]> gcc.gnu.org Git - gcc.git/blame - gcc/ipa-cp.c
aarch64.c (aarch64_force_temporary): Add an extra parameter 'mode' of type 'enum...
[gcc.git] / gcc / ipa-cp.c
CommitLineData
518dc859 1/* Interprocedural constant propagation
d1e082c2 2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
310bc633
MJ
3
4 Contributed by Razya Ladelsky <RAZYA@il.ibm.com> and Martin Jambor
5 <mjambor@suse.cz>
b8698a0f 6
518dc859 7This file is part of GCC.
b8698a0f 8
518dc859
RL
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
9dcd6f09 11Software Foundation; either version 3, or (at your option) any later
518dc859 12version.
b8698a0f 13
518dc859
RL
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
b8698a0f 18
518dc859 19You should have received a copy of the GNU General Public License
9dcd6f09
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
518dc859 22
310bc633 23/* Interprocedural constant propagation (IPA-CP).
b8698a0f 24
310bc633 25 The goal of this transformation is to
c43f07af 26
310bc633
MJ
27 1) discover functions which are always invoked with some arguments with the
28 same known constant values and modify the functions so that the
29 subsequent optimizations can take advantage of the knowledge, and
c43f07af 30
310bc633
MJ
31 2) partial specialization - create specialized versions of functions
32 transformed in this way if some parameters are known constants only in
33 certain contexts but the estimated tradeoff between speedup and cost size
34 is deemed good.
b8698a0f 35
310bc633
MJ
36 The algorithm also propagates types and attempts to perform type based
37 devirtualization. Types are propagated much like constants.
b8698a0f 38
310bc633
MJ
39 The algorithm basically consists of three stages. In the first, functions
40 are analyzed one at a time and jump functions are constructed for all known
41 call-sites. In the second phase, the pass propagates information from the
42 jump functions across the call to reveal what values are available at what
43 call sites, performs estimations of effects of known values on functions and
44 their callees, and finally decides what specialized extra versions should be
45 created. In the third, the special versions materialize and appropriate
46 calls are redirected.
c43f07af 47
310bc633
MJ
48 The algorithm used is to a certain extent based on "Interprocedural Constant
49 Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon,
50 Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D
51 Cooper, Mary W. Hall, and Ken Kennedy.
b8698a0f 52
518dc859
RL
53
54 First stage - intraprocedural analysis
55 =======================================
310bc633 56
c43f07af 57 This phase computes jump_function and modification flags.
b8698a0f 58
310bc633
MJ
59 A jump function for a call-site represents the values passed as an actual
60 arguments of a given call-site. In principle, there are three types of
61 values:
62
63 Pass through - the caller's formal parameter is passed as an actual
64 argument, plus an operation on it can be performed.
ea2c620c 65 Constant - a constant is passed as an actual argument.
518dc859 66 Unknown - neither of the above.
b8698a0f 67
310bc633
MJ
68 All jump function types are described in detail in ipa-prop.h, together with
69 the data structures that represent them and methods of accessing them.
b8698a0f 70
310bc633 71 ipcp_generate_summary() is the main function of the first stage.
518dc859
RL
72
73 Second stage - interprocedural analysis
74 ========================================
b8698a0f 75
310bc633
MJ
76 This stage is itself divided into two phases. In the first, we propagate
77 known values over the call graph, in the second, we make cloning decisions.
78 It uses a different algorithm than the original Callahan's paper.
b8698a0f 79
310bc633
MJ
80 First, we traverse the functions topologically from callers to callees and,
81 for each strongly connected component (SCC), we propagate constants
82 according to previously computed jump functions. We also record what known
83 values depend on other known values and estimate local effects. Finally, we
073a8998 84 propagate cumulative information about these effects from dependent values
310bc633 85 to those on which they depend.
518dc859 86
310bc633
MJ
87 Second, we again traverse the call graph in the same topological order and
88 make clones for functions which we know are called with the same values in
89 all contexts and decide about extra specialized clones of functions just for
90 some contexts - these decisions are based on both local estimates and
91 cumulative estimates propagated from callees.
518dc859 92
310bc633
MJ
93 ipcp_propagate_stage() and ipcp_decision_stage() together constitute the
94 third stage.
95
96 Third phase - materialization of clones, call statement updates.
518dc859 97 ============================================
310bc633
MJ
98
99 This stage is currently performed by call graph code (mainly in cgraphunit.c
100 and tree-inline.c) according to instructions inserted to the call graph by
101 the second stage. */
518dc859
RL
102
103#include "config.h"
104#include "system.h"
105#include "coretypes.h"
106#include "tree.h"
107#include "target.h"
3949c4a7 108#include "gimple.h"
518dc859
RL
109#include "cgraph.h"
110#include "ipa-prop.h"
111#include "tree-flow.h"
112#include "tree-pass.h"
113#include "flags.h"
518dc859 114#include "diagnostic.h"
cf835838 115#include "tree-pretty-print.h"
3cc1cccc 116#include "tree-inline.h"
5e45130d 117#include "params.h"
10a5dd5d 118#include "ipa-inline.h"
310bc633 119#include "ipa-utils.h"
518dc859 120
310bc633 121struct ipcp_value;
ca30a539 122
310bc633 123/* Describes a particular source for an IPA-CP value. */
ca30a539 124
310bc633
MJ
125struct ipcp_value_source
126{
2c9561b5
MJ
127 /* Aggregate offset of the source, negative if the source is scalar value of
128 the argument itself. */
129 HOST_WIDE_INT offset;
310bc633
MJ
130 /* The incoming edge that brought the value. */
131 struct cgraph_edge *cs;
132 /* If the jump function that resulted into his value was a pass-through or an
133 ancestor, this is the ipcp_value of the caller from which the described
134 value has been derived. Otherwise it is NULL. */
135 struct ipcp_value *val;
136 /* Next pointer in a linked list of sources of a value. */
137 struct ipcp_value_source *next;
138 /* If the jump function that resulted into his value was a pass-through or an
139 ancestor, this is the index of the parameter of the caller the jump
140 function references. */
141 int index;
142};
ca30a539 143
310bc633 144/* Describes one particular value stored in struct ipcp_lattice. */
ca30a539 145
310bc633 146struct ipcp_value
518dc859 147{
310bc633
MJ
148 /* The actual value for the given parameter. This is either an IPA invariant
149 or a TREE_BINFO describing a type that can be used for
150 devirtualization. */
151 tree value;
152 /* The list of sources from which this value originates. */
153 struct ipcp_value_source *sources;
154 /* Next pointers in a linked list of all values in a lattice. */
155 struct ipcp_value *next;
156 /* Next pointers in a linked list of values in a strongly connected component
157 of values. */
158 struct ipcp_value *scc_next;
159 /* Next pointers in a linked list of SCCs of values sorted topologically
160 according their sources. */
161 struct ipcp_value *topo_next;
162 /* A specialized node created for this value, NULL if none has been (so far)
163 created. */
164 struct cgraph_node *spec_node;
165 /* Depth first search number and low link for topological sorting of
166 values. */
167 int dfs, low_link;
168 /* Time benefit and size cost that specializing the function for this value
169 would bring about in this function alone. */
170 int local_time_benefit, local_size_cost;
171 /* Time benefit and size cost that specializing the function for this value
172 can bring about in it's callees (transitively). */
173 int prop_time_benefit, prop_size_cost;
174 /* True if this valye is currently on the topo-sort stack. */
175 bool on_stack;
176};
518dc859 177
2c9561b5
MJ
178/* Lattice describing potential values of a formal parameter of a function, or
179 a part of an aggreagate. TOP is represented by a lattice with zero values
180 and with contains_variable and bottom flags cleared. BOTTOM is represented
181 by a lattice with the bottom flag set. In that case, values and
310bc633
MJ
182 contains_variable flag should be disregarded. */
183
184struct ipcp_lattice
518dc859 185{
310bc633
MJ
186 /* The list of known values and types in this lattice. Note that values are
187 not deallocated if a lattice is set to bottom because there may be value
188 sources referencing them. */
189 struct ipcp_value *values;
190 /* Number of known values and types in this lattice. */
191 int values_count;
2c9561b5 192 /* The lattice contains a variable component (in addition to values). */
310bc633
MJ
193 bool contains_variable;
194 /* The value of the lattice is bottom (i.e. variable and unusable for any
195 propagation). */
196 bool bottom;
2c9561b5
MJ
197};
198
199/* Lattice with an offset to describe a part of an aggregate. */
200
201struct ipcp_agg_lattice : public ipcp_lattice
202{
203 /* Offset that is being described by this lattice. */
204 HOST_WIDE_INT offset;
205 /* Size so that we don't have to re-compute it every time we traverse the
206 list. Must correspond to TYPE_SIZE of all lat values. */
207 HOST_WIDE_INT size;
208 /* Next element of the linked list. */
209 struct ipcp_agg_lattice *next;
210};
211
212/* Structure containing lattices for a parameter itself and for pieces of
213 aggregates that are passed in the parameter or by a reference in a parameter
214 plus some other useful flags. */
215
216struct ipcp_param_lattices
217{
218 /* Lattice describing the value of the parameter itself. */
219 struct ipcp_lattice itself;
220 /* Lattices describing aggregate parts. */
221 struct ipcp_agg_lattice *aggs;
222 /* Number of aggregate lattices */
223 int aggs_count;
224 /* True if aggregate data were passed by reference (as opposed to by
225 value). */
226 bool aggs_by_ref;
227 /* All aggregate lattices contain a variable component (in addition to
228 values). */
229 bool aggs_contain_variable;
230 /* The value of all aggregate lattices is bottom (i.e. variable and unusable
231 for any propagation). */
232 bool aggs_bottom;
233
310bc633
MJ
234 /* There is a virtual call based on this parameter. */
235 bool virt_call;
236};
518dc859 237
2c9561b5
MJ
238/* Allocation pools for values and their sources in ipa-cp. */
239
240alloc_pool ipcp_values_pool;
241alloc_pool ipcp_sources_pool;
242alloc_pool ipcp_agg_lattice_pool;
243
310bc633
MJ
244/* Maximal count found in program. */
245
246static gcov_type max_count;
247
248/* Original overall size of the program. */
249
250static long overall_size, max_new_size;
251
252/* Head of the linked list of topologically sorted values. */
253
254static struct ipcp_value *values_topo;
255
2c9561b5
MJ
256/* Return the param lattices structure corresponding to the Ith formal
257 parameter of the function described by INFO. */
258static inline struct ipcp_param_lattices *
259ipa_get_parm_lattices (struct ipa_node_params *info, int i)
518dc859 260{
d7da5cc8 261 gcc_assert (i >= 0 && i < ipa_get_param_count (info));
310bc633
MJ
262 gcc_checking_assert (!info->ipcp_orig_node);
263 gcc_checking_assert (info->lattices);
264 return &(info->lattices[i]);
518dc859
RL
265}
266
2c9561b5
MJ
267/* Return the lattice corresponding to the scalar value of the Ith formal
268 parameter of the function described by INFO. */
269static inline struct ipcp_lattice *
270ipa_get_scalar_lat (struct ipa_node_params *info, int i)
271{
272 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
273 return &plats->itself;
274}
275
310bc633
MJ
276/* Return whether LAT is a lattice with a single constant and without an
277 undefined value. */
278
c43f07af 279static inline bool
310bc633 280ipa_lat_is_single_const (struct ipcp_lattice *lat)
518dc859 281{
310bc633
MJ
282 if (lat->bottom
283 || lat->contains_variable
284 || lat->values_count != 1)
518dc859 285 return false;
310bc633
MJ
286 else
287 return true;
518dc859
RL
288}
289
310bc633
MJ
290/* Return true iff the CS is an edge within a strongly connected component as
291 computed by ipa_reduced_postorder. */
3e293154 292
518dc859 293static inline bool
310bc633 294edge_within_scc (struct cgraph_edge *cs)
518dc859 295{
960bfb69 296 struct ipa_dfs_info *caller_dfs = (struct ipa_dfs_info *) cs->caller->symbol.aux;
310bc633
MJ
297 struct ipa_dfs_info *callee_dfs;
298 struct cgraph_node *callee = cgraph_function_node (cs->callee, NULL);
299
960bfb69 300 callee_dfs = (struct ipa_dfs_info *) callee->symbol.aux;
310bc633
MJ
301 return (caller_dfs
302 && callee_dfs
303 && caller_dfs->scc_no == callee_dfs->scc_no);
518dc859
RL
304}
305
310bc633
MJ
306/* Print V which is extracted from a value in a lattice to F. */
307
518dc859 308static void
310bc633 309print_ipcp_constant_value (FILE * f, tree v)
518dc859 310{
310bc633 311 if (TREE_CODE (v) == TREE_BINFO)
518dc859 312 {
310bc633
MJ
313 fprintf (f, "BINFO ");
314 print_generic_expr (f, BINFO_TYPE (v), 0);
518dc859 315 }
310bc633
MJ
316 else if (TREE_CODE (v) == ADDR_EXPR
317 && TREE_CODE (TREE_OPERAND (v, 0)) == CONST_DECL)
518dc859 318 {
310bc633
MJ
319 fprintf (f, "& ");
320 print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (v, 0)), 0);
518dc859 321 }
310bc633
MJ
322 else
323 print_generic_expr (f, v, 0);
518dc859
RL
324}
325
2c9561b5
MJ
326/* Print a lattice LAT to F. */
327
328static void
329print_lattice (FILE * f, struct ipcp_lattice *lat,
330 bool dump_sources, bool dump_benefits)
331{
332 struct ipcp_value *val;
333 bool prev = false;
334
335 if (lat->bottom)
336 {
337 fprintf (f, "BOTTOM\n");
338 return;
339 }
340
341 if (!lat->values_count && !lat->contains_variable)
342 {
343 fprintf (f, "TOP\n");
344 return;
345 }
346
347 if (lat->contains_variable)
348 {
349 fprintf (f, "VARIABLE");
350 prev = true;
351 if (dump_benefits)
352 fprintf (f, "\n");
353 }
354
355 for (val = lat->values; val; val = val->next)
356 {
357 if (dump_benefits && prev)
358 fprintf (f, " ");
359 else if (!dump_benefits && prev)
360 fprintf (f, ", ");
361 else
362 prev = true;
363
364 print_ipcp_constant_value (f, val->value);
365
366 if (dump_sources)
367 {
368 struct ipcp_value_source *s;
369
370 fprintf (f, " [from:");
371 for (s = val->sources; s; s = s->next)
9de04252
MJ
372 fprintf (f, " %i(%i)", s->cs->caller->symbol.order,
373 s->cs->frequency);
2c9561b5
MJ
374 fprintf (f, "]");
375 }
376
377 if (dump_benefits)
378 fprintf (f, " [loc_time: %i, loc_size: %i, "
379 "prop_time: %i, prop_size: %i]\n",
380 val->local_time_benefit, val->local_size_cost,
381 val->prop_time_benefit, val->prop_size_cost);
382 }
383 if (!dump_benefits)
384 fprintf (f, "\n");
385}
386
c43f07af 387/* Print all ipcp_lattices of all functions to F. */
310bc633 388
518dc859 389static void
310bc633 390print_all_lattices (FILE * f, bool dump_sources, bool dump_benefits)
518dc859
RL
391{
392 struct cgraph_node *node;
393 int i, count;
3cc1cccc 394
310bc633
MJ
395 fprintf (f, "\nLattices:\n");
396 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
518dc859 397 {
0eae6bab
MJ
398 struct ipa_node_params *info;
399
0eae6bab 400 info = IPA_NODE_REF (node);
9de04252
MJ
401 fprintf (f, " Node: %s/%i:\n", cgraph_node_name (node),
402 node->symbol.order);
c43f07af 403 count = ipa_get_param_count (info);
518dc859
RL
404 for (i = 0; i < count; i++)
405 {
2c9561b5
MJ
406 struct ipcp_agg_lattice *aglat;
407 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
ca30a539 408 fprintf (f, " param [%d]: ", i);
2c9561b5 409 print_lattice (f, &plats->itself, dump_sources, dump_benefits);
310bc633 410
2c9561b5
MJ
411 if (plats->virt_call)
412 fprintf (f, " virt_call flag set\n");
413
414 if (plats->aggs_bottom)
310bc633 415 {
2c9561b5 416 fprintf (f, " AGGS BOTTOM\n");
310bc633
MJ
417 continue;
418 }
2c9561b5
MJ
419 if (plats->aggs_contain_variable)
420 fprintf (f, " AGGS VARIABLE\n");
421 for (aglat = plats->aggs; aglat; aglat = aglat->next)
310bc633 422 {
2c9561b5
MJ
423 fprintf (f, " %soffset " HOST_WIDE_INT_PRINT_DEC ": ",
424 plats->aggs_by_ref ? "ref " : "", aglat->offset);
425 print_lattice (f, aglat, dump_sources, dump_benefits);
310bc633 426 }
518dc859
RL
427 }
428 }
429}
430
310bc633
MJ
431/* Determine whether it is at all technically possible to create clones of NODE
432 and store this information in the ipa_node_params structure associated
433 with NODE. */
27dbd3ac 434
310bc633
MJ
435static void
436determine_versionability (struct cgraph_node *node)
27dbd3ac 437{
310bc633 438 const char *reason = NULL;
0818c24c 439
aa229804
MJ
440 /* There are a number of generic reasons functions cannot be versioned. We
441 also cannot remove parameters if there are type attributes such as fnspec
442 present. */
e70670cf 443 if (node->symbol.alias || node->thunk.thunk_p)
310bc633 444 reason = "alias or thunk";
124f1be6 445 else if (!node->local.versionable)
d7da5cc8 446 reason = "not a tree_versionable_function";
310bc633
MJ
447 else if (cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
448 reason = "insufficient body availability";
27dbd3ac 449
e70670cf 450 if (reason && dump_file && !node->symbol.alias && !node->thunk.thunk_p)
310bc633 451 fprintf (dump_file, "Function %s/%i is not versionable, reason: %s.\n",
9de04252 452 cgraph_node_name (node), node->symbol.order, reason);
27dbd3ac 453
124f1be6 454 node->local.versionable = (reason == NULL);
27dbd3ac
RH
455}
456
310bc633
MJ
457/* Return true if it is at all technically possible to create clones of a
458 NODE. */
459
ca30a539 460static bool
310bc633 461ipcp_versionable_function_p (struct cgraph_node *node)
ca30a539 462{
124f1be6 463 return node->local.versionable;
310bc633 464}
ca30a539 465
310bc633 466/* Structure holding accumulated information about callers of a node. */
749f25d8 467
310bc633
MJ
468struct caller_statistics
469{
470 gcov_type count_sum;
471 int n_calls, n_hot_calls, freq_sum;
472};
ca30a539 473
310bc633 474/* Initialize fields of STAT to zeroes. */
530f3a1b 475
310bc633
MJ
476static inline void
477init_caller_stats (struct caller_statistics *stats)
478{
479 stats->count_sum = 0;
480 stats->n_calls = 0;
481 stats->n_hot_calls = 0;
482 stats->freq_sum = 0;
483}
484
485/* Worker callback of cgraph_for_node_and_aliases accumulating statistics of
486 non-thunk incoming edges to NODE. */
487
488static bool
489gather_caller_stats (struct cgraph_node *node, void *data)
490{
491 struct caller_statistics *stats = (struct caller_statistics *) data;
492 struct cgraph_edge *cs;
493
494 for (cs = node->callers; cs; cs = cs->next_caller)
495 if (cs->caller->thunk.thunk_p)
496 cgraph_for_node_and_aliases (cs->caller, gather_caller_stats,
497 stats, false);
498 else
499 {
500 stats->count_sum += cs->count;
501 stats->freq_sum += cs->frequency;
502 stats->n_calls++;
503 if (cgraph_maybe_hot_edge_p (cs))
504 stats->n_hot_calls ++;
505 }
506 return false;
507
508}
509
510/* Return true if this NODE is viable candidate for cloning. */
511
512static bool
513ipcp_cloning_candidate_p (struct cgraph_node *node)
514{
515 struct caller_statistics stats;
516
517 gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
b8698a0f 518
310bc633 519 if (!flag_ipa_cp_clone)
ca30a539
JH
520 {
521 if (dump_file)
310bc633
MJ
522 fprintf (dump_file, "Not considering %s for cloning; "
523 "-fipa-cp-clone disabled.\n",
ca30a539
JH
524 cgraph_node_name (node));
525 return false;
526 }
ca30a539 527
960bfb69 528 if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->symbol.decl)))
ca30a539
JH
529 {
530 if (dump_file)
310bc633
MJ
531 fprintf (dump_file, "Not considering %s for cloning; "
532 "optimizing it for size.\n",
ca30a539
JH
533 cgraph_node_name (node));
534 return false;
535 }
536
310bc633
MJ
537 init_caller_stats (&stats);
538 cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
539
540 if (inline_summary (node)->self_size < stats.n_calls)
ca30a539
JH
541 {
542 if (dump_file)
310bc633 543 fprintf (dump_file, "Considering %s for cloning; code might shrink.\n",
ca30a539 544 cgraph_node_name (node));
310bc633 545 return true;
ca30a539
JH
546 }
547
548 /* When profile is available and function is hot, propagate into it even if
549 calls seems cold; constant propagation can improve function's speed
61502ca8 550 significantly. */
ca30a539
JH
551 if (max_count)
552 {
310bc633 553 if (stats.count_sum > node->count * 90 / 100)
ca30a539
JH
554 {
555 if (dump_file)
310bc633
MJ
556 fprintf (dump_file, "Considering %s for cloning; "
557 "usually called directly.\n",
ca30a539
JH
558 cgraph_node_name (node));
559 return true;
560 }
561 }
310bc633 562 if (!stats.n_hot_calls)
ca30a539
JH
563 {
564 if (dump_file)
565 fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
566 cgraph_node_name (node));
ed102b70 567 return false;
ca30a539
JH
568 }
569 if (dump_file)
570 fprintf (dump_file, "Considering %s for cloning.\n",
571 cgraph_node_name (node));
572 return true;
573}
574
310bc633
MJ
575/* Arrays representing a topological ordering of call graph nodes and a stack
576 of noes used during constant propagation. */
3949c4a7 577
310bc633 578struct topo_info
3949c4a7 579{
310bc633
MJ
580 struct cgraph_node **order;
581 struct cgraph_node **stack;
582 int nnodes, stack_top;
583};
584
585/* Allocate the arrays in TOPO and topologically sort the nodes into order. */
586
587static void
588build_toporder_info (struct topo_info *topo)
589{
590 topo->order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
591 topo->stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
592 topo->stack_top = 0;
593 topo->nnodes = ipa_reduced_postorder (topo->order, true, true, NULL);
3949c4a7
MJ
594}
595
310bc633
MJ
596/* Free information about strongly connected components and the arrays in
597 TOPO. */
598
518dc859 599static void
310bc633
MJ
600free_toporder_info (struct topo_info *topo)
601{
602 ipa_free_postorder_info ();
603 free (topo->order);
604 free (topo->stack);
605}
606
607/* Add NODE to the stack in TOPO, unless it is already there. */
608
609static inline void
610push_node_to_stack (struct topo_info *topo, struct cgraph_node *node)
518dc859 611{
c43f07af 612 struct ipa_node_params *info = IPA_NODE_REF (node);
310bc633
MJ
613 if (info->node_enqueued)
614 return;
615 info->node_enqueued = 1;
616 topo->stack[topo->stack_top++] = node;
617}
518dc859 618
310bc633
MJ
619/* Pop a node from the stack in TOPO and return it or return NULL if the stack
620 is empty. */
ca30a539 621
310bc633
MJ
622static struct cgraph_node *
623pop_node_from_stack (struct topo_info *topo)
624{
625 if (topo->stack_top)
3949c4a7 626 {
310bc633
MJ
627 struct cgraph_node *node;
628 topo->stack_top--;
629 node = topo->stack[topo->stack_top];
630 IPA_NODE_REF (node)->node_enqueued = 0;
631 return node;
3949c4a7 632 }
310bc633
MJ
633 else
634 return NULL;
518dc859
RL
635}
636
310bc633
MJ
637/* Set lattice LAT to bottom and return true if it previously was not set as
638 such. */
639
640static inline bool
641set_lattice_to_bottom (struct ipcp_lattice *lat)
518dc859 642{
310bc633
MJ
643 bool ret = !lat->bottom;
644 lat->bottom = true;
645 return ret;
646}
518dc859 647
310bc633
MJ
648/* Mark lattice as containing an unknown value and return true if it previously
649 was not marked as such. */
129a37fc 650
310bc633
MJ
651static inline bool
652set_lattice_contains_variable (struct ipcp_lattice *lat)
653{
654 bool ret = !lat->contains_variable;
655 lat->contains_variable = true;
656 return ret;
518dc859
RL
657}
658
2c9561b5
MJ
659/* Set all aggegate lattices in PLATS to bottom and return true if they were
660 not previously set as such. */
661
662static inline bool
663set_agg_lats_to_bottom (struct ipcp_param_lattices *plats)
664{
665 bool ret = !plats->aggs_bottom;
666 plats->aggs_bottom = true;
667 return ret;
668}
669
670/* Mark all aggegate lattices in PLATS as containing an unknown value and
671 return true if they were not previously marked as such. */
672
673static inline bool
674set_agg_lats_contain_variable (struct ipcp_param_lattices *plats)
675{
676 bool ret = !plats->aggs_contain_variable;
677 plats->aggs_contain_variable = true;
678 return ret;
679}
680
681/* Mark bot aggregate and scalar lattices as containing an unknown variable,
682 return true is any of them has not been marked as such so far. */
683
684static inline bool
685set_all_contains_variable (struct ipcp_param_lattices *plats)
686{
687 bool ret = !plats->itself.contains_variable || !plats->aggs_contain_variable;
688 plats->itself.contains_variable = true;
689 plats->aggs_contain_variable = true;
690 return ret;
691}
692
310bc633 693/* Initialize ipcp_lattices. */
43558bcc 694
518dc859 695static void
310bc633 696initialize_node_lattices (struct cgraph_node *node)
518dc859 697{
310bc633
MJ
698 struct ipa_node_params *info = IPA_NODE_REF (node);
699 struct cgraph_edge *ie;
700 bool disable = false, variable = false;
701 int i;
518dc859 702
310bc633 703 gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
d7da5cc8 704 if (!node->local.local)
310bc633
MJ
705 {
706 /* When cloning is allowed, we can assume that externally visible
707 functions are not called. We will compensate this by cloning
708 later. */
709 if (ipcp_versionable_function_p (node)
710 && ipcp_cloning_candidate_p (node))
711 variable = true;
712 else
713 disable = true;
714 }
518dc859 715
310bc633
MJ
716 if (disable || variable)
717 {
718 for (i = 0; i < ipa_get_param_count (info) ; i++)
719 {
2c9561b5 720 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
310bc633 721 if (disable)
2c9561b5
MJ
722 {
723 set_lattice_to_bottom (&plats->itself);
724 set_agg_lats_to_bottom (plats);
725 }
310bc633 726 else
2c9561b5 727 set_all_contains_variable (plats);
310bc633
MJ
728 }
729 if (dump_file && (dump_flags & TDF_DETAILS)
e70670cf 730 && !node->symbol.alias && !node->thunk.thunk_p)
310bc633 731 fprintf (dump_file, "Marking all lattices of %s/%i as %s\n",
9de04252 732 cgraph_node_name (node), node->symbol.order,
310bc633
MJ
733 disable ? "BOTTOM" : "VARIABLE");
734 }
518dc859 735
310bc633
MJ
736 for (ie = node->indirect_calls; ie; ie = ie->next_callee)
737 if (ie->indirect_info->polymorphic)
0818c24c 738 {
310bc633 739 gcc_checking_assert (ie->indirect_info->param_index >= 0);
2c9561b5
MJ
740 ipa_get_parm_lattices (info,
741 ie->indirect_info->param_index)->virt_call = 1;
0818c24c 742 }
518dc859
RL
743}
744
310bc633
MJ
745/* Return the result of a (possibly arithmetic) pass through jump function
746 JFUNC on the constant value INPUT. Return NULL_TREE if that cannot be
747 determined or itself is considered an interprocedural invariant. */
3949c4a7 748
310bc633
MJ
749static tree
750ipa_get_jf_pass_through_result (struct ipa_jump_func *jfunc, tree input)
3949c4a7 751{
310bc633 752 tree restype, res;
3949c4a7 753
7b872d9e 754 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
310bc633 755 return input;
7b872d9e
MJ
756 else if (TREE_CODE (input) == TREE_BINFO)
757 return NULL_TREE;
3949c4a7 758
7b872d9e
MJ
759 gcc_checking_assert (is_gimple_ip_invariant (input));
760 if (TREE_CODE_CLASS (ipa_get_jf_pass_through_operation (jfunc))
310bc633
MJ
761 == tcc_comparison)
762 restype = boolean_type_node;
763 else
764 restype = TREE_TYPE (input);
7b872d9e
MJ
765 res = fold_binary (ipa_get_jf_pass_through_operation (jfunc), restype,
766 input, ipa_get_jf_pass_through_operand (jfunc));
3949c4a7 767
310bc633
MJ
768 if (res && !is_gimple_ip_invariant (res))
769 return NULL_TREE;
3949c4a7 770
310bc633 771 return res;
3949c4a7
MJ
772}
773
310bc633
MJ
774/* Return the result of an ancestor jump function JFUNC on the constant value
775 INPUT. Return NULL_TREE if that cannot be determined. */
3949c4a7 776
310bc633
MJ
777static tree
778ipa_get_jf_ancestor_result (struct ipa_jump_func *jfunc, tree input)
3949c4a7 779{
7b872d9e
MJ
780 if (TREE_CODE (input) == TREE_BINFO)
781 return get_binfo_at_offset (input,
782 ipa_get_jf_ancestor_offset (jfunc),
783 ipa_get_jf_ancestor_type (jfunc));
784 else if (TREE_CODE (input) == ADDR_EXPR)
3949c4a7 785 {
310bc633
MJ
786 tree t = TREE_OPERAND (input, 0);
787 t = build_ref_for_offset (EXPR_LOCATION (t), t,
7b872d9e
MJ
788 ipa_get_jf_ancestor_offset (jfunc),
789 ipa_get_jf_ancestor_type (jfunc), NULL, false);
310bc633 790 return build_fold_addr_expr (t);
3949c4a7
MJ
791 }
792 else
310bc633
MJ
793 return NULL_TREE;
794}
3949c4a7 795
310bc633
MJ
796/* Determine whether JFUNC evaluates to a known value (that is either a
797 constant or a binfo) and if so, return it. Otherwise return NULL. INFO
798 describes the caller node so that pass-through jump functions can be
799 evaluated. */
800
d2d668fb 801tree
310bc633
MJ
802ipa_value_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
803{
804 if (jfunc->type == IPA_JF_CONST)
7b872d9e 805 return ipa_get_jf_constant (jfunc);
310bc633 806 else if (jfunc->type == IPA_JF_KNOWN_TYPE)
e248d83f 807 return ipa_binfo_from_known_type_jfunc (jfunc);
310bc633
MJ
808 else if (jfunc->type == IPA_JF_PASS_THROUGH
809 || jfunc->type == IPA_JF_ANCESTOR)
3949c4a7 810 {
310bc633
MJ
811 tree input;
812 int idx;
3949c4a7 813
310bc633 814 if (jfunc->type == IPA_JF_PASS_THROUGH)
7b872d9e 815 idx = ipa_get_jf_pass_through_formal_id (jfunc);
310bc633 816 else
7b872d9e 817 idx = ipa_get_jf_ancestor_formal_id (jfunc);
3949c4a7 818
310bc633 819 if (info->ipcp_orig_node)
9771b263 820 input = info->known_vals[idx];
310bc633 821 else
3949c4a7 822 {
310bc633
MJ
823 struct ipcp_lattice *lat;
824
825 if (!info->lattices)
3949c4a7 826 {
310bc633
MJ
827 gcc_checking_assert (!flag_ipa_cp);
828 return NULL_TREE;
3949c4a7 829 }
2c9561b5 830 lat = ipa_get_scalar_lat (info, idx);
310bc633
MJ
831 if (!ipa_lat_is_single_const (lat))
832 return NULL_TREE;
833 input = lat->values->value;
834 }
835
836 if (!input)
837 return NULL_TREE;
838
839 if (jfunc->type == IPA_JF_PASS_THROUGH)
7b872d9e 840 return ipa_get_jf_pass_through_result (jfunc, input);
310bc633 841 else
7b872d9e 842 return ipa_get_jf_ancestor_result (jfunc, input);
3949c4a7 843 }
310bc633
MJ
844 else
845 return NULL_TREE;
3949c4a7
MJ
846}
847
3949c4a7 848
310bc633
MJ
849/* If checking is enabled, verify that no lattice is in the TOP state, i.e. not
850 bottom, not containing a variable component and without any known value at
851 the same time. */
3949c4a7 852
310bc633
MJ
853DEBUG_FUNCTION void
854ipcp_verify_propagated_values (void)
518dc859 855{
310bc633 856 struct cgraph_node *node;
ca30a539 857
310bc633 858 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
518dc859 859 {
c43f07af 860 struct ipa_node_params *info = IPA_NODE_REF (node);
310bc633 861 int i, count = ipa_get_param_count (info);
c43f07af 862
310bc633 863 for (i = 0; i < count; i++)
518dc859 864 {
2c9561b5 865 struct ipcp_lattice *lat = ipa_get_scalar_lat (info, i);
c43f07af 866
310bc633
MJ
867 if (!lat->bottom
868 && !lat->contains_variable
869 && lat->values_count == 0)
518dc859 870 {
310bc633 871 if (dump_file)
518dc859 872 {
310bc633
MJ
873 fprintf (dump_file, "\nIPA lattices after constant "
874 "propagation:\n");
875 print_all_lattices (dump_file, true, false);
518dc859 876 }
3949c4a7 877
310bc633 878 gcc_unreachable ();
518dc859
RL
879 }
880 }
881 }
882}
883
310bc633
MJ
884/* Return true iff X and Y should be considered equal values by IPA-CP. */
885
886static bool
887values_equal_for_ipcp_p (tree x, tree y)
888{
889 gcc_checking_assert (x != NULL_TREE && y != NULL_TREE);
890
891 if (x == y)
892 return true;
893
894 if (TREE_CODE (x) == TREE_BINFO || TREE_CODE (y) == TREE_BINFO)
895 return false;
896
897 if (TREE_CODE (x) == ADDR_EXPR
898 && TREE_CODE (y) == ADDR_EXPR
899 && TREE_CODE (TREE_OPERAND (x, 0)) == CONST_DECL
900 && TREE_CODE (TREE_OPERAND (y, 0)) == CONST_DECL)
901 return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x, 0)),
902 DECL_INITIAL (TREE_OPERAND (y, 0)), 0);
903 else
904 return operand_equal_p (x, y, 0);
905}
906
907/* Add a new value source to VAL, marking that a value comes from edge CS and
908 (if the underlying jump function is a pass-through or an ancestor one) from
2c9561b5
MJ
909 a caller value SRC_VAL of a caller parameter described by SRC_INDEX. OFFSET
910 is negative if the source was the scalar value of the parameter itself or
911 the offset within an aggregate. */
310bc633 912
518dc859 913static void
310bc633 914add_value_source (struct ipcp_value *val, struct cgraph_edge *cs,
2c9561b5 915 struct ipcp_value *src_val, int src_idx, HOST_WIDE_INT offset)
518dc859 916{
310bc633 917 struct ipcp_value_source *src;
ca30a539 918
310bc633 919 src = (struct ipcp_value_source *) pool_alloc (ipcp_sources_pool);
2c9561b5 920 src->offset = offset;
310bc633
MJ
921 src->cs = cs;
922 src->val = src_val;
923 src->index = src_idx;
fb3f88cc 924
310bc633
MJ
925 src->next = val->sources;
926 val->sources = src;
927}
928
310bc633 929/* Try to add NEWVAL to LAT, potentially creating a new struct ipcp_value for
2c9561b5
MJ
930 it. CS, SRC_VAL SRC_INDEX and OFFSET are meant for add_value_source and
931 have the same meaning. */
310bc633
MJ
932
933static bool
934add_value_to_lattice (struct ipcp_lattice *lat, tree newval,
935 struct cgraph_edge *cs, struct ipcp_value *src_val,
2c9561b5 936 int src_idx, HOST_WIDE_INT offset)
310bc633
MJ
937{
938 struct ipcp_value *val;
939
940 if (lat->bottom)
941 return false;
942
310bc633
MJ
943 for (val = lat->values; val; val = val->next)
944 if (values_equal_for_ipcp_p (val->value, newval))
945 {
946 if (edge_within_scc (cs))
947 {
948 struct ipcp_value_source *s;
949 for (s = val->sources; s ; s = s->next)
950 if (s->cs == cs)
951 break;
952 if (s)
953 return false;
954 }
955
2c9561b5 956 add_value_source (val, cs, src_val, src_idx, offset);
310bc633
MJ
957 return false;
958 }
959
960 if (lat->values_count == PARAM_VALUE (PARAM_IPA_CP_VALUE_LIST_SIZE))
961 {
962 /* We can only free sources, not the values themselves, because sources
963 of other values in this this SCC might point to them. */
964 for (val = lat->values; val; val = val->next)
965 {
966 while (val->sources)
967 {
968 struct ipcp_value_source *src = val->sources;
969 val->sources = src->next;
970 pool_free (ipcp_sources_pool, src);
971 }
972 }
973
974 lat->values = NULL;
975 return set_lattice_to_bottom (lat);
976 }
977
978 lat->values_count++;
979 val = (struct ipcp_value *) pool_alloc (ipcp_values_pool);
980 memset (val, 0, sizeof (*val));
981
2c9561b5 982 add_value_source (val, cs, src_val, src_idx, offset);
310bc633
MJ
983 val->value = newval;
984 val->next = lat->values;
985 lat->values = val;
986 return true;
987}
fb3f88cc 988
2c9561b5
MJ
989/* Like above but passes a special value of offset to distinguish that the
990 origin is the scalar value of the parameter rather than a part of an
991 aggregate. */
992
993static inline bool
994add_scalar_value_to_lattice (struct ipcp_lattice *lat, tree newval,
995 struct cgraph_edge *cs,
996 struct ipcp_value *src_val, int src_idx)
997{
998 return add_value_to_lattice (lat, newval, cs, src_val, src_idx, -1);
999}
1000
310bc633
MJ
1001/* Propagate values through a pass-through jump function JFUNC associated with
1002 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
1003 is the index of the source parameter. */
1004
1005static bool
1006propagate_vals_accross_pass_through (struct cgraph_edge *cs,
1007 struct ipa_jump_func *jfunc,
1008 struct ipcp_lattice *src_lat,
1009 struct ipcp_lattice *dest_lat,
1010 int src_idx)
1011{
1012 struct ipcp_value *src_val;
1013 bool ret = false;
1014
7b872d9e 1015 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
310bc633 1016 for (src_val = src_lat->values; src_val; src_val = src_val->next)
2c9561b5
MJ
1017 ret |= add_scalar_value_to_lattice (dest_lat, src_val->value, cs,
1018 src_val, src_idx);
310bc633 1019 /* Do not create new values when propagating within an SCC because if there
7b872d9e
MJ
1020 are arithmetic functions with circular dependencies, there is infinite
1021 number of them and we would just make lattices bottom. */
310bc633
MJ
1022 else if (edge_within_scc (cs))
1023 ret = set_lattice_contains_variable (dest_lat);
1024 else
1025 for (src_val = src_lat->values; src_val; src_val = src_val->next)
0818c24c 1026 {
310bc633
MJ
1027 tree cstval = src_val->value;
1028
1029 if (TREE_CODE (cstval) == TREE_BINFO)
1030 {
1031 ret |= set_lattice_contains_variable (dest_lat);
1032 continue;
1033 }
1034 cstval = ipa_get_jf_pass_through_result (jfunc, cstval);
1035
1036 if (cstval)
2c9561b5
MJ
1037 ret |= add_scalar_value_to_lattice (dest_lat, cstval, cs, src_val,
1038 src_idx);
310bc633
MJ
1039 else
1040 ret |= set_lattice_contains_variable (dest_lat);
0818c24c 1041 }
310bc633
MJ
1042
1043 return ret;
1044}
1045
1046/* Propagate values through an ancestor jump function JFUNC associated with
1047 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
1048 is the index of the source parameter. */
1049
1050static bool
1051propagate_vals_accross_ancestor (struct cgraph_edge *cs,
1052 struct ipa_jump_func *jfunc,
1053 struct ipcp_lattice *src_lat,
1054 struct ipcp_lattice *dest_lat,
1055 int src_idx)
1056{
1057 struct ipcp_value *src_val;
1058 bool ret = false;
1059
1060 if (edge_within_scc (cs))
1061 return set_lattice_contains_variable (dest_lat);
1062
1063 for (src_val = src_lat->values; src_val; src_val = src_val->next)
1064 {
7b872d9e 1065 tree t = ipa_get_jf_ancestor_result (jfunc, src_val->value);
310bc633
MJ
1066
1067 if (t)
2c9561b5 1068 ret |= add_scalar_value_to_lattice (dest_lat, t, cs, src_val, src_idx);
310bc633
MJ
1069 else
1070 ret |= set_lattice_contains_variable (dest_lat);
1071 }
1072
1073 return ret;
1074}
1075
2c9561b5
MJ
1076/* Propagate scalar values across jump function JFUNC that is associated with
1077 edge CS and put the values into DEST_LAT. */
310bc633
MJ
1078
1079static bool
2c9561b5
MJ
1080propagate_scalar_accross_jump_function (struct cgraph_edge *cs,
1081 struct ipa_jump_func *jfunc,
1082 struct ipcp_lattice *dest_lat)
310bc633
MJ
1083{
1084 if (dest_lat->bottom)
1085 return false;
1086
1087 if (jfunc->type == IPA_JF_CONST
1088 || jfunc->type == IPA_JF_KNOWN_TYPE)
1089 {
1090 tree val;
1091
1092 if (jfunc->type == IPA_JF_KNOWN_TYPE)
c7573249 1093 {
e248d83f 1094 val = ipa_binfo_from_known_type_jfunc (jfunc);
c7573249
MJ
1095 if (!val)
1096 return set_lattice_contains_variable (dest_lat);
1097 }
310bc633 1098 else
7b872d9e 1099 val = ipa_get_jf_constant (jfunc);
2c9561b5 1100 return add_scalar_value_to_lattice (dest_lat, val, cs, NULL, 0);
310bc633
MJ
1101 }
1102 else if (jfunc->type == IPA_JF_PASS_THROUGH
1103 || jfunc->type == IPA_JF_ANCESTOR)
1104 {
1105 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1106 struct ipcp_lattice *src_lat;
1107 int src_idx;
1108 bool ret;
1109
1110 if (jfunc->type == IPA_JF_PASS_THROUGH)
7b872d9e 1111 src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
310bc633 1112 else
7b872d9e 1113 src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
310bc633 1114
2c9561b5 1115 src_lat = ipa_get_scalar_lat (caller_info, src_idx);
310bc633
MJ
1116 if (src_lat->bottom)
1117 return set_lattice_contains_variable (dest_lat);
1118
1119 /* If we would need to clone the caller and cannot, do not propagate. */
1120 if (!ipcp_versionable_function_p (cs->caller)
1121 && (src_lat->contains_variable
1122 || (src_lat->values_count > 1)))
1123 return set_lattice_contains_variable (dest_lat);
1124
1125 if (jfunc->type == IPA_JF_PASS_THROUGH)
1126 ret = propagate_vals_accross_pass_through (cs, jfunc, src_lat,
1127 dest_lat, src_idx);
1128 else
1129 ret = propagate_vals_accross_ancestor (cs, jfunc, src_lat, dest_lat,
1130 src_idx);
1131
1132 if (src_lat->contains_variable)
1133 ret |= set_lattice_contains_variable (dest_lat);
1134
1135 return ret;
1136 }
1137
1138 /* TODO: We currently do not handle member method pointers in IPA-CP (we only
1139 use it for indirect inlining), we should propagate them too. */
1140 return set_lattice_contains_variable (dest_lat);
1141}
1142
2c9561b5
MJ
1143/* If DEST_PLATS already has aggregate items, check that aggs_by_ref matches
1144 NEW_AGGS_BY_REF and if not, mark all aggs as bottoms and return true (in all
1145 other cases, return false). If there are no aggregate items, set
1146 aggs_by_ref to NEW_AGGS_BY_REF. */
1147
1148static bool
1149set_check_aggs_by_ref (struct ipcp_param_lattices *dest_plats,
1150 bool new_aggs_by_ref)
1151{
1152 if (dest_plats->aggs)
1153 {
1154 if (dest_plats->aggs_by_ref != new_aggs_by_ref)
1155 {
1156 set_agg_lats_to_bottom (dest_plats);
1157 return true;
1158 }
1159 }
1160 else
1161 dest_plats->aggs_by_ref = new_aggs_by_ref;
1162 return false;
1163}
1164
1165/* Walk aggregate lattices in DEST_PLATS from ***AGLAT on, until ***aglat is an
1166 already existing lattice for the given OFFSET and SIZE, marking all skipped
1167 lattices as containing variable and checking for overlaps. If there is no
1168 already existing lattice for the OFFSET and VAL_SIZE, create one, initialize
1169 it with offset, size and contains_variable to PRE_EXISTING, and return true,
1170 unless there are too many already. If there are two many, return false. If
1171 there are overlaps turn whole DEST_PLATS to bottom and return false. If any
1172 skipped lattices were newly marked as containing variable, set *CHANGE to
1173 true. */
1174
1175static bool
1176merge_agg_lats_step (struct ipcp_param_lattices *dest_plats,
1177 HOST_WIDE_INT offset, HOST_WIDE_INT val_size,
1178 struct ipcp_agg_lattice ***aglat,
1179 bool pre_existing, bool *change)
1180{
1181 gcc_checking_assert (offset >= 0);
1182
1183 while (**aglat && (**aglat)->offset < offset)
1184 {
1185 if ((**aglat)->offset + (**aglat)->size > offset)
1186 {
1187 set_agg_lats_to_bottom (dest_plats);
1188 return false;
1189 }
1190 *change |= set_lattice_contains_variable (**aglat);
1191 *aglat = &(**aglat)->next;
1192 }
1193
1194 if (**aglat && (**aglat)->offset == offset)
1195 {
1196 if ((**aglat)->size != val_size
1197 || ((**aglat)->next
1198 && (**aglat)->next->offset < offset + val_size))
1199 {
1200 set_agg_lats_to_bottom (dest_plats);
1201 return false;
1202 }
1203 gcc_checking_assert (!(**aglat)->next
1204 || (**aglat)->next->offset >= offset + val_size);
1205 return true;
1206 }
1207 else
1208 {
1209 struct ipcp_agg_lattice *new_al;
1210
1211 if (**aglat && (**aglat)->offset < offset + val_size)
1212 {
1213 set_agg_lats_to_bottom (dest_plats);
1214 return false;
1215 }
1216 if (dest_plats->aggs_count == PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS))
1217 return false;
1218 dest_plats->aggs_count++;
1219 new_al = (struct ipcp_agg_lattice *) pool_alloc (ipcp_agg_lattice_pool);
1220 memset (new_al, 0, sizeof (*new_al));
1221
1222 new_al->offset = offset;
1223 new_al->size = val_size;
1224 new_al->contains_variable = pre_existing;
1225
1226 new_al->next = **aglat;
1227 **aglat = new_al;
1228 return true;
1229 }
1230}
1231
1232/* Set all AGLAT and all other aggregate lattices reachable by next pointers as
1233 containing an unknown value. */
1234
1235static bool
1236set_chain_of_aglats_contains_variable (struct ipcp_agg_lattice *aglat)
1237{
1238 bool ret = false;
1239 while (aglat)
1240 {
1241 ret |= set_lattice_contains_variable (aglat);
1242 aglat = aglat->next;
1243 }
1244 return ret;
1245}
1246
1247/* Merge existing aggregate lattices in SRC_PLATS to DEST_PLATS, subtracting
1248 DELTA_OFFSET. CS is the call graph edge and SRC_IDX the index of the source
1249 parameter used for lattice value sources. Return true if DEST_PLATS changed
1250 in any way. */
1251
1252static bool
1253merge_aggregate_lattices (struct cgraph_edge *cs,
1254 struct ipcp_param_lattices *dest_plats,
1255 struct ipcp_param_lattices *src_plats,
1256 int src_idx, HOST_WIDE_INT offset_delta)
1257{
1258 bool pre_existing = dest_plats->aggs != NULL;
1259 struct ipcp_agg_lattice **dst_aglat;
1260 bool ret = false;
1261
1262 if (set_check_aggs_by_ref (dest_plats, src_plats->aggs_by_ref))
1263 return true;
1264 if (src_plats->aggs_bottom)
1265 return set_agg_lats_contain_variable (dest_plats);
3e452a28
MJ
1266 if (src_plats->aggs_contain_variable)
1267 ret |= set_agg_lats_contain_variable (dest_plats);
2c9561b5
MJ
1268 dst_aglat = &dest_plats->aggs;
1269
1270 for (struct ipcp_agg_lattice *src_aglat = src_plats->aggs;
1271 src_aglat;
1272 src_aglat = src_aglat->next)
1273 {
1274 HOST_WIDE_INT new_offset = src_aglat->offset - offset_delta;
1275
1276 if (new_offset < 0)
1277 continue;
1278 if (merge_agg_lats_step (dest_plats, new_offset, src_aglat->size,
1279 &dst_aglat, pre_existing, &ret))
1280 {
1281 struct ipcp_agg_lattice *new_al = *dst_aglat;
1282
1283 dst_aglat = &(*dst_aglat)->next;
1284 if (src_aglat->bottom)
1285 {
1286 ret |= set_lattice_contains_variable (new_al);
1287 continue;
1288 }
1289 if (src_aglat->contains_variable)
1290 ret |= set_lattice_contains_variable (new_al);
1291 for (struct ipcp_value *val = src_aglat->values;
1292 val;
1293 val = val->next)
1294 ret |= add_value_to_lattice (new_al, val->value, cs, val, src_idx,
1295 src_aglat->offset);
1296 }
1297 else if (dest_plats->aggs_bottom)
1298 return true;
1299 }
1300 ret |= set_chain_of_aglats_contains_variable (*dst_aglat);
1301 return ret;
1302}
1303
324e93f1
MJ
1304/* Determine whether there is anything to propagate FROM SRC_PLATS through a
1305 pass-through JFUNC and if so, whether it has conform and conforms to the
1306 rules about propagating values passed by reference. */
1307
1308static bool
1309agg_pass_through_permissible_p (struct ipcp_param_lattices *src_plats,
1310 struct ipa_jump_func *jfunc)
1311{
1312 return src_plats->aggs
1313 && (!src_plats->aggs_by_ref
1314 || ipa_get_jf_pass_through_agg_preserved (jfunc));
1315}
1316
2c9561b5
MJ
1317/* Propagate scalar values across jump function JFUNC that is associated with
1318 edge CS and put the values into DEST_LAT. */
1319
1320static bool
1321propagate_aggs_accross_jump_function (struct cgraph_edge *cs,
1322 struct ipa_jump_func *jfunc,
1323 struct ipcp_param_lattices *dest_plats)
1324{
1325 bool ret = false;
1326
1327 if (dest_plats->aggs_bottom)
1328 return false;
1329
1330 if (jfunc->type == IPA_JF_PASS_THROUGH
1331 && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
1332 {
1333 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1334 int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
1335 struct ipcp_param_lattices *src_plats;
1336
1337 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
324e93f1 1338 if (agg_pass_through_permissible_p (src_plats, jfunc))
2c9561b5
MJ
1339 {
1340 /* Currently we do not produce clobber aggregate jump
1341 functions, replace with merging when we do. */
1342 gcc_assert (!jfunc->agg.items);
1343 ret |= merge_aggregate_lattices (cs, dest_plats, src_plats,
1344 src_idx, 0);
1345 }
1346 else
1347 ret |= set_agg_lats_contain_variable (dest_plats);
1348 }
1349 else if (jfunc->type == IPA_JF_ANCESTOR
1350 && ipa_get_jf_ancestor_agg_preserved (jfunc))
1351 {
1352 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1353 int src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
1354 struct ipcp_param_lattices *src_plats;
1355
1356 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
1357 if (src_plats->aggs && src_plats->aggs_by_ref)
1358 {
1359 /* Currently we do not produce clobber aggregate jump
1360 functions, replace with merging when we do. */
1361 gcc_assert (!jfunc->agg.items);
1362 ret |= merge_aggregate_lattices (cs, dest_plats, src_plats, src_idx,
1363 ipa_get_jf_ancestor_offset (jfunc));
1364 }
1365 else if (!src_plats->aggs_by_ref)
1366 ret |= set_agg_lats_to_bottom (dest_plats);
1367 else
1368 ret |= set_agg_lats_contain_variable (dest_plats);
1369 }
1370 else if (jfunc->agg.items)
1371 {
1372 bool pre_existing = dest_plats->aggs != NULL;
1373 struct ipcp_agg_lattice **aglat = &dest_plats->aggs;
1374 struct ipa_agg_jf_item *item;
1375 int i;
1376
1377 if (set_check_aggs_by_ref (dest_plats, jfunc->agg.by_ref))
1378 return true;
1379
9771b263 1380 FOR_EACH_VEC_ELT (*jfunc->agg.items, i, item)
2c9561b5
MJ
1381 {
1382 HOST_WIDE_INT val_size;
1383
1384 if (item->offset < 0)
1385 continue;
1386 gcc_checking_assert (is_gimple_ip_invariant (item->value));
1387 val_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (item->value)), 1);
1388
1389 if (merge_agg_lats_step (dest_plats, item->offset, val_size,
1390 &aglat, pre_existing, &ret))
1391 {
1392 ret |= add_value_to_lattice (*aglat, item->value, cs, NULL, 0, 0);
1393 aglat = &(*aglat)->next;
1394 }
1395 else if (dest_plats->aggs_bottom)
1396 return true;
1397 }
1398
1399 ret |= set_chain_of_aglats_contains_variable (*aglat);
1400 }
1401 else
1402 ret |= set_agg_lats_contain_variable (dest_plats);
1403
1404 return ret;
1405}
1406
310bc633
MJ
1407/* Propagate constants from the caller to the callee of CS. INFO describes the
1408 caller. */
1409
1410static bool
1411propagate_constants_accross_call (struct cgraph_edge *cs)
1412{
1413 struct ipa_node_params *callee_info;
1414 enum availability availability;
1415 struct cgraph_node *callee, *alias_or_thunk;
1416 struct ipa_edge_args *args;
1417 bool ret = false;
d7da5cc8 1418 int i, args_count, parms_count;
310bc633
MJ
1419
1420 callee = cgraph_function_node (cs->callee, &availability);
e70670cf 1421 if (!callee->symbol.definition)
310bc633
MJ
1422 return false;
1423 gcc_checking_assert (cgraph_function_with_gimple_body_p (callee));
1424 callee_info = IPA_NODE_REF (callee);
310bc633
MJ
1425
1426 args = IPA_EDGE_REF (cs);
d7da5cc8
MJ
1427 args_count = ipa_get_cs_argument_count (args);
1428 parms_count = ipa_get_param_count (callee_info);
310bc633
MJ
1429
1430 /* If this call goes through a thunk we must not propagate to the first (0th)
1431 parameter. However, we might need to uncover a thunk from below a series
1432 of aliases first. */
1433 alias_or_thunk = cs->callee;
e70670cf
JH
1434 while (alias_or_thunk->symbol.alias)
1435 alias_or_thunk = cgraph_alias_target (alias_or_thunk);
310bc633
MJ
1436 if (alias_or_thunk->thunk.thunk_p)
1437 {
2c9561b5
MJ
1438 ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info,
1439 0));
310bc633
MJ
1440 i = 1;
1441 }
1442 else
1443 i = 0;
1444
d7da5cc8 1445 for (; (i < args_count) && (i < parms_count); i++)
310bc633
MJ
1446 {
1447 struct ipa_jump_func *jump_func = ipa_get_ith_jump_func (args, i);
2c9561b5 1448 struct ipcp_param_lattices *dest_plats;
310bc633 1449
2c9561b5 1450 dest_plats = ipa_get_parm_lattices (callee_info, i);
310bc633 1451 if (availability == AVAIL_OVERWRITABLE)
2c9561b5 1452 ret |= set_all_contains_variable (dest_plats);
310bc633 1453 else
2c9561b5
MJ
1454 {
1455 ret |= propagate_scalar_accross_jump_function (cs, jump_func,
1456 &dest_plats->itself);
1457 ret |= propagate_aggs_accross_jump_function (cs, jump_func,
1458 dest_plats);
1459 }
310bc633 1460 }
d7da5cc8 1461 for (; i < parms_count; i++)
2c9561b5 1462 ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info, i));
d7da5cc8 1463
310bc633
MJ
1464 return ret;
1465}
1466
1467/* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
162712de
MJ
1468 (which can contain both constants and binfos), KNOWN_BINFOS, KNOWN_AGGS or
1469 AGG_REPS return the destination. The latter three can be NULL. If AGG_REPS
1470 is not NULL, KNOWN_AGGS is ignored. */
310bc633 1471
162712de
MJ
1472static tree
1473ipa_get_indirect_edge_target_1 (struct cgraph_edge *ie,
1474 vec<tree> known_vals,
1475 vec<tree> known_binfos,
1476 vec<ipa_agg_jump_function_p> known_aggs,
1477 struct ipa_agg_replacement_value *agg_reps)
310bc633
MJ
1478{
1479 int param_index = ie->indirect_info->param_index;
1480 HOST_WIDE_INT token, anc_offset;
1481 tree otr_type;
1482 tree t;
1483
97756c0e
MJ
1484 if (param_index == -1
1485 || known_vals.length () <= (unsigned int) param_index)
310bc633
MJ
1486 return NULL_TREE;
1487
1488 if (!ie->indirect_info->polymorphic)
1489 {
8810cc52
MJ
1490 tree t;
1491
1492 if (ie->indirect_info->agg_contents)
1493 {
162712de
MJ
1494 if (agg_reps)
1495 {
1496 t = NULL;
1497 while (agg_reps)
1498 {
1499 if (agg_reps->index == param_index
7b920a9a
MJ
1500 && agg_reps->offset == ie->indirect_info->offset
1501 && agg_reps->by_ref == ie->indirect_info->by_ref)
162712de
MJ
1502 {
1503 t = agg_reps->value;
1504 break;
1505 }
1506 agg_reps = agg_reps->next;
1507 }
1508 }
1509 else if (known_aggs.length () > (unsigned int) param_index)
8810cc52
MJ
1510 {
1511 struct ipa_agg_jump_function *agg;
9771b263 1512 agg = known_aggs[param_index];
8810cc52
MJ
1513 t = ipa_find_agg_cst_for_param (agg, ie->indirect_info->offset,
1514 ie->indirect_info->by_ref);
1515 }
1516 else
1517 t = NULL;
1518 }
1519 else
97756c0e 1520 t = known_vals[param_index];
8810cc52 1521
310bc633
MJ
1522 if (t &&
1523 TREE_CODE (t) == ADDR_EXPR
1524 && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL)
81fa35bd 1525 return TREE_OPERAND (t, 0);
310bc633
MJ
1526 else
1527 return NULL_TREE;
1528 }
1529
8810cc52 1530 gcc_assert (!ie->indirect_info->agg_contents);
310bc633 1531 token = ie->indirect_info->otr_token;
8b7773a4 1532 anc_offset = ie->indirect_info->offset;
310bc633
MJ
1533 otr_type = ie->indirect_info->otr_type;
1534
9771b263
DN
1535 t = known_vals[param_index];
1536 if (!t && known_binfos.length () > (unsigned int) param_index)
1537 t = known_binfos[param_index];
310bc633
MJ
1538 if (!t)
1539 return NULL_TREE;
1540
1541 if (TREE_CODE (t) != TREE_BINFO)
1542 {
1543 tree binfo;
1544 binfo = gimple_extract_devirt_binfo_from_cst (t);
1545 if (!binfo)
1546 return NULL_TREE;
1547 binfo = get_binfo_at_offset (binfo, anc_offset, otr_type);
1548 if (!binfo)
1549 return NULL_TREE;
81fa35bd 1550 return gimple_get_virt_method_for_binfo (token, binfo);
310bc633
MJ
1551 }
1552 else
1553 {
1554 tree binfo;
1555
1556 binfo = get_binfo_at_offset (t, anc_offset, otr_type);
1557 if (!binfo)
1558 return NULL_TREE;
81fa35bd 1559 return gimple_get_virt_method_for_binfo (token, binfo);
310bc633
MJ
1560 }
1561}
1562
162712de
MJ
1563
1564/* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
1565 (which can contain both constants and binfos), KNOWN_BINFOS (which can be
1566 NULL) or KNOWN_AGGS (which also can be NULL) return the destination. */
1567
1568tree
1569ipa_get_indirect_edge_target (struct cgraph_edge *ie,
1570 vec<tree> known_vals,
1571 vec<tree> known_binfos,
1572 vec<ipa_agg_jump_function_p> known_aggs)
1573{
1574 return ipa_get_indirect_edge_target_1 (ie, known_vals, known_binfos,
1575 known_aggs, NULL);
1576}
1577
310bc633
MJ
1578/* Calculate devirtualization time bonus for NODE, assuming we know KNOWN_CSTS
1579 and KNOWN_BINFOS. */
1580
1581static int
1582devirtualization_time_bonus (struct cgraph_node *node,
9771b263 1583 vec<tree> known_csts,
162712de
MJ
1584 vec<tree> known_binfos,
1585 vec<ipa_agg_jump_function_p> known_aggs)
310bc633
MJ
1586{
1587 struct cgraph_edge *ie;
1588 int res = 0;
1589
1590 for (ie = node->indirect_calls; ie; ie = ie->next_callee)
1591 {
1592 struct cgraph_node *callee;
1593 struct inline_summary *isummary;
81fa35bd 1594 tree target;
310bc633 1595
8810cc52 1596 target = ipa_get_indirect_edge_target (ie, known_csts, known_binfos,
162712de 1597 known_aggs);
310bc633
MJ
1598 if (!target)
1599 continue;
1600
1601 /* Only bare minimum benefit for clearly un-inlineable targets. */
1602 res += 1;
1603 callee = cgraph_get_node (target);
e70670cf 1604 if (!callee || !callee->symbol.definition)
310bc633
MJ
1605 continue;
1606 isummary = inline_summary (callee);
1607 if (!isummary->inlinable)
1608 continue;
1609
1610 /* FIXME: The values below need re-considering and perhaps also
1611 integrating into the cost metrics, at lest in some very basic way. */
1612 if (isummary->size <= MAX_INLINE_INSNS_AUTO / 4)
1613 res += 31;
1614 else if (isummary->size <= MAX_INLINE_INSNS_AUTO / 2)
1615 res += 15;
1616 else if (isummary->size <= MAX_INLINE_INSNS_AUTO
960bfb69 1617 || DECL_DECLARED_INLINE_P (callee->symbol.decl))
310bc633
MJ
1618 res += 7;
1619 }
1620
1621 return res;
1622}
1623
2c9561b5
MJ
1624/* Return time bonus incurred because of HINTS. */
1625
1626static int
1627hint_time_bonus (inline_hints hints)
1628{
19321415 1629 int result = 0;
2c9561b5 1630 if (hints & (INLINE_HINT_loop_iterations | INLINE_HINT_loop_stride))
19321415
MJ
1631 result += PARAM_VALUE (PARAM_IPA_CP_LOOP_HINT_BONUS);
1632 if (hints & INLINE_HINT_array_index)
1633 result += PARAM_VALUE (PARAM_IPA_CP_ARRAY_INDEX_HINT_BONUS);
1634 return result;
2c9561b5
MJ
1635}
1636
310bc633
MJ
1637/* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT
1638 and SIZE_COST and with the sum of frequencies of incoming edges to the
1639 potential new clone in FREQUENCIES. */
1640
1641static bool
1642good_cloning_opportunity_p (struct cgraph_node *node, int time_benefit,
1643 int freq_sum, gcov_type count_sum, int size_cost)
1644{
1645 if (time_benefit == 0
1646 || !flag_ipa_cp_clone
960bfb69 1647 || !optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->symbol.decl)))
310bc633
MJ
1648 return false;
1649
df0227c4 1650 gcc_assert (size_cost > 0);
310bc633 1651
310bc633
MJ
1652 if (max_count)
1653 {
df0227c4
MJ
1654 int factor = (count_sum * 1000) / max_count;
1655 HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * factor)
1656 / size_cost);
310bc633
MJ
1657
1658 if (dump_file && (dump_flags & TDF_DETAILS))
1659 fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
1660 "size: %i, count_sum: " HOST_WIDE_INT_PRINT_DEC
df0227c4
MJ
1661 ") -> evaluation: " HOST_WIDEST_INT_PRINT_DEC
1662 ", threshold: %i\n",
310bc633 1663 time_benefit, size_cost, (HOST_WIDE_INT) count_sum,
7a92038b 1664 evaluation, PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD));
310bc633
MJ
1665
1666 return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
1667 }
1668 else
1669 {
df0227c4
MJ
1670 HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * freq_sum)
1671 / size_cost);
310bc633
MJ
1672
1673 if (dump_file && (dump_flags & TDF_DETAILS))
1674 fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
df0227c4
MJ
1675 "size: %i, freq_sum: %i) -> evaluation: "
1676 HOST_WIDEST_INT_PRINT_DEC ", threshold: %i\n",
310bc633 1677 time_benefit, size_cost, freq_sum, evaluation,
7a92038b 1678 PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD));
310bc633
MJ
1679
1680 return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
1681 }
1682}
1683
2c9561b5
MJ
1684/* Return all context independent values from aggregate lattices in PLATS in a
1685 vector. Return NULL if there are none. */
1686
9771b263 1687static vec<ipa_agg_jf_item_t, va_gc> *
2c9561b5
MJ
1688context_independent_aggregate_values (struct ipcp_param_lattices *plats)
1689{
9771b263 1690 vec<ipa_agg_jf_item_t, va_gc> *res = NULL;
2c9561b5
MJ
1691
1692 if (plats->aggs_bottom
1693 || plats->aggs_contain_variable
1694 || plats->aggs_count == 0)
1695 return NULL;
1696
1697 for (struct ipcp_agg_lattice *aglat = plats->aggs;
1698 aglat;
1699 aglat = aglat->next)
1700 if (ipa_lat_is_single_const (aglat))
1701 {
1702 struct ipa_agg_jf_item item;
1703 item.offset = aglat->offset;
1704 item.value = aglat->values->value;
9771b263 1705 vec_safe_push (res, item);
2c9561b5
MJ
1706 }
1707 return res;
1708}
310bc633 1709
2c9561b5
MJ
1710/* Allocate KNOWN_CSTS, KNOWN_BINFOS and, if non-NULL, KNOWN_AGGS and populate
1711 them with values of parameters that are known independent of the context.
1712 INFO describes the function. If REMOVABLE_PARAMS_COST is non-NULL, the
1713 movement cost of all removable parameters will be stored in it. */
310bc633
MJ
1714
1715static bool
1716gather_context_independent_values (struct ipa_node_params *info,
9771b263
DN
1717 vec<tree> *known_csts,
1718 vec<tree> *known_binfos,
1719 vec<ipa_agg_jump_function_t> *known_aggs,
2c9561b5 1720 int *removable_params_cost)
310bc633
MJ
1721{
1722 int i, count = ipa_get_param_count (info);
1723 bool ret = false;
1724
9771b263
DN
1725 known_csts->create (0);
1726 known_binfos->create (0);
1727 known_csts->safe_grow_cleared (count);
1728 known_binfos->safe_grow_cleared (count);
2c9561b5
MJ
1729 if (known_aggs)
1730 {
9771b263
DN
1731 known_aggs->create (0);
1732 known_aggs->safe_grow_cleared (count);
2c9561b5 1733 }
310bc633
MJ
1734
1735 if (removable_params_cost)
1736 *removable_params_cost = 0;
1737
1738 for (i = 0; i < count ; i++)
1739 {
2c9561b5
MJ
1740 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
1741 struct ipcp_lattice *lat = &plats->itself;
310bc633
MJ
1742
1743 if (ipa_lat_is_single_const (lat))
1744 {
1745 struct ipcp_value *val = lat->values;
1746 if (TREE_CODE (val->value) != TREE_BINFO)
1747 {
9771b263 1748 (*known_csts)[i] = val->value;
310bc633
MJ
1749 if (removable_params_cost)
1750 *removable_params_cost
1751 += estimate_move_cost (TREE_TYPE (val->value));
1752 ret = true;
1753 }
2c9561b5 1754 else if (plats->virt_call)
310bc633 1755 {
9771b263 1756 (*known_binfos)[i] = val->value;
310bc633
MJ
1757 ret = true;
1758 }
1759 else if (removable_params_cost
1760 && !ipa_is_param_used (info, i))
1761 *removable_params_cost
1762 += estimate_move_cost (TREE_TYPE (ipa_get_param (info, i)));
1763 }
1764 else if (removable_params_cost
1765 && !ipa_is_param_used (info, i))
1766 *removable_params_cost
2c9561b5
MJ
1767 += estimate_move_cost (TREE_TYPE (ipa_get_param (info, i)));
1768
1769 if (known_aggs)
1770 {
9771b263 1771 vec<ipa_agg_jf_item_t, va_gc> *agg_items;
2c9561b5
MJ
1772 struct ipa_agg_jump_function *ajf;
1773
1774 agg_items = context_independent_aggregate_values (plats);
9771b263 1775 ajf = &(*known_aggs)[i];
2c9561b5
MJ
1776 ajf->items = agg_items;
1777 ajf->by_ref = plats->aggs_by_ref;
1778 ret |= agg_items != NULL;
1779 }
310bc633
MJ
1780 }
1781
1782 return ret;
1783}
1784
2c9561b5
MJ
1785/* The current interface in ipa-inline-analysis requires a pointer vector.
1786 Create it.
1787
1788 FIXME: That interface should be re-worked, this is slightly silly. Still,
1789 I'd like to discuss how to change it first and this demonstrates the
1790 issue. */
1791
9771b263
DN
1792static vec<ipa_agg_jump_function_p>
1793agg_jmp_p_vec_for_t_vec (vec<ipa_agg_jump_function_t> known_aggs)
2c9561b5 1794{
9771b263 1795 vec<ipa_agg_jump_function_p> ret;
2c9561b5
MJ
1796 struct ipa_agg_jump_function *ajf;
1797 int i;
1798
9771b263
DN
1799 ret.create (known_aggs.length ());
1800 FOR_EACH_VEC_ELT (known_aggs, i, ajf)
1801 ret.quick_push (ajf);
2c9561b5
MJ
1802 return ret;
1803}
1804
310bc633
MJ
1805/* Iterate over known values of parameters of NODE and estimate the local
1806 effects in terms of time and size they have. */
1807
1808static void
1809estimate_local_effects (struct cgraph_node *node)
1810{
1811 struct ipa_node_params *info = IPA_NODE_REF (node);
1812 int i, count = ipa_get_param_count (info);
9771b263
DN
1813 vec<tree> known_csts, known_binfos;
1814 vec<ipa_agg_jump_function_t> known_aggs;
1815 vec<ipa_agg_jump_function_p> known_aggs_ptrs;
310bc633
MJ
1816 bool always_const;
1817 int base_time = inline_summary (node)->time;
1818 int removable_params_cost;
1819
1820 if (!count || !ipcp_versionable_function_p (node))
1821 return;
1822
ca30a539 1823 if (dump_file && (dump_flags & TDF_DETAILS))
310bc633 1824 fprintf (dump_file, "\nEstimating effects for %s/%i, base_time: %i.\n",
9de04252 1825 cgraph_node_name (node), node->symbol.order, base_time);
310bc633
MJ
1826
1827 always_const = gather_context_independent_values (info, &known_csts,
2c9561b5 1828 &known_binfos, &known_aggs,
310bc633 1829 &removable_params_cost);
2c9561b5 1830 known_aggs_ptrs = agg_jmp_p_vec_for_t_vec (known_aggs);
310bc633 1831 if (always_const)
ca30a539 1832 {
310bc633 1833 struct caller_statistics stats;
2c9561b5 1834 inline_hints hints;
310bc633
MJ
1835 int time, size;
1836
1837 init_caller_stats (&stats);
1838 cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
d2d668fb 1839 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
2c9561b5 1840 known_aggs_ptrs, &size, &time, &hints);
162712de
MJ
1841 time -= devirtualization_time_bonus (node, known_csts, known_binfos,
1842 known_aggs_ptrs);
2c9561b5 1843 time -= hint_time_bonus (hints);
310bc633
MJ
1844 time -= removable_params_cost;
1845 size -= stats.n_calls * removable_params_cost;
1846
1847 if (dump_file)
1848 fprintf (dump_file, " - context independent values, size: %i, "
1849 "time_benefit: %i\n", size, base_time - time);
1850
1851 if (size <= 0
1852 || cgraph_will_be_removed_from_program_if_no_direct_calls (node))
1853 {
eb20b778 1854 info->do_clone_for_all_contexts = true;
310bc633
MJ
1855 base_time = time;
1856
1857 if (dump_file)
1858 fprintf (dump_file, " Decided to specialize for all "
1859 "known contexts, code not going to grow.\n");
1860 }
1861 else if (good_cloning_opportunity_p (node, base_time - time,
1862 stats.freq_sum, stats.count_sum,
1863 size))
1864 {
1865 if (size + overall_size <= max_new_size)
1866 {
eb20b778 1867 info->do_clone_for_all_contexts = true;
310bc633
MJ
1868 base_time = time;
1869 overall_size += size;
1870
1871 if (dump_file)
1872 fprintf (dump_file, " Decided to specialize for all "
1873 "known contexts, growth deemed beneficial.\n");
1874 }
1875 else if (dump_file && (dump_flags & TDF_DETAILS))
1876 fprintf (dump_file, " Not cloning for all contexts because "
1877 "max_new_size would be reached with %li.\n",
1878 size + overall_size);
1879 }
ca30a539
JH
1880 }
1881
310bc633 1882 for (i = 0; i < count ; i++)
ca30a539 1883 {
2c9561b5
MJ
1884 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
1885 struct ipcp_lattice *lat = &plats->itself;
310bc633
MJ
1886 struct ipcp_value *val;
1887 int emc;
1888
1889 if (lat->bottom
1890 || !lat->values
9771b263
DN
1891 || known_csts[i]
1892 || known_binfos[i])
310bc633
MJ
1893 continue;
1894
1895 for (val = lat->values; val; val = val->next)
1896 {
1897 int time, size, time_benefit;
2c9561b5 1898 inline_hints hints;
310bc633
MJ
1899
1900 if (TREE_CODE (val->value) != TREE_BINFO)
1901 {
9771b263
DN
1902 known_csts[i] = val->value;
1903 known_binfos[i] = NULL_TREE;
310bc633
MJ
1904 emc = estimate_move_cost (TREE_TYPE (val->value));
1905 }
2c9561b5 1906 else if (plats->virt_call)
310bc633 1907 {
9771b263
DN
1908 known_csts[i] = NULL_TREE;
1909 known_binfos[i] = val->value;
310bc633
MJ
1910 emc = 0;
1911 }
1912 else
1913 continue;
1914
d2d668fb 1915 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
2c9561b5
MJ
1916 known_aggs_ptrs, &size, &time,
1917 &hints);
310bc633 1918 time_benefit = base_time - time
162712de
MJ
1919 + devirtualization_time_bonus (node, known_csts, known_binfos,
1920 known_aggs_ptrs)
2c9561b5 1921 + hint_time_bonus (hints)
310bc633
MJ
1922 + removable_params_cost + emc;
1923
0318fc77
MJ
1924 gcc_checking_assert (size >=0);
1925 /* The inliner-heuristics based estimates may think that in certain
1926 contexts some functions do not have any size at all but we want
1927 all specializations to have at least a tiny cost, not least not to
1928 divide by zero. */
1929 if (size == 0)
1930 size = 1;
1931
310bc633
MJ
1932 if (dump_file && (dump_flags & TDF_DETAILS))
1933 {
1934 fprintf (dump_file, " - estimates for value ");
1935 print_ipcp_constant_value (dump_file, val->value);
1936 fprintf (dump_file, " for parameter ");
1937 print_generic_expr (dump_file, ipa_get_param (info, i), 0);
1938 fprintf (dump_file, ": time_benefit: %i, size: %i\n",
1939 time_benefit, size);
1940 }
1941
1942 val->local_time_benefit = time_benefit;
1943 val->local_size_cost = size;
1944 }
9771b263
DN
1945 known_binfos[i] = NULL_TREE;
1946 known_csts[i] = NULL_TREE;
2c9561b5
MJ
1947 }
1948
1949 for (i = 0; i < count ; i++)
1950 {
1951 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
1952 struct ipa_agg_jump_function *ajf;
1953 struct ipcp_agg_lattice *aglat;
1954
1955 if (plats->aggs_bottom || !plats->aggs)
1956 continue;
1957
9771b263 1958 ajf = &known_aggs[i];
2c9561b5
MJ
1959 for (aglat = plats->aggs; aglat; aglat = aglat->next)
1960 {
1961 struct ipcp_value *val;
1962 if (aglat->bottom || !aglat->values
1963 /* If the following is true, the one value is in known_aggs. */
1964 || (!plats->aggs_contain_variable
1965 && ipa_lat_is_single_const (aglat)))
1966 continue;
1967
1968 for (val = aglat->values; val; val = val->next)
1969 {
1970 int time, size, time_benefit;
1971 struct ipa_agg_jf_item item;
1972 inline_hints hints;
1973
1974 item.offset = aglat->offset;
1975 item.value = val->value;
9771b263 1976 vec_safe_push (ajf->items, item);
2c9561b5
MJ
1977
1978 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
1979 known_aggs_ptrs, &size, &time,
1980 &hints);
1981 time_benefit = base_time - time
162712de
MJ
1982 + devirtualization_time_bonus (node, known_csts, known_binfos,
1983 known_aggs_ptrs)
2c9561b5
MJ
1984 + hint_time_bonus (hints);
1985 gcc_checking_assert (size >=0);
1986 if (size == 0)
1987 size = 1;
1988
1989 if (dump_file && (dump_flags & TDF_DETAILS))
1990 {
1991 fprintf (dump_file, " - estimates for value ");
1992 print_ipcp_constant_value (dump_file, val->value);
1993 fprintf (dump_file, " for parameter ");
1994 print_generic_expr (dump_file, ipa_get_param (info, i), 0);
1995 fprintf (dump_file, "[%soffset: " HOST_WIDE_INT_PRINT_DEC
1996 "]: time_benefit: %i, size: %i\n",
1997 plats->aggs_by_ref ? "ref " : "",
1998 aglat->offset, time_benefit, size);
1999 }
2000
2001 val->local_time_benefit = time_benefit;
2002 val->local_size_cost = size;
9771b263 2003 ajf->items->pop ();
2c9561b5
MJ
2004 }
2005 }
2006 }
2007
2008 for (i = 0; i < count ; i++)
9771b263 2009 vec_free (known_aggs[i].items);
310bc633 2010
9771b263
DN
2011 known_csts.release ();
2012 known_binfos.release ();
2013 known_aggs.release ();
2014 known_aggs_ptrs.release ();
310bc633
MJ
2015}
2016
2017
2018/* Add value CUR_VAL and all yet-unsorted values it is dependent on to the
2019 topological sort of values. */
2020
2021static void
2022add_val_to_toposort (struct ipcp_value *cur_val)
2023{
2024 static int dfs_counter = 0;
2025 static struct ipcp_value *stack;
2026 struct ipcp_value_source *src;
2027
2028 if (cur_val->dfs)
2029 return;
2030
2031 dfs_counter++;
2032 cur_val->dfs = dfs_counter;
2033 cur_val->low_link = dfs_counter;
2034
2035 cur_val->topo_next = stack;
2036 stack = cur_val;
2037 cur_val->on_stack = true;
2038
2039 for (src = cur_val->sources; src; src = src->next)
2040 if (src->val)
2041 {
2042 if (src->val->dfs == 0)
2043 {
2044 add_val_to_toposort (src->val);
2045 if (src->val->low_link < cur_val->low_link)
2046 cur_val->low_link = src->val->low_link;
2047 }
2048 else if (src->val->on_stack
2049 && src->val->dfs < cur_val->low_link)
2050 cur_val->low_link = src->val->dfs;
2051 }
2052
2053 if (cur_val->dfs == cur_val->low_link)
ca30a539 2054 {
310bc633
MJ
2055 struct ipcp_value *v, *scc_list = NULL;
2056
2057 do
2058 {
2059 v = stack;
2060 stack = v->topo_next;
2061 v->on_stack = false;
2062
2063 v->scc_next = scc_list;
2064 scc_list = v;
2065 }
2066 while (v != cur_val);
2067
2068 cur_val->topo_next = values_topo;
2069 values_topo = cur_val;
ca30a539 2070 }
518dc859
RL
2071}
2072
310bc633
MJ
2073/* Add all values in lattices associated with NODE to the topological sort if
2074 they are not there yet. */
2075
2076static void
2077add_all_node_vals_to_toposort (struct cgraph_node *node)
518dc859 2078{
310bc633
MJ
2079 struct ipa_node_params *info = IPA_NODE_REF (node);
2080 int i, count = ipa_get_param_count (info);
2081
2082 for (i = 0; i < count ; i++)
2083 {
2c9561b5
MJ
2084 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
2085 struct ipcp_lattice *lat = &plats->itself;
2086 struct ipcp_agg_lattice *aglat;
310bc633
MJ
2087 struct ipcp_value *val;
2088
2c9561b5
MJ
2089 if (!lat->bottom)
2090 for (val = lat->values; val; val = val->next)
2091 add_val_to_toposort (val);
2092
2093 if (!plats->aggs_bottom)
2094 for (aglat = plats->aggs; aglat; aglat = aglat->next)
2095 if (!aglat->bottom)
2096 for (val = aglat->values; val; val = val->next)
2097 add_val_to_toposort (val);
310bc633 2098 }
518dc859
RL
2099}
2100
310bc633
MJ
2101/* One pass of constants propagation along the call graph edges, from callers
2102 to callees (requires topological ordering in TOPO), iterate over strongly
2103 connected components. */
2104
518dc859 2105static void
310bc633 2106propagate_constants_topo (struct topo_info *topo)
518dc859 2107{
310bc633 2108 int i;
518dc859 2109
310bc633 2110 for (i = topo->nnodes - 1; i >= 0; i--)
518dc859 2111 {
310bc633
MJ
2112 struct cgraph_node *v, *node = topo->order[i];
2113 struct ipa_dfs_info *node_dfs_info;
2114
2115 if (!cgraph_function_with_gimple_body_p (node))
0eae6bab 2116 continue;
310bc633 2117
960bfb69 2118 node_dfs_info = (struct ipa_dfs_info *) node->symbol.aux;
310bc633
MJ
2119 /* First, iteratively propagate within the strongly connected component
2120 until all lattices stabilize. */
2121 v = node_dfs_info->next_cycle;
2122 while (v)
2123 {
2124 push_node_to_stack (topo, v);
960bfb69 2125 v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle;
310bc633
MJ
2126 }
2127
2128 v = node;
2129 while (v)
2130 {
2131 struct cgraph_edge *cs;
2132
2133 for (cs = v->callees; cs; cs = cs->next_callee)
2134 if (edge_within_scc (cs)
2135 && propagate_constants_accross_call (cs))
2136 push_node_to_stack (topo, cs->callee);
2137 v = pop_node_from_stack (topo);
2138 }
2139
2140 /* Afterwards, propagate along edges leading out of the SCC, calculates
2141 the local effects of the discovered constants and all valid values to
2142 their topological sort. */
2143 v = node;
2144 while (v)
2145 {
2146 struct cgraph_edge *cs;
2147
2148 estimate_local_effects (v);
2149 add_all_node_vals_to_toposort (v);
2150 for (cs = v->callees; cs; cs = cs->next_callee)
2151 if (!edge_within_scc (cs))
2152 propagate_constants_accross_call (cs);
2153
960bfb69 2154 v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle;
310bc633 2155 }
518dc859
RL
2156 }
2157}
2158
df0227c4
MJ
2159
2160/* Return the sum of A and B if none of them is bigger than INT_MAX/2, return
2161 the bigger one if otherwise. */
2162
2163static int
2164safe_add (int a, int b)
2165{
2166 if (a > INT_MAX/2 || b > INT_MAX/2)
2167 return a > b ? a : b;
2168 else
2169 return a + b;
2170}
2171
2172
310bc633 2173/* Propagate the estimated effects of individual values along the topological
073a8998 2174 from the dependent values to those they depend on. */
310bc633 2175
518dc859 2176static void
310bc633 2177propagate_effects (void)
518dc859 2178{
310bc633 2179 struct ipcp_value *base;
518dc859 2180
310bc633 2181 for (base = values_topo; base; base = base->topo_next)
518dc859 2182 {
310bc633
MJ
2183 struct ipcp_value_source *src;
2184 struct ipcp_value *val;
2185 int time = 0, size = 0;
2186
2187 for (val = base; val; val = val->scc_next)
2188 {
df0227c4
MJ
2189 time = safe_add (time,
2190 val->local_time_benefit + val->prop_time_benefit);
2191 size = safe_add (size, val->local_size_cost + val->prop_size_cost);
310bc633
MJ
2192 }
2193
2194 for (val = base; val; val = val->scc_next)
2195 for (src = val->sources; src; src = src->next)
2196 if (src->val
2197 && cgraph_maybe_hot_edge_p (src->cs))
2198 {
df0227c4
MJ
2199 src->val->prop_time_benefit = safe_add (time,
2200 src->val->prop_time_benefit);
2201 src->val->prop_size_cost = safe_add (size,
2202 src->val->prop_size_cost);
310bc633 2203 }
518dc859
RL
2204 }
2205}
2206
310bc633
MJ
2207
2208/* Propagate constants, binfos and their effects from the summaries
2209 interprocedurally. */
2210
518dc859 2211static void
310bc633 2212ipcp_propagate_stage (struct topo_info *topo)
518dc859
RL
2213{
2214 struct cgraph_node *node;
518dc859 2215
310bc633
MJ
2216 if (dump_file)
2217 fprintf (dump_file, "\n Propagating constants:\n\n");
2218
2219 if (in_lto_p)
2220 ipa_update_after_lto_read ();
2221
2222
2223 FOR_EACH_DEFINED_FUNCTION (node)
2224 {
2225 struct ipa_node_params *info = IPA_NODE_REF (node);
2226
2227 determine_versionability (node);
2228 if (cgraph_function_with_gimple_body_p (node))
2229 {
2c9561b5 2230 info->lattices = XCNEWVEC (struct ipcp_param_lattices,
310bc633
MJ
2231 ipa_get_param_count (info));
2232 initialize_node_lattices (node);
2233 }
e70670cf
JH
2234 if (node->symbol.definition && !node->symbol.alias)
2235 overall_size += inline_summary (node)->self_size;
310bc633
MJ
2236 if (node->count > max_count)
2237 max_count = node->count;
310bc633
MJ
2238 }
2239
2240 max_new_size = overall_size;
2241 if (max_new_size < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
2242 max_new_size = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
2243 max_new_size += max_new_size * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;
2244
2245 if (dump_file)
2246 fprintf (dump_file, "\noverall_size: %li, max_new_size: %li\n",
2247 overall_size, max_new_size);
2248
2249 propagate_constants_topo (topo);
2250#ifdef ENABLE_CHECKING
2251 ipcp_verify_propagated_values ();
2252#endif
2253 propagate_effects ();
2254
2255 if (dump_file)
2256 {
2257 fprintf (dump_file, "\nIPA lattices after all propagation:\n");
2258 print_all_lattices (dump_file, (dump_flags & TDF_DETAILS), true);
2259 }
2260}
2261
2262/* Discover newly direct outgoing edges from NODE which is a new clone with
2263 known KNOWN_VALS and make them direct. */
2264
2265static void
2266ipcp_discover_new_direct_edges (struct cgraph_node *node,
162712de
MJ
2267 vec<tree> known_vals,
2268 struct ipa_agg_replacement_value *aggvals)
310bc633
MJ
2269{
2270 struct cgraph_edge *ie, *next_ie;
0f378cb5 2271 bool found = false;
310bc633
MJ
2272
2273 for (ie = node->indirect_calls; ie; ie = next_ie)
2274 {
81fa35bd 2275 tree target;
310bc633
MJ
2276
2277 next_ie = ie->next_callee;
162712de
MJ
2278 target = ipa_get_indirect_edge_target_1 (ie, known_vals, vNULL, vNULL,
2279 aggvals);
310bc633 2280 if (target)
0f378cb5 2281 {
4502fe8d 2282 struct cgraph_edge *cs = ipa_make_edge_direct_to_target (ie, target);
0f378cb5 2283 found = true;
4502fe8d
MJ
2284
2285 if (cs && !ie->indirect_info->agg_contents
2286 && !ie->indirect_info->polymorphic)
2287 {
2288 struct ipa_node_params *info = IPA_NODE_REF (node);
2289 int param_index = ie->indirect_info->param_index;
2290 int c = ipa_get_controlled_uses (info, param_index);
2291 if (c != IPA_UNDESCRIBED_USE)
2292 {
2293 struct ipa_ref *to_del;
2294
2295 c--;
2296 ipa_set_controlled_uses (info, param_index, c);
2297 if (dump_file && (dump_flags & TDF_DETAILS))
2298 fprintf (dump_file, " controlled uses count of param "
2299 "%i bumped down to %i\n", param_index, c);
2300 if (c == 0
2301 && (to_del = ipa_find_reference ((symtab_node) node,
2302 (symtab_node) cs->callee,
2303 NULL)))
2304 {
2305 if (dump_file && (dump_flags & TDF_DETAILS))
2306 fprintf (dump_file, " and even removing its "
2307 "cloning-created reference\n");
2308 ipa_remove_reference (to_del);
2309 }
2310 }
2311 }
0f378cb5 2312 }
310bc633 2313 }
0f378cb5
JH
2314 /* Turning calls to direct calls will improve overall summary. */
2315 if (found)
2316 inline_update_overall_summary (node);
310bc633
MJ
2317}
2318
2319/* Vector of pointers which for linked lists of clones of an original crgaph
2320 edge. */
2321
9771b263 2322static vec<cgraph_edge_p> next_edge_clone;
310bc633
MJ
2323
2324static inline void
2325grow_next_edge_clone_vector (void)
2326{
9771b263 2327 if (next_edge_clone.length ()
310bc633 2328 <= (unsigned) cgraph_edge_max_uid)
9771b263 2329 next_edge_clone.safe_grow_cleared (cgraph_edge_max_uid + 1);
310bc633
MJ
2330}
2331
2332/* Edge duplication hook to grow the appropriate linked list in
2333 next_edge_clone. */
2334
2335static void
2336ipcp_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
2337 __attribute__((unused)) void *data)
2338{
2339 grow_next_edge_clone_vector ();
9771b263
DN
2340 next_edge_clone[dst->uid] = next_edge_clone[src->uid];
2341 next_edge_clone[src->uid] = dst;
310bc633
MJ
2342}
2343
2c9561b5
MJ
2344/* See if NODE is a clone with a known aggregate value at a given OFFSET of a
2345 parameter with the given INDEX. */
310bc633 2346
2c9561b5
MJ
2347static tree
2348get_clone_agg_value (struct cgraph_node *node, HOST_WIDEST_INT offset,
2349 int index)
310bc633 2350{
2c9561b5
MJ
2351 struct ipa_agg_replacement_value *aggval;
2352
2353 aggval = ipa_get_agg_replacements_for_node (node);
2354 while (aggval)
2355 {
2356 if (aggval->offset == offset
2357 && aggval->index == index)
2358 return aggval->value;
2359 aggval = aggval->next;
2360 }
2361 return NULL_TREE;
310bc633
MJ
2362}
2363
2364/* Return true if edge CS does bring about the value described by SRC. */
2365
2366static bool
2367cgraph_edge_brings_value_p (struct cgraph_edge *cs,
2368 struct ipcp_value_source *src)
2369{
2370 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
eb20b778 2371 struct ipa_node_params *dst_info = IPA_NODE_REF (cs->callee);
310bc633 2372
eb20b778 2373 if ((dst_info->ipcp_orig_node && !dst_info->is_all_contexts_clone)
310bc633
MJ
2374 || caller_info->node_dead)
2375 return false;
2376 if (!src->val)
2377 return true;
2378
2379 if (caller_info->ipcp_orig_node)
2380 {
2c9561b5
MJ
2381 tree t;
2382 if (src->offset == -1)
9771b263 2383 t = caller_info->known_vals[src->index];
2c9561b5
MJ
2384 else
2385 t = get_clone_agg_value (cs->caller, src->offset, src->index);
310bc633
MJ
2386 return (t != NULL_TREE
2387 && values_equal_for_ipcp_p (src->val->value, t));
2388 }
2389 else
518dc859 2390 {
2c9561b5
MJ
2391 struct ipcp_agg_lattice *aglat;
2392 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (caller_info,
2393 src->index);
2394 if (src->offset == -1)
2395 return (ipa_lat_is_single_const (&plats->itself)
2396 && values_equal_for_ipcp_p (src->val->value,
2397 plats->itself.values->value));
310bc633 2398 else
2c9561b5
MJ
2399 {
2400 if (plats->aggs_bottom || plats->aggs_contain_variable)
2401 return false;
2402 for (aglat = plats->aggs; aglat; aglat = aglat->next)
2403 if (aglat->offset == src->offset)
2404 return (ipa_lat_is_single_const (aglat)
2405 && values_equal_for_ipcp_p (src->val->value,
2406 aglat->values->value));
2407 }
2408 return false;
310bc633
MJ
2409 }
2410}
2411
2c9561b5
MJ
2412/* Get the next clone in the linked list of clones of an edge. */
2413
2414static inline struct cgraph_edge *
2415get_next_cgraph_edge_clone (struct cgraph_edge *cs)
2416{
9771b263 2417 return next_edge_clone[cs->uid];
2c9561b5
MJ
2418}
2419
310bc633
MJ
2420/* Given VAL, iterate over all its sources and if they still hold, add their
2421 edge frequency and their number into *FREQUENCY and *CALLER_COUNT
2422 respectively. */
2423
2424static bool
2425get_info_about_necessary_edges (struct ipcp_value *val, int *freq_sum,
2426 gcov_type *count_sum, int *caller_count)
2427{
2428 struct ipcp_value_source *src;
2429 int freq = 0, count = 0;
2430 gcov_type cnt = 0;
2431 bool hot = false;
2432
2433 for (src = val->sources; src; src = src->next)
2434 {
2435 struct cgraph_edge *cs = src->cs;
2436 while (cs)
518dc859 2437 {
310bc633
MJ
2438 if (cgraph_edge_brings_value_p (cs, src))
2439 {
2440 count++;
2441 freq += cs->frequency;
2442 cnt += cs->count;
2443 hot |= cgraph_maybe_hot_edge_p (cs);
2444 }
2445 cs = get_next_cgraph_edge_clone (cs);
518dc859
RL
2446 }
2447 }
310bc633
MJ
2448
2449 *freq_sum = freq;
2450 *count_sum = cnt;
2451 *caller_count = count;
2452 return hot;
518dc859
RL
2453}
2454
310bc633
MJ
2455/* Return a vector of incoming edges that do bring value VAL. It is assumed
2456 their number is known and equal to CALLER_COUNT. */
2457
9771b263 2458static vec<cgraph_edge_p>
310bc633 2459gather_edges_for_value (struct ipcp_value *val, int caller_count)
518dc859 2460{
310bc633 2461 struct ipcp_value_source *src;
9771b263 2462 vec<cgraph_edge_p> ret;
310bc633 2463
9771b263 2464 ret.create (caller_count);
310bc633
MJ
2465 for (src = val->sources; src; src = src->next)
2466 {
2467 struct cgraph_edge *cs = src->cs;
2468 while (cs)
2469 {
2470 if (cgraph_edge_brings_value_p (cs, src))
9771b263 2471 ret.quick_push (cs);
310bc633
MJ
2472 cs = get_next_cgraph_edge_clone (cs);
2473 }
2474 }
2475
2476 return ret;
518dc859
RL
2477}
2478
310bc633
MJ
2479/* Construct a replacement map for a know VALUE for a formal parameter PARAM.
2480 Return it or NULL if for some reason it cannot be created. */
2481
518dc859 2482static struct ipa_replace_map *
310bc633 2483get_replacement_map (tree value, tree parm)
518dc859 2484{
310bc633 2485 tree req_type = TREE_TYPE (parm);
518dc859 2486 struct ipa_replace_map *replace_map;
518dc859 2487
310bc633 2488 if (!useless_type_conversion_p (req_type, TREE_TYPE (value)))
cc58ceee 2489 {
310bc633
MJ
2490 if (fold_convertible_p (req_type, value))
2491 value = fold_build1 (NOP_EXPR, req_type, value);
2492 else if (TYPE_SIZE (req_type) == TYPE_SIZE (TREE_TYPE (value)))
2493 value = fold_build1 (VIEW_CONVERT_EXPR, req_type, value);
2494 else
cc58ceee 2495 {
310bc633
MJ
2496 if (dump_file)
2497 {
2498 fprintf (dump_file, " const ");
2499 print_generic_expr (dump_file, value, 0);
2500 fprintf (dump_file, " can't be converted to param ");
2501 print_generic_expr (dump_file, parm, 0);
2502 fprintf (dump_file, "\n");
2503 }
2504 return NULL;
cc58ceee 2505 }
cc58ceee 2506 }
310bc633 2507
cc58ceee 2508 replace_map = ggc_alloc_ipa_replace_map ();
c6f7cfc1
JH
2509 if (dump_file)
2510 {
310bc633
MJ
2511 fprintf (dump_file, " replacing param ");
2512 print_generic_expr (dump_file, parm, 0);
c6f7cfc1 2513 fprintf (dump_file, " with const ");
310bc633 2514 print_generic_expr (dump_file, value, 0);
c6f7cfc1
JH
2515 fprintf (dump_file, "\n");
2516 }
310bc633
MJ
2517 replace_map->old_tree = parm;
2518 replace_map->new_tree = value;
0f1961a2
JH
2519 replace_map->replace_p = true;
2520 replace_map->ref_p = false;
518dc859
RL
2521
2522 return replace_map;
2523}
2524
310bc633 2525/* Dump new profiling counts */
518dc859 2526
518dc859 2527static void
310bc633
MJ
2528dump_profile_updates (struct cgraph_node *orig_node,
2529 struct cgraph_node *new_node)
518dc859 2530{
310bc633 2531 struct cgraph_edge *cs;
518dc859 2532
310bc633
MJ
2533 fprintf (dump_file, " setting count of the specialized node to "
2534 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) new_node->count);
2535 for (cs = new_node->callees; cs ; cs = cs->next_callee)
2536 fprintf (dump_file, " edge to %s has count "
2537 HOST_WIDE_INT_PRINT_DEC "\n",
2538 cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
2539
2540 fprintf (dump_file, " setting count of the original node to "
2541 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) orig_node->count);
2542 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
2543 fprintf (dump_file, " edge to %s is left with "
2544 HOST_WIDE_INT_PRINT_DEC "\n",
2545 cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
2546}
c6f7cfc1 2547
310bc633
MJ
2548/* After a specialized NEW_NODE version of ORIG_NODE has been created, update
2549 their profile information to reflect this. */
518dc859 2550
518dc859 2551static void
310bc633
MJ
2552update_profiling_info (struct cgraph_node *orig_node,
2553 struct cgraph_node *new_node)
518dc859 2554{
518dc859 2555 struct cgraph_edge *cs;
310bc633
MJ
2556 struct caller_statistics stats;
2557 gcov_type new_sum, orig_sum;
2558 gcov_type remainder, orig_node_count = orig_node->count;
2559
2560 if (orig_node_count == 0)
2561 return;
518dc859 2562
310bc633
MJ
2563 init_caller_stats (&stats);
2564 cgraph_for_node_and_aliases (orig_node, gather_caller_stats, &stats, false);
2565 orig_sum = stats.count_sum;
2566 init_caller_stats (&stats);
2567 cgraph_for_node_and_aliases (new_node, gather_caller_stats, &stats, false);
2568 new_sum = stats.count_sum;
2569
2570 if (orig_node_count < orig_sum + new_sum)
518dc859 2571 {
310bc633
MJ
2572 if (dump_file)
2573 fprintf (dump_file, " Problem: node %s/%i has too low count "
2574 HOST_WIDE_INT_PRINT_DEC " while the sum of incoming "
2575 "counts is " HOST_WIDE_INT_PRINT_DEC "\n",
9de04252 2576 cgraph_node_name (orig_node), orig_node->symbol.order,
310bc633
MJ
2577 (HOST_WIDE_INT) orig_node_count,
2578 (HOST_WIDE_INT) (orig_sum + new_sum));
2579
2580 orig_node_count = (orig_sum + new_sum) * 12 / 10;
2581 if (dump_file)
2582 fprintf (dump_file, " proceeding by pretending it was "
2583 HOST_WIDE_INT_PRINT_DEC "\n",
2584 (HOST_WIDE_INT) orig_node_count);
518dc859 2585 }
310bc633
MJ
2586
2587 new_node->count = new_sum;
2588 remainder = orig_node_count - new_sum;
2589 orig_node->count = remainder;
2590
2591 for (cs = new_node->callees; cs ; cs = cs->next_callee)
2592 if (cs->frequency)
8ddb5a29
TJ
2593 cs->count = apply_probability (cs->count,
2594 GCOV_COMPUTE_SCALE (new_sum,
2595 orig_node_count));
310bc633
MJ
2596 else
2597 cs->count = 0;
2598
2599 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
8ddb5a29
TJ
2600 cs->count = apply_probability (cs->count,
2601 GCOV_COMPUTE_SCALE (remainder,
2602 orig_node_count));
310bc633
MJ
2603
2604 if (dump_file)
2605 dump_profile_updates (orig_node, new_node);
518dc859
RL
2606}
2607
310bc633
MJ
2608/* Update the respective profile of specialized NEW_NODE and the original
2609 ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM
2610 have been redirected to the specialized version. */
2611
2612static void
2613update_specialized_profile (struct cgraph_node *new_node,
2614 struct cgraph_node *orig_node,
2615 gcov_type redirected_sum)
5e45130d 2616{
a065d52e 2617 struct cgraph_edge *cs;
310bc633 2618 gcov_type new_node_count, orig_node_count = orig_node->count;
5e45130d 2619
310bc633
MJ
2620 if (dump_file)
2621 fprintf (dump_file, " the sum of counts of redirected edges is "
2622 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) redirected_sum);
2623 if (orig_node_count == 0)
2624 return;
a065d52e 2625
310bc633 2626 gcc_assert (orig_node_count >= redirected_sum);
5e45130d 2627
310bc633
MJ
2628 new_node_count = new_node->count;
2629 new_node->count += redirected_sum;
2630 orig_node->count -= redirected_sum;
a065d52e 2631
310bc633
MJ
2632 for (cs = new_node->callees; cs ; cs = cs->next_callee)
2633 if (cs->frequency)
8ddb5a29
TJ
2634 cs->count += apply_probability (cs->count,
2635 GCOV_COMPUTE_SCALE (redirected_sum,
2636 new_node_count));
310bc633
MJ
2637 else
2638 cs->count = 0;
a065d52e 2639
310bc633
MJ
2640 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
2641 {
8ddb5a29
TJ
2642 gcov_type dec = apply_probability (cs->count,
2643 GCOV_COMPUTE_SCALE (redirected_sum,
2644 orig_node_count));
310bc633
MJ
2645 if (dec < cs->count)
2646 cs->count -= dec;
2647 else
2648 cs->count = 0;
2649 }
a065d52e 2650
310bc633
MJ
2651 if (dump_file)
2652 dump_profile_updates (orig_node, new_node);
5e45130d
JH
2653}
2654
310bc633
MJ
2655/* Create a specialized version of NODE with known constants and types of
2656 parameters in KNOWN_VALS and redirect all edges in CALLERS to it. */
a065d52e 2657
310bc633
MJ
2658static struct cgraph_node *
2659create_specialized_node (struct cgraph_node *node,
9771b263 2660 vec<tree> known_vals,
2c9561b5 2661 struct ipa_agg_replacement_value *aggvals,
9771b263 2662 vec<cgraph_edge_p> callers)
5e45130d 2663{
310bc633 2664 struct ipa_node_params *new_info, *info = IPA_NODE_REF (node);
9771b263 2665 vec<ipa_replace_map_p, va_gc> *replace_trees = NULL;
310bc633
MJ
2666 struct cgraph_node *new_node;
2667 int i, count = ipa_get_param_count (info);
2668 bitmap args_to_skip;
5e45130d 2669
310bc633
MJ
2670 gcc_assert (!info->ipcp_orig_node);
2671
2672 if (node->local.can_change_signature)
5e45130d 2673 {
310bc633
MJ
2674 args_to_skip = BITMAP_GGC_ALLOC ();
2675 for (i = 0; i < count; i++)
2676 {
9771b263 2677 tree t = known_vals[i];
310bc633
MJ
2678
2679 if ((t && TREE_CODE (t) != TREE_BINFO)
2680 || !ipa_is_param_used (info, i))
2681 bitmap_set_bit (args_to_skip, i);
2682 }
2683 }
2684 else
d7da5cc8
MJ
2685 {
2686 args_to_skip = NULL;
2687 if (dump_file && (dump_flags & TDF_DETAILS))
2688 fprintf (dump_file, " cannot change function signature\n");
2689 }
310bc633
MJ
2690
2691 for (i = 0; i < count ; i++)
2692 {
9771b263 2693 tree t = known_vals[i];
310bc633
MJ
2694 if (t && TREE_CODE (t) != TREE_BINFO)
2695 {
2696 struct ipa_replace_map *replace_map;
2697
2698 replace_map = get_replacement_map (t, ipa_get_param (info, i));
2699 if (replace_map)
9771b263 2700 vec_safe_push (replace_trees, replace_map);
310bc633 2701 }
5e45130d
JH
2702 }
2703
310bc633
MJ
2704 new_node = cgraph_create_virtual_clone (node, callers, replace_trees,
2705 args_to_skip, "constprop");
2c9561b5 2706 ipa_set_node_agg_value_chain (new_node, aggvals);
310bc633 2707 if (dump_file && (dump_flags & TDF_DETAILS))
2c9561b5
MJ
2708 {
2709 fprintf (dump_file, " the new node is %s/%i.\n",
9de04252 2710 cgraph_node_name (new_node), new_node->symbol.order);
2c9561b5
MJ
2711 if (aggvals)
2712 ipa_dump_agg_replacement_values (dump_file, aggvals);
2713 }
9771b263
DN
2714 gcc_checking_assert (ipa_node_params_vector.exists ()
2715 && (ipa_node_params_vector.length ()
310bc633
MJ
2716 > (unsigned) cgraph_max_uid));
2717 update_profiling_info (node, new_node);
2718 new_info = IPA_NODE_REF (new_node);
2719 new_info->ipcp_orig_node = node;
2720 new_info->known_vals = known_vals;
5e45130d 2721
162712de 2722 ipcp_discover_new_direct_edges (new_node, known_vals, aggvals);
310bc633 2723
9771b263 2724 callers.release ();
310bc633 2725 return new_node;
5e45130d
JH
2726}
2727
310bc633
MJ
2728/* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in
2729 KNOWN_VALS with constants and types that are also known for all of the
2730 CALLERS. */
3949c4a7
MJ
2731
2732static void
2c9561b5 2733find_more_scalar_values_for_callers_subset (struct cgraph_node *node,
9771b263
DN
2734 vec<tree> known_vals,
2735 vec<cgraph_edge_p> callers)
3949c4a7
MJ
2736{
2737 struct ipa_node_params *info = IPA_NODE_REF (node);
310bc633 2738 int i, count = ipa_get_param_count (info);
3949c4a7 2739
310bc633 2740 for (i = 0; i < count ; i++)
3949c4a7 2741 {
310bc633
MJ
2742 struct cgraph_edge *cs;
2743 tree newval = NULL_TREE;
2744 int j;
3949c4a7 2745
9771b263 2746 if (ipa_get_scalar_lat (info, i)->bottom || known_vals[i])
3949c4a7
MJ
2747 continue;
2748
9771b263 2749 FOR_EACH_VEC_ELT (callers, j, cs)
49c471e3 2750 {
310bc633
MJ
2751 struct ipa_jump_func *jump_func;
2752 tree t;
40591473 2753
128c61ee
MJ
2754 if (i >= ipa_get_cs_argument_count (IPA_EDGE_REF (cs)))
2755 {
2756 newval = NULL_TREE;
2757 break;
2758 }
310bc633 2759 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
310bc633
MJ
2760 t = ipa_value_from_jfunc (IPA_NODE_REF (cs->caller), jump_func);
2761 if (!t
2762 || (newval
2763 && !values_equal_for_ipcp_p (t, newval)))
3949c4a7 2764 {
310bc633
MJ
2765 newval = NULL_TREE;
2766 break;
3949c4a7 2767 }
310bc633
MJ
2768 else
2769 newval = t;
3949c4a7
MJ
2770 }
2771
310bc633
MJ
2772 if (newval)
2773 {
2774 if (dump_file && (dump_flags & TDF_DETAILS))
2775 {
2c9561b5 2776 fprintf (dump_file, " adding an extra known scalar value ");
310bc633
MJ
2777 print_ipcp_constant_value (dump_file, newval);
2778 fprintf (dump_file, " for parameter ");
2779 print_generic_expr (dump_file, ipa_get_param (info, i), 0);
2780 fprintf (dump_file, "\n");
2781 }
5e45130d 2782
9771b263 2783 known_vals[i] = newval;
310bc633 2784 }
5e45130d 2785 }
5e45130d
JH
2786}
2787
2c9561b5
MJ
2788/* Go through PLATS and create a vector of values consisting of values and
2789 offsets (minus OFFSET) of lattices that contain only a single value. */
2790
9771b263 2791static vec<ipa_agg_jf_item_t>
2c9561b5
MJ
2792copy_plats_to_inter (struct ipcp_param_lattices *plats, HOST_WIDE_INT offset)
2793{
6e1aa848 2794 vec<ipa_agg_jf_item_t> res = vNULL;
2c9561b5
MJ
2795
2796 if (!plats->aggs || plats->aggs_contain_variable || plats->aggs_bottom)
6e1aa848 2797 return vNULL;
2c9561b5
MJ
2798
2799 for (struct ipcp_agg_lattice *aglat = plats->aggs; aglat; aglat = aglat->next)
2800 if (ipa_lat_is_single_const (aglat))
2801 {
2802 struct ipa_agg_jf_item ti;
2803 ti.offset = aglat->offset - offset;
2804 ti.value = aglat->values->value;
9771b263 2805 res.safe_push (ti);
2c9561b5
MJ
2806 }
2807 return res;
2808}
2809
2810/* Intersect all values in INTER with single value lattices in PLATS (while
2811 subtracting OFFSET). */
2812
2813static void
2814intersect_with_plats (struct ipcp_param_lattices *plats,
9771b263 2815 vec<ipa_agg_jf_item_t> *inter,
2c9561b5
MJ
2816 HOST_WIDE_INT offset)
2817{
2818 struct ipcp_agg_lattice *aglat;
2819 struct ipa_agg_jf_item *item;
2820 int k;
2821
2822 if (!plats->aggs || plats->aggs_contain_variable || plats->aggs_bottom)
2823 {
9771b263 2824 inter->release ();
2c9561b5
MJ
2825 return;
2826 }
2827
2828 aglat = plats->aggs;
9771b263 2829 FOR_EACH_VEC_ELT (*inter, k, item)
2c9561b5
MJ
2830 {
2831 bool found = false;
2832 if (!item->value)
2833 continue;
2834 while (aglat)
2835 {
2836 if (aglat->offset - offset > item->offset)
2837 break;
2838 if (aglat->offset - offset == item->offset)
2839 {
2840 gcc_checking_assert (item->value);
2841 if (values_equal_for_ipcp_p (item->value, aglat->values->value))
2842 found = true;
2843 break;
2844 }
2845 aglat = aglat->next;
2846 }
2847 if (!found)
2848 item->value = NULL_TREE;
2849 }
2850}
2851
2852/* Copy agggregate replacement values of NODE (which is an IPA-CP clone) to the
2853 vector result while subtracting OFFSET from the individual value offsets. */
2854
9771b263 2855static vec<ipa_agg_jf_item_t>
0fd44da3
MJ
2856agg_replacements_to_vector (struct cgraph_node *node, int index,
2857 HOST_WIDE_INT offset)
2c9561b5
MJ
2858{
2859 struct ipa_agg_replacement_value *av;
6e1aa848 2860 vec<ipa_agg_jf_item_t> res = vNULL;
2c9561b5
MJ
2861
2862 for (av = ipa_get_agg_replacements_for_node (node); av; av = av->next)
0fd44da3
MJ
2863 if (av->index == index
2864 && (av->offset - offset) >= 0)
2c9561b5
MJ
2865 {
2866 struct ipa_agg_jf_item item;
2867 gcc_checking_assert (av->value);
2868 item.offset = av->offset - offset;
2869 item.value = av->value;
9771b263 2870 res.safe_push (item);
2c9561b5
MJ
2871 }
2872
2873 return res;
2874}
2875
2876/* Intersect all values in INTER with those that we have already scheduled to
2877 be replaced in parameter number INDEX of NODE, which is an IPA-CP clone
2878 (while subtracting OFFSET). */
2879
2880static void
2881intersect_with_agg_replacements (struct cgraph_node *node, int index,
9771b263 2882 vec<ipa_agg_jf_item_t> *inter,
2c9561b5
MJ
2883 HOST_WIDE_INT offset)
2884{
2885 struct ipa_agg_replacement_value *srcvals;
2886 struct ipa_agg_jf_item *item;
2887 int i;
2888
2889 srcvals = ipa_get_agg_replacements_for_node (node);
2890 if (!srcvals)
2891 {
9771b263 2892 inter->release ();
2c9561b5
MJ
2893 return;
2894 }
2895
9771b263 2896 FOR_EACH_VEC_ELT (*inter, i, item)
2c9561b5
MJ
2897 {
2898 struct ipa_agg_replacement_value *av;
2899 bool found = false;
2900 if (!item->value)
2901 continue;
2902 for (av = srcvals; av; av = av->next)
2903 {
2904 gcc_checking_assert (av->value);
2905 if (av->index == index
2906 && av->offset - offset == item->offset)
2907 {
2908 if (values_equal_for_ipcp_p (item->value, av->value))
2909 found = true;
2910 break;
2911 }
2912 }
2913 if (!found)
2914 item->value = NULL_TREE;
2915 }
2916}
2917
7e9f2b6e
MJ
2918/* Intersect values in INTER with aggregate values that come along edge CS to
2919 parameter number INDEX and return it. If INTER does not actually exist yet,
2920 copy all incoming values to it. If we determine we ended up with no values
2921 whatsoever, return a released vector. */
2922
2923static vec<ipa_agg_jf_item_t>
2924intersect_aggregates_with_edge (struct cgraph_edge *cs, int index,
2925 vec<ipa_agg_jf_item_t> inter)
2926{
2927 struct ipa_jump_func *jfunc;
2928 jfunc = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), index);
2929 if (jfunc->type == IPA_JF_PASS_THROUGH
2930 && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
2931 {
2932 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
2933 int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
2934
2935 if (caller_info->ipcp_orig_node)
2936 {
2937 struct cgraph_node *orig_node = caller_info->ipcp_orig_node;
2938 struct ipcp_param_lattices *orig_plats;
2939 orig_plats = ipa_get_parm_lattices (IPA_NODE_REF (orig_node),
2940 src_idx);
2941 if (agg_pass_through_permissible_p (orig_plats, jfunc))
2942 {
2943 if (!inter.exists ())
0fd44da3 2944 inter = agg_replacements_to_vector (cs->caller, src_idx, 0);
7e9f2b6e
MJ
2945 else
2946 intersect_with_agg_replacements (cs->caller, src_idx,
2947 &inter, 0);
2948 }
2949 }
2950 else
2951 {
2952 struct ipcp_param_lattices *src_plats;
2953 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
2954 if (agg_pass_through_permissible_p (src_plats, jfunc))
2955 {
2956 /* Currently we do not produce clobber aggregate jump
2957 functions, adjust when we do. */
2958 gcc_checking_assert (!jfunc->agg.items);
2959 if (!inter.exists ())
2960 inter = copy_plats_to_inter (src_plats, 0);
2961 else
2962 intersect_with_plats (src_plats, &inter, 0);
2963 }
2964 }
2965 }
2966 else if (jfunc->type == IPA_JF_ANCESTOR
2967 && ipa_get_jf_ancestor_agg_preserved (jfunc))
2968 {
2969 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
2970 int src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
2971 struct ipcp_param_lattices *src_plats;
2972 HOST_WIDE_INT delta = ipa_get_jf_ancestor_offset (jfunc);
2973
2974 if (caller_info->ipcp_orig_node)
2975 {
2976 if (!inter.exists ())
0fd44da3 2977 inter = agg_replacements_to_vector (cs->caller, src_idx, delta);
7e9f2b6e 2978 else
0fd44da3 2979 intersect_with_agg_replacements (cs->caller, src_idx, &inter,
7e9f2b6e
MJ
2980 delta);
2981 }
2982 else
2983 {
2984 src_plats = ipa_get_parm_lattices (caller_info, src_idx);;
2985 /* Currently we do not produce clobber aggregate jump
2986 functions, adjust when we do. */
2987 gcc_checking_assert (!src_plats->aggs || !jfunc->agg.items);
2988 if (!inter.exists ())
2989 inter = copy_plats_to_inter (src_plats, delta);
2990 else
2991 intersect_with_plats (src_plats, &inter, delta);
2992 }
2993 }
2994 else if (jfunc->agg.items)
2995 {
2996 struct ipa_agg_jf_item *item;
2997 int k;
2998
2999 if (!inter.exists ())
3000 for (unsigned i = 0; i < jfunc->agg.items->length (); i++)
3001 inter.safe_push ((*jfunc->agg.items)[i]);
3002 else
3003 FOR_EACH_VEC_ELT (inter, k, item)
3004 {
3005 int l = 0;
3006 bool found = false;;
3007
3008 if (!item->value)
3009 continue;
3010
3011 while ((unsigned) l < jfunc->agg.items->length ())
3012 {
3013 struct ipa_agg_jf_item *ti;
3014 ti = &(*jfunc->agg.items)[l];
3015 if (ti->offset > item->offset)
3016 break;
3017 if (ti->offset == item->offset)
3018 {
3019 gcc_checking_assert (ti->value);
3020 if (values_equal_for_ipcp_p (item->value,
3021 ti->value))
3022 found = true;
3023 break;
3024 }
3025 l++;
3026 }
3027 if (!found)
3028 item->value = NULL;
3029 }
3030 }
3031 else
3032 {
3033 inter.release();
3034 return vec<ipa_agg_jf_item_t>();
3035 }
3036 return inter;
3037}
3038
2c9561b5
MJ
3039/* Look at edges in CALLERS and collect all known aggregate values that arrive
3040 from all of them. */
3041
3042static struct ipa_agg_replacement_value *
3043find_aggregate_values_for_callers_subset (struct cgraph_node *node,
9771b263 3044 vec<cgraph_edge_p> callers)
2c9561b5 3045{
dffdd6e5 3046 struct ipa_node_params *dest_info = IPA_NODE_REF (node);
2c9561b5
MJ
3047 struct ipa_agg_replacement_value *res = NULL;
3048 struct cgraph_edge *cs;
dffdd6e5 3049 int i, j, count = ipa_get_param_count (dest_info);
2c9561b5 3050
9771b263 3051 FOR_EACH_VEC_ELT (callers, j, cs)
2c9561b5
MJ
3052 {
3053 int c = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
3054 if (c < count)
3055 count = c;
3056 }
3057
3058 for (i = 0; i < count ; i++)
3059 {
3060 struct cgraph_edge *cs;
6e1aa848 3061 vec<ipa_agg_jf_item_t> inter = vNULL;
2c9561b5 3062 struct ipa_agg_jf_item *item;
7b920a9a 3063 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (dest_info, i);
2c9561b5
MJ
3064 int j;
3065
3066 /* Among other things, the following check should deal with all by_ref
3067 mismatches. */
7b920a9a 3068 if (plats->aggs_bottom)
2c9561b5
MJ
3069 continue;
3070
9771b263 3071 FOR_EACH_VEC_ELT (callers, j, cs)
2c9561b5 3072 {
7e9f2b6e 3073 inter = intersect_aggregates_with_edge (cs, i, inter);
2c9561b5 3074
9771b263 3075 if (!inter.exists ())
2c9561b5
MJ
3076 goto next_param;
3077 }
3078
9771b263 3079 FOR_EACH_VEC_ELT (inter, j, item)
2c9561b5
MJ
3080 {
3081 struct ipa_agg_replacement_value *v;
3082
3083 if (!item->value)
3084 continue;
3085
3086 v = ggc_alloc_ipa_agg_replacement_value ();
3087 v->index = i;
3088 v->offset = item->offset;
3089 v->value = item->value;
7b920a9a 3090 v->by_ref = plats->aggs_by_ref;
2c9561b5
MJ
3091 v->next = res;
3092 res = v;
3093 }
3094
3095 next_param:
9771b263
DN
3096 if (inter.exists ())
3097 inter.release ();
2c9561b5
MJ
3098 }
3099 return res;
3100}
3101
3102/* Turn KNOWN_AGGS into a list of aggreate replacement values. */
3103
3104static struct ipa_agg_replacement_value *
9771b263 3105known_aggs_to_agg_replacement_list (vec<ipa_agg_jump_function_t> known_aggs)
2c9561b5
MJ
3106{
3107 struct ipa_agg_replacement_value *res = NULL;
3108 struct ipa_agg_jump_function *aggjf;
3109 struct ipa_agg_jf_item *item;
3110 int i, j;
3111
9771b263
DN
3112 FOR_EACH_VEC_ELT (known_aggs, i, aggjf)
3113 FOR_EACH_VEC_SAFE_ELT (aggjf->items, j, item)
2c9561b5
MJ
3114 {
3115 struct ipa_agg_replacement_value *v;
3116 v = ggc_alloc_ipa_agg_replacement_value ();
3117 v->index = i;
3118 v->offset = item->offset;
3119 v->value = item->value;
7b920a9a 3120 v->by_ref = aggjf->by_ref;
2c9561b5
MJ
3121 v->next = res;
3122 res = v;
3123 }
3124 return res;
3125}
3126
3127/* Determine whether CS also brings all scalar values that the NODE is
3128 specialized for. */
3129
3130static bool
3131cgraph_edge_brings_all_scalars_for_node (struct cgraph_edge *cs,
3132 struct cgraph_node *node)
3133{
3134 struct ipa_node_params *dest_info = IPA_NODE_REF (node);
3135 int count = ipa_get_param_count (dest_info);
3136 struct ipa_node_params *caller_info;
3137 struct ipa_edge_args *args;
3138 int i;
3139
3140 caller_info = IPA_NODE_REF (cs->caller);
3141 args = IPA_EDGE_REF (cs);
3142 for (i = 0; i < count; i++)
3143 {
3144 struct ipa_jump_func *jump_func;
3145 tree val, t;
3146
9771b263 3147 val = dest_info->known_vals[i];
2c9561b5
MJ
3148 if (!val)
3149 continue;
3150
3151 if (i >= ipa_get_cs_argument_count (args))
3152 return false;
3153 jump_func = ipa_get_ith_jump_func (args, i);
3154 t = ipa_value_from_jfunc (caller_info, jump_func);
3155 if (!t || !values_equal_for_ipcp_p (val, t))
3156 return false;
3157 }
3158 return true;
3159}
3160
3161/* Determine whether CS also brings all aggregate values that NODE is
3162 specialized for. */
3163static bool
3164cgraph_edge_brings_all_agg_vals_for_node (struct cgraph_edge *cs,
3165 struct cgraph_node *node)
3166{
7e9f2b6e 3167 struct ipa_node_params *orig_caller_info = IPA_NODE_REF (cs->caller);
2c9561b5 3168 struct ipa_agg_replacement_value *aggval;
7e9f2b6e 3169 int i, ec, count;
2c9561b5
MJ
3170
3171 aggval = ipa_get_agg_replacements_for_node (node);
7e9f2b6e
MJ
3172 if (!aggval)
3173 return true;
3174
3175 count = ipa_get_param_count (IPA_NODE_REF (node));
3176 ec = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
3177 if (ec < count)
3178 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3179 if (aggval->index >= ec)
3180 return false;
3181
3182 if (orig_caller_info->ipcp_orig_node)
3183 orig_caller_info = IPA_NODE_REF (orig_caller_info->ipcp_orig_node);
3184
3185 for (i = 0; i < count; i++)
2c9561b5 3186 {
7e9f2b6e 3187 static vec<ipa_agg_jf_item_t> values = vec<ipa_agg_jf_item_t>();
2c9561b5 3188 struct ipcp_param_lattices *plats;
7e9f2b6e
MJ
3189 bool interesting = false;
3190 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3191 if (aggval->index == i)
3192 {
3193 interesting = true;
3194 break;
3195 }
3196 if (!interesting)
3197 continue;
3198
3199 plats = ipa_get_parm_lattices (orig_caller_info, aggval->index);
3200 if (plats->aggs_bottom)
2c9561b5 3201 return false;
2c9561b5 3202
7e9f2b6e
MJ
3203 values = intersect_aggregates_with_edge (cs, i, values);
3204 if (!values.exists())
2c9561b5
MJ
3205 return false;
3206
7e9f2b6e
MJ
3207 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3208 if (aggval->index == i)
3209 {
3210 struct ipa_agg_jf_item *item;
3211 int j;
3212 bool found = false;
3213 FOR_EACH_VEC_ELT (values, j, item)
3214 if (item->value
3215 && item->offset == av->offset
3216 && values_equal_for_ipcp_p (item->value, av->value))
c3272a92
PCC
3217 {
3218 found = true;
3219 break;
3220 }
7e9f2b6e
MJ
3221 if (!found)
3222 {
3223 values.release();
3224 return false;
3225 }
3226 }
2c9561b5
MJ
3227 }
3228 return true;
3229}
3230
310bc633
MJ
3231/* Given an original NODE and a VAL for which we have already created a
3232 specialized clone, look whether there are incoming edges that still lead
3233 into the old node but now also bring the requested value and also conform to
3234 all other criteria such that they can be redirected the the special node.
3235 This function can therefore redirect the final edge in a SCC. */
3e66255c
MJ
3236
3237static void
310bc633 3238perhaps_add_new_callers (struct cgraph_node *node, struct ipcp_value *val)
3e66255c 3239{
310bc633 3240 struct ipcp_value_source *src;
310bc633 3241 gcov_type redirected_sum = 0;
3e66255c 3242
310bc633 3243 for (src = val->sources; src; src = src->next)
3e66255c 3244 {
310bc633
MJ
3245 struct cgraph_edge *cs = src->cs;
3246 while (cs)
3247 {
3248 enum availability availability;
eb20b778
MJ
3249 struct cgraph_node *dst = cgraph_function_node (cs->callee,
3250 &availability);
3251 if ((dst == node || IPA_NODE_REF (dst)->is_all_contexts_clone)
310bc633
MJ
3252 && availability > AVAIL_OVERWRITABLE
3253 && cgraph_edge_brings_value_p (cs, src))
3254 {
2c9561b5
MJ
3255 if (cgraph_edge_brings_all_scalars_for_node (cs, val->spec_node)
3256 && cgraph_edge_brings_all_agg_vals_for_node (cs,
3257 val->spec_node))
310bc633
MJ
3258 {
3259 if (dump_file)
3260 fprintf (dump_file, " - adding an extra caller %s/%i"
3261 " of %s/%i\n",
036c0102 3262 xstrdup (cgraph_node_name (cs->caller)),
9de04252 3263 cs->caller->symbol.order,
036c0102 3264 xstrdup (cgraph_node_name (val->spec_node)),
9de04252 3265 val->spec_node->symbol.order);
310bc633
MJ
3266
3267 cgraph_redirect_edge_callee (cs, val->spec_node);
3268 redirected_sum += cs->count;
3269 }
3270 }
3271 cs = get_next_cgraph_edge_clone (cs);
3272 }
3e66255c 3273 }
310bc633
MJ
3274
3275 if (redirected_sum)
3276 update_specialized_profile (val->spec_node, node, redirected_sum);
3e66255c
MJ
3277}
3278
3279
310bc633
MJ
3280/* Copy KNOWN_BINFOS to KNOWN_VALS. */
3281
518dc859 3282static void
9771b263
DN
3283move_binfos_to_values (vec<tree> known_vals,
3284 vec<tree> known_binfos)
518dc859 3285{
310bc633 3286 tree t;
5e45130d 3287 int i;
518dc859 3288
9771b263 3289 for (i = 0; known_binfos.iterate (i, &t); i++)
310bc633 3290 if (t)
9771b263 3291 known_vals[i] = t;
310bc633 3292}
5e45130d 3293
2c9561b5
MJ
3294/* Return true if there is a replacement equivalent to VALUE, INDEX and OFFSET
3295 among those in the AGGVALS list. */
3296
3297DEBUG_FUNCTION bool
3298ipcp_val_in_agg_replacements_p (struct ipa_agg_replacement_value *aggvals,
3299 int index, HOST_WIDE_INT offset, tree value)
3300{
3301 while (aggvals)
3302 {
3303 if (aggvals->index == index
3304 && aggvals->offset == offset
3305 && values_equal_for_ipcp_p (aggvals->value, value))
3306 return true;
3307 aggvals = aggvals->next;
3308 }
3309 return false;
3310}
3311
3312/* Decide wheter to create a special version of NODE for value VAL of parameter
3313 at the given INDEX. If OFFSET is -1, the value is for the parameter itself,
3314 otherwise it is stored at the given OFFSET of the parameter. KNOWN_CSTS,
3315 KNOWN_BINFOS and KNOWN_AGGS describe the other already known values. */
3316
3317static bool
3318decide_about_value (struct cgraph_node *node, int index, HOST_WIDE_INT offset,
9771b263
DN
3319 struct ipcp_value *val, vec<tree> known_csts,
3320 vec<tree> known_binfos)
2c9561b5
MJ
3321{
3322 struct ipa_agg_replacement_value *aggvals;
3323 int freq_sum, caller_count;
3324 gcov_type count_sum;
9771b263
DN
3325 vec<cgraph_edge_p> callers;
3326 vec<tree> kv;
2c9561b5
MJ
3327
3328 if (val->spec_node)
3329 {
3330 perhaps_add_new_callers (node, val);
3331 return false;
3332 }
3333 else if (val->local_size_cost + overall_size > max_new_size)
3334 {
3335 if (dump_file && (dump_flags & TDF_DETAILS))
3336 fprintf (dump_file, " Ignoring candidate value because "
3337 "max_new_size would be reached with %li.\n",
3338 val->local_size_cost + overall_size);
3339 return false;
3340 }
3341 else if (!get_info_about_necessary_edges (val, &freq_sum, &count_sum,
3342 &caller_count))
3343 return false;
3344
3345 if (dump_file && (dump_flags & TDF_DETAILS))
3346 {
3347 fprintf (dump_file, " - considering value ");
3348 print_ipcp_constant_value (dump_file, val->value);
3349 fprintf (dump_file, " for parameter ");
3350 print_generic_expr (dump_file, ipa_get_param (IPA_NODE_REF (node),
3351 index), 0);
3352 if (offset != -1)
3353 fprintf (dump_file, ", offset: " HOST_WIDE_INT_PRINT_DEC, offset);
3354 fprintf (dump_file, " (caller_count: %i)\n", caller_count);
3355 }
3356
3357 if (!good_cloning_opportunity_p (node, val->local_time_benefit,
3358 freq_sum, count_sum,
3359 val->local_size_cost)
3360 && !good_cloning_opportunity_p (node,
3361 val->local_time_benefit
3362 + val->prop_time_benefit,
3363 freq_sum, count_sum,
3364 val->local_size_cost
3365 + val->prop_size_cost))
3366 return false;
3367
3368 if (dump_file)
3369 fprintf (dump_file, " Creating a specialized node of %s/%i.\n",
9de04252 3370 cgraph_node_name (node), node->symbol.order);
2c9561b5
MJ
3371
3372 callers = gather_edges_for_value (val, caller_count);
9771b263 3373 kv = known_csts.copy ();
2c9561b5
MJ
3374 move_binfos_to_values (kv, known_binfos);
3375 if (offset == -1)
9771b263 3376 kv[index] = val->value;
2c9561b5
MJ
3377 find_more_scalar_values_for_callers_subset (node, kv, callers);
3378 aggvals = find_aggregate_values_for_callers_subset (node, callers);
3379 gcc_checking_assert (offset == -1
3380 || ipcp_val_in_agg_replacements_p (aggvals, index,
3381 offset, val->value));
3382 val->spec_node = create_specialized_node (node, kv, aggvals, callers);
3383 overall_size += val->local_size_cost;
3384
3385 /* TODO: If for some lattice there is only one other known value
3386 left, make a special node for it too. */
3387
3388 return true;
3389}
5e45130d 3390
310bc633 3391/* Decide whether and what specialized clones of NODE should be created. */
5e45130d 3392
310bc633
MJ
3393static bool
3394decide_whether_version_node (struct cgraph_node *node)
3395{
3396 struct ipa_node_params *info = IPA_NODE_REF (node);
3397 int i, count = ipa_get_param_count (info);
9771b263 3398 vec<tree> known_csts, known_binfos;
6e1aa848 3399 vec<ipa_agg_jump_function_t> known_aggs = vNULL;
310bc633 3400 bool ret = false;
5e45130d 3401
310bc633
MJ
3402 if (count == 0)
3403 return false;
5e45130d 3404
310bc633
MJ
3405 if (dump_file && (dump_flags & TDF_DETAILS))
3406 fprintf (dump_file, "\nEvaluating opportunities for %s/%i.\n",
9de04252 3407 cgraph_node_name (node), node->symbol.order);
5e45130d 3408
310bc633 3409 gather_context_independent_values (info, &known_csts, &known_binfos,
eb20b778
MJ
3410 info->do_clone_for_all_contexts ? &known_aggs
3411 : NULL, NULL);
5e45130d 3412
2c9561b5 3413 for (i = 0; i < count ;i++)
310bc633 3414 {
2c9561b5
MJ
3415 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
3416 struct ipcp_lattice *lat = &plats->itself;
310bc633 3417 struct ipcp_value *val;
5e45130d 3418
2c9561b5 3419 if (!lat->bottom
9771b263
DN
3420 && !known_csts[i]
3421 && !known_binfos[i])
2c9561b5
MJ
3422 for (val = lat->values; val; val = val->next)
3423 ret |= decide_about_value (node, i, -1, val, known_csts,
3424 known_binfos);
61e03ffc 3425
eb20b778 3426 if (!plats->aggs_bottom)
518dc859 3427 {
2c9561b5
MJ
3428 struct ipcp_agg_lattice *aglat;
3429 struct ipcp_value *val;
3430 for (aglat = plats->aggs; aglat; aglat = aglat->next)
3431 if (!aglat->bottom && aglat->values
3432 /* If the following is false, the one value is in
3433 known_aggs. */
3434 && (plats->aggs_contain_variable
3435 || !ipa_lat_is_single_const (aglat)))
3436 for (val = aglat->values; val; val = val->next)
3437 ret |= decide_about_value (node, i, aglat->offset, val,
3438 known_csts, known_binfos);
cc58ceee 3439 }
2c9561b5 3440 info = IPA_NODE_REF (node);
310bc633 3441 }
cc58ceee 3442
eb20b778 3443 if (info->do_clone_for_all_contexts)
310bc633 3444 {
eb20b778 3445 struct cgraph_node *clone;
9771b263 3446 vec<cgraph_edge_p> callers;
cc58ceee 3447
310bc633
MJ
3448 if (dump_file)
3449 fprintf (dump_file, " - Creating a specialized node of %s/%i "
3450 "for all known contexts.\n", cgraph_node_name (node),
9de04252 3451 node->symbol.order);
5e45130d 3452
310bc633
MJ
3453 callers = collect_callers_of_node (node);
3454 move_binfos_to_values (known_csts, known_binfos);
eb20b778 3455 clone = create_specialized_node (node, known_csts,
2c9561b5
MJ
3456 known_aggs_to_agg_replacement_list (known_aggs),
3457 callers);
310bc633 3458 info = IPA_NODE_REF (node);
eb20b778
MJ
3459 info->do_clone_for_all_contexts = false;
3460 IPA_NODE_REF (clone)->is_all_contexts_clone = true;
90e709fd
JJ
3461 for (i = 0; i < count ; i++)
3462 vec_free (known_aggs[i].items);
3463 known_aggs.release ();
310bc633
MJ
3464 ret = true;
3465 }
3466 else
9771b263 3467 known_csts.release ();
5e45130d 3468
9771b263 3469 known_binfos.release ();
310bc633
MJ
3470 return ret;
3471}
9187e02d 3472
310bc633 3473/* Transitively mark all callees of NODE within the same SCC as not dead. */
3949c4a7 3474
310bc633
MJ
3475static void
3476spread_undeadness (struct cgraph_node *node)
3477{
3478 struct cgraph_edge *cs;
5e45130d 3479
310bc633
MJ
3480 for (cs = node->callees; cs; cs = cs->next_callee)
3481 if (edge_within_scc (cs))
3482 {
3483 struct cgraph_node *callee;
3484 struct ipa_node_params *info;
129a37fc 3485
310bc633
MJ
3486 callee = cgraph_function_node (cs->callee, NULL);
3487 info = IPA_NODE_REF (callee);
5e45130d 3488
310bc633
MJ
3489 if (info->node_dead)
3490 {
3491 info->node_dead = 0;
3492 spread_undeadness (callee);
3493 }
3494 }
3495}
3496
3497/* Return true if NODE has a caller from outside of its SCC that is not
3498 dead. Worker callback for cgraph_for_node_and_aliases. */
3499
3500static bool
3501has_undead_caller_from_outside_scc_p (struct cgraph_node *node,
3502 void *data ATTRIBUTE_UNUSED)
3503{
3504 struct cgraph_edge *cs;
3505
3506 for (cs = node->callers; cs; cs = cs->next_caller)
3507 if (cs->caller->thunk.thunk_p
3508 && cgraph_for_node_and_aliases (cs->caller,
3509 has_undead_caller_from_outside_scc_p,
3510 NULL, true))
3511 return true;
3512 else if (!edge_within_scc (cs)
3513 && !IPA_NODE_REF (cs->caller)->node_dead)
3514 return true;
3515 return false;
3516}
3517
3518
3519/* Identify nodes within the same SCC as NODE which are no longer needed
3520 because of new clones and will be removed as unreachable. */
3521
3522static void
3523identify_dead_nodes (struct cgraph_node *node)
3524{
3525 struct cgraph_node *v;
960bfb69 3526 for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
310bc633
MJ
3527 if (cgraph_will_be_removed_from_program_if_no_direct_calls (v)
3528 && !cgraph_for_node_and_aliases (v,
3529 has_undead_caller_from_outside_scc_p,
3530 NULL, true))
3531 IPA_NODE_REF (v)->node_dead = 1;
3532
960bfb69 3533 for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
310bc633
MJ
3534 if (!IPA_NODE_REF (v)->node_dead)
3535 spread_undeadness (v);
3536
3537 if (dump_file && (dump_flags & TDF_DETAILS))
3538 {
960bfb69 3539 for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
310bc633
MJ
3540 if (IPA_NODE_REF (v)->node_dead)
3541 fprintf (dump_file, " Marking node as dead: %s/%i.\n",
9de04252 3542 cgraph_node_name (v), v->symbol.order);
5e45130d 3543 }
310bc633
MJ
3544}
3545
3546/* The decision stage. Iterate over the topological order of call graph nodes
3547 TOPO and make specialized clones if deemed beneficial. */
3548
3549static void
3550ipcp_decision_stage (struct topo_info *topo)
3551{
3552 int i;
3553
3554 if (dump_file)
3555 fprintf (dump_file, "\nIPA decision stage:\n\n");
5e45130d 3556
310bc633 3557 for (i = topo->nnodes - 1; i >= 0; i--)
5e45130d 3558 {
310bc633
MJ
3559 struct cgraph_node *node = topo->order[i];
3560 bool change = false, iterate = true;
3561
3562 while (iterate)
3563 {
3564 struct cgraph_node *v;
3565 iterate = false;
960bfb69 3566 for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
310bc633
MJ
3567 if (cgraph_function_with_gimple_body_p (v)
3568 && ipcp_versionable_function_p (v))
3569 iterate |= decide_whether_version_node (v);
3570
3571 change |= iterate;
3572 }
3573 if (change)
3574 identify_dead_nodes (node);
518dc859 3575 }
518dc859
RL
3576}
3577
3578/* The IPCP driver. */
310bc633 3579
3cc1cccc 3580static unsigned int
518dc859
RL
3581ipcp_driver (void)
3582{
310bc633
MJ
3583 struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
3584 struct topo_info topo;
3585
310bc633
MJ
3586 ipa_check_create_node_params ();
3587 ipa_check_create_edge_args ();
3588 grow_next_edge_clone_vector ();
3589 edge_duplication_hook_holder =
3590 cgraph_add_edge_duplication_hook (&ipcp_edge_duplication_hook, NULL);
3591 ipcp_values_pool = create_alloc_pool ("IPA-CP values",
3592 sizeof (struct ipcp_value), 32);
3593 ipcp_sources_pool = create_alloc_pool ("IPA-CP value sources",
3594 sizeof (struct ipcp_value_source), 64);
2c9561b5
MJ
3595 ipcp_agg_lattice_pool = create_alloc_pool ("IPA_CP aggregate lattices",
3596 sizeof (struct ipcp_agg_lattice),
3597 32);
518dc859
RL
3598 if (dump_file)
3599 {
ca30a539
JH
3600 fprintf (dump_file, "\nIPA structures before propagation:\n");
3601 if (dump_flags & TDF_DETAILS)
3602 ipa_print_all_params (dump_file);
3603 ipa_print_all_jump_functions (dump_file);
518dc859 3604 }
310bc633
MJ
3605
3606 /* Topological sort. */
3607 build_toporder_info (&topo);
3608 /* Do the interprocedural propagation. */
3609 ipcp_propagate_stage (&topo);
3610 /* Decide what constant propagation and cloning should be performed. */
3611 ipcp_decision_stage (&topo);
3612
518dc859 3613 /* Free all IPCP structures. */
310bc633 3614 free_toporder_info (&topo);
9771b263 3615 next_edge_clone.release ();
310bc633 3616 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
e33c6cd6 3617 ipa_free_all_structures_after_ipa_cp ();
518dc859
RL
3618 if (dump_file)
3619 fprintf (dump_file, "\nIPA constant propagation end\n");
c2924966 3620 return 0;
518dc859
RL
3621}
3622
3949c4a7
MJ
3623/* Initialization and computation of IPCP data structures. This is the initial
3624 intraprocedural analysis of functions, which gathers information to be
3625 propagated later on. */
3626
129a37fc
JH
3627static void
3628ipcp_generate_summary (void)
3629{
3949c4a7
MJ
3630 struct cgraph_node *node;
3631
129a37fc
JH
3632 if (dump_file)
3633 fprintf (dump_file, "\nIPA constant propagation start:\n");
129a37fc 3634 ipa_register_cgraph_hooks ();
3949c4a7 3635
c47d0034 3636 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
3949c4a7 3637 {
960bfb69
JH
3638 node->local.versionable
3639 = tree_versionable_function_p (node->symbol.decl);
3949c4a7
MJ
3640 ipa_analyze_node (node);
3641 }
129a37fc
JH
3642}
3643
fb3f88cc 3644/* Write ipcp summary for nodes in SET. */
310bc633 3645
fb3f88cc 3646static void
f27c1867 3647ipcp_write_summary (void)
fb3f88cc 3648{
f27c1867 3649 ipa_prop_write_jump_functions ();
fb3f88cc
JH
3650}
3651
3652/* Read ipcp summary. */
310bc633 3653
fb3f88cc
JH
3654static void
3655ipcp_read_summary (void)
3656{
3657 ipa_prop_read_jump_functions ();
3658}
3659
518dc859 3660/* Gate for IPCP optimization. */
310bc633 3661
518dc859
RL
3662static bool
3663cgraph_gate_cp (void)
3664{
556ede65 3665 /* FIXME: We should remove the optimize check after we ensure we never run
61502ca8 3666 IPA passes when not optimizing. */
556ede65 3667 return flag_ipa_cp && optimize;
518dc859
RL
3668}
3669
7e5487a2 3670struct ipa_opt_pass_d pass_ipa_cp =
8ddbbcae
JH
3671{
3672 {
129a37fc 3673 IPA_PASS,
518dc859 3674 "cp", /* name */
2b4e6bf1 3675 OPTGROUP_NONE, /* optinfo_flags */
518dc859
RL
3676 cgraph_gate_cp, /* gate */
3677 ipcp_driver, /* execute */
3678 NULL, /* sub */
3679 NULL, /* next */
3680 0, /* static_pass_number */
3681 TV_IPA_CONSTANT_PROP, /* tv_id */
3682 0, /* properties_required */
535b544a 3683 0, /* properties_provided */
518dc859
RL
3684 0, /* properties_destroyed */
3685 0, /* todo_flags_start */
8f940ee6 3686 TODO_dump_symtab |
bb313b93 3687 TODO_remove_functions /* todo_flags_finish */
129a37fc
JH
3688 },
3689 ipcp_generate_summary, /* generate_summary */
fb3f88cc
JH
3690 ipcp_write_summary, /* write_summary */
3691 ipcp_read_summary, /* read_summary */
2c9561b5
MJ
3692 ipa_prop_write_all_agg_replacement, /* write_optimization_summary */
3693 ipa_prop_read_all_agg_replacement, /* read_optimization_summary */
e33c6cd6 3694 NULL, /* stmt_fixup */
129a37fc 3695 0, /* TODOs */
2c9561b5 3696 ipcp_transform_function, /* function_transform */
129a37fc 3697 NULL, /* variable_transform */
518dc859 3698};
This page took 3.156169 seconds and 5 git commands to generate.