
3141 rebuild_p = update_equiv_regs ();
3142
3143#ifndef IRA_NO_OBSTACK
3144 gcc_obstack_init (&ira_obstack);
3145#endif
3146 bitmap_obstack_initialize (&ira_bitmap_obstack);
3147 if (optimize)
b8698a0f 3148 {
058e97ec
VM
3149 max_regno = max_reg_num ();
3150 ira_reg_equiv_len = max_regno;
3151 ira_reg_equiv_invariant_p
3152 = (bool *) ira_allocate (max_regno * sizeof (bool));
3153 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
3154 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
3155 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
3156 find_reg_equiv_invariant_const ();
3157 if (rebuild_p)
3158 {
3159 timevar_push (TV_JUMP);
3160 rebuild_jump_labels (get_insns ());
3161 purge_all_dead_edges ();
3162 timevar_pop (TV_JUMP);
3163 }
3164 }
3165
3166 max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
ce18efcb 3167 ira_setup_eliminable_regset ();
b8698a0f 3168
058e97ec
VM
3169 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
3170 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
3171 ira_move_loops_num = ira_additional_jumps_num = 0;
b8698a0f 3172
058e97ec
VM
3173 ira_assert (current_loops == NULL);
3174 flow_loops_find (&ira_loops);
3175 current_loops = &ira_loops;
b8698a0f 3176
058e97ec
VM
3177 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3178 fprintf (ira_dump_file, "Building IRA IR\n");
3179 loops_p = ira_build (optimize
7db7ed3c
VM
3180 && (flag_ira_region == IRA_REGION_ALL
3181 || flag_ira_region == IRA_REGION_MIXED));
b8698a0f 3182
311aab06 3183 ira_assert (ira_conflicts_p || !loops_p);
3553f0bb
VM
3184
3185 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
3186 if (too_high_register_pressure_p ())
3187 /* It is just wasting compiler's time to pack spilled pseudos into
b8698a0f 3188 stack slots in this case -- prohibit it. */
3553f0bb
VM
3189 flag_ira_share_spill_slots = FALSE;
3190
cb1ca6ac 3191 ira_color ();
b8698a0f 3192
058e97ec 3193 ira_max_point_before_emit = ira_max_point;
b8698a0f 3194
058e97ec 3195 ira_emit (loops_p);
b8698a0f 3196
311aab06 3197 if (ira_conflicts_p)
058e97ec
VM
3198 {
3199 max_regno = max_reg_num ();
b8698a0f 3200
058e97ec
VM
3201 if (! loops_p)
3202 ira_initiate_assign ();
3203 else
3204 {
3205 expand_reg_info (allocated_reg_info_size);
3206 setup_preferred_alternate_classes_for_new_pseudos
3207 (allocated_reg_info_size);
3208 allocated_reg_info_size = max_regno;
b8698a0f 3209
058e97ec
VM
3210 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3211 fprintf (ira_dump_file, "Flattening IR\n");
3212 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
3213 /* New insns were generated: add notes and recalculate live
3214 info. */
3215 df_analyze ();
b8698a0f 3216
058e97ec
VM
3217 flow_loops_find (&ira_loops);
3218 current_loops = &ira_loops;
3219
3220 setup_allocno_assignment_flags ();
3221 ira_initiate_assign ();
3222 ira_reassign_conflict_allocnos (max_regno);
3223 }
3224 }
3225
3226 setup_reg_renumber ();
b8698a0f 3227
058e97ec 3228 calculate_allocation_cost ();
b8698a0f 3229
058e97ec 3230#ifdef ENABLE_IRA_CHECKING
311aab06 3231 if (ira_conflicts_p)
058e97ec
VM
3232 check_allocation ();
3233#endif
b8698a0f 3234
058e97ec
VM
3235 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3236 max_regno = max_reg_num ();
b8698a0f 3237
058e97ec
VM
3238 /* And the reg_equiv_memory_loc array. */
3239 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
3240 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
3241 sizeof (rtx) * max_regno);
3242 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
3243
3244 if (max_regno != max_regno_before_ira)
3245 {
3246 regstat_free_n_sets_and_refs ();
3247 regstat_free_ri ();
3248 regstat_init_n_sets_and_refs ();
3249 regstat_compute_ri ();
3250 }
3251
3252 allocate_initial_values (reg_equiv_memory_loc);
3253
3254 overall_cost_before = ira_overall_cost;
311aab06 3255 if (ira_conflicts_p)
058e97ec
VM
3256 {
3257 fix_reg_equiv_init ();
b8698a0f 3258
058e97ec
VM
3259#ifdef ENABLE_IRA_CHECKING
3260 print_redundant_copies ();
3261#endif
3262
3263 ira_spilled_reg_stack_slots_num = 0;
3264 ira_spilled_reg_stack_slots
3265 = ((struct ira_spilled_reg_stack_slot *)
3266 ira_allocate (max_regno
3267 * sizeof (struct ira_spilled_reg_stack_slot)));
3268 memset (ira_spilled_reg_stack_slots, 0,
3269 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
3270 }
b8698a0f 3271
058e97ec
VM
3272 timevar_pop (TV_IRA);
3273
3274 timevar_push (TV_RELOAD);
3275 df_set_flags (DF_NO_INSN_RESCAN);
3276 build_insn_chain ();
3277
311aab06 3278 reload_completed = !reload (get_insns (), ira_conflicts_p);
058e97ec 3279
1833192f
VM
3280 finish_subregs_of_mode ();
3281
058e97ec
VM
3282 timevar_pop (TV_RELOAD);
3283
3284 timevar_push (TV_IRA);
3285
311aab06 3286 if (ira_conflicts_p)
058e97ec
VM
3287 {
3288 ira_free (ira_spilled_reg_stack_slots);
b8698a0f 3289
058e97ec 3290 ira_finish_assign ();
b8698a0f
L
3291
3292 }
058e97ec
VM
3293 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
3294 && overall_cost_before != ira_overall_cost)
3295 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
3296 ira_destroy ();
b8698a0f 3297
3553f0bb
VM
3298 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
3299
058e97ec
VM
3300 flow_loops_free (&ira_loops);
3301 free_dominance_info (CDI_DOMINATORS);
3302 FOR_ALL_BB (bb)
3303 bb->loop_father = NULL;
3304 current_loops = NULL;
3305
058e97ec
VM
3306 regstat_free_ri ();
3307 regstat_free_n_sets_and_refs ();
b8698a0f 3308
058e97ec
VM
3309 if (optimize)
3310 {
3311 cleanup_cfg (CLEANUP_EXPENSIVE);
b8698a0f 3312
058e97ec
VM
3313 ira_free (ira_reg_equiv_invariant_p);
3314 ira_free (ira_reg_equiv_const);
3315 }
3316
3317 bitmap_obstack_release (&ira_bitmap_obstack);
3318#ifndef IRA_NO_OBSTACK
3319 obstack_free (&ira_obstack, NULL);
3320#endif
3321
3322 /* The code after the reload has changed so much that at this point
3323 we might as well just rescan everything. Not that
3324 df_rescan_all_insns is not going to help here because it does not
3325 touch the artificial uses and defs. */
3326 df_finish_pass (true);
3327 if (optimize > 1)
3328 df_live_add_problem ();
3329 df_scan_alloc (NULL);
3330 df_scan_blocks ();
3331
3332 if (optimize)
3333 df_analyze ();
3334
3335 timevar_pop (TV_IRA);
3336}
3337
3338\f
3339
3340static bool
3341gate_ira (void)
3342{
2af2dbdc 3343 return true;
058e97ec
VM
3344}
3345
3346/* Run the integrated register allocator. */
3347static unsigned int
3348rest_of_handle_ira (void)
3349{
3350 ira (dump_file);
3351 return 0;
3352}
3353
3354struct rtl_opt_pass pass_ira =
3355{
3356 {
3357 RTL_PASS,
3358 "ira", /* name */
3359 gate_ira, /* gate */
3360 rest_of_handle_ira, /* execute */
3361 NULL, /* sub */
3362 NULL, /* next */
3363 0, /* static_pass_number */
7072a650 3364 TV_NONE, /* tv_id */
058e97ec
VM
3365 0, /* properties_required */
3366 0, /* properties_provided */
3367 0, /* properties_destroyed */
3368 0, /* todo_flags_start */
3369 TODO_dump_func |
3370 TODO_ggc_collect /* todo_flags_finish */
3371 }
3372};
This page took 0.827222 seconds and 5 git commands to generate.