]> gcc.gnu.org Git - gcc.git/blame - gcc/ira-costs.c
Daily bump.
[gcc.git] / gcc / ira-costs.c
CommitLineData
058e97ec
VM
1/* IRA hard register and memory cost calculation for allocnos.
2 Copyright (C) 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "hard-reg-set.h"
27#include "rtl.h"
28#include "expr.h"
29#include "tm_p.h"
30#include "flags.h"
31#include "basic-block.h"
32#include "regs.h"
33#include "addresses.h"
34#include "insn-config.h"
35#include "recog.h"
36#include "toplev.h"
37#include "target.h"
38#include "params.h"
39#include "ira-int.h"
40
41/* The file contains code is similar to one in regclass but the code
42 works on the allocno basis. */
43
44#ifdef FORBIDDEN_INC_DEC_CLASSES
45/* Indexed by n, is TRUE if allocno with number N is used in an
46 auto-inc or auto-dec context. */
47static bool *in_inc_dec;
48#endif
49
50/* The `costs' struct records the cost of using hard registers of each
51 class considered for the calculation and of using memory for each
52 allocno. */
53struct costs
54{
55 int mem_cost;
56 /* Costs for register classes start here. We process only some
57 register classes (cover classes on the 1st cost calculation
58 iteration and important classes on the 2nd iteration). */
59 int cost[1];
60};
61
62/* Initialized once. It is a maximal possible size of the allocated
63 struct costs. */
64static int max_struct_costs_size;
65
66/* Allocated and initialized once, and used to initialize cost values
67 for each insn. */
68static struct costs *init_cost;
69
70/* Allocated once, and used for temporary purposes. */
71static struct costs *temp_costs;
72
73/* Allocated once, and used for the cost calculation. */
74static struct costs *op_costs[MAX_RECOG_OPERANDS];
75static struct costs *this_op_costs[MAX_RECOG_OPERANDS];
76
77/* Original and accumulated costs of each class for each allocno. */
78static struct costs *allocno_costs, *total_costs;
79
80/* Classes used for cost calculation. They may be different on
81 different iterations of the cost calculations or in different
82 optimization modes. */
83static enum reg_class *cost_classes;
84
85/* The size of the previous array. */
86static int cost_classes_num;
87
88/* Map: cost class -> order number (they start with 0) of the cost
c0683a82 89 class. The order number is negative for non-cost classes. */
058e97ec
VM
90static int cost_class_nums[N_REG_CLASSES];
91
92/* It is the current size of struct costs. */
93static int struct_costs_size;
94
95/* Return pointer to structure containing costs of allocno with given
96 NUM in array ARR. */
97#define COSTS_OF_ALLOCNO(arr, num) \
98 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
99
100/* Record register class preferences of each allocno. Null value
101 means no preferences. It happens on the 1st iteration of the cost
102 calculation. */
103static enum reg_class *allocno_pref;
104
105/* Allocated buffers for allocno_pref. */
106static enum reg_class *allocno_pref_buffer;
107
108/* Execution frequency of the current insn. */
109static int frequency;
110
111\f
112
113/* Compute the cost of loading X into (if TO_P is TRUE) or from (if
114 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
115 be a pseudo register. */
116static int
117copy_cost (rtx x, enum machine_mode mode, enum reg_class rclass, bool to_p,
118 secondary_reload_info *prev_sri)
119{
120 secondary_reload_info sri;
121 enum reg_class secondary_class = NO_REGS;
122
123 /* If X is a SCRATCH, there is actually nothing to move since we are
124 assuming optimal allocation. */
125 if (GET_CODE (x) == SCRATCH)
126 return 0;
127
128 /* Get the class we will actually use for a reload. */
129 rclass = PREFERRED_RELOAD_CLASS (x, rclass);
130
131 /* If we need a secondary reload for an intermediate, the cost is
132 that to load the input into the intermediate register, then to
133 copy it. */
134 sri.prev_sri = prev_sri;
135 sri.extra_cost = 0;
136 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
137
138 if (ira_register_move_cost[mode] == NULL)
139 ira_init_register_move_cost (mode);
140
141 if (secondary_class != NO_REGS)
142 return (move_cost[mode][secondary_class][rclass] + sri.extra_cost
143 + copy_cost (x, mode, secondary_class, to_p, &sri));
144
145 /* For memory, use the memory move cost, for (hard) registers, use
146 the cost to move between the register classes, and use 2 for
147 everything else (constants). */
148 if (MEM_P (x) || rclass == NO_REGS)
149 return sri.extra_cost + ira_memory_move_cost[mode][rclass][to_p != 0];
150 else if (REG_P (x))
151 return
152 (sri.extra_cost + move_cost[mode][REGNO_REG_CLASS (REGNO (x))][rclass]);
153 else
154 /* If this is a constant, we may eventually want to call rtx_cost
155 here. */
156 return sri.extra_cost + COSTS_N_INSNS (1);
157}
158
159\f
160
161/* Record the cost of using memory or hard registers of various
162 classes for the operands in INSN.
163
164 N_ALTS is the number of alternatives.
165 N_OPS is the number of operands.
166 OPS is an array of the operands.
167 MODES are the modes of the operands, in case any are VOIDmode.
168 CONSTRAINTS are the constraints to use for the operands. This array
169 is modified by this procedure.
170
171 This procedure works alternative by alternative. For each
172 alternative we assume that we will be able to allocate all allocnos
173 to their ideal register class and calculate the cost of using that
174 alternative. Then we compute, for each operand that is a
175 pseudo-register, the cost of having the allocno allocated to each
176 register class and using it in that alternative. To this cost is
177 added the cost of the alternative.
178
179 The cost of each class for this insn is its lowest cost among all
180 the alternatives. */
181static void
182record_reg_classes (int n_alts, int n_ops, rtx *ops,
183 enum machine_mode *modes, const char **constraints,
184 rtx insn, struct costs **op_costs,
185 enum reg_class *allocno_pref)
186{
187 int alt;
188 int i, j, k;
189 rtx set;
190
191 /* Process each alternative, each time minimizing an operand's cost
192 with the cost for each operand in that alternative. */
193 for (alt = 0; alt < n_alts; alt++)
194 {
195 enum reg_class classes[MAX_RECOG_OPERANDS];
196 int allows_mem[MAX_RECOG_OPERANDS];
197 int rclass;
198 int alt_fail = 0;
199 int alt_cost = 0, op_cost_add;
200
201 for (i = 0; i < n_ops; i++)
202 {
203 unsigned char c;
204 const char *p = constraints[i];
205 rtx op = ops[i];
206 enum machine_mode mode = modes[i];
207 int allows_addr = 0;
208 int win = 0;
209
210 /* Initially show we know nothing about the register class. */
211 classes[i] = NO_REGS;
212 allows_mem[i] = 0;
213
214 /* If this operand has no constraints at all, we can
215 conclude nothing about it since anything is valid. */
216 if (*p == 0)
217 {
218 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
219 memset (this_op_costs[i], 0, struct_costs_size);
220 continue;
221 }
222
223 /* If this alternative is only relevant when this operand
224 matches a previous operand, we do different things
225 depending on whether this operand is a allocno-reg or not.
226 We must process any modifiers for the operand before we
227 can make this test. */
228 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
229 p++;
230
231 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
232 {
233 /* Copy class and whether memory is allowed from the
234 matching alternative. Then perform any needed cost
235 computations and/or adjustments. */
236 j = p[0] - '0';
237 classes[i] = classes[j];
238 allows_mem[i] = allows_mem[j];
239
240 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
241 {
242 /* If this matches the other operand, we have no
243 added cost and we win. */
244 if (rtx_equal_p (ops[j], op))
245 win = 1;
246 /* If we can put the other operand into a register,
247 add to the cost of this alternative the cost to
248 copy this operand to the register used for the
249 other operand. */
250 else if (classes[j] != NO_REGS)
251 {
252 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
253 win = 1;
254 }
255 }
256 else if (! REG_P (ops[j])
257 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
258 {
259 /* This op is an allocno but the one it matches is
260 not. */
261
262 /* If we can't put the other operand into a
263 register, this alternative can't be used. */
264
265 if (classes[j] == NO_REGS)
266 alt_fail = 1;
267 /* Otherwise, add to the cost of this alternative
268 the cost to copy the other operand to the hard
269 register used for this operand. */
270 else
271 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
272 }
273 else
274 {
275 /* The costs of this operand are not the same as the
276 other operand since move costs are not symmetric.
277 Moreover, if we cannot tie them, this alternative
278 needs to do a copy, which is one insn. */
279 struct costs *pp = this_op_costs[i];
280
281 if (ira_register_move_cost[mode] == NULL)
282 ira_init_register_move_cost (mode);
283
284 for (k = 0; k < cost_classes_num; k++)
285 {
286 rclass = cost_classes[k];
287 pp->cost[k]
288 = ((recog_data.operand_type[i] != OP_OUT
289 ? ira_may_move_in_cost[mode][rclass]
290 [classes[i]] * frequency : 0)
291 + (recog_data.operand_type[i] != OP_IN
292 ? ira_may_move_out_cost[mode][classes[i]]
293 [rclass] * frequency : 0));
294 }
295
296 /* If the alternative actually allows memory, make
297 things a bit cheaper since we won't need an extra
298 insn to load it. */
299 pp->mem_cost
300 = ((recog_data.operand_type[i] != OP_IN
301 ? ira_memory_move_cost[mode][classes[i]][0] : 0)
302 + (recog_data.operand_type[i] != OP_OUT
303 ? ira_memory_move_cost[mode][classes[i]][1] : 0)
304 - allows_mem[i]) * frequency;
305 /* If we have assigned a class to this allocno in our
306 first pass, add a cost to this alternative
307 corresponding to what we would add if this allocno
308 were not in the appropriate class. We could use
309 cover class here but it is less accurate
310 approximation. */
311 if (allocno_pref)
312 {
313 enum reg_class pref_class
314 = allocno_pref[ALLOCNO_NUM
315 (ira_curr_regno_allocno_map
316 [REGNO (op)])];
317
318 if (pref_class == NO_REGS)
319 alt_cost
320 += ((recog_data.operand_type[i] != OP_IN
321 ? ira_memory_move_cost[mode][classes[i]][0]
322 : 0)
323 + (recog_data.operand_type[i] != OP_OUT
324 ? ira_memory_move_cost[mode][classes[i]][1]
325 : 0));
326 else if (ira_reg_class_intersect
327 [pref_class][classes[i]] == NO_REGS)
328 alt_cost += (ira_register_move_cost
329 [mode][pref_class][classes[i]]);
330 }
331 if (REGNO (ops[i]) != REGNO (ops[j])
332 && ! find_reg_note (insn, REG_DEAD, op))
333 alt_cost += 2;
334
335 /* This is in place of ordinary cost computation for
336 this operand, so skip to the end of the
337 alternative (should be just one character). */
338 while (*p && *p++ != ',')
339 ;
340
341 constraints[i] = p;
342 continue;
343 }
344 }
345
346 /* Scan all the constraint letters. See if the operand
347 matches any of the constraints. Collect the valid
348 register classes and see if this operand accepts
349 memory. */
350 while ((c = *p))
351 {
352 switch (c)
353 {
354 case ',':
355 break;
356 case '*':
357 /* Ignore the next letter for this pass. */
358 c = *++p;
359 break;
360
361 case '?':
362 alt_cost += 2;
363 case '!': case '#': case '&':
364 case '0': case '1': case '2': case '3': case '4':
365 case '5': case '6': case '7': case '8': case '9':
366 break;
367
368 case 'p':
369 allows_addr = 1;
370 win = address_operand (op, GET_MODE (op));
371 /* We know this operand is an address, so we want it
372 to be allocated to a register that can be the
373 base of an address, i.e. BASE_REG_CLASS. */
374 classes[i]
375 = ira_reg_class_union[classes[i]]
376 [base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
377 break;
378
379 case 'm': case 'o': case 'V':
380 /* It doesn't seem worth distinguishing between
381 offsettable and non-offsettable addresses
382 here. */
383 allows_mem[i] = 1;
384 if (MEM_P (op))
385 win = 1;
386 break;
387
388 case '<':
389 if (MEM_P (op)
390 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
391 || GET_CODE (XEXP (op, 0)) == POST_DEC))
392 win = 1;
393 break;
394
395 case '>':
396 if (MEM_P (op)
397 && (GET_CODE (XEXP (op, 0)) == PRE_INC
398 || GET_CODE (XEXP (op, 0)) == POST_INC))
399 win = 1;
400 break;
401
402 case 'E':
403 case 'F':
404 if (GET_CODE (op) == CONST_DOUBLE
405 || (GET_CODE (op) == CONST_VECTOR
406 && (GET_MODE_CLASS (GET_MODE (op))
407 == MODE_VECTOR_FLOAT)))
408 win = 1;
409 break;
410
411 case 'G':
412 case 'H':
413 if (GET_CODE (op) == CONST_DOUBLE
414 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
415 win = 1;
416 break;
417
418 case 's':
419 if (GET_CODE (op) == CONST_INT
420 || (GET_CODE (op) == CONST_DOUBLE
421 && GET_MODE (op) == VOIDmode))
422 break;
423
424 case 'i':
425 if (CONSTANT_P (op)
426 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
427 win = 1;
428 break;
429
430 case 'n':
431 if (GET_CODE (op) == CONST_INT
432 || (GET_CODE (op) == CONST_DOUBLE
433 && GET_MODE (op) == VOIDmode))
434 win = 1;
435 break;
436
437 case 'I':
438 case 'J':
439 case 'K':
440 case 'L':
441 case 'M':
442 case 'N':
443 case 'O':
444 case 'P':
445 if (GET_CODE (op) == CONST_INT
446 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
447 win = 1;
448 break;
449
450 case 'X':
451 win = 1;
452 break;
453
454 case 'g':
455 if (MEM_P (op)
456 || (CONSTANT_P (op)
457 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
458 win = 1;
459 allows_mem[i] = 1;
460 case 'r':
461 classes[i] = ira_reg_class_union[classes[i]][GENERAL_REGS];
462 break;
463
464 default:
465 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
466 classes[i] = ira_reg_class_union[classes[i]]
467 [REG_CLASS_FROM_CONSTRAINT (c, p)];
468#ifdef EXTRA_CONSTRAINT_STR
469 else if (EXTRA_CONSTRAINT_STR (op, c, p))
470 win = 1;
471
472 if (EXTRA_MEMORY_CONSTRAINT (c, p))
473 {
474 /* Every MEM can be reloaded to fit. */
475 allows_mem[i] = 1;
476 if (MEM_P (op))
477 win = 1;
478 }
479 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
480 {
481 /* Every address can be reloaded to fit. */
482 allows_addr = 1;
483 if (address_operand (op, GET_MODE (op)))
484 win = 1;
485 /* We know this operand is an address, so we
486 want it to be allocated to a hard register
487 that can be the base of an address,
488 i.e. BASE_REG_CLASS. */
489 classes[i]
490 = ira_reg_class_union[classes[i]]
491 [base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
492 }
493#endif
494 break;
495 }
496 p += CONSTRAINT_LEN (c, p);
497 if (c == ',')
498 break;
499 }
500
501 constraints[i] = p;
502
503 /* How we account for this operand now depends on whether it
504 is a pseudo register or not. If it is, we first check if
505 any register classes are valid. If not, we ignore this
506 alternative, since we want to assume that all allocnos get
507 allocated for register preferencing. If some register
508 class is valid, compute the costs of moving the allocno
509 into that class. */
510 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
511 {
512 if (classes[i] == NO_REGS)
513 {
514 /* We must always fail if the operand is a REG, but
515 we did not find a suitable class.
516
517 Otherwise we may perform an uninitialized read
518 from this_op_costs after the `continue' statement
519 below. */
520 alt_fail = 1;
521 }
522 else
523 {
524 struct costs *pp = this_op_costs[i];
525
526 if (ira_register_move_cost[mode] == NULL)
527 ira_init_register_move_cost (mode);
528
529 for (k = 0; k < cost_classes_num; k++)
530 {
531 rclass = cost_classes[k];
532 pp->cost[k]
533 = ((recog_data.operand_type[i] != OP_OUT
534 ? ira_may_move_in_cost[mode][rclass]
535 [classes[i]] * frequency : 0)
536 + (recog_data.operand_type[i] != OP_IN
537 ? ira_may_move_out_cost[mode][classes[i]]
538 [rclass] * frequency : 0));
539 }
540
541 /* If the alternative actually allows memory, make
542 things a bit cheaper since we won't need an extra
543 insn to load it. */
544 pp->mem_cost
545 = ((recog_data.operand_type[i] != OP_IN
546 ? ira_memory_move_cost[mode][classes[i]][0] : 0)
547 + (recog_data.operand_type[i] != OP_OUT
548 ? ira_memory_move_cost[mode][classes[i]][1] : 0)
549 - allows_mem[i]) * frequency;
550 /* If we have assigned a class to this allocno in our
551 first pass, add a cost to this alternative
552 corresponding to what we would add if this allocno
553 were not in the appropriate class. We could use
554 cover class here but it is less accurate
555 approximation. */
556 if (allocno_pref)
557 {
558 enum reg_class pref_class
559 = allocno_pref[ALLOCNO_NUM
560 (ira_curr_regno_allocno_map
561 [REGNO (op)])];
562
563 if (pref_class == NO_REGS)
564 alt_cost
565 += ((recog_data.operand_type[i] != OP_IN
566 ? ira_memory_move_cost[mode][classes[i]][0]
567 : 0)
568 + (recog_data.operand_type[i] != OP_OUT
569 ? ira_memory_move_cost[mode][classes[i]][1]
570 : 0));
571 else if (ira_reg_class_intersect[pref_class][classes[i]]
572 == NO_REGS)
573 alt_cost += (ira_register_move_cost
574 [mode][pref_class][classes[i]]);
575 }
576 }
577 }
578
579 /* Otherwise, if this alternative wins, either because we
580 have already determined that or if we have a hard
581 register of the proper class, there is no cost for this
582 alternative. */
583 else if (win || (REG_P (op)
584 && reg_fits_class_p (op, classes[i],
585 0, GET_MODE (op))))
586 ;
587
588 /* If registers are valid, the cost of this alternative
589 includes copying the object to and/or from a
590 register. */
591 else if (classes[i] != NO_REGS)
592 {
593 if (recog_data.operand_type[i] != OP_OUT)
594 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
595
596 if (recog_data.operand_type[i] != OP_IN)
597 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
598 }
599 /* The only other way this alternative can be used is if
600 this is a constant that could be placed into memory. */
601 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
602 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
603 else
604 alt_fail = 1;
605 }
606
607 if (alt_fail)
608 continue;
609
610 op_cost_add = alt_cost * frequency;
611 /* Finally, update the costs with the information we've
612 calculated about this alternative. */
613 for (i = 0; i < n_ops; i++)
614 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
615 {
616 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
617 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
618
619 pp->mem_cost = MIN (pp->mem_cost,
620 (qq->mem_cost + op_cost_add) * scale);
621
622 for (k = 0; k < cost_classes_num; k++)
623 pp->cost[k]
624 = MIN (pp->cost[k], (qq->cost[k] + op_cost_add) * scale);
625 }
626 }
627
628 /* If this insn is a single set copying operand 1 to operand 0 and
629 one operand is an allocno with the other a hard reg or an allocno
630 that prefers a hard register that is in its own register class
631 then we may want to adjust the cost of that register class to -1.
632
633 Avoid the adjustment if the source does not die to avoid
634 stressing of register allocator by preferrencing two colliding
635 registers into single class.
636
637 Also avoid the adjustment if a copy between hard registers of the
638 class is expensive (ten times the cost of a default copy is
639 considered arbitrarily expensive). This avoids losing when the
640 preferred class is very expensive as the source of a copy
641 instruction. */
642 if ((set = single_set (insn)) != 0
643 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
644 && REG_P (ops[0]) && REG_P (ops[1])
645 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
646 for (i = 0; i <= 1; i++)
647 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
648 {
649 unsigned int regno = REGNO (ops[!i]);
650 enum machine_mode mode = GET_MODE (ops[!i]);
651 int rclass;
652 unsigned int nr;
653
654 if (regno < FIRST_PSEUDO_REGISTER)
655 for (k = 0; k < cost_classes_num; k++)
656 {
657 rclass = cost_classes[k];
658 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
659 && (reg_class_size[rclass]
660 == (unsigned) CLASS_MAX_NREGS (rclass, mode)))
661 {
662 if (reg_class_size[rclass] == 1)
663 op_costs[i]->cost[k] = -frequency;
664 else
665 {
666 for (nr = 0;
667 nr < (unsigned) hard_regno_nregs[regno][mode];
668 nr++)
669 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
670 regno + nr))
671 break;
672
673 if (nr == (unsigned) hard_regno_nregs[regno][mode])
674 op_costs[i]->cost[k] = -frequency;
675 }
676 }
677 }
678 }
679}
680
681\f
682
683/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
684static inline bool
685ok_for_index_p_nonstrict (rtx reg)
686{
687 unsigned regno = REGNO (reg);
688
689 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
690}
691
692/* A version of regno_ok_for_base_p for use here, when all
693 pseudo-registers should count as OK. Arguments as for
694 regno_ok_for_base_p. */
695static inline bool
696ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
697 enum rtx_code outer_code, enum rtx_code index_code)
698{
699 unsigned regno = REGNO (reg);
700
701 if (regno >= FIRST_PSEUDO_REGISTER)
702 return true;
703 return ok_for_base_p_1 (regno, mode, outer_code, index_code);
704}
705
706/* Record the pseudo registers we must reload into hard registers in a
707 subexpression of a memory address, X.
708
709 If CONTEXT is 0, we are looking at the base part of an address,
710 otherwise we are looking at the index part.
711
712 MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
713 give the context that the rtx appears in. These three arguments
714 are passed down to base_reg_class.
715
716 SCALE is twice the amount to multiply the cost by (it is twice so
717 we can represent half-cost adjustments). */
718static void
719record_address_regs (enum machine_mode mode, rtx x, int context,
720 enum rtx_code outer_code, enum rtx_code index_code,
721 int scale)
722{
723 enum rtx_code code = GET_CODE (x);
724 enum reg_class rclass;
725
726 if (context == 1)
727 rclass = INDEX_REG_CLASS;
728 else
729 rclass = base_reg_class (mode, outer_code, index_code);
730
731 switch (code)
732 {
733 case CONST_INT:
734 case CONST:
735 case CC0:
736 case PC:
737 case SYMBOL_REF:
738 case LABEL_REF:
739 return;
740
741 case PLUS:
742 /* When we have an address that is a sum, we must determine
743 whether registers are "base" or "index" regs. If there is a
744 sum of two registers, we must choose one to be the "base".
745 Luckily, we can use the REG_POINTER to make a good choice
746 most of the time. We only need to do this on machines that
747 can have two registers in an address and where the base and
748 index register classes are different.
749
750 ??? This code used to set REGNO_POINTER_FLAG in some cases,
751 but that seems bogus since it should only be set when we are
752 sure the register is being used as a pointer. */
753 {
754 rtx arg0 = XEXP (x, 0);
755 rtx arg1 = XEXP (x, 1);
756 enum rtx_code code0 = GET_CODE (arg0);
757 enum rtx_code code1 = GET_CODE (arg1);
758
759 /* Look inside subregs. */
760 if (code0 == SUBREG)
761 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
762 if (code1 == SUBREG)
763 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
764
765 /* If this machine only allows one register per address, it
766 must be in the first operand. */
767 if (MAX_REGS_PER_ADDRESS == 1)
768 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
769
770 /* If index and base registers are the same on this machine,
771 just record registers in any non-constant operands. We
772 assume here, as well as in the tests below, that all
773 addresses are in canonical form. */
774 else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
775 {
776 record_address_regs (mode, arg0, context, PLUS, code1, scale);
777 if (! CONSTANT_P (arg1))
778 record_address_regs (mode, arg1, context, PLUS, code0, scale);
779 }
780
781 /* If the second operand is a constant integer, it doesn't
782 change what class the first operand must be. */
783 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
784 record_address_regs (mode, arg0, context, PLUS, code1, scale);
785 /* If the second operand is a symbolic constant, the first
786 operand must be an index register. */
787 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
788 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
789 /* If both operands are registers but one is already a hard
790 register of index or reg-base class, give the other the
791 class that the hard register is not. */
792 else if (code0 == REG && code1 == REG
793 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
794 && (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
795 || ok_for_index_p_nonstrict (arg0)))
796 record_address_regs (mode, arg1,
797 ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
798 ? 1 : 0,
799 PLUS, REG, scale);
800 else if (code0 == REG && code1 == REG
801 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
802 && (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
803 || ok_for_index_p_nonstrict (arg1)))
804 record_address_regs (mode, arg0,
805 ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
806 ? 1 : 0,
807 PLUS, REG, scale);
808 /* If one operand is known to be a pointer, it must be the
809 base with the other operand the index. Likewise if the
810 other operand is a MULT. */
811 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
812 {
813 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
814 record_address_regs (mode, arg1, 1, PLUS, code0, scale);
815 }
816 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
817 {
818 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
819 record_address_regs (mode, arg1, 0, PLUS, code0, scale);
820 }
821 /* Otherwise, count equal chances that each might be a base or
822 index register. This case should be rare. */
823 else
824 {
825 record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
826 record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
827 record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
828 record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
829 }
830 }
831 break;
832
833 /* Double the importance of an allocno that is incremented or
834 decremented, since it would take two extra insns if it ends
835 up in the wrong place. */
836 case POST_MODIFY:
837 case PRE_MODIFY:
838 record_address_regs (mode, XEXP (x, 0), 0, code,
839 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
840 if (REG_P (XEXP (XEXP (x, 1), 1)))
841 record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
842 2 * scale);
843 break;
844
845 case POST_INC:
846 case PRE_INC:
847 case POST_DEC:
848 case PRE_DEC:
849 /* Double the importance of an allocno that is incremented or
850 decremented, since it would take two extra insns if it ends
851 up in the wrong place. If the operand is a pseudo-register,
852 show it is being used in an INC_DEC context. */
853#ifdef FORBIDDEN_INC_DEC_CLASSES
854 if (REG_P (XEXP (x, 0))
855 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
856 in_inc_dec[ALLOCNO_NUM (ira_curr_regno_allocno_map
857 [REGNO (XEXP (x, 0))])] = true;
858#endif
859 record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
860 break;
861
862 case REG:
863 {
864 struct costs *pp;
865 int i, k;
866
867 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
868 break;
869
870 pp = COSTS_OF_ALLOCNO (allocno_costs,
871 ALLOCNO_NUM (ira_curr_regno_allocno_map
872 [REGNO (x)]));
873 pp->mem_cost += (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
874 if (ira_register_move_cost[Pmode] == NULL)
875 ira_init_register_move_cost (Pmode);
876 for (k = 0; k < cost_classes_num; k++)
877 {
878 i = cost_classes[k];
879 pp->cost[k]
880 += (ira_may_move_in_cost[Pmode][i][rclass] * scale) / 2;
881 }
882 }
883 break;
884
885 default:
886 {
887 const char *fmt = GET_RTX_FORMAT (code);
888 int i;
889 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
890 if (fmt[i] == 'e')
891 record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
892 scale);
893 }
894 }
895}
896
897\f
898
899/* Calculate the costs of insn operands. */
900static void
901record_operand_costs (rtx insn, struct costs **op_costs,
902 enum reg_class *allocno_pref)
903{
904 const char *constraints[MAX_RECOG_OPERANDS];
905 enum machine_mode modes[MAX_RECOG_OPERANDS];
906 int i;
907
908 for (i = 0; i < recog_data.n_operands; i++)
909 {
910 constraints[i] = recog_data.constraints[i];
911 modes[i] = recog_data.operand_mode[i];
912 }
913
914 /* If we get here, we are set up to record the costs of all the
915 operands for this insn. Start by initializing the costs. Then
916 handle any address registers. Finally record the desired classes
917 for any allocnos, doing it twice if some pair of operands are
918 commutative. */
919 for (i = 0; i < recog_data.n_operands; i++)
920 {
921 memcpy (op_costs[i], init_cost, struct_costs_size);
922
923 if (GET_CODE (recog_data.operand[i]) == SUBREG)
924 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
925
926 if (MEM_P (recog_data.operand[i]))
927 record_address_regs (GET_MODE (recog_data.operand[i]),
928 XEXP (recog_data.operand[i], 0),
929 0, MEM, SCRATCH, frequency * 2);
930 else if (constraints[i][0] == 'p'
931 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0],
932 constraints[i]))
933 record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
934 SCRATCH, frequency * 2);
935 }
936
937 /* Check for commutative in a separate loop so everything will have
938 been initialized. We must do this even if one operand is a
939 constant--see addsi3 in m68k.md. */
940 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
941 if (constraints[i][0] == '%')
942 {
943 const char *xconstraints[MAX_RECOG_OPERANDS];
944 int j;
945
946 /* Handle commutative operands by swapping the constraints.
947 We assume the modes are the same. */
948 for (j = 0; j < recog_data.n_operands; j++)
949 xconstraints[j] = constraints[j];
950
951 xconstraints[i] = constraints[i+1];
952 xconstraints[i+1] = constraints[i];
953 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
954 recog_data.operand, modes,
955 xconstraints, insn, op_costs, allocno_pref);
956 }
957 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
958 recog_data.operand, modes,
959 constraints, insn, op_costs, allocno_pref);
960}
961
962\f
963
964/* Process one insn INSN. Scan it and record each time it would save
965 code to put a certain allocnos in a certain class. Return the last
966 insn processed, so that the scan can be continued from there. */
967static rtx
968scan_one_insn (rtx insn)
969{
970 enum rtx_code pat_code;
971 rtx set, note;
972 int i, k;
973
974 if (!INSN_P (insn))
975 return insn;
976
977 pat_code = GET_CODE (PATTERN (insn));
978 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT
979 || pat_code == ADDR_VEC || pat_code == ADDR_DIFF_VEC)
980 return insn;
981
982 set = single_set (insn);
983 extract_insn (insn);
984
985 /* If this insn loads a parameter from its stack slot, then it
986 represents a savings, rather than a cost, if the parameter is
987 stored in memory. Record this fact. */
988 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
989 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
990 && MEM_P (XEXP (note, 0)))
991 {
992 COSTS_OF_ALLOCNO (allocno_costs,
993 ALLOCNO_NUM (ira_curr_regno_allocno_map
994 [REGNO (SET_DEST (set))]))->mem_cost
995 -= (ira_memory_move_cost[GET_MODE (SET_DEST (set))][GENERAL_REGS][1]
996 * frequency);
997 record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
998 0, MEM, SCRATCH, frequency * 2);
999 }
1000
1001 record_operand_costs (insn, op_costs, allocno_pref);
1002
1003 /* Now add the cost for each operand to the total costs for its
1004 allocno. */
1005 for (i = 0; i < recog_data.n_operands; i++)
1006 if (REG_P (recog_data.operand[i])
1007 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1008 {
1009 int regno = REGNO (recog_data.operand[i]);
1010 struct costs *p
1011 = COSTS_OF_ALLOCNO (allocno_costs,
1012 ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]));
1013 struct costs *q = op_costs[i];
1014
1015 p->mem_cost += q->mem_cost;
1016 for (k = 0; k < cost_classes_num; k++)
1017 p->cost[k] += q->cost[k];
1018 }
1019
1020 return insn;
1021}
1022
1023\f
1024
1025/* Print allocnos costs to file F. */
1026static void
1027print_costs (FILE *f)
1028{
1029 int k;
1030 ira_allocno_t a;
1031 ira_allocno_iterator ai;
1032
1033 fprintf (f, "\n");
1034 FOR_EACH_ALLOCNO (a, ai)
1035 {
1036 int i, rclass;
1037 basic_block bb;
1038 int regno = ALLOCNO_REGNO (a);
1039
1040 i = ALLOCNO_NUM (a);
1041 fprintf (f, " a%d(r%d,", i, regno);
1042 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1043 fprintf (f, "b%d", bb->index);
1044 else
1045 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
1046 fprintf (f, ") costs:");
1047 for (k = 0; k < cost_classes_num; k++)
1048 {
1049 rclass = cost_classes[k];
1050 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1051#ifdef FORBIDDEN_INC_DEC_CLASSES
1052 && (! in_inc_dec[i] || ! forbidden_inc_dec_class[rclass])
1053#endif
1054#ifdef CANNOT_CHANGE_MODE_CLASS
1055 && ! invalid_mode_change_p (regno, (enum reg_class) rclass,
1056 PSEUDO_REGNO_MODE (regno))
1057#endif
1058 )
1059 {
1060 fprintf (f, " %s:%d", reg_class_names[rclass],
1061 COSTS_OF_ALLOCNO (allocno_costs, i)->cost[k]);
1062 if (flag_ira_algorithm == IRA_ALGORITHM_REGIONAL
1063 || flag_ira_algorithm == IRA_ALGORITHM_MIXED)
1064 fprintf (f, ",%d", COSTS_OF_ALLOCNO (total_costs, i)->cost[k]);
1065 }
1066 }
1067 fprintf (f, " MEM:%i\n", COSTS_OF_ALLOCNO (allocno_costs, i)->mem_cost);
1068 }
1069}
1070
1071/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1072 costs. */
1073static void
1074process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1075{
1076 basic_block bb;
1077 rtx insn;
1078
1079 bb = loop_tree_node->bb;
1080 if (bb == NULL)
1081 return;
1082 frequency = REG_FREQ_FROM_BB (bb);
1083 if (frequency == 0)
1084 frequency = 1;
1085 FOR_BB_INSNS (bb, insn)
1086 insn = scan_one_insn (insn);
1087}
1088
1089/* Find costs of register classes and memory for allocnos and their
1090 best costs. */
1091static void
1092find_allocno_class_costs (void)
1093{
1094 int i, k;
1095 int pass;
1096 basic_block bb;
1097
1098 init_recog ();
1099#ifdef FORBIDDEN_INC_DEC_CLASSES
1100 in_inc_dec = ira_allocate (sizeof (bool) * ira_allocnos_num);
1101#endif /* FORBIDDEN_INC_DEC_CLASSES */
1102 allocno_pref = NULL;
1103 /* Normally we scan the insns once and determine the best class to
1104 use for each allocno. However, if -fexpensive-optimizations are
1105 on, we do so twice, the second time using the tentative best
1106 classes to guide the selection. */
1107 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1108 {
1109 if (internal_flag_ira_verbose > 0 && ira_dump_file)
1110 fprintf (ira_dump_file, "\nPass %i for finding allocno costs\n\n",
1111 pass);
1112 /* We could use only cover classes. Unfortunately it does not
1113 work well for some targets where some subclass of cover class
1114 is costly and wrong cover class is chosen. */
c0683a82
VM
1115 for (i = 0; i < N_REG_CLASSES; i++)
1116 cost_class_nums[i] = -1;
058e97ec
VM
1117 for (cost_classes_num = 0;
1118 cost_classes_num < ira_important_classes_num;
1119 cost_classes_num++)
1120 {
1121 cost_classes[cost_classes_num]
1122 = ira_important_classes[cost_classes_num];
1123 cost_class_nums[cost_classes[cost_classes_num]]
1124 = cost_classes_num;
1125 }
1126 struct_costs_size
1127 = sizeof (struct costs) + sizeof (int) * (cost_classes_num - 1);
1128 /* Zero out our accumulation of the cost of each class for each
1129 allocno. */
1130 memset (allocno_costs, 0, ira_allocnos_num * struct_costs_size);
1131#ifdef FORBIDDEN_INC_DEC_CLASSES
1132 memset (in_inc_dec, 0, ira_allocnos_num * sizeof (bool));
1133#endif
1134
1135 /* Scan the instructions and record each time it would save code
1136 to put a certain allocno in a certain class. */
1137 ira_traverse_loop_tree (true, ira_loop_tree_root,
1138 process_bb_node_for_costs, NULL);
1139
1140 memcpy (total_costs, allocno_costs,
1141 max_struct_costs_size * ira_allocnos_num);
1142 if (pass == 0)
1143 allocno_pref = allocno_pref_buffer;
1144
1145 /* Now for each allocno look at how desirable each class is and
1146 find which class is preferred. */
1147 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1148 {
1149 ira_allocno_t a, parent_a;
1150 int rclass, a_num, parent_a_num;
1151 ira_loop_tree_node_t parent;
1152 int best_cost;
1153 enum reg_class best, alt_class, common_class;
1154#ifdef FORBIDDEN_INC_DEC_CLASSES
1155 int inc_dec_p = false;
1156#endif
1157
1158 if (ira_regno_allocno_map[i] == NULL)
1159 continue;
1160 memset (temp_costs, 0, struct_costs_size);
1161 /* Find cost of all allocnos with the same regno. */
1162 for (a = ira_regno_allocno_map[i];
1163 a != NULL;
1164 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1165 {
1166 a_num = ALLOCNO_NUM (a);
1167 if ((flag_ira_algorithm == IRA_ALGORITHM_REGIONAL
1168 || flag_ira_algorithm == IRA_ALGORITHM_MIXED)
1169 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1170 && (parent_a = parent->regno_allocno_map[i]) != NULL
1171 /* There are no caps yet. */
1172 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a)->border_allocnos,
1173 ALLOCNO_NUM (a)))
1174 {
1175 /* Propagate costs to upper levels in the region
1176 tree. */
1177 parent_a_num = ALLOCNO_NUM (parent_a);
1178 for (k = 0; k < cost_classes_num; k++)
1179 COSTS_OF_ALLOCNO (total_costs, parent_a_num)->cost[k]
1180 += COSTS_OF_ALLOCNO (total_costs, a_num)->cost[k];
1181 COSTS_OF_ALLOCNO (total_costs, parent_a_num)->mem_cost
1182 += COSTS_OF_ALLOCNO (total_costs, a_num)->mem_cost;
1183 }
1184 for (k = 0; k < cost_classes_num; k++)
1185 temp_costs->cost[k]
1186 += COSTS_OF_ALLOCNO (allocno_costs, a_num)->cost[k];
1187 temp_costs->mem_cost
1188 += COSTS_OF_ALLOCNO (allocno_costs, a_num)->mem_cost;
1189#ifdef FORBIDDEN_INC_DEC_CLASSES
1190 if (in_inc_dec[a_num])
1191 inc_dec_p = true;
1192#endif
1193 }
1194 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1195 best = ALL_REGS;
1196 alt_class = NO_REGS;
1197 /* Find best common class for all allocnos with the same
1198 regno. */
1199 for (k = 0; k < cost_classes_num; k++)
1200 {
1201 rclass = cost_classes[k];
1202 /* Ignore classes that are too small for this operand or
1203 invalid for an operand that was auto-incremented. */
1204 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1205#ifdef FORBIDDEN_INC_DEC_CLASSES
1206 || (inc_dec_p && forbidden_inc_dec_class[rclass])
1207#endif
1208#ifdef CANNOT_CHANGE_MODE_CLASS
1209 || invalid_mode_change_p (i, (enum reg_class) rclass,
1210 PSEUDO_REGNO_MODE (i))
1211#endif
1212 )
1213 continue;
1214 if (temp_costs->cost[k] < best_cost)
1215 {
1216 best_cost = temp_costs->cost[k];
1217 best = (enum reg_class) rclass;
1218 }
1219 else if (temp_costs->cost[k] == best_cost)
1220 best = ira_reg_class_union[best][rclass];
1221 if (pass == flag_expensive_optimizations
1222 && temp_costs->cost[k] < temp_costs->mem_cost
1223 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1224 > reg_class_size[alt_class]))
1225 alt_class = reg_class_subunion[alt_class][rclass];
1226 }
1227 if (pass == flag_expensive_optimizations)
1228 {
1229 if (best_cost > temp_costs->mem_cost)
1230 best = alt_class = NO_REGS;
1231 else if (best == alt_class)
1232 alt_class = NO_REGS;
1233 setup_reg_classes (i, best, alt_class);
1234 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1235 fprintf (ira_dump_file,
1236 " r%d: preferred %s, alternative %s\n",
1237 i, reg_class_names[best], reg_class_names[alt_class]);
1238 }
1239 if (best_cost > temp_costs->mem_cost)
1240 common_class = NO_REGS;
1241 else
1242 /* Make the common class a cover class. Remember all
1243 allocnos with the same regno should have the same cover
1244 class. */
1245 common_class = ira_class_translate[best];
1246 for (a = ira_regno_allocno_map[i];
1247 a != NULL;
1248 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1249 {
1250 a_num = ALLOCNO_NUM (a);
1251 if (common_class == NO_REGS)
1252 best = NO_REGS;
1253 else
1254 {
1255 /* Finding best class which is subset of the common
1256 class. */
1257 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1258 best = ALL_REGS;
1259 for (k = 0; k < cost_classes_num; k++)
1260 {
1261 rclass = cost_classes[k];
1262 if (! ira_class_subset_p[rclass][common_class])
1263 continue;
1264 /* Ignore classes that are too small for this
1265 operand or invalid for an operand that was
1266 auto-incremented. */
1267 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1268#ifdef FORBIDDEN_INC_DEC_CLASSES
1269 || (inc_dec_p && forbidden_inc_dec_class[rclass])
1270#endif
1271#ifdef CANNOT_CHANGE_MODE_CLASS
1272 || invalid_mode_change_p (i, (enum reg_class) rclass,
1273 PSEUDO_REGNO_MODE (i))
1274#endif
1275 )
1276 ;
1277 else if (COSTS_OF_ALLOCNO (total_costs, a_num)->cost[k]
1278 < best_cost)
1279 {
1280 best_cost
1281 = COSTS_OF_ALLOCNO (total_costs, a_num)->cost[k];
1282 best = (enum reg_class) rclass;
1283 }
1284 else if (COSTS_OF_ALLOCNO (total_costs, a_num)->cost[k]
1285 == best_cost)
1286 best = ira_reg_class_union[best][rclass];
1287 }
1288 }
1289 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL
1290 && (pass == 0 || allocno_pref[a_num] != best))
1291 {
1292 fprintf (ira_dump_file, " a%d (r%d,", a_num, i);
1293 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1294 fprintf (ira_dump_file, "b%d", bb->index);
1295 else
1296 fprintf (ira_dump_file, "l%d",
1297 ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
1298 fprintf (ira_dump_file, ") best %s, cover %s\n",
1299 reg_class_names[best],
1300 reg_class_names[ira_class_translate[best]]);
1301 }
1302 allocno_pref[a_num] = best;
1303 }
1304 }
1305
1306 if (internal_flag_ira_verbose > 4 && ira_dump_file)
1307 {
1308 print_costs (ira_dump_file);
1309 fprintf (ira_dump_file,"\n");
1310 }
1311 }
1312#ifdef FORBIDDEN_INC_DEC_CLASSES
1313 ira_free (in_inc_dec);
1314#endif
1315}
1316
1317\f
1318
1319/* Process moves involving hard regs to modify allocno hard register
1320 costs. We can do this only after determining allocno cover class.
1321 If a hard register forms a register class, than moves with the hard
1322 register are already taken into account in class costs for the
1323 allocno. */
1324static void
1325process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1326{
1327 int i, freq, cost, src_regno, dst_regno, hard_regno;
1328 bool to_p;
1329 ira_allocno_t a;
1330 enum reg_class rclass, hard_reg_class;
1331 enum machine_mode mode;
1332 basic_block bb;
1333 rtx insn, set, src, dst;
1334
1335 bb = loop_tree_node->bb;
1336 if (bb == NULL)
1337 return;
1338 freq = REG_FREQ_FROM_BB (bb);
1339 if (freq == 0)
1340 freq = 1;
1341 FOR_BB_INSNS (bb, insn)
1342 {
1343 if (! INSN_P (insn))
1344 continue;
1345 set = single_set (insn);
1346 if (set == NULL_RTX)
1347 continue;
1348 dst = SET_DEST (set);
1349 src = SET_SRC (set);
1350 if (! REG_P (dst) || ! REG_P (src))
1351 continue;
1352 dst_regno = REGNO (dst);
1353 src_regno = REGNO (src);
1354 if (dst_regno >= FIRST_PSEUDO_REGISTER
1355 && src_regno < FIRST_PSEUDO_REGISTER)
1356 {
1357 hard_regno = src_regno;
1358 to_p = true;
1359 a = ira_curr_regno_allocno_map[dst_regno];
1360 }
1361 else if (src_regno >= FIRST_PSEUDO_REGISTER
1362 && dst_regno < FIRST_PSEUDO_REGISTER)
1363 {
1364 hard_regno = dst_regno;
1365 to_p = false;
1366 a = ira_curr_regno_allocno_map[src_regno];
1367 }
1368 else
1369 continue;
1370 rclass = ALLOCNO_COVER_CLASS (a);
1371 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1372 continue;
1373 i = ira_class_hard_reg_index[rclass][hard_regno];
1374 if (i < 0)
1375 continue;
1376 mode = ALLOCNO_MODE (a);
1377 hard_reg_class = REGNO_REG_CLASS (hard_regno);
1378 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
1379 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
1380 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1381 ALLOCNO_COVER_CLASS_COST (a));
1382 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1383 rclass, 0);
1384 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1385 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1386 ALLOCNO_COVER_CLASS_COST (a) = MIN (ALLOCNO_COVER_CLASS_COST (a),
1387 ALLOCNO_HARD_REG_COSTS (a)[i]);
1388 }
1389}
1390
1391/* After we find hard register and memory costs for allocnos, define
1392 its cover class and modify hard register cost because insns moving
1393 allocno to/from hard registers. */
1394static void
1395setup_allocno_cover_class_and_costs (void)
1396{
c0683a82 1397 int i, j, n, regno, num;
058e97ec
VM
1398 int *reg_costs;
1399 enum reg_class cover_class, rclass;
1400 enum machine_mode mode;
1401 ira_allocno_t a;
1402 ira_allocno_iterator ai;
1403
1404 FOR_EACH_ALLOCNO (a, ai)
1405 {
1406 i = ALLOCNO_NUM (a);
1407 mode = ALLOCNO_MODE (a);
1408 cover_class = ira_class_translate[allocno_pref[i]];
1409 ira_assert (allocno_pref[i] == NO_REGS || cover_class != NO_REGS);
cb1ca6ac 1410 ALLOCNO_MEMORY_COST (a) = COSTS_OF_ALLOCNO (allocno_costs, i)->mem_cost;
058e97ec
VM
1411 ira_set_allocno_cover_class (a, cover_class);
1412 if (cover_class == NO_REGS)
1413 continue;
1414 ALLOCNO_AVAILABLE_REGS_NUM (a) = ira_available_class_regs[cover_class];
c0683a82
VM
1415 num = cost_class_nums[allocno_pref[i]];
1416 ira_assert (num >= 0);
058e97ec 1417 ALLOCNO_COVER_CLASS_COST (a)
c0683a82 1418 = COSTS_OF_ALLOCNO (allocno_costs, i)->cost[num];
058e97ec
VM
1419 if (optimize && ALLOCNO_COVER_CLASS (a) != allocno_pref[i])
1420 {
1421 n = ira_class_hard_regs_num[cover_class];
1422 ALLOCNO_HARD_REG_COSTS (a)
1423 = reg_costs = ira_allocate_cost_vector (cover_class);
1424 for (j = n - 1; j >= 0; j--)
1425 {
1426 regno = ira_class_hard_regs[cover_class][j];
1427 rclass = REGNO_REG_CLASS (regno);
c0683a82
VM
1428 num = cost_class_nums[rclass];
1429 if (num < 0)
1430 {
1431 /* The hard register class is not a cover class or a
1432 class not fully inside in a cover class -- use
1433 the allocno cover class. */
1434 ira_assert (ira_hard_regno_cover_class[regno] == cover_class);
1435 num = cost_class_nums[cover_class];
1436 }
1437 reg_costs[j] = COSTS_OF_ALLOCNO (allocno_costs, i)->cost[num];
058e97ec
VM
1438 }
1439 }
1440 }
1441 if (optimize)
1442 ira_traverse_loop_tree (true, ira_loop_tree_root,
1443 process_bb_node_for_hard_reg_moves, NULL);
1444}
1445
1446\f
1447
1448/* Function called once during compiler work. */
1449void
1450ira_init_costs_once (void)
1451{
1452 int i;
1453
1454 init_cost = NULL;
1455 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1456 {
1457 op_costs[i] = NULL;
1458 this_op_costs[i] = NULL;
1459 }
1460 temp_costs = NULL;
1461 cost_classes = NULL;
1462}
1463
1464/* Free allocated temporary cost vectors. */
1465static void
1466free_ira_costs (void)
1467{
1468 int i;
1469
1470 if (init_cost != NULL)
1471 free (init_cost);
1472 init_cost = NULL;
1473 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1474 {
1475 if (op_costs[i] != NULL)
1476 free (op_costs[i]);
1477 if (this_op_costs[i] != NULL)
1478 free (this_op_costs[i]);
1479 op_costs[i] = this_op_costs[i] = NULL;
1480 }
1481 if (temp_costs != NULL)
1482 free (temp_costs);
1483 temp_costs = NULL;
1484 if (cost_classes != NULL)
1485 free (cost_classes);
1486 cost_classes = NULL;
1487}
1488
1489/* This is called each time register related information is
1490 changed. */
1491void
1492ira_init_costs (void)
1493{
1494 int i;
1495
1496 free_ira_costs ();
1497 max_struct_costs_size
1498 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
1499 /* Don't use ira_allocate because vectors live through several IRA calls. */
1500 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
1501 init_cost->mem_cost = 1000000;
1502 for (i = 0; i < ira_important_classes_num; i++)
1503 init_cost->cost[i] = 1000000;
1504 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1505 {
1506 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1507 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1508 }
1509 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
1510 cost_classes = (enum reg_class *) xmalloc (sizeof (enum reg_class)
1511 * ira_important_classes_num);
1512}
1513
1514/* Function called once at the end of compiler work. */
1515void
1516ira_finish_costs_once (void)
1517{
1518 free_ira_costs ();
1519}
1520
1521\f
1522
1523/* Entry function which defines cover class, memory and hard register
1524 costs for each allocno. */
1525void
1526ira_costs (void)
1527{
1528 ira_allocno_t a;
1529 ira_allocno_iterator ai;
1530
1531 allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
1532 * ira_allocnos_num);
1533 total_costs = (struct costs *) ira_allocate (max_struct_costs_size
1534 * ira_allocnos_num);
1535 allocno_pref_buffer
1536 = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
1537 * ira_allocnos_num);
1538 find_allocno_class_costs ();
1539 setup_allocno_cover_class_and_costs ();
1540 /* Because we could process operands only as subregs, check mode of
1541 the registers themselves too. */
1542 FOR_EACH_ALLOCNO (a, ai)
1543 if (ira_register_move_cost[ALLOCNO_MODE (a)] == NULL
1544 && have_regs_of_mode[ALLOCNO_MODE (a)])
1545 ira_init_register_move_cost (ALLOCNO_MODE (a));
1546 ira_free (allocno_pref_buffer);
1547 ira_free (total_costs);
1548 ira_free (allocno_costs);
1549}
1550
1551\f
1552
1553/* Change hard register costs for allocnos which lives through
1554 function calls. This is called only when we found all intersected
1555 calls during building allocno live ranges. */
1556void
1557ira_tune_allocno_costs_and_cover_classes (void)
1558{
1559 int j, n, regno;
1560 int cost, min_cost, *reg_costs;
1561 enum reg_class cover_class, rclass;
1562 enum machine_mode mode;
1563 ira_allocno_t a;
1564 ira_allocno_iterator ai;
1565
1566 FOR_EACH_ALLOCNO (a, ai)
1567 {
1568 cover_class = ALLOCNO_COVER_CLASS (a);
1569 if (cover_class == NO_REGS)
1570 continue;
1571 mode = ALLOCNO_MODE (a);
1572 n = ira_class_hard_regs_num[cover_class];
1573 min_cost = INT_MAX;
1574 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
1575 {
1576 ira_allocate_and_set_costs
1577 (&ALLOCNO_HARD_REG_COSTS (a), cover_class,
1578 ALLOCNO_COVER_CLASS_COST (a));
1579 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
1580 for (j = n - 1; j >= 0; j--)
1581 {
1582 regno = ira_class_hard_regs[cover_class][j];
1583 rclass = REGNO_REG_CLASS (regno);
1584 cost = 0;
aac375dd
VM
1585 if (! ira_hard_reg_not_in_set_p (regno, mode, call_used_reg_set)
1586 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
058e97ec
VM
1587 cost += (ALLOCNO_CALL_FREQ (a)
1588 * (ira_memory_move_cost[mode][rclass][0]
1589 + ira_memory_move_cost[mode][rclass][1]));
1590#ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
1591 cost += ((ira_memory_move_cost[mode][rclass][0]
1592 + ira_memory_move_cost[mode][rclass][1])
1593 * ALLOCNO_FREQ (a)
1594 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
1595#endif
1596 reg_costs[j] += cost;
1597 if (min_cost > reg_costs[j])
1598 min_cost = reg_costs[j];
1599 }
1600 }
1601 if (min_cost != INT_MAX)
1602 ALLOCNO_COVER_CLASS_COST (a) = min_cost;
1603 }
1604}
This page took 0.26748 seconds and 5 git commands to generate.