]> gcc.gnu.org Git - gcc.git/blame - gcc/ira-costs.cc
Daily bump.
[gcc.git] / gcc / ira-costs.cc
CommitLineData
ce18efcb 1/* IRA hard register and memory cost calculation for allocnos or pseudos.
7adcbafe 2 Copyright (C) 2006-2022 Free Software Foundation, Inc.
058e97ec
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
c7131fb2 24#include "backend.h"
957060b5 25#include "target.h"
058e97ec 26#include "rtl.h"
c7131fb2 27#include "tree.h"
957060b5 28#include "predict.h"
4d0cdd0c 29#include "memmodel.h"
957060b5 30#include "tm_p.h"
957060b5
AM
31#include "insn-config.h"
32#include "regs.h"
33#include "ira.h"
34#include "ira-int.h"
058e97ec 35#include "addresses.h"
8ff49c29 36#include "reload.h"
058e97ec 37
ce18efcb
VM
38/* The flags is set up every time when we calculate pseudo register
39 classes through function ira_set_pseudo_classes. */
40static bool pseudo_classes_defined_p = false;
41
42/* TRUE if we work with allocnos. Otherwise we work with pseudos. */
43static bool allocno_p;
44
9aaa7e47 45/* Number of elements in array `costs'. */
ce18efcb 46static int cost_elements_num;
058e97ec 47
058e97ec
VM
48/* The `costs' struct records the cost of using hard registers of each
49 class considered for the calculation and of using memory for each
ce18efcb 50 allocno or pseudo. */
058e97ec
VM
51struct costs
52{
53 int mem_cost;
54 /* Costs for register classes start here. We process only some
1756cb66 55 allocno classes. */
058e97ec
VM
56 int cost[1];
57};
58
aa1c5d72
RS
59#define max_struct_costs_size \
60 (this_target_ira_int->x_max_struct_costs_size)
61#define init_cost \
62 (this_target_ira_int->x_init_cost)
63#define temp_costs \
64 (this_target_ira_int->x_temp_costs)
65#define op_costs \
66 (this_target_ira_int->x_op_costs)
67#define this_op_costs \
68 (this_target_ira_int->x_this_op_costs)
058e97ec 69
ce18efcb
VM
70/* Costs of each class for each allocno or pseudo. */
71static struct costs *costs;
72
73/* Accumulated costs of each class for each allocno. */
74static struct costs *total_allocno_costs;
058e97ec 75
058e97ec 76/* It is the current size of struct costs. */
ff304c01 77static size_t struct_costs_size;
058e97ec 78
ce18efcb
VM
79/* Return pointer to structure containing costs of allocno or pseudo
80 with given NUM in array ARR. */
81#define COSTS(arr, num) \
058e97ec
VM
82 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
83
ce18efcb 84/* Return index in COSTS when processing reg with REGNO. */
1756cb66
VM
85#define COST_INDEX(regno) (allocno_p \
86 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
ce18efcb 87 : (int) regno)
058e97ec 88
ce18efcb
VM
89/* Record register class preferences of each allocno or pseudo. Null
90 value means no preferences. It happens on the 1st iteration of the
91 cost calculation. */
92static enum reg_class *pref;
058e97ec 93
ce18efcb
VM
94/* Allocated buffers for pref. */
95static enum reg_class *pref_buffer;
96
1756cb66
VM
97/* Record allocno class of each allocno with the same regno. */
98static enum reg_class *regno_aclass;
7db7ed3c 99
8ff49c29
BS
100/* Record cost gains for not allocating a register with an invariant
101 equivalence. */
102static int *regno_equiv_gains;
103
058e97ec
VM
104/* Execution frequency of the current insn. */
105static int frequency;
106
107\f
108
1756cb66
VM
109/* Info about reg classes whose costs are calculated for a pseudo. */
110struct cost_classes
111{
112 /* Number of the cost classes in the subsequent array. */
113 int num;
114 /* Container of the cost classes. */
115 enum reg_class classes[N_REG_CLASSES];
116 /* Map reg class -> index of the reg class in the previous array.
df3e3493 117 -1 if it is not a cost class. */
1756cb66
VM
118 int index[N_REG_CLASSES];
119 /* Map hard regno index of first class in array CLASSES containing
120 the hard regno, -1 otherwise. */
121 int hard_regno_index[FIRST_PSEUDO_REGISTER];
122};
123
124/* Types of pointers to the structure above. */
125typedef struct cost_classes *cost_classes_t;
126typedef const struct cost_classes *const_cost_classes_t;
127
128/* Info about cost classes for each pseudo. */
129static cost_classes_t *regno_cost_classes;
130
4a8fb1a1
LC
131/* Helper for cost_classes hashing. */
132
7edd9b15 133struct cost_classes_hasher : pointer_hash <cost_classes>
1756cb66 134{
67f58944
TS
135 static inline hashval_t hash (const cost_classes *);
136 static inline bool equal (const cost_classes *, const cost_classes *);
137 static inline void remove (cost_classes *);
4a8fb1a1 138};
1756cb66 139
4a8fb1a1
LC
140/* Returns hash value for cost classes info HV. */
141inline hashval_t
67f58944 142cost_classes_hasher::hash (const cost_classes *hv)
4a8fb1a1 143{
1756cb66
VM
144 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
145}
146
4a8fb1a1
LC
147/* Compares cost classes info HV1 and HV2. */
148inline bool
67f58944 149cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
1756cb66 150{
c99ebd4d
FY
151 return (hv1->num == hv2->num
152 && memcmp (hv1->classes, hv2->classes,
153 sizeof (enum reg_class) * hv1->num) == 0);
1756cb66
VM
154}
155
156/* Delete cost classes info V from the hash table. */
4a8fb1a1 157inline void
67f58944 158cost_classes_hasher::remove (cost_classes *v)
1756cb66
VM
159{
160 ira_free (v);
161}
162
163/* Hash table of unique cost classes. */
c203e8a7 164static hash_table<cost_classes_hasher> *cost_classes_htab;
1756cb66
VM
165
166/* Map allocno class -> cost classes for pseudo of given allocno
167 class. */
168static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
169
170/* Map mode -> cost classes for pseudo of give mode. */
171static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
172
cbfb1548
RS
173/* Cost classes that include all classes in ira_important_classes. */
174static cost_classes all_cost_classes;
175
176/* Use the array of classes in CLASSES_PTR to fill out the rest of
177 the structure. */
178static void
179complete_cost_classes (cost_classes_t classes_ptr)
180{
181 for (int i = 0; i < N_REG_CLASSES; i++)
182 classes_ptr->index[i] = -1;
183 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
184 classes_ptr->hard_regno_index[i] = -1;
185 for (int i = 0; i < classes_ptr->num; i++)
186 {
187 enum reg_class cl = classes_ptr->classes[i];
188 classes_ptr->index[cl] = i;
189 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
190 {
191 unsigned int hard_regno = ira_class_hard_regs[cl][j];
192 if (classes_ptr->hard_regno_index[hard_regno] < 0)
193 classes_ptr->hard_regno_index[hard_regno] = i;
194 }
195 }
196}
197
1756cb66
VM
198/* Initialize info about the cost classes for each pseudo. */
199static void
200initiate_regno_cost_classes (void)
201{
202 int size = sizeof (cost_classes_t) * max_reg_num ();
203
204 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
205 memset (regno_cost_classes, 0, size);
206 memset (cost_classes_aclass_cache, 0,
207 sizeof (cost_classes_t) * N_REG_CLASSES);
208 memset (cost_classes_mode_cache, 0,
209 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
c203e8a7 210 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
cbfb1548
RS
211 all_cost_classes.num = ira_important_classes_num;
212 for (int i = 0; i < ira_important_classes_num; i++)
213 all_cost_classes.classes[i] = ira_important_classes[i];
214 complete_cost_classes (&all_cost_classes);
1756cb66
VM
215}
216
217/* Create new cost classes from cost classes FROM and set up members
218 index and hard_regno_index. Return the new classes. The function
219 implements some common code of two functions
220 setup_regno_cost_classes_by_aclass and
221 setup_regno_cost_classes_by_mode. */
222static cost_classes_t
223setup_cost_classes (cost_classes_t from)
224{
225 cost_classes_t classes_ptr;
1756cb66
VM
226
227 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
228 classes_ptr->num = from->num;
cbfb1548
RS
229 for (int i = 0; i < from->num; i++)
230 classes_ptr->classes[i] = from->classes[i];
231 complete_cost_classes (classes_ptr);
232 return classes_ptr;
233}
234
235/* Return a version of FULL that only considers registers in REGS that are
236 valid for mode MODE. Both FULL and the returned class are globally
237 allocated. */
238static cost_classes_t
ef4bddc2 239restrict_cost_classes (cost_classes_t full, machine_mode mode,
504279ae 240 const_hard_reg_set regs)
cbfb1548
RS
241{
242 static struct cost_classes narrow;
243 int map[N_REG_CLASSES];
244 narrow.num = 0;
245 for (int i = 0; i < full->num; i++)
1756cb66 246 {
cbfb1548
RS
247 /* Assume that we'll drop the class. */
248 map[i] = -1;
249
250 /* Ignore classes that are too small for the mode. */
251 enum reg_class cl = full->classes[i];
252 if (!contains_reg_of_mode[cl][mode])
253 continue;
254
255 /* Calculate the set of registers in CL that belong to REGS and
256 are valid for MODE. */
dc333d8f 257 HARD_REG_SET valid_for_cl = reg_class_contents[cl] & regs;
d15e5131
RS
258 valid_for_cl &= ~(ira_prohibited_class_mode_regs[cl][mode]
259 | ira_no_alloc_regs);
cbfb1548
RS
260 if (hard_reg_set_empty_p (valid_for_cl))
261 continue;
262
263 /* Don't use this class if the set of valid registers is a subset
264 of an existing class. For example, suppose we have two classes
265 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
266 that the mode changes allowed by FR_REGS are not as general as
267 the mode changes allowed by GR_REGS.
268
269 In this situation, the mode changes for GR_AND_FR_REGS could
270 either be seen as the union or the intersection of the mode
271 changes allowed by the two subclasses. The justification for
272 the union-based definition would be that, if you want a mode
273 change that's only allowed by GR_REGS, you can pick a register
274 from the GR_REGS subclass. The justification for the
275 intersection-based definition would be that every register
276 from the class would allow the mode change.
277
278 However, if we have a register that needs to be in GR_REGS,
279 using GR_AND_FR_REGS with the intersection-based definition
280 would be too pessimistic, since it would bring in restrictions
281 that only apply to FR_REGS. Conversely, if we have a register
282 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
283 union-based definition would lose the extra restrictions
284 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
285 for cases where GR_REGS and FP_REGS are both valid. */
286 int pos;
287 for (pos = 0; pos < narrow.num; ++pos)
1756cb66 288 {
cbfb1548
RS
289 enum reg_class cl2 = narrow.classes[pos];
290 if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
291 break;
292 }
293 map[i] = pos;
294 if (pos == narrow.num)
295 {
296 /* If several classes are equivalent, prefer to use the one
297 that was chosen as the allocno class. */
298 enum reg_class cl2 = ira_allocno_class_translate[cl];
299 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
300 cl = cl2;
301 narrow.classes[narrow.num++] = cl;
1756cb66
VM
302 }
303 }
cbfb1548
RS
304 if (narrow.num == full->num)
305 return full;
306
307 cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
308 if (*slot == NULL)
309 {
310 cost_classes_t classes = setup_cost_classes (&narrow);
311 /* Map equivalent classes to the representative that we chose above. */
312 for (int i = 0; i < ira_important_classes_num; i++)
313 {
314 enum reg_class cl = ira_important_classes[i];
315 int index = full->index[cl];
316 if (index >= 0)
317 classes->index[cl] = map[index];
318 }
319 *slot = classes;
320 }
321 return *slot;
1756cb66
VM
322}
323
324/* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
325 This function is used when we know an initial approximation of
326 allocno class of the pseudo already, e.g. on the second iteration
327 of class cost calculation or after class cost calculation in
328 register-pressure sensitive insn scheduling or register-pressure
329 sensitive loop-invariant motion. */
330static void
331setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
332{
333 static struct cost_classes classes;
334 cost_classes_t classes_ptr;
335 enum reg_class cl;
336 int i;
4a8fb1a1 337 cost_classes **slot;
1756cb66 338 HARD_REG_SET temp, temp2;
6277a710 339 bool exclude_p;
1756cb66
VM
340
341 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
342 {
d15e5131 343 temp = reg_class_contents[aclass] & ~ira_no_alloc_regs;
6277a710 344 /* We exclude classes from consideration which are subsets of
165f639c
VM
345 ACLASS only if ACLASS is an uniform class. */
346 exclude_p = ira_uniform_class_p[aclass];
1756cb66
VM
347 classes.num = 0;
348 for (i = 0; i < ira_important_classes_num; i++)
349 {
350 cl = ira_important_classes[i];
6277a710
VM
351 if (exclude_p)
352 {
165f639c 353 /* Exclude non-uniform classes which are subsets of
6277a710 354 ACLASS. */
d15e5131 355 temp2 = reg_class_contents[cl] & ~ira_no_alloc_regs;
165f639c 356 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
6277a710
VM
357 continue;
358 }
1756cb66
VM
359 classes.classes[classes.num++] = cl;
360 }
c203e8a7 361 slot = cost_classes_htab->find_slot (&classes, INSERT);
1756cb66
VM
362 if (*slot == NULL)
363 {
364 classes_ptr = setup_cost_classes (&classes);
365 *slot = classes_ptr;
366 }
367 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
368 }
cbfb1548 369 if (regno_reg_rtx[regno] != NULL_RTX)
dab67d2c
RS
370 {
371 /* Restrict the classes to those that are valid for REGNO's mode
372 (which might for example exclude singleton classes if the mode
373 requires two registers). Also restrict the classes to those that
374 are valid for subregs of REGNO. */
375 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
376 if (!valid_regs)
377 valid_regs = &reg_class_contents[ALL_REGS];
378 classes_ptr = restrict_cost_classes (classes_ptr,
379 PSEUDO_REGNO_MODE (regno),
380 *valid_regs);
381 }
1756cb66
VM
382 regno_cost_classes[regno] = classes_ptr;
383}
384
385/* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
386 decrease number of cost classes for the pseudo, if hard registers
67914693
SL
387 of some important classes cannot hold a value of MODE. So the
388 pseudo cannot get hard register of some important classes and cost
df3e3493 389 calculation for such important classes is only wasting CPU
1756cb66
VM
390 time. */
391static void
ef4bddc2 392setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
1756cb66 393{
dab67d2c
RS
394 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
395 regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
396 mode, *valid_regs);
397 else
398 {
399 if (cost_classes_mode_cache[mode] == NULL)
400 cost_classes_mode_cache[mode]
401 = restrict_cost_classes (&all_cost_classes, mode,
402 reg_class_contents[ALL_REGS]);
403 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
404 }
1756cb66
VM
405}
406
df3e3493 407/* Finalize info about the cost classes for each pseudo. */
1756cb66
VM
408static void
409finish_regno_cost_classes (void)
410{
411 ira_free (regno_cost_classes);
c203e8a7
TS
412 delete cost_classes_htab;
413 cost_classes_htab = NULL;
1756cb66
VM
414}
415
416\f
417
058e97ec
VM
418/* Compute the cost of loading X into (if TO_P is TRUE) or from (if
419 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
420 be a pseudo register. */
421static int
ef4bddc2 422copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
058e97ec
VM
423 secondary_reload_info *prev_sri)
424{
425 secondary_reload_info sri;
fba42e24 426 reg_class_t secondary_class = NO_REGS;
058e97ec
VM
427
428 /* If X is a SCRATCH, there is actually nothing to move since we are
429 assuming optimal allocation. */
430 if (GET_CODE (x) == SCRATCH)
431 return 0;
432
433 /* Get the class we will actually use for a reload. */
fba42e24 434 rclass = targetm.preferred_reload_class (x, rclass);
058e97ec
VM
435
436 /* If we need a secondary reload for an intermediate, the cost is
437 that to load the input into the intermediate register, then to
438 copy it. */
439 sri.prev_sri = prev_sri;
440 sri.extra_cost = 0;
a2faef8e
NC
441 /* PR 68770: Secondary reload might examine the t_icode field. */
442 sri.t_icode = CODE_FOR_nothing;
443
fba42e24 444 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
058e97ec 445
058e97ec 446 if (secondary_class != NO_REGS)
20377b47 447 {
bac1c6a4
RS
448 ira_init_register_move_cost_if_necessary (mode);
449 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
fba42e24 450 + sri.extra_cost
20377b47
JH
451 + copy_cost (x, mode, secondary_class, to_p, &sri));
452 }
058e97ec
VM
453
454 /* For memory, use the memory move cost, for (hard) registers, use
455 the cost to move between the register classes, and use 2 for
456 everything else (constants). */
457 if (MEM_P (x) || rclass == NO_REGS)
fba42e24
AS
458 return sri.extra_cost
459 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
058e97ec 460 else if (REG_P (x))
20377b47 461 {
bac1c6a4
RS
462 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
463
464 ira_init_register_move_cost_if_necessary (mode);
fba42e24 465 return (sri.extra_cost
bac1c6a4 466 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
20377b47 467 }
058e97ec
VM
468 else
469 /* If this is a constant, we may eventually want to call rtx_cost
470 here. */
471 return sri.extra_cost + COSTS_N_INSNS (1);
472}
473
474\f
475
476/* Record the cost of using memory or hard registers of various
477 classes for the operands in INSN.
478
479 N_ALTS is the number of alternatives.
480 N_OPS is the number of operands.
481 OPS is an array of the operands.
482 MODES are the modes of the operands, in case any are VOIDmode.
483 CONSTRAINTS are the constraints to use for the operands. This array
484 is modified by this procedure.
485
486 This procedure works alternative by alternative. For each
487 alternative we assume that we will be able to allocate all allocnos
488 to their ideal register class and calculate the cost of using that
489 alternative. Then we compute, for each operand that is a
490 pseudo-register, the cost of having the allocno allocated to each
491 register class and using it in that alternative. To this cost is
492 added the cost of the alternative.
493
494 The cost of each class for this insn is its lowest cost among all
495 the alternatives. */
496static void
497record_reg_classes (int n_alts, int n_ops, rtx *ops,
ef4bddc2 498 machine_mode *modes, const char **constraints,
070a1983 499 rtx_insn *insn, enum reg_class *pref)
058e97ec
VM
500{
501 int alt;
502 int i, j, k;
927425df 503 int insn_allows_mem[MAX_RECOG_OPERANDS];
0a1eb350
VM
504 move_table *move_in_cost, *move_out_cost;
505 short (*mem_cost)[2];
927425df
VM
506
507 for (i = 0; i < n_ops; i++)
508 insn_allows_mem[i] = 0;
058e97ec
VM
509
510 /* Process each alternative, each time minimizing an operand's cost
511 with the cost for each operand in that alternative. */
9840b2fa 512 alternative_mask preferred = get_preferred_alternatives (insn);
058e97ec
VM
513 for (alt = 0; alt < n_alts; alt++)
514 {
515 enum reg_class classes[MAX_RECOG_OPERANDS];
516 int allows_mem[MAX_RECOG_OPERANDS];
bbbbb16a 517 enum reg_class rclass;
058e97ec
VM
518 int alt_fail = 0;
519 int alt_cost = 0, op_cost_add;
520
9840b2fa 521 if (!TEST_BIT (preferred, alt))
979740a0
BS
522 {
523 for (i = 0; i < recog_data.n_operands; i++)
524 constraints[i] = skip_alternative (constraints[i]);
525
526 continue;
527 }
528
058e97ec
VM
529 for (i = 0; i < n_ops; i++)
530 {
531 unsigned char c;
532 const char *p = constraints[i];
533 rtx op = ops[i];
ef4bddc2 534 machine_mode mode = modes[i];
058e97ec
VM
535 int allows_addr = 0;
536 int win = 0;
537
538 /* Initially show we know nothing about the register class. */
539 classes[i] = NO_REGS;
540 allows_mem[i] = 0;
541
542 /* If this operand has no constraints at all, we can
543 conclude nothing about it since anything is valid. */
544 if (*p == 0)
545 {
546 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
547 memset (this_op_costs[i], 0, struct_costs_size);
548 continue;
549 }
550
551 /* If this alternative is only relevant when this operand
552 matches a previous operand, we do different things
553 depending on whether this operand is a allocno-reg or not.
554 We must process any modifiers for the operand before we
555 can make this test. */
556 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
557 p++;
558
d81c5030 559 if (p[0] >= '0' && p[0] <= '0' + i)
058e97ec
VM
560 {
561 /* Copy class and whether memory is allowed from the
562 matching alternative. Then perform any needed cost
563 computations and/or adjustments. */
564 j = p[0] - '0';
565 classes[i] = classes[j];
566 allows_mem[i] = allows_mem[j];
927425df
VM
567 if (allows_mem[i])
568 insn_allows_mem[i] = 1;
058e97ec
VM
569
570 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
571 {
572 /* If this matches the other operand, we have no
573 added cost and we win. */
574 if (rtx_equal_p (ops[j], op))
575 win = 1;
576 /* If we can put the other operand into a register,
577 add to the cost of this alternative the cost to
578 copy this operand to the register used for the
579 other operand. */
580 else if (classes[j] != NO_REGS)
581 {
582 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
583 win = 1;
584 }
585 }
586 else if (! REG_P (ops[j])
587 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
588 {
589 /* This op is an allocno but the one it matches is
590 not. */
591
592 /* If we can't put the other operand into a
593 register, this alternative can't be used. */
594
595 if (classes[j] == NO_REGS)
596 alt_fail = 1;
597 /* Otherwise, add to the cost of this alternative
598 the cost to copy the other operand to the hard
599 register used for this operand. */
600 else
601 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
602 }
603 else
604 {
605 /* The costs of this operand are not the same as the
606 other operand since move costs are not symmetric.
607 Moreover, if we cannot tie them, this alternative
608 needs to do a copy, which is one insn. */
609 struct costs *pp = this_op_costs[i];
1756cb66
VM
610 int *pp_costs = pp->cost;
611 cost_classes_t cost_classes_ptr
612 = regno_cost_classes[REGNO (op)];
613 enum reg_class *cost_classes = cost_classes_ptr->classes;
614 bool in_p = recog_data.operand_type[i] != OP_OUT;
615 bool out_p = recog_data.operand_type[i] != OP_IN;
616 enum reg_class op_class = classes[i];
1756cb66
VM
617
618 ira_init_register_move_cost_if_necessary (mode);
619 if (! in_p)
fe82cdfb 620 {
1756cb66 621 ira_assert (out_p);
0a1eb350 622 if (op_class == NO_REGS)
1756cb66 623 {
0a1eb350
VM
624 mem_cost = ira_memory_move_cost[mode];
625 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
626 {
627 rclass = cost_classes[k];
628 pp_costs[k] = mem_cost[rclass][0] * frequency;
629 }
630 }
631 else
632 {
633 move_out_cost = ira_may_move_out_cost[mode];
634 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
635 {
636 rclass = cost_classes[k];
637 pp_costs[k]
638 = move_out_cost[op_class][rclass] * frequency;
639 }
1756cb66
VM
640 }
641 }
642 else if (! out_p)
643 {
644 ira_assert (in_p);
0a1eb350 645 if (op_class == NO_REGS)
1756cb66 646 {
0a1eb350
VM
647 mem_cost = ira_memory_move_cost[mode];
648 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
649 {
650 rclass = cost_classes[k];
651 pp_costs[k] = mem_cost[rclass][1] * frequency;
652 }
653 }
654 else
655 {
656 move_in_cost = ira_may_move_in_cost[mode];
657 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
658 {
659 rclass = cost_classes[k];
660 pp_costs[k]
661 = move_in_cost[rclass][op_class] * frequency;
662 }
1756cb66
VM
663 }
664 }
665 else
666 {
0a1eb350 667 if (op_class == NO_REGS)
1756cb66 668 {
0a1eb350
VM
669 mem_cost = ira_memory_move_cost[mode];
670 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
671 {
672 rclass = cost_classes[k];
673 pp_costs[k] = ((mem_cost[rclass][0]
674 + mem_cost[rclass][1])
675 * frequency);
676 }
677 }
678 else
679 {
680 move_in_cost = ira_may_move_in_cost[mode];
681 move_out_cost = ira_may_move_out_cost[mode];
682 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
683 {
684 rclass = cost_classes[k];
685 pp_costs[k] = ((move_in_cost[rclass][op_class]
686 + move_out_cost[op_class][rclass])
687 * frequency);
688 }
1756cb66 689 }
058e97ec
VM
690 }
691
692 /* If the alternative actually allows memory, make
693 things a bit cheaper since we won't need an extra
694 insn to load it. */
695 pp->mem_cost
1756cb66
VM
696 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
697 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
058e97ec 698 - allows_mem[i]) * frequency;
927425df 699
1756cb66
VM
700 /* If we have assigned a class to this allocno in
701 our first pass, add a cost to this alternative
702 corresponding to what we would add if this
703 allocno were not in the appropriate class. */
ce18efcb 704 if (pref)
058e97ec 705 {
ce18efcb 706 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
058e97ec
VM
707
708 if (pref_class == NO_REGS)
709 alt_cost
1756cb66
VM
710 += ((out_p
711 ? ira_memory_move_cost[mode][op_class][0] : 0)
712 + (in_p
713 ? ira_memory_move_cost[mode][op_class][1]
058e97ec
VM
714 : 0));
715 else if (ira_reg_class_intersect
1756cb66
VM
716 [pref_class][op_class] == NO_REGS)
717 alt_cost
718 += ira_register_move_cost[mode][pref_class][op_class];
058e97ec
VM
719 }
720 if (REGNO (ops[i]) != REGNO (ops[j])
721 && ! find_reg_note (insn, REG_DEAD, op))
722 alt_cost += 2;
723
d81c5030 724 p++;
058e97ec
VM
725 }
726 }
b8698a0f 727
058e97ec
VM
728 /* Scan all the constraint letters. See if the operand
729 matches any of the constraints. Collect the valid
730 register classes and see if this operand accepts
731 memory. */
732 while ((c = *p))
733 {
734 switch (c)
735 {
058e97ec
VM
736 case '*':
737 /* Ignore the next letter for this pass. */
738 c = *++p;
739 break;
740
d1457701
VM
741 case '^':
742 alt_cost += 2;
743 break;
744
058e97ec
VM
745 case '?':
746 alt_cost += 2;
058e97ec
VM
747 break;
748
749 case 'g':
750 if (MEM_P (op)
751 || (CONSTANT_P (op)
752 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
753 win = 1;
927425df 754 insn_allows_mem[i] = allows_mem[i] = 1;
1756cb66 755 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
058e97ec
VM
756 break;
757
758 default:
777e635f
RS
759 enum constraint_num cn = lookup_constraint (p);
760 enum reg_class cl;
761 switch (get_constraint_type (cn))
058e97ec 762 {
777e635f
RS
763 case CT_REGISTER:
764 cl = reg_class_for_constraint (cn);
765 if (cl != NO_REGS)
766 classes[i] = ira_reg_class_subunion[classes[i]][cl];
767 break;
768
d9c35eee
RS
769 case CT_CONST_INT:
770 if (CONST_INT_P (op)
771 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
772 win = 1;
773 break;
774
777e635f 775 case CT_MEMORY:
0d37e2d3 776 case CT_RELAXED_MEMORY:
058e97ec 777 /* Every MEM can be reloaded to fit. */
927425df 778 insn_allows_mem[i] = allows_mem[i] = 1;
058e97ec
VM
779 if (MEM_P (op))
780 win = 1;
777e635f
RS
781 break;
782
9eb1ca69
VM
783 case CT_SPECIAL_MEMORY:
784 insn_allows_mem[i] = allows_mem[i] = 1;
4de7b010 785 if (MEM_P (extract_mem_from_operand (op))
786 && constraint_satisfied_p (op, cn))
9eb1ca69
VM
787 win = 1;
788 break;
789
777e635f 790 case CT_ADDRESS:
058e97ec
VM
791 /* Every address can be reloaded to fit. */
792 allows_addr = 1;
777e635f
RS
793 if (address_operand (op, GET_MODE (op))
794 || constraint_satisfied_p (op, cn))
058e97ec
VM
795 win = 1;
796 /* We know this operand is an address, so we
797 want it to be allocated to a hard register
798 that can be the base of an address,
799 i.e. BASE_REG_CLASS. */
800 classes[i]
1756cb66 801 = ira_reg_class_subunion[classes[i]]
86fc3d06
UW
802 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
803 ADDRESS, SCRATCH)];
777e635f
RS
804 break;
805
806 case CT_FIXED_FORM:
807 if (constraint_satisfied_p (op, cn))
808 win = 1;
809 break;
058e97ec 810 }
058e97ec
VM
811 break;
812 }
813 p += CONSTRAINT_LEN (c, p);
814 if (c == ',')
815 break;
816 }
817
818 constraints[i] = p;
819
3d8e4920
RS
820 if (alt_fail)
821 break;
822
058e97ec
VM
823 /* How we account for this operand now depends on whether it
824 is a pseudo register or not. If it is, we first check if
825 any register classes are valid. If not, we ignore this
826 alternative, since we want to assume that all allocnos get
827 allocated for register preferencing. If some register
828 class is valid, compute the costs of moving the allocno
829 into that class. */
830 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
831 {
f4e075e7 832 if (classes[i] == NO_REGS && ! allows_mem[i])
058e97ec
VM
833 {
834 /* We must always fail if the operand is a REG, but
f4e075e7
VM
835 we did not find a suitable class and memory is
836 not allowed.
058e97ec
VM
837
838 Otherwise we may perform an uninitialized read
839 from this_op_costs after the `continue' statement
840 below. */
841 alt_fail = 1;
842 }
843 else
844 {
1756cb66 845 unsigned int regno = REGNO (op);
058e97ec 846 struct costs *pp = this_op_costs[i];
1756cb66
VM
847 int *pp_costs = pp->cost;
848 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
849 enum reg_class *cost_classes = cost_classes_ptr->classes;
850 bool in_p = recog_data.operand_type[i] != OP_OUT;
851 bool out_p = recog_data.operand_type[i] != OP_IN;
852 enum reg_class op_class = classes[i];
1756cb66
VM
853
854 ira_init_register_move_cost_if_necessary (mode);
855 if (! in_p)
fe82cdfb 856 {
1756cb66 857 ira_assert (out_p);
f4e075e7 858 if (op_class == NO_REGS)
1756cb66 859 {
f4e075e7
VM
860 mem_cost = ira_memory_move_cost[mode];
861 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
862 {
863 rclass = cost_classes[k];
864 pp_costs[k] = mem_cost[rclass][0] * frequency;
865 }
866 }
867 else
868 {
869 move_out_cost = ira_may_move_out_cost[mode];
870 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
871 {
872 rclass = cost_classes[k];
873 pp_costs[k]
874 = move_out_cost[op_class][rclass] * frequency;
875 }
1756cb66
VM
876 }
877 }
878 else if (! out_p)
879 {
880 ira_assert (in_p);
f4e075e7 881 if (op_class == NO_REGS)
1756cb66 882 {
f4e075e7
VM
883 mem_cost = ira_memory_move_cost[mode];
884 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
885 {
886 rclass = cost_classes[k];
887 pp_costs[k] = mem_cost[rclass][1] * frequency;
888 }
889 }
890 else
891 {
892 move_in_cost = ira_may_move_in_cost[mode];
893 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
894 {
895 rclass = cost_classes[k];
896 pp_costs[k]
897 = move_in_cost[rclass][op_class] * frequency;
898 }
1756cb66
VM
899 }
900 }
901 else
902 {
f4e075e7 903 if (op_class == NO_REGS)
1756cb66 904 {
f4e075e7
VM
905 mem_cost = ira_memory_move_cost[mode];
906 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
907 {
908 rclass = cost_classes[k];
909 pp_costs[k] = ((mem_cost[rclass][0]
910 + mem_cost[rclass][1])
911 * frequency);
912 }
913 }
914 else
915 {
916 move_in_cost = ira_may_move_in_cost[mode];
917 move_out_cost = ira_may_move_out_cost[mode];
918 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
919 {
920 rclass = cost_classes[k];
921 pp_costs[k] = ((move_in_cost[rclass][op_class]
922 + move_out_cost[op_class][rclass])
923 * frequency);
924 }
1756cb66 925 }
058e97ec
VM
926 }
927
0a1eb350
VM
928 if (op_class == NO_REGS)
929 /* Although we don't need insn to reload from
930 memory, still accessing memory is usually more
931 expensive than a register. */
932 pp->mem_cost = frequency;
933 else
934 /* If the alternative actually allows memory, make
935 things a bit cheaper since we won't need an
936 extra insn to load it. */
f4e075e7
VM
937 pp->mem_cost
938 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
939 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
940 - allows_mem[i]) * frequency;
1756cb66
VM
941 /* If we have assigned a class to this allocno in
942 our first pass, add a cost to this alternative
943 corresponding to what we would add if this
944 allocno were not in the appropriate class. */
ce18efcb 945 if (pref)
058e97ec 946 {
ce18efcb 947 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
058e97ec
VM
948
949 if (pref_class == NO_REGS)
f4e075e7
VM
950 {
951 if (op_class != NO_REGS)
952 alt_cost
953 += ((out_p
954 ? ira_memory_move_cost[mode][op_class][0]
955 : 0)
956 + (in_p
957 ? ira_memory_move_cost[mode][op_class][1]
958 : 0));
959 }
960 else if (op_class == NO_REGS)
058e97ec 961 alt_cost
1756cb66 962 += ((out_p
f4e075e7
VM
963 ? ira_memory_move_cost[mode][pref_class][1]
964 : 0)
1756cb66 965 + (in_p
f4e075e7 966 ? ira_memory_move_cost[mode][pref_class][0]
058e97ec 967 : 0));
1756cb66 968 else if (ira_reg_class_intersect[pref_class][op_class]
058e97ec 969 == NO_REGS)
f4e075e7
VM
970 alt_cost += (ira_register_move_cost
971 [mode][pref_class][op_class]);
058e97ec
VM
972 }
973 }
974 }
975
976 /* Otherwise, if this alternative wins, either because we
977 have already determined that or if we have a hard
978 register of the proper class, there is no cost for this
979 alternative. */
980 else if (win || (REG_P (op)
981 && reg_fits_class_p (op, classes[i],
982 0, GET_MODE (op))))
983 ;
984
985 /* If registers are valid, the cost of this alternative
986 includes copying the object to and/or from a
987 register. */
988 else if (classes[i] != NO_REGS)
989 {
990 if (recog_data.operand_type[i] != OP_OUT)
991 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
992
993 if (recog_data.operand_type[i] != OP_IN)
994 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
995 }
996 /* The only other way this alternative can be used is if
997 this is a constant that could be placed into memory. */
998 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
999 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1000 else
1001 alt_fail = 1;
3d8e4920
RS
1002
1003 if (alt_fail)
1004 break;
058e97ec
VM
1005 }
1006
1007 if (alt_fail)
3d8e4920
RS
1008 {
1009 /* The loop above might have exited early once the failure
1010 was seen. Skip over the constraints for the remaining
1011 operands. */
1012 i += 1;
1013 for (; i < n_ops; ++i)
1014 constraints[i] = skip_alternative (constraints[i]);
1015 continue;
1016 }
058e97ec
VM
1017
1018 op_cost_add = alt_cost * frequency;
1019 /* Finally, update the costs with the information we've
1020 calculated about this alternative. */
1021 for (i = 0; i < n_ops; i++)
1022 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1023 {
1024 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1756cb66 1025 int *pp_costs = pp->cost, *qq_costs = qq->cost;
058e97ec 1026 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1756cb66
VM
1027 cost_classes_t cost_classes_ptr
1028 = regno_cost_classes[REGNO (ops[i])];
058e97ec
VM
1029
1030 pp->mem_cost = MIN (pp->mem_cost,
1031 (qq->mem_cost + op_cost_add) * scale);
1032
1756cb66
VM
1033 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1034 pp_costs[k]
1035 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
058e97ec
VM
1036 }
1037 }
1038
ce18efcb
VM
1039 if (allocno_p)
1040 for (i = 0; i < n_ops; i++)
1041 {
1042 ira_allocno_t a;
1043 rtx op = ops[i];
b8698a0f 1044
ce18efcb
VM
1045 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1046 continue;
1047 a = ira_curr_regno_allocno_map [REGNO (op)];
1048 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1049 ALLOCNO_BAD_SPILL_P (a) = true;
1050 }
927425df 1051
058e97ec
VM
1052}
1053
1054\f
1055
1056/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1057static inline bool
1058ok_for_index_p_nonstrict (rtx reg)
1059{
1060 unsigned regno = REGNO (reg);
1061
1062 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1063}
1064
1065/* A version of regno_ok_for_base_p for use here, when all
1066 pseudo-registers should count as OK. Arguments as for
1067 regno_ok_for_base_p. */
1068static inline bool
ef4bddc2 1069ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
058e97ec
VM
1070 enum rtx_code outer_code, enum rtx_code index_code)
1071{
1072 unsigned regno = REGNO (reg);
1073
1074 if (regno >= FIRST_PSEUDO_REGISTER)
1075 return true;
86fc3d06 1076 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
058e97ec
VM
1077}
1078
1079/* Record the pseudo registers we must reload into hard registers in a
1080 subexpression of a memory address, X.
1081
1082 If CONTEXT is 0, we are looking at the base part of an address,
1083 otherwise we are looking at the index part.
1084
86fc3d06
UW
1085 MODE and AS are the mode and address space of the memory reference;
1086 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1087 These four arguments are passed down to base_reg_class.
058e97ec
VM
1088
1089 SCALE is twice the amount to multiply the cost by (it is twice so
1090 we can represent half-cost adjustments). */
1091static void
ef4bddc2 1092record_address_regs (machine_mode mode, addr_space_t as, rtx x,
86fc3d06
UW
1093 int context, enum rtx_code outer_code,
1094 enum rtx_code index_code, int scale)
058e97ec
VM
1095{
1096 enum rtx_code code = GET_CODE (x);
1097 enum reg_class rclass;
1098
1099 if (context == 1)
1100 rclass = INDEX_REG_CLASS;
1101 else
86fc3d06 1102 rclass = base_reg_class (mode, as, outer_code, index_code);
058e97ec
VM
1103
1104 switch (code)
1105 {
1106 case CONST_INT:
1107 case CONST:
058e97ec
VM
1108 case PC:
1109 case SYMBOL_REF:
1110 case LABEL_REF:
1111 return;
1112
1113 case PLUS:
1114 /* When we have an address that is a sum, we must determine
1115 whether registers are "base" or "index" regs. If there is a
1116 sum of two registers, we must choose one to be the "base".
1117 Luckily, we can use the REG_POINTER to make a good choice
1118 most of the time. We only need to do this on machines that
1119 can have two registers in an address and where the base and
1120 index register classes are different.
1121
1122 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1123 but that seems bogus since it should only be set when we are
1124 sure the register is being used as a pointer. */
1125 {
1126 rtx arg0 = XEXP (x, 0);
1127 rtx arg1 = XEXP (x, 1);
1128 enum rtx_code code0 = GET_CODE (arg0);
1129 enum rtx_code code1 = GET_CODE (arg1);
1130
1131 /* Look inside subregs. */
1132 if (code0 == SUBREG)
1133 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1134 if (code1 == SUBREG)
1135 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1136
9f1c93df 1137 /* If index registers do not appear, or coincide with base registers,
058e97ec
VM
1138 just record registers in any non-constant operands. We
1139 assume here, as well as in the tests below, that all
1140 addresses are in canonical form. */
9f1c93df
AM
1141 if (MAX_REGS_PER_ADDRESS == 1
1142 || INDEX_REG_CLASS == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
058e97ec 1143 {
86fc3d06 1144 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
058e97ec 1145 if (! CONSTANT_P (arg1))
86fc3d06 1146 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
058e97ec
VM
1147 }
1148
1149 /* If the second operand is a constant integer, it doesn't
1150 change what class the first operand must be. */
33ffb5c5 1151 else if (CONST_SCALAR_INT_P (arg1))
86fc3d06 1152 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
058e97ec
VM
1153 /* If the second operand is a symbolic constant, the first
1154 operand must be an index register. */
1155 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
86fc3d06 1156 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
058e97ec
VM
1157 /* If both operands are registers but one is already a hard
1158 register of index or reg-base class, give the other the
1159 class that the hard register is not. */
1160 else if (code0 == REG && code1 == REG
1161 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
86fc3d06 1162 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
058e97ec 1163 || ok_for_index_p_nonstrict (arg0)))
86fc3d06
UW
1164 record_address_regs (mode, as, arg1,
1165 ok_for_base_p_nonstrict (arg0, mode, as,
1166 PLUS, REG) ? 1 : 0,
058e97ec
VM
1167 PLUS, REG, scale);
1168 else if (code0 == REG && code1 == REG
1169 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
86fc3d06 1170 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
058e97ec 1171 || ok_for_index_p_nonstrict (arg1)))
86fc3d06
UW
1172 record_address_regs (mode, as, arg0,
1173 ok_for_base_p_nonstrict (arg1, mode, as,
1174 PLUS, REG) ? 1 : 0,
058e97ec
VM
1175 PLUS, REG, scale);
1176 /* If one operand is known to be a pointer, it must be the
1177 base with the other operand the index. Likewise if the
1178 other operand is a MULT. */
1179 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1180 {
86fc3d06
UW
1181 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1182 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
058e97ec
VM
1183 }
1184 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1185 {
86fc3d06
UW
1186 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1187 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
058e97ec
VM
1188 }
1189 /* Otherwise, count equal chances that each might be a base or
1190 index register. This case should be rare. */
1191 else
1192 {
86fc3d06
UW
1193 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1194 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1195 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1196 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
058e97ec
VM
1197 }
1198 }
1199 break;
1200
1201 /* Double the importance of an allocno that is incremented or
1202 decremented, since it would take two extra insns if it ends
1203 up in the wrong place. */
1204 case POST_MODIFY:
1205 case PRE_MODIFY:
86fc3d06 1206 record_address_regs (mode, as, XEXP (x, 0), 0, code,
058e97ec
VM
1207 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1208 if (REG_P (XEXP (XEXP (x, 1), 1)))
86fc3d06 1209 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
058e97ec
VM
1210 2 * scale);
1211 break;
1212
1213 case POST_INC:
1214 case PRE_INC:
1215 case POST_DEC:
1216 case PRE_DEC:
1217 /* Double the importance of an allocno that is incremented or
1218 decremented, since it would take two extra insns if it ends
9aaa7e47 1219 up in the wrong place. */
86fc3d06 1220 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
058e97ec
VM
1221 break;
1222
1223 case REG:
1224 {
1225 struct costs *pp;
1756cb66 1226 int *pp_costs;
bbbbb16a 1227 enum reg_class i;
1756cb66
VM
1228 int k, regno, add_cost;
1229 cost_classes_t cost_classes_ptr;
1230 enum reg_class *cost_classes;
1231 move_table *move_in_cost;
058e97ec
VM
1232
1233 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1234 break;
1235
1756cb66 1236 regno = REGNO (x);
ce18efcb 1237 if (allocno_p)
1756cb66
VM
1238 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1239 pp = COSTS (costs, COST_INDEX (regno));
1240 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1241 if (INT_MAX - add_cost < pp->mem_cost)
1242 pp->mem_cost = INT_MAX;
1243 else
1244 pp->mem_cost += add_cost;
1245 cost_classes_ptr = regno_cost_classes[regno];
1246 cost_classes = cost_classes_ptr->classes;
1247 pp_costs = pp->cost;
1248 ira_init_register_move_cost_if_necessary (Pmode);
1249 move_in_cost = ira_may_move_in_cost[Pmode];
1250 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
058e97ec
VM
1251 {
1252 i = cost_classes[k];
1756cb66
VM
1253 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1254 if (INT_MAX - add_cost < pp_costs[k])
1255 pp_costs[k] = INT_MAX;
eeae9314 1256 else
1756cb66 1257 pp_costs[k] += add_cost;
058e97ec
VM
1258 }
1259 }
1260 break;
1261
1262 default:
1263 {
1264 const char *fmt = GET_RTX_FORMAT (code);
1265 int i;
1266 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1267 if (fmt[i] == 'e')
86fc3d06 1268 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
058e97ec
VM
1269 scale);
1270 }
1271 }
1272}
1273
1274\f
1275
1276/* Calculate the costs of insn operands. */
1277static void
070a1983 1278record_operand_costs (rtx_insn *insn, enum reg_class *pref)
058e97ec
VM
1279{
1280 const char *constraints[MAX_RECOG_OPERANDS];
ef4bddc2 1281 machine_mode modes[MAX_RECOG_OPERANDS];
3b6d1699 1282 rtx set;
058e97ec
VM
1283 int i;
1284
eeae9314
VM
1285 if ((set = single_set (insn)) != NULL_RTX
1286 /* In rare cases the single set insn might have less 2 operands
1287 as the source can be a fixed special reg. */
1288 && recog_data.n_operands > 1
1289 && recog_data.operand[0] == SET_DEST (set)
1290 && recog_data.operand[1] == SET_SRC (set))
1291 {
1292 int regno, other_regno;
1293 rtx dest = SET_DEST (set);
1294 rtx src = SET_SRC (set);
1295
1296 if (GET_CODE (dest) == SUBREG
1297 && known_eq (GET_MODE_SIZE (GET_MODE (dest)),
1298 GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1299 dest = SUBREG_REG (dest);
1300 if (GET_CODE (src) == SUBREG
1301 && known_eq (GET_MODE_SIZE (GET_MODE (src)),
1302 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1303 src = SUBREG_REG (src);
1304 if (REG_P (src) && REG_P (dest)
1305 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1306 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1307 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1308 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1309 {
1310 machine_mode mode = GET_MODE (SET_SRC (set));
1311 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1312 enum reg_class *cost_classes = cost_classes_ptr->classes;
a7acb6dc 1313 reg_class_t rclass, hard_reg_class, bigger_hard_reg_class;
eeae9314 1314 int cost, k;
36d070a7 1315 move_table *move_costs;
eeae9314
VM
1316 bool dead_p = find_regno_note (insn, REG_DEAD, REGNO (src));
1317
12422bc8 1318 ira_init_register_move_cost_if_necessary (mode);
36d070a7 1319 move_costs = ira_register_move_cost[mode];
eeae9314 1320 hard_reg_class = REGNO_REG_CLASS (other_regno);
36d070a7 1321 bigger_hard_reg_class = ira_pressure_class_translate[hard_reg_class];
795a6c67 1322 /* Target code may return any cost for mode which does not
700d4cb0 1323 fit the hard reg class (e.g. DImode for AREG on
795a6c67
VM
1324 i386). Check this and use a bigger class to get the
1325 right cost. */
66a0970a
VM
1326 if (bigger_hard_reg_class != NO_REGS
1327 && ! ira_hard_reg_in_set_p (other_regno, mode,
1328 reg_class_contents[hard_reg_class]))
36d070a7 1329 hard_reg_class = bigger_hard_reg_class;
eeae9314
VM
1330 i = regno == (int) REGNO (src) ? 1 : 0;
1331 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1332 {
1333 rclass = cost_classes[k];
36d070a7
VM
1334 cost = (i == 0
1335 ? move_costs[hard_reg_class][rclass]
1336 : move_costs[rclass][hard_reg_class]);
36d070a7
VM
1337
1338 op_costs[i]->cost[k] = cost * frequency;
eeae9314
VM
1339 /* If this insn is a single set copying operand 1 to
1340 operand 0 and one operand is an allocno with the
1341 other a hard reg or an allocno that prefers a hard
1342 register that is in its own register class then we
1343 may want to adjust the cost of that register class to
1344 -1.
1345
1346 Avoid the adjustment if the source does not die to
1347 avoid stressing of register allocator by preferencing
1348 two colliding registers into single class. */
1349 if (dead_p
1350 && TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1351 && (reg_class_size[(int) rclass]
1352 == (ira_reg_class_max_nregs
1353 [(int) rclass][(int) GET_MODE(src)])))
1354 {
1355 if (reg_class_size[rclass] == 1)
1356 op_costs[i]->cost[k] = -frequency;
1357 else if (in_hard_reg_set_p (reg_class_contents[rclass],
1358 GET_MODE(src), other_regno))
1359 op_costs[i]->cost[k] = -frequency;
1360 }
1361 }
1362 op_costs[i]->mem_cost
1363 = ira_memory_move_cost[mode][hard_reg_class][i] * frequency;
eeae9314
VM
1364 return;
1365 }
1366 }
1367
058e97ec
VM
1368 for (i = 0; i < recog_data.n_operands; i++)
1369 {
1370 constraints[i] = recog_data.constraints[i];
1371 modes[i] = recog_data.operand_mode[i];
1372 }
1373
1374 /* If we get here, we are set up to record the costs of all the
1375 operands for this insn. Start by initializing the costs. Then
1376 handle any address registers. Finally record the desired classes
1377 for any allocnos, doing it twice if some pair of operands are
1378 commutative. */
1379 for (i = 0; i < recog_data.n_operands; i++)
1380 {
4de7b010 1381 rtx op_mem = extract_mem_from_operand (recog_data.operand[i]);
058e97ec
VM
1382 memcpy (op_costs[i], init_cost, struct_costs_size);
1383
1384 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1385 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1386
4de7b010 1387 if (MEM_P (op_mem))
1388 record_address_regs (GET_MODE (op_mem),
1389 MEM_ADDR_SPACE (op_mem),
1390 XEXP (op_mem, 0),
058e97ec
VM
1391 0, MEM, SCRATCH, frequency * 2);
1392 else if (constraints[i][0] == 'p'
777e635f
RS
1393 || (insn_extra_address_constraint
1394 (lookup_constraint (constraints[i]))))
86fc3d06
UW
1395 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1396 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1397 frequency * 2);
058e97ec 1398 }
eeae9314 1399
058e97ec
VM
1400 /* Check for commutative in a separate loop so everything will have
1401 been initialized. We must do this even if one operand is a
1402 constant--see addsi3 in m68k.md. */
1403 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1404 if (constraints[i][0] == '%')
1405 {
1406 const char *xconstraints[MAX_RECOG_OPERANDS];
1407 int j;
1408
eeae9314
VM
1409 /* Handle commutative operands by swapping the
1410 constraints. We assume the modes are the same. */
058e97ec
VM
1411 for (j = 0; j < recog_data.n_operands; j++)
1412 xconstraints[j] = constraints[j];
1413
1414 xconstraints[i] = constraints[i+1];
1415 xconstraints[i+1] = constraints[i];
1416 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1417 recog_data.operand, modes,
aa1c5d72 1418 xconstraints, insn, pref);
058e97ec
VM
1419 }
1420 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1421 recog_data.operand, modes,
aa1c5d72 1422 constraints, insn, pref);
058e97ec
VM
1423}
1424
1425\f
1426
1427/* Process one insn INSN. Scan it and record each time it would save
1428 code to put a certain allocnos in a certain class. Return the last
1429 insn processed, so that the scan can be continued from there. */
070a1983
DM
1430static rtx_insn *
1431scan_one_insn (rtx_insn *insn)
058e97ec
VM
1432{
1433 enum rtx_code pat_code;
1434 rtx set, note;
1435 int i, k;
82ce305c 1436 bool counted_mem;
058e97ec 1437
39718607 1438 if (!NONDEBUG_INSN_P (insn))
058e97ec
VM
1439 return insn;
1440
1441 pat_code = GET_CODE (PATTERN (insn));
355930ab 1442 if (pat_code == ASM_INPUT)
058e97ec
VM
1443 return insn;
1444
355930ab
JL
1445 /* If INSN is a USE/CLOBBER of a pseudo in a mode M then go ahead
1446 and initialize the register move costs of mode M.
1447
1448 The pseudo may be related to another pseudo via a copy (implicit or
1449 explicit) and if there are no mode M uses/sets of the original
1450 pseudo, then we may leave the register move costs uninitialized for
1451 mode M. */
1452 if (pat_code == USE || pat_code == CLOBBER)
1453 {
1454 rtx x = XEXP (PATTERN (insn), 0);
1455 if (GET_CODE (x) == REG
2c2d5d00
JL
1456 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1457 && have_regs_of_mode[GET_MODE (x)])
355930ab
JL
1458 ira_init_register_move_cost_if_necessary (GET_MODE (x));
1459 return insn;
1460 }
1461
82ce305c 1462 counted_mem = false;
058e97ec
VM
1463 set = single_set (insn);
1464 extract_insn (insn);
1465
1466 /* If this insn loads a parameter from its stack slot, then it
1467 represents a savings, rather than a cost, if the parameter is
eeae9314 1468 stored in memory. Record this fact.
82ce305c
JL
1469
1470 Similarly if we're loading other constants from memory (constant
1471 pool, TOC references, small data areas, etc) and this is the only
3db93c89
JJ
1472 assignment to the destination pseudo.
1473
1474 Don't do this if SET_SRC (set) isn't a general operand, if it is
1475 a memory requiring special instructions to load it, decreasing
1476 mem_cost might result in it being loaded using the specialized
1477 instruction into a register, then stored into stack and loaded
b8578ff7 1478 again from the stack. See PR52208.
eeae9314 1479
b8578ff7 1480 Don't do this if SET_SRC (set) has side effect. See PR56124. */
058e97ec
VM
1481 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1482 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
b8578ff7
BC
1483 && ((MEM_P (XEXP (note, 0))
1484 && !side_effects_p (SET_SRC (set)))
82ce305c 1485 || (CONSTANT_P (XEXP (note, 0))
cca81ac8
L
1486 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1487 XEXP (note, 0))
3db93c89 1488 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
9129a561
VM
1489 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set)))
1490 /* LRA does not use equiv with a symbol for PIC code. */
1491 && (! ira_use_lra_p || ! pic_offset_table_rtx
1492 || ! contains_symbol_ref_p (XEXP (note, 0))))
058e97ec 1493 {
cca81ac8 1494 enum reg_class cl = GENERAL_REGS;
548a6322 1495 rtx reg = SET_DEST (set);
ce18efcb 1496 int num = COST_INDEX (REGNO (reg));
548a6322 1497
ce18efcb 1498 COSTS (costs, num)->mem_cost
548a6322 1499 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
86fc3d06
UW
1500 record_address_regs (GET_MODE (SET_SRC (set)),
1501 MEM_ADDR_SPACE (SET_SRC (set)),
1502 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1503 frequency * 2);
82ce305c 1504 counted_mem = true;
058e97ec
VM
1505 }
1506
aa1c5d72 1507 record_operand_costs (insn, pref);
058e97ec
VM
1508
1509 /* Now add the cost for each operand to the total costs for its
1510 allocno. */
1511 for (i = 0; i < recog_data.n_operands; i++)
6d078c9a
VM
1512 {
1513 rtx op = recog_data.operand[i];
1514
1515 if (GET_CODE (op) == SUBREG)
1516 op = SUBREG_REG (op);
1517 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1518 {
1519 int regno = REGNO (op);
1520 struct costs *p = COSTS (costs, COST_INDEX (regno));
1521 struct costs *q = op_costs[i];
1522 int *p_costs = p->cost, *q_costs = q->cost;
1523 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1524 int add_cost;
1525
1526 /* If the already accounted for the memory "cost" above, don't
1527 do so again. */
1528 if (!counted_mem)
1529 {
1530 add_cost = q->mem_cost;
1531 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1532 p->mem_cost = INT_MAX;
1533 else
1534 p->mem_cost += add_cost;
1535 }
1536 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1537 {
1538 add_cost = q_costs[k];
1539 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1540 p_costs[k] = INT_MAX;
1541 else
1542 p_costs[k] += add_cost;
1543 }
1544 }
1545 }
058e97ec
VM
1546 return insn;
1547}
1548
1549\f
1550
1551/* Print allocnos costs to file F. */
1552static void
ce18efcb 1553print_allocno_costs (FILE *f)
058e97ec
VM
1554{
1555 int k;
1556 ira_allocno_t a;
1557 ira_allocno_iterator ai;
1558
ce18efcb 1559 ira_assert (allocno_p);
058e97ec
VM
1560 fprintf (f, "\n");
1561 FOR_EACH_ALLOCNO (a, ai)
1562 {
1563 int i, rclass;
1564 basic_block bb;
1565 int regno = ALLOCNO_REGNO (a);
1756cb66
VM
1566 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1567 enum reg_class *cost_classes = cost_classes_ptr->classes;
058e97ec
VM
1568
1569 i = ALLOCNO_NUM (a);
1570 fprintf (f, " a%d(r%d,", i, regno);
1571 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1572 fprintf (f, "b%d", bb->index);
1573 else
2608d841 1574 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
058e97ec 1575 fprintf (f, ") costs:");
1756cb66 1576 for (k = 0; k < cost_classes_ptr->num; k++)
058e97ec
VM
1577 {
1578 rclass = cost_classes[k];
dab67d2c
RS
1579 fprintf (f, " %s:%d", reg_class_names[rclass],
1580 COSTS (costs, i)->cost[k]);
1581 if (flag_ira_region == IRA_REGION_ALL
1582 || flag_ira_region == IRA_REGION_MIXED)
1583 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
058e97ec 1584 }
1756cb66
VM
1585 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1586 if (flag_ira_region == IRA_REGION_ALL
1587 || flag_ira_region == IRA_REGION_MIXED)
1588 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1589 fprintf (f, "\n");
ce18efcb
VM
1590 }
1591}
1592
1593/* Print pseudo costs to file F. */
1594static void
1595print_pseudo_costs (FILE *f)
1596{
1597 int regno, k;
1598 int rclass;
1756cb66
VM
1599 cost_classes_t cost_classes_ptr;
1600 enum reg_class *cost_classes;
ce18efcb
VM
1601
1602 ira_assert (! allocno_p);
1603 fprintf (f, "\n");
1604 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1605 {
1756cb66 1606 if (REG_N_REFS (regno) <= 0)
ce18efcb 1607 continue;
1756cb66
VM
1608 cost_classes_ptr = regno_cost_classes[regno];
1609 cost_classes = cost_classes_ptr->classes;
ce18efcb 1610 fprintf (f, " r%d costs:", regno);
1756cb66 1611 for (k = 0; k < cost_classes_ptr->num; k++)
ce18efcb
VM
1612 {
1613 rclass = cost_classes[k];
dab67d2c
RS
1614 fprintf (f, " %s:%d", reg_class_names[rclass],
1615 COSTS (costs, regno)->cost[k]);
ce18efcb
VM
1616 }
1617 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
058e97ec
VM
1618 }
1619}
1620
1621/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1622 costs. */
1623static void
ce18efcb 1624process_bb_for_costs (basic_block bb)
058e97ec 1625{
070a1983 1626 rtx_insn *insn;
058e97ec 1627
058e97ec
VM
1628 frequency = REG_FREQ_FROM_BB (bb);
1629 if (frequency == 0)
1630 frequency = 1;
1631 FOR_BB_INSNS (bb, insn)
1632 insn = scan_one_insn (insn);
1633}
1634
ce18efcb
VM
1635/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1636 costs. */
058e97ec 1637static void
ce18efcb 1638process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
058e97ec 1639{
ce18efcb
VM
1640 basic_block bb;
1641
1642 bb = loop_tree_node->bb;
1643 if (bb != NULL)
1644 process_bb_for_costs (bb);
1645}
1646
1647/* Find costs of register classes and memory for allocnos or pseudos
1756cb66 1648 and their best costs. Set up preferred, alternative and allocno
ce18efcb
VM
1649 classes for pseudos. */
1650static void
1651find_costs_and_classes (FILE *dump_file)
1652{
1756cb66 1653 int i, k, start, max_cost_classes_num;
058e97ec
VM
1654 int pass;
1655 basic_block bb;
5074a1f8 1656 enum reg_class *regno_best_class, new_class;
058e97ec
VM
1657
1658 init_recog ();
1756cb66
VM
1659 regno_best_class
1660 = (enum reg_class *) ira_allocate (max_reg_num ()
1661 * sizeof (enum reg_class));
1662 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1663 regno_best_class[i] = NO_REGS;
1664 if (!resize_reg_info () && allocno_p
1665 && pseudo_classes_defined_p && flag_expensive_optimizations)
ce18efcb
VM
1666 {
1667 ira_allocno_t a;
1668 ira_allocno_iterator ai;
b8698a0f 1669
ce18efcb 1670 pref = pref_buffer;
1756cb66 1671 max_cost_classes_num = 1;
ce18efcb 1672 FOR_EACH_ALLOCNO (a, ai)
1756cb66
VM
1673 {
1674 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1675 setup_regno_cost_classes_by_aclass
1676 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1677 max_cost_classes_num
1678 = MAX (max_cost_classes_num,
1679 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1680 }
1681 start = 1;
1682 }
1683 else
1684 {
1685 pref = NULL;
1686 max_cost_classes_num = ira_important_classes_num;
1687 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1688 if (regno_reg_rtx[i] != NULL_RTX)
1689 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1690 else
1691 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1692 start = 0;
ce18efcb
VM
1693 }
1694 if (allocno_p)
1695 /* Clear the flag for the next compiled function. */
1696 pseudo_classes_defined_p = false;
058e97ec
VM
1697 /* Normally we scan the insns once and determine the best class to
1698 use for each allocno. However, if -fexpensive-optimizations are
1699 on, we do so twice, the second time using the tentative best
1700 classes to guide the selection. */
ce18efcb 1701 for (pass = start; pass <= flag_expensive_optimizations; pass++)
058e97ec 1702 {
ce18efcb
VM
1703 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1704 fprintf (dump_file,
1705 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1756cb66
VM
1706
1707 if (pass != start)
058e97ec 1708 {
1756cb66
VM
1709 max_cost_classes_num = 1;
1710 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1711 {
1712 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1713 max_cost_classes_num
1714 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1715 }
058e97ec 1716 }
1756cb66 1717
058e97ec 1718 struct_costs_size
1756cb66 1719 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
058e97ec
VM
1720 /* Zero out our accumulation of the cost of each class for each
1721 allocno. */
ce18efcb 1722 memset (costs, 0, cost_elements_num * struct_costs_size);
058e97ec 1723
ce18efcb
VM
1724 if (allocno_p)
1725 {
1726 /* Scan the instructions and record each time it would save code
1727 to put a certain allocno in a certain class. */
1728 ira_traverse_loop_tree (true, ira_loop_tree_root,
1729 process_bb_node_for_costs, NULL);
1730
1731 memcpy (total_allocno_costs, costs,
1732 max_struct_costs_size * ira_allocnos_num);
1733 }
1734 else
1735 {
1736 basic_block bb;
1737
11cd3bed 1738 FOR_EACH_BB_FN (bb, cfun)
ce18efcb
VM
1739 process_bb_for_costs (bb);
1740 }
058e97ec 1741
058e97ec 1742 if (pass == 0)
ce18efcb 1743 pref = pref_buffer;
058e97ec
VM
1744
1745 /* Now for each allocno look at how desirable each class is and
1746 find which class is preferred. */
1747 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1748 {
1749 ira_allocno_t a, parent_a;
1756cb66 1750 int rclass, a_num, parent_a_num, add_cost;
058e97ec 1751 ira_loop_tree_node_t parent;
61ad6db1 1752 int best_cost, allocno_cost;
7db7ed3c 1753 enum reg_class best, alt_class;
1756cb66 1754 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
0dc7d7cc 1755 enum reg_class *cost_classes;
1756cb66
VM
1756 int *i_costs = temp_costs->cost;
1757 int i_mem_cost;
8ff49c29 1758 int equiv_savings = regno_equiv_gains[i];
058e97ec 1759
ce18efcb 1760 if (! allocno_p)
058e97ec 1761 {
ce18efcb
VM
1762 if (regno_reg_rtx[i] == NULL_RTX)
1763 continue;
ce18efcb 1764 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1756cb66 1765 i_mem_cost = temp_costs->mem_cost;
0dc7d7cc 1766 cost_classes = cost_classes_ptr->classes;
ce18efcb
VM
1767 }
1768 else
1769 {
1770 if (ira_regno_allocno_map[i] == NULL)
1771 continue;
1772 memset (temp_costs, 0, struct_costs_size);
1756cb66 1773 i_mem_cost = 0;
0dc7d7cc 1774 cost_classes = cost_classes_ptr->classes;
ce18efcb
VM
1775 /* Find cost of all allocnos with the same regno. */
1776 for (a = ira_regno_allocno_map[i];
1777 a != NULL;
1778 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
058e97ec 1779 {
1756cb66 1780 int *a_costs, *p_costs;
eeae9314 1781
ce18efcb
VM
1782 a_num = ALLOCNO_NUM (a);
1783 if ((flag_ira_region == IRA_REGION_ALL
1784 || flag_ira_region == IRA_REGION_MIXED)
1785 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1786 && (parent_a = parent->regno_allocno_map[i]) != NULL
1787 /* There are no caps yet. */
1788 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1789 (a)->border_allocnos,
1790 ALLOCNO_NUM (a)))
1791 {
1792 /* Propagate costs to upper levels in the region
1793 tree. */
1794 parent_a_num = ALLOCNO_NUM (parent_a);
1756cb66
VM
1795 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1796 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1797 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1798 {
1799 add_cost = a_costs[k];
1800 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1801 p_costs[k] = INT_MAX;
1802 else
1803 p_costs[k] += add_cost;
1804 }
1805 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1806 if (add_cost > 0
1807 && (INT_MAX - add_cost
1808 < COSTS (total_allocno_costs,
1809 parent_a_num)->mem_cost))
1810 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1811 = INT_MAX;
1812 else
1813 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1814 += add_cost;
1815
acf41a74
BS
1816 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1817 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
ce18efcb 1818 }
1756cb66
VM
1819 a_costs = COSTS (costs, a_num)->cost;
1820 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1821 {
1822 add_cost = a_costs[k];
1823 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1824 i_costs[k] = INT_MAX;
1825 else
1826 i_costs[k] += add_cost;
1827 }
1828 add_cost = COSTS (costs, a_num)->mem_cost;
bddc98e1 1829 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1756cb66
VM
1830 i_mem_cost = INT_MAX;
1831 else
1832 i_mem_cost += add_cost;
ce18efcb 1833 }
058e97ec 1834 }
acf41a74
BS
1835 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1836 i_mem_cost = 0;
1837 else if (equiv_savings < 0)
89fa552a 1838 i_mem_cost = -equiv_savings;
8ff49c29
BS
1839 else if (equiv_savings > 0)
1840 {
89fa552a 1841 i_mem_cost = 0;
1756cb66
VM
1842 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1843 i_costs[k] += equiv_savings;
8ff49c29
BS
1844 }
1845
058e97ec
VM
1846 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1847 best = ALL_REGS;
1848 alt_class = NO_REGS;
1849 /* Find best common class for all allocnos with the same
1850 regno. */
1756cb66 1851 for (k = 0; k < cost_classes_ptr->num; k++)
058e97ec
VM
1852 {
1853 rclass = cost_classes[k];
1756cb66 1854 if (i_costs[k] < best_cost)
058e97ec 1855 {
1756cb66 1856 best_cost = i_costs[k];
058e97ec
VM
1857 best = (enum reg_class) rclass;
1858 }
1756cb66
VM
1859 else if (i_costs[k] == best_cost)
1860 best = ira_reg_class_subunion[best][rclass];
058e97ec 1861 if (pass == flag_expensive_optimizations
9d19c732
VM
1862 /* We still prefer registers to memory even at this
1863 stage if their costs are the same. We will make
1864 a final decision during assigning hard registers
1865 when we have all info including more accurate
1866 costs which might be affected by assigning hard
1867 registers to other pseudos because the pseudos
1868 involved in moves can be coalesced. */
1869 && i_costs[k] <= i_mem_cost
058e97ec
VM
1870 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1871 > reg_class_size[alt_class]))
1872 alt_class = reg_class_subunion[alt_class][rclass];
1873 }
1756cb66 1874 alt_class = ira_allocno_class_translate[alt_class];
b81a2f0d
VM
1875 if (best_cost > i_mem_cost
1876 && ! non_spilled_static_chain_regno_p (i))
1756cb66 1877 regno_aclass[i] = NO_REGS;
2da068d5
RS
1878 else if (!optimize && !targetm.class_likely_spilled_p (best))
1879 /* Registers in the alternative class are likely to need
1880 longer or slower sequences than registers in the best class.
1881 When optimizing we make some effort to use the best class
1882 over the alternative class where possible, but at -O0 we
1883 effectively give the alternative class equal weight.
1884 We then run the risk of using slower alternative registers
1885 when plenty of registers from the best class are still free.
1886 This is especially true because live ranges tend to be very
1887 short in -O0 code and so register pressure tends to be low.
1888
1889 Avoid that by ignoring the alternative class if the best
bc13623e
VM
1890 class has plenty of registers.
1891
1892 The union class arrays give important classes and only
1893 part of it are allocno classes. So translate them into
1894 allocno classes. */
1895 regno_aclass[i] = ira_allocno_class_translate[best];
058e97ec 1896 else
1756cb66
VM
1897 {
1898 /* Make the common class the biggest class of best and
bc13623e
VM
1899 alt_class. Translate the common class into an
1900 allocno class too. */
1901 regno_aclass[i] = (ira_allocno_class_translate
1902 [ira_reg_class_superunion[best][alt_class]]);
1756cb66
VM
1903 ira_assert (regno_aclass[i] != NO_REGS
1904 && ira_reg_allocno_class_p[regno_aclass[i]]);
1905 }
5074a1f8
VM
1906 if ((new_class
1907 = (reg_class) (targetm.ira_change_pseudo_allocno_class
31e2b5a3 1908 (i, regno_aclass[i], best))) != regno_aclass[i])
5074a1f8
VM
1909 {
1910 regno_aclass[i] = new_class;
1911 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1912 reg_class_contents[best]))
1913 best = new_class;
1914 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1915 reg_class_contents[alt_class]))
1916 alt_class = new_class;
1917 }
ce18efcb
VM
1918 if (pass == flag_expensive_optimizations)
1919 {
b81a2f0d
VM
1920 if (best_cost > i_mem_cost
1921 /* Do not assign NO_REGS to static chain pointer
1922 pseudo when non-local goto is used. */
1923 && ! non_spilled_static_chain_regno_p (i))
ce18efcb
VM
1924 best = alt_class = NO_REGS;
1925 else if (best == alt_class)
1926 alt_class = NO_REGS;
1756cb66 1927 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
ce18efcb
VM
1928 if ((!allocno_p || internal_flag_ira_verbose > 2)
1929 && dump_file != NULL)
1930 fprintf (dump_file,
1756cb66 1931 " r%d: preferred %s, alternative %s, allocno %s\n",
ce18efcb 1932 i, reg_class_names[best], reg_class_names[alt_class],
1756cb66 1933 reg_class_names[regno_aclass[i]]);
ce18efcb 1934 }
1756cb66 1935 regno_best_class[i] = best;
ce18efcb
VM
1936 if (! allocno_p)
1937 {
b81a2f0d
VM
1938 pref[i] = (best_cost > i_mem_cost
1939 && ! non_spilled_static_chain_regno_p (i)
1940 ? NO_REGS : best);
ce18efcb
VM
1941 continue;
1942 }
058e97ec
VM
1943 for (a = ira_regno_allocno_map[i];
1944 a != NULL;
1945 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1946 {
3b6d1699
VM
1947 enum reg_class aclass = regno_aclass[i];
1948 int a_num = ALLOCNO_NUM (a);
1949 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1950 int *a_costs = COSTS (costs, a_num)->cost;
eeae9314 1951
3b6d1699 1952 if (aclass == NO_REGS)
058e97ec
VM
1953 best = NO_REGS;
1954 else
b8698a0f 1955 {
058e97ec
VM
1956 /* Finding best class which is subset of the common
1957 class. */
1958 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
61ad6db1 1959 allocno_cost = best_cost;
058e97ec 1960 best = ALL_REGS;
1756cb66 1961 for (k = 0; k < cost_classes_ptr->num; k++)
058e97ec
VM
1962 {
1963 rclass = cost_classes[k];
3b6d1699 1964 if (! ira_class_subset_p[rclass][aclass])
058e97ec 1965 continue;
dab67d2c 1966 if (total_a_costs[k] < best_cost)
058e97ec 1967 {
1756cb66
VM
1968 best_cost = total_a_costs[k];
1969 allocno_cost = a_costs[k];
058e97ec
VM
1970 best = (enum reg_class) rclass;
1971 }
1756cb66 1972 else if (total_a_costs[k] == best_cost)
61ad6db1 1973 {
1756cb66
VM
1974 best = ira_reg_class_subunion[best][rclass];
1975 allocno_cost = MAX (allocno_cost, a_costs[k]);
61ad6db1 1976 }
058e97ec 1977 }
1756cb66 1978 ALLOCNO_CLASS_COST (a) = allocno_cost;
058e97ec 1979 }
ce18efcb
VM
1980 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1981 && (pass == 0 || pref[a_num] != best))
058e97ec 1982 {
ce18efcb 1983 fprintf (dump_file, " a%d (r%d,", a_num, i);
058e97ec 1984 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
ce18efcb 1985 fprintf (dump_file, "b%d", bb->index);
058e97ec 1986 else
ce18efcb 1987 fprintf (dump_file, "l%d",
2608d841 1988 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1756cb66 1989 fprintf (dump_file, ") best %s, allocno %s\n",
058e97ec 1990 reg_class_names[best],
3b6d1699 1991 reg_class_names[aclass]);
058e97ec 1992 }
ce18efcb 1993 pref[a_num] = best;
3b6d1699
VM
1994 if (pass == flag_expensive_optimizations && best != aclass
1995 && ira_class_hard_regs_num[best] > 0
1996 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1997 >= ira_class_hard_regs_num[best]))
1998 {
1999 int ind = cost_classes_ptr->index[aclass];
2000
2001 ira_assert (ind >= 0);
dc687582 2002 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
3b6d1699
VM
2003 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
2004 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
2005 / (ira_register_move_cost
2006 [ALLOCNO_MODE (a)][best][aclass]));
2007 for (k = 0; k < cost_classes_ptr->num; k++)
2008 if (ira_class_subset_p[cost_classes[k]][best])
2009 a_costs[k] = a_costs[ind];
2010 }
058e97ec
VM
2011 }
2012 }
eeae9314 2013
ce18efcb 2014 if (internal_flag_ira_verbose > 4 && dump_file)
058e97ec 2015 {
ce18efcb
VM
2016 if (allocno_p)
2017 print_allocno_costs (dump_file);
2018 else
2019 print_pseudo_costs (dump_file);
2020 fprintf (dump_file,"\n");
058e97ec
VM
2021 }
2022 }
1756cb66 2023 ira_free (regno_best_class);
058e97ec
VM
2024}
2025
2026\f
2027
2028/* Process moves involving hard regs to modify allocno hard register
1756cb66 2029 costs. We can do this only after determining allocno class. If a
420ab54b 2030 hard register forms a register class, then moves with the hard
058e97ec
VM
2031 register are already taken into account in class costs for the
2032 allocno. */
2033static void
2034process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
2035{
3b6d1699 2036 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
058e97ec 2037 bool to_p;
3b6d1699
VM
2038 ira_allocno_t a, curr_a;
2039 ira_loop_tree_node_t curr_loop_tree_node;
2040 enum reg_class rclass;
058e97ec 2041 basic_block bb;
070a1983
DM
2042 rtx_insn *insn;
2043 rtx set, src, dst;
058e97ec
VM
2044
2045 bb = loop_tree_node->bb;
2046 if (bb == NULL)
2047 return;
2048 freq = REG_FREQ_FROM_BB (bb);
2049 if (freq == 0)
2050 freq = 1;
2051 FOR_BB_INSNS (bb, insn)
2052 {
b5b8b0ac 2053 if (!NONDEBUG_INSN_P (insn))
058e97ec
VM
2054 continue;
2055 set = single_set (insn);
2056 if (set == NULL_RTX)
2057 continue;
2058 dst = SET_DEST (set);
2059 src = SET_SRC (set);
2060 if (! REG_P (dst) || ! REG_P (src))
2061 continue;
2062 dst_regno = REGNO (dst);
2063 src_regno = REGNO (src);
2064 if (dst_regno >= FIRST_PSEUDO_REGISTER
2065 && src_regno < FIRST_PSEUDO_REGISTER)
2066 {
2067 hard_regno = src_regno;
058e97ec 2068 a = ira_curr_regno_allocno_map[dst_regno];
3b6d1699 2069 to_p = true;
058e97ec
VM
2070 }
2071 else if (src_regno >= FIRST_PSEUDO_REGISTER
2072 && dst_regno < FIRST_PSEUDO_REGISTER)
2073 {
2074 hard_regno = dst_regno;
058e97ec 2075 a = ira_curr_regno_allocno_map[src_regno];
3b6d1699 2076 to_p = false;
058e97ec
VM
2077 }
2078 else
2079 continue;
0d2a576a
VM
2080 if (reg_class_size[(int) REGNO_REG_CLASS (hard_regno)]
2081 == (ira_reg_class_max_nregs
2082 [REGNO_REG_CLASS (hard_regno)][(int) ALLOCNO_MODE(a)]))
2083 /* If the class can provide only one hard reg to the allocno,
2084 we processed the insn record_operand_costs already and we
2085 actually updated the hard reg cost there. */
2086 continue;
1756cb66 2087 rclass = ALLOCNO_CLASS (a);
058e97ec
VM
2088 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2089 continue;
2090 i = ira_class_hard_reg_index[rclass][hard_regno];
2091 if (i < 0)
2092 continue;
3b6d1699
VM
2093 a_regno = ALLOCNO_REGNO (a);
2094 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2095 curr_loop_tree_node != NULL;
2096 curr_loop_tree_node = curr_loop_tree_node->parent)
2097 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2098 ira_add_allocno_pref (curr_a, hard_regno, freq);
2099 {
2100 int cost;
2101 enum reg_class hard_reg_class;
ef4bddc2 2102 machine_mode mode;
eeae9314 2103
3b6d1699
VM
2104 mode = ALLOCNO_MODE (a);
2105 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2106 ira_init_register_move_cost_if_necessary (mode);
2107 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2108 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2109 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2110 ALLOCNO_CLASS_COST (a));
2111 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2112 rclass, 0);
2113 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2114 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2115 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2116 ALLOCNO_HARD_REG_COSTS (a)[i]);
2117 }
058e97ec
VM
2118 }
2119}
2120
2121/* After we find hard register and memory costs for allocnos, define
1756cb66 2122 its class and modify hard register cost because insns moving
058e97ec
VM
2123 allocno to/from hard registers. */
2124static void
1756cb66 2125setup_allocno_class_and_costs (void)
058e97ec 2126{
1756cb66 2127 int i, j, n, regno, hard_regno, num;
058e97ec 2128 int *reg_costs;
1756cb66 2129 enum reg_class aclass, rclass;
058e97ec
VM
2130 ira_allocno_t a;
2131 ira_allocno_iterator ai;
1756cb66 2132 cost_classes_t cost_classes_ptr;
058e97ec 2133
ce18efcb 2134 ira_assert (allocno_p);
058e97ec
VM
2135 FOR_EACH_ALLOCNO (a, ai)
2136 {
2137 i = ALLOCNO_NUM (a);
1756cb66
VM
2138 regno = ALLOCNO_REGNO (a);
2139 aclass = regno_aclass[regno];
2140 cost_classes_ptr = regno_cost_classes[regno];
2141 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
ce18efcb 2142 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
1756cb66
VM
2143 ira_set_allocno_class (a, aclass);
2144 if (aclass == NO_REGS)
058e97ec 2145 continue;
1756cb66 2146 if (optimize && ALLOCNO_CLASS (a) != pref[i])
058e97ec 2147 {
1756cb66 2148 n = ira_class_hard_regs_num[aclass];
058e97ec 2149 ALLOCNO_HARD_REG_COSTS (a)
1756cb66 2150 = reg_costs = ira_allocate_cost_vector (aclass);
058e97ec
VM
2151 for (j = n - 1; j >= 0; j--)
2152 {
1756cb66
VM
2153 hard_regno = ira_class_hard_regs[aclass][j];
2154 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2155 reg_costs[j] = ALLOCNO_CLASS_COST (a);
61ad6db1 2156 else
c0683a82 2157 {
1756cb66
VM
2158 rclass = REGNO_REG_CLASS (hard_regno);
2159 num = cost_classes_ptr->index[rclass];
61ad6db1
RS
2160 if (num < 0)
2161 {
1756cb66
VM
2162 num = cost_classes_ptr->hard_regno_index[hard_regno];
2163 ira_assert (num >= 0);
61ad6db1 2164 }
ce18efcb 2165 reg_costs[j] = COSTS (costs, i)->cost[num];
c0683a82 2166 }
058e97ec
VM
2167 }
2168 }
2169 }
2170 if (optimize)
2171 ira_traverse_loop_tree (true, ira_loop_tree_root,
2172 process_bb_node_for_hard_reg_moves, NULL);
2173}
2174
2175\f
2176
2177/* Function called once during compiler work. */
2178void
2179ira_init_costs_once (void)
2180{
2181 int i;
2182
2183 init_cost = NULL;
2184 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2185 {
2186 op_costs[i] = NULL;
2187 this_op_costs[i] = NULL;
2188 }
2189 temp_costs = NULL;
058e97ec
VM
2190}
2191
2192/* Free allocated temporary cost vectors. */
19c708dc
RS
2193void
2194target_ira_int::free_ira_costs ()
058e97ec
VM
2195{
2196 int i;
2197
19c708dc
RS
2198 free (x_init_cost);
2199 x_init_cost = NULL;
058e97ec
VM
2200 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2201 {
19c708dc
RS
2202 free (x_op_costs[i]);
2203 free (x_this_op_costs[i]);
2204 x_op_costs[i] = x_this_op_costs[i] = NULL;
058e97ec 2205 }
19c708dc
RS
2206 free (x_temp_costs);
2207 x_temp_costs = NULL;
058e97ec
VM
2208}
2209
2210/* This is called each time register related information is
2211 changed. */
2212void
2213ira_init_costs (void)
2214{
2215 int i;
2216
19c708dc 2217 this_target_ira_int->free_ira_costs ();
058e97ec
VM
2218 max_struct_costs_size
2219 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
1756cb66
VM
2220 /* Don't use ira_allocate because vectors live through several IRA
2221 calls. */
058e97ec
VM
2222 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2223 init_cost->mem_cost = 1000000;
2224 for (i = 0; i < ira_important_classes_num; i++)
2225 init_cost->cost[i] = 1000000;
2226 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2227 {
2228 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2229 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2230 }
2231 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
058e97ec
VM
2232}
2233
058e97ec
VM
2234\f
2235
ce18efcb
VM
2236/* Common initialization function for ira_costs and
2237 ira_set_pseudo_classes. */
2238static void
2239init_costs (void)
2240{
1833192f 2241 init_subregs_of_mode ();
ce18efcb
VM
2242 costs = (struct costs *) ira_allocate (max_struct_costs_size
2243 * cost_elements_num);
1756cb66
VM
2244 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2245 * cost_elements_num);
2246 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2247 * max_reg_num ());
8ff49c29
BS
2248 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2249 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
ce18efcb
VM
2250}
2251
2252/* Common finalization function for ira_costs and
2253 ira_set_pseudo_classes. */
2254static void
2255finish_costs (void)
2256{
fa1fabcb 2257 finish_subregs_of_mode ();
8ff49c29 2258 ira_free (regno_equiv_gains);
1756cb66 2259 ira_free (regno_aclass);
ce18efcb
VM
2260 ira_free (pref_buffer);
2261 ira_free (costs);
2262}
2263
1756cb66
VM
2264/* Entry function which defines register class, memory and hard
2265 register costs for each allocno. */
058e97ec
VM
2266void
2267ira_costs (void)
2268{
ce18efcb
VM
2269 allocno_p = true;
2270 cost_elements_num = ira_allocnos_num;
2271 init_costs ();
2272 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2273 * ira_allocnos_num);
1756cb66 2274 initiate_regno_cost_classes ();
8ff49c29 2275 calculate_elim_costs_all_insns ();
ce18efcb 2276 find_costs_and_classes (ira_dump_file);
1756cb66
VM
2277 setup_allocno_class_and_costs ();
2278 finish_regno_cost_classes ();
ce18efcb
VM
2279 finish_costs ();
2280 ira_free (total_allocno_costs);
2281}
2282
b11f0116
BC
2283/* Entry function which defines classes for pseudos.
2284 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
ce18efcb 2285void
b11f0116 2286ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
ce18efcb
VM
2287{
2288 allocno_p = false;
2289 internal_flag_ira_verbose = flag_ira_verbose;
2290 cost_elements_num = max_reg_num ();
2291 init_costs ();
1756cb66 2292 initiate_regno_cost_classes ();
ce18efcb 2293 find_costs_and_classes (dump_file);
1756cb66 2294 finish_regno_cost_classes ();
b11f0116
BC
2295 if (define_pseudo_classes)
2296 pseudo_classes_defined_p = true;
2297
ce18efcb 2298 finish_costs ();
058e97ec
VM
2299}
2300
2301\f
2302
2303/* Change hard register costs for allocnos which lives through
2304 function calls. This is called only when we found all intersected
2305 calls during building allocno live ranges. */
2306void
1756cb66 2307ira_tune_allocno_costs (void)
058e97ec
VM
2308{
2309 int j, n, regno;
2310 int cost, min_cost, *reg_costs;
01f3e6a4 2311 enum reg_class aclass;
ef4bddc2 2312 machine_mode mode;
058e97ec
VM
2313 ira_allocno_t a;
2314 ira_allocno_iterator ai;
1756cb66
VM
2315 ira_allocno_object_iterator oi;
2316 ira_object_t obj;
2317 bool skip_p;
058e97ec
VM
2318
2319 FOR_EACH_ALLOCNO (a, ai)
2320 {
1756cb66
VM
2321 aclass = ALLOCNO_CLASS (a);
2322 if (aclass == NO_REGS)
058e97ec
VM
2323 continue;
2324 mode = ALLOCNO_MODE (a);
1756cb66 2325 n = ira_class_hard_regs_num[aclass];
058e97ec 2326 min_cost = INT_MAX;
e384e6b5
BS
2327 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2328 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
058e97ec
VM
2329 {
2330 ira_allocate_and_set_costs
1756cb66
VM
2331 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2332 ALLOCNO_CLASS_COST (a));
058e97ec
VM
2333 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2334 for (j = n - 1; j >= 0; j--)
2335 {
1756cb66
VM
2336 regno = ira_class_hard_regs[aclass][j];
2337 skip_p = false;
2338 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2339 {
9181a6e5
VM
2340 if (ira_hard_reg_set_intersection_p (regno, mode,
2341 OBJECT_CONFLICT_HARD_REGS
2342 (obj)))
1756cb66
VM
2343 {
2344 skip_p = true;
2345 break;
2346 }
2347 }
2348 if (skip_p)
2349 continue;
058e97ec 2350 cost = 0;
6c476222 2351 if (ira_need_caller_save_p (a, regno))
01f3e6a4 2352 cost += ira_caller_save_cost (a);
058e97ec 2353#ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
a923fa6d
RS
2354 {
2355 auto rclass = REGNO_REG_CLASS (regno);
2356 cost += ((ira_memory_move_cost[mode][rclass][0]
2357 + ira_memory_move_cost[mode][rclass][1])
2358 * ALLOCNO_FREQ (a)
2359 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2360 }
058e97ec 2361#endif
1756cb66
VM
2362 if (INT_MAX - cost < reg_costs[j])
2363 reg_costs[j] = INT_MAX;
2364 else
2365 reg_costs[j] += cost;
058e97ec
VM
2366 if (min_cost > reg_costs[j])
2367 min_cost = reg_costs[j];
2368 }
2369 }
2370 if (min_cost != INT_MAX)
1756cb66 2371 ALLOCNO_CLASS_COST (a) = min_cost;
0583835c 2372
8908df28
EB
2373 /* Some targets allow pseudos to be allocated to unaligned sequences
2374 of hard registers. However, selecting an unaligned sequence can
2375 unnecessarily restrict later allocations. So increase the cost of
2376 unaligned hard regs to encourage the use of aligned hard regs. */
0583835c 2377 {
1756cb66 2378 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
0583835c 2379
8908df28 2380 if (nregs > 1)
0583835c
VM
2381 {
2382 ira_allocate_and_set_costs
1756cb66 2383 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
0583835c
VM
2384 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2385 for (j = n - 1; j >= 0; j--)
2386 {
1756cb66 2387 regno = ira_non_ordered_class_hard_regs[aclass][j];
8908df28 2388 if ((regno % nregs) != 0)
0583835c 2389 {
1756cb66 2390 int index = ira_class_hard_reg_index[aclass][regno];
c6d0f11a 2391 ira_assert (index != -1);
0583835c
VM
2392 reg_costs[index] += ALLOCNO_FREQ (a);
2393 }
2394 }
2395 }
2396 }
058e97ec
VM
2397 }
2398}
8ff49c29
BS
2399
2400/* Add COST to the estimated gain for eliminating REGNO with its
2401 equivalence. If COST is zero, record that no such elimination is
2402 possible. */
2403
2404void
2405ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2406{
2407 if (cost == 0)
2408 regno_equiv_gains[regno] = 0;
2409 else
2410 regno_equiv_gains[regno] += cost;
2411}
eec42458
DM
2412
2413void
d5148d4f 2414ira_costs_cc_finalize (void)
eec42458
DM
2415{
2416 this_target_ira_int->free_ira_costs ();
2417}
This page took 7.405345 seconds and 5 git commands to generate.