]> gcc.gnu.org Git - gcc.git/blame - gcc/haifa-sched.c
Makefile.in (install-info): Don't use $realfile.
[gcc.git] / gcc / haifa-sched.c
CommitLineData
8c660648 1/* Instruction scheduling pass.
a4fc4b2d 2 Copyright (C) 1992, 93-97, 1998 Free Software Foundation, Inc.
8c660648
JL
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to the Free
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24/* Instruction scheduling pass.
25
26 This pass implements list scheduling within basic blocks. It is
27 run twice: (1) after flow analysis, but before register allocation,
28 and (2) after register allocation.
29
30 The first run performs interblock scheduling, moving insns between
31 different blocks in the same "region", and the second runs only
32 basic block scheduling.
33
34 Interblock motions performed are useful motions and speculative
35 motions, including speculative loads. Motions requiring code
36 duplication are not supported. The identification of motion type
37 and the check for validity of speculative motions requires
38 construction and analysis of the function's control flow graph.
39 The scheduler works as follows:
40
41 We compute insn priorities based on data dependencies. Flow
42 analysis only creates a fraction of the data-dependencies we must
43 observe: namely, only those dependencies which the combiner can be
44 expected to use. For this pass, we must therefore create the
45 remaining dependencies we need to observe: register dependencies,
46 memory dependencies, dependencies to keep function calls in order,
47 and the dependence between a conditional branch and the setting of
48 condition codes are all dealt with here.
49
50 The scheduler first traverses the data flow graph, starting with
51 the last instruction, and proceeding to the first, assigning values
52 to insn_priority as it goes. This sorts the instructions
53 topologically by data dependence.
54
55 Once priorities have been established, we order the insns using
56 list scheduling. This works as follows: starting with a list of
57 all the ready insns, and sorted according to priority number, we
58 schedule the insn from the end of the list by placing its
59 predecessors in the list according to their priority order. We
60 consider this insn scheduled by setting the pointer to the "end" of
61 the list to point to the previous insn. When an insn has no
62 predecessors, we either queue it until sufficient time has elapsed
63 or add it to the ready list. As the instructions are scheduled or
64 when stalls are introduced, the queue advances and dumps insns into
65 the ready list. When all insns down to the lowest priority have
66 been scheduled, the critical path of the basic block has been made
67 as short as possible. The remaining insns are then scheduled in
68 remaining slots.
69
70 Function unit conflicts are resolved during forward list scheduling
71 by tracking the time when each insn is committed to the schedule
72 and from that, the time the function units it uses must be free.
73 As insns on the ready list are considered for scheduling, those
74 that would result in a blockage of the already committed insns are
75 queued until no blockage will result.
76
77 The following list shows the order in which we want to break ties
78 among insns in the ready list:
79
80 1. choose insn with the longest path to end of bb, ties
81 broken by
82 2. choose insn with least contribution to register pressure,
83 ties broken by
84 3. prefer in-block upon interblock motion, ties broken by
85 4. prefer useful upon speculative motion, ties broken by
86 5. choose insn with largest control flow probability, ties
87 broken by
88 6. choose insn with the least dependences upon the previously
89 scheduled insn, or finally
2db45993
JL
90 7 choose the insn which has the most insns dependent on it.
91 8. choose insn with lowest UID.
8c660648
JL
92
93 Memory references complicate matters. Only if we can be certain
94 that memory references are not part of the data dependency graph
95 (via true, anti, or output dependence), can we move operations past
96 memory references. To first approximation, reads can be done
97 independently, while writes introduce dependencies. Better
98 approximations will yield fewer dependencies.
99
100 Before reload, an extended analysis of interblock data dependences
101 is required for interblock scheduling. This is performed in
102 compute_block_backward_dependences ().
103
104 Dependencies set up by memory references are treated in exactly the
105 same way as other dependencies, by using LOG_LINKS backward
106 dependences. LOG_LINKS are translated into INSN_DEPEND forward
107 dependences for the purpose of forward list scheduling.
108
109 Having optimized the critical path, we may have also unduly
110 extended the lifetimes of some registers. If an operation requires
111 that constants be loaded into registers, it is certainly desirable
112 to load those constants as early as necessary, but no earlier.
113 I.e., it will not do to load up a bunch of registers at the
114 beginning of a basic block only to use them at the end, if they
115 could be loaded later, since this may result in excessive register
116 utilization.
117
118 Note that since branches are never in basic blocks, but only end
119 basic blocks, this pass will not move branches. But that is ok,
120 since we can use GNU's delayed branch scheduling pass to take care
121 of this case.
122
123 Also note that no further optimizations based on algebraic
124 identities are performed, so this pass would be a good one to
125 perform instruction splitting, such as breaking up a multiply
126 instruction into shifts and adds where that is profitable.
127
128 Given the memory aliasing analysis that this pass should perform,
129 it should be possible to remove redundant stores to memory, and to
130 load values from registers instead of hitting memory.
131
132 Before reload, speculative insns are moved only if a 'proof' exists
133 that no exception will be caused by this, and if no live registers
134 exist that inhibit the motion (live registers constraints are not
135 represented by data dependence edges).
136
137 This pass must update information that subsequent passes expect to
138 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
139 reg_n_calls_crossed, and reg_live_length. Also, basic_block_head,
140 basic_block_end.
141
142 The information in the line number notes is carefully retained by
143 this pass. Notes that refer to the starting and ending of
144 exception regions are also carefully retained by this pass. All
145 other NOTE insns are grouped in their same relative order at the
146 beginning of basic blocks and regions that have been scheduled.
147
148 The main entry point for this pass is schedule_insns(), called for
149 each function. The work of the scheduler is organized in three
150 levels: (1) function level: insns are subject to splitting,
151 control-flow-graph is constructed, regions are computed (after
152 reload, each region is of one block), (2) region level: control
153 flow graph attributes required for interblock scheduling are
154 computed (dominators, reachability, etc.), data dependences and
155 priorities are computed, and (3) block level: insns in the block
156 are actually scheduled. */
157\f
8c660648 158#include "config.h"
5835e573 159#include "system.h"
8c660648
JL
160#include "rtl.h"
161#include "basic-block.h"
162#include "regs.h"
163#include "hard-reg-set.h"
164#include "flags.h"
165#include "insn-config.h"
166#include "insn-attr.h"
167#include "except.h"
487a6e06 168#include "toplev.h"
8c660648
JL
169
170extern char *reg_known_equiv_p;
171extern rtx *reg_known_value;
172
173#ifdef INSN_SCHEDULING
174
8c660648
JL
175/* target_units bitmask has 1 for each unit in the cpu. It should be
176 possible to compute this variable from the machine description.
177 But currently it is computed by examinning the insn list. Since
178 this is only needed for visualization, it seems an acceptable
179 solution. (For understanding the mapping of bits to units, see
180 definition of function_units[] in "insn-attrtab.c") */
181
61822835 182static int target_units = 0;
8c660648
JL
183
184/* issue_rate is the number of insns that can be scheduled in the same
185 machine cycle. It can be defined in the config/mach/mach.h file,
186 otherwise we set it to 1. */
187
188static int issue_rate;
189
62d65906
JL
190#ifndef ISSUE_RATE
191#define ISSUE_RATE 1
8c660648
JL
192#endif
193
cc132865 194/* sched-verbose controls the amount of debugging output the
8c660648
JL
195 scheduler prints. It is controlled by -fsched-verbose-N:
196 N>0 and no -DSR : the output is directed to stderr.
197 N>=10 will direct the printouts to stderr (regardless of -dSR).
198 N=1: same as -dSR.
199 N=2: bb's probabilities, detailed ready list info, unit/insn info.
200 N=3: rtl at abort point, control-flow, regions info.
cc132865 201 N=5: dependences info. */
8c660648
JL
202
203#define MAX_RGN_BLOCKS 10
204#define MAX_RGN_INSNS 100
205
8c660648
JL
206static int sched_verbose_param = 0;
207static int sched_verbose = 0;
8c660648
JL
208
209/* nr_inter/spec counts interblock/speculative motion for the function */
210static int nr_inter, nr_spec;
211
212
213/* debugging file. all printouts are sent to dump, which is always set,
214 either to stderr, or to the dump listing file (-dRS). */
215static FILE *dump = 0;
216
217/* fix_sched_param() is called from toplev.c upon detection
218 of the -fsched-***-N options. */
219
220void
221fix_sched_param (param, val)
222 char *param, *val;
223{
cc132865 224 if (!strcmp (param, "verbose"))
8c660648 225 sched_verbose_param = atoi (val);
8c660648
JL
226 else
227 warning ("fix_sched_param: unknown param: %s", param);
228}
229
230
231/* Arrays set up by scheduling for the same respective purposes as
232 similar-named arrays set up by flow analysis. We work with these
233 arrays during the scheduling pass so we can compare values against
234 unscheduled code.
235
236 Values of these arrays are copied at the end of this pass into the
237 arrays set up by flow analysis. */
238static int *sched_reg_n_calls_crossed;
239static int *sched_reg_live_length;
240static int *sched_reg_basic_block;
241
242/* We need to know the current block number during the post scheduling
243 update of live register information so that we can also update
244 REG_BASIC_BLOCK if a register changes blocks. */
245static int current_block_num;
246
247/* Element N is the next insn that sets (hard or pseudo) register
248 N within the current basic block; or zero, if there is no
249 such insn. Needed for new registers which may be introduced
250 by splitting insns. */
251static rtx *reg_last_uses;
252static rtx *reg_last_sets;
253static regset reg_pending_sets;
254static int reg_pending_sets_all;
255
256/* Vector indexed by INSN_UID giving the original ordering of the insns. */
257static int *insn_luid;
258#define INSN_LUID(INSN) (insn_luid[INSN_UID (INSN)])
259
260/* Vector indexed by INSN_UID giving each instruction a priority. */
261static int *insn_priority;
262#define INSN_PRIORITY(INSN) (insn_priority[INSN_UID (INSN)])
263
264static short *insn_costs;
265#define INSN_COST(INSN) insn_costs[INSN_UID (INSN)]
266
267/* Vector indexed by INSN_UID giving an encoding of the function units
268 used. */
269static short *insn_units;
270#define INSN_UNIT(INSN) insn_units[INSN_UID (INSN)]
271
272/* Vector indexed by INSN_UID giving each instruction a register-weight.
273 This weight is an estimation of the insn contribution to registers pressure. */
274static int *insn_reg_weight;
275#define INSN_REG_WEIGHT(INSN) (insn_reg_weight[INSN_UID (INSN)])
276
277/* Vector indexed by INSN_UID giving list of insns which
278 depend upon INSN. Unlike LOG_LINKS, it represents forward dependences. */
279static rtx *insn_depend;
280#define INSN_DEPEND(INSN) insn_depend[INSN_UID (INSN)]
281
282/* Vector indexed by INSN_UID. Initialized to the number of incoming
283 edges in forward dependence graph (= number of LOG_LINKS). As
284 scheduling procedes, dependence counts are decreased. An
285 instruction moves to the ready list when its counter is zero. */
286static int *insn_dep_count;
287#define INSN_DEP_COUNT(INSN) (insn_dep_count[INSN_UID (INSN)])
288
289/* Vector indexed by INSN_UID giving an encoding of the blockage range
290 function. The unit and the range are encoded. */
291static unsigned int *insn_blockage;
292#define INSN_BLOCKAGE(INSN) insn_blockage[INSN_UID (INSN)]
293#define UNIT_BITS 5
294#define BLOCKAGE_MASK ((1 << BLOCKAGE_BITS) - 1)
295#define ENCODE_BLOCKAGE(U, R) \
296((((U) << UNIT_BITS) << BLOCKAGE_BITS \
297 | MIN_BLOCKAGE_COST (R)) << BLOCKAGE_BITS \
298 | MAX_BLOCKAGE_COST (R))
299#define UNIT_BLOCKED(B) ((B) >> (2 * BLOCKAGE_BITS))
300#define BLOCKAGE_RANGE(B) \
301 (((((B) >> BLOCKAGE_BITS) & BLOCKAGE_MASK) << (HOST_BITS_PER_INT / 2)) \
5835e573 302 | ((B) & BLOCKAGE_MASK))
8c660648
JL
303
304/* Encodings of the `<name>_unit_blockage_range' function. */
305#define MIN_BLOCKAGE_COST(R) ((R) >> (HOST_BITS_PER_INT / 2))
306#define MAX_BLOCKAGE_COST(R) ((R) & ((1 << (HOST_BITS_PER_INT / 2)) - 1))
307
308#define DONE_PRIORITY -1
309#define MAX_PRIORITY 0x7fffffff
310#define TAIL_PRIORITY 0x7ffffffe
311#define LAUNCH_PRIORITY 0x7f000001
312#define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
313#define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
314
315/* Vector indexed by INSN_UID giving number of insns referring to this insn. */
316static int *insn_ref_count;
317#define INSN_REF_COUNT(INSN) (insn_ref_count[INSN_UID (INSN)])
318
319/* Vector indexed by INSN_UID giving line-number note in effect for each
320 insn. For line-number notes, this indicates whether the note may be
321 reused. */
322static rtx *line_note;
323#define LINE_NOTE(INSN) (line_note[INSN_UID (INSN)])
324
325/* Vector indexed by basic block number giving the starting line-number
326 for each basic block. */
327static rtx *line_note_head;
328
329/* List of important notes we must keep around. This is a pointer to the
330 last element in the list. */
331static rtx note_list;
332
333/* Regsets telling whether a given register is live or dead before the last
334 scheduled insn. Must scan the instructions once before scheduling to
335 determine what registers are live or dead at the end of the block. */
336static regset bb_live_regs;
337
338/* Regset telling whether a given register is live after the insn currently
339 being scheduled. Before processing an insn, this is equal to bb_live_regs
340 above. This is used so that we can find registers that are newly born/dead
341 after processing an insn. */
342static regset old_live_regs;
343
344/* The chain of REG_DEAD notes. REG_DEAD notes are removed from all insns
345 during the initial scan and reused later. If there are not exactly as
346 many REG_DEAD notes in the post scheduled code as there were in the
347 prescheduled code then we trigger an abort because this indicates a bug. */
348static rtx dead_notes;
349
350/* Queues, etc. */
351
352/* An instruction is ready to be scheduled when all insns preceding it
353 have already been scheduled. It is important to ensure that all
354 insns which use its result will not be executed until its result
355 has been computed. An insn is maintained in one of four structures:
356
357 (P) the "Pending" set of insns which cannot be scheduled until
358 their dependencies have been satisfied.
359 (Q) the "Queued" set of insns that can be scheduled when sufficient
360 time has passed.
361 (R) the "Ready" list of unscheduled, uncommitted insns.
362 (S) the "Scheduled" list of insns.
363
364 Initially, all insns are either "Pending" or "Ready" depending on
365 whether their dependencies are satisfied.
366
367 Insns move from the "Ready" list to the "Scheduled" list as they
368 are committed to the schedule. As this occurs, the insns in the
369 "Pending" list have their dependencies satisfied and move to either
370 the "Ready" list or the "Queued" set depending on whether
371 sufficient time has passed to make them ready. As time passes,
372 insns move from the "Queued" set to the "Ready" list. Insns may
373 move from the "Ready" list to the "Queued" set if they are blocked
374 due to a function unit conflict.
375
376 The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
377 insns, i.e., those that are ready, queued, and pending.
378 The "Queued" set (Q) is implemented by the variable `insn_queue'.
379 The "Ready" list (R) is implemented by the variables `ready' and
380 `n_ready'.
381 The "Scheduled" list (S) is the new insn chain built by this pass.
382
383 The transition (R->S) is implemented in the scheduling loop in
384 `schedule_block' when the best insn to schedule is chosen.
385 The transition (R->Q) is implemented in `queue_insn' when an
38e01259 386 insn is found to have a function unit conflict with the already
8c660648
JL
387 committed insns.
388 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
389 insns move from the ready list to the scheduled list.
390 The transition (Q->R) is implemented in 'queue_to_insn' as time
391 passes or stalls are introduced. */
392
393/* Implement a circular buffer to delay instructions until sufficient
394 time has passed. INSN_QUEUE_SIZE is a power of two larger than
395 MAX_BLOCKAGE and MAX_READY_COST computed by genattr.c. This is the
396 longest time an isnsn may be queued. */
397static rtx insn_queue[INSN_QUEUE_SIZE];
398static int q_ptr = 0;
399static int q_size = 0;
400#define NEXT_Q(X) (((X)+1) & (INSN_QUEUE_SIZE-1))
401#define NEXT_Q_AFTER(X, C) (((X)+C) & (INSN_QUEUE_SIZE-1))
402
403/* Vector indexed by INSN_UID giving the minimum clock tick at which
404 the insn becomes ready. This is used to note timing constraints for
405 insns in the pending list. */
406static int *insn_tick;
407#define INSN_TICK(INSN) (insn_tick[INSN_UID (INSN)])
408
409/* Data structure for keeping track of register information
410 during that register's life. */
411
412struct sometimes
413 {
414 int regno;
415 int live_length;
416 int calls_crossed;
417 };
418
419/* Forward declarations. */
420static void add_dependence PROTO ((rtx, rtx, enum reg_note));
421static void remove_dependence PROTO ((rtx, rtx));
422static rtx find_insn_list PROTO ((rtx, rtx));
423static int insn_unit PROTO ((rtx));
424static unsigned int blockage_range PROTO ((int, rtx));
425static void clear_units PROTO ((void));
426static int actual_hazard_this_instance PROTO ((int, int, rtx, int, int));
427static void schedule_unit PROTO ((int, rtx, int));
428static int actual_hazard PROTO ((int, rtx, int, int));
429static int potential_hazard PROTO ((int, rtx, int));
430static int insn_cost PROTO ((rtx, rtx, rtx));
431static int priority PROTO ((rtx));
432static void free_pending_lists PROTO ((void));
433static void add_insn_mem_dependence PROTO ((rtx *, rtx *, rtx, rtx));
434static void flush_pending_lists PROTO ((rtx, int));
435static void sched_analyze_1 PROTO ((rtx, rtx));
436static void sched_analyze_2 PROTO ((rtx, rtx));
437static void sched_analyze_insn PROTO ((rtx, rtx, rtx));
438static void sched_analyze PROTO ((rtx, rtx));
5835e573 439static void sched_note_set PROTO ((rtx, int));
01c7f350 440static int rank_for_schedule PROTO ((const GENERIC_PTR, const GENERIC_PTR));
8c660648
JL
441static void swap_sort PROTO ((rtx *, int));
442static void queue_insn PROTO ((rtx, int));
443static int schedule_insn PROTO ((rtx, rtx *, int, int));
444static void create_reg_dead_note PROTO ((rtx, rtx));
445static void attach_deaths PROTO ((rtx, rtx, int));
446static void attach_deaths_insn PROTO ((rtx));
447static int new_sometimes_live PROTO ((struct sometimes *, int, int));
448static void finish_sometimes_live PROTO ((struct sometimes *, int));
5835e573 449static int schedule_block PROTO ((int, int));
8c660648 450static rtx regno_use_in PROTO ((int, rtx));
5835e573 451static void split_hard_reg_notes PROTO ((rtx, rtx, rtx));
8c660648
JL
452static void new_insn_dead_notes PROTO ((rtx, rtx, rtx, rtx));
453static void update_n_sets PROTO ((rtx, int));
454static void update_flow_info PROTO ((rtx, rtx, rtx, rtx));
459b3825 455static char *safe_concat PROTO ((char *, char *, char *));
cc4fe0e2
L
456static int insn_issue_delay PROTO ((rtx));
457static int birthing_insn_p PROTO ((rtx));
458static void adjust_priority PROTO ((rtx));
8c660648
JL
459
460/* Mapping of insns to their original block prior to scheduling. */
461static int *insn_orig_block;
462#define INSN_BLOCK(insn) (insn_orig_block[INSN_UID (insn)])
463
464/* Some insns (e.g. call) are not allowed to move across blocks. */
465static char *cant_move;
466#define CANT_MOVE(insn) (cant_move[INSN_UID (insn)])
467
468/* Control flow graph edges are kept in circular lists. */
469typedef struct
470 {
471 int from_block;
472 int to_block;
473 int next_in;
474 int next_out;
475 }
476edge;
477static edge *edge_table;
478
479#define NEXT_IN(edge) (edge_table[edge].next_in)
480#define NEXT_OUT(edge) (edge_table[edge].next_out)
481#define FROM_BLOCK(edge) (edge_table[edge].from_block)
482#define TO_BLOCK(edge) (edge_table[edge].to_block)
483
484/* Number of edges in the control flow graph. (in fact larger than
485 that by 1, since edge 0 is unused.) */
486static int nr_edges;
487
488/* Circular list of incoming/outgoing edges of a block */
489static int *in_edges;
490static int *out_edges;
491
492#define IN_EDGES(block) (in_edges[block])
493#define OUT_EDGES(block) (out_edges[block])
494
495/* List of labels which cannot be deleted, needed for control
496 flow graph construction. */
497extern rtx forced_labels;
498
499
168cbdf9 500static int is_cfg_nonregular PROTO ((void));
a2e68776
JL
501static int build_control_flow PROTO ((int_list_ptr *, int_list_ptr *,
502 int *, int *));
8c660648
JL
503static void new_edge PROTO ((int, int));
504
505
506/* A region is the main entity for interblock scheduling: insns
507 are allowed to move between blocks in the same region, along
508 control flow graph edges, in the 'up' direction. */
509typedef struct
510 {
511 int rgn_nr_blocks; /* number of blocks in region */
512 int rgn_blocks; /* blocks in the region (actually index in rgn_bb_table) */
513 }
514region;
515
516/* Number of regions in the procedure */
517static int nr_regions;
518
519/* Table of region descriptions */
520static region *rgn_table;
521
522/* Array of lists of regions' blocks */
523static int *rgn_bb_table;
524
525/* Topological order of blocks in the region (if b2 is reachable from
526 b1, block_to_bb[b2] > block_to_bb[b1]).
527 Note: A basic block is always referred to by either block or b,
528 while its topological order name (in the region) is refered to by
529 bb.
530 */
531static int *block_to_bb;
532
533/* The number of the region containing a block. */
534static int *containing_rgn;
535
536#define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
537#define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
538#define BLOCK_TO_BB(block) (block_to_bb[block])
539#define CONTAINING_RGN(block) (containing_rgn[block])
540
541void debug_regions PROTO ((void));
542static void find_single_block_region PROTO ((void));
a2e68776
JL
543static void find_rgns PROTO ((int_list_ptr *, int_list_ptr *,
544 int *, int *, sbitmap *));
8c660648
JL
545static int too_large PROTO ((int, int *, int *));
546
547extern void debug_live PROTO ((int, int));
548
549/* Blocks of the current region being scheduled. */
550static int current_nr_blocks;
551static int current_blocks;
552
553/* The mapping from bb to block */
554#define BB_TO_BLOCK(bb) (rgn_bb_table[current_blocks + (bb)])
555
556
557/* Bit vectors and bitset operations are needed for computations on
558 the control flow graph. */
559
560typedef unsigned HOST_WIDE_INT *bitset;
561typedef struct
562 {
563 int *first_member; /* pointer to the list start in bitlst_table. */
564 int nr_members; /* the number of members of the bit list. */
565 }
566bitlst;
567
61822835
JL
568static int bitlst_table_last;
569static int bitlst_table_size;
8c660648
JL
570static int *bitlst_table;
571
572static char bitset_member PROTO ((bitset, int, int));
573static void extract_bitlst PROTO ((bitset, int, bitlst *));
574
575/* target info declarations.
576
577 The block currently being scheduled is referred to as the "target" block,
578 while other blocks in the region from which insns can be moved to the
579 target are called "source" blocks. The candidate structure holds info
580 about such sources: are they valid? Speculative? Etc. */
581typedef bitlst bblst;
582typedef struct
583 {
584 char is_valid;
585 char is_speculative;
586 int src_prob;
587 bblst split_bbs;
588 bblst update_bbs;
589 }
590candidate;
591
592static candidate *candidate_table;
593
594/* A speculative motion requires checking live information on the path
595 from 'source' to 'target'. The split blocks are those to be checked.
596 After a speculative motion, live information should be modified in
597 the 'update' blocks.
598
599 Lists of split and update blocks for each candidate of the current
600 target are in array bblst_table */
61822835 601static int *bblst_table, bblst_size, bblst_last;
8c660648
JL
602
603#define IS_VALID(src) ( candidate_table[src].is_valid )
604#define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
605#define SRC_PROB(src) ( candidate_table[src].src_prob )
606
607/* The bb being currently scheduled. */
61822835 608static int target_bb;
8c660648
JL
609
610/* List of edges. */
611typedef bitlst edgelst;
612
613/* target info functions */
614static void split_edges PROTO ((int, int, edgelst *));
615static void compute_trg_info PROTO ((int));
616void debug_candidate PROTO ((int));
617void debug_candidates PROTO ((int));
618
619
620/* Bit-set of bbs, where bit 'i' stands for bb 'i'. */
621typedef bitset bbset;
622
623/* Number of words of the bbset. */
61822835 624static int bbset_size;
8c660648
JL
625
626/* Dominators array: dom[i] contains the bbset of dominators of
627 bb i in the region. */
61822835 628static bbset *dom;
8c660648
JL
629
630/* bb 0 is the only region entry */
631#define IS_RGN_ENTRY(bb) (!bb)
632
633/* Is bb_src dominated by bb_trg. */
634#define IS_DOMINATED(bb_src, bb_trg) \
635( bitset_member (dom[bb_src], bb_trg, bbset_size) )
636
637/* Probability: Prob[i] is a float in [0, 1] which is the probability
638 of bb i relative to the region entry. */
61822835 639static float *prob;
8c660648
JL
640
641/* The probability of bb_src, relative to bb_trg. Note, that while the
642 'prob[bb]' is a float in [0, 1], this macro returns an integer
643 in [0, 100]. */
644#define GET_SRC_PROB(bb_src, bb_trg) ((int) (100.0 * (prob[bb_src] / \
645 prob[bb_trg])))
646
647/* Bit-set of edges, where bit i stands for edge i. */
648typedef bitset edgeset;
649
650/* Number of edges in the region. */
61822835 651static int rgn_nr_edges;
8c660648
JL
652
653/* Array of size rgn_nr_edges. */
61822835 654static int *rgn_edges;
8c660648
JL
655
656/* Number of words in an edgeset. */
61822835 657static int edgeset_size;
8c660648
JL
658
659/* Mapping from each edge in the graph to its number in the rgn. */
61822835 660static int *edge_to_bit;
8c660648
JL
661#define EDGE_TO_BIT(edge) (edge_to_bit[edge])
662
663/* The split edges of a source bb is different for each target
664 bb. In order to compute this efficiently, the 'potential-split edges'
665 are computed for each bb prior to scheduling a region. This is actually
666 the split edges of each bb relative to the region entry.
667
668 pot_split[bb] is the set of potential split edges of bb. */
61822835 669static edgeset *pot_split;
8c660648
JL
670
671/* For every bb, a set of its ancestor edges. */
61822835 672static edgeset *ancestor_edges;
8c660648
JL
673
674static void compute_dom_prob_ps PROTO ((int));
675
676#define ABS_VALUE(x) (((x)<0)?(-(x)):(x))
677#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (INSN_BLOCK (INSN))))
678#define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (INSN_BLOCK (INSN))))
679#define INSN_BB(INSN) (BLOCK_TO_BB (INSN_BLOCK (INSN)))
680
681/* parameters affecting the decision of rank_for_schedule() */
682#define MIN_DIFF_PRIORITY 2
683#define MIN_PROBABILITY 40
684#define MIN_PROB_DIFF 10
685
686/* speculative scheduling functions */
687static int check_live_1 PROTO ((int, rtx));
688static void update_live_1 PROTO ((int, rtx));
5835e573
KG
689static int check_live PROTO ((rtx, int));
690static void update_live PROTO ((rtx, int));
8c660648
JL
691static void set_spec_fed PROTO ((rtx));
692static int is_pfree PROTO ((rtx, int, int));
693static int find_conditional_protection PROTO ((rtx, int));
694static int is_conditionally_protected PROTO ((rtx, int, int));
695static int may_trap_exp PROTO ((rtx, int));
ac957f13 696static int haifa_classify_insn PROTO ((rtx));
e009aaf3 697static int is_prisky PROTO ((rtx, int, int));
8c660648
JL
698static int is_exception_free PROTO ((rtx, int, int));
699
700static char find_insn_mem_list PROTO ((rtx, rtx, rtx, rtx));
701static void compute_block_forward_dependences PROTO ((int));
702static void init_rgn_data_dependences PROTO ((int));
703static void add_branch_dependences PROTO ((rtx, rtx));
704static void compute_block_backward_dependences PROTO ((int));
705void debug_dependencies PROTO ((void));
706
707/* Notes handling mechanism:
708 =========================
709 Generally, NOTES are saved before scheduling and restored after scheduling.
710 The scheduler distinguishes between three types of notes:
711
712 (1) LINE_NUMBER notes, generated and used for debugging. Here,
713 before scheduling a region, a pointer to the LINE_NUMBER note is
714 added to the insn following it (in save_line_notes()), and the note
715 is removed (in rm_line_notes() and unlink_line_notes()). After
716 scheduling the region, this pointer is used for regeneration of
717 the LINE_NUMBER note (in restore_line_notes()).
718
719 (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
720 Before scheduling a region, a pointer to the note is added to the insn
721 that follows or precedes it. (This happens as part of the data dependence
722 computation). After scheduling an insn, the pointer contained in it is
723 used for regenerating the corresponding note (in reemit_notes).
724
725 (3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
726 these notes are put in a list (in rm_other_notes() and
727 unlink_other_notes ()). After scheduling the block, these notes are
728 inserted at the beginning of the block (in schedule_block()). */
729
730static rtx unlink_other_notes PROTO ((rtx, rtx));
731static rtx unlink_line_notes PROTO ((rtx, rtx));
732static void rm_line_notes PROTO ((int));
733static void save_line_notes PROTO ((int));
734static void restore_line_notes PROTO ((int));
735static void rm_redundant_line_notes PROTO ((void));
736static void rm_other_notes PROTO ((rtx, rtx));
737static rtx reemit_notes PROTO ((rtx, rtx));
738
739static void get_block_head_tail PROTO ((int, rtx *, rtx *));
740
741static void find_pre_sched_live PROTO ((int));
742static void find_post_sched_live PROTO ((int));
743static void update_reg_usage PROTO ((void));
c6a754f2 744static int queue_to_ready PROTO ((rtx [], int));
8c660648 745
9a8b0889 746static void debug_ready_list PROTO ((rtx[], int));
cc4fe0e2 747static void init_target_units PROTO ((void));
8c660648 748static void insn_print_units PROTO ((rtx));
cc4fe0e2
L
749static int get_visual_tbl_length PROTO ((void));
750static void init_block_visualization PROTO ((void));
8c660648
JL
751static void print_block_visualization PROTO ((int, char *));
752static void visualize_scheduled_insns PROTO ((int, int));
753static void visualize_no_unit PROTO ((rtx));
754static void visualize_stall_cycles PROTO ((int, int));
755static void print_exp PROTO ((char *, rtx, int));
756static void print_value PROTO ((char *, rtx, int));
757static void print_pattern PROTO ((char *, rtx, int));
758static void print_insn PROTO ((char *, rtx, int));
759void debug_reg_vector PROTO ((regset));
760
761static rtx move_insn1 PROTO ((rtx, rtx));
762static rtx move_insn PROTO ((rtx, rtx));
763static rtx group_leader PROTO ((rtx));
764static int set_priorities PROTO ((int));
765static void init_rtx_vector PROTO ((rtx **, rtx *, int, int));
766static void schedule_region PROTO ((int));
767static void split_block_insns PROTO ((int));
768
769#endif /* INSN_SCHEDULING */
770\f
771#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
772
773/* Helper functions for instruction scheduling. */
774
ebb7b10b
RH
775/* An INSN_LIST containing all INSN_LISTs allocated but currently unused. */
776static rtx unused_insn_list;
777
778/* An EXPR_LIST containing all EXPR_LISTs allocated but currently unused. */
779static rtx unused_expr_list;
780
781static void free_list PROTO ((rtx *, rtx *));
782static rtx alloc_INSN_LIST PROTO ((rtx, rtx));
783static rtx alloc_EXPR_LIST PROTO ((int, rtx, rtx));
784
785static void
786free_list (listp, unused_listp)
787 rtx *listp, *unused_listp;
788{
789 register rtx link, prev_link;
790
791 if (*listp == 0)
792 return;
793
794 prev_link = *listp;
795 link = XEXP (prev_link, 1);
796
797 while (link)
798 {
799 prev_link = link;
800 link = XEXP (link, 1);
801 }
802
803 XEXP (prev_link, 1) = *unused_listp;
804 *unused_listp = *listp;
805 *listp = 0;
806}
807
459b3825 808static rtx
ebb7b10b
RH
809alloc_INSN_LIST (val, next)
810 rtx val, next;
811{
812 rtx r;
813
814 if (unused_insn_list)
815 {
816 r = unused_insn_list;
817 unused_insn_list = XEXP (r, 1);
818 XEXP (r, 0) = val;
819 XEXP (r, 1) = next;
820 PUT_REG_NOTE_KIND (r, VOIDmode);
821 }
822 else
823 r = gen_rtx_INSN_LIST (VOIDmode, val, next);
824
825 return r;
826}
827
459b3825 828static rtx
ebb7b10b
RH
829alloc_EXPR_LIST (kind, val, next)
830 int kind;
831 rtx val, next;
832{
833 rtx r;
834
835 if (unused_insn_list)
836 {
837 r = unused_insn_list;
838 unused_insn_list = XEXP (r, 1);
839 XEXP (r, 0) = val;
840 XEXP (r, 1) = next;
841 PUT_REG_NOTE_KIND (r, kind);
842 }
843 else
844 r = gen_rtx_EXPR_LIST (kind, val, next);
845
846 return r;
847}
848
8c660648
JL
849/* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
850 LOG_LINKS of INSN, if not already there. DEP_TYPE indicates the type
851 of dependence that this link represents. */
852
853static void
854add_dependence (insn, elem, dep_type)
855 rtx insn;
856 rtx elem;
857 enum reg_note dep_type;
858{
859 rtx link, next;
860
861 /* Don't depend an insn on itself. */
862 if (insn == elem)
863 return;
864
865 /* If elem is part of a sequence that must be scheduled together, then
866 make the dependence point to the last insn of the sequence.
867 When HAVE_cc0, it is possible for NOTEs to exist between users and
868 setters of the condition codes, so we must skip past notes here.
869 Otherwise, NOTEs are impossible here. */
870
871 next = NEXT_INSN (elem);
872
873#ifdef HAVE_cc0
874 while (next && GET_CODE (next) == NOTE)
875 next = NEXT_INSN (next);
876#endif
877
878 if (next && SCHED_GROUP_P (next)
879 && GET_CODE (next) != CODE_LABEL)
880 {
881 /* Notes will never intervene here though, so don't bother checking
882 for them. */
883 /* We must reject CODE_LABELs, so that we don't get confused by one
884 that has LABEL_PRESERVE_P set, which is represented by the same
885 bit in the rtl as SCHED_GROUP_P. A CODE_LABEL can never be
886 SCHED_GROUP_P. */
887 while (NEXT_INSN (next) && SCHED_GROUP_P (NEXT_INSN (next))
888 && GET_CODE (NEXT_INSN (next)) != CODE_LABEL)
889 next = NEXT_INSN (next);
890
891 /* Again, don't depend an insn on itself. */
892 if (insn == next)
893 return;
894
895 /* Make the dependence to NEXT, the last insn of the group, instead
896 of the original ELEM. */
897 elem = next;
898 }
899
900#ifdef INSN_SCHEDULING
901 /* (This code is guarded by INSN_SCHEDULING, otherwise INSN_BB is undefined.)
902 No need for interblock dependences with calls, since
903 calls are not moved between blocks. Note: the edge where
904 elem is a CALL is still required. */
905 if (GET_CODE (insn) == CALL_INSN
906 && (INSN_BB (elem) != INSN_BB (insn)))
907 return;
908
909#endif
910
911 /* Check that we don't already have this dependence. */
912 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
913 if (XEXP (link, 0) == elem)
914 {
915 /* If this is a more restrictive type of dependence than the existing
916 one, then change the existing dependence to this type. */
917 if ((int) dep_type < (int) REG_NOTE_KIND (link))
918 PUT_REG_NOTE_KIND (link, dep_type);
919 return;
920 }
921 /* Might want to check one level of transitivity to save conses. */
922
ebb7b10b
RH
923 link = alloc_INSN_LIST (elem, LOG_LINKS (insn));
924 LOG_LINKS (insn) = link;
925
8c660648
JL
926 /* Insn dependency, not data dependency. */
927 PUT_REG_NOTE_KIND (link, dep_type);
8c660648
JL
928}
929
930/* Remove ELEM wrapped in an INSN_LIST from the LOG_LINKS
931 of INSN. Abort if not found. */
932
933static void
934remove_dependence (insn, elem)
935 rtx insn;
936 rtx elem;
937{
ebb7b10b 938 rtx prev, link, next;
8c660648
JL
939 int found = 0;
940
ebb7b10b 941 for (prev = 0, link = LOG_LINKS (insn); link; link = next)
8c660648 942 {
ebb7b10b 943 next = XEXP (link, 1);
8c660648
JL
944 if (XEXP (link, 0) == elem)
945 {
946 if (prev)
ebb7b10b 947 XEXP (prev, 1) = next;
8c660648 948 else
ebb7b10b
RH
949 LOG_LINKS (insn) = next;
950
951 XEXP (link, 1) = unused_insn_list;
952 unused_insn_list = link;
953
8c660648
JL
954 found = 1;
955 }
6d8ccdbb
JL
956 else
957 prev = link;
8c660648
JL
958 }
959
960 if (!found)
961 abort ();
962 return;
963}
964\f
965#ifndef INSN_SCHEDULING
966void
967schedule_insns (dump_file)
968 FILE *dump_file;
969{
970}
971#else
972#ifndef __GNUC__
973#define __inline
974#endif
975
cbb13457
MM
976#ifndef HAIFA_INLINE
977#define HAIFA_INLINE __inline
978#endif
979
8c660648
JL
980/* Computation of memory dependencies. */
981
982/* The *_insns and *_mems are paired lists. Each pending memory operation
983 will have a pointer to the MEM rtx on one list and a pointer to the
984 containing insn on the other list in the same place in the list. */
985
986/* We can't use add_dependence like the old code did, because a single insn
987 may have multiple memory accesses, and hence needs to be on the list
988 once for each memory access. Add_dependence won't let you add an insn
989 to a list more than once. */
990
991/* An INSN_LIST containing all insns with pending read operations. */
992static rtx pending_read_insns;
993
994/* An EXPR_LIST containing all MEM rtx's which are pending reads. */
995static rtx pending_read_mems;
996
997/* An INSN_LIST containing all insns with pending write operations. */
998static rtx pending_write_insns;
999
1000/* An EXPR_LIST containing all MEM rtx's which are pending writes. */
1001static rtx pending_write_mems;
1002
1003/* Indicates the combined length of the two pending lists. We must prevent
1004 these lists from ever growing too large since the number of dependencies
1005 produced is at least O(N*N), and execution time is at least O(4*N*N), as
1006 a function of the length of these pending lists. */
1007
1008static int pending_lists_length;
1009
8c660648
JL
1010/* The last insn upon which all memory references must depend.
1011 This is an insn which flushed the pending lists, creating a dependency
1012 between it and all previously pending memory references. This creates
1013 a barrier (or a checkpoint) which no memory reference is allowed to cross.
1014
1015 This includes all non constant CALL_INSNs. When we do interprocedural
1016 alias analysis, this restriction can be relaxed.
1017 This may also be an INSN that writes memory if the pending lists grow
1018 too large. */
1019
1020static rtx last_pending_memory_flush;
1021
1022/* The last function call we have seen. All hard regs, and, of course,
1023 the last function call, must depend on this. */
1024
1025static rtx last_function_call;
1026
1027/* The LOG_LINKS field of this is a list of insns which use a pseudo register
1028 that does not already cross a call. We create dependencies between each
1029 of those insn and the next call insn, to ensure that they won't cross a call
1030 after scheduling is done. */
1031
1032static rtx sched_before_next_call;
1033
1034/* Pointer to the last instruction scheduled. Used by rank_for_schedule,
1035 so that insns independent of the last scheduled insn will be preferred
1036 over dependent instructions. */
1037
1038static rtx last_scheduled_insn;
1039
1040/* Data structures for the computation of data dependences in a regions. We
1041 keep one copy of each of the declared above variables for each bb in the
1042 region. Before analyzing the data dependences for a bb, its variables
1043 are initialized as a function of the variables of its predecessors. When
1044 the analysis for a bb completes, we save the contents of each variable X
1045 to a corresponding bb_X[bb] variable. For example, pending_read_insns is
1046 copied to bb_pending_read_insns[bb]. Another change is that few
1047 variables are now a list of insns rather than a single insn:
1048 last_pending_memory_flash, last_function_call, reg_last_sets. The
1049 manipulation of these variables was changed appropriately. */
1050
1051static rtx **bb_reg_last_uses;
1052static rtx **bb_reg_last_sets;
1053
1054static rtx *bb_pending_read_insns;
1055static rtx *bb_pending_read_mems;
1056static rtx *bb_pending_write_insns;
1057static rtx *bb_pending_write_mems;
1058static int *bb_pending_lists_length;
1059
1060static rtx *bb_last_pending_memory_flush;
1061static rtx *bb_last_function_call;
1062static rtx *bb_sched_before_next_call;
1063
1064/* functions for construction of the control flow graph. */
1065
1066/* Return 1 if control flow graph should not be constructed, 0 otherwise.
168cbdf9 1067
8c660648 1068 We decide not to build the control flow graph if there is possibly more
168cbdf9
JL
1069 than one entry to the function, if computed branches exist, of if we
1070 have nonlocal gotos. */
8c660648 1071
168cbdf9 1072static int
8c660648
JL
1073is_cfg_nonregular ()
1074{
1075 int b;
1076 rtx insn;
1077 RTX_CODE code;
1078
168cbdf9
JL
1079 /* If we have a label that could be the target of a nonlocal goto, then
1080 the cfg is not well structured. */
1081 if (nonlocal_label_rtx_list () != NULL)
1082 return 1;
8c660648 1083
168cbdf9 1084 /* If we have any forced labels, then the cfg is not well structured. */
8c660648 1085 if (forced_labels)
168cbdf9 1086 return 1;
8c660648 1087
4d1d8045
BS
1088 /* If this function has a computed jump, then we consider the cfg
1089 not well structured. */
1090 if (current_function_has_computed_jump)
1091 return 1;
1092
168cbdf9
JL
1093 /* If we have exception handlers, then we consider the cfg not well
1094 structured. ?!? We should be able to handle this now that flow.c
1095 computes an accurate cfg for EH. */
8c660648 1096 if (exception_handler_labels)
168cbdf9 1097 return 1;
8c660648 1098
168cbdf9
JL
1099 /* If we have non-jumping insns which refer to labels, then we consider
1100 the cfg not well structured. */
8c660648
JL
1101 /* check for labels referred to other thn by jumps */
1102 for (b = 0; b < n_basic_blocks; b++)
1103 for (insn = basic_block_head[b];; insn = NEXT_INSN (insn))
1104 {
1105 code = GET_CODE (insn);
1106 if (GET_RTX_CLASS (code) == 'i')
1107 {
1108 rtx note;
1109
1110 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1111 if (REG_NOTE_KIND (note) == REG_LABEL)
168cbdf9 1112 return 1;
8c660648
JL
1113 }
1114
1115 if (insn == basic_block_end[b])
1116 break;
1117 }
1118
168cbdf9 1119 /* All the tests passed. Consider the cfg well structured. */
8c660648
JL
1120 return 0;
1121}
1122
5ece9746
JL
1123/* Build the control flow graph and set nr_edges.
1124
1125 Instead of trying to build a cfg ourselves, we rely on flow to
168cbdf9 1126 do it for us. Stamp out useless code (and bug) duplication.
8c660648 1127
168cbdf9
JL
1128 Return nonzero if an irregularity in the cfg is found which would
1129 prevent cross block scheduling. */
1130
1131static int
a2e68776
JL
1132build_control_flow (s_preds, s_succs, num_preds, num_succs)
1133 int_list_ptr *s_preds;
1134 int_list_ptr *s_succs;
1135 int *num_preds;
1136 int *num_succs;
8c660648 1137{
081f5e7e 1138 int i;
5ece9746 1139 int_list_ptr succ;
168cbdf9 1140 int unreachable;
5ece9746 1141
168cbdf9
JL
1142 /* Count the number of edges in the cfg. */
1143 nr_edges = 0;
1144 unreachable = 0;
1145 for (i = 0; i < n_basic_blocks; i++)
1146 {
1147 nr_edges += num_succs[i];
15ebe47d
JL
1148
1149 /* Unreachable loops with more than one basic block are detected
1150 during the DFS traversal in find_rgns.
1151
1152 Unreachable loops with a single block are detected here. This
1153 test is redundant with the one in find_rgns, but it's much
1154 cheaper to go ahead and catch the trivial case here. */
a8afd67b
JW
1155 if (num_preds[i] == 0
1156 || (num_preds[i] == 1 && INT_LIST_VAL (s_preds[i]) == i))
168cbdf9
JL
1157 unreachable = 1;
1158 }
1159
1160 /* Account for entry/exit edges. */
1161 nr_edges += 2;
1162
1163 in_edges = (int *) xmalloc (n_basic_blocks * sizeof (int));
1164 out_edges = (int *) xmalloc (n_basic_blocks * sizeof (int));
1165 bzero ((char *) in_edges, n_basic_blocks * sizeof (int));
1166 bzero ((char *) out_edges, n_basic_blocks * sizeof (int));
1167
1168 edge_table = (edge *) xmalloc ((nr_edges) * sizeof (edge));
1169 bzero ((char *) edge_table, ((nr_edges) * sizeof (edge)));
1170
8c660648
JL
1171 nr_edges = 0;
1172 for (i = 0; i < n_basic_blocks; i++)
5ece9746
JL
1173 for (succ = s_succs[i]; succ; succ = succ->next)
1174 {
1175 if (INT_LIST_VAL (succ) != EXIT_BLOCK)
1176 new_edge (i, INT_LIST_VAL (succ));
1177 }
8c660648
JL
1178
1179 /* increment by 1, since edge 0 is unused. */
1180 nr_edges++;
1181
168cbdf9 1182 return unreachable;
8c660648
JL
1183}
1184
1185
5ece9746 1186/* Record an edge in the control flow graph from SOURCE to TARGET.
8c660648 1187
5ece9746
JL
1188 In theory, this is redundant with the s_succs computed above, but
1189 we have not converted all of haifa to use information from the
1190 integer lists. */
8c660648
JL
1191
1192static void
1193new_edge (source, target)
1194 int source, target;
1195{
1196 int e, next_edge;
1197 int curr_edge, fst_edge;
1198
1199 /* check for duplicates */
1200 fst_edge = curr_edge = OUT_EDGES (source);
1201 while (curr_edge)
1202 {
1203 if (FROM_BLOCK (curr_edge) == source
1204 && TO_BLOCK (curr_edge) == target)
1205 {
1206 return;
1207 }
1208
1209 curr_edge = NEXT_OUT (curr_edge);
1210
1211 if (fst_edge == curr_edge)
1212 break;
1213 }
1214
1215 e = ++nr_edges;
1216
1217 FROM_BLOCK (e) = source;
1218 TO_BLOCK (e) = target;
1219
1220 if (OUT_EDGES (source))
1221 {
1222 next_edge = NEXT_OUT (OUT_EDGES (source));
1223 NEXT_OUT (OUT_EDGES (source)) = e;
1224 NEXT_OUT (e) = next_edge;
1225 }
1226 else
1227 {
1228 OUT_EDGES (source) = e;
1229 NEXT_OUT (e) = e;
1230 }
1231
1232 if (IN_EDGES (target))
1233 {
1234 next_edge = NEXT_IN (IN_EDGES (target));
1235 NEXT_IN (IN_EDGES (target)) = e;
1236 NEXT_IN (e) = next_edge;
1237 }
1238 else
1239 {
1240 IN_EDGES (target) = e;
1241 NEXT_IN (e) = e;
1242 }
1243}
1244
1245
1246/* BITSET macros for operations on the control flow graph. */
1247
1248/* Compute bitwise union of two bitsets. */
1249#define BITSET_UNION(set1, set2, len) \
1250do { register bitset tp = set1, sp = set2; \
1251 register int i; \
1252 for (i = 0; i < len; i++) \
1253 *(tp++) |= *(sp++); } while (0)
1254
1255/* Compute bitwise intersection of two bitsets. */
1256#define BITSET_INTER(set1, set2, len) \
1257do { register bitset tp = set1, sp = set2; \
1258 register int i; \
1259 for (i = 0; i < len; i++) \
1260 *(tp++) &= *(sp++); } while (0)
1261
1262/* Compute bitwise difference of two bitsets. */
1263#define BITSET_DIFFER(set1, set2, len) \
1264do { register bitset tp = set1, sp = set2; \
1265 register int i; \
1266 for (i = 0; i < len; i++) \
1267 *(tp++) &= ~*(sp++); } while (0)
1268
1269/* Inverts every bit of bitset 'set' */
1270#define BITSET_INVERT(set, len) \
1271do { register bitset tmpset = set; \
1272 register int i; \
1273 for (i = 0; i < len; i++, tmpset++) \
1274 *tmpset = ~*tmpset; } while (0)
1275
1276/* Turn on the index'th bit in bitset set. */
1277#define BITSET_ADD(set, index, len) \
1278{ \
1279 if (index >= HOST_BITS_PER_WIDE_INT * len) \
1280 abort (); \
1281 else \
1282 set[index/HOST_BITS_PER_WIDE_INT] |= \
1283 1 << (index % HOST_BITS_PER_WIDE_INT); \
1284}
1285
1286/* Turn off the index'th bit in set. */
1287#define BITSET_REMOVE(set, index, len) \
1288{ \
1289 if (index >= HOST_BITS_PER_WIDE_INT * len) \
1290 abort (); \
1291 else \
1292 set[index/HOST_BITS_PER_WIDE_INT] &= \
1293 ~(1 << (index%HOST_BITS_PER_WIDE_INT)); \
1294}
1295
1296
1297/* Check if the index'th bit in bitset set is on. */
1298
1299static char
1300bitset_member (set, index, len)
1301 bitset set;
1302 int index, len;
1303{
1304 if (index >= HOST_BITS_PER_WIDE_INT * len)
1305 abort ();
1306 return (set[index / HOST_BITS_PER_WIDE_INT] &
1307 1 << (index % HOST_BITS_PER_WIDE_INT)) ? 1 : 0;
1308}
1309
1310
1311/* Translate a bit-set SET to a list BL of the bit-set members. */
1312
1313static void
1314extract_bitlst (set, len, bl)
1315 bitset set;
1316 int len;
1317 bitlst *bl;
1318{
1319 int i, j, offset;
1320 unsigned HOST_WIDE_INT word;
1321
1322 /* bblst table space is reused in each call to extract_bitlst */
1323 bitlst_table_last = 0;
1324
1325 bl->first_member = &bitlst_table[bitlst_table_last];
1326 bl->nr_members = 0;
1327
1328 for (i = 0; i < len; i++)
1329 {
1330 word = set[i];
1331 offset = i * HOST_BITS_PER_WIDE_INT;
1332 for (j = 0; word; j++)
1333 {
1334 if (word & 1)
1335 {
1336 bitlst_table[bitlst_table_last++] = offset;
1337 (bl->nr_members)++;
1338 }
1339 word >>= 1;
1340 ++offset;
1341 }
1342 }
1343
1344}
1345
1346
1347/* functions for the construction of regions */
1348
1349/* Print the regions, for debugging purposes. Callable from debugger. */
1350
1351void
1352debug_regions ()
1353{
1354 int rgn, bb;
1355
1356 fprintf (dump, "\n;; ------------ REGIONS ----------\n\n");
1357 for (rgn = 0; rgn < nr_regions; rgn++)
1358 {
1359 fprintf (dump, ";;\trgn %d nr_blocks %d:\n", rgn,
1360 rgn_table[rgn].rgn_nr_blocks);
1361 fprintf (dump, ";;\tbb/block: ");
1362
1363 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
1364 {
1365 current_blocks = RGN_BLOCKS (rgn);
1366
1367 if (bb != BLOCK_TO_BB (BB_TO_BLOCK (bb)))
1368 abort ();
1369
1370 fprintf (dump, " %d/%d ", bb, BB_TO_BLOCK (bb));
1371 }
1372
1373 fprintf (dump, "\n\n");
1374 }
1375}
1376
1377
1378/* Build a single block region for each basic block in the function.
1379 This allows for using the same code for interblock and basic block
1380 scheduling. */
1381
1382static void
1383find_single_block_region ()
1384{
1385 int i;
1386
1387 for (i = 0; i < n_basic_blocks; i++)
1388 {
1389 rgn_bb_table[i] = i;
1390 RGN_NR_BLOCKS (i) = 1;
1391 RGN_BLOCKS (i) = i;
1392 CONTAINING_RGN (i) = i;
1393 BLOCK_TO_BB (i) = 0;
1394 }
1395 nr_regions = n_basic_blocks;
1396}
1397
1398
1399/* Update number of blocks and the estimate for number of insns
1400 in the region. Return 1 if the region is "too large" for interblock
1401 scheduling (compile time considerations), otherwise return 0. */
1402
1403static int
1404too_large (block, num_bbs, num_insns)
1405 int block, *num_bbs, *num_insns;
1406{
1407 (*num_bbs)++;
1408 (*num_insns) += (INSN_LUID (basic_block_end[block]) -
1409 INSN_LUID (basic_block_head[block]));
cc132865 1410 if ((*num_bbs > MAX_RGN_BLOCKS) || (*num_insns > MAX_RGN_INSNS))
8c660648
JL
1411 return 1;
1412 else
1413 return 0;
1414}
1415
1416
1417/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
1418 is still an inner loop. Put in max_hdr[blk] the header of the most inner
1419 loop containing blk. */
1420#define UPDATE_LOOP_RELATIONS(blk, hdr) \
1421{ \
1422 if (max_hdr[blk] == -1) \
1423 max_hdr[blk] = hdr; \
1424 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
a2e68776 1425 RESET_BIT (inner, hdr); \
8c660648
JL
1426 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
1427 { \
a2e68776 1428 RESET_BIT (inner,max_hdr[blk]); \
8c660648
JL
1429 max_hdr[blk] = hdr; \
1430 } \
1431}
1432
1433
a2e68776
JL
1434/* Find regions for interblock scheduling.
1435
1436 A region for scheduling can be:
1437
1438 * A loop-free procedure, or
1439
1440 * A reducible inner loop, or
1441
1442 * A basic block not contained in any other region.
1443
1444
1445 ?!? In theory we could build other regions based on extended basic
1446 blocks or reverse extended basic blocks. Is it worth the trouble?
1447
1448 Loop blocks that form a region are put into the region's block list
1449 in topological order.
1450
1451 This procedure stores its results into the following global (ick) variables
1452
1453 * rgn_nr
1454 * rgn_table
1455 * rgn_bb_table
1456 * block_to_bb
1457 * containing region
1458
1459
1460 We use dominator relationships to avoid making regions out of non-reducible
1461 loops.
8c660648 1462
a2e68776
JL
1463 This procedure needs to be converted to work on pred/succ lists instead
1464 of edge tables. That would simplify it somewhat. */
8c660648
JL
1465
1466static void
a2e68776
JL
1467find_rgns (s_preds, s_succs, num_preds, num_succs, dom)
1468 int_list_ptr *s_preds;
1469 int_list_ptr *s_succs;
1470 int *num_preds;
1471 int *num_succs;
1472 sbitmap *dom;
8c660648
JL
1473{
1474 int *max_hdr, *dfs_nr, *stack, *queue, *degree;
a2e68776 1475 char no_loops = 1;
487a6e06 1476 int node, child, loop_head, i, head, tail;
8c660648 1477 int count = 0, sp, idx = 0, current_edge = out_edges[0];
15ebe47d 1478 int num_bbs, num_insns, unreachable;
8c660648 1479 int too_large_failure;
8c660648 1480
a2e68776
JL
1481 /* Note if an edge has been passed. */
1482 sbitmap passed;
1483
1484 /* Note if a block is a natural loop header. */
1485 sbitmap header;
1486
1487 /* Note if a block is an natural inner loop header. */
1488 sbitmap inner;
1489
1490 /* Note if a block is in the block queue. */
1491 sbitmap in_queue;
1492
cc132865
JL
1493 /* Note if a block is in the block queue. */
1494 sbitmap in_stack;
1495
a2e68776
JL
1496 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
1497 and a mapping from block to its loop header (if the block is contained
1498 in a loop, else -1).
1499
1500 Store results in HEADER, INNER, and MAX_HDR respectively, these will
1501 be used as inputs to the second traversal.
1502
1503 STACK, SP and DFS_NR are only used during the first traversal. */
1504
1505 /* Allocate and initialize variables for the first traversal. */
8c660648
JL
1506 max_hdr = (int *) alloca (n_basic_blocks * sizeof (int));
1507 dfs_nr = (int *) alloca (n_basic_blocks * sizeof (int));
52b7724b 1508 bzero ((char *) dfs_nr, n_basic_blocks * sizeof (int));
8c660648 1509 stack = (int *) alloca (nr_edges * sizeof (int));
8c660648 1510
a2e68776
JL
1511 inner = sbitmap_alloc (n_basic_blocks);
1512 sbitmap_ones (inner);
1513
1514 header = sbitmap_alloc (n_basic_blocks);
1515 sbitmap_zero (header);
8c660648 1516
a2e68776
JL
1517 passed = sbitmap_alloc (nr_edges);
1518 sbitmap_zero (passed);
1519
1520 in_queue = sbitmap_alloc (n_basic_blocks);
1521 sbitmap_zero (in_queue);
8c660648 1522
cc132865
JL
1523 in_stack = sbitmap_alloc (n_basic_blocks);
1524 sbitmap_zero (in_stack);
1525
8c660648 1526 for (i = 0; i < n_basic_blocks; i++)
a2e68776 1527 max_hdr[i] = -1;
8c660648 1528
a2e68776 1529 /* DFS traversal to find inner loops in the cfg. */
8c660648 1530
8c660648
JL
1531 sp = -1;
1532 while (1)
1533 {
a2e68776 1534 if (current_edge == 0 || TEST_BIT (passed, current_edge))
8c660648 1535 {
a2e68776 1536 /* We have reached a leaf node or a node that was already
cc132865 1537 processed. Pop edges off the stack until we find
a2e68776
JL
1538 an edge that has not yet been processed. */
1539 while (sp >= 0
1540 && (current_edge == 0 || TEST_BIT (passed, current_edge)))
8c660648 1541 {
a2e68776 1542 /* Pop entry off the stack. */
8c660648
JL
1543 current_edge = stack[sp--];
1544 node = FROM_BLOCK (current_edge);
1545 child = TO_BLOCK (current_edge);
cc132865
JL
1546 RESET_BIT (in_stack, child);
1547 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
8c660648
JL
1548 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
1549 current_edge = NEXT_OUT (current_edge);
1550 }
1551
a2e68776
JL
1552 /* See if have finished the DFS tree traversal. */
1553 if (sp < 0 && TEST_BIT (passed, current_edge))
8c660648 1554 break;
a2e68776
JL
1555
1556 /* Nope, continue the traversal with the popped node. */
8c660648
JL
1557 continue;
1558 }
1559
a2e68776 1560 /* Process a node. */
8c660648 1561 node = FROM_BLOCK (current_edge);
8c660648 1562 child = TO_BLOCK (current_edge);
cc132865 1563 SET_BIT (in_stack, node);
a2e68776 1564 dfs_nr[node] = ++count;
8c660648 1565
cc132865
JL
1566 /* If the successor is in the stack, then we've found a loop.
1567 Mark the loop, if it is not a natural loop, then it will
1568 be rejected during the second traversal. */
1569 if (TEST_BIT (in_stack, child))
8c660648
JL
1570 {
1571 no_loops = 0;
a2e68776 1572 SET_BIT (header, child);
8c660648 1573 UPDATE_LOOP_RELATIONS (node, child);
a2e68776 1574 SET_BIT (passed, current_edge);
8c660648
JL
1575 current_edge = NEXT_OUT (current_edge);
1576 continue;
1577 }
1578
a2e68776
JL
1579 /* If the child was already visited, then there is no need to visit
1580 it again. Just update the loop relationships and restart
1581 with a new edge. */
8c660648
JL
1582 if (dfs_nr[child])
1583 {
cc132865 1584 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
8c660648 1585 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
a2e68776 1586 SET_BIT (passed, current_edge);
8c660648
JL
1587 current_edge = NEXT_OUT (current_edge);
1588 continue;
1589 }
1590
a2e68776 1591 /* Push an entry on the stack and continue DFS traversal. */
8c660648 1592 stack[++sp] = current_edge;
a2e68776 1593 SET_BIT (passed, current_edge);
8c660648 1594 current_edge = OUT_EDGES (child);
a2e68776 1595 }
8c660648 1596
15ebe47d
JL
1597 /* Another check for unreachable blocks. The earlier test in
1598 is_cfg_nonregular only finds unreachable blocks that do not
1599 form a loop.
a2e68776 1600
15ebe47d
JL
1601 The DFS traversal will mark every block that is reachable from
1602 the entry node by placing a nonzero value in dfs_nr. Thus if
1603 dfs_nr is zero for any block, then it must be unreachable. */
1604 unreachable = 0;
1605 for (i = 0; i < n_basic_blocks; i++)
1606 if (dfs_nr[i] == 0)
1607 {
1608 unreachable = 1;
1609 break;
1610 }
a2e68776
JL
1611
1612 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
1613 to hold degree counts. */
1614 degree = dfs_nr;
8c660648 1615
a2e68776 1616 /* Compute the in-degree of every block in the graph */
8c660648 1617 for (i = 0; i < n_basic_blocks; i++)
a2e68776
JL
1618 degree[i] = num_preds[i];
1619
15ebe47d
JL
1620 /* Do not perform region scheduling if there are any unreachable
1621 blocks. */
1622 if (!unreachable)
8c660648 1623 {
15ebe47d
JL
1624 if (no_loops)
1625 SET_BIT (header, 0);
8c660648 1626
15ebe47d
JL
1627 /* Second travsersal:find reducible inner loops and topologically sort
1628 block of each region. */
8c660648 1629
15ebe47d 1630 queue = (int *) alloca (n_basic_blocks * sizeof (int));
8c660648 1631
cc132865
JL
1632 /* Find blocks which are inner loop headers. We still have non-reducible
1633 loops to consider at this point. */
15ebe47d
JL
1634 for (i = 0; i < n_basic_blocks; i++)
1635 {
1636 if (TEST_BIT (header, i) && TEST_BIT (inner, i))
1637 {
1638 int_list_ptr ps;
cc132865
JL
1639 int j;
1640
1641 /* Now check that the loop is reducible. We do this separate
1642 from finding inner loops so that we do not find a reducible
1643 loop which contains an inner non-reducible loop.
1644
1645 A simple way to find reducible/natrual loops is to verify
1646 that each block in the loop is dominated by the loop
1647 header.
1648
1649 If there exists a block that is not dominated by the loop
1650 header, then the block is reachable from outside the loop
1651 and thus the loop is not a natural loop. */
1652 for (j = 0; j < n_basic_blocks; j++)
1653 {
1654 /* First identify blocks in the loop, except for the loop
1655 entry block. */
1656 if (i == max_hdr[j] && i != j)
1657 {
1658 /* Now verify that the block is dominated by the loop
1659 header. */
1660 if (!TEST_BIT (dom[j], i))
1661 break;
1662 }
1663 }
1664
1665 /* If we exited the loop early, then I is the header of a non
1666 reducible loop and we should quit processing it now. */
1667 if (j != n_basic_blocks)
1668 continue;
8c660648 1669
cc132865
JL
1670 /* I is a header of an inner loop, or block 0 in a subroutine
1671 with no loops at all. */
15ebe47d
JL
1672 head = tail = -1;
1673 too_large_failure = 0;
1674 loop_head = max_hdr[i];
8c660648 1675
15ebe47d 1676 /* Decrease degree of all I's successors for topological
a59bfd78 1677 ordering. */
15ebe47d
JL
1678 for (ps = s_succs[i]; ps; ps = ps->next)
1679 if (INT_LIST_VAL (ps) != EXIT_BLOCK
1680 && INT_LIST_VAL (ps) != ENTRY_BLOCK)
cc132865 1681 --degree[INT_LIST_VAL(ps)];
a2e68776 1682
15ebe47d
JL
1683 /* Estimate # insns, and count # blocks in the region. */
1684 num_bbs = 1;
1685 num_insns = (INSN_LUID (basic_block_end[i])
1686 - INSN_LUID (basic_block_head[i]));
8c660648 1687
15ebe47d
JL
1688
1689 /* Find all loop latches (blocks which back edges to the loop
1690 header) or all the leaf blocks in the cfg has no loops.
1691
1692 Place those blocks into the queue. */
1693 if (no_loops)
1694 {
1695 for (j = 0; j < n_basic_blocks; j++)
1696 /* Leaf nodes have only a single successor which must
1697 be EXIT_BLOCK. */
1698 if (num_succs[j] == 1
1699 && INT_LIST_VAL (s_succs[j]) == EXIT_BLOCK)
8c660648 1700 {
15ebe47d
JL
1701 queue[++tail] = j;
1702 SET_BIT (in_queue, j);
1703
1704 if (too_large (j, &num_bbs, &num_insns))
1705 {
1706 too_large_failure = 1;
1707 break;
1708 }
8c660648 1709 }
15ebe47d
JL
1710 }
1711 else
8c660648 1712 {
15ebe47d 1713 int_list_ptr ps;
a2e68776 1714
15ebe47d 1715 for (ps = s_preds[i]; ps; ps = ps->next)
8c660648 1716 {
15ebe47d 1717 node = INT_LIST_VAL (ps);
8c660648 1718
15ebe47d
JL
1719 if (node == ENTRY_BLOCK || node == EXIT_BLOCK)
1720 continue;
1721
1722 if (max_hdr[node] == loop_head && node != i)
8c660648 1723 {
15ebe47d
JL
1724 /* This is a loop latch. */
1725 queue[++tail] = node;
1726 SET_BIT (in_queue, node);
1727
1728 if (too_large (node, &num_bbs, &num_insns))
1729 {
1730 too_large_failure = 1;
1731 break;
1732 }
8c660648 1733 }
15ebe47d 1734
8c660648 1735 }
8c660648 1736 }
8c660648 1737
15ebe47d 1738 /* Now add all the blocks in the loop to the queue.
a2e68776
JL
1739
1740 We know the loop is a natural loop; however the algorithm
1741 above will not always mark certain blocks as being in the
1742 loop. Consider:
1743 node children
1744 a b,c
1745 b c
1746 c a,d
1747 d b
1748
1749
1750 The algorithm in the DFS traversal may not mark B & D as part
1751 of the loop (ie they will not have max_hdr set to A).
1752
1753 We know they can not be loop latches (else they would have
1754 had max_hdr set since they'd have a backedge to a dominator
1755 block). So we don't need them on the initial queue.
1756
1757 We know they are part of the loop because they are dominated
1758 by the loop header and can be reached by a backwards walk of
1759 the edges starting with nodes on the initial queue.
1760
1761 It is safe and desirable to include those nodes in the
1762 loop/scheduling region. To do so we would need to decrease
1763 the degree of a node if it is the target of a backedge
1764 within the loop itself as the node is placed in the queue.
1765
1766 We do not do this because I'm not sure that the actual
1767 scheduling code will properly handle this case. ?!? */
1768
15ebe47d 1769 while (head < tail && !too_large_failure)
8c660648 1770 {
15ebe47d
JL
1771 int_list_ptr ps;
1772 child = queue[++head];
8c660648 1773
15ebe47d 1774 for (ps = s_preds[child]; ps; ps = ps->next)
8c660648 1775 {
15ebe47d 1776 node = INT_LIST_VAL (ps);
8c660648 1777
15ebe47d
JL
1778 /* See discussion above about nodes not marked as in
1779 this loop during the initial DFS traversal. */
1780 if (node == ENTRY_BLOCK || node == EXIT_BLOCK
1781 || max_hdr[node] != loop_head)
8c660648 1782 {
15ebe47d 1783 tail = -1;
8c660648
JL
1784 break;
1785 }
15ebe47d
JL
1786 else if (!TEST_BIT (in_queue, node) && node != i)
1787 {
1788 queue[++tail] = node;
1789 SET_BIT (in_queue, node);
1790
1791 if (too_large (node, &num_bbs, &num_insns))
1792 {
1793 too_large_failure = 1;
1794 break;
1795 }
1796 }
8c660648 1797 }
8c660648 1798 }
8c660648 1799
15ebe47d
JL
1800 if (tail >= 0 && !too_large_failure)
1801 {
1802 /* Place the loop header into list of region blocks. */
1803 degree[i] = -1;
1804 rgn_bb_table[idx] = i;
1805 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1806 RGN_BLOCKS (nr_regions) = idx++;
1807 CONTAINING_RGN (i) = nr_regions;
1808 BLOCK_TO_BB (i) = count = 0;
1809
1810 /* Remove blocks from queue[] when their in degree becomes
a2e68776
JL
1811 zero. Repeat until no blocks are left on the list. This
1812 produces a topological list of blocks in the region. */
15ebe47d 1813 while (tail >= 0)
8c660648 1814 {
15ebe47d
JL
1815 int_list_ptr ps;
1816
1817 if (head < 0)
1818 head = tail;
1819 child = queue[head];
1820 if (degree[child] == 0)
1821 {
1822 degree[child] = -1;
1823 rgn_bb_table[idx++] = child;
1824 BLOCK_TO_BB (child) = ++count;
1825 CONTAINING_RGN (child) = nr_regions;
1826 queue[head] = queue[tail--];
1827
1828 for (ps = s_succs[child]; ps; ps = ps->next)
1829 if (INT_LIST_VAL (ps) != ENTRY_BLOCK
1830 && INT_LIST_VAL (ps) != EXIT_BLOCK)
1831 --degree[INT_LIST_VAL (ps)];
1832 }
1833 else
1834 --head;
8c660648 1835 }
15ebe47d 1836 ++nr_regions;
8c660648 1837 }
8c660648
JL
1838 }
1839 }
1840 }
1841
a2e68776
JL
1842 /* Any block that did not end up in a region is placed into a region
1843 by itself. */
8c660648
JL
1844 for (i = 0; i < n_basic_blocks; i++)
1845 if (degree[i] >= 0)
1846 {
1847 rgn_bb_table[idx] = i;
1848 RGN_NR_BLOCKS (nr_regions) = 1;
1849 RGN_BLOCKS (nr_regions) = idx++;
1850 CONTAINING_RGN (i) = nr_regions++;
1851 BLOCK_TO_BB (i) = 0;
1852 }
1853
a2e68776
JL
1854 free (passed);
1855 free (header);
1856 free (inner);
1857 free (in_queue);
cc132865 1858 free (in_stack);
a2e68776 1859}
8c660648
JL
1860
1861
1862/* functions for regions scheduling information */
1863
1864/* Compute dominators, probability, and potential-split-edges of bb.
1865 Assume that these values were already computed for bb's predecessors. */
1866
1867static void
1868compute_dom_prob_ps (bb)
1869 int bb;
1870{
1871 int nxt_in_edge, fst_in_edge, pred;
1872 int fst_out_edge, nxt_out_edge, nr_out_edges, nr_rgn_out_edges;
1873
1874 prob[bb] = 0.0;
1875 if (IS_RGN_ENTRY (bb))
1876 {
1877 BITSET_ADD (dom[bb], 0, bbset_size);
1878 prob[bb] = 1.0;
1879 return;
1880 }
1881
1882 fst_in_edge = nxt_in_edge = IN_EDGES (BB_TO_BLOCK (bb));
1883
1884 /* intialize dom[bb] to '111..1' */
1885 BITSET_INVERT (dom[bb], bbset_size);
1886
1887 do
1888 {
1889 pred = FROM_BLOCK (nxt_in_edge);
1890 BITSET_INTER (dom[bb], dom[BLOCK_TO_BB (pred)], bbset_size);
1891
1892 BITSET_UNION (ancestor_edges[bb], ancestor_edges[BLOCK_TO_BB (pred)],
1893 edgeset_size);
1894
1895 BITSET_ADD (ancestor_edges[bb], EDGE_TO_BIT (nxt_in_edge), edgeset_size);
1896
1897 nr_out_edges = 1;
1898 nr_rgn_out_edges = 0;
1899 fst_out_edge = OUT_EDGES (pred);
1900 nxt_out_edge = NEXT_OUT (fst_out_edge);
1901 BITSET_UNION (pot_split[bb], pot_split[BLOCK_TO_BB (pred)],
1902 edgeset_size);
1903
1904 BITSET_ADD (pot_split[bb], EDGE_TO_BIT (fst_out_edge), edgeset_size);
1905
1906 /* the successor doesn't belong the region? */
1907 if (CONTAINING_RGN (TO_BLOCK (fst_out_edge)) !=
1908 CONTAINING_RGN (BB_TO_BLOCK (bb)))
1909 ++nr_rgn_out_edges;
1910
1911 while (fst_out_edge != nxt_out_edge)
1912 {
1913 ++nr_out_edges;
1914 /* the successor doesn't belong the region? */
1915 if (CONTAINING_RGN (TO_BLOCK (nxt_out_edge)) !=
1916 CONTAINING_RGN (BB_TO_BLOCK (bb)))
1917 ++nr_rgn_out_edges;
1918 BITSET_ADD (pot_split[bb], EDGE_TO_BIT (nxt_out_edge), edgeset_size);
1919 nxt_out_edge = NEXT_OUT (nxt_out_edge);
1920
1921 }
1922
1923 /* now nr_rgn_out_edges is the number of region-exit edges from pred,
1924 and nr_out_edges will be the number of pred out edges not leaving
1925 the region. */
1926 nr_out_edges -= nr_rgn_out_edges;
1927 if (nr_rgn_out_edges > 0)
1928 prob[bb] += 0.9 * prob[BLOCK_TO_BB (pred)] / nr_out_edges;
1929 else
1930 prob[bb] += prob[BLOCK_TO_BB (pred)] / nr_out_edges;
1931 nxt_in_edge = NEXT_IN (nxt_in_edge);
1932 }
1933 while (fst_in_edge != nxt_in_edge);
1934
1935 BITSET_ADD (dom[bb], bb, bbset_size);
1936 BITSET_DIFFER (pot_split[bb], ancestor_edges[bb], edgeset_size);
1937
1938 if (sched_verbose >= 2)
1939 fprintf (dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb), (int) (100.0 * prob[bb]));
1940} /* compute_dom_prob_ps */
1941
1942/* functions for target info */
1943
1944/* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1945 Note that bb_trg dominates bb_src. */
1946
1947static void
1948split_edges (bb_src, bb_trg, bl)
1949 int bb_src;
1950 int bb_trg;
1951 edgelst *bl;
1952{
1953 int es = edgeset_size;
1954 edgeset src = (edgeset) alloca (es * sizeof (HOST_WIDE_INT));
1955
1956 while (es--)
1957 src[es] = (pot_split[bb_src])[es];
1958 BITSET_DIFFER (src, pot_split[bb_trg], edgeset_size);
1959 extract_bitlst (src, edgeset_size, bl);
1960}
1961
1962
1963/* Find the valid candidate-source-blocks for the target block TRG, compute
1964 their probability, and check if they are speculative or not.
1965 For speculative sources, compute their update-blocks and split-blocks. */
1966
1967static void
1968compute_trg_info (trg)
1969 int trg;
1970{
1971 register candidate *sp;
1972 edgelst el;
1973 int check_block, update_idx;
1974 int i, j, k, fst_edge, nxt_edge;
1975
1976 /* define some of the fields for the target bb as well */
1977 sp = candidate_table + trg;
1978 sp->is_valid = 1;
1979 sp->is_speculative = 0;
1980 sp->src_prob = 100;
1981
1982 for (i = trg + 1; i < current_nr_blocks; i++)
1983 {
1984 sp = candidate_table + i;
1985
1986 sp->is_valid = IS_DOMINATED (i, trg);
1987 if (sp->is_valid)
1988 {
1989 sp->src_prob = GET_SRC_PROB (i, trg);
1990 sp->is_valid = (sp->src_prob >= MIN_PROBABILITY);
1991 }
1992
1993 if (sp->is_valid)
1994 {
1995 split_edges (i, trg, &el);
1996 sp->is_speculative = (el.nr_members) ? 1 : 0;
1997 if (sp->is_speculative && !flag_schedule_speculative)
1998 sp->is_valid = 0;
1999 }
2000
2001 if (sp->is_valid)
2002 {
2003 sp->split_bbs.first_member = &bblst_table[bblst_last];
2004 sp->split_bbs.nr_members = el.nr_members;
2005 for (j = 0; j < el.nr_members; bblst_last++, j++)
2006 bblst_table[bblst_last] =
2007 TO_BLOCK (rgn_edges[el.first_member[j]]);
2008 sp->update_bbs.first_member = &bblst_table[bblst_last];
2009 update_idx = 0;
2010 for (j = 0; j < el.nr_members; j++)
2011 {
2012 check_block = FROM_BLOCK (rgn_edges[el.first_member[j]]);
2013 fst_edge = nxt_edge = OUT_EDGES (check_block);
2014 do
2015 {
2016 for (k = 0; k < el.nr_members; k++)
2017 if (EDGE_TO_BIT (nxt_edge) == el.first_member[k])
2018 break;
2019
2020 if (k >= el.nr_members)
2021 {
2022 bblst_table[bblst_last++] = TO_BLOCK (nxt_edge);
2023 update_idx++;
2024 }
2025
2026 nxt_edge = NEXT_OUT (nxt_edge);
2027 }
2028 while (fst_edge != nxt_edge);
2029 }
2030 sp->update_bbs.nr_members = update_idx;
2031
2032 }
2033 else
2034 {
2035 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
2036
2037 sp->is_speculative = 0;
2038 sp->src_prob = 0;
2039 }
2040 }
2041} /* compute_trg_info */
2042
2043
2044/* Print candidates info, for debugging purposes. Callable from debugger. */
2045
2046void
2047debug_candidate (i)
2048 int i;
2049{
2050 if (!candidate_table[i].is_valid)
2051 return;
2052
2053 if (candidate_table[i].is_speculative)
2054 {
2055 int j;
2056 fprintf (dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
2057
2058 fprintf (dump, "split path: ");
2059 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
2060 {
2061 int b = candidate_table[i].split_bbs.first_member[j];
2062
2063 fprintf (dump, " %d ", b);
2064 }
2065 fprintf (dump, "\n");
2066
2067 fprintf (dump, "update path: ");
2068 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
2069 {
2070 int b = candidate_table[i].update_bbs.first_member[j];
2071
2072 fprintf (dump, " %d ", b);
2073 }
2074 fprintf (dump, "\n");
2075 }
2076 else
2077 {
2078 fprintf (dump, " src %d equivalent\n", BB_TO_BLOCK (i));
2079 }
2080}
2081
2082
2083/* Print candidates info, for debugging purposes. Callable from debugger. */
2084
2085void
2086debug_candidates (trg)
2087 int trg;
2088{
2089 int i;
2090
2091 fprintf (dump, "----------- candidate table: target: b=%d bb=%d ---\n",
2092 BB_TO_BLOCK (trg), trg);
2093 for (i = trg + 1; i < current_nr_blocks; i++)
2094 debug_candidate (i);
2095}
2096
2097
2098/* functions for speculative scheduing */
2099
2100/* Return 0 if x is a set of a register alive in the beginning of one
2101 of the split-blocks of src, otherwise return 1. */
2102
2103static int
2104check_live_1 (src, x)
2105 int src;
2106 rtx x;
2107{
5835e573 2108 register int i;
8c660648
JL
2109 register int regno;
2110 register rtx reg = SET_DEST (x);
2111
2112 if (reg == 0)
2113 return 1;
2114
2115 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
2116 || GET_CODE (reg) == SIGN_EXTRACT
2117 || GET_CODE (reg) == STRICT_LOW_PART)
2118 reg = XEXP (reg, 0);
2119
2120 if (GET_CODE (reg) != REG)
2121 return 1;
2122
2123 regno = REGNO (reg);
2124
2125 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2126 {
2127 /* Global registers are assumed live */
2128 return 0;
2129 }
2130 else
2131 {
2132 if (regno < FIRST_PSEUDO_REGISTER)
2133 {
2134 /* check for hard registers */
2135 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2136 while (--j >= 0)
2137 {
2138 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
2139 {
2140 int b = candidate_table[src].split_bbs.first_member[i];
2141
2142 if (REGNO_REG_SET_P (basic_block_live_at_start[b], regno + j))
2143 {
2144 return 0;
2145 }
2146 }
2147 }
2148 }
2149 else
2150 {
2151 /* check for psuedo registers */
2152 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
2153 {
2154 int b = candidate_table[src].split_bbs.first_member[i];
2155
2156 if (REGNO_REG_SET_P (basic_block_live_at_start[b], regno))
2157 {
2158 return 0;
2159 }
2160 }
2161 }
2162 }
2163
2164 return 1;
2165}
2166
2167
2168/* If x is a set of a register R, mark that R is alive in the beginning
2169 of every update-block of src. */
2170
2171static void
2172update_live_1 (src, x)
2173 int src;
2174 rtx x;
2175{
5835e573 2176 register int i;
8c660648
JL
2177 register int regno;
2178 register rtx reg = SET_DEST (x);
2179
2180 if (reg == 0)
2181 return;
2182
2183 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
2184 || GET_CODE (reg) == SIGN_EXTRACT
2185 || GET_CODE (reg) == STRICT_LOW_PART)
2186 reg = XEXP (reg, 0);
2187
2188 if (GET_CODE (reg) != REG)
2189 return;
2190
2191 /* Global registers are always live, so the code below does not apply
2192 to them. */
2193
2194 regno = REGNO (reg);
2195
2196 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
2197 {
2198 if (regno < FIRST_PSEUDO_REGISTER)
2199 {
2200 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2201 while (--j >= 0)
2202 {
2203 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
2204 {
2205 int b = candidate_table[src].update_bbs.first_member[i];
2206
2207 SET_REGNO_REG_SET (basic_block_live_at_start[b], regno + j);
2208 }
2209 }
2210 }
2211 else
2212 {
2213 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
2214 {
2215 int b = candidate_table[src].update_bbs.first_member[i];
2216
2217 SET_REGNO_REG_SET (basic_block_live_at_start[b], regno);
2218 }
2219 }
2220 }
2221}
2222
2223
2224/* Return 1 if insn can be speculatively moved from block src to trg,
2225 otherwise return 0. Called before first insertion of insn to
2226 ready-list or before the scheduling. */
2227
2228static int
5835e573 2229check_live (insn, src)
8c660648
JL
2230 rtx insn;
2231 int src;
8c660648
JL
2232{
2233 /* find the registers set by instruction */
2234 if (GET_CODE (PATTERN (insn)) == SET
2235 || GET_CODE (PATTERN (insn)) == CLOBBER)
2236 return check_live_1 (src, PATTERN (insn));
2237 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2238 {
2239 int j;
2240 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
2241 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
2242 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
2243 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
2244 return 0;
2245
2246 return 1;
2247 }
2248
2249 return 1;
2250}
2251
2252
2253/* Update the live registers info after insn was moved speculatively from
2254 block src to trg. */
2255
2256static void
5835e573 2257update_live (insn, src)
8c660648 2258 rtx insn;
5835e573 2259 int src;
8c660648
JL
2260{
2261 /* find the registers set by instruction */
2262 if (GET_CODE (PATTERN (insn)) == SET
2263 || GET_CODE (PATTERN (insn)) == CLOBBER)
2264 update_live_1 (src, PATTERN (insn));
2265 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2266 {
2267 int j;
2268 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
2269 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
2270 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
2271 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
2272 }
2273}
2274
2275/* Exception Free Loads:
2276
2277 We define five classes of speculative loads: IFREE, IRISKY,
2278 PFREE, PRISKY, and MFREE.
2279
2280 IFREE loads are loads that are proved to be exception-free, just
2281 by examining the load insn. Examples for such loads are loads
2282 from TOC and loads of global data.
2283
2284 IRISKY loads are loads that are proved to be exception-risky,
2285 just by examining the load insn. Examples for such loads are
2286 volatile loads and loads from shared memory.
2287
2288 PFREE loads are loads for which we can prove, by examining other
2289 insns, that they are exception-free. Currently, this class consists
2290 of loads for which we are able to find a "similar load", either in
2291 the target block, or, if only one split-block exists, in that split
2292 block. Load2 is similar to load1 if both have same single base
2293 register. We identify only part of the similar loads, by finding
2294 an insn upon which both load1 and load2 have a DEF-USE dependence.
2295
2296 PRISKY loads are loads for which we can prove, by examining other
2297 insns, that they are exception-risky. Currently we have two proofs for
2298 such loads. The first proof detects loads that are probably guarded by a
2299 test on the memory address. This proof is based on the
2300 backward and forward data dependence information for the region.
2301 Let load-insn be the examined load.
2302 Load-insn is PRISKY iff ALL the following hold:
2303
2304 - insn1 is not in the same block as load-insn
2305 - there is a DEF-USE dependence chain (insn1, ..., load-insn)
2306 - test-insn is either a compare or a branch, not in the same block as load-insn
2307 - load-insn is reachable from test-insn
2308 - there is a DEF-USE dependence chain (insn1, ..., test-insn)
2309
2310 This proof might fail when the compare and the load are fed
2311 by an insn not in the region. To solve this, we will add to this
2312 group all loads that have no input DEF-USE dependence.
2313
2314 The second proof detects loads that are directly or indirectly
2315 fed by a speculative load. This proof is affected by the
2316 scheduling process. We will use the flag fed_by_spec_load.
2317 Initially, all insns have this flag reset. After a speculative
2318 motion of an insn, if insn is either a load, or marked as
2319 fed_by_spec_load, we will also mark as fed_by_spec_load every
2320 insn1 for which a DEF-USE dependence (insn, insn1) exists. A
2321 load which is fed_by_spec_load is also PRISKY.
2322
2323 MFREE (maybe-free) loads are all the remaining loads. They may be
2324 exception-free, but we cannot prove it.
2325
2326 Now, all loads in IFREE and PFREE classes are considered
2327 exception-free, while all loads in IRISKY and PRISKY classes are
2328 considered exception-risky. As for loads in the MFREE class,
2329 these are considered either exception-free or exception-risky,
2330 depending on whether we are pessimistic or optimistic. We have
2331 to take the pessimistic approach to assure the safety of
2332 speculative scheduling, but we can take the optimistic approach
2333 by invoking the -fsched_spec_load_dangerous option. */
2334
2335enum INSN_TRAP_CLASS
2336{
2337 TRAP_FREE = 0, IFREE = 1, PFREE_CANDIDATE = 2,
2338 PRISKY_CANDIDATE = 3, IRISKY = 4, TRAP_RISKY = 5
2339};
2340
2341#define WORST_CLASS(class1, class2) \
2342((class1 > class2) ? class1 : class2)
2343
2344/* Indexed by INSN_UID, and set if there's DEF-USE dependence between */
2345/* some speculatively moved load insn and this one. */
2346char *fed_by_spec_load;
2347char *is_load_insn;
2348
2349/* Non-zero if block bb_to is equal to, or reachable from block bb_from. */
2350#define IS_REACHABLE(bb_from, bb_to) \
2351(bb_from == bb_to \
2352 || IS_RGN_ENTRY (bb_from) \
2353 || (bitset_member (ancestor_edges[bb_to], \
2354 EDGE_TO_BIT (IN_EDGES (BB_TO_BLOCK (bb_from))), \
2355 edgeset_size)))
2356#define FED_BY_SPEC_LOAD(insn) (fed_by_spec_load[INSN_UID (insn)])
2357#define IS_LOAD_INSN(insn) (is_load_insn[INSN_UID (insn)])
2358
2359/* Non-zero iff the address is comprised from at most 1 register */
2360#define CONST_BASED_ADDRESS_P(x) \
2361 (GET_CODE (x) == REG \
2362 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
2363 || (GET_CODE (x) == LO_SUM)) \
2364 && (GET_CODE (XEXP (x, 0)) == CONST_INT \
2365 || GET_CODE (XEXP (x, 1)) == CONST_INT)))
2366
2367/* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
2368
2369static void
2370set_spec_fed (load_insn)
2371 rtx load_insn;
2372{
2373 rtx link;
2374
2375 for (link = INSN_DEPEND (load_insn); link; link = XEXP (link, 1))
2376 if (GET_MODE (link) == VOIDmode)
2377 FED_BY_SPEC_LOAD (XEXP (link, 0)) = 1;
2378} /* set_spec_fed */
2379
2380/* On the path from the insn to load_insn_bb, find a conditional branch */
2381/* depending on insn, that guards the speculative load. */
2382
2383static int
2384find_conditional_protection (insn, load_insn_bb)
2385 rtx insn;
2386 int load_insn_bb;
2387{
2388 rtx link;
2389
2390 /* iterate through DEF-USE forward dependences */
2391 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
2392 {
2393 rtx next = XEXP (link, 0);
2394 if ((CONTAINING_RGN (INSN_BLOCK (next)) ==
2395 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
2396 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
2397 && load_insn_bb != INSN_BB (next)
2398 && GET_MODE (link) == VOIDmode
2399 && (GET_CODE (next) == JUMP_INSN
2400 || find_conditional_protection (next, load_insn_bb)))
2401 return 1;
2402 }
2403 return 0;
2404} /* find_conditional_protection */
2405
2406/* Returns 1 if the same insn1 that participates in the computation
2407 of load_insn's address is feeding a conditional branch that is
2408 guarding on load_insn. This is true if we find a the two DEF-USE
2409 chains:
2410 insn1 -> ... -> conditional-branch
2411 insn1 -> ... -> load_insn,
2412 and if a flow path exist:
2413 insn1 -> ... -> conditional-branch -> ... -> load_insn,
2414 and if insn1 is on the path
2415 region-entry -> ... -> bb_trg -> ... load_insn.
2416
2417 Locate insn1 by climbing on LOG_LINKS from load_insn.
2418 Locate the branch by following INSN_DEPEND from insn1. */
2419
2420static int
2421is_conditionally_protected (load_insn, bb_src, bb_trg)
2422 rtx load_insn;
2423 int bb_src, bb_trg;
2424{
2425 rtx link;
2426
2427 for (link = LOG_LINKS (load_insn); link; link = XEXP (link, 1))
2428 {
2429 rtx insn1 = XEXP (link, 0);
2430
2431 /* must be a DEF-USE dependence upon non-branch */
2432 if (GET_MODE (link) != VOIDmode
2433 || GET_CODE (insn1) == JUMP_INSN)
2434 continue;
2435
2436 /* must exist a path: region-entry -> ... -> bb_trg -> ... load_insn */
2437 if (INSN_BB (insn1) == bb_src
2438 || (CONTAINING_RGN (INSN_BLOCK (insn1))
2439 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
2440 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
2441 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
2442 continue;
2443
2444 /* now search for the conditional-branch */
2445 if (find_conditional_protection (insn1, bb_src))
2446 return 1;
2447
2448 /* recursive step: search another insn1, "above" current insn1. */
2449 return is_conditionally_protected (insn1, bb_src, bb_trg);
2450 }
2451
2452 /* the chain does not exsist */
2453 return 0;
2454} /* is_conditionally_protected */
2455
2456/* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
2457 load_insn can move speculatively from bb_src to bb_trg. All the
2458 following must hold:
2459
2460 (1) both loads have 1 base register (PFREE_CANDIDATEs).
2461 (2) load_insn and load1 have a def-use dependence upon
2462 the same insn 'insn1'.
2463 (3) either load2 is in bb_trg, or:
2464 - there's only one split-block, and
2465 - load1 is on the escape path, and
2466
2467 From all these we can conclude that the two loads access memory
2468 addresses that differ at most by a constant, and hence if moving
2469 load_insn would cause an exception, it would have been caused by
2470 load2 anyhow. */
2471
2472static int
2473is_pfree (load_insn, bb_src, bb_trg)
2474 rtx load_insn;
2475 int bb_src, bb_trg;
2476{
2477 rtx back_link;
2478 register candidate *candp = candidate_table + bb_src;
2479
2480 if (candp->split_bbs.nr_members != 1)
2481 /* must have exactly one escape block */
2482 return 0;
2483
2484 for (back_link = LOG_LINKS (load_insn);
2485 back_link; back_link = XEXP (back_link, 1))
2486 {
2487 rtx insn1 = XEXP (back_link, 0);
2488
2489 if (GET_MODE (back_link) == VOIDmode)
2490 {
2491 /* found a DEF-USE dependence (insn1, load_insn) */
2492 rtx fore_link;
2493
2494 for (fore_link = INSN_DEPEND (insn1);
2495 fore_link; fore_link = XEXP (fore_link, 1))
2496 {
2497 rtx insn2 = XEXP (fore_link, 0);
2498 if (GET_MODE (fore_link) == VOIDmode)
2499 {
2500 /* found a DEF-USE dependence (insn1, insn2) */
ac957f13 2501 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
8c660648
JL
2502 /* insn2 not guaranteed to be a 1 base reg load */
2503 continue;
2504
2505 if (INSN_BB (insn2) == bb_trg)
2506 /* insn2 is the similar load, in the target block */
2507 return 1;
2508
2509 if (*(candp->split_bbs.first_member) == INSN_BLOCK (insn2))
2510 /* insn2 is a similar load, in a split-block */
2511 return 1;
2512 }
2513 }
2514 }
2515 }
2516
2517 /* couldn't find a similar load */
2518 return 0;
2519} /* is_pfree */
2520
2521/* Returns a class that insn with GET_DEST(insn)=x may belong to,
2522 as found by analyzing insn's expression. */
2523
2524static int
2525may_trap_exp (x, is_store)
2526 rtx x;
2527 int is_store;
2528{
2529 enum rtx_code code;
2530
2531 if (x == 0)
2532 return TRAP_FREE;
2533 code = GET_CODE (x);
2534 if (is_store)
2535 {
2536 if (code == MEM)
2537 return TRAP_RISKY;
2538 else
2539 return TRAP_FREE;
2540 }
2541 if (code == MEM)
2542 {
2543 /* The insn uses memory */
2544 /* a volatile load */
2545 if (MEM_VOLATILE_P (x))
2546 return IRISKY;
2547 /* an exception-free load */
2548 if (!may_trap_p (x))
2549 return IFREE;
2550 /* a load with 1 base register, to be further checked */
2551 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
2552 return PFREE_CANDIDATE;
2553 /* no info on the load, to be further checked */
2554 return PRISKY_CANDIDATE;
2555 }
2556 else
2557 {
2558 char *fmt;
2559 int i, insn_class = TRAP_FREE;
2560
2561 /* neither store nor load, check if it may cause a trap */
2562 if (may_trap_p (x))
2563 return TRAP_RISKY;
2564 /* recursive step: walk the insn... */
2565 fmt = GET_RTX_FORMAT (code);
2566 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2567 {
2568 if (fmt[i] == 'e')
2569 {
2570 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
2571 insn_class = WORST_CLASS (insn_class, tmp_class);
2572 }
2573 else if (fmt[i] == 'E')
2574 {
2575 int j;
2576 for (j = 0; j < XVECLEN (x, i); j++)
2577 {
2578 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
2579 insn_class = WORST_CLASS (insn_class, tmp_class);
2580 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
2581 break;
2582 }
2583 }
2584 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
2585 break;
2586 }
2587 return insn_class;
2588 }
2589} /* may_trap_exp */
2590
2591
2592/* Classifies insn for the purpose of verifying that it can be
2593 moved speculatively, by examining it's patterns, returning:
2594 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
2595 TRAP_FREE: non-load insn.
2596 IFREE: load from a globaly safe location.
2597 IRISKY: volatile load.
2598 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
2599 being either PFREE or PRISKY. */
2600
2601static int
ac957f13 2602haifa_classify_insn (insn)
8c660648
JL
2603 rtx insn;
2604{
2605 rtx pat = PATTERN (insn);
2606 int tmp_class = TRAP_FREE;
2607 int insn_class = TRAP_FREE;
2608 enum rtx_code code;
2609
2610 if (GET_CODE (pat) == PARALLEL)
2611 {
2612 int i, len = XVECLEN (pat, 0);
2613
2614 for (i = len - 1; i >= 0; i--)
2615 {
2616 code = GET_CODE (XVECEXP (pat, 0, i));
2617 switch (code)
2618 {
2619 case CLOBBER:
2620 /* test if it is a 'store' */
2621 tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
2622 break;
2623 case SET:
2624 /* test if it is a store */
2625 tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
2626 if (tmp_class == TRAP_RISKY)
2627 break;
2628 /* test if it is a load */
2629 tmp_class =
2630 WORST_CLASS (tmp_class,
2631 may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)), 0));
e0cd0770
JC
2632 break;
2633 case TRAP_IF:
2634 tmp_class = TRAP_RISKY;
2635 break;
8c660648
JL
2636 default:;
2637 }
2638 insn_class = WORST_CLASS (insn_class, tmp_class);
2639 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
2640 break;
2641 }
2642 }
2643 else
2644 {
2645 code = GET_CODE (pat);
2646 switch (code)
2647 {
2648 case CLOBBER:
2649 /* test if it is a 'store' */
2650 tmp_class = may_trap_exp (XEXP (pat, 0), 1);
2651 break;
2652 case SET:
2653 /* test if it is a store */
2654 tmp_class = may_trap_exp (SET_DEST (pat), 1);
2655 if (tmp_class == TRAP_RISKY)
2656 break;
2657 /* test if it is a load */
2658 tmp_class =
2659 WORST_CLASS (tmp_class,
2660 may_trap_exp (SET_SRC (pat), 0));
e0cd0770
JC
2661 break;
2662 case TRAP_IF:
2663 tmp_class = TRAP_RISKY;
2664 break;
8c660648
JL
2665 default:;
2666 }
2667 insn_class = tmp_class;
2668 }
2669
2670 return insn_class;
2671
ac957f13 2672} /* haifa_classify_insn */
8c660648
JL
2673
2674/* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
2675 a load moved speculatively, or if load_insn is protected by
2676 a compare on load_insn's address). */
2677
2678static int
2679is_prisky (load_insn, bb_src, bb_trg)
2680 rtx load_insn;
2681 int bb_src, bb_trg;
2682{
2683 if (FED_BY_SPEC_LOAD (load_insn))
2684 return 1;
2685
2686 if (LOG_LINKS (load_insn) == NULL)
2687 /* dependence may 'hide' out of the region. */
2688 return 1;
2689
2690 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2691 return 1;
2692
2693 return 0;
2694} /* is_prisky */
2695
2696/* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2697 Return 1 if insn is exception-free (and the motion is valid)
2698 and 0 otherwise. */
2699
2700static int
2701is_exception_free (insn, bb_src, bb_trg)
2702 rtx insn;
2703 int bb_src, bb_trg;
2704{
ac957f13 2705 int insn_class = haifa_classify_insn (insn);
8c660648
JL
2706
2707 /* handle non-load insns */
2708 switch (insn_class)
2709 {
2710 case TRAP_FREE:
2711 return 1;
2712 case TRAP_RISKY:
2713 return 0;
2714 default:;
2715 }
2716
2717 /* handle loads */
2718 if (!flag_schedule_speculative_load)
2719 return 0;
2720 IS_LOAD_INSN (insn) = 1;
2721 switch (insn_class)
2722 {
2723 case IFREE:
2724 return (1);
2725 case IRISKY:
2726 return 0;
2727 case PFREE_CANDIDATE:
2728 if (is_pfree (insn, bb_src, bb_trg))
2729 return 1;
2730 /* don't 'break' here: PFREE-candidate is also PRISKY-candidate */
2731 case PRISKY_CANDIDATE:
2732 if (!flag_schedule_speculative_load_dangerous
2733 || is_prisky (insn, bb_src, bb_trg))
2734 return 0;
2735 break;
2736 default:;
2737 }
2738
2739 return flag_schedule_speculative_load_dangerous;
2740} /* is_exception_free */
2741
2742
2743/* Process an insn's memory dependencies. There are four kinds of
2744 dependencies:
2745
2746 (0) read dependence: read follows read
2747 (1) true dependence: read follows write
2748 (2) anti dependence: write follows read
2749 (3) output dependence: write follows write
2750
2751 We are careful to build only dependencies which actually exist, and
2752 use transitivity to avoid building too many links. */
2753\f
2754/* Return the INSN_LIST containing INSN in LIST, or NULL
2755 if LIST does not contain INSN. */
2756
cbb13457 2757HAIFA_INLINE static rtx
8c660648
JL
2758find_insn_list (insn, list)
2759 rtx insn;
2760 rtx list;
2761{
2762 while (list)
2763 {
2764 if (XEXP (list, 0) == insn)
2765 return list;
2766 list = XEXP (list, 1);
2767 }
2768 return 0;
2769}
2770
2771
2772/* Return 1 if the pair (insn, x) is found in (LIST, LIST1), or 0 otherwise. */
2773
cbb13457 2774HAIFA_INLINE static char
8c660648
JL
2775find_insn_mem_list (insn, x, list, list1)
2776 rtx insn, x;
2777 rtx list, list1;
2778{
2779 while (list)
2780 {
2781 if (XEXP (list, 0) == insn
2782 && XEXP (list1, 0) == x)
2783 return 1;
2784 list = XEXP (list, 1);
2785 list1 = XEXP (list1, 1);
2786 }
2787 return 0;
2788}
2789
2790
2791/* Compute the function units used by INSN. This caches the value
2792 returned by function_units_used. A function unit is encoded as the
2793 unit number if the value is non-negative and the compliment of a
2794 mask if the value is negative. A function unit index is the
2795 non-negative encoding. */
2796
cbb13457 2797HAIFA_INLINE static int
8c660648
JL
2798insn_unit (insn)
2799 rtx insn;
2800{
2801 register int unit = INSN_UNIT (insn);
2802
2803 if (unit == 0)
2804 {
2805 recog_memoized (insn);
2806
2807 /* A USE insn, or something else we don't need to understand.
2808 We can't pass these directly to function_units_used because it will
2809 trigger a fatal error for unrecognizable insns. */
2810 if (INSN_CODE (insn) < 0)
2811 unit = -1;
2812 else
2813 {
2814 unit = function_units_used (insn);
2815 /* Increment non-negative values so we can cache zero. */
2816 if (unit >= 0)
2817 unit++;
2818 }
2819 /* We only cache 16 bits of the result, so if the value is out of
2820 range, don't cache it. */
2821 if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
2822 || unit >= 0
2823 || (~unit & ((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
2824 INSN_UNIT (insn) = unit;
2825 }
2826 return (unit > 0 ? unit - 1 : unit);
2827}
2828
2829/* Compute the blockage range for executing INSN on UNIT. This caches
2830 the value returned by the blockage_range_function for the unit.
2831 These values are encoded in an int where the upper half gives the
2832 minimum value and the lower half gives the maximum value. */
2833
cbb13457 2834HAIFA_INLINE static unsigned int
8c660648
JL
2835blockage_range (unit, insn)
2836 int unit;
2837 rtx insn;
2838{
2839 unsigned int blockage = INSN_BLOCKAGE (insn);
2840 unsigned int range;
2841
2842 if (UNIT_BLOCKED (blockage) != unit + 1)
2843 {
2844 range = function_units[unit].blockage_range_function (insn);
2845 /* We only cache the blockage range for one unit and then only if
2846 the values fit. */
2847 if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
2848 INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
2849 }
2850 else
2851 range = BLOCKAGE_RANGE (blockage);
2852
2853 return range;
2854}
2855
2856/* A vector indexed by function unit instance giving the last insn to use
2857 the unit. The value of the function unit instance index for unit U
2858 instance I is (U + I * FUNCTION_UNITS_SIZE). */
2859static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
2860
2861/* A vector indexed by function unit instance giving the minimum time when
2862 the unit will unblock based on the maximum blockage cost. */
2863static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
2864
2865/* A vector indexed by function unit number giving the number of insns
2866 that remain to use the unit. */
2867static int unit_n_insns[FUNCTION_UNITS_SIZE];
2868
2869/* Reset the function unit state to the null state. */
2870
2871static void
2872clear_units ()
2873{
2874 bzero ((char *) unit_last_insn, sizeof (unit_last_insn));
2875 bzero ((char *) unit_tick, sizeof (unit_tick));
2876 bzero ((char *) unit_n_insns, sizeof (unit_n_insns));
2877}
2878
2879/* Return the issue-delay of an insn */
2880
cbb13457 2881HAIFA_INLINE static int
8c660648
JL
2882insn_issue_delay (insn)
2883 rtx insn;
2884{
8c660648
JL
2885 int i, delay = 0;
2886 int unit = insn_unit (insn);
2887
2888 /* efficiency note: in fact, we are working 'hard' to compute a
2889 value that was available in md file, and is not available in
2890 function_units[] structure. It would be nice to have this
2891 value there, too. */
2892 if (unit >= 0)
2893 {
2894 if (function_units[unit].blockage_range_function &&
2895 function_units[unit].blockage_function)
2896 delay = function_units[unit].blockage_function (insn, insn);
2897 }
2898 else
2899 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
2900 if ((unit & 1) != 0 && function_units[i].blockage_range_function
2901 && function_units[i].blockage_function)
2902 delay = MAX (delay, function_units[i].blockage_function (insn, insn));
2903
2904 return delay;
2905}
2906
2907/* Return the actual hazard cost of executing INSN on the unit UNIT,
2908 instance INSTANCE at time CLOCK if the previous actual hazard cost
2909 was COST. */
2910
cbb13457 2911HAIFA_INLINE static int
8c660648
JL
2912actual_hazard_this_instance (unit, instance, insn, clock, cost)
2913 int unit, instance, clock, cost;
2914 rtx insn;
2915{
2916 int tick = unit_tick[instance]; /* issue time of the last issued insn */
2917
2918 if (tick - clock > cost)
2919 {
2920 /* The scheduler is operating forward, so unit's last insn is the
2921 executing insn and INSN is the candidate insn. We want a
2922 more exact measure of the blockage if we execute INSN at CLOCK
2923 given when we committed the execution of the unit's last insn.
2924
2925 The blockage value is given by either the unit's max blockage
2926 constant, blockage range function, or blockage function. Use
2927 the most exact form for the given unit. */
2928
2929 if (function_units[unit].blockage_range_function)
2930 {
2931 if (function_units[unit].blockage_function)
2932 tick += (function_units[unit].blockage_function
2933 (unit_last_insn[instance], insn)
2934 - function_units[unit].max_blockage);
2935 else
2936 tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
2937 - function_units[unit].max_blockage);
2938 }
2939 if (tick - clock > cost)
2940 cost = tick - clock;
2941 }
2942 return cost;
2943}
2944
2945/* Record INSN as having begun execution on the units encoded by UNIT at
2946 time CLOCK. */
2947
cbb13457 2948HAIFA_INLINE static void
8c660648
JL
2949schedule_unit (unit, insn, clock)
2950 int unit, clock;
2951 rtx insn;
2952{
2953 int i;
2954
2955 if (unit >= 0)
2956 {
2957 int instance = unit;
2958#if MAX_MULTIPLICITY > 1
2959 /* Find the first free instance of the function unit and use that
2960 one. We assume that one is free. */
2961 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
2962 {
2963 if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
2964 break;
2965 instance += FUNCTION_UNITS_SIZE;
2966 }
2967#endif
2968 unit_last_insn[instance] = insn;
2969 unit_tick[instance] = (clock + function_units[unit].max_blockage);
2970 }
2971 else
2972 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
2973 if ((unit & 1) != 0)
2974 schedule_unit (i, insn, clock);
2975}
2976
2977/* Return the actual hazard cost of executing INSN on the units encoded by
2978 UNIT at time CLOCK if the previous actual hazard cost was COST. */
2979
cbb13457 2980HAIFA_INLINE static int
8c660648
JL
2981actual_hazard (unit, insn, clock, cost)
2982 int unit, clock, cost;
2983 rtx insn;
2984{
2985 int i;
2986
2987 if (unit >= 0)
2988 {
2989 /* Find the instance of the function unit with the minimum hazard. */
2990 int instance = unit;
2991 int best_cost = actual_hazard_this_instance (unit, instance, insn,
2992 clock, cost);
2993 int this_cost;
2994
2995#if MAX_MULTIPLICITY > 1
2996 if (best_cost > cost)
2997 {
2998 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
2999 {
3000 instance += FUNCTION_UNITS_SIZE;
3001 this_cost = actual_hazard_this_instance (unit, instance, insn,
3002 clock, cost);
3003 if (this_cost < best_cost)
3004 {
3005 best_cost = this_cost;
3006 if (this_cost <= cost)
3007 break;
3008 }
3009 }
3010 }
3011#endif
3012 cost = MAX (cost, best_cost);
3013 }
3014 else
3015 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
3016 if ((unit & 1) != 0)
3017 cost = actual_hazard (i, insn, clock, cost);
3018
3019 return cost;
3020}
3021
3022/* Return the potential hazard cost of executing an instruction on the
3023 units encoded by UNIT if the previous potential hazard cost was COST.
3024 An insn with a large blockage time is chosen in preference to one
3025 with a smaller time; an insn that uses a unit that is more likely
3026 to be used is chosen in preference to one with a unit that is less
3027 used. We are trying to minimize a subsequent actual hazard. */
3028
cbb13457 3029HAIFA_INLINE static int
8c660648
JL
3030potential_hazard (unit, insn, cost)
3031 int unit, cost;
3032 rtx insn;
3033{
3034 int i, ncost;
3035 unsigned int minb, maxb;
3036
3037 if (unit >= 0)
3038 {
3039 minb = maxb = function_units[unit].max_blockage;
3040 if (maxb > 1)
3041 {
3042 if (function_units[unit].blockage_range_function)
3043 {
3044 maxb = minb = blockage_range (unit, insn);
3045 maxb = MAX_BLOCKAGE_COST (maxb);
3046 minb = MIN_BLOCKAGE_COST (minb);
3047 }
3048
3049 if (maxb > 1)
3050 {
3051 /* Make the number of instructions left dominate. Make the
3052 minimum delay dominate the maximum delay. If all these
3053 are the same, use the unit number to add an arbitrary
3054 ordering. Other terms can be added. */
3055 ncost = minb * 0x40 + maxb;
3056 ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
3057 if (ncost > cost)
3058 cost = ncost;
3059 }
3060 }
3061 }
3062 else
3063 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
3064 if ((unit & 1) != 0)
3065 cost = potential_hazard (i, insn, cost);
3066
3067 return cost;
3068}
3069
3070/* Compute cost of executing INSN given the dependence LINK on the insn USED.
3071 This is the number of cycles between instruction issue and
3072 instruction results. */
3073
cbb13457 3074HAIFA_INLINE static int
8c660648
JL
3075insn_cost (insn, link, used)
3076 rtx insn, link, used;
3077{
3078 register int cost = INSN_COST (insn);
3079
3080 if (cost == 0)
3081 {
3082 recog_memoized (insn);
3083
3084 /* A USE insn, or something else we don't need to understand.
3085 We can't pass these directly to result_ready_cost because it will
3086 trigger a fatal error for unrecognizable insns. */
3087 if (INSN_CODE (insn) < 0)
3088 {
3089 INSN_COST (insn) = 1;
3090 return 1;
3091 }
3092 else
3093 {
3094 cost = result_ready_cost (insn);
3095
3096 if (cost < 1)
3097 cost = 1;
3098
3099 INSN_COST (insn) = cost;
3100 }
3101 }
3102
3103 /* in this case estimate cost without caring how insn is used. */
3104 if (link == 0 && used == 0)
3105 return cost;
3106
3107 /* A USE insn should never require the value used to be computed. This
3108 allows the computation of a function's result and parameter values to
3109 overlap the return and call. */
3110 recog_memoized (used);
3111 if (INSN_CODE (used) < 0)
3112 LINK_COST_FREE (link) = 1;
3113
3114 /* If some dependencies vary the cost, compute the adjustment. Most
3115 commonly, the adjustment is complete: either the cost is ignored
3116 (in the case of an output- or anti-dependence), or the cost is
3117 unchanged. These values are cached in the link as LINK_COST_FREE
3118 and LINK_COST_ZERO. */
3119
3120 if (LINK_COST_FREE (link))
3121 cost = 1;
3122#ifdef ADJUST_COST
3123 else if (!LINK_COST_ZERO (link))
3124 {
3125 int ncost = cost;
3126
3127 ADJUST_COST (used, link, insn, ncost);
3128 if (ncost <= 1)
3129 LINK_COST_FREE (link) = ncost = 1;
3130 if (cost == ncost)
3131 LINK_COST_ZERO (link) = 1;
3132 cost = ncost;
3133 }
3134#endif
3135 return cost;
3136}
3137
3138/* Compute the priority number for INSN. */
3139
3140static int
3141priority (insn)
3142 rtx insn;
3143{
3144 int this_priority;
3145 rtx link;
3146
3147 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
3148 return 0;
3149
3150 if ((this_priority = INSN_PRIORITY (insn)) == 0)
3151 {
3152 if (INSN_DEPEND (insn) == 0)
3153 this_priority = insn_cost (insn, 0, 0);
3154 else
3155 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
3156 {
3157 rtx next;
3158 int next_priority;
3159
6d8ccdbb
JL
3160 if (RTX_INTEGRATED_P (link))
3161 continue;
3162
8c660648
JL
3163 next = XEXP (link, 0);
3164
3165 /* critical path is meaningful in block boundaries only */
3166 if (INSN_BLOCK (next) != INSN_BLOCK (insn))
3167 continue;
3168
3169 next_priority = insn_cost (insn, link, next) + priority (next);
3170 if (next_priority > this_priority)
3171 this_priority = next_priority;
3172 }
3173 INSN_PRIORITY (insn) = this_priority;
3174 }
3175 return this_priority;
3176}
3177\f
3178
3179/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
3180 them to the unused_*_list variables, so that they can be reused. */
3181
8c660648
JL
3182static void
3183free_pending_lists ()
3184{
8c660648
JL
3185 if (current_nr_blocks <= 1)
3186 {
ebb7b10b
RH
3187 free_list (&pending_read_insns, &unused_insn_list);
3188 free_list (&pending_write_insns, &unused_insn_list);
3189 free_list (&pending_read_mems, &unused_expr_list);
3190 free_list (&pending_write_mems, &unused_expr_list);
8c660648
JL
3191 }
3192 else
3193 {
3194 /* interblock scheduling */
3195 int bb;
3196
3197 for (bb = 0; bb < current_nr_blocks; bb++)
3198 {
ebb7b10b
RH
3199 free_list (&bb_pending_read_insns[bb], &unused_insn_list);
3200 free_list (&bb_pending_write_insns[bb], &unused_insn_list);
3201 free_list (&bb_pending_read_mems[bb], &unused_expr_list);
3202 free_list (&bb_pending_write_mems[bb], &unused_expr_list);
8c660648
JL
3203 }
3204 }
3205}
3206
3207/* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
3208 The MEM is a memory reference contained within INSN, which we are saving
3209 so that we can do memory aliasing on it. */
3210
3211static void
3212add_insn_mem_dependence (insn_list, mem_list, insn, mem)
3213 rtx *insn_list, *mem_list, insn, mem;
3214{
3215 register rtx link;
3216
ebb7b10b 3217 link = alloc_INSN_LIST (insn, *insn_list);
8c660648
JL
3218 *insn_list = link;
3219
ebb7b10b 3220 link = alloc_EXPR_LIST (VOIDmode, mem, *mem_list);
8c660648
JL
3221 *mem_list = link;
3222
3223 pending_lists_length++;
3224}
3225\f
3226
3227/* Make a dependency between every memory reference on the pending lists
3228 and INSN, thus flushing the pending lists. If ONLY_WRITE, don't flush
3229 the read list. */
3230
3231static void
3232flush_pending_lists (insn, only_write)
3233 rtx insn;
3234 int only_write;
3235{
3236 rtx u;
3237 rtx link;
3238
3239 while (pending_read_insns && ! only_write)
3240 {
3241 add_dependence (insn, XEXP (pending_read_insns, 0), REG_DEP_ANTI);
3242
3243 link = pending_read_insns;
3244 pending_read_insns = XEXP (pending_read_insns, 1);
3245 XEXP (link, 1) = unused_insn_list;
3246 unused_insn_list = link;
3247
3248 link = pending_read_mems;
3249 pending_read_mems = XEXP (pending_read_mems, 1);
3250 XEXP (link, 1) = unused_expr_list;
3251 unused_expr_list = link;
3252 }
3253 while (pending_write_insns)
3254 {
3255 add_dependence (insn, XEXP (pending_write_insns, 0), REG_DEP_ANTI);
3256
3257 link = pending_write_insns;
3258 pending_write_insns = XEXP (pending_write_insns, 1);
3259 XEXP (link, 1) = unused_insn_list;
3260 unused_insn_list = link;
3261
3262 link = pending_write_mems;
3263 pending_write_mems = XEXP (pending_write_mems, 1);
3264 XEXP (link, 1) = unused_expr_list;
3265 unused_expr_list = link;
3266 }
3267 pending_lists_length = 0;
3268
3269 /* last_pending_memory_flush is now a list of insns */
3270 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
3271 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3272
ebb7b10b
RH
3273 free_list (&last_pending_memory_flush, &unused_insn_list);
3274 last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
8c660648
JL
3275}
3276
3277/* Analyze a single SET or CLOBBER rtx, X, creating all dependencies generated
3278 by the write to the destination of X, and reads of everything mentioned. */
3279
3280static void
3281sched_analyze_1 (x, insn)
3282 rtx x;
3283 rtx insn;
3284{
3285 register int regno;
3286 register rtx dest = SET_DEST (x);
3287
3288 if (dest == 0)
3289 return;
3290
3291 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
3292 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
3293 {
3294 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
3295 {
3296 /* The second and third arguments are values read by this insn. */
3297 sched_analyze_2 (XEXP (dest, 1), insn);
3298 sched_analyze_2 (XEXP (dest, 2), insn);
3299 }
3300 dest = SUBREG_REG (dest);
3301 }
3302
3303 if (GET_CODE (dest) == REG)
3304 {
3305 register int i;
3306
3307 regno = REGNO (dest);
3308
3309 /* A hard reg in a wide mode may really be multiple registers.
3310 If so, mark all of them just like the first. */
3311 if (regno < FIRST_PSEUDO_REGISTER)
3312 {
3313 i = HARD_REGNO_NREGS (regno, GET_MODE (dest));
3314 while (--i >= 0)
3315 {
3316 rtx u;
3317
3318 for (u = reg_last_uses[regno + i]; u; u = XEXP (u, 1))
3319 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3320 reg_last_uses[regno + i] = 0;
3321
3322 for (u = reg_last_sets[regno + i]; u; u = XEXP (u, 1))
3323 add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
3324
3325 SET_REGNO_REG_SET (reg_pending_sets, regno + i);
3326
3327 if ((call_used_regs[regno + i] || global_regs[regno + i]))
3328 /* Function calls clobber all call_used regs. */
3329 for (u = last_function_call; u; u = XEXP (u, 1))
3330 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3331 }
3332 }
3333 else
3334 {
3335 rtx u;
3336
3337 for (u = reg_last_uses[regno]; u; u = XEXP (u, 1))
3338 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3339 reg_last_uses[regno] = 0;
3340
3341 for (u = reg_last_sets[regno]; u; u = XEXP (u, 1))
3342 add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
3343
3344 SET_REGNO_REG_SET (reg_pending_sets, regno);
3345
3346 /* Pseudos that are REG_EQUIV to something may be replaced
3347 by that during reloading. We need only add dependencies for
3348 the address in the REG_EQUIV note. */
3349 if (!reload_completed
3350 && reg_known_equiv_p[regno]
3351 && GET_CODE (reg_known_value[regno]) == MEM)
3352 sched_analyze_2 (XEXP (reg_known_value[regno], 0), insn);
3353
3354 /* Don't let it cross a call after scheduling if it doesn't
3355 already cross one. */
3356
3357 if (REG_N_CALLS_CROSSED (regno) == 0)
3358 for (u = last_function_call; u; u = XEXP (u, 1))
3359 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3360 }
3361 }
3362 else if (GET_CODE (dest) == MEM)
3363 {
3364 /* Writing memory. */
3365
3366 if (pending_lists_length > 32)
3367 {
3368 /* Flush all pending reads and writes to prevent the pending lists
3369 from getting any larger. Insn scheduling runs too slowly when
3370 these lists get long. The number 32 was chosen because it
3371 seems like a reasonable number. When compiling GCC with itself,
3372 this flush occurs 8 times for sparc, and 10 times for m88k using
3373 the number 32. */
3374 flush_pending_lists (insn, 0);
3375 }
3376 else
3377 {
3378 rtx u;
3379 rtx pending, pending_mem;
3380
3381 pending = pending_read_insns;
3382 pending_mem = pending_read_mems;
3383 while (pending)
3384 {
3385 /* If a dependency already exists, don't create a new one. */
3386 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3387 if (anti_dependence (XEXP (pending_mem, 0), dest))
3388 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
3389
3390 pending = XEXP (pending, 1);
3391 pending_mem = XEXP (pending_mem, 1);
3392 }
3393
3394 pending = pending_write_insns;
3395 pending_mem = pending_write_mems;
3396 while (pending)
3397 {
3398 /* If a dependency already exists, don't create a new one. */
3399 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3400 if (output_dependence (XEXP (pending_mem, 0), dest))
3401 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
3402
3403 pending = XEXP (pending, 1);
3404 pending_mem = XEXP (pending_mem, 1);
3405 }
3406
3407 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
3408 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3409
3410 add_insn_mem_dependence (&pending_write_insns, &pending_write_mems,
3411 insn, dest);
3412 }
3413 sched_analyze_2 (XEXP (dest, 0), insn);
3414 }
3415
3416 /* Analyze reads. */
3417 if (GET_CODE (x) == SET)
3418 sched_analyze_2 (SET_SRC (x), insn);
3419}
3420
3421/* Analyze the uses of memory and registers in rtx X in INSN. */
3422
3423static void
3424sched_analyze_2 (x, insn)
3425 rtx x;
3426 rtx insn;
3427{
3428 register int i;
3429 register int j;
3430 register enum rtx_code code;
3431 register char *fmt;
3432
3433 if (x == 0)
3434 return;
3435
3436 code = GET_CODE (x);
3437
3438 switch (code)
3439 {
3440 case CONST_INT:
3441 case CONST_DOUBLE:
3442 case SYMBOL_REF:
3443 case CONST:
3444 case LABEL_REF:
3445 /* Ignore constants. Note that we must handle CONST_DOUBLE here
3446 because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
3447 this does not mean that this insn is using cc0. */
3448 return;
3449
3450#ifdef HAVE_cc0
3451 case CC0:
3452 {
3453 rtx link, prev;
3454
3455 /* User of CC0 depends on immediately preceding insn. */
3456 SCHED_GROUP_P (insn) = 1;
3457
3458 /* There may be a note before this insn now, but all notes will
3459 be removed before we actually try to schedule the insns, so
3460 it won't cause a problem later. We must avoid it here though. */
3461 prev = prev_nonnote_insn (insn);
3462
3463 /* Make a copy of all dependencies on the immediately previous insn,
3464 and add to this insn. This is so that all the dependencies will
3465 apply to the group. Remove an explicit dependence on this insn
3466 as SCHED_GROUP_P now represents it. */
3467
3468 if (find_insn_list (prev, LOG_LINKS (insn)))
3469 remove_dependence (insn, prev);
3470
3471 for (link = LOG_LINKS (prev); link; link = XEXP (link, 1))
3472 add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
3473
3474 return;
3475 }
3476#endif
3477
3478 case REG:
3479 {
3480 rtx u;
3481 int regno = REGNO (x);
3482 if (regno < FIRST_PSEUDO_REGISTER)
3483 {
3484 int i;
3485
3486 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
3487 while (--i >= 0)
3488 {
3489 reg_last_uses[regno + i]
ebb7b10b 3490 = alloc_INSN_LIST (insn, reg_last_uses[regno + i]);
8c660648
JL
3491
3492 for (u = reg_last_sets[regno + i]; u; u = XEXP (u, 1))
3493 add_dependence (insn, XEXP (u, 0), 0);
3494
3495 if ((call_used_regs[regno + i] || global_regs[regno + i]))
3496 /* Function calls clobber all call_used regs. */
3497 for (u = last_function_call; u; u = XEXP (u, 1))
3498 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3499 }
3500 }
3501 else
3502 {
ebb7b10b 3503 reg_last_uses[regno] = alloc_INSN_LIST (insn, reg_last_uses[regno]);
8c660648
JL
3504
3505 for (u = reg_last_sets[regno]; u; u = XEXP (u, 1))
3506 add_dependence (insn, XEXP (u, 0), 0);
3507
3508 /* Pseudos that are REG_EQUIV to something may be replaced
3509 by that during reloading. We need only add dependencies for
3510 the address in the REG_EQUIV note. */
3511 if (!reload_completed
3512 && reg_known_equiv_p[regno]
3513 && GET_CODE (reg_known_value[regno]) == MEM)
3514 sched_analyze_2 (XEXP (reg_known_value[regno], 0), insn);
3515
3516 /* If the register does not already cross any calls, then add this
3517 insn to the sched_before_next_call list so that it will still
3518 not cross calls after scheduling. */
3519 if (REG_N_CALLS_CROSSED (regno) == 0)
3520 add_dependence (sched_before_next_call, insn, REG_DEP_ANTI);
3521 }
3522 return;
3523 }
3524
3525 case MEM:
3526 {
3527 /* Reading memory. */
3528 rtx u;
3529 rtx pending, pending_mem;
3530
3531 pending = pending_read_insns;
3532 pending_mem = pending_read_mems;
3533 while (pending)
3534 {
3535 /* If a dependency already exists, don't create a new one. */
3536 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3537 if (read_dependence (XEXP (pending_mem, 0), x))
3538 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
3539
3540 pending = XEXP (pending, 1);
3541 pending_mem = XEXP (pending_mem, 1);
3542 }
3543
3544 pending = pending_write_insns;
3545 pending_mem = pending_write_mems;
3546 while (pending)
3547 {
3548 /* If a dependency already exists, don't create a new one. */
3549 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3550 if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
3551 x, rtx_varies_p))
3552 add_dependence (insn, XEXP (pending, 0), 0);
3553
3554 pending = XEXP (pending, 1);
3555 pending_mem = XEXP (pending_mem, 1);
3556 }
3557
3558 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
3559 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3560
3561 /* Always add these dependencies to pending_reads, since
3562 this insn may be followed by a write. */
3563 add_insn_mem_dependence (&pending_read_insns, &pending_read_mems,
3564 insn, x);
3565
3566 /* Take advantage of tail recursion here. */
3567 sched_analyze_2 (XEXP (x, 0), insn);
3568 return;
3569 }
3570
e0cd0770
JC
3571 /* Force pending stores to memory in case a trap handler needs them. */
3572 case TRAP_IF:
3573 flush_pending_lists (insn, 1);
3574 break;
3575
8c660648
JL
3576 case ASM_OPERANDS:
3577 case ASM_INPUT:
3578 case UNSPEC_VOLATILE:
8c660648
JL
3579 {
3580 rtx u;
3581
3582 /* Traditional and volatile asm instructions must be considered to use
3583 and clobber all hard registers, all pseudo-registers and all of
3584 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3585
3586 Consider for instance a volatile asm that changes the fpu rounding
3587 mode. An insn should not be moved across this even if it only uses
3588 pseudo-regs because it might give an incorrectly rounded result. */
3589 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3590 {
3591 int max_reg = max_reg_num ();
3592 for (i = 0; i < max_reg; i++)
3593 {
3594 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3595 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3596 reg_last_uses[i] = 0;
3597
3598 /* reg_last_sets[r] is now a list of insns */
3599 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3600 add_dependence (insn, XEXP (u, 0), 0);
3601 }
3602 reg_pending_sets_all = 1;
3603
3604 flush_pending_lists (insn, 0);
3605 }
3606
3607 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3608 We can not just fall through here since then we would be confused
3609 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3610 traditional asms unlike their normal usage. */
3611
3612 if (code == ASM_OPERANDS)
3613 {
3614 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3615 sched_analyze_2 (ASM_OPERANDS_INPUT (x, j), insn);
3616 return;
3617 }
3618 break;
3619 }
3620
3621 case PRE_DEC:
3622 case POST_DEC:
3623 case PRE_INC:
3624 case POST_INC:
3625 /* These both read and modify the result. We must handle them as writes
3626 to get proper dependencies for following instructions. We must handle
3627 them as reads to get proper dependencies from this to previous
3628 instructions. Thus we need to pass them to both sched_analyze_1
3629 and sched_analyze_2. We must call sched_analyze_2 first in order
3630 to get the proper antecedent for the read. */
3631 sched_analyze_2 (XEXP (x, 0), insn);
3632 sched_analyze_1 (x, insn);
3633 return;
5835e573
KG
3634
3635 default:
3636 break;
8c660648
JL
3637 }
3638
3639 /* Other cases: walk the insn. */
3640 fmt = GET_RTX_FORMAT (code);
3641 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3642 {
3643 if (fmt[i] == 'e')
3644 sched_analyze_2 (XEXP (x, i), insn);
3645 else if (fmt[i] == 'E')
3646 for (j = 0; j < XVECLEN (x, i); j++)
3647 sched_analyze_2 (XVECEXP (x, i, j), insn);
3648 }
3649}
3650
3651/* Analyze an INSN with pattern X to find all dependencies. */
3652
3653static void
3654sched_analyze_insn (x, insn, loop_notes)
3655 rtx x, insn;
3656 rtx loop_notes;
3657{
3658 register RTX_CODE code = GET_CODE (x);
3659 rtx link;
3660 int maxreg = max_reg_num ();
3661 int i;
3662
3663 if (code == SET || code == CLOBBER)
3664 sched_analyze_1 (x, insn);
3665 else if (code == PARALLEL)
3666 {
3667 register int i;
3668 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
3669 {
3670 code = GET_CODE (XVECEXP (x, 0, i));
3671 if (code == SET || code == CLOBBER)
3672 sched_analyze_1 (XVECEXP (x, 0, i), insn);
3673 else
3674 sched_analyze_2 (XVECEXP (x, 0, i), insn);
3675 }
3676 }
3677 else
3678 sched_analyze_2 (x, insn);
3679
3680 /* Mark registers CLOBBERED or used by called function. */
3681 if (GET_CODE (insn) == CALL_INSN)
3682 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
3683 {
3684 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
3685 sched_analyze_1 (XEXP (link, 0), insn);
3686 else
3687 sched_analyze_2 (XEXP (link, 0), insn);
3688 }
3689
3690 /* If there is a {LOOP,EHREGION}_{BEG,END} note in the middle of a basic block, then
3691 we must be sure that no instructions are scheduled across it.
3692 Otherwise, the reg_n_refs info (which depends on loop_depth) would
3693 become incorrect. */
3694
3695 if (loop_notes)
3696 {
3697 int max_reg = max_reg_num ();
3698 rtx link;
3699
3700 for (i = 0; i < max_reg; i++)
3701 {
3702 rtx u;
3703 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3704 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3705 reg_last_uses[i] = 0;
3706
3707 /* reg_last_sets[r] is now a list of insns */
3708 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3709 add_dependence (insn, XEXP (u, 0), 0);
3710 }
3711 reg_pending_sets_all = 1;
3712
3713 flush_pending_lists (insn, 0);
3714
3715 link = loop_notes;
3716 while (XEXP (link, 1))
3717 link = XEXP (link, 1);
3718 XEXP (link, 1) = REG_NOTES (insn);
3719 REG_NOTES (insn) = loop_notes;
3720 }
3721
3722 /* After reload, it is possible for an instruction to have a REG_DEAD note
3723 for a register that actually dies a few instructions earlier. For
3724 example, this can happen with SECONDARY_MEMORY_NEEDED reloads.
3725 In this case, we must consider the insn to use the register mentioned
3726 in the REG_DEAD note. Otherwise, we may accidentally move this insn
3727 after another insn that sets the register, thus getting obviously invalid
3728 rtl. This confuses reorg which believes that REG_DEAD notes are still
3729 meaningful.
3730
3731 ??? We would get better code if we fixed reload to put the REG_DEAD
3732 notes in the right places, but that may not be worth the effort. */
3733
3734 if (reload_completed)
3735 {
3736 rtx note;
3737
3738 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3739 if (REG_NOTE_KIND (note) == REG_DEAD)
3740 sched_analyze_2 (XEXP (note, 0), insn);
3741 }
3742
3743 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i,
3744 {
3745 /* reg_last_sets[r] is now a list of insns */
ebb7b10b 3746 free_list (&reg_last_sets[i], &unused_insn_list);
8c660648 3747 reg_last_sets[i]
ebb7b10b 3748 = alloc_INSN_LIST (insn, NULL_RTX);
8c660648
JL
3749 });
3750 CLEAR_REG_SET (reg_pending_sets);
3751
3752 if (reg_pending_sets_all)
3753 {
3754 for (i = 0; i < maxreg; i++)
ebb7b10b
RH
3755 {
3756 /* reg_last_sets[r] is now a list of insns */
3757 free_list (&reg_last_sets[i], &unused_insn_list);
3758 reg_last_sets[i] = alloc_INSN_LIST (insn, NULL_RTX);
3759 }
8c660648
JL
3760
3761 reg_pending_sets_all = 0;
3762 }
3763
3764 /* Handle function calls and function returns created by the epilogue
3765 threading code. */
3766 if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3767 {
3768 rtx dep_insn;
3769 rtx prev_dep_insn;
3770
3771 /* When scheduling instructions, we make sure calls don't lose their
3772 accompanying USE insns by depending them one on another in order.
3773
3774 Also, we must do the same thing for returns created by the epilogue
3775 threading code. Note this code works only in this special case,
3776 because other passes make no guarantee that they will never emit
3777 an instruction between a USE and a RETURN. There is such a guarantee
3778 for USE instructions immediately before a call. */
3779
3780 prev_dep_insn = insn;
3781 dep_insn = PREV_INSN (insn);
3782 while (GET_CODE (dep_insn) == INSN
3783 && GET_CODE (PATTERN (dep_insn)) == USE
3784 && GET_CODE (XEXP (PATTERN (dep_insn), 0)) == REG)
3785 {
3786 SCHED_GROUP_P (prev_dep_insn) = 1;
3787
3788 /* Make a copy of all dependencies on dep_insn, and add to insn.
3789 This is so that all of the dependencies will apply to the
3790 group. */
3791
3792 for (link = LOG_LINKS (dep_insn); link; link = XEXP (link, 1))
3793 add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
3794
3795 prev_dep_insn = dep_insn;
3796 dep_insn = PREV_INSN (dep_insn);
3797 }
3798 }
3799}
3800
3801/* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
3802 for every dependency. */
3803
3804static void
3805sched_analyze (head, tail)
3806 rtx head, tail;
3807{
3808 register rtx insn;
3809 register rtx u;
3810 rtx loop_notes = 0;
3811
3812 for (insn = head;; insn = NEXT_INSN (insn))
3813 {
3814 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
3815 {
3816 sched_analyze_insn (PATTERN (insn), insn, loop_notes);
3817 loop_notes = 0;
3818 }
3819 else if (GET_CODE (insn) == CALL_INSN)
3820 {
3821 rtx x;
3822 register int i;
3823
3824 CANT_MOVE (insn) = 1;
3825
3826 /* Any instruction using a hard register which may get clobbered
3827 by a call needs to be marked as dependent on this call.
3828 This prevents a use of a hard return reg from being moved
3829 past a void call (i.e. it does not explicitly set the hard
3830 return reg). */
3831
3832 /* If this call is followed by a NOTE_INSN_SETJMP, then assume that
3833 all registers, not just hard registers, may be clobbered by this
3834 call. */
3835
3836 /* Insn, being a CALL_INSN, magically depends on
3837 `last_function_call' already. */
3838
3839 if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == NOTE
3840 && NOTE_LINE_NUMBER (NEXT_INSN (insn)) == NOTE_INSN_SETJMP)
3841 {
3842 int max_reg = max_reg_num ();
3843 for (i = 0; i < max_reg; i++)
3844 {
3845 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3846 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3847
3848 reg_last_uses[i] = 0;
3849
3850 /* reg_last_sets[r] is now a list of insns */
3851 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3852 add_dependence (insn, XEXP (u, 0), 0);
3853 }
3854 reg_pending_sets_all = 1;
3855
3856 /* Add a pair of fake REG_NOTE which we will later
3857 convert back into a NOTE_INSN_SETJMP note. See
3858 reemit_notes for why we use a pair of NOTEs. */
ebb7b10b
RH
3859 REG_NOTES (insn) = alloc_EXPR_LIST (REG_DEAD,
3860 GEN_INT (0),
3861 REG_NOTES (insn));
3862 REG_NOTES (insn) = alloc_EXPR_LIST (REG_DEAD,
3863 GEN_INT (NOTE_INSN_SETJMP),
3864 REG_NOTES (insn));
8c660648
JL
3865 }
3866 else
3867 {
3868 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3869 if (call_used_regs[i] || global_regs[i])
3870 {
3871 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3872 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3873 reg_last_uses[i] = 0;
3874
3875 /* reg_last_sets[r] is now a list of insns */
3876 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3877 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3878
3879 SET_REGNO_REG_SET (reg_pending_sets, i);
3880 }
3881 }
3882
3883 /* For each insn which shouldn't cross a call, add a dependence
3884 between that insn and this call insn. */
3885 x = LOG_LINKS (sched_before_next_call);
3886 while (x)
3887 {
3888 add_dependence (insn, XEXP (x, 0), REG_DEP_ANTI);
3889 x = XEXP (x, 1);
3890 }
3891 LOG_LINKS (sched_before_next_call) = 0;
3892
3893 sched_analyze_insn (PATTERN (insn), insn, loop_notes);
3894 loop_notes = 0;
3895
3896 /* In the absence of interprocedural alias analysis, we must flush
3897 all pending reads and writes, and start new dependencies starting
3898 from here. But only flush writes for constant calls (which may
3899 be passed a pointer to something we haven't written yet). */
3900 flush_pending_lists (insn, CONST_CALL_P (insn));
3901
3902 /* Depend this function call (actually, the user of this
3903 function call) on all hard register clobberage. */
3904
3905 /* last_function_call is now a list of insns */
ebb7b10b
RH
3906 free_list(&last_function_call, &unused_insn_list);
3907 last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
8c660648
JL
3908 }
3909
3910 /* See comments on reemit_notes as to why we do this. */
3911 else if (GET_CODE (insn) == NOTE
3912 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
3913 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
3914 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
3915 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
0dfa1860
MM
3916 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_START
3917 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_END
8c660648
JL
3918 || (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP
3919 && GET_CODE (PREV_INSN (insn)) != CALL_INSN)))
3920 {
ebb7b10b
RH
3921 loop_notes = alloc_EXPR_LIST (REG_DEAD,
3922 GEN_INT (NOTE_BLOCK_NUMBER (insn)),
3923 loop_notes);
3924 loop_notes = alloc_EXPR_LIST (REG_DEAD,
3925 GEN_INT (NOTE_LINE_NUMBER (insn)),
3926 loop_notes);
8c660648
JL
3927 CONST_CALL_P (loop_notes) = CONST_CALL_P (insn);
3928 }
3929
3930 if (insn == tail)
3931 return;
3932 }
3933 abort ();
3934}
3935\f
3936/* Called when we see a set of a register. If death is true, then we are
3937 scanning backwards. Mark that register as unborn. If nobody says
3938 otherwise, that is how things will remain. If death is false, then we
3939 are scanning forwards. Mark that register as being born. */
3940
3941static void
5835e573 3942sched_note_set (x, death)
8c660648
JL
3943 rtx x;
3944 int death;
3945{
3946 register int regno;
3947 register rtx reg = SET_DEST (x);
3948 int subreg_p = 0;
3949
3950 if (reg == 0)
3951 return;
3952
3953 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == STRICT_LOW_PART
3954 || GET_CODE (reg) == SIGN_EXTRACT || GET_CODE (reg) == ZERO_EXTRACT)
3955 {
3956 /* Must treat modification of just one hardware register of a multi-reg
3957 value or just a byte field of a register exactly the same way that
3958 mark_set_1 in flow.c does, i.e. anything except a paradoxical subreg
3959 does not kill the entire register. */
3960 if (GET_CODE (reg) != SUBREG
3961 || REG_SIZE (SUBREG_REG (reg)) > REG_SIZE (reg))
3962 subreg_p = 1;
3963
3964 reg = SUBREG_REG (reg);
3965 }
3966
3967 if (GET_CODE (reg) != REG)
3968 return;
3969
3970 /* Global registers are always live, so the code below does not apply
3971 to them. */
3972
3973 regno = REGNO (reg);
3974 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
3975 {
3976 if (death)
3977 {
3978 /* If we only set part of the register, then this set does not
3979 kill it. */
3980 if (subreg_p)
3981 return;
3982
3983 /* Try killing this register. */
3984 if (regno < FIRST_PSEUDO_REGISTER)
3985 {
3986 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
3987 while (--j >= 0)
3988 {
3989 CLEAR_REGNO_REG_SET (bb_live_regs, regno + j);
3990 }
3991 }
3992 else
3993 {
3994 /* Recompute REG_BASIC_BLOCK as we update all the other
3995 dataflow information. */
3996 if (sched_reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
3997 sched_reg_basic_block[regno] = current_block_num;
3998 else if (sched_reg_basic_block[regno] != current_block_num)
3999 sched_reg_basic_block[regno] = REG_BLOCK_GLOBAL;
4000
4001 CLEAR_REGNO_REG_SET (bb_live_regs, regno);
4002 }
4003 }
4004 else
4005 {
4006 /* Make the register live again. */
4007 if (regno < FIRST_PSEUDO_REGISTER)
4008 {
4009 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
4010 while (--j >= 0)
4011 {
4012 SET_REGNO_REG_SET (bb_live_regs, regno + j);
4013 }
4014 }
4015 else
4016 {
4017 SET_REGNO_REG_SET (bb_live_regs, regno);
4018 }
4019 }
4020 }
4021}
4022\f
4023/* Macros and functions for keeping the priority queue sorted, and
4024 dealing with queueing and dequeueing of instructions. */
4025
4026#define SCHED_SORT(READY, N_READY) \
4027do { if ((N_READY) == 2) \
4028 swap_sort (READY, N_READY); \
4029 else if ((N_READY) > 2) \
4030 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
4031while (0)
4032
4033/* Returns a positive value if x is preferred; returns a negative value if
4034 y is preferred. Should never return 0, since that will make the sort
4035 unstable. */
4036
4037static int
4038rank_for_schedule (x, y)
01c7f350
MM
4039 const GENERIC_PTR x;
4040 const GENERIC_PTR y;
8c660648 4041{
01c7f350
MM
4042 rtx tmp = *(rtx *)y;
4043 rtx tmp2 = *(rtx *)x;
8c660648 4044 rtx link;
2db45993 4045 int tmp_class, tmp2_class, depend_count1, depend_count2;
8c660648
JL
4046 int val, priority_val, spec_val, prob_val, weight_val;
4047
4048
8c660648
JL
4049 /* prefer insn with higher priority */
4050 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
4051 if (priority_val)
4052 return priority_val;
4053
4054 /* prefer an insn with smaller contribution to registers-pressure */
4055 if (!reload_completed &&
4056 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
4057 return (weight_val);
4058
4059 /* some comparison make sense in interblock scheduling only */
4060 if (INSN_BB (tmp) != INSN_BB (tmp2))
4061 {
4062 /* prefer an inblock motion on an interblock motion */
4063 if ((INSN_BB (tmp2) == target_bb) && (INSN_BB (tmp) != target_bb))
4064 return 1;
4065 if ((INSN_BB (tmp) == target_bb) && (INSN_BB (tmp2) != target_bb))
4066 return -1;
4067
4068 /* prefer a useful motion on a speculative one */
4069 if ((spec_val = IS_SPECULATIVE_INSN (tmp) - IS_SPECULATIVE_INSN (tmp2)))
4070 return (spec_val);
4071
4072 /* prefer a more probable (speculative) insn */
4073 prob_val = INSN_PROBABILITY (tmp2) - INSN_PROBABILITY (tmp);
4074 if (prob_val)
4075 return (prob_val);
4076 }
4077
4078 /* compare insns based on their relation to the last-scheduled-insn */
4079 if (last_scheduled_insn)
4080 {
4081 /* Classify the instructions into three classes:
4082 1) Data dependent on last schedule insn.
4083 2) Anti/Output dependent on last scheduled insn.
4084 3) Independent of last scheduled insn, or has latency of one.
4085 Choose the insn from the highest numbered class if different. */
4086 link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
4087 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
4088 tmp_class = 3;
4089 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
4090 tmp_class = 1;
4091 else
4092 tmp_class = 2;
4093
4094 link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
4095 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
4096 tmp2_class = 3;
4097 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
4098 tmp2_class = 1;
4099 else
4100 tmp2_class = 2;
4101
4102 if ((val = tmp2_class - tmp_class))
4103 return val;
4104 }
4105
2db45993
JL
4106 /* Prefer the insn which has more later insns that depend on it.
4107 This gives the scheduler more freedom when scheduling later
4108 instructions at the expense of added register pressure. */
4109 depend_count1 = 0;
4110 for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
4111 depend_count1++;
4112
4113 depend_count2 = 0;
4114 for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
4115 depend_count2++;
4116
4117 val = depend_count2 - depend_count1;
4118 if (val)
4119 return val;
4120
8c660648
JL
4121 /* If insns are equally good, sort by INSN_LUID (original insn order),
4122 so that we make the sort stable. This minimizes instruction movement,
4123 thus minimizing sched's effect on debugging and cross-jumping. */
4124 return INSN_LUID (tmp) - INSN_LUID (tmp2);
4125}
4126
4127/* Resort the array A in which only element at index N may be out of order. */
4128
cbb13457 4129HAIFA_INLINE static void
8c660648
JL
4130swap_sort (a, n)
4131 rtx *a;
4132 int n;
4133{
4134 rtx insn = a[n - 1];
4135 int i = n - 2;
4136
4137 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
4138 {
4139 a[i + 1] = a[i];
4140 i -= 1;
4141 }
4142 a[i + 1] = insn;
4143}
4144
4145static int max_priority;
4146
4147/* Add INSN to the insn queue so that it can be executed at least
4148 N_CYCLES after the currently executing insn. Preserve insns
4149 chain for debugging purposes. */
4150
cbb13457 4151HAIFA_INLINE static void
8c660648
JL
4152queue_insn (insn, n_cycles)
4153 rtx insn;
4154 int n_cycles;
4155{
4156 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
ebb7b10b 4157 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
8c660648
JL
4158 insn_queue[next_q] = link;
4159 q_size += 1;
4160
4161 if (sched_verbose >= 2)
4162 {
4163 fprintf (dump, ";;\t\tReady-->Q: insn %d: ", INSN_UID (insn));
4164
4165 if (INSN_BB (insn) != target_bb)
4166 fprintf (dump, "(b%d) ", INSN_BLOCK (insn));
4167
4168 fprintf (dump, "queued for %d cycles.\n", n_cycles);
4169 }
4170
4171}
4172
4173/* Return nonzero if PAT is the pattern of an insn which makes a
4174 register live. */
4175
cbb13457 4176HAIFA_INLINE static int
8c660648
JL
4177birthing_insn_p (pat)
4178 rtx pat;
4179{
4180 int j;
4181
4182 if (reload_completed == 1)
4183 return 0;
4184
4185 if (GET_CODE (pat) == SET
4186 && GET_CODE (SET_DEST (pat)) == REG)
4187 {
4188 rtx dest = SET_DEST (pat);
4189 int i = REGNO (dest);
4190
4191 /* It would be more accurate to use refers_to_regno_p or
4192 reg_mentioned_p to determine when the dest is not live before this
4193 insn. */
4194
4195 if (REGNO_REG_SET_P (bb_live_regs, i))
4196 return (REG_N_SETS (i) == 1);
4197
4198 return 0;
4199 }
4200 if (GET_CODE (pat) == PARALLEL)
4201 {
4202 for (j = 0; j < XVECLEN (pat, 0); j++)
4203 if (birthing_insn_p (XVECEXP (pat, 0, j)))
4204 return 1;
4205 }
4206 return 0;
4207}
4208
4209/* PREV is an insn that is ready to execute. Adjust its priority if that
4210 will help shorten register lifetimes. */
4211
cbb13457 4212HAIFA_INLINE static void
8c660648
JL
4213adjust_priority (prev)
4214 rtx prev;
4215{
4216 /* Trying to shorten register lives after reload has completed
4217 is useless and wrong. It gives inaccurate schedules. */
4218 if (reload_completed == 0)
4219 {
4220 rtx note;
4221 int n_deaths = 0;
4222
4223 /* ??? This code has no effect, because REG_DEAD notes are removed
4224 before we ever get here. */
4225 for (note = REG_NOTES (prev); note; note = XEXP (note, 1))
4226 if (REG_NOTE_KIND (note) == REG_DEAD)
4227 n_deaths += 1;
4228
4229 /* Defer scheduling insns which kill registers, since that
4230 shortens register lives. Prefer scheduling insns which
4231 make registers live for the same reason. */
4232 switch (n_deaths)
4233 {
4234 default:
4235 INSN_PRIORITY (prev) >>= 3;
4236 break;
4237 case 3:
4238 INSN_PRIORITY (prev) >>= 2;
4239 break;
4240 case 2:
4241 case 1:
4242 INSN_PRIORITY (prev) >>= 1;
4243 break;
4244 case 0:
4245 if (birthing_insn_p (PATTERN (prev)))
4246 {
4247 int max = max_priority;
4248
4249 if (max > INSN_PRIORITY (prev))
4250 INSN_PRIORITY (prev) = max;
4251 }
4252 break;
4253 }
4254#ifdef ADJUST_PRIORITY
4255 ADJUST_PRIORITY (prev);
4256#endif
4257 }
4258}
4259
4260/* INSN is the "currently executing insn". Launch each insn which was
4261 waiting on INSN. READY is a vector of insns which are ready to fire.
4262 N_READY is the number of elements in READY. CLOCK is the current
4263 cycle. */
4264
4265static int
4266schedule_insn (insn, ready, n_ready, clock)
4267 rtx insn;
4268 rtx *ready;
4269 int n_ready;
4270 int clock;
4271{
4272 rtx link;
4273 int unit;
4274
4275 unit = insn_unit (insn);
4276
4277 if (sched_verbose >= 2)
4278 {
4279 fprintf (dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ", INSN_UID (insn));
4280 insn_print_units (insn);
4281 fprintf (dump, "\n");
4282 }
4283
4284 if (sched_verbose && unit == -1)
4285 visualize_no_unit (insn);
4286
4287 if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
4288 schedule_unit (unit, insn, clock);
4289
4290 if (INSN_DEPEND (insn) == 0)
4291 return n_ready;
4292
4293 /* This is used by the function adjust_priority above. */
4294 if (n_ready > 0)
4295 max_priority = MAX (INSN_PRIORITY (ready[0]), INSN_PRIORITY (insn));
4296 else
4297 max_priority = INSN_PRIORITY (insn);
4298
4299 for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
4300 {
4301 rtx next = XEXP (link, 0);
4302 int cost = insn_cost (insn, link, next);
4303
4304 INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost);
4305
4306 if ((INSN_DEP_COUNT (next) -= 1) == 0)
4307 {
4308 int effective_cost = INSN_TICK (next) - clock;
4309
4310 /* For speculative insns, before inserting to ready/queue,
4311 check live, exception-free, and issue-delay */
4312 if (INSN_BB (next) != target_bb
4313 && (!IS_VALID (INSN_BB (next))
4314 || CANT_MOVE (next)
4315 || (IS_SPECULATIVE_INSN (next)
4316 && (insn_issue_delay (next) > 3
5835e573 4317 || !check_live (next, INSN_BB (next))
8c660648
JL
4318 || !is_exception_free (next, INSN_BB (next), target_bb)))))
4319 continue;
4320
4321 if (sched_verbose >= 2)
4322 {
4323 fprintf (dump, ";;\t\tdependences resolved: insn %d ", INSN_UID (next));
4324
4325 if (current_nr_blocks > 1 && INSN_BB (next) != target_bb)
4326 fprintf (dump, "/b%d ", INSN_BLOCK (next));
4327
4328 if (effective_cost <= 1)
4329 fprintf (dump, "into ready\n");
4330 else
4331 fprintf (dump, "into queue with cost=%d\n", effective_cost);
4332 }
4333
4334 /* Adjust the priority of NEXT and either put it on the ready
4335 list or queue it. */
4336 adjust_priority (next);
4337 if (effective_cost <= 1)
4338 ready[n_ready++] = next;
4339 else
4340 queue_insn (next, effective_cost);
4341 }
4342 }
4343
4344 return n_ready;
4345}
4346
4347
4348/* Add a REG_DEAD note for REG to INSN, reusing a REG_DEAD note from the
4349 dead_notes list. */
4350
4351static void
4352create_reg_dead_note (reg, insn)
4353 rtx reg, insn;
4354{
4355 rtx link;
4356
4357 /* The number of registers killed after scheduling must be the same as the
4358 number of registers killed before scheduling. The number of REG_DEAD
4359 notes may not be conserved, i.e. two SImode hard register REG_DEAD notes
4360 might become one DImode hard register REG_DEAD note, but the number of
4361 registers killed will be conserved.
4362
4363 We carefully remove REG_DEAD notes from the dead_notes list, so that
4364 there will be none left at the end. If we run out early, then there
4365 is a bug somewhere in flow, combine and/or sched. */
4366
4367 if (dead_notes == 0)
4368 {
4369 if (current_nr_blocks <= 1)
4370 abort ();
4371 else
ebb7b10b 4372 link = alloc_EXPR_LIST (REG_DEAD, NULL_RTX, NULL_RTX);
8c660648
JL
4373 }
4374 else
4375 {
4376 /* Number of regs killed by REG. */
4377 int regs_killed = (REGNO (reg) >= FIRST_PSEUDO_REGISTER ? 1
4378 : HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)));
4379 /* Number of regs killed by REG_DEAD notes taken off the list. */
4380 int reg_note_regs;
4381
4382 link = dead_notes;
4383 reg_note_regs = (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
4384 : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
4385 GET_MODE (XEXP (link, 0))));
4386 while (reg_note_regs < regs_killed)
4387 {
4388 link = XEXP (link, 1);
04029ca2
JL
4389
4390 /* LINK might be zero if we killed more registers after scheduling
4391 than before, and the last hard register we kill is actually
4392 multiple hard regs.
4393
4394 This is normal for interblock scheduling, so deal with it in
4395 that case, else abort. */
4396 if (link == NULL_RTX && current_nr_blocks <= 1)
4397 abort ();
4398 else if (link == NULL_RTX)
ebb7b10b
RH
4399 link = alloc_EXPR_LIST (REG_DEAD, gen_rtx_REG (word_mode, 0),
4400 NULL_RTX);
04029ca2 4401
8c660648
JL
4402 reg_note_regs += (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
4403 : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
4404 GET_MODE (XEXP (link, 0))));
4405 }
4406 dead_notes = XEXP (link, 1);
4407
4408 /* If we took too many regs kills off, put the extra ones back. */
4409 while (reg_note_regs > regs_killed)
4410 {
4411 rtx temp_reg, temp_link;
4412
38a448ca 4413 temp_reg = gen_rtx_REG (word_mode, 0);
ebb7b10b 4414 temp_link = alloc_EXPR_LIST (REG_DEAD, temp_reg, dead_notes);
8c660648
JL
4415 dead_notes = temp_link;
4416 reg_note_regs--;
4417 }
4418 }
4419
4420 XEXP (link, 0) = reg;
4421 XEXP (link, 1) = REG_NOTES (insn);
4422 REG_NOTES (insn) = link;
4423}
4424
4425/* Subroutine on attach_deaths_insn--handles the recursive search
4426 through INSN. If SET_P is true, then x is being modified by the insn. */
4427
4428static void
4429attach_deaths (x, insn, set_p)
4430 rtx x;
4431 rtx insn;
4432 int set_p;
4433{
4434 register int i;
4435 register int j;
4436 register enum rtx_code code;
4437 register char *fmt;
4438
4439 if (x == 0)
4440 return;
4441
4442 code = GET_CODE (x);
4443
4444 switch (code)
4445 {
4446 case CONST_INT:
4447 case CONST_DOUBLE:
4448 case LABEL_REF:
4449 case SYMBOL_REF:
4450 case CONST:
4451 case CODE_LABEL:
4452 case PC:
4453 case CC0:
4454 /* Get rid of the easy cases first. */
4455 return;
4456
4457 case REG:
4458 {
4459 /* If the register dies in this insn, queue that note, and mark
4460 this register as needing to die. */
4461 /* This code is very similar to mark_used_1 (if set_p is false)
4462 and mark_set_1 (if set_p is true) in flow.c. */
4463
4464 register int regno;
4465 int some_needed;
4466 int all_needed;
4467
4468 if (set_p)
4469 return;
4470
4471 regno = REGNO (x);
4472 all_needed = some_needed = REGNO_REG_SET_P (old_live_regs, regno);
4473 if (regno < FIRST_PSEUDO_REGISTER)
4474 {
4475 int n;
4476
4477 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
4478 while (--n > 0)
4479 {
4480 int needed = (REGNO_REG_SET_P (old_live_regs, regno + n));
4481 some_needed |= needed;
4482 all_needed &= needed;
4483 }
4484 }
4485
4486 /* If it wasn't live before we started, then add a REG_DEAD note.
4487 We must check the previous lifetime info not the current info,
4488 because we may have to execute this code several times, e.g.
4489 once for a clobber (which doesn't add a note) and later
4490 for a use (which does add a note).
4491
4492 Always make the register live. We must do this even if it was
4493 live before, because this may be an insn which sets and uses
4494 the same register, in which case the register has already been
4495 killed, so we must make it live again.
4496
4497 Global registers are always live, and should never have a REG_DEAD
4498 note added for them, so none of the code below applies to them. */
4499
4500 if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
4501 {
4502 /* Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
4503 STACK_POINTER_REGNUM, since these are always considered to be
4504 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
4505 if (regno != FRAME_POINTER_REGNUM
4506#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4507 && ! (regno == HARD_FRAME_POINTER_REGNUM)
4508#endif
4509#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
4510 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4511#endif
4512 && regno != STACK_POINTER_REGNUM)
4513 {
d6df9efb 4514 if (! all_needed && ! dead_or_set_p (insn, x))
8c660648
JL
4515 {
4516 /* Check for the case where the register dying partially
4517 overlaps the register set by this insn. */
4518 if (regno < FIRST_PSEUDO_REGISTER
4519 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
4520 {
4521 int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
4522 while (--n >= 0)
4523 some_needed |= dead_or_set_regno_p (insn, regno + n);
4524 }
4525
4526 /* If none of the words in X is needed, make a REG_DEAD
4527 note. Otherwise, we must make partial REG_DEAD
4528 notes. */
4529 if (! some_needed)
4530 create_reg_dead_note (x, insn);
4531 else
4532 {
4533 int i;
4534
4535 /* Don't make a REG_DEAD note for a part of a
4536 register that is set in the insn. */
4537 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
4538 i >= 0; i--)
4539 if (! REGNO_REG_SET_P (old_live_regs, regno+i)
4540 && ! dead_or_set_regno_p (insn, regno + i))
38a448ca
RH
4541 create_reg_dead_note (gen_rtx_REG (reg_raw_mode[regno + i],
4542 regno + i),
8c660648
JL
4543 insn);
4544 }
4545 }
4546 }
4547
4548 if (regno < FIRST_PSEUDO_REGISTER)
4549 {
4550 int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
4551 while (--j >= 0)
4552 {
4553 SET_REGNO_REG_SET (bb_live_regs, regno + j);
4554 }
4555 }
4556 else
4557 {
4558 /* Recompute REG_BASIC_BLOCK as we update all the other
4559 dataflow information. */
4560 if (sched_reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
4561 sched_reg_basic_block[regno] = current_block_num;
4562 else if (sched_reg_basic_block[regno] != current_block_num)
4563 sched_reg_basic_block[regno] = REG_BLOCK_GLOBAL;
4564
4565 SET_REGNO_REG_SET (bb_live_regs, regno);
4566 }
4567 }
4568 return;
4569 }
4570
4571 case MEM:
4572 /* Handle tail-recursive case. */
4573 attach_deaths (XEXP (x, 0), insn, 0);
4574 return;
4575
4576 case SUBREG:
d6df9efb
JL
4577 attach_deaths (SUBREG_REG (x), insn,
4578 set_p && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
4579 <= UNITS_PER_WORD)
4580 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
4581 == GET_MODE_SIZE (GET_MODE ((x))))));
4582 return;
4583
8c660648 4584 case STRICT_LOW_PART:
d6df9efb 4585 attach_deaths (XEXP (x, 0), insn, 0);
8c660648
JL
4586 return;
4587
4588 case ZERO_EXTRACT:
4589 case SIGN_EXTRACT:
d6df9efb 4590 attach_deaths (XEXP (x, 0), insn, 0);
8c660648
JL
4591 attach_deaths (XEXP (x, 1), insn, 0);
4592 attach_deaths (XEXP (x, 2), insn, 0);
4593 return;
4594
4595 default:
4596 /* Other cases: walk the insn. */
4597 fmt = GET_RTX_FORMAT (code);
4598 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4599 {
4600 if (fmt[i] == 'e')
4601 attach_deaths (XEXP (x, i), insn, 0);
4602 else if (fmt[i] == 'E')
4603 for (j = 0; j < XVECLEN (x, i); j++)
4604 attach_deaths (XVECEXP (x, i, j), insn, 0);
4605 }
4606 }
4607}
4608
4609/* After INSN has executed, add register death notes for each register
4610 that is dead after INSN. */
4611
4612static void
4613attach_deaths_insn (insn)
4614 rtx insn;
4615{
4616 rtx x = PATTERN (insn);
4617 register RTX_CODE code = GET_CODE (x);
4618 rtx link;
4619
4620 if (code == SET)
4621 {
4622 attach_deaths (SET_SRC (x), insn, 0);
4623
4624 /* A register might die here even if it is the destination, e.g.
4625 it is the target of a volatile read and is otherwise unused.
4626 Hence we must always call attach_deaths for the SET_DEST. */
4627 attach_deaths (SET_DEST (x), insn, 1);
4628 }
4629 else if (code == PARALLEL)
4630 {
4631 register int i;
4632 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4633 {
4634 code = GET_CODE (XVECEXP (x, 0, i));
4635 if (code == SET)
4636 {
4637 attach_deaths (SET_SRC (XVECEXP (x, 0, i)), insn, 0);
4638
4639 attach_deaths (SET_DEST (XVECEXP (x, 0, i)), insn, 1);
4640 }
4641 /* Flow does not add REG_DEAD notes to registers that die in
4642 clobbers, so we can't either. */
4643 else if (code != CLOBBER)
4644 attach_deaths (XVECEXP (x, 0, i), insn, 0);
4645 }
4646 }
4647 /* If this is a CLOBBER, only add REG_DEAD notes to registers inside a
4648 MEM being clobbered, just like flow. */
4649 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == MEM)
4650 attach_deaths (XEXP (XEXP (x, 0), 0), insn, 0);
4651 /* Otherwise don't add a death note to things being clobbered. */
4652 else if (code != CLOBBER)
4653 attach_deaths (x, insn, 0);
4654
4655 /* Make death notes for things used in the called function. */
4656 if (GET_CODE (insn) == CALL_INSN)
4657 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
4658 attach_deaths (XEXP (XEXP (link, 0), 0), insn,
4659 GET_CODE (XEXP (link, 0)) == CLOBBER);
4660}
4661
4662/* functions for handlnig of notes */
4663
4664/* Delete notes beginning with INSN and put them in the chain
4665 of notes ended by NOTE_LIST.
4666 Returns the insn following the notes. */
4667
4668static rtx
4669unlink_other_notes (insn, tail)
4670 rtx insn, tail;
4671{
4672 rtx prev = PREV_INSN (insn);
4673
4674 while (insn != tail && GET_CODE (insn) == NOTE)
4675 {
4676 rtx next = NEXT_INSN (insn);
4677 /* Delete the note from its current position. */
4678 if (prev)
4679 NEXT_INSN (prev) = next;
4680 if (next)
4681 PREV_INSN (next) = prev;
4682
4683 /* Don't save away NOTE_INSN_SETJMPs, because they must remain
4684 immediately after the call they follow. We use a fake
4685 (REG_DEAD (const_int -1)) note to remember them.
4686 Likewise with NOTE_INSN_{LOOP,EHREGION}_{BEG, END}. */
4687 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_SETJMP
4688 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
4689 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
0dfa1860
MM
4690 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_START
4691 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_END
8c660648
JL
4692 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
4693 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
4694 {
4695 /* Insert the note at the end of the notes list. */
4696 PREV_INSN (insn) = note_list;
4697 if (note_list)
4698 NEXT_INSN (note_list) = insn;
4699 note_list = insn;
4700 }
4701
4702 insn = next;
4703 }
4704 return insn;
4705}
4706
4707/* Delete line notes beginning with INSN. Record line-number notes so
4708 they can be reused. Returns the insn following the notes. */
4709
4710static rtx
4711unlink_line_notes (insn, tail)
4712 rtx insn, tail;
4713{
4714 rtx prev = PREV_INSN (insn);
4715
4716 while (insn != tail && GET_CODE (insn) == NOTE)
4717 {
4718 rtx next = NEXT_INSN (insn);
4719
4720 if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
4721 {
4722 /* Delete the note from its current position. */
4723 if (prev)
4724 NEXT_INSN (prev) = next;
4725 if (next)
4726 PREV_INSN (next) = prev;
4727
4728 /* Record line-number notes so they can be reused. */
4729 LINE_NOTE (insn) = insn;
4730 }
4731 else
4732 prev = insn;
4733
4734 insn = next;
4735 }
4736 return insn;
4737}
4738
4739/* Return the head and tail pointers of BB. */
4740
cbb13457 4741HAIFA_INLINE static void
8c660648
JL
4742get_block_head_tail (bb, headp, tailp)
4743 int bb;
4744 rtx *headp;
4745 rtx *tailp;
4746{
4747
55d89719
TK
4748 rtx head;
4749 rtx tail;
8c660648
JL
4750 int b;
4751
4752 b = BB_TO_BLOCK (bb);
4753
4754 /* HEAD and TAIL delimit the basic block being scheduled. */
4755 head = basic_block_head[b];
4756 tail = basic_block_end[b];
4757
4758 /* Don't include any notes or labels at the beginning of the
4759 basic block, or notes at the ends of basic blocks. */
4760 while (head != tail)
4761 {
4762 if (GET_CODE (head) == NOTE)
4763 head = NEXT_INSN (head);
4764 else if (GET_CODE (tail) == NOTE)
4765 tail = PREV_INSN (tail);
4766 else if (GET_CODE (head) == CODE_LABEL)
4767 head = NEXT_INSN (head);
4768 else
4769 break;
4770 }
4771
4772 *headp = head;
4773 *tailp = tail;
4774}
4775
4776/* Delete line notes from bb. Save them so they can be later restored
4777 (in restore_line_notes ()). */
4778
4779static void
4780rm_line_notes (bb)
4781 int bb;
4782{
4783 rtx next_tail;
4784 rtx tail;
4785 rtx head;
4786 rtx insn;
4787
4788 get_block_head_tail (bb, &head, &tail);
4789
4790 if (head == tail
4791 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
4792 return;
4793
4794 next_tail = NEXT_INSN (tail);
4795 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4796 {
4797 rtx prev;
4798
4799 /* Farm out notes, and maybe save them in NOTE_LIST.
4800 This is needed to keep the debugger from
4801 getting completely deranged. */
4802 if (GET_CODE (insn) == NOTE)
4803 {
4804 prev = insn;
4805 insn = unlink_line_notes (insn, next_tail);
4806
4807 if (prev == tail)
4808 abort ();
4809 if (prev == head)
4810 abort ();
4811 if (insn == next_tail)
4812 abort ();
4813 }
4814 }
4815}
4816
4817/* Save line number notes for each insn in bb. */
4818
4819static void
4820save_line_notes (bb)
4821 int bb;
4822{
4823 rtx head, tail;
4824 rtx next_tail;
4825
4826 /* We must use the true line number for the first insn in the block
4827 that was computed and saved at the start of this pass. We can't
4828 use the current line number, because scheduling of the previous
4829 block may have changed the current line number. */
4830
4831 rtx line = line_note_head[BB_TO_BLOCK (bb)];
4832 rtx insn;
4833
4834 get_block_head_tail (bb, &head, &tail);
4835 next_tail = NEXT_INSN (tail);
4836
4837 for (insn = basic_block_head[BB_TO_BLOCK (bb)];
4838 insn != next_tail;
4839 insn = NEXT_INSN (insn))
4840 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
4841 line = insn;
4842 else
4843 LINE_NOTE (insn) = line;
4844}
4845
4846
4847/* After bb was scheduled, insert line notes into the insns list. */
4848
4849static void
4850restore_line_notes (bb)
4851 int bb;
4852{
4853 rtx line, note, prev, new;
4854 int added_notes = 0;
4855 int b;
4856 rtx head, next_tail, insn;
4857
4858 b = BB_TO_BLOCK (bb);
4859
4860 head = basic_block_head[b];
4861 next_tail = NEXT_INSN (basic_block_end[b]);
4862
4863 /* Determine the current line-number. We want to know the current
4864 line number of the first insn of the block here, in case it is
4865 different from the true line number that was saved earlier. If
4866 different, then we need a line number note before the first insn
4867 of this block. If it happens to be the same, then we don't want to
4868 emit another line number note here. */
4869 for (line = head; line; line = PREV_INSN (line))
4870 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
4871 break;
4872
4873 /* Walk the insns keeping track of the current line-number and inserting
4874 the line-number notes as needed. */
4875 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4876 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
4877 line = insn;
4878 /* This used to emit line number notes before every non-deleted note.
4879 However, this confuses a debugger, because line notes not separated
4880 by real instructions all end up at the same address. I can find no
4881 use for line number notes before other notes, so none are emitted. */
4882 else if (GET_CODE (insn) != NOTE
4883 && (note = LINE_NOTE (insn)) != 0
4884 && note != line
4885 && (line == 0
4886 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
4887 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
4888 {
4889 line = note;
4890 prev = PREV_INSN (insn);
4891 if (LINE_NOTE (note))
4892 {
4893 /* Re-use the original line-number note. */
4894 LINE_NOTE (note) = 0;
4895 PREV_INSN (note) = prev;
4896 NEXT_INSN (prev) = note;
4897 PREV_INSN (insn) = note;
4898 NEXT_INSN (note) = insn;
4899 }
4900 else
4901 {
4902 added_notes++;
4903 new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
4904 NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
4905 RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
4906 }
4907 }
4908 if (sched_verbose && added_notes)
4909 fprintf (dump, ";; added %d line-number notes\n", added_notes);
4910}
4911
4912/* After scheduling the function, delete redundant line notes from the
4913 insns list. */
4914
4915static void
4916rm_redundant_line_notes ()
4917{
4918 rtx line = 0;
4919 rtx insn = get_insns ();
4920 int active_insn = 0;
4921 int notes = 0;
4922
4923 /* Walk the insns deleting redundant line-number notes. Many of these
4924 are already present. The remainder tend to occur at basic
4925 block boundaries. */
4926 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
4927 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
4928 {
4929 /* If there are no active insns following, INSN is redundant. */
4930 if (active_insn == 0)
4931 {
4932 notes++;
4933 NOTE_SOURCE_FILE (insn) = 0;
4934 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
4935 }
4936 /* If the line number is unchanged, LINE is redundant. */
4937 else if (line
4938 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
4939 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
4940 {
4941 notes++;
4942 NOTE_SOURCE_FILE (line) = 0;
4943 NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
4944 line = insn;
4945 }
4946 else
4947 line = insn;
4948 active_insn = 0;
4949 }
4950 else if (!((GET_CODE (insn) == NOTE
4951 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
4952 || (GET_CODE (insn) == INSN
4953 && (GET_CODE (PATTERN (insn)) == USE
4954 || GET_CODE (PATTERN (insn)) == CLOBBER))))
4955 active_insn++;
4956
4957 if (sched_verbose && notes)
4958 fprintf (dump, ";; deleted %d line-number notes\n", notes);
4959}
4960
4961/* Delete notes between head and tail and put them in the chain
4962 of notes ended by NOTE_LIST. */
4963
4964static void
4965rm_other_notes (head, tail)
4966 rtx head;
4967 rtx tail;
4968{
4969 rtx next_tail;
4970 rtx insn;
4971
4972 if (head == tail
4973 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
4974 return;
4975
4976 next_tail = NEXT_INSN (tail);
4977 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4978 {
4979 rtx prev;
4980
4981 /* Farm out notes, and maybe save them in NOTE_LIST.
4982 This is needed to keep the debugger from
4983 getting completely deranged. */
4984 if (GET_CODE (insn) == NOTE)
4985 {
4986 prev = insn;
4987
4988 insn = unlink_other_notes (insn, next_tail);
4989
4990 if (prev == tail)
4991 abort ();
4992 if (prev == head)
4993 abort ();
4994 if (insn == next_tail)
4995 abort ();
4996 }
4997 }
4998}
4999
5000/* Constructor for `sometimes' data structure. */
5001
5002static int
5003new_sometimes_live (regs_sometimes_live, regno, sometimes_max)
5004 struct sometimes *regs_sometimes_live;
5005 int regno;
5006 int sometimes_max;
5007{
5008 register struct sometimes *p;
5009
5010 /* There should never be a register greater than max_regno here. If there
5011 is, it means that a define_split has created a new pseudo reg. This
5012 is not allowed, since there will not be flow info available for any
5013 new register, so catch the error here. */
5014 if (regno >= max_regno)
5015 abort ();
5016
5017 p = &regs_sometimes_live[sometimes_max];
5018 p->regno = regno;
5019 p->live_length = 0;
5020 p->calls_crossed = 0;
5021 sometimes_max++;
5022 return sometimes_max;
5023}
5024
5025/* Count lengths of all regs we are currently tracking,
5026 and find new registers no longer live. */
5027
5028static void
5029finish_sometimes_live (regs_sometimes_live, sometimes_max)
5030 struct sometimes *regs_sometimes_live;
5031 int sometimes_max;
5032{
5033 int i;
5034
5035 for (i = 0; i < sometimes_max; i++)
5036 {
5037 register struct sometimes *p = &regs_sometimes_live[i];
5038 int regno = p->regno;
5039
5040 sched_reg_live_length[regno] += p->live_length;
5041 sched_reg_n_calls_crossed[regno] += p->calls_crossed;
5042 }
5043}
5044
5045/* functions for computation of registers live/usage info */
5046
5047/* It is assumed that prior to scheduling basic_block_live_at_start (b)
5048 contains the registers that are alive at the entry to b.
5049
5050 Two passes follow: The first pass is performed before the scheduling
5051 of a region. It scans each block of the region forward, computing
5052 the set of registers alive at the end of the basic block and
5053 discard REG_DEAD notes (done by find_pre_sched_live ()).
5054
5055 The second path is invoked after scheduling all region blocks.
5056 It scans each block of the region backward, a block being traversed
5057 only after its succesors in the region. When the set of registers
5058 live at the end of a basic block may be changed by the scheduling
5059 (this may happen for multiple blocks region), it is computed as
5060 the union of the registers live at the start of its succesors.
5061 The last-use information is updated by inserting REG_DEAD notes.
5062 (done by find_post_sched_live ()) */
5063
5064/* Scan all the insns to be scheduled, removing register death notes.
5065 Register death notes end up in DEAD_NOTES.
5066 Recreate the register life information for the end of this basic
5067 block. */
5068
5069static void
5070find_pre_sched_live (bb)
5071 int bb;
5072{
5073 rtx insn, next_tail, head, tail;
5074 int b = BB_TO_BLOCK (bb);
5075
5076 get_block_head_tail (bb, &head, &tail);
5077 COPY_REG_SET (bb_live_regs, basic_block_live_at_start[b]);
5078 next_tail = NEXT_INSN (tail);
5079
5080 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
5081 {
5082 rtx prev, next, link;
5083 int reg_weight = 0;
5084
5085 /* Handle register life information. */
5086 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
5087 {
5088 /* See if the register gets born here. */
5089 /* We must check for registers being born before we check for
5090 registers dying. It is possible for a register to be born and
5091 die in the same insn, e.g. reading from a volatile memory
5092 location into an otherwise unused register. Such a register
5093 must be marked as dead after this insn. */
5094 if (GET_CODE (PATTERN (insn)) == SET
5095 || GET_CODE (PATTERN (insn)) == CLOBBER)
5096 {
5835e573 5097 sched_note_set (PATTERN (insn), 0);
8c660648
JL
5098 reg_weight++;
5099 }
5100
5101 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
5102 {
5103 int j;
5104 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
5105 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
5106 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
5107 {
5835e573 5108 sched_note_set (XVECEXP (PATTERN (insn), 0, j), 0);
8c660648
JL
5109 reg_weight++;
5110 }
5111
5112 /* ??? This code is obsolete and should be deleted. It
5113 is harmless though, so we will leave it in for now. */
5114 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
5115 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == USE)
5835e573 5116 sched_note_set (XVECEXP (PATTERN (insn), 0, j), 0);
8c660648
JL
5117 }
5118
5119 /* Each call cobbers (makes live) all call-clobbered regs
5120 that are not global or fixed. Note that the function-value
5121 reg is a call_clobbered reg. */
5122 if (GET_CODE (insn) == CALL_INSN)
5123 {
5124 int j;
5125 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
5126 if (call_used_regs[j] && !global_regs[j]
5127 && ! fixed_regs[j])
5128 {
5129 SET_REGNO_REG_SET (bb_live_regs, j);
8c660648
JL
5130 }
5131 }
5132
5133 /* Need to know what registers this insn kills. */
5134 for (prev = 0, link = REG_NOTES (insn); link; link = next)
5135 {
5136 next = XEXP (link, 1);
5137 if ((REG_NOTE_KIND (link) == REG_DEAD
5138 || REG_NOTE_KIND (link) == REG_UNUSED)
5139 /* Verify that the REG_NOTE has a valid value. */
5140 && GET_CODE (XEXP (link, 0)) == REG)
5141 {
5142 register int regno = REGNO (XEXP (link, 0));
5143
5144 reg_weight--;
5145
5146 /* Only unlink REG_DEAD notes; leave REG_UNUSED notes
5147 alone. */
5148 if (REG_NOTE_KIND (link) == REG_DEAD)
5149 {
5150 if (prev)
5151 XEXP (prev, 1) = next;
5152 else
5153 REG_NOTES (insn) = next;
5154 XEXP (link, 1) = dead_notes;
5155 dead_notes = link;
5156 }
5157 else
5158 prev = link;
5159
5160 if (regno < FIRST_PSEUDO_REGISTER)
5161 {
5162 int j = HARD_REGNO_NREGS (regno,
5163 GET_MODE (XEXP (link, 0)));
5164 while (--j >= 0)
5165 {
5166 CLEAR_REGNO_REG_SET (bb_live_regs, regno+j);
5167 }
5168 }
5169 else
5170 {
5171 CLEAR_REGNO_REG_SET (bb_live_regs, regno);
5172 }
5173 }
5174 else
5175 prev = link;
5176 }
5177 }
5178
5179 INSN_REG_WEIGHT (insn) = reg_weight;
5180 }
5181}
5182
5183/* Update register life and usage information for block bb
5184 after scheduling. Put register dead notes back in the code. */
5185
5186static void
5187find_post_sched_live (bb)
5188 int bb;
5189{
5190 int sometimes_max;
5191 int j, i;
5192 int b;
5193 rtx insn;
5194 rtx head, tail, prev_head, next_tail;
5195
5196 register struct sometimes *regs_sometimes_live;
5197
5198 b = BB_TO_BLOCK (bb);
5199
5200 /* compute live regs at the end of bb as a function of its successors. */
5201 if (current_nr_blocks > 1)
5202 {
5203 int e;
5204 int first_edge;
5205
5206 first_edge = e = OUT_EDGES (b);
5207 CLEAR_REG_SET (bb_live_regs);
5208
5209 if (e)
5210 do
5211 {
5212 int b_succ;
5213
5214 b_succ = TO_BLOCK (e);
5215 IOR_REG_SET (bb_live_regs, basic_block_live_at_start[b_succ]);
5216 e = NEXT_OUT (e);
5217 }
5218 while (e != first_edge);
5219 }
5220
5221 get_block_head_tail (bb, &head, &tail);
5222 next_tail = NEXT_INSN (tail);
5223 prev_head = PREV_INSN (head);
5224
7eea6443
JL
5225 EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, FIRST_PSEUDO_REGISTER, i,
5226 {
5227 sched_reg_basic_block[i] = REG_BLOCK_GLOBAL;
5228 });
8c660648
JL
5229
5230 /* if the block is empty, same regs are alive at its end and its start.
5231 since this is not guaranteed after interblock scheduling, make sure they
5232 are truly identical. */
5233 if (NEXT_INSN (prev_head) == tail
5234 && (GET_RTX_CLASS (GET_CODE (tail)) != 'i'))
5235 {
5236 if (current_nr_blocks > 1)
5237 COPY_REG_SET (basic_block_live_at_start[b], bb_live_regs);
5238
5239 return;
5240 }
5241
5242 b = BB_TO_BLOCK (bb);
5243 current_block_num = b;
5244
5245 /* Keep track of register lives. */
5246 old_live_regs = ALLOCA_REG_SET ();
5247 regs_sometimes_live
5248 = (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
5249 sometimes_max = 0;
5250
5251 /* initiate "sometimes" data, starting with registers live at end */
5252 sometimes_max = 0;
5253 COPY_REG_SET (old_live_regs, bb_live_regs);
5254 EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, 0, j,
5255 {
5256 sometimes_max
5257 = new_sometimes_live (regs_sometimes_live,
5258 j, sometimes_max);
5259 });
5260
5261 /* scan insns back, computing regs live info */
5262 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
5263 {
5264 /* First we kill registers set by this insn, and then we
5265 make registers used by this insn live. This is the opposite
5266 order used above because we are traversing the instructions
5267 backwards. */
5268
5269 /* Strictly speaking, we should scan REG_UNUSED notes and make
5270 every register mentioned there live, however, we will just
5271 kill them again immediately below, so there doesn't seem to
5272 be any reason why we bother to do this. */
5273
5274 /* See if this is the last notice we must take of a register. */
5275 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
5276 continue;
5277
5278 if (GET_CODE (PATTERN (insn)) == SET
5279 || GET_CODE (PATTERN (insn)) == CLOBBER)
5835e573 5280 sched_note_set (PATTERN (insn), 1);
8c660648
JL
5281 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
5282 {
5283 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
5284 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
5285 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
5835e573 5286 sched_note_set (XVECEXP (PATTERN (insn), 0, j), 1);
8c660648
JL
5287 }
5288
5289 /* This code keeps life analysis information up to date. */
5290 if (GET_CODE (insn) == CALL_INSN)
5291 {
5292 register struct sometimes *p;
5293
5294 /* A call kills all call used registers that are not
5295 global or fixed, except for those mentioned in the call
5296 pattern which will be made live again later. */
5297 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5298 if (call_used_regs[i] && ! global_regs[i]
5299 && ! fixed_regs[i])
5300 {
5301 CLEAR_REGNO_REG_SET (bb_live_regs, i);
8c660648
JL
5302 }
5303
5304 /* Regs live at the time of a call instruction must not
5305 go in a register clobbered by calls. Record this for
5306 all regs now live. Note that insns which are born or
5307 die in a call do not cross a call, so this must be done
5308 after the killings (above) and before the births
5309 (below). */
5310 p = regs_sometimes_live;
5311 for (i = 0; i < sometimes_max; i++, p++)
5312 if (REGNO_REG_SET_P (bb_live_regs, p->regno))
5313 p->calls_crossed += 1;
5314 }
5315
5316 /* Make every register used live, and add REG_DEAD notes for
5317 registers which were not live before we started. */
5318 attach_deaths_insn (insn);
5319
5320 /* Find registers now made live by that instruction. */
5321 EXECUTE_IF_AND_COMPL_IN_REG_SET (bb_live_regs, old_live_regs, 0, j,
5322 {
5323 sometimes_max
5324 = new_sometimes_live (regs_sometimes_live,
5325 j, sometimes_max);
5326 });
5327 IOR_REG_SET (old_live_regs, bb_live_regs);
5328
5329 /* Count lengths of all regs we are worrying about now,
5330 and handle registers no longer live. */
5331
5332 for (i = 0; i < sometimes_max; i++)
5333 {
5334 register struct sometimes *p = &regs_sometimes_live[i];
5335 int regno = p->regno;
5336
5337 p->live_length += 1;
5338
5339 if (!REGNO_REG_SET_P (bb_live_regs, regno))
5340 {
5341 /* This is the end of one of this register's lifetime
5342 segments. Save the lifetime info collected so far,
5343 and clear its bit in the old_live_regs entry. */
5344 sched_reg_live_length[regno] += p->live_length;
5345 sched_reg_n_calls_crossed[regno] += p->calls_crossed;
5346 CLEAR_REGNO_REG_SET (old_live_regs, p->regno);
5347
5348 /* Delete the reg_sometimes_live entry for this reg by
5349 copying the last entry over top of it. */
5350 *p = regs_sometimes_live[--sometimes_max];
5351 /* ...and decrement i so that this newly copied entry
5352 will be processed. */
5353 i--;
5354 }
5355 }
5356 }
5357
5358 finish_sometimes_live (regs_sometimes_live, sometimes_max);
5359
5360 /* In interblock scheduling, basic_block_live_at_start may have changed. */
5361 if (current_nr_blocks > 1)
5362 COPY_REG_SET (basic_block_live_at_start[b], bb_live_regs);
5363
f187056f
JL
5364
5365 FREE_REG_SET (old_live_regs);
8c660648
JL
5366} /* find_post_sched_live */
5367
5368/* After scheduling the subroutine, restore information about uses of
5369 registers. */
5370
5371static void
5372update_reg_usage ()
5373{
5374 int regno;
5375
5376 if (n_basic_blocks > 0)
7eea6443
JL
5377 EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, FIRST_PSEUDO_REGISTER, regno,
5378 {
5379 sched_reg_basic_block[regno]
5380 = REG_BLOCK_GLOBAL;
5381 });
8c660648
JL
5382
5383 for (regno = 0; regno < max_regno; regno++)
5384 if (sched_reg_live_length[regno])
5385 {
5386 if (sched_verbose)
5387 {
5388 if (REG_LIVE_LENGTH (regno) > sched_reg_live_length[regno])
5389 fprintf (dump,
5390 ";; register %d life shortened from %d to %d\n",
5391 regno, REG_LIVE_LENGTH (regno),
5392 sched_reg_live_length[regno]);
5393 /* Negative values are special; don't overwrite the current
5394 reg_live_length value if it is negative. */
5395 else if (REG_LIVE_LENGTH (regno) < sched_reg_live_length[regno]
5396 && REG_LIVE_LENGTH (regno) >= 0)
5397 fprintf (dump,
5398 ";; register %d life extended from %d to %d\n",
5399 regno, REG_LIVE_LENGTH (regno),
5400 sched_reg_live_length[regno]);
5401
5402 if (!REG_N_CALLS_CROSSED (regno)
5403 && sched_reg_n_calls_crossed[regno])
5404 fprintf (dump,
5405 ";; register %d now crosses calls\n", regno);
5406 else if (REG_N_CALLS_CROSSED (regno)
5407 && !sched_reg_n_calls_crossed[regno]
5408 && REG_BASIC_BLOCK (regno) != REG_BLOCK_GLOBAL)
5409 fprintf (dump,
5410 ";; register %d no longer crosses calls\n", regno);
5411
5412 if (REG_BASIC_BLOCK (regno) != sched_reg_basic_block[regno]
5413 && sched_reg_basic_block[regno] != REG_BLOCK_UNKNOWN
5414 && REG_BASIC_BLOCK(regno) != REG_BLOCK_UNKNOWN)
5415 fprintf (dump,
5416 ";; register %d changed basic block from %d to %d\n",
5417 regno, REG_BASIC_BLOCK(regno),
5418 sched_reg_basic_block[regno]);
5419
5420 }
5421 /* Negative values are special; don't overwrite the current
5422 reg_live_length value if it is negative. */
5423 if (REG_LIVE_LENGTH (regno) >= 0)
5424 REG_LIVE_LENGTH (regno) = sched_reg_live_length[regno];
5425
5426 if (sched_reg_basic_block[regno] != REG_BLOCK_UNKNOWN
5427 && REG_BASIC_BLOCK(regno) != REG_BLOCK_UNKNOWN)
5428 REG_BASIC_BLOCK(regno) = sched_reg_basic_block[regno];
5429
5430 /* We can't change the value of reg_n_calls_crossed to zero for
5431 pseudos which are live in more than one block.
5432
5433 This is because combine might have made an optimization which
5434 invalidated basic_block_live_at_start and reg_n_calls_crossed,
5435 but it does not update them. If we update reg_n_calls_crossed
5436 here, the two variables are now inconsistent, and this might
5437 confuse the caller-save code into saving a register that doesn't
5438 need to be saved. This is only a problem when we zero calls
5439 crossed for a pseudo live in multiple basic blocks.
5440
5441 Alternatively, we could try to correctly update basic block live
5442 at start here in sched, but that seems complicated.
5443
5444 Note: it is possible that a global register became local, as result
5445 of interblock motion, but will remain marked as a global register. */
5446 if (sched_reg_n_calls_crossed[regno]
5447 || REG_BASIC_BLOCK (regno) != REG_BLOCK_GLOBAL)
5448 REG_N_CALLS_CROSSED (regno) = sched_reg_n_calls_crossed[regno];
5449
5450 }
5451}
5452
5453/* Scheduling clock, modified in schedule_block() and queue_to_ready () */
5454static int clock_var;
5455
5456/* Move insns that became ready to fire from queue to ready list. */
5457
5458static int
5459queue_to_ready (ready, n_ready)
5460 rtx ready[];
5461 int n_ready;
5462{
5463 rtx insn;
5464 rtx link;
5465
5466 q_ptr = NEXT_Q (q_ptr);
5467
5468 /* Add all pending insns that can be scheduled without stalls to the
5469 ready list. */
5470 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
5471 {
5472
5473 insn = XEXP (link, 0);
5474 q_size -= 1;
5475
5476 if (sched_verbose >= 2)
5477 fprintf (dump, ";;\t\tQ-->Ready: insn %d: ", INSN_UID (insn));
5478
5479 if (sched_verbose >= 2 && INSN_BB (insn) != target_bb)
5480 fprintf (dump, "(b%d) ", INSN_BLOCK (insn));
5481
5482 ready[n_ready++] = insn;
5483 if (sched_verbose >= 2)
5484 fprintf (dump, "moving to ready without stalls\n");
5485 }
5486 insn_queue[q_ptr] = 0;
5487
5488 /* If there are no ready insns, stall until one is ready and add all
5489 of the pending insns at that point to the ready list. */
5490 if (n_ready == 0)
5491 {
5492 register int stalls;
5493
5494 for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
5495 {
5496 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5497 {
5498 for (; link; link = XEXP (link, 1))
5499 {
5500 insn = XEXP (link, 0);
5501 q_size -= 1;
5502
5503 if (sched_verbose >= 2)
5504 fprintf (dump, ";;\t\tQ-->Ready: insn %d: ", INSN_UID (insn));
5505
5506 if (sched_verbose >= 2 && INSN_BB (insn) != target_bb)
5507 fprintf (dump, "(b%d) ", INSN_BLOCK (insn));
5508
5509 ready[n_ready++] = insn;
5510 if (sched_verbose >= 2)
5511 fprintf (dump, "moving to ready with %d stalls\n", stalls);
5512 }
5513 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
5514
5515 if (n_ready)
5516 break;
5517 }
5518 }
5519
5520 if (sched_verbose && stalls)
5521 visualize_stall_cycles (BB_TO_BLOCK (target_bb), stalls);
5522 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5523 clock_var += stalls;
5524 }
5525 return n_ready;
5526}
5527
5528/* Print the ready list for debugging purposes. Callable from debugger. */
5529
9a8b0889 5530static void
8c660648
JL
5531debug_ready_list (ready, n_ready)
5532 rtx ready[];
5533 int n_ready;
5534{
5535 int i;
5536
5537 for (i = 0; i < n_ready; i++)
5538 {
5539 fprintf (dump, " %d", INSN_UID (ready[i]));
5540 if (current_nr_blocks > 1 && INSN_BB (ready[i]) != target_bb)
5541 fprintf (dump, "/b%d", INSN_BLOCK (ready[i]));
5542 }
5543 fprintf (dump, "\n");
5544}
5545
5546/* Print names of units on which insn can/should execute, for debugging. */
5547
5548static void
5549insn_print_units (insn)
5550 rtx insn;
5551{
5552 int i;
5553 int unit = insn_unit (insn);
5554
5555 if (unit == -1)
5556 fprintf (dump, "none");
5557 else if (unit >= 0)
5558 fprintf (dump, "%s", function_units[unit].name);
5559 else
5560 {
5561 fprintf (dump, "[");
5562 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
5563 if (unit & 1)
5564 {
5565 fprintf (dump, "%s", function_units[i].name);
5566 if (unit != 1)
5567 fprintf (dump, " ");
5568 }
5569 fprintf (dump, "]");
5570 }
5571}
5572
5573/* MAX_VISUAL_LINES is the maximum number of lines in visualization table
5574 of a basic block. If more lines are needed, table is splitted to two.
5575 n_visual_lines is the number of lines printed so far for a block.
5576 visual_tbl contains the block visualization info.
5577 vis_no_unit holds insns in a cycle that are not mapped to any unit. */
5578#define MAX_VISUAL_LINES 100
5579#define INSN_LEN 30
5580int n_visual_lines;
5581char *visual_tbl;
5582int n_vis_no_unit;
5583rtx vis_no_unit[10];
5584
5585/* Finds units that are in use in this fuction. Required only
5586 for visualization. */
5587
5588static void
5589init_target_units ()
5590{
5591 rtx insn;
5592 int unit;
5593
5594 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5595 {
5596 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
5597 continue;
5598
5599 unit = insn_unit (insn);
5600
5601 if (unit < 0)
5602 target_units |= ~unit;
5603 else
5604 target_units |= (1 << unit);
5605 }
5606}
5607
5608/* Return the length of the visualization table */
5609
5610static int
5611get_visual_tbl_length ()
5612{
5613 int unit, i;
5614 int n, n1;
5615 char *s;
5616
5617 /* compute length of one field in line */
5618 s = (char *) alloca (INSN_LEN + 5);
5619 sprintf (s, " %33s", "uname");
5620 n1 = strlen (s);
5621
5622 /* compute length of one line */
5623 n = strlen (";; ");
5624 n += n1;
5625 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
5626 if (function_units[unit].bitmask & target_units)
5627 for (i = 0; i < function_units[unit].multiplicity; i++)
5628 n += n1;
5629 n += n1;
5630 n += strlen ("\n") + 2;
5631
5632 /* compute length of visualization string */
5633 return (MAX_VISUAL_LINES * n);
5634}
5635
5636/* Init block visualization debugging info */
5637
5638static void
5639init_block_visualization ()
5640{
5641 strcpy (visual_tbl, "");
5642 n_visual_lines = 0;
5643 n_vis_no_unit = 0;
5644}
5645
5646#define BUF_LEN 256
5647
459b3825
MM
5648static char *
5649safe_concat (buf, cur, str)
5650 char *buf;
5651 char *cur;
5652 char *str;
5653{
5654 char *end = buf + BUF_LEN - 2; /* leave room for null */
5655 int c;
5656
5657 if (cur > end)
5658 {
5659 *end = '\0';
5660 return end;
5661 }
5662
5663 while (cur < end && (c = *str++) != '\0')
5664 *cur++ = c;
5665
5666 *cur = '\0';
5667 return cur;
5668}
5669
8c660648
JL
5670/* This recognizes rtx, I classified as expressions. These are always */
5671/* represent some action on values or results of other expression, */
5672/* that may be stored in objects representing values. */
5673
5674static void
5675print_exp (buf, x, verbose)
5676 char *buf;
5677 rtx x;
5678 int verbose;
5679{
459b3825
MM
5680 char tmp[BUF_LEN];
5681 char *st[4];
5682 char *cur = buf;
5683 char *fun = (char *)0;
5684 char *sep;
5685 rtx op[4];
5686 int i;
5687
5688 for (i = 0; i < 4; i++)
5689 {
5690 st[i] = (char *)0;
5691 op[i] = NULL_RTX;
5692 }
8c660648
JL
5693
5694 switch (GET_CODE (x))
5695 {
5696 case PLUS:
459b3825
MM
5697 op[0] = XEXP (x, 0);
5698 st[1] = "+";
5699 op[1] = XEXP (x, 1);
8c660648
JL
5700 break;
5701 case LO_SUM:
459b3825
MM
5702 op[0] = XEXP (x, 0);
5703 st[1] = "+low(";
5704 op[1] = XEXP (x, 1);
5705 st[2] = ")";
8c660648
JL
5706 break;
5707 case MINUS:
459b3825
MM
5708 op[0] = XEXP (x, 0);
5709 st[1] = "-";
5710 op[1] = XEXP (x, 1);
8c660648
JL
5711 break;
5712 case COMPARE:
459b3825
MM
5713 fun = "cmp";
5714 op[0] = XEXP (x, 0);
5715 op[1] = XEXP (x, 1);
8c660648
JL
5716 break;
5717 case NEG:
459b3825
MM
5718 st[0] = "-";
5719 op[0] = XEXP (x, 0);
8c660648
JL
5720 break;
5721 case MULT:
459b3825
MM
5722 op[0] = XEXP (x, 0);
5723 st[1] = "*";
5724 op[1] = XEXP (x, 1);
8c660648
JL
5725 break;
5726 case DIV:
459b3825
MM
5727 op[0] = XEXP (x, 0);
5728 st[1] = "/";
5729 op[1] = XEXP (x, 1);
8c660648
JL
5730 break;
5731 case UDIV:
459b3825
MM
5732 fun = "udiv";
5733 op[0] = XEXP (x, 0);
5734 op[1] = XEXP (x, 1);
8c660648
JL
5735 break;
5736 case MOD:
459b3825
MM
5737 op[0] = XEXP (x, 0);
5738 st[1] = "%";
5739 op[1] = XEXP (x, 1);
8c660648
JL
5740 break;
5741 case UMOD:
459b3825
MM
5742 fun = "umod";
5743 op[0] = XEXP (x, 0);
5744 op[1] = XEXP (x, 1);
8c660648
JL
5745 break;
5746 case SMIN:
459b3825
MM
5747 fun = "smin";
5748 op[0] = XEXP (x, 0);
5749 op[1] = XEXP (x, 1);
8c660648
JL
5750 break;
5751 case SMAX:
459b3825
MM
5752 fun = "smax";
5753 op[0] = XEXP (x, 0);
5754 op[1] = XEXP (x, 1);
8c660648
JL
5755 break;
5756 case UMIN:
459b3825
MM
5757 fun = "umin";
5758 op[0] = XEXP (x, 0);
5759 op[1] = XEXP (x, 1);
8c660648
JL
5760 break;
5761 case UMAX:
459b3825
MM
5762 fun = "umax";
5763 op[0] = XEXP (x, 0);
5764 op[1] = XEXP (x, 1);
8c660648
JL
5765 break;
5766 case NOT:
459b3825
MM
5767 st[0] = "!";
5768 op[0] = XEXP (x, 0);
8c660648
JL
5769 break;
5770 case AND:
459b3825
MM
5771 op[0] = XEXP (x, 0);
5772 st[1] = "&";
5773 op[1] = XEXP (x, 1);
8c660648
JL
5774 break;
5775 case IOR:
459b3825
MM
5776 op[0] = XEXP (x, 0);
5777 st[1] = "|";
5778 op[1] = XEXP (x, 1);
8c660648
JL
5779 break;
5780 case XOR:
459b3825
MM
5781 op[0] = XEXP (x, 0);
5782 st[1] = "^";
5783 op[1] = XEXP (x, 1);
8c660648
JL
5784 break;
5785 case ASHIFT:
459b3825
MM
5786 op[0] = XEXP (x, 0);
5787 st[1] = "<<";
5788 op[1] = XEXP (x, 1);
8c660648
JL
5789 break;
5790 case LSHIFTRT:
459b3825
MM
5791 op[0] = XEXP (x, 0);
5792 st[1] = " 0>>";
5793 op[1] = XEXP (x, 1);
8c660648
JL
5794 break;
5795 case ASHIFTRT:
459b3825
MM
5796 op[0] = XEXP (x, 0);
5797 st[1] = ">>";
5798 op[1] = XEXP (x, 1);
8c660648
JL
5799 break;
5800 case ROTATE:
459b3825
MM
5801 op[0] = XEXP (x, 0);
5802 st[1] = "<-<";
5803 op[1] = XEXP (x, 1);
8c660648
JL
5804 break;
5805 case ROTATERT:
459b3825
MM
5806 op[0] = XEXP (x, 0);
5807 st[1] = ">->";
5808 op[1] = XEXP (x, 1);
8c660648
JL
5809 break;
5810 case ABS:
459b3825
MM
5811 fun = "abs";
5812 op[0] = XEXP (x, 0);
8c660648
JL
5813 break;
5814 case SQRT:
459b3825
MM
5815 fun = "sqrt";
5816 op[0] = XEXP (x, 0);
8c660648
JL
5817 break;
5818 case FFS:
459b3825
MM
5819 fun = "ffs";
5820 op[0] = XEXP (x, 0);
8c660648
JL
5821 break;
5822 case EQ:
459b3825
MM
5823 op[0] = XEXP (x, 0);
5824 st[1] = "==";
5825 op[1] = XEXP (x, 1);
8c660648
JL
5826 break;
5827 case NE:
459b3825
MM
5828 op[0] = XEXP (x, 0);
5829 st[1] = "!=";
5830 op[1] = XEXP (x, 1);
8c660648
JL
5831 break;
5832 case GT:
459b3825
MM
5833 op[0] = XEXP (x, 0);
5834 st[1] = ">";
5835 op[1] = XEXP (x, 1);
8c660648
JL
5836 break;
5837 case GTU:
459b3825
MM
5838 fun = "gtu";
5839 op[0] = XEXP (x, 0);
5840 op[1] = XEXP (x, 1);
8c660648
JL
5841 break;
5842 case LT:
459b3825
MM
5843 op[0] = XEXP (x, 0);
5844 st[1] = "<";
5845 op[1] = XEXP (x, 1);
8c660648
JL
5846 break;
5847 case LTU:
459b3825
MM
5848 fun = "ltu";
5849 op[0] = XEXP (x, 0);
5850 op[1] = XEXP (x, 1);
8c660648
JL
5851 break;
5852 case GE:
459b3825
MM
5853 op[0] = XEXP (x, 0);
5854 st[1] = ">=";
5855 op[1] = XEXP (x, 1);
8c660648
JL
5856 break;
5857 case GEU:
459b3825
MM
5858 fun = "geu";
5859 op[0] = XEXP (x, 0);
5860 op[1] = XEXP (x, 1);
8c660648
JL
5861 break;
5862 case LE:
459b3825
MM
5863 op[0] = XEXP (x, 0);
5864 st[1] = "<=";
5865 op[1] = XEXP (x, 1);
8c660648
JL
5866 break;
5867 case LEU:
459b3825
MM
5868 fun = "leu";
5869 op[0] = XEXP (x, 0);
5870 op[1] = XEXP (x, 1);
8c660648
JL
5871 break;
5872 case SIGN_EXTRACT:
459b3825
MM
5873 fun = (verbose) ? "sign_extract" : "sxt";
5874 op[0] = XEXP (x, 0);
5875 op[1] = XEXP (x, 1);
5876 op[2] = XEXP (x, 2);
8c660648
JL
5877 break;
5878 case ZERO_EXTRACT:
459b3825
MM
5879 fun = (verbose) ? "zero_extract" : "zxt";
5880 op[0] = XEXP (x, 0);
5881 op[1] = XEXP (x, 1);
5882 op[2] = XEXP (x, 2);
8c660648
JL
5883 break;
5884 case SIGN_EXTEND:
459b3825
MM
5885 fun = (verbose) ? "sign_extend" : "sxn";
5886 op[0] = XEXP (x, 0);
8c660648
JL
5887 break;
5888 case ZERO_EXTEND:
459b3825
MM
5889 fun = (verbose) ? "zero_extend" : "zxn";
5890 op[0] = XEXP (x, 0);
8c660648
JL
5891 break;
5892 case FLOAT_EXTEND:
459b3825
MM
5893 fun = (verbose) ? "float_extend" : "fxn";
5894 op[0] = XEXP (x, 0);
8c660648
JL
5895 break;
5896 case TRUNCATE:
459b3825
MM
5897 fun = (verbose) ? "trunc" : "trn";
5898 op[0] = XEXP (x, 0);
8c660648
JL
5899 break;
5900 case FLOAT_TRUNCATE:
459b3825
MM
5901 fun = (verbose) ? "float_trunc" : "ftr";
5902 op[0] = XEXP (x, 0);
8c660648
JL
5903 break;
5904 case FLOAT:
459b3825
MM
5905 fun = (verbose) ? "float" : "flt";
5906 op[0] = XEXP (x, 0);
8c660648
JL
5907 break;
5908 case UNSIGNED_FLOAT:
459b3825
MM
5909 fun = (verbose) ? "uns_float" : "ufl";
5910 op[0] = XEXP (x, 0);
8c660648
JL
5911 break;
5912 case FIX:
459b3825
MM
5913 fun = "fix";
5914 op[0] = XEXP (x, 0);
8c660648
JL
5915 break;
5916 case UNSIGNED_FIX:
459b3825
MM
5917 fun = (verbose) ? "uns_fix" : "ufx";
5918 op[0] = XEXP (x, 0);
8c660648
JL
5919 break;
5920 case PRE_DEC:
459b3825
MM
5921 st[0] = "--";
5922 op[0] = XEXP (x, 0);
8c660648
JL
5923 break;
5924 case PRE_INC:
459b3825
MM
5925 st[0] = "++";
5926 op[0] = XEXP (x, 0);
8c660648
JL
5927 break;
5928 case POST_DEC:
459b3825
MM
5929 op[0] = XEXP (x, 0);
5930 st[1] = "--";
8c660648
JL
5931 break;
5932 case POST_INC:
459b3825
MM
5933 op[0] = XEXP (x, 0);
5934 st[1] = "++";
8c660648
JL
5935 break;
5936 case CALL:
459b3825
MM
5937 st[0] = "call ";
5938 op[0] = XEXP (x, 0);
8c660648
JL
5939 if (verbose)
5940 {
459b3825
MM
5941 st[1] = " argc:";
5942 op[1] = XEXP (x, 1);
8c660648 5943 }
8c660648
JL
5944 break;
5945 case IF_THEN_ELSE:
459b3825
MM
5946 st[0] = "{(";
5947 op[0] = XEXP (x, 0);
5948 st[1] = ")?";
5949 op[1] = XEXP (x, 1);
5950 st[2] = ":";
5951 op[2] = XEXP (x, 2);
5952 st[3] = "}";
8c660648
JL
5953 break;
5954 case TRAP_IF:
459b3825
MM
5955 fun = "trap_if";
5956 op[0] = TRAP_CONDITION (x);
8c660648
JL
5957 break;
5958 case UNSPEC:
8c660648
JL
5959 case UNSPEC_VOLATILE:
5960 {
459b3825
MM
5961 cur = safe_concat (buf, cur, "unspec");
5962 if (GET_CODE (x) == UNSPEC_VOLATILE)
5963 cur = safe_concat (buf, cur, "/v");
5964 cur = safe_concat (buf, cur, "[");
5965 sep = "";
8c660648
JL
5966 for (i = 0; i < XVECLEN (x, 0); i++)
5967 {
459b3825
MM
5968 print_pattern (tmp, XVECEXP (x, 0, i), verbose);
5969 cur = safe_concat (buf, cur, sep);
5970 cur = safe_concat (buf, cur, tmp);
5971 sep = ",";
8c660648 5972 }
459b3825
MM
5973 cur = safe_concat (buf, cur, "] ");
5974 sprintf (tmp, "%d", XINT (x, 1));
5975 cur = safe_concat (buf, cur, tmp);
8c660648
JL
5976 }
5977 break;
5978 default:
53c0919d
RH
5979 /* if (verbose) debug_rtx (x); */
5980 st[0] = GET_RTX_NAME (GET_CODE (x));
459b3825
MM
5981 break;
5982 }
5983
5984 /* Print this as a function? */
5985 if (fun)
5986 {
5987 cur = safe_concat (buf, cur, fun);
5988 cur = safe_concat (buf, cur, "(");
5989 }
5990
5991 for (i = 0; i < 4; i++)
5992 {
5993 if (st[i])
5994 cur = safe_concat (buf, cur, st[i]);
5995
5996 if (op[i])
5997 {
5998 if (fun && i != 0)
5999 cur = safe_concat (buf, cur, ",");
6000
6001 print_value (tmp, op[i], verbose);
6002 cur = safe_concat (buf, cur, tmp);
6003 }
8c660648 6004 }
459b3825
MM
6005
6006 if (fun)
6007 cur = safe_concat (buf, cur, ")");
6008} /* print_exp */
8c660648
JL
6009
6010/* Prints rtxes, i customly classified as values. They're constants, */
6011/* registers, labels, symbols and memory accesses. */
6012
6013static void
6014print_value (buf, x, verbose)
6015 char *buf;
6016 rtx x;
6017 int verbose;
6018{
6019 char t[BUF_LEN];
459b3825 6020 char *cur = buf;
8c660648
JL
6021
6022 switch (GET_CODE (x))
6023 {
6024 case CONST_INT:
459b3825
MM
6025 sprintf (t, "0x%lx", (long)INTVAL (x));
6026 cur = safe_concat (buf, cur, t);
8c660648
JL
6027 break;
6028 case CONST_DOUBLE:
459b3825
MM
6029 sprintf (t, "<0x%lx,0x%lx>", (long)XWINT (x, 2), (long)XWINT (x, 3));
6030 cur = safe_concat (buf, cur, t);
8c660648
JL
6031 break;
6032 case CONST_STRING:
459b3825
MM
6033 cur = safe_concat (buf, cur, "\"");
6034 cur = safe_concat (buf, cur, XSTR (x, 0));
6035 cur = safe_concat (buf, cur, "\"");
8c660648
JL
6036 break;
6037 case SYMBOL_REF:
459b3825
MM
6038 cur = safe_concat (buf, cur, "`");
6039 cur = safe_concat (buf, cur, XSTR (x, 0));
6040 cur = safe_concat (buf, cur, "'");
8c660648
JL
6041 break;
6042 case LABEL_REF:
459b3825
MM
6043 sprintf (t, "L%d", INSN_UID (XEXP (x, 0)));
6044 cur = safe_concat (buf, cur, t);
8c660648
JL
6045 break;
6046 case CONST:
459b3825
MM
6047 print_value (t, XEXP (x, 0), verbose);
6048 cur = safe_concat (buf, cur, "const(");
6049 cur = safe_concat (buf, cur, t);
6050 cur = safe_concat (buf, cur, ")");
8c660648
JL
6051 break;
6052 case HIGH:
459b3825
MM
6053 print_value (t, XEXP (x, 0), verbose);
6054 cur = safe_concat (buf, cur, "high(");
6055 cur = safe_concat (buf, cur, t);
6056 cur = safe_concat (buf, cur, ")");
8c660648
JL
6057 break;
6058 case REG:
459b3825
MM
6059 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
6060 {
6061 int c = reg_names[ REGNO (x) ][0];
6062 if (c >= '0' && c <= '9')
6063 cur = safe_concat (buf, cur, "%");
6064
6065 cur = safe_concat (buf, cur, reg_names[ REGNO (x) ]);
6066 }
8c660648 6067 else
459b3825
MM
6068 {
6069 sprintf (t, "r%d", REGNO (x));
6070 cur = safe_concat (buf, cur, t);
6071 }
8c660648
JL
6072 break;
6073 case SUBREG:
459b3825
MM
6074 print_value (t, SUBREG_REG (x), verbose);
6075 cur = safe_concat (buf, cur, t);
6b879bcc 6076 sprintf (t, "#%d", SUBREG_WORD (x));
459b3825 6077 cur = safe_concat (buf, cur, t);
8c660648
JL
6078 break;
6079 case SCRATCH:
459b3825 6080 cur = safe_concat (buf, cur, "scratch");
8c660648
JL
6081 break;
6082 case CC0:
459b3825 6083 cur = safe_concat (buf, cur, "cc0");
8c660648
JL
6084 break;
6085 case PC:
459b3825 6086 cur = safe_concat (buf, cur, "pc");
8c660648
JL
6087 break;
6088 case MEM:
6089 print_value (t, XEXP (x, 0), verbose);
459b3825
MM
6090 cur = safe_concat (buf, cur, "[");
6091 cur = safe_concat (buf, cur, t);
6092 cur = safe_concat (buf, cur, "]");
8c660648
JL
6093 break;
6094 default:
459b3825
MM
6095 print_exp (t, x, verbose);
6096 cur = safe_concat (buf, cur, t);
6097 break;
8c660648
JL
6098 }
6099} /* print_value */
6100
6101/* The next step in insn detalization, its pattern recognition */
6102
6103static void
6104print_pattern (buf, x, verbose)
6105 char *buf;
6106 rtx x;
6107 int verbose;
6108{
6109 char t1[BUF_LEN], t2[BUF_LEN], t3[BUF_LEN];
6110
6111 switch (GET_CODE (x))
6112 {
6113 case SET:
6114 print_value (t1, SET_DEST (x), verbose);
6115 print_value (t2, SET_SRC (x), verbose);
6116 sprintf (buf, "%s=%s", t1, t2);
6117 break;
6118 case RETURN:
6119 sprintf (buf, "return");
6120 break;
6121 case CALL:
6122 print_exp (buf, x, verbose);
6123 break;
6124 case CLOBBER:
6125 print_value (t1, XEXP (x, 0), verbose);
6126 sprintf (buf, "clobber %s", t1);
6127 break;
6128 case USE:
6129 print_value (t1, XEXP (x, 0), verbose);
6130 sprintf (buf, "use %s", t1);
6131 break;
6132 case PARALLEL:
6133 {
6134 int i;
6135
6136 sprintf (t1, "{");
6137 for (i = 0; i < XVECLEN (x, 0); i++)
6138 {
6139 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6140 sprintf (t3, "%s%s;", t1, t2);
6141 strcpy (t1, t3);
6142 }
6143 sprintf (buf, "%s}", t1);
6144 }
6145 break;
6146 case SEQUENCE:
6147 {
6148 int i;
6149
6150 sprintf (t1, "%%{");
6151 for (i = 0; i < XVECLEN (x, 0); i++)
6152 {
6153 print_insn (t2, XVECEXP (x, 0, i), verbose);
6154 sprintf (t3, "%s%s;", t1, t2);
6155 strcpy (t1, t3);
6156 }
6157 sprintf (buf, "%s%%}", t1);
6158 }
6159 break;
6160 case ASM_INPUT:
c4fa3460 6161 sprintf (buf, "asm {%s}", XSTR (x, 0));
8c660648
JL
6162 break;
6163 case ADDR_VEC:
6164 break;
6165 case ADDR_DIFF_VEC:
6166 print_value (buf, XEXP (x, 0), verbose);
6167 break;
6168 case TRAP_IF:
6169 print_value (t1, TRAP_CONDITION (x), verbose);
6170 sprintf (buf, "trap_if %s", t1);
6171 break;
6172 case UNSPEC:
6173 {
6174 int i;
6175
6176 sprintf (t1, "unspec{");
6177 for (i = 0; i < XVECLEN (x, 0); i++)
6178 {
6179 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6180 sprintf (t3, "%s%s;", t1, t2);
6181 strcpy (t1, t3);
6182 }
6183 sprintf (buf, "%s}", t1);
6184 }
6185 break;
6186 case UNSPEC_VOLATILE:
6187 {
6188 int i;
6189
6190 sprintf (t1, "unspec/v{");
6191 for (i = 0; i < XVECLEN (x, 0); i++)
6192 {
6193 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6194 sprintf (t3, "%s%s;", t1, t2);
6195 strcpy (t1, t3);
6196 }
6197 sprintf (buf, "%s}", t1);
6198 }
6199 break;
6200 default:
6201 print_value (buf, x, verbose);
6202 }
6203} /* print_pattern */
6204
6205/* This is the main function in rtl visualization mechanism. It
6206 accepts an rtx and tries to recognize it as an insn, then prints it
6207 properly in human readable form, resembling assembler mnemonics. */
6208/* For every insn it prints its UID and BB the insn belongs */
6209/* too. (probably the last "option" should be extended somehow, since */
6210/* it depends now on sched.c inner variables ...) */
6211
6212static void
6213print_insn (buf, x, verbose)
6214 char *buf;
6215 rtx x;
6216 int verbose;
6217{
6218 char t[BUF_LEN];
6219 rtx insn = x;
6220
6221 switch (GET_CODE (x))
6222 {
6223 case INSN:
6224 print_pattern (t, PATTERN (x), verbose);
6225 if (verbose)
6226 sprintf (buf, "b%d: i% 4d: %s", INSN_BB (x),
6227 INSN_UID (x), t);
6228 else
6229 sprintf (buf, "%-4d %s", INSN_UID (x), t);
6230 break;
6231 case JUMP_INSN:
6232 print_pattern (t, PATTERN (x), verbose);
6233 if (verbose)
6234 sprintf (buf, "b%d: i% 4d: jump %s", INSN_BB (x),
6235 INSN_UID (x), t);
6236 else
6237 sprintf (buf, "%-4d %s", INSN_UID (x), t);
6238 break;
6239 case CALL_INSN:
6240 x = PATTERN (insn);
6241 if (GET_CODE (x) == PARALLEL)
6242 {
6243 x = XVECEXP (x, 0, 0);
6244 print_pattern (t, x, verbose);
6245 }
6246 else
6247 strcpy (t, "call <...>");
6248 if (verbose)
6249 sprintf (buf, "b%d: i% 4d: %s", INSN_BB (insn),
6250 INSN_UID (insn), t);
6251 else
6252 sprintf (buf, "%-4d %s", INSN_UID (insn), t);
6253 break;
6254 case CODE_LABEL:
6255 sprintf (buf, "L%d:", INSN_UID (x));
6256 break;
6257 case BARRIER:
6258 sprintf (buf, "i% 4d: barrier", INSN_UID (x));
6259 break;
6260 case NOTE:
6261 if (NOTE_LINE_NUMBER (x) > 0)
6262 sprintf (buf, "%4d note \"%s\" %d", INSN_UID (x),
6263 NOTE_SOURCE_FILE (x), NOTE_LINE_NUMBER (x));
6264 else
6265 sprintf (buf, "%4d %s", INSN_UID (x),
6266 GET_NOTE_INSN_NAME (NOTE_LINE_NUMBER (x)));
6267 break;
6268 default:
6269 if (verbose)
6270 {
6271 sprintf (buf, "Not an INSN at all\n");
6272 debug_rtx (x);
6273 }
6274 else
6275 sprintf (buf, "i%-4d <What?>", INSN_UID (x));
6276 }
6277} /* print_insn */
6278
8c660648
JL
6279/* Print visualization debugging info */
6280
6281static void
6282print_block_visualization (b, s)
6283 int b;
6284 char *s;
6285{
6286 int unit, i;
8c660648
JL
6287
6288 /* print header */
6289 fprintf (dump, "\n;; ==================== scheduling visualization for block %d %s \n", b, s);
6290
6291 /* Print names of units */
2f308fec 6292 fprintf (dump, ";; %-8s", "clock");
8c660648
JL
6293 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
6294 if (function_units[unit].bitmask & target_units)
6295 for (i = 0; i < function_units[unit].multiplicity; i++)
2f308fec
RH
6296 fprintf (dump, " %-33s", function_units[unit].name);
6297 fprintf (dump, " %-8s\n", "no-unit");
6298
6299 fprintf (dump, ";; %-8s", "=====");
6300 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
6301 if (function_units[unit].bitmask & target_units)
6302 for (i = 0; i < function_units[unit].multiplicity; i++)
6303 fprintf (dump, " %-33s", "==============================");
6304 fprintf (dump, " %-8s\n", "=======");
8c660648
JL
6305
6306 /* Print insns in each cycle */
6307 fprintf (dump, "%s\n", visual_tbl);
6308}
6309
6310/* Print insns in the 'no_unit' column of visualization */
6311
6312static void
6313visualize_no_unit (insn)
6314 rtx insn;
6315{
6316 vis_no_unit[n_vis_no_unit] = insn;
6317 n_vis_no_unit++;
6318}
6319
6320/* Print insns scheduled in clock, for visualization. */
6321
6322static void
6323visualize_scheduled_insns (b, clock)
6324 int b, clock;
6325{
6326 int i, unit;
6327
6328 /* if no more room, split table into two */
6329 if (n_visual_lines >= MAX_VISUAL_LINES)
6330 {
6331 print_block_visualization (b, "(incomplete)");
6332 init_block_visualization ();
6333 }
6334
6335 n_visual_lines++;
6336
6337 sprintf (visual_tbl + strlen (visual_tbl), ";; %-8d", clock);
6338 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
6339 if (function_units[unit].bitmask & target_units)
6340 for (i = 0; i < function_units[unit].multiplicity; i++)
6341 {
6342 int instance = unit + i * FUNCTION_UNITS_SIZE;
6343 rtx insn = unit_last_insn[instance];
6344
6345 /* print insns that still keep the unit busy */
6346 if (insn &&
6347 actual_hazard_this_instance (unit, instance, insn, clock, 0))
6348 {
6349 char str[BUF_LEN];
6350 print_insn (str, insn, 0);
6351 str[INSN_LEN] = '\0';
6352 sprintf (visual_tbl + strlen (visual_tbl), " %-33s", str);
6353 }
6354 else
6355 sprintf (visual_tbl + strlen (visual_tbl), " %-33s", "------------------------------");
6356 }
6357
6358 /* print insns that are not assigned to any unit */
6359 for (i = 0; i < n_vis_no_unit; i++)
6360 sprintf (visual_tbl + strlen (visual_tbl), " %-8d",
6361 INSN_UID (vis_no_unit[i]));
6362 n_vis_no_unit = 0;
6363
6364 sprintf (visual_tbl + strlen (visual_tbl), "\n");
6365}
6366
6367/* Print stalled cycles */
6368
6369static void
6370visualize_stall_cycles (b, stalls)
6371 int b, stalls;
6372{
6373 int i;
6374
6375 /* if no more room, split table into two */
6376 if (n_visual_lines >= MAX_VISUAL_LINES)
6377 {
6378 print_block_visualization (b, "(incomplete)");
6379 init_block_visualization ();
6380 }
6381
6382 n_visual_lines++;
6383
6384 sprintf (visual_tbl + strlen (visual_tbl), ";; ");
6385 for (i = 0; i < stalls; i++)
6386 sprintf (visual_tbl + strlen (visual_tbl), ".");
6387 sprintf (visual_tbl + strlen (visual_tbl), "\n");
6388}
6389
6390/* move_insn1: Remove INSN from insn chain, and link it after LAST insn */
6391
6392static rtx
6393move_insn1 (insn, last)
6394 rtx insn, last;
6395{
6396 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
6397 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
6398
6399 NEXT_INSN (insn) = NEXT_INSN (last);
6400 PREV_INSN (NEXT_INSN (last)) = insn;
6401
6402 NEXT_INSN (last) = insn;
6403 PREV_INSN (insn) = last;
6404
6405 return insn;
6406}
6407
6408/* Search INSN for fake REG_DEAD note pairs for NOTE_INSN_SETJMP,
6409 NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
6410 NOTEs. The REG_DEAD note following first one is contains the saved
6411 value for NOTE_BLOCK_NUMBER which is useful for
6412 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. LAST is the last instruction
6413 output by the instruction scheduler. Return the new value of LAST. */
6414
6415static rtx
6416reemit_notes (insn, last)
6417 rtx insn;
6418 rtx last;
6419{
6420 rtx note, retval;
6421
6422 retval = last;
6423 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
6424 {
6425 if (REG_NOTE_KIND (note) == REG_DEAD
6426 && GET_CODE (XEXP (note, 0)) == CONST_INT)
6427 {
6428 if (INTVAL (XEXP (note, 0)) == NOTE_INSN_SETJMP)
6429 {
6430 retval = emit_note_after (INTVAL (XEXP (note, 0)), insn);
6431 CONST_CALL_P (retval) = CONST_CALL_P (note);
6432 remove_note (insn, note);
6433 note = XEXP (note, 1);
6434 }
6435 else
6436 {
6437 last = emit_note_before (INTVAL (XEXP (note, 0)), last);
6438 remove_note (insn, note);
6439 note = XEXP (note, 1);
6440 NOTE_BLOCK_NUMBER (last) = INTVAL (XEXP (note, 0));
6441 }
6442 remove_note (insn, note);
6443 }
6444 }
6445 return retval;
6446}
6447
6448/* Move INSN, and all insns which should be issued before it,
c9e03727
JL
6449 due to SCHED_GROUP_P flag. Reemit notes if needed.
6450
6451 Return the last insn emitted by the scheduler, which is the
6452 return value from the first call to reemit_notes. */
8c660648
JL
6453
6454static rtx
6455move_insn (insn, last)
6456 rtx insn, last;
6457{
c9e03727 6458 rtx retval = NULL;
8c660648 6459
c9e03727
JL
6460 /* If INSN has SCHED_GROUP_P set, then issue it and any other
6461 insns with SCHED_GROUP_P set first. */
8c660648
JL
6462 while (SCHED_GROUP_P (insn))
6463 {
6464 rtx prev = PREV_INSN (insn);
c9e03727
JL
6465
6466 /* Move a SCHED_GROUP_P insn. */
8c660648 6467 move_insn1 (insn, last);
c9e03727
JL
6468 /* If this is the first call to reemit_notes, then record
6469 its return value. */
6470 if (retval == NULL_RTX)
6471 retval = reemit_notes (insn, insn);
6472 else
6473 reemit_notes (insn, insn);
8c660648
JL
6474 insn = prev;
6475 }
6476
c9e03727 6477 /* Now move the first non SCHED_GROUP_P insn. */
8c660648 6478 move_insn1 (insn, last);
c9e03727
JL
6479
6480 /* If this is the first call to reemit_notes, then record
6481 its return value. */
6482 if (retval == NULL_RTX)
6483 retval = reemit_notes (insn, insn);
6484 else
6485 reemit_notes (insn, insn);
6486
6487 return retval;
8c660648
JL
6488}
6489
6490/* Return an insn which represents a SCHED_GROUP, which is
6491 the last insn in the group. */
6492
6493static rtx
6494group_leader (insn)
6495 rtx insn;
6496{
6497 rtx prev;
6498
6499 do
6500 {
6501 prev = insn;
6502 insn = next_nonnote_insn (insn);
6503 }
6504 while (insn && SCHED_GROUP_P (insn) && (GET_CODE (insn) != CODE_LABEL));
6505
6506 return prev;
6507}
6508
6509/* Use forward list scheduling to rearrange insns of block BB in region RGN,
6510 possibly bringing insns from subsequent blocks in the same region.
6511 Return number of insns scheduled. */
6512
6513static int
5835e573 6514schedule_block (bb, rgn_n_insns)
8c660648 6515 int bb;
8c660648
JL
6516 int rgn_n_insns;
6517{
6518 /* Local variables. */
6519 rtx insn, last;
6520 rtx *ready;
6521 int i;
6522 int n_ready = 0;
6523 int can_issue_more;
6524
6525 /* flow block of this bb */
6526 int b = BB_TO_BLOCK (bb);
6527
6528 /* target_n_insns == number of insns in b before scheduling starts.
6529 sched_target_n_insns == how many of b's insns were scheduled.
6530 sched_n_insns == how many insns were scheduled in b */
6531 int target_n_insns = 0;
6532 int sched_target_n_insns = 0;
6533 int sched_n_insns = 0;
6534
6535#define NEED_NOTHING 0
6536#define NEED_HEAD 1
6537#define NEED_TAIL 2
6538 int new_needs;
6539
6540 /* head/tail info for this block */
6541 rtx prev_head;
6542 rtx next_tail;
6543 rtx head;
6544 rtx tail;
6545 int bb_src;
6546
484df988
JL
6547 /* We used to have code to avoid getting parameters moved from hard
6548 argument registers into pseudos.
8c660648 6549
484df988
JL
6550 However, it was removed when it proved to be of marginal benefit
6551 and caused problems because schedule_block and compute_forward_dependences
6552 had different notions of what the "head" insn was. */
6553 get_block_head_tail (bb, &head, &tail);
8c660648 6554
1447b516
JL
6555 /* Interblock scheduling could have moved the original head insn from this
6556 block into a proceeding block. This may also cause schedule_block and
6557 compute_forward_dependences to have different notions of what the
6558 "head" insn was.
6559
6560 If the interblock movement happened to make this block start with
6561 some notes (LOOP, EH or SETJMP) before the first real insn, then
6562 HEAD will have various special notes attached to it which must be
6563 removed so that we don't end up with extra copies of the notes. */
6564 if (GET_RTX_CLASS (GET_CODE (head)) == 'i')
6565 {
6566 rtx note;
6567
6568 for (note = REG_NOTES (head); note; note = XEXP (note, 1))
6569 if (REG_NOTE_KIND (note) == REG_DEAD
6570 && GET_CODE (XEXP (note, 0)) == CONST_INT)
6571 remove_note (head, note);
6572 }
6573
8c660648
JL
6574 next_tail = NEXT_INSN (tail);
6575 prev_head = PREV_INSN (head);
6576
6577 /* If the only insn left is a NOTE or a CODE_LABEL, then there is no need
6578 to schedule this block. */
6579 if (head == tail
6580 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
6581 return (sched_n_insns);
6582
6583 /* debug info */
6584 if (sched_verbose)
6585 {
6586 fprintf (dump, ";; ======================================================\n");
6587 fprintf (dump,
6588 ";; -- basic block %d from %d to %d -- %s reload\n",
6589 b, INSN_UID (basic_block_head[b]),
6590 INSN_UID (basic_block_end[b]),
6591 (reload_completed ? "after" : "before"));
6592 fprintf (dump, ";; ======================================================\n");
8c660648
JL
6593 fprintf (dump, "\n");
6594
6595 visual_tbl = (char *) alloca (get_visual_tbl_length ());
6596 init_block_visualization ();
6597 }
6598
6599 /* remove remaining note insns from the block, save them in
6600 note_list. These notes are restored at the end of
6601 schedule_block (). */
6602 note_list = 0;
6603 rm_other_notes (head, tail);
6604
6605 target_bb = bb;
6606
6607 /* prepare current target block info */
6608 if (current_nr_blocks > 1)
6609 {
6610 candidate_table = (candidate *) alloca (current_nr_blocks * sizeof (candidate));
6611
6612 bblst_last = 0;
6613 /* ??? It is not clear why bblst_size is computed this way. The original
6614 number was clearly too small as it resulted in compiler failures.
6615 Multiplying by the original number by 2 (to account for update_bbs
6616 members) seems to be a reasonable solution. */
6617 /* ??? Or perhaps there is a bug somewhere else in this file? */
6618 bblst_size = (current_nr_blocks - bb) * rgn_nr_edges * 2;
6619 bblst_table = (int *) alloca (bblst_size * sizeof (int));
6620
6621 bitlst_table_last = 0;
6622 bitlst_table_size = rgn_nr_edges;
6623 bitlst_table = (int *) alloca (rgn_nr_edges * sizeof (int));
6624
6625 compute_trg_info (bb);
6626 }
6627
6628 clear_units ();
6629
6630 /* Allocate the ready list */
6631 ready = (rtx *) alloca ((rgn_n_insns + 1) * sizeof (rtx));
6632
6633 /* Print debugging information. */
6634 if (sched_verbose >= 5)
6635 debug_dependencies ();
6636
6637
6638 /* Initialize ready list with all 'ready' insns in target block.
6639 Count number of insns in the target block being scheduled. */
6640 n_ready = 0;
6641 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6642 {
6643 rtx next;
6644
6645 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6646 continue;
6647 next = NEXT_INSN (insn);
6648
6649 if (INSN_DEP_COUNT (insn) == 0
6650 && (SCHED_GROUP_P (next) == 0 || GET_RTX_CLASS (GET_CODE (next)) != 'i'))
6651 ready[n_ready++] = insn;
6652 if (!(SCHED_GROUP_P (insn)))
6653 target_n_insns++;
6654 }
6655
6656 /* Add to ready list all 'ready' insns in valid source blocks.
6657 For speculative insns, check-live, exception-free, and
6658 issue-delay. */
6659 for (bb_src = bb + 1; bb_src < current_nr_blocks; bb_src++)
6660 if (IS_VALID (bb_src))
6661 {
6662 rtx src_head;
6663 rtx src_next_tail;
6664 rtx tail, head;
6665
6666 get_block_head_tail (bb_src, &head, &tail);
6667 src_next_tail = NEXT_INSN (tail);
6668 src_head = head;
6669
6670 if (head == tail
6671 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
6672 continue;
6673
6674 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
6675 {
6676 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6677 continue;
6678
6679 if (!CANT_MOVE (insn)
6680 && (!IS_SPECULATIVE_INSN (insn)
6681 || (insn_issue_delay (insn) <= 3
5835e573 6682 && check_live (insn, bb_src)
8c660648
JL
6683 && is_exception_free (insn, bb_src, target_bb))))
6684
6685 {
6686 rtx next;
6687
6688 next = NEXT_INSN (insn);
6689 if (INSN_DEP_COUNT (insn) == 0
6690 && (SCHED_GROUP_P (next) == 0
6691 || GET_RTX_CLASS (GET_CODE (next)) != 'i'))
6692 ready[n_ready++] = insn;
6693 }
6694 }
6695 }
6696
e4da5f6d
MM
6697#ifdef MD_SCHED_INIT
6698 MD_SCHED_INIT (dump, sched_verbose);
6699#endif
6700
8c660648
JL
6701 /* no insns scheduled in this block yet */
6702 last_scheduled_insn = 0;
6703
6704 /* Sort the ready list */
6705 SCHED_SORT (ready, n_ready);
e4da5f6d
MM
6706#ifdef MD_SCHED_REORDER
6707 MD_SCHED_REORDER (dump, sched_verbose, ready, n_ready);
6708#endif
8c660648
JL
6709
6710 if (sched_verbose >= 2)
6711 {
6d3352d9 6712 fprintf (dump, ";;\t\tReady list initially: ");
8c660648
JL
6713 debug_ready_list (ready, n_ready);
6714 }
6715
6716 /* Q_SIZE is the total number of insns in the queue. */
6717 q_ptr = 0;
6718 q_size = 0;
6719 clock_var = 0;
6720 bzero ((char *) insn_queue, sizeof (insn_queue));
6721
6722 /* We start inserting insns after PREV_HEAD. */
6723 last = prev_head;
6724
6725 /* Initialize INSN_QUEUE, LIST and NEW_NEEDS. */
6726 new_needs = (NEXT_INSN (prev_head) == basic_block_head[b]
6727 ? NEED_HEAD : NEED_NOTHING);
6728 if (PREV_INSN (next_tail) == basic_block_end[b])
6729 new_needs |= NEED_TAIL;
6730
6731 /* loop until all the insns in BB are scheduled. */
6732 while (sched_target_n_insns < target_n_insns)
6733 {
6734 int b1;
6735
8c660648
JL
6736 clock_var++;
6737
6738 /* Add to the ready list all pending insns that can be issued now.
6739 If there are no ready insns, increment clock until one
6740 is ready and add all pending insns at that point to the ready
6741 list. */
6742 n_ready = queue_to_ready (ready, n_ready);
6743
6744 if (n_ready == 0)
6745 abort ();
6746
6747 if (sched_verbose >= 2)
6748 {
6749 fprintf (dump, ";;\t\tReady list after queue_to_ready: ");
6750 debug_ready_list (ready, n_ready);
6751 }
6752
6753 /* Sort the ready list. */
6754 SCHED_SORT (ready, n_ready);
e4da5f6d
MM
6755#ifdef MD_SCHED_REORDER
6756 MD_SCHED_REORDER (dump, sched_verbose, ready, n_ready);
6757#endif
8c660648
JL
6758
6759 if (sched_verbose)
6760 {
47312d84 6761 fprintf (dump, "\n;;\tReady list (t =%3d): ", clock_var);
8c660648
JL
6762 debug_ready_list (ready, n_ready);
6763 }
6764
6765 /* Issue insns from ready list.
6766 It is important to count down from n_ready, because n_ready may change
6767 as insns are issued. */
6768 can_issue_more = issue_rate;
6769 for (i = n_ready - 1; i >= 0 && can_issue_more; i--)
6770 {
6771 rtx insn = ready[i];
6772 int cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
6773
6774 if (cost > 1)
6775 {
6776 queue_insn (insn, cost);
6777 ready[i] = ready[--n_ready]; /* remove insn from ready list */
6778 }
6779 else if (cost == 0)
6780 {
8c660648
JL
6781 /* an interblock motion? */
6782 if (INSN_BB (insn) != target_bb)
6783 {
4f64eaca
JL
6784 rtx temp;
6785
8c660648
JL
6786 if (IS_SPECULATIVE_INSN (insn))
6787 {
6788
5835e573 6789 if (!check_live (insn, INSN_BB (insn)))
8c660648
JL
6790 {
6791 /* speculative motion, live check failed, remove
6792 insn from ready list */
6793 ready[i] = ready[--n_ready];
6794 continue;
6795 }
5835e573 6796 update_live (insn, INSN_BB (insn));
8c660648
JL
6797
6798 /* for speculative load, mark insns fed by it. */
6799 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
6800 set_spec_fed (insn);
6801
6802 nr_spec++;
6803 }
6804 nr_inter++;
6805
4f64eaca
JL
6806 temp = insn;
6807 while (SCHED_GROUP_P (temp))
6808 temp = PREV_INSN (temp);
6809
6810 /* Update source block boundaries. */
6811 b1 = INSN_BLOCK (temp);
6812 if (temp == basic_block_head[b1]
8c660648
JL
6813 && insn == basic_block_end[b1])
6814 {
4f64eaca
JL
6815 /* We moved all the insns in the basic block.
6816 Emit a note after the last insn and update the
6817 begin/end boundaries to point to the note. */
6818 emit_note_after (NOTE_INSN_DELETED, insn);
6819 basic_block_end[b1] = NEXT_INSN (insn);
6820 basic_block_head[b1] = NEXT_INSN (insn);
8c660648
JL
6821 }
6822 else if (insn == basic_block_end[b1])
6823 {
4f64eaca
JL
6824 /* We took insns from the end of the basic block,
6825 so update the end of block boundary so that it
6826 points to the first insn we did not move. */
6827 basic_block_end[b1] = PREV_INSN (temp);
8c660648 6828 }
4f64eaca 6829 else if (temp == basic_block_head[b1])
8c660648 6830 {
4f64eaca
JL
6831 /* We took insns from the start of the basic block,
6832 so update the start of block boundary so that
6833 it points to the first insn we did not move. */
8c660648
JL
6834 basic_block_head[b1] = NEXT_INSN (insn);
6835 }
6836 }
6837 else
6838 {
6839 /* in block motion */
6840 sched_target_n_insns++;
6841 }
6842
6843 last_scheduled_insn = insn;
6844 last = move_insn (insn, last);
6845 sched_n_insns++;
6846
e4da5f6d
MM
6847#ifdef MD_SCHED_VARIABLE_ISSUE
6848 MD_SCHED_VARIABLE_ISSUE (dump, sched_verbose, insn, can_issue_more);
6849#else
8c660648 6850 can_issue_more--;
e4da5f6d 6851#endif
8c660648 6852
8c660648
JL
6853 n_ready = schedule_insn (insn, ready, n_ready, clock_var);
6854
6855 /* remove insn from ready list */
6856 ready[i] = ready[--n_ready];
6857
6858 /* close this block after scheduling its jump */
6859 if (GET_CODE (last_scheduled_insn) == JUMP_INSN)
6860 break;
6861 }
6862 }
6863
6864 /* debug info */
6865 if (sched_verbose)
6866 {
6867 visualize_scheduled_insns (b, clock_var);
8c660648
JL
6868 }
6869 }
6870
6871 /* debug info */
6872 if (sched_verbose)
6873 {
6874 fprintf (dump, ";;\tReady list (final): ");
6875 debug_ready_list (ready, n_ready);
6876 print_block_visualization (b, "");
6877 }
6878
6879 /* Sanity check -- queue must be empty now. Meaningless if region has
cc132865 6880 multiple bbs. */
8c660648 6881 if (current_nr_blocks > 1)
cc132865
JL
6882 if (!flag_schedule_interblock && q_size != 0)
6883 abort ();
8c660648
JL
6884
6885 /* update head/tail boundaries. */
6886 head = NEXT_INSN (prev_head);
6887 tail = last;
6888
8c660648
JL
6889 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
6890 previously found among the insns. Insert them at the beginning
6891 of the insns. */
6892 if (note_list != 0)
6893 {
6894 rtx note_head = note_list;
6895
6896 while (PREV_INSN (note_head))
6897 {
6898 note_head = PREV_INSN (note_head);
6899 }
6900
6901 PREV_INSN (note_head) = PREV_INSN (head);
6902 NEXT_INSN (PREV_INSN (head)) = note_head;
6903 PREV_INSN (head) = note_list;
6904 NEXT_INSN (note_list) = head;
6905 head = note_head;
6906 }
6907
6908 /* update target block boundaries. */
6909 if (new_needs & NEED_HEAD)
6910 basic_block_head[b] = head;
6911
6912 if (new_needs & NEED_TAIL)
6913 basic_block_end[b] = tail;
6914
6915 /* debugging */
6916 if (sched_verbose)
6917 {
6918 fprintf (dump, ";; total time = %d\n;; new basic block head = %d\n",
6919 clock_var, INSN_UID (basic_block_head[b]));
6920 fprintf (dump, ";; new basic block end = %d\n\n",
6921 INSN_UID (basic_block_end[b]));
6922 }
6923
6924 return (sched_n_insns);
6925} /* schedule_block () */
6926\f
6927
6928/* print the bit-set of registers, S. callable from debugger */
6929
6930extern void
6931debug_reg_vector (s)
6932 regset s;
6933{
6934 int regno;
6935
6936 EXECUTE_IF_SET_IN_REG_SET (s, 0, regno,
6937 {
6938 fprintf (dump, " %d", regno);
6939 });
6940
6941 fprintf (dump, "\n");
6942}
6943
6944/* Use the backward dependences from LOG_LINKS to build
6945 forward dependences in INSN_DEPEND. */
6946
6947static void
6948compute_block_forward_dependences (bb)
6949 int bb;
6950{
6951 rtx insn, link;
6952 rtx tail, head;
6953 rtx next_tail;
6954 enum reg_note dep_type;
6955
6956 get_block_head_tail (bb, &head, &tail);
6957 next_tail = NEXT_INSN (tail);
6958 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6959 {
6960 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6961 continue;
6962
6963 insn = group_leader (insn);
6964
6965 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
6966 {
6967 rtx x = group_leader (XEXP (link, 0));
6968 rtx new_link;
6969
6970 if (x != XEXP (link, 0))
6971 continue;
6972
6973 /* Ignore dependences upon deleted insn */
6974 if (GET_CODE (x) == NOTE || INSN_DELETED_P (x))
6975 continue;
6976 if (find_insn_list (insn, INSN_DEPEND (x)))
6977 continue;
6978
ebb7b10b 6979 new_link = alloc_INSN_LIST (insn, INSN_DEPEND (x));
8c660648
JL
6980
6981 dep_type = REG_NOTE_KIND (link);
6982 PUT_REG_NOTE_KIND (new_link, dep_type);
6983
8c660648
JL
6984 INSN_DEPEND (x) = new_link;
6985 INSN_DEP_COUNT (insn) += 1;
6986 }
6987 }
6988}
6989
6990/* Initialize variables for region data dependence analysis.
6991 n_bbs is the number of region blocks */
6992
6d3352d9 6993__inline static void
8c660648
JL
6994init_rgn_data_dependences (n_bbs)
6995 int n_bbs;
6996{
6997 int bb;
6998
6999 /* variables for which one copy exists for each block */
7000 bzero ((char *) bb_pending_read_insns, n_bbs * sizeof (rtx));
7001 bzero ((char *) bb_pending_read_mems, n_bbs * sizeof (rtx));
7002 bzero ((char *) bb_pending_write_insns, n_bbs * sizeof (rtx));
7003 bzero ((char *) bb_pending_write_mems, n_bbs * sizeof (rtx));
7004 bzero ((char *) bb_pending_lists_length, n_bbs * sizeof (rtx));
7005 bzero ((char *) bb_last_pending_memory_flush, n_bbs * sizeof (rtx));
7006 bzero ((char *) bb_last_function_call, n_bbs * sizeof (rtx));
7007 bzero ((char *) bb_sched_before_next_call, n_bbs * sizeof (rtx));
7008
7009 /* Create an insn here so that we can hang dependencies off of it later. */
7010 for (bb = 0; bb < n_bbs; bb++)
7011 {
7012 bb_sched_before_next_call[bb] =
38a448ca
RH
7013 gen_rtx_INSN (VOIDmode, 0, NULL_RTX, NULL_RTX,
7014 NULL_RTX, 0, NULL_RTX, NULL_RTX);
8c660648
JL
7015 LOG_LINKS (bb_sched_before_next_call[bb]) = 0;
7016 }
7017}
7018
7019/* Add dependences so that branches are scheduled to run last in their block */
7020
7021static void
7022add_branch_dependences (head, tail)
7023 rtx head, tail;
7024{
7025
7026 rtx insn, last;
7027
7028 /* For all branches, calls, uses, and cc0 setters, force them to remain
7029 in order at the end of the block by adding dependencies and giving
7030 the last a high priority. There may be notes present, and prev_head
7031 may also be a note.
7032
7033 Branches must obviously remain at the end. Calls should remain at the
7034 end since moving them results in worse register allocation. Uses remain
7035 at the end to ensure proper register allocation. cc0 setters remaim
7036 at the end because they can't be moved away from their cc0 user. */
7037 insn = tail;
7038 last = 0;
7039 while (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
7040 || (GET_CODE (insn) == INSN
7041 && (GET_CODE (PATTERN (insn)) == USE
7042#ifdef HAVE_cc0
7043 || sets_cc0_p (PATTERN (insn))
7044#endif
7045 ))
7046 || GET_CODE (insn) == NOTE)
7047 {
7048 if (GET_CODE (insn) != NOTE)
7049 {
7050 if (last != 0
7051 && !find_insn_list (insn, LOG_LINKS (last)))
7052 {
7053 add_dependence (last, insn, REG_DEP_ANTI);
7054 INSN_REF_COUNT (insn)++;
7055 }
7056
7057 CANT_MOVE (insn) = 1;
7058
7059 last = insn;
326ee7a3
JL
7060 /* Skip over insns that are part of a group.
7061 Make each insn explicitly depend on the previous insn.
7062 This ensures that only the group header will ever enter
7063 the ready queue (and, when scheduled, will automatically
7064 schedule the SCHED_GROUP_P block). */
8c660648 7065 while (SCHED_GROUP_P (insn))
326ee7a3
JL
7066 {
7067 rtx temp = prev_nonnote_insn (insn);
7068 add_dependence (insn, temp, REG_DEP_ANTI);
7069 insn = temp;
7070 }
8c660648
JL
7071 }
7072
7073 /* Don't overrun the bounds of the basic block. */
7074 if (insn == head)
7075 break;
7076
7077 insn = PREV_INSN (insn);
7078 }
7079
7080 /* make sure these insns are scheduled last in their block */
7081 insn = last;
7082 if (insn != 0)
7083 while (insn != head)
7084 {
7085 insn = prev_nonnote_insn (insn);
7086
7087 if (INSN_REF_COUNT (insn) != 0)
7088 continue;
7089
7090 if (!find_insn_list (last, LOG_LINKS (insn)))
7091 add_dependence (last, insn, REG_DEP_ANTI);
7092 INSN_REF_COUNT (insn) = 1;
7093
7094 /* Skip over insns that are part of a group. */
7095 while (SCHED_GROUP_P (insn))
7096 insn = prev_nonnote_insn (insn);
7097 }
7098}
7099
7100/* Compute bacward dependences inside BB. In a multiple blocks region:
7101 (1) a bb is analyzed after its predecessors, and (2) the lists in
7102 effect at the end of bb (after analyzing for bb) are inherited by
7103 bb's successrs.
7104
7105 Specifically for reg-reg data dependences, the block insns are
7106 scanned by sched_analyze () top-to-bottom. Two lists are
7107 naintained by sched_analyze (): reg_last_defs[] for register DEFs,
7108 and reg_last_uses[] for register USEs.
7109
7110 When analysis is completed for bb, we update for its successors:
7111 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
7112 ; - USES[succ] = Union (USES [succ], DEFS [bb])
7113
7114 The mechanism for computing mem-mem data dependence is very
7115 similar, and the result is interblock dependences in the region. */
7116
7117static void
7118compute_block_backward_dependences (bb)
7119 int bb;
7120{
7121 int b;
7122 rtx x;
7123 rtx head, tail;
7124 int max_reg = max_reg_num ();
7125
7126 b = BB_TO_BLOCK (bb);
7127
7128 if (current_nr_blocks == 1)
7129 {
7130 reg_last_uses = (rtx *) alloca (max_reg * sizeof (rtx));
7131 reg_last_sets = (rtx *) alloca (max_reg * sizeof (rtx));
7132
7133 bzero ((char *) reg_last_uses, max_reg * sizeof (rtx));
7134 bzero ((char *) reg_last_sets, max_reg * sizeof (rtx));
7135
7136 pending_read_insns = 0;
7137 pending_read_mems = 0;
7138 pending_write_insns = 0;
7139 pending_write_mems = 0;
7140 pending_lists_length = 0;
7141 last_function_call = 0;
7142 last_pending_memory_flush = 0;
7143 sched_before_next_call
38a448ca
RH
7144 = gen_rtx_INSN (VOIDmode, 0, NULL_RTX, NULL_RTX,
7145 NULL_RTX, 0, NULL_RTX, NULL_RTX);
8c660648
JL
7146 LOG_LINKS (sched_before_next_call) = 0;
7147 }
7148 else
7149 {
7150 reg_last_uses = bb_reg_last_uses[bb];
7151 reg_last_sets = bb_reg_last_sets[bb];
7152
7153 pending_read_insns = bb_pending_read_insns[bb];
7154 pending_read_mems = bb_pending_read_mems[bb];
7155 pending_write_insns = bb_pending_write_insns[bb];
7156 pending_write_mems = bb_pending_write_mems[bb];
7157 pending_lists_length = bb_pending_lists_length[bb];
7158 last_function_call = bb_last_function_call[bb];
7159 last_pending_memory_flush = bb_last_pending_memory_flush[bb];
7160
7161 sched_before_next_call = bb_sched_before_next_call[bb];
7162 }
7163
7164 /* do the analysis for this block */
7165 get_block_head_tail (bb, &head, &tail);
7166 sched_analyze (head, tail);
7167 add_branch_dependences (head, tail);
7168
7169 if (current_nr_blocks > 1)
7170 {
7171 int e, first_edge;
7172 int b_succ, bb_succ;
7173 int reg;
7174 rtx link_insn, link_mem;
7175 rtx u;
7176
7177 /* these lists should point to the right place, for correct freeing later. */
7178 bb_pending_read_insns[bb] = pending_read_insns;
7179 bb_pending_read_mems[bb] = pending_read_mems;
7180 bb_pending_write_insns[bb] = pending_write_insns;
7181 bb_pending_write_mems[bb] = pending_write_mems;
7182
7183 /* bb's structures are inherited by it's successors */
7184 first_edge = e = OUT_EDGES (b);
7185 if (e > 0)
7186 do
7187 {
7188 b_succ = TO_BLOCK (e);
7189 bb_succ = BLOCK_TO_BB (b_succ);
7190
7191 /* only bbs "below" bb, in the same region, are interesting */
7192 if (CONTAINING_RGN (b) != CONTAINING_RGN (b_succ)
7193 || bb_succ <= bb)
7194 {
7195 e = NEXT_OUT (e);
7196 continue;
7197 }
7198
7199 for (reg = 0; reg < max_reg; reg++)
7200 {
7201
7202 /* reg-last-uses lists are inherited by bb_succ */
7203 for (u = reg_last_uses[reg]; u; u = XEXP (u, 1))
7204 {
7205 if (find_insn_list (XEXP (u, 0), (bb_reg_last_uses[bb_succ])[reg]))
7206 continue;
7207
7208 (bb_reg_last_uses[bb_succ])[reg]
ebb7b10b
RH
7209 = alloc_INSN_LIST (XEXP (u, 0),
7210 (bb_reg_last_uses[bb_succ])[reg]);
8c660648
JL
7211 }
7212
7213 /* reg-last-defs lists are inherited by bb_succ */
7214 for (u = reg_last_sets[reg]; u; u = XEXP (u, 1))
7215 {
7216 if (find_insn_list (XEXP (u, 0), (bb_reg_last_sets[bb_succ])[reg]))
7217 continue;
7218
7219 (bb_reg_last_sets[bb_succ])[reg]
ebb7b10b
RH
7220 = alloc_INSN_LIST (XEXP (u, 0),
7221 (bb_reg_last_sets[bb_succ])[reg]);
8c660648
JL
7222 }
7223 }
7224
7225 /* mem read/write lists are inherited by bb_succ */
7226 link_insn = pending_read_insns;
7227 link_mem = pending_read_mems;
7228 while (link_insn)
7229 {
7230 if (!(find_insn_mem_list (XEXP (link_insn, 0), XEXP (link_mem, 0),
7231 bb_pending_read_insns[bb_succ],
7232 bb_pending_read_mems[bb_succ])))
7233 add_insn_mem_dependence (&bb_pending_read_insns[bb_succ],
7234 &bb_pending_read_mems[bb_succ],
7235 XEXP (link_insn, 0), XEXP (link_mem, 0));
7236 link_insn = XEXP (link_insn, 1);
7237 link_mem = XEXP (link_mem, 1);
7238 }
7239
7240 link_insn = pending_write_insns;
7241 link_mem = pending_write_mems;
7242 while (link_insn)
7243 {
7244 if (!(find_insn_mem_list (XEXP (link_insn, 0), XEXP (link_mem, 0),
7245 bb_pending_write_insns[bb_succ],
7246 bb_pending_write_mems[bb_succ])))
7247 add_insn_mem_dependence (&bb_pending_write_insns[bb_succ],
7248 &bb_pending_write_mems[bb_succ],
7249 XEXP (link_insn, 0), XEXP (link_mem, 0));
7250
7251 link_insn = XEXP (link_insn, 1);
7252 link_mem = XEXP (link_mem, 1);
7253 }
7254
7255 /* last_function_call is inherited by bb_succ */
7256 for (u = last_function_call; u; u = XEXP (u, 1))
7257 {
7258 if (find_insn_list (XEXP (u, 0), bb_last_function_call[bb_succ]))
7259 continue;
7260
7261 bb_last_function_call[bb_succ]
ebb7b10b
RH
7262 = alloc_INSN_LIST (XEXP (u, 0),
7263 bb_last_function_call[bb_succ]);
8c660648
JL
7264 }
7265
7266 /* last_pending_memory_flush is inherited by bb_succ */
7267 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
7268 {
7269 if (find_insn_list (XEXP (u, 0), bb_last_pending_memory_flush[bb_succ]))
7270 continue;
7271
7272 bb_last_pending_memory_flush[bb_succ]
ebb7b10b
RH
7273 = alloc_INSN_LIST (XEXP (u, 0),
7274 bb_last_pending_memory_flush[bb_succ]);
8c660648
JL
7275 }
7276
7277 /* sched_before_next_call is inherited by bb_succ */
7278 x = LOG_LINKS (sched_before_next_call);
7279 for (; x; x = XEXP (x, 1))
7280 add_dependence (bb_sched_before_next_call[bb_succ],
7281 XEXP (x, 0), REG_DEP_ANTI);
7282
7283 e = NEXT_OUT (e);
7284 }
7285 while (e != first_edge);
7286 }
ebb7b10b 7287
7eea6443
JL
7288 /* Free up the INSN_LISTs
7289
7290 Note this loop is executed max_reg * nr_regions times. It's first
7291 implementation accounted for over 90% of the calls to free_list.
7292 The list was empty for the vast majority of those calls. On the PA,
7293 not calling free_list in those cases improves -O2 compile times by
7294 3-5% on average. */
ebb7b10b
RH
7295 for (b = 0; b < max_reg; ++b)
7296 {
7eea6443
JL
7297 if (reg_last_sets[b])
7298 free_list (&reg_last_sets[b], &unused_insn_list);
7299 if (reg_last_uses[b])
7300 free_list (&reg_last_uses[b], &unused_insn_list);
ebb7b10b
RH
7301 }
7302
7303 /* Assert that we won't need bb_reg_last_* for this block anymore. */
7304 if (current_nr_blocks > 1)
7305 {
7306 bb_reg_last_uses[bb] = (rtx *) NULL_RTX;
7307 bb_reg_last_sets[bb] = (rtx *) NULL_RTX;
7308 }
8c660648
JL
7309}
7310
7311/* Print dependences for debugging, callable from debugger */
7312
7313void
7314debug_dependencies ()
7315{
7316 int bb;
7317
7318 fprintf (dump, ";; --------------- forward dependences: ------------ \n");
7319 for (bb = 0; bb < current_nr_blocks; bb++)
7320 {
7321 if (1)
7322 {
7323 rtx head, tail;
7324 rtx next_tail;
7325 rtx insn;
7326
7327 get_block_head_tail (bb, &head, &tail);
7328 next_tail = NEXT_INSN (tail);
7329 fprintf (dump, "\n;; --- Region Dependences --- b %d bb %d \n",
7330 BB_TO_BLOCK (bb), bb);
7331
7332 fprintf (dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
7333 "insn", "code", "bb", "dep", "prio", "cost", "blockage", "units");
7334 fprintf (dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
7335 "----", "----", "--", "---", "----", "----", "--------", "-----");
7336 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
7337 {
7338 rtx link;
7339 int unit, range;
7340
7341 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7342 {
7343 int n;
7344 fprintf (dump, ";; %6d ", INSN_UID (insn));
7345 if (GET_CODE (insn) == NOTE)
ebc25a17
MM
7346 {
7347 n = NOTE_LINE_NUMBER (insn);
7348 if (n < 0)
7349 fprintf (dump, "%s\n", GET_NOTE_INSN_NAME (n));
7350 else
7351 fprintf (dump, "line %d, file %s\n", n,
7352 NOTE_SOURCE_FILE (insn));
7353 }
7354 else
4f64eaca 7355 fprintf (dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
8c660648
JL
7356 continue;
7357 }
7358
7359 unit = insn_unit (insn);
7360 range = (unit < 0
7361 || function_units[unit].blockage_range_function == 0) ? 0 :
7362 function_units[unit].blockage_range_function (insn);
7363 fprintf (dump,
7364 ";; %s%5d%6d%6d%6d%6d%6d %3d -%3d ",
7365 (SCHED_GROUP_P (insn) ? "+" : " "),
7366 INSN_UID (insn),
7367 INSN_CODE (insn),
7368 INSN_BB (insn),
7369 INSN_DEP_COUNT (insn),
7370 INSN_PRIORITY (insn),
7371 insn_cost (insn, 0, 0),
7372 (int) MIN_BLOCKAGE_COST (range),
7373 (int) MAX_BLOCKAGE_COST (range));
7374 insn_print_units (insn);
7375 fprintf (dump, "\t: ");
7376 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
7377 fprintf (dump, "%d ", INSN_UID (XEXP (link, 0)));
7378 fprintf (dump, "\n");
7379 }
7380 }
7381 }
7382 fprintf (dump, "\n");
7383}
7384
7385/* Set_priorities: compute priority of each insn in the block */
7386
7387static int
7388set_priorities (bb)
7389 int bb;
7390{
7391 rtx insn;
7392 int n_insn;
7393
7394 rtx tail;
7395 rtx prev_head;
7396 rtx head;
7397
7398 get_block_head_tail (bb, &head, &tail);
7399 prev_head = PREV_INSN (head);
7400
7401 if (head == tail
7402 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
7403 return 0;
7404
7405 n_insn = 0;
7406 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7407 {
7408
7409 if (GET_CODE (insn) == NOTE)
7410 continue;
7411
7412 if (!(SCHED_GROUP_P (insn)))
7413 n_insn++;
7414 (void) priority (insn);
7415 }
7416
7417 return n_insn;
7418}
7419
7420/* Make each element of VECTOR point at an rtx-vector,
7421 taking the space for all those rtx-vectors from SPACE.
7422 SPACE is of type (rtx *), but it is really as long as NELTS rtx-vectors.
7423 BYTES_PER_ELT is the number of bytes in one rtx-vector.
7424 (this is the same as init_regset_vector () in flow.c) */
7425
7426static void
7427init_rtx_vector (vector, space, nelts, bytes_per_elt)
7428 rtx **vector;
7429 rtx *space;
7430 int nelts;
7431 int bytes_per_elt;
7432{
7433 register int i;
7434 register rtx *p = space;
7435
7436 for (i = 0; i < nelts; i++)
7437 {
7438 vector[i] = p;
7439 p += bytes_per_elt / sizeof (*p);
7440 }
7441}
7442
7443/* Schedule a region. A region is either an inner loop, a loop-free
7444 subroutine, or a single basic block. Each bb in the region is
7445 scheduled after its flow predecessors. */
7446
7447static void
7448schedule_region (rgn)
7449 int rgn;
7450{
7451 int bb;
7452 int rgn_n_insns = 0;
7453 int sched_rgn_n_insns = 0;
7454
7455 /* set variables for the current region */
7456 current_nr_blocks = RGN_NR_BLOCKS (rgn);
7457 current_blocks = RGN_BLOCKS (rgn);
7458
7459 reg_pending_sets = ALLOCA_REG_SET ();
7460 reg_pending_sets_all = 0;
7461
7462 /* initializations for region data dependence analyisis */
7463 if (current_nr_blocks > 1)
7464 {
7465 rtx *space;
7466 int maxreg = max_reg_num ();
7467
7468 bb_reg_last_uses = (rtx **) alloca (current_nr_blocks * sizeof (rtx *));
7469 space = (rtx *) alloca (current_nr_blocks * maxreg * sizeof (rtx));
7470 bzero ((char *) space, current_nr_blocks * maxreg * sizeof (rtx));
7471 init_rtx_vector (bb_reg_last_uses, space, current_nr_blocks, maxreg * sizeof (rtx *));
7472
7473 bb_reg_last_sets = (rtx **) alloca (current_nr_blocks * sizeof (rtx *));
7474 space = (rtx *) alloca (current_nr_blocks * maxreg * sizeof (rtx));
7475 bzero ((char *) space, current_nr_blocks * maxreg * sizeof (rtx));
7476 init_rtx_vector (bb_reg_last_sets, space, current_nr_blocks, maxreg * sizeof (rtx *));
7477
7478 bb_pending_read_insns = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7479 bb_pending_read_mems = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7480 bb_pending_write_insns = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7481 bb_pending_write_mems = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7482 bb_pending_lists_length = (int *) alloca (current_nr_blocks * sizeof (int));
7483 bb_last_pending_memory_flush = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7484 bb_last_function_call = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7485 bb_sched_before_next_call = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7486
7487 init_rgn_data_dependences (current_nr_blocks);
7488 }
7489
7490 /* compute LOG_LINKS */
7491 for (bb = 0; bb < current_nr_blocks; bb++)
7492 compute_block_backward_dependences (bb);
7493
7494 /* compute INSN_DEPEND */
7495 for (bb = current_nr_blocks - 1; bb >= 0; bb--)
7496 compute_block_forward_dependences (bb);
7497
7498 /* Delete line notes, compute live-regs at block end, and set priorities. */
7499 dead_notes = 0;
7500 for (bb = 0; bb < current_nr_blocks; bb++)
7501 {
7502 if (reload_completed == 0)
7503 find_pre_sched_live (bb);
7504
7505 if (write_symbols != NO_DEBUG)
7506 {
7507 save_line_notes (bb);
7508 rm_line_notes (bb);
7509 }
7510
7511 rgn_n_insns += set_priorities (bb);
7512 }
7513
7514 /* compute interblock info: probabilities, split-edges, dominators, etc. */
7515 if (current_nr_blocks > 1)
7516 {
7517 int i;
7518
7519 prob = (float *) alloca ((current_nr_blocks) * sizeof (float));
7520
7521 bbset_size = current_nr_blocks / HOST_BITS_PER_WIDE_INT + 1;
7522 dom = (bbset *) alloca (current_nr_blocks * sizeof (bbset));
7523 for (i = 0; i < current_nr_blocks; i++)
7524 {
7525 dom[i] = (bbset) alloca (bbset_size * sizeof (HOST_WIDE_INT));
7526 bzero ((char *) dom[i], bbset_size * sizeof (HOST_WIDE_INT));
7527 }
7528
7529 /* edge to bit */
7530 rgn_nr_edges = 0;
7531 edge_to_bit = (int *) alloca (nr_edges * sizeof (int));
7532 for (i = 1; i < nr_edges; i++)
7533 if (CONTAINING_RGN (FROM_BLOCK (i)) == rgn)
7534 EDGE_TO_BIT (i) = rgn_nr_edges++;
7535 rgn_edges = (int *) alloca (rgn_nr_edges * sizeof (int));
7536
7537 rgn_nr_edges = 0;
7538 for (i = 1; i < nr_edges; i++)
7539 if (CONTAINING_RGN (FROM_BLOCK (i)) == (rgn))
7540 rgn_edges[rgn_nr_edges++] = i;
7541
7542 /* split edges */
7543 edgeset_size = rgn_nr_edges / HOST_BITS_PER_WIDE_INT + 1;
7544 pot_split = (edgeset *) alloca (current_nr_blocks * sizeof (edgeset));
7545 ancestor_edges = (edgeset *) alloca (current_nr_blocks * sizeof (edgeset));
7546 for (i = 0; i < current_nr_blocks; i++)
7547 {
7548 pot_split[i] =
7549 (edgeset) alloca (edgeset_size * sizeof (HOST_WIDE_INT));
7550 bzero ((char *) pot_split[i],
7551 edgeset_size * sizeof (HOST_WIDE_INT));
7552 ancestor_edges[i] =
7553 (edgeset) alloca (edgeset_size * sizeof (HOST_WIDE_INT));
7554 bzero ((char *) ancestor_edges[i],
7555 edgeset_size * sizeof (HOST_WIDE_INT));
7556 }
7557
7558 /* compute probabilities, dominators, split_edges */
7559 for (bb = 0; bb < current_nr_blocks; bb++)
7560 compute_dom_prob_ps (bb);
7561 }
7562
7563 /* now we can schedule all blocks */
7564 for (bb = 0; bb < current_nr_blocks; bb++)
7565 {
5835e573 7566 sched_rgn_n_insns += schedule_block (bb, rgn_n_insns);
8c660648
JL
7567
7568#ifdef USE_C_ALLOCA
7569 alloca (0);
7570#endif
7571 }
7572
cc132865
JL
7573 /* sanity check: verify that all region insns were scheduled */
7574 if (sched_rgn_n_insns != rgn_n_insns)
7575 abort ();
8c660648
JL
7576
7577 /* update register life and usage information */
7578 if (reload_completed == 0)
7579 {
7580 for (bb = current_nr_blocks - 1; bb >= 0; bb--)
7581 find_post_sched_live (bb);
7582
7583 if (current_nr_blocks <= 1)
7584 /* Sanity check. There should be no REG_DEAD notes leftover at the end.
7585 In practice, this can occur as the result of bugs in flow, combine.c,
7586 and/or sched.c. The values of the REG_DEAD notes remaining are
7587 meaningless, because dead_notes is just used as a free list. */
7588 if (dead_notes != 0)
7589 abort ();
7590 }
7591
7592 /* restore line notes. */
7593 if (write_symbols != NO_DEBUG)
7594 {
7595 for (bb = 0; bb < current_nr_blocks; bb++)
7596 restore_line_notes (bb);
7597 }
7598
7599 /* Done with this region */
7600 free_pending_lists ();
f187056f
JL
7601
7602 FREE_REG_SET (reg_pending_sets);
8c660648
JL
7603}
7604
7605/* Subroutine of split_hard_reg_notes. Searches X for any reference to
7606 REGNO, returning the rtx of the reference found if any. Otherwise,
7607 returns 0. */
7608
7609static rtx
7610regno_use_in (regno, x)
7611 int regno;
7612 rtx x;
7613{
7614 register char *fmt;
7615 int i, j;
7616 rtx tem;
7617
7618 if (GET_CODE (x) == REG && REGNO (x) == regno)
7619 return x;
7620
7621 fmt = GET_RTX_FORMAT (GET_CODE (x));
7622 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
7623 {
7624 if (fmt[i] == 'e')
7625 {
7626 if ((tem = regno_use_in (regno, XEXP (x, i))))
7627 return tem;
7628 }
7629 else if (fmt[i] == 'E')
7630 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7631 if ((tem = regno_use_in (regno, XVECEXP (x, i, j))))
7632 return tem;
7633 }
7634
7635 return 0;
7636}
7637
7638/* Subroutine of update_flow_info. Determines whether any new REG_NOTEs are
7639 needed for the hard register mentioned in the note. This can happen
7640 if the reference to the hard register in the original insn was split into
7641 several smaller hard register references in the split insns. */
7642
7643static void
5835e573
KG
7644split_hard_reg_notes (note, first, last)
7645 rtx note, first, last;
8c660648
JL
7646{
7647 rtx reg, temp, link;
7648 int n_regs, i, new_reg;
7649 rtx insn;
7650
7651 /* Assume that this is a REG_DEAD note. */
7652 if (REG_NOTE_KIND (note) != REG_DEAD)
7653 abort ();
7654
7655 reg = XEXP (note, 0);
7656
7657 n_regs = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
7658
7659 for (i = 0; i < n_regs; i++)
7660 {
7661 new_reg = REGNO (reg) + i;
7662
7663 /* Check for references to new_reg in the split insns. */
7664 for (insn = last;; insn = PREV_INSN (insn))
7665 {
7666 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7667 && (temp = regno_use_in (new_reg, PATTERN (insn))))
7668 {
7669 /* Create a new reg dead note ere. */
ebb7b10b 7670 link = alloc_EXPR_LIST (REG_DEAD, temp, REG_NOTES (insn));
8c660648
JL
7671 REG_NOTES (insn) = link;
7672
7673 /* If killed multiple registers here, then add in the excess. */
7674 i += HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)) - 1;
7675
7676 break;
7677 }
7678 /* It isn't mentioned anywhere, so no new reg note is needed for
7679 this register. */
7680 if (insn == first)
7681 break;
7682 }
7683 }
7684}
7685
7686/* Subroutine of update_flow_info. Determines whether a SET or CLOBBER in an
7687 insn created by splitting needs a REG_DEAD or REG_UNUSED note added. */
7688
7689static void
7690new_insn_dead_notes (pat, insn, last, orig_insn)
7691 rtx pat, insn, last, orig_insn;
7692{
7693 rtx dest, tem, set;
7694
7695 /* PAT is either a CLOBBER or a SET here. */
7696 dest = XEXP (pat, 0);
7697
7698 while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
7699 || GET_CODE (dest) == STRICT_LOW_PART
7700 || GET_CODE (dest) == SIGN_EXTRACT)
7701 dest = XEXP (dest, 0);
7702
7703 if (GET_CODE (dest) == REG)
7704 {
93da030f
R
7705 /* If the original insn already used this register, we may not add new
7706 notes for it. One example for a split that needs this test is
7707 when a multi-word memory access with register-indirect addressing
7708 is split into multiple memory accesses with auto-increment and
7709 one adjusting add instruction for the address register. */
7710 if (reg_referenced_p (dest, PATTERN (orig_insn)))
7711 return;
8c660648
JL
7712 for (tem = last; tem != insn; tem = PREV_INSN (tem))
7713 {
7714 if (GET_RTX_CLASS (GET_CODE (tem)) == 'i'
7715 && reg_overlap_mentioned_p (dest, PATTERN (tem))
7716 && (set = single_set (tem)))
7717 {
7718 rtx tem_dest = SET_DEST (set);
7719
7720 while (GET_CODE (tem_dest) == ZERO_EXTRACT
7721 || GET_CODE (tem_dest) == SUBREG
7722 || GET_CODE (tem_dest) == STRICT_LOW_PART
7723 || GET_CODE (tem_dest) == SIGN_EXTRACT)
7724 tem_dest = XEXP (tem_dest, 0);
7725
7726 if (!rtx_equal_p (tem_dest, dest))
7727 {
7728 /* Use the same scheme as combine.c, don't put both REG_DEAD
7729 and REG_UNUSED notes on the same insn. */
7730 if (!find_regno_note (tem, REG_UNUSED, REGNO (dest))
7731 && !find_regno_note (tem, REG_DEAD, REGNO (dest)))
7732 {
ebb7b10b
RH
7733 rtx note = alloc_EXPR_LIST (REG_DEAD, dest,
7734 REG_NOTES (tem));
8c660648
JL
7735 REG_NOTES (tem) = note;
7736 }
7737 /* The reg only dies in one insn, the last one that uses
7738 it. */
7739 break;
7740 }
7741 else if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
7742 /* We found an instruction that both uses the register,
7743 and sets it, so no new REG_NOTE is needed for this set. */
7744 break;
7745 }
7746 }
7747 /* If this is a set, it must die somewhere, unless it is the dest of
7748 the original insn, and hence is live after the original insn. Abort
7749 if it isn't supposed to be live after the original insn.
7750
7751 If this is a clobber, then just add a REG_UNUSED note. */
7752 if (tem == insn)
7753 {
7754 int live_after_orig_insn = 0;
7755 rtx pattern = PATTERN (orig_insn);
7756 int i;
7757
7758 if (GET_CODE (pat) == CLOBBER)
7759 {
ebb7b10b 7760 rtx note = alloc_EXPR_LIST (REG_UNUSED, dest, REG_NOTES (insn));
8c660648
JL
7761 REG_NOTES (insn) = note;
7762 return;
7763 }
7764
7765 /* The original insn could have multiple sets, so search the
7766 insn for all sets. */
7767 if (GET_CODE (pattern) == SET)
7768 {
7769 if (reg_overlap_mentioned_p (dest, SET_DEST (pattern)))
7770 live_after_orig_insn = 1;
7771 }
7772 else if (GET_CODE (pattern) == PARALLEL)
7773 {
7774 for (i = 0; i < XVECLEN (pattern, 0); i++)
7775 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET
7776 && reg_overlap_mentioned_p (dest,
7777 SET_DEST (XVECEXP (pattern,
7778 0, i))))
7779 live_after_orig_insn = 1;
7780 }
7781
7782 if (!live_after_orig_insn)
7783 abort ();
7784 }
7785 }
7786}
7787
7788/* Subroutine of update_flow_info. Update the value of reg_n_sets for all
7789 registers modified by X. INC is -1 if the containing insn is being deleted,
7790 and is 1 if the containing insn is a newly generated insn. */
7791
7792static void
7793update_n_sets (x, inc)
7794 rtx x;
7795 int inc;
7796{
7797 rtx dest = SET_DEST (x);
7798
7799 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
7800 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
7801 dest = SUBREG_REG (dest);
7802
7803 if (GET_CODE (dest) == REG)
7804 {
7805 int regno = REGNO (dest);
7806
7807 if (regno < FIRST_PSEUDO_REGISTER)
7808 {
7809 register int i;
7810 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (dest));
7811
7812 for (i = regno; i < endregno; i++)
7813 REG_N_SETS (i) += inc;
7814 }
7815 else
7816 REG_N_SETS (regno) += inc;
7817 }
7818}
7819
7820/* Updates all flow-analysis related quantities (including REG_NOTES) for
7821 the insns from FIRST to LAST inclusive that were created by splitting
7822 ORIG_INSN. NOTES are the original REG_NOTES. */
7823
7824static void
7825update_flow_info (notes, first, last, orig_insn)
7826 rtx notes;
7827 rtx first, last;
7828 rtx orig_insn;
7829{
7830 rtx insn, note;
7831 rtx next;
7832 rtx orig_dest, temp;
7833 rtx set;
7834
7835 /* Get and save the destination set by the original insn. */
7836
7837 orig_dest = single_set (orig_insn);
7838 if (orig_dest)
7839 orig_dest = SET_DEST (orig_dest);
7840
7841 /* Move REG_NOTES from the original insn to where they now belong. */
7842
7843 for (note = notes; note; note = next)
7844 {
7845 next = XEXP (note, 1);
7846 switch (REG_NOTE_KIND (note))
7847 {
7848 case REG_DEAD:
7849 case REG_UNUSED:
7850 /* Move these notes from the original insn to the last new insn where
7851 the register is now set. */
7852
7853 for (insn = last;; insn = PREV_INSN (insn))
7854 {
7855 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7856 && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
7857 {
7858 /* If this note refers to a multiple word hard register, it
7859 may have been split into several smaller hard register
7860 references, so handle it specially. */
7861 temp = XEXP (note, 0);
7862 if (REG_NOTE_KIND (note) == REG_DEAD
7863 && GET_CODE (temp) == REG
7864 && REGNO (temp) < FIRST_PSEUDO_REGISTER
7865 && HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)) > 1)
5835e573 7866 split_hard_reg_notes (note, first, last);
8c660648
JL
7867 else
7868 {
7869 XEXP (note, 1) = REG_NOTES (insn);
7870 REG_NOTES (insn) = note;
7871 }
7872
7873 /* Sometimes need to convert REG_UNUSED notes to REG_DEAD
7874 notes. */
7875 /* ??? This won't handle multiple word registers correctly,
7876 but should be good enough for now. */
7877 if (REG_NOTE_KIND (note) == REG_UNUSED
272299b9 7878 && GET_CODE (XEXP (note, 0)) != SCRATCH
8c660648
JL
7879 && !dead_or_set_p (insn, XEXP (note, 0)))
7880 PUT_REG_NOTE_KIND (note, REG_DEAD);
7881
7882 /* The reg only dies in one insn, the last one that uses
7883 it. */
7884 break;
7885 }
7886 /* It must die somewhere, fail it we couldn't find where it died.
7887
7888 If this is a REG_UNUSED note, then it must be a temporary
7889 register that was not needed by this instantiation of the
7890 pattern, so we can safely ignore it. */
7891 if (insn == first)
7892 {
7893 /* After reload, REG_DEAD notes come sometimes an
7894 instruction after the register actually dies. */
7895 if (reload_completed && REG_NOTE_KIND (note) == REG_DEAD)
7896 {
7897 XEXP (note, 1) = REG_NOTES (insn);
7898 REG_NOTES (insn) = note;
7899 break;
7900 }
7901
7902 if (REG_NOTE_KIND (note) != REG_UNUSED)
7903 abort ();
7904
7905 break;
7906 }
7907 }
7908 break;
7909
7910 case REG_WAS_0:
fcdc0d6e
R
7911 /* If the insn that set the register to 0 was deleted, this
7912 note cannot be relied on any longer. The destination might
7913 even have been moved to memory.
7914 This was observed for SH4 with execute/920501-6.c compilation,
7915 -O2 -fomit-frame-pointer -finline-functions . */
7916 if (GET_CODE (XEXP (note, 0)) == NOTE
7917 || INSN_DELETED_P (XEXP (note, 0)))
7918 break;
8c660648
JL
7919 /* This note applies to the dest of the original insn. Find the
7920 first new insn that now has the same dest, and move the note
7921 there. */
7922
7923 if (!orig_dest)
7924 abort ();
7925
7926 for (insn = first;; insn = NEXT_INSN (insn))
7927 {
7928 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7929 && (temp = single_set (insn))
7930 && rtx_equal_p (SET_DEST (temp), orig_dest))
7931 {
7932 XEXP (note, 1) = REG_NOTES (insn);
7933 REG_NOTES (insn) = note;
7934 /* The reg is only zero before one insn, the first that
7935 uses it. */
7936 break;
7937 }
7938 /* If this note refers to a multiple word hard
7939 register, it may have been split into several smaller
7940 hard register references. We could split the notes,
7941 but simply dropping them is good enough. */
7942 if (GET_CODE (orig_dest) == REG
7943 && REGNO (orig_dest) < FIRST_PSEUDO_REGISTER
7944 && HARD_REGNO_NREGS (REGNO (orig_dest),
7945 GET_MODE (orig_dest)) > 1)
7946 break;
7947 /* It must be set somewhere, fail if we couldn't find where it
7948 was set. */
7949 if (insn == last)
7950 abort ();
7951 }
7952 break;
7953
7954 case REG_EQUAL:
7955 case REG_EQUIV:
7956 /* A REG_EQUIV or REG_EQUAL note on an insn with more than one
7957 set is meaningless. Just drop the note. */
7958 if (!orig_dest)
7959 break;
7960
7961 case REG_NO_CONFLICT:
7962 /* These notes apply to the dest of the original insn. Find the last
7963 new insn that now has the same dest, and move the note there. */
7964
7965 if (!orig_dest)
7966 abort ();
7967
7968 for (insn = last;; insn = PREV_INSN (insn))
7969 {
7970 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7971 && (temp = single_set (insn))
7972 && rtx_equal_p (SET_DEST (temp), orig_dest))
7973 {
7974 XEXP (note, 1) = REG_NOTES (insn);
7975 REG_NOTES (insn) = note;
7976 /* Only put this note on one of the new insns. */
7977 break;
7978 }
7979
7980 /* The original dest must still be set someplace. Abort if we
7981 couldn't find it. */
7982 if (insn == first)
7983 {
7984 /* However, if this note refers to a multiple word hard
7985 register, it may have been split into several smaller
7986 hard register references. We could split the notes,
7987 but simply dropping them is good enough. */
7988 if (GET_CODE (orig_dest) == REG
7989 && REGNO (orig_dest) < FIRST_PSEUDO_REGISTER
7990 && HARD_REGNO_NREGS (REGNO (orig_dest),
7991 GET_MODE (orig_dest)) > 1)
7992 break;
7993 /* Likewise for multi-word memory references. */
7994 if (GET_CODE (orig_dest) == MEM
9ae4ec46 7995 && SIZE_FOR_MODE (orig_dest) > UNITS_PER_WORD)
8c660648
JL
7996 break;
7997 abort ();
7998 }
7999 }
8000 break;
8001
8002 case REG_LIBCALL:
8003 /* Move a REG_LIBCALL note to the first insn created, and update
8004 the corresponding REG_RETVAL note. */
8005 XEXP (note, 1) = REG_NOTES (first);
8006 REG_NOTES (first) = note;
8007
8008 insn = XEXP (note, 0);
8009 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
8010 if (note)
8011 XEXP (note, 0) = first;
8012 break;
8013
8014 case REG_EXEC_COUNT:
8015 /* Move a REG_EXEC_COUNT note to the first insn created. */
8016 XEXP (note, 1) = REG_NOTES (first);
8017 REG_NOTES (first) = note;
8018 break;
8019
8020 case REG_RETVAL:
8021 /* Move a REG_RETVAL note to the last insn created, and update
8022 the corresponding REG_LIBCALL note. */
8023 XEXP (note, 1) = REG_NOTES (last);
8024 REG_NOTES (last) = note;
8025
8026 insn = XEXP (note, 0);
8027 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
8028 if (note)
8029 XEXP (note, 0) = last;
8030 break;
8031
8032 case REG_NONNEG:
8033 case REG_BR_PROB:
8034 /* This should be moved to whichever instruction is a JUMP_INSN. */
8035
8036 for (insn = last;; insn = PREV_INSN (insn))
8037 {
8038 if (GET_CODE (insn) == JUMP_INSN)
8039 {
8040 XEXP (note, 1) = REG_NOTES (insn);
8041 REG_NOTES (insn) = note;
8042 /* Only put this note on one of the new insns. */
8043 break;
8044 }
8045 /* Fail if we couldn't find a JUMP_INSN. */
8046 if (insn == first)
8047 abort ();
8048 }
8049 break;
8050
8051 case REG_INC:
8052 /* reload sometimes leaves obsolete REG_INC notes around. */
8053 if (reload_completed)
8054 break;
8055 /* This should be moved to whichever instruction now has the
8056 increment operation. */
8057 abort ();
8058
8059 case REG_LABEL:
8060 /* Should be moved to the new insn(s) which use the label. */
8061 for (insn = first; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
8062 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8063 && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
ebb7b10b
RH
8064 {
8065 REG_NOTES (insn) = alloc_EXPR_LIST (REG_LABEL,
38a448ca
RH
8066 XEXP (note, 0),
8067 REG_NOTES (insn));
ebb7b10b 8068 }
8c660648
JL
8069 break;
8070
8071 case REG_CC_SETTER:
8072 case REG_CC_USER:
8073 /* These two notes will never appear until after reorg, so we don't
8074 have to handle them here. */
8075 default:
8076 abort ();
8077 }
8078 }
8079
8080 /* Each new insn created, except the last, has a new set. If the destination
8081 is a register, then this reg is now live across several insns, whereas
8082 previously the dest reg was born and died within the same insn. To
8083 reflect this, we now need a REG_DEAD note on the insn where this
8084 dest reg dies.
8085
8086 Similarly, the new insns may have clobbers that need REG_UNUSED notes. */
8087
8088 for (insn = first; insn != last; insn = NEXT_INSN (insn))
8089 {
8090 rtx pat;
8091 int i;
8092
8093 pat = PATTERN (insn);
8094 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
8095 new_insn_dead_notes (pat, insn, last, orig_insn);
8096 else if (GET_CODE (pat) == PARALLEL)
8097 {
8098 for (i = 0; i < XVECLEN (pat, 0); i++)
8099 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
8100 || GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER)
8101 new_insn_dead_notes (XVECEXP (pat, 0, i), insn, last, orig_insn);
8102 }
8103 }
8104
8105 /* If any insn, except the last, uses the register set by the last insn,
8106 then we need a new REG_DEAD note on that insn. In this case, there
8107 would not have been a REG_DEAD note for this register in the original
8108 insn because it was used and set within one insn. */
8109
8110 set = single_set (last);
8111 if (set)
8112 {
8113 rtx dest = SET_DEST (set);
8114
8115 while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
8116 || GET_CODE (dest) == STRICT_LOW_PART
8117 || GET_CODE (dest) == SIGN_EXTRACT)
8118 dest = XEXP (dest, 0);
8119
8120 if (GET_CODE (dest) == REG
8121 /* Global registers are always live, so the code below does not
8122 apply to them. */
8123 && (REGNO (dest) >= FIRST_PSEUDO_REGISTER
8124 || ! global_regs[REGNO (dest)]))
8125 {
8126 rtx stop_insn = PREV_INSN (first);
8127
8128 /* If the last insn uses the register that it is setting, then
8129 we don't want to put a REG_DEAD note there. Search backwards
8130 to find the first insn that sets but does not use DEST. */
8131
8132 insn = last;
8133 if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
8134 {
8135 for (insn = PREV_INSN (insn); insn != first;
8136 insn = PREV_INSN (insn))
8137 {
8138 if ((set = single_set (insn))
8139 && reg_mentioned_p (dest, SET_DEST (set))
8140 && ! reg_overlap_mentioned_p (dest, SET_SRC (set)))
8141 break;
8142 }
8143 }
8144
8145 /* Now find the first insn that uses but does not set DEST. */
8146
8147 for (insn = PREV_INSN (insn); insn != stop_insn;
8148 insn = PREV_INSN (insn))
8149 {
8150 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8151 && reg_mentioned_p (dest, PATTERN (insn))
8152 && (set = single_set (insn)))
8153 {
8154 rtx insn_dest = SET_DEST (set);
8155
8156 while (GET_CODE (insn_dest) == ZERO_EXTRACT
8157 || GET_CODE (insn_dest) == SUBREG
8158 || GET_CODE (insn_dest) == STRICT_LOW_PART
8159 || GET_CODE (insn_dest) == SIGN_EXTRACT)
8160 insn_dest = XEXP (insn_dest, 0);
8161
8162 if (insn_dest != dest)
8163 {
ebb7b10b 8164 note = alloc_EXPR_LIST (REG_DEAD, dest, REG_NOTES (insn));
8c660648
JL
8165 REG_NOTES (insn) = note;
8166 /* The reg only dies in one insn, the last one
8167 that uses it. */
8168 break;
8169 }
8170 }
8171 }
8172 }
8173 }
8174
8175 /* If the original dest is modifying a multiple register target, and the
8176 original instruction was split such that the original dest is now set
8177 by two or more SUBREG sets, then the split insns no longer kill the
8178 destination of the original insn.
8179
8180 In this case, if there exists an instruction in the same basic block,
8181 before the split insn, which uses the original dest, and this use is
8182 killed by the original insn, then we must remove the REG_DEAD note on
8183 this insn, because it is now superfluous.
8184
8185 This does not apply when a hard register gets split, because the code
8186 knows how to handle overlapping hard registers properly. */
8187 if (orig_dest && GET_CODE (orig_dest) == REG)
8188 {
8189 int found_orig_dest = 0;
8190 int found_split_dest = 0;
8191
8192 for (insn = first;; insn = NEXT_INSN (insn))
8193 {
acceac1a
R
8194 rtx pat;
8195 int i;
8196
8197 /* I'm not sure if this can happen, but let's be safe. */
8198 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
8199 continue;
8200
8201 pat = PATTERN (insn);
8202 i = GET_CODE (pat) == PARALLEL ? XVECLEN (pat, 0) : 0;
8203 set = pat;
8204
8205 for (;;)
8c660648 8206 {
acceac1a 8207 if (GET_CODE (set) == SET)
8c660648 8208 {
acceac1a
R
8209 if (GET_CODE (SET_DEST (set)) == REG
8210 && REGNO (SET_DEST (set)) == REGNO (orig_dest))
8211 {
8212 found_orig_dest = 1;
8213 break;
8214 }
8215 else if (GET_CODE (SET_DEST (set)) == SUBREG
8216 && SUBREG_REG (SET_DEST (set)) == orig_dest)
8217 {
8218 found_split_dest = 1;
8219 break;
8220 }
8c660648 8221 }
acceac1a
R
8222 if (--i < 0)
8223 break;
8224 set = XVECEXP (pat, 0, i);
8c660648
JL
8225 }
8226
8227 if (insn == last)
8228 break;
8229 }
8230
8231 if (found_split_dest)
8232 {
8233 /* Search backwards from FIRST, looking for the first insn that uses
8234 the original dest. Stop if we pass a CODE_LABEL or a JUMP_INSN.
8235 If we find an insn, and it has a REG_DEAD note, then delete the
8236 note. */
8237
8238 for (insn = first; insn; insn = PREV_INSN (insn))
8239 {
8240 if (GET_CODE (insn) == CODE_LABEL
8241 || GET_CODE (insn) == JUMP_INSN)
8242 break;
8243 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8244 && reg_mentioned_p (orig_dest, insn))
8245 {
8246 note = find_regno_note (insn, REG_DEAD, REGNO (orig_dest));
8247 if (note)
8248 remove_note (insn, note);
8249 }
8250 }
8251 }
8252 else if (!found_orig_dest)
8253 {
8254 /* This should never happen. */
8255 abort ();
8256 }
8257 }
8258
8259 /* Update reg_n_sets. This is necessary to prevent local alloc from
8260 converting REG_EQUAL notes to REG_EQUIV when splitting has modified
8261 a reg from set once to set multiple times. */
8262
8263 {
8264 rtx x = PATTERN (orig_insn);
8265 RTX_CODE code = GET_CODE (x);
8266
8267 if (code == SET || code == CLOBBER)
8268 update_n_sets (x, -1);
8269 else if (code == PARALLEL)
8270 {
8271 int i;
8272 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
8273 {
8274 code = GET_CODE (XVECEXP (x, 0, i));
8275 if (code == SET || code == CLOBBER)
8276 update_n_sets (XVECEXP (x, 0, i), -1);
8277 }
8278 }
8279
8280 for (insn = first;; insn = NEXT_INSN (insn))
8281 {
8282 x = PATTERN (insn);
8283 code = GET_CODE (x);
8284
8285 if (code == SET || code == CLOBBER)
8286 update_n_sets (x, 1);
8287 else if (code == PARALLEL)
8288 {
8289 int i;
8290 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
8291 {
8292 code = GET_CODE (XVECEXP (x, 0, i));
8293 if (code == SET || code == CLOBBER)
8294 update_n_sets (XVECEXP (x, 0, i), 1);
8295 }
8296 }
8297
8298 if (insn == last)
8299 break;
8300 }
8301 }
8302}
8303
8304/* Do the splitting of insns in the block b. */
8305
8306static void
8307split_block_insns (b)
8308 int b;
8309{
8310 rtx insn, next;
8311
8312 for (insn = basic_block_head[b];; insn = next)
8313 {
4ed43ff8 8314 rtx set, last, first, notes;
8c660648
JL
8315
8316 /* Can't use `next_real_insn' because that
8317 might go across CODE_LABELS and short-out basic blocks. */
8318 next = NEXT_INSN (insn);
8319 if (GET_CODE (insn) != INSN)
8320 {
8321 if (insn == basic_block_end[b])
8322 break;
8323
8324 continue;
8325 }
8326
8327 /* Don't split no-op move insns. These should silently disappear
8328 later in final. Splitting such insns would break the code
8329 that handles REG_NO_CONFLICT blocks. */
8330 set = single_set (insn);
8331 if (set && rtx_equal_p (SET_SRC (set), SET_DEST (set)))
8332 {
8333 if (insn == basic_block_end[b])
8334 break;
8335
8336 /* Nops get in the way while scheduling, so delete them now if
8337 register allocation has already been done. It is too risky
8338 to try to do this before register allocation, and there are
8339 unlikely to be very many nops then anyways. */
8340 if (reload_completed)
8341 {
8342 PUT_CODE (insn, NOTE);
8343 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8344 NOTE_SOURCE_FILE (insn) = 0;
8345 }
8346
8347 continue;
8348 }
8349
8350 /* Split insns here to get max fine-grain parallelism. */
4ed43ff8
RH
8351 first = PREV_INSN (insn);
8352 notes = REG_NOTES (insn);
8353 last = try_split (PATTERN (insn), insn, 1);
8354 if (last != insn)
8c660648 8355 {
4ed43ff8
RH
8356 /* try_split returns the NOTE that INSN became. */
8357 first = NEXT_INSN (first);
8358 update_flow_info (notes, first, last, insn);
8359
8360 PUT_CODE (insn, NOTE);
8361 NOTE_SOURCE_FILE (insn) = 0;
8362 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8363 if (insn == basic_block_head[b])
8364 basic_block_head[b] = first;
8365 if (insn == basic_block_end[b])
8c660648 8366 {
4ed43ff8
RH
8367 basic_block_end[b] = last;
8368 break;
8c660648
JL
8369 }
8370 }
8371
8372 if (insn == basic_block_end[b])
8373 break;
8374 }
8375}
8376
8377/* The one entry point in this file. DUMP_FILE is the dump file for
8378 this pass. */
8379
8380void
8381schedule_insns (dump_file)
8382 FILE *dump_file;
8383{
8384
8385 int max_uid;
8386 int b;
8c660648
JL
8387 rtx insn;
8388 int rgn;
8389
8390 int luid;
8391
8392 /* disable speculative loads in their presence if cc0 defined */
8393#ifdef HAVE_cc0
8394 flag_schedule_speculative_load = 0;
8395#endif
8396
8397 /* Taking care of this degenerate case makes the rest of
8398 this code simpler. */
8399 if (n_basic_blocks == 0)
8400 return;
8401
8402 /* set dump and sched_verbose for the desired debugging output. If no
8403 dump-file was specified, but -fsched-verbose-N (any N), print to stderr.
8404 For -fsched-verbose-N, N>=10, print everything to stderr. */
8405 sched_verbose = sched_verbose_param;
8406 if (sched_verbose_param == 0 && dump_file)
8407 sched_verbose = 1;
8408 dump = ((sched_verbose_param >= 10 || !dump_file) ? stderr : dump_file);
8409
8410 nr_inter = 0;
8411 nr_spec = 0;
8412
8413 /* Initialize the unused_*_lists. We can't use the ones left over from
8414 the previous function, because gcc has freed that memory. We can use
8415 the ones left over from the first sched pass in the second pass however,
8416 so only clear them on the first sched pass. The first pass is before
8417 reload if flag_schedule_insns is set, otherwise it is afterwards. */
8418
8419 if (reload_completed == 0 || !flag_schedule_insns)
8420 {
8421 unused_insn_list = 0;
8422 unused_expr_list = 0;
8423 }
8424
8425 /* initialize issue_rate */
62d65906 8426 issue_rate = ISSUE_RATE;
8c660648
JL
8427
8428 /* do the splitting first for all blocks */
8429 for (b = 0; b < n_basic_blocks; b++)
8430 split_block_insns (b);
8431
8432 max_uid = (get_max_uid () + 1);
8433
7c74b010 8434 cant_move = (char *) xmalloc (max_uid * sizeof (char));
8c660648
JL
8435 bzero ((char *) cant_move, max_uid * sizeof (char));
8436
7c74b010 8437 fed_by_spec_load = (char *) xmalloc (max_uid * sizeof (char));
8c660648
JL
8438 bzero ((char *) fed_by_spec_load, max_uid * sizeof (char));
8439
7c74b010 8440 is_load_insn = (char *) xmalloc (max_uid * sizeof (char));
8c660648
JL
8441 bzero ((char *) is_load_insn, max_uid * sizeof (char));
8442
7c74b010
JW
8443 insn_orig_block = (int *) xmalloc (max_uid * sizeof (int));
8444 insn_luid = (int *) xmalloc (max_uid * sizeof (int));
8c660648
JL
8445
8446 luid = 0;
8447 for (b = 0; b < n_basic_blocks; b++)
8448 for (insn = basic_block_head[b];; insn = NEXT_INSN (insn))
8449 {
8450 INSN_BLOCK (insn) = b;
8451 INSN_LUID (insn) = luid++;
8452
8453 if (insn == basic_block_end[b])
8454 break;
8455 }
8456
8457 /* after reload, remove inter-blocks dependences computed before reload. */
8458 if (reload_completed)
8459 {
8460 int b;
8461 rtx insn;
8462
8463 for (b = 0; b < n_basic_blocks; b++)
8464 for (insn = basic_block_head[b];; insn = NEXT_INSN (insn))
8465 {
c995fea1 8466 rtx link, prev;
8c660648
JL
8467
8468 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
8469 {
c995fea1
RH
8470 prev = NULL_RTX;
8471 link = LOG_LINKS (insn);
8472 while (link)
8c660648
JL
8473 {
8474 rtx x = XEXP (link, 0);
8475
8476 if (INSN_BLOCK (x) != b)
c995fea1
RH
8477 {
8478 remove_dependence (insn, x);
8479 link = prev ? XEXP (prev, 1) : LOG_LINKS (insn);
8480 }
8481 else
8482 prev = link, link = XEXP (prev, 1);
8c660648
JL
8483 }
8484 }
8485
8486 if (insn == basic_block_end[b])
8487 break;
8488 }
8489 }
8490
8491 nr_regions = 0;
8492 rgn_table = (region *) alloca ((n_basic_blocks) * sizeof (region));
8493 rgn_bb_table = (int *) alloca ((n_basic_blocks) * sizeof (int));
8494 block_to_bb = (int *) alloca ((n_basic_blocks) * sizeof (int));
8495 containing_rgn = (int *) alloca ((n_basic_blocks) * sizeof (int));
8496
8497 /* compute regions for scheduling */
8498 if (reload_completed
8499 || n_basic_blocks == 1
8500 || !flag_schedule_interblock)
8501 {
8502 find_single_block_region ();
8503 }
8504 else
8505 {
8c660648 8506 /* verify that a 'good' control flow graph can be built */
168cbdf9 8507 if (is_cfg_nonregular ())
8c660648
JL
8508 {
8509 find_single_block_region ();
8510 }
8511 else
8512 {
a2e68776
JL
8513 int_list_ptr *s_preds, *s_succs;
8514 int *num_preds, *num_succs;
8515 sbitmap *dom, *pdom;
8516
8517 s_preds = (int_list_ptr *) alloca (n_basic_blocks
8518 * sizeof (int_list_ptr));
8519 s_succs = (int_list_ptr *) alloca (n_basic_blocks
8520 * sizeof (int_list_ptr));
8521 num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
8522 num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
8523 dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
8524 pdom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
8525
8526 /* The scheduler runs after flow; therefore, we can't blindly call
8527 back into find_basic_blocks since doing so could invalidate the
8528 info in basic_block_live_at_start.
8529
8530 Consider a block consisting entirely of dead stores; after life
8531 analysis it would be a block of NOTE_INSN_DELETED notes. If
8532 we call find_basic_blocks again, then the block would be removed
8533 entirely and invalidate our the register live information.
8534
8535 We could (should?) recompute register live information. Doing
8536 so may even be beneficial. */
8537
5d27de7d 8538 compute_preds_succs (s_preds, s_succs, num_preds, num_succs);
a2e68776
JL
8539
8540 /* Compute the dominators and post dominators. We don't currently use
8541 post dominators, but we should for speculative motion analysis. */
8542 compute_dominators (dom, pdom, s_preds, s_succs);
8543
168cbdf9
JL
8544 /* build_control_flow will return nonzero if it detects unreachable
8545 blocks or any other irregularity with the cfg which prevents
8546 cross block scheduling. */
a2e68776 8547 if (build_control_flow (s_preds, s_succs, num_preds, num_succs) != 0)
168cbdf9
JL
8548 find_single_block_region ();
8549 else
a2e68776 8550 find_rgns (s_preds, s_succs, num_preds, num_succs, dom);
8c660648
JL
8551
8552 if (sched_verbose >= 3)
a2e68776 8553 debug_regions ();
8c660648 8554
a2e68776
JL
8555 /* For now. This will move as more and more of haifa is converted
8556 to using the cfg code in flow.c */
8557 free_bb_mem ();
8558 free (dom);
8559 free (pdom);
8c660648
JL
8560 }
8561 }
8562
8563 /* Allocate data for this pass. See comments, above,
7c74b010
JW
8564 for what these vectors do.
8565
8566 We use xmalloc instead of alloca, because max_uid can be very large
8567 when there is a lot of function inlining. If we used alloca, we could
8568 exceed stack limits on some hosts for some inputs. */
8569 insn_priority = (int *) xmalloc (max_uid * sizeof (int));
8570 insn_reg_weight = (int *) xmalloc (max_uid * sizeof (int));
8571 insn_tick = (int *) xmalloc (max_uid * sizeof (int));
8572 insn_costs = (short *) xmalloc (max_uid * sizeof (short));
8573 insn_units = (short *) xmalloc (max_uid * sizeof (short));
8574 insn_blockage = (unsigned int *) xmalloc (max_uid * sizeof (unsigned int));
8575 insn_ref_count = (int *) xmalloc (max_uid * sizeof (int));
8c660648
JL
8576
8577 /* Allocate for forward dependencies */
7c74b010
JW
8578 insn_dep_count = (int *) xmalloc (max_uid * sizeof (int));
8579 insn_depend = (rtx *) xmalloc (max_uid * sizeof (rtx));
8c660648
JL
8580
8581 if (reload_completed == 0)
8582 {
8583 int i;
8584
8585 sched_reg_n_calls_crossed = (int *) alloca (max_regno * sizeof (int));
8586 sched_reg_live_length = (int *) alloca (max_regno * sizeof (int));
8587 sched_reg_basic_block = (int *) alloca (max_regno * sizeof (int));
8588 bb_live_regs = ALLOCA_REG_SET ();
8589 bzero ((char *) sched_reg_n_calls_crossed, max_regno * sizeof (int));
8590 bzero ((char *) sched_reg_live_length, max_regno * sizeof (int));
8591
8592 for (i = 0; i < max_regno; i++)
8593 sched_reg_basic_block[i] = REG_BLOCK_UNKNOWN;
8594 }
8595 else
8596 {
8597 sched_reg_n_calls_crossed = 0;
8598 sched_reg_live_length = 0;
8599 bb_live_regs = 0;
8600 }
8601 init_alias_analysis ();
8602
8603 if (write_symbols != NO_DEBUG)
8604 {
8605 rtx line;
8606
7c74b010 8607 line_note = (rtx *) xmalloc (max_uid * sizeof (rtx));
8c660648
JL
8608 bzero ((char *) line_note, max_uid * sizeof (rtx));
8609 line_note_head = (rtx *) alloca (n_basic_blocks * sizeof (rtx));
8610 bzero ((char *) line_note_head, n_basic_blocks * sizeof (rtx));
8611
8612 /* Save-line-note-head:
8613 Determine the line-number at the start of each basic block.
8614 This must be computed and saved now, because after a basic block's
8615 predecessor has been scheduled, it is impossible to accurately
8616 determine the correct line number for the first insn of the block. */
8617
8618 for (b = 0; b < n_basic_blocks; b++)
8619 for (line = basic_block_head[b]; line; line = PREV_INSN (line))
8620 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
8621 {
8622 line_note_head[b] = line;
8623 break;
8624 }
8625 }
8626
8627 bzero ((char *) insn_priority, max_uid * sizeof (int));
8628 bzero ((char *) insn_reg_weight, max_uid * sizeof (int));
8629 bzero ((char *) insn_tick, max_uid * sizeof (int));
8630 bzero ((char *) insn_costs, max_uid * sizeof (short));
8631 bzero ((char *) insn_units, max_uid * sizeof (short));
8632 bzero ((char *) insn_blockage, max_uid * sizeof (unsigned int));
8633 bzero ((char *) insn_ref_count, max_uid * sizeof (int));
8634
8635 /* Initialize for forward dependencies */
8636 bzero ((char *) insn_depend, max_uid * sizeof (rtx));
8637 bzero ((char *) insn_dep_count, max_uid * sizeof (int));
8638
8639 /* Find units used in this fuction, for visualization */
8640 if (sched_verbose)
8641 init_target_units ();
8642
8643 /* ??? Add a NOTE after the last insn of the last basic block. It is not
8644 known why this is done. */
8645
8646 insn = basic_block_end[n_basic_blocks - 1];
8647 if (NEXT_INSN (insn) == 0
8648 || (GET_CODE (insn) != NOTE
8649 && GET_CODE (insn) != CODE_LABEL
8650 /* Don't emit a NOTE if it would end up between an unconditional
8651 jump and a BARRIER. */
8652 && !(GET_CODE (insn) == JUMP_INSN
8653 && GET_CODE (NEXT_INSN (insn)) == BARRIER)))
8654 emit_note_after (NOTE_INSN_DELETED, basic_block_end[n_basic_blocks - 1]);
8655
8656 /* Schedule every region in the subroutine */
8657 for (rgn = 0; rgn < nr_regions; rgn++)
8658 {
8659 schedule_region (rgn);
8660
8661#ifdef USE_C_ALLOCA
8662 alloca (0);
8663#endif
8664 }
8665
8666 /* Reposition the prologue and epilogue notes in case we moved the
8667 prologue/epilogue insns. */
8668 if (reload_completed)
8669 reposition_prologue_and_epilogue_notes (get_insns ());
8670
8671 /* delete redundant line notes. */
8672 if (write_symbols != NO_DEBUG)
8673 rm_redundant_line_notes ();
8674
8675 /* Update information about uses of registers in the subroutine. */
8676 if (reload_completed == 0)
8677 update_reg_usage ();
8678
8679 if (sched_verbose)
8680 {
8681 if (reload_completed == 0 && flag_schedule_interblock)
8682 {
8683 fprintf (dump, "\n;; Procedure interblock/speculative motions == %d/%d \n",
8684 nr_inter, nr_spec);
8685 }
8686 else
8687 {
8688 if (nr_inter > 0)
8689 abort ();
8690 }
8691 fprintf (dump, "\n\n");
8692 }
f187056f 8693
7c74b010
JW
8694 free (cant_move);
8695 free (fed_by_spec_load);
8696 free (is_load_insn);
8697 free (insn_orig_block);
8698 free (insn_luid);
8699
8700 free (insn_priority);
8701 free (insn_reg_weight);
8702 free (insn_tick);
8703 free (insn_costs);
8704 free (insn_units);
8705 free (insn_blockage);
8706 free (insn_ref_count);
8707
8708 free (insn_dep_count);
8709 free (insn_depend);
8710
8711 if (write_symbols != NO_DEBUG)
8712 free (line_note);
8713
f187056f
JL
8714 if (bb_live_regs)
8715 FREE_REG_SET (bb_live_regs);
168cbdf9
JL
8716
8717 if (edge_table)
8718 {
8719 free (edge_table);
8720 edge_table = NULL;
8721 }
8722
8723 if (in_edges)
8724 {
8725 free (in_edges);
8726 in_edges = NULL;
8727 }
8728 if (out_edges)
8729 {
8730 free (out_edges);
8731 out_edges = NULL;
8732 }
8c660648
JL
8733}
8734#endif /* INSN_SCHEDULING */
This page took 1.126262 seconds and 5 git commands to generate.