]> gcc.gnu.org Git - gcc.git/blame - gcc/haifa-sched.c
alpha.c (alpha_legitimate_constant_p): Reject tls symbols.
[gcc.git] / gcc / haifa-sched.c
CommitLineData
8c660648 1/* Instruction scheduling pass.
d050d723 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
c486021d 3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
8c660648
JL
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
1322177d 7This file is part of GCC.
5d14e356 8
1322177d
LB
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
11Software Foundation; either version 2, or (at your option) any later
12version.
5d14e356 13
1322177d
LB
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
5d14e356
RK
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
47a1bd82 20along with GCC; see the file COPYING. If not, write to the Free
366ccddb
KC
21Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2202110-1301, USA. */
8c660648 23
b4ead7d4
BS
24/* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
8c660648
JL
27
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
36
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
41
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
56
8c660648
JL
57 The following list shows the order in which we want to break ties
58 among insns in the ready list:
59
60 1. choose insn with the longest path to end of bb, ties
61 broken by
62 2. choose insn with least contribution to register pressure,
63 ties broken by
64 3. prefer in-block upon interblock motion, ties broken by
65 4. prefer useful upon speculative motion, ties broken by
66 5. choose insn with largest control flow probability, ties
67 broken by
68 6. choose insn with the least dependences upon the previously
69 scheduled insn, or finally
2db45993
JL
70 7 choose the insn which has the most insns dependent on it.
71 8. choose insn with lowest UID.
8c660648
JL
72
73 Memory references complicate matters. Only if we can be certain
74 that memory references are not part of the data dependency graph
75 (via true, anti, or output dependence), can we move operations past
76 memory references. To first approximation, reads can be done
77 independently, while writes introduce dependencies. Better
78 approximations will yield fewer dependencies.
79
80 Before reload, an extended analysis of interblock data dependences
81 is required for interblock scheduling. This is performed in
82 compute_block_backward_dependences ().
83
84 Dependencies set up by memory references are treated in exactly the
85 same way as other dependencies, by using LOG_LINKS backward
86 dependences. LOG_LINKS are translated into INSN_DEPEND forward
87 dependences for the purpose of forward list scheduling.
88
89 Having optimized the critical path, we may have also unduly
90 extended the lifetimes of some registers. If an operation requires
91 that constants be loaded into registers, it is certainly desirable
92 to load those constants as early as necessary, but no earlier.
93 I.e., it will not do to load up a bunch of registers at the
94 beginning of a basic block only to use them at the end, if they
95 could be loaded later, since this may result in excessive register
96 utilization.
97
98 Note that since branches are never in basic blocks, but only end
99 basic blocks, this pass will not move branches. But that is ok,
100 since we can use GNU's delayed branch scheduling pass to take care
101 of this case.
102
103 Also note that no further optimizations based on algebraic
104 identities are performed, so this pass would be a good one to
105 perform instruction splitting, such as breaking up a multiply
106 instruction into shifts and adds where that is profitable.
107
108 Given the memory aliasing analysis that this pass should perform,
109 it should be possible to remove redundant stores to memory, and to
110 load values from registers instead of hitting memory.
111
112 Before reload, speculative insns are moved only if a 'proof' exists
113 that no exception will be caused by this, and if no live registers
114 exist that inhibit the motion (live registers constraints are not
115 represented by data dependence edges).
116
117 This pass must update information that subsequent passes expect to
118 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
a813c111 119 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
8c660648
JL
120
121 The information in the line number notes is carefully retained by
122 this pass. Notes that refer to the starting and ending of
123 exception regions are also carefully retained by this pass. All
124 other NOTE insns are grouped in their same relative order at the
b4ead7d4 125 beginning of basic blocks and regions that have been scheduled. */
8c660648 126\f
8c660648 127#include "config.h"
5835e573 128#include "system.h"
4977bab6
ZW
129#include "coretypes.h"
130#include "tm.h"
01198c2f 131#include "toplev.h"
8c660648 132#include "rtl.h"
6baf1cc8 133#include "tm_p.h"
efc9bd41 134#include "hard-reg-set.h"
8c660648 135#include "regs.h"
49ad7cfa 136#include "function.h"
8c660648
JL
137#include "flags.h"
138#include "insn-config.h"
139#include "insn-attr.h"
140#include "except.h"
487a6e06 141#include "toplev.h"
79c9824e 142#include "recog.h"
1708fd40 143#include "sched-int.h"
c237e94a 144#include "target.h"
10d22567 145#include "output.h"
496d7bb0 146#include "params.h"
8c660648 147
8c660648
JL
148#ifdef INSN_SCHEDULING
149
8c660648
JL
150/* issue_rate is the number of insns that can be scheduled in the same
151 machine cycle. It can be defined in the config/mach/mach.h file,
152 otherwise we set it to 1. */
153
154static int issue_rate;
155
cc132865 156/* sched-verbose controls the amount of debugging output the
409f8483 157 scheduler prints. It is controlled by -fsched-verbose=N:
8c660648
JL
158 N>0 and no -DSR : the output is directed to stderr.
159 N>=10 will direct the printouts to stderr (regardless of -dSR).
160 N=1: same as -dSR.
161 N=2: bb's probabilities, detailed ready list info, unit/insn info.
162 N=3: rtl at abort point, control-flow, regions info.
cc132865 163 N=5: dependences info. */
8c660648 164
8c660648 165static int sched_verbose_param = 0;
b4ead7d4 166int sched_verbose = 0;
8c660648 167
63de6c74 168/* Debugging file. All printouts are sent to dump, which is always set,
8c660648 169 either to stderr, or to the dump listing file (-dRS). */
c62c2659 170FILE *sched_dump = 0;
a88f02e7
BS
171
172/* Highest uid before scheduling. */
173static int old_max_uid;
8c660648
JL
174
175/* fix_sched_param() is called from toplev.c upon detection
409f8483 176 of the -fsched-verbose=N option. */
8c660648
JL
177
178void
1d088dee 179fix_sched_param (const char *param, const char *val)
8c660648 180{
cc132865 181 if (!strcmp (param, "verbose"))
8c660648 182 sched_verbose_param = atoi (val);
8c660648 183 else
d4ee4d25 184 warning (0, "fix_sched_param: unknown param: %s", param);
8c660648
JL
185}
186
16f6ece6 187struct haifa_insn_data *h_i_d;
f66d83e1 188
f66d83e1
RH
189#define LINE_NOTE(INSN) (h_i_d[INSN_UID (INSN)].line_note)
190#define INSN_TICK(INSN) (h_i_d[INSN_UID (INSN)].tick)
63f54b1a
MK
191#define INTER_TICK(INSN) (h_i_d[INSN_UID (INSN)].inter_tick)
192
193/* If INSN_TICK of an instruction is equal to INVALID_TICK,
194 then it should be recalculated from scratch. */
195#define INVALID_TICK (-(max_insn_queue_index + 1))
196/* The minimal value of the INSN_TICK of an instruction. */
197#define MIN_TICK (-max_insn_queue_index)
8c660648 198
496d7bb0
MK
199/* Issue points are used to distinguish between instructions in max_issue ().
200 For now, all instructions are equally good. */
201#define ISSUE_POINTS(INSN) 1
202
8c660648
JL
203/* Vector indexed by basic block number giving the starting line-number
204 for each basic block. */
205static rtx *line_note_head;
206
207/* List of important notes we must keep around. This is a pointer to the
208 last element in the list. */
209static rtx note_list;
210
496d7bb0
MK
211static struct spec_info_def spec_info_var;
212/* Description of the speculative part of the scheduling.
213 If NULL - no speculation. */
214static spec_info_t spec_info;
215
216/* True, if recovery block was added during scheduling of current block.
217 Used to determine, if we need to fix INSN_TICKs. */
218static bool added_recovery_block_p;
219
220/* Counters of different types of speculative isntructions. */
221static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
222
223/* Pointers to GLAT data. See init_glat for more information. */
224regset *glat_start, *glat_end;
225
226/* Array used in {unlink, restore}_bb_notes. */
227static rtx *bb_header = 0;
228
229/* Number of basic_blocks. */
230static int old_last_basic_block;
231
232/* Basic block after which recovery blocks will be created. */
233static basic_block before_recovery;
234
8c660648
JL
235/* Queues, etc. */
236
237/* An instruction is ready to be scheduled when all insns preceding it
238 have already been scheduled. It is important to ensure that all
239 insns which use its result will not be executed until its result
240 has been computed. An insn is maintained in one of four structures:
241
242 (P) the "Pending" set of insns which cannot be scheduled until
243 their dependencies have been satisfied.
244 (Q) the "Queued" set of insns that can be scheduled when sufficient
245 time has passed.
246 (R) the "Ready" list of unscheduled, uncommitted insns.
247 (S) the "Scheduled" list of insns.
248
249 Initially, all insns are either "Pending" or "Ready" depending on
250 whether their dependencies are satisfied.
251
252 Insns move from the "Ready" list to the "Scheduled" list as they
253 are committed to the schedule. As this occurs, the insns in the
254 "Pending" list have their dependencies satisfied and move to either
255 the "Ready" list or the "Queued" set depending on whether
256 sufficient time has passed to make them ready. As time passes,
fa0aee89 257 insns move from the "Queued" set to the "Ready" list.
8c660648
JL
258
259 The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
260 insns, i.e., those that are ready, queued, and pending.
261 The "Queued" set (Q) is implemented by the variable `insn_queue'.
262 The "Ready" list (R) is implemented by the variables `ready' and
263 `n_ready'.
264 The "Scheduled" list (S) is the new insn chain built by this pass.
265
266 The transition (R->S) is implemented in the scheduling loop in
267 `schedule_block' when the best insn to schedule is chosen.
8c660648
JL
268 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
269 insns move from the ready list to the scheduled list.
270 The transition (Q->R) is implemented in 'queue_to_insn' as time
271 passes or stalls are introduced. */
272
273/* Implement a circular buffer to delay instructions until sufficient
fa0aee89 274 time has passed. For the new pipeline description interface,
63f54b1a 275 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
fa0aee89
PB
276 than maximal time of instruction execution computed by genattr.c on
277 the base maximal time of functional unit reservations and getting a
278 result. This is the longest time an insn may be queued. */
fae15c93
VM
279
280static rtx *insn_queue;
8c660648
JL
281static int q_ptr = 0;
282static int q_size = 0;
fa0aee89
PB
283#define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
284#define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
fae15c93 285
63f54b1a
MK
286#define QUEUE_SCHEDULED (-3)
287#define QUEUE_NOWHERE (-2)
288#define QUEUE_READY (-1)
289/* QUEUE_SCHEDULED - INSN is scheduled.
290 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
291 queue or ready list.
292 QUEUE_READY - INSN is in ready list.
293 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
294
295#define QUEUE_INDEX(INSN) (h_i_d[INSN_UID (INSN)].queue_index)
296
fae15c93
VM
297/* The following variable value refers for all current and future
298 reservations of the processor units. */
299state_t curr_state;
300
301/* The following variable value is size of memory representing all
fa0aee89 302 current and future reservations of the processor units. */
fae15c93
VM
303static size_t dfa_state_size;
304
305/* The following array is used to find the best insn from ready when
306 the automaton pipeline interface is used. */
307static char *ready_try;
8c660648 308
176f9a7b
BS
309/* Describe the ready list of the scheduler.
310 VEC holds space enough for all insns in the current region. VECLEN
311 says how many exactly.
312 FIRST is the index of the element with the highest priority; i.e. the
313 last one in the ready list, since elements are ordered by ascending
314 priority.
315 N_READY determines how many insns are on the ready list. */
316
317struct ready_list
318{
319 rtx *vec;
320 int veclen;
321 int first;
322 int n_ready;
323};
324
63f54b1a
MK
325/* The pointer to the ready list. */
326static struct ready_list *readyp;
327
328/* Scheduling clock. */
329static int clock_var;
330
496d7bb0
MK
331/* Number of instructions in current scheduling region. */
332static int rgn_n_insns;
333
1d088dee 334static int may_trap_exp (rtx, int);
15aab9c0
VM
335
336/* Nonzero iff the address is comprised from at most 1 register. */
337#define CONST_BASED_ADDRESS_P(x) \
f8cfc6aa 338 (REG_P (x) \
15aab9c0
VM
339 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
340 || (GET_CODE (x) == LO_SUM)) \
341 && (CONSTANT_P (XEXP (x, 0)) \
342 || CONSTANT_P (XEXP (x, 1)))))
343
344/* Returns a class that insn with GET_DEST(insn)=x may belong to,
345 as found by analyzing insn's expression. */
346
347static int
1d088dee 348may_trap_exp (rtx x, int is_store)
15aab9c0
VM
349{
350 enum rtx_code code;
351
352 if (x == 0)
353 return TRAP_FREE;
354 code = GET_CODE (x);
355 if (is_store)
356 {
357 if (code == MEM && may_trap_p (x))
358 return TRAP_RISKY;
359 else
360 return TRAP_FREE;
361 }
362 if (code == MEM)
363 {
364 /* The insn uses memory: a volatile load. */
365 if (MEM_VOLATILE_P (x))
366 return IRISKY;
367 /* An exception-free load. */
368 if (!may_trap_p (x))
369 return IFREE;
370 /* A load with 1 base register, to be further checked. */
371 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
372 return PFREE_CANDIDATE;
373 /* No info on the load, to be further checked. */
374 return PRISKY_CANDIDATE;
375 }
376 else
377 {
378 const char *fmt;
379 int i, insn_class = TRAP_FREE;
380
381 /* Neither store nor load, check if it may cause a trap. */
382 if (may_trap_p (x))
383 return TRAP_RISKY;
384 /* Recursive step: walk the insn... */
385 fmt = GET_RTX_FORMAT (code);
386 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
387 {
388 if (fmt[i] == 'e')
389 {
390 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
391 insn_class = WORST_CLASS (insn_class, tmp_class);
392 }
393 else if (fmt[i] == 'E')
394 {
395 int j;
396 for (j = 0; j < XVECLEN (x, i); j++)
397 {
398 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
399 insn_class = WORST_CLASS (insn_class, tmp_class);
400 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
401 break;
402 }
403 }
404 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
405 break;
406 }
407 return insn_class;
408 }
409}
410
411/* Classifies insn for the purpose of verifying that it can be
412 moved speculatively, by examining it's patterns, returning:
413 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
414 TRAP_FREE: non-load insn.
a98ebe2e 415 IFREE: load from a globally safe location.
15aab9c0
VM
416 IRISKY: volatile load.
417 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
418 being either PFREE or PRISKY. */
419
420int
1d088dee 421haifa_classify_insn (rtx insn)
15aab9c0
VM
422{
423 rtx pat = PATTERN (insn);
424 int tmp_class = TRAP_FREE;
425 int insn_class = TRAP_FREE;
426 enum rtx_code code;
427
428 if (GET_CODE (pat) == PARALLEL)
429 {
430 int i, len = XVECLEN (pat, 0);
431
432 for (i = len - 1; i >= 0; i--)
433 {
434 code = GET_CODE (XVECEXP (pat, 0, i));
435 switch (code)
436 {
437 case CLOBBER:
438 /* Test if it is a 'store'. */
439 tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
440 break;
441 case SET:
442 /* Test if it is a store. */
443 tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
444 if (tmp_class == TRAP_RISKY)
445 break;
446 /* Test if it is a load. */
447 tmp_class
448 = WORST_CLASS (tmp_class,
449 may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)),
450 0));
451 break;
452 case COND_EXEC:
453 case TRAP_IF:
454 tmp_class = TRAP_RISKY;
455 break;
456 default:
457 ;
458 }
459 insn_class = WORST_CLASS (insn_class, tmp_class);
460 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
461 break;
462 }
463 }
464 else
465 {
466 code = GET_CODE (pat);
467 switch (code)
468 {
469 case CLOBBER:
470 /* Test if it is a 'store'. */
471 tmp_class = may_trap_exp (XEXP (pat, 0), 1);
472 break;
473 case SET:
474 /* Test if it is a store. */
475 tmp_class = may_trap_exp (SET_DEST (pat), 1);
476 if (tmp_class == TRAP_RISKY)
477 break;
478 /* Test if it is a load. */
479 tmp_class =
480 WORST_CLASS (tmp_class,
481 may_trap_exp (SET_SRC (pat), 0));
482 break;
483 case COND_EXEC:
484 case TRAP_IF:
485 tmp_class = TRAP_RISKY;
486 break;
487 default:;
488 }
489 insn_class = tmp_class;
490 }
491
492 return insn_class;
493}
494
8c660648 495/* Forward declarations. */
fae15c93 496
496d7bb0 497HAIFA_INLINE static int insn_cost1 (rtx, enum reg_note, rtx, rtx);
1d088dee
AJ
498static int priority (rtx);
499static int rank_for_schedule (const void *, const void *);
500static void swap_sort (rtx *, int);
501static void queue_insn (rtx, int);
63f54b1a 502static int schedule_insn (rtx);
1d088dee 503static int find_set_reg_weight (rtx);
496d7bb0
MK
504static void find_insn_reg_weight (basic_block);
505static void find_insn_reg_weight1 (rtx);
1d088dee
AJ
506static void adjust_priority (rtx);
507static void advance_one_cycle (void);
8c660648 508
8c660648
JL
509/* Notes handling mechanism:
510 =========================
511 Generally, NOTES are saved before scheduling and restored after scheduling.
512 The scheduler distinguishes between three types of notes:
513
514 (1) LINE_NUMBER notes, generated and used for debugging. Here,
515 before scheduling a region, a pointer to the LINE_NUMBER note is
516 added to the insn following it (in save_line_notes()), and the note
517 is removed (in rm_line_notes() and unlink_line_notes()). After
518 scheduling the region, this pointer is used for regeneration of
519 the LINE_NUMBER note (in restore_line_notes()).
520
521 (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
522 Before scheduling a region, a pointer to the note is added to the insn
523 that follows or precedes it. (This happens as part of the data dependence
524 computation). After scheduling an insn, the pointer contained in it is
525 used for regenerating the corresponding note (in reemit_notes).
526
527 (3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
528 these notes are put in a list (in rm_other_notes() and
529 unlink_other_notes ()). After scheduling the block, these notes are
530 inserted at the beginning of the block (in schedule_block()). */
531
1d088dee
AJ
532static rtx unlink_other_notes (rtx, rtx);
533static rtx unlink_line_notes (rtx, rtx);
496d7bb0 534static void reemit_notes (rtx);
3fe41456 535
1d088dee 536static rtx *ready_lastpos (struct ready_list *);
63f54b1a 537static void ready_add (struct ready_list *, rtx, bool);
1d088dee
AJ
538static void ready_sort (struct ready_list *);
539static rtx ready_remove_first (struct ready_list *);
3fe41456 540
1d088dee 541static void queue_to_ready (struct ready_list *);
569fa502 542static int early_queue_to_ready (state_t, struct ready_list *);
176f9a7b 543
1d088dee 544static void debug_ready_list (struct ready_list *);
3fe41456 545
496d7bb0 546static void move_insn (rtx);
8c660648 547
fae15c93 548/* The following functions are used to implement multi-pass scheduling
fa0aee89 549 on the first cycle. */
1d088dee
AJ
550static rtx ready_element (struct ready_list *, int);
551static rtx ready_remove (struct ready_list *, int);
63f54b1a 552static void ready_remove_insn (rtx);
496d7bb0 553static int max_issue (struct ready_list *, int *, int);
fae15c93 554
1d088dee 555static rtx choose_ready (struct ready_list *);
fae15c93 556
63f54b1a
MK
557static void fix_inter_tick (rtx, rtx);
558static int fix_tick_ready (rtx);
559static void change_queue_index (rtx, int);
560static void resolve_dep (rtx, rtx);
561
496d7bb0
MK
562/* The following functions are used to implement scheduling of data/control
563 speculative instructions. */
564
565static void extend_h_i_d (void);
566static void extend_ready (int);
567static void extend_global (rtx);
568static void extend_all (rtx);
569static void init_h_i_d (rtx);
570static void generate_recovery_code (rtx);
571static void process_insn_depend_be_in_spec (rtx, rtx, ds_t);
572static void begin_speculative_block (rtx);
573static void add_to_speculative_block (rtx);
574static dw_t dep_weak (ds_t);
575static edge find_fallthru_edge (basic_block);
576static void init_before_recovery (void);
577static basic_block create_recovery_block (void);
578static void create_check_block_twin (rtx, bool);
579static void fix_recovery_deps (basic_block);
580static void associate_line_notes_with_blocks (basic_block);
581static void change_pattern (rtx, rtx);
582static int speculate_insn (rtx, ds_t, rtx *);
583static void dump_new_block_header (int, basic_block, rtx, rtx);
584static void restore_bb_notes (basic_block);
585static void extend_bb (basic_block);
586static void fix_jump_move (rtx);
587static void move_block_after_check (rtx);
588static void move_succs (VEC(edge,gc) **, basic_block);
589static void init_glat (void);
590static void init_glat1 (basic_block);
591static void attach_life_info1 (basic_block);
592static void free_glat (void);
593static void sched_remove_insn (rtx);
594static void clear_priorities (rtx);
595static void add_jump_dependencies (rtx, rtx);
596static rtx bb_note (basic_block);
597static void calc_priorities (rtx);
598#ifdef ENABLE_CHECKING
599static int has_edge_p (VEC(edge,gc) *, int);
600static void check_cfg (rtx, rtx);
601static void check_sched_flags (void);
602#endif
603
8c660648
JL
604#endif /* INSN_SCHEDULING */
605\f
1708fd40
BS
606/* Point to state used for the current scheduling pass. */
607struct sched_info *current_sched_info;
8c660648
JL
608\f
609#ifndef INSN_SCHEDULING
610void
10d22567 611schedule_insns (void)
8c660648
JL
612{
613}
614#else
cbb13457 615
496d7bb0
MK
616/* Working copy of frontend's sched_info variable. */
617static struct sched_info current_sched_info_var;
618
8c660648
JL
619/* Pointer to the last instruction scheduled. Used by rank_for_schedule,
620 so that insns independent of the last scheduled insn will be preferred
621 over dependent instructions. */
622
623static rtx last_scheduled_insn;
624
8c660648
JL
625/* Compute cost of executing INSN given the dependence LINK on the insn USED.
626 This is the number of cycles between instruction issue and
627 instruction results. */
628
b4ead7d4 629HAIFA_INLINE int
1d088dee 630insn_cost (rtx insn, rtx link, rtx used)
496d7bb0
MK
631{
632 return insn_cost1 (insn, used ? REG_NOTE_KIND (link) : REG_NOTE_MAX,
633 link, used);
634}
635
636/* Compute cost of executing INSN given the dependence on the insn USED.
637 If LINK is not NULL, then its REG_NOTE_KIND is used as a dependence type.
638 Otherwise, dependence between INSN and USED is assumed to be of type
639 DEP_TYPE. This function was introduced as a workaround for
640 targetm.adjust_cost hook.
641 This is the number of cycles between instruction issue and
642 instruction results. */
643
644HAIFA_INLINE static int
645insn_cost1 (rtx insn, enum reg_note dep_type, rtx link, rtx used)
8c660648 646{
b3694847 647 int cost = INSN_COST (insn);
8c660648 648
fae15c93 649 if (cost < 0)
8c660648 650 {
fae15c93
VM
651 /* A USE insn, or something else we don't need to
652 understand. We can't pass these directly to
653 result_ready_cost or insn_default_latency because it will
654 trigger a fatal error for unrecognizable insns. */
655 if (recog_memoized (insn) < 0)
8c660648 656 {
fae15c93
VM
657 INSN_COST (insn) = 0;
658 return 0;
8c660648
JL
659 }
660 else
661 {
fa0aee89 662 cost = insn_default_latency (insn);
fae15c93
VM
663 if (cost < 0)
664 cost = 0;
1d088dee 665
8c660648
JL
666 INSN_COST (insn) = cost;
667 }
668 }
669
63de6c74 670 /* In this case estimate cost without caring how insn is used. */
496d7bb0 671 if (used == 0)
8c660648
JL
672 return cost;
673
fae15c93
VM
674 /* A USE insn should never require the value used to be computed.
675 This allows the computation of a function's result and parameter
676 values to overlap the return and call. */
677 if (recog_memoized (used) < 0)
197043f5 678 cost = 0;
fae15c93 679 else
8c660648 680 {
496d7bb0
MK
681 gcc_assert (!link || dep_type == REG_NOTE_KIND (link));
682
fa0aee89 683 if (INSN_CODE (insn) >= 0)
197043f5 684 {
496d7bb0 685 if (dep_type == REG_DEP_ANTI)
fa0aee89 686 cost = 0;
496d7bb0 687 else if (dep_type == REG_DEP_OUTPUT)
fae15c93 688 {
fa0aee89
PB
689 cost = (insn_default_latency (insn)
690 - insn_default_latency (used));
691 if (cost <= 0)
692 cost = 1;
fae15c93 693 }
fa0aee89
PB
694 else if (bypass_p (insn))
695 cost = insn_latency (insn, used);
197043f5 696 }
b8ec5764 697
496d7bb0
MK
698 if (targetm.sched.adjust_cost_2)
699 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost);
700 else
701 {
702 gcc_assert (link);
703 if (targetm.sched.adjust_cost)
704 cost = targetm.sched.adjust_cost (used, link, insn, cost);
705 }
fae15c93
VM
706
707 if (cost < 0)
708 cost = 0;
709 }
1d088dee 710
8c660648
JL
711 return cost;
712}
713
714/* Compute the priority number for INSN. */
715
716static int
1d088dee 717priority (rtx insn)
8c660648 718{
8c660648
JL
719 rtx link;
720
2c3c49de 721 if (! INSN_P (insn))
8c660648
JL
722 return 0;
723
21e4c9a8 724 if (! INSN_PRIORITY_KNOWN (insn))
8c660648 725 {
21e4c9a8
BS
726 int this_priority = 0;
727
8c660648
JL
728 if (INSN_DEPEND (insn) == 0)
729 this_priority = insn_cost (insn, 0, 0);
730 else
21e4c9a8 731 {
496d7bb0
MK
732 rtx prev_first, twin;
733 basic_block rec;
8c660648 734
496d7bb0
MK
735 /* For recovery check instructions we calculate priority slightly
736 different than that of normal instructions. Instead of walking
737 through INSN_DEPEND (check) list, we walk through INSN_DEPEND list
738 of each instruction in the corresponding recovery block. */
8c660648 739
496d7bb0
MK
740 rec = RECOVERY_BLOCK (insn);
741 if (!rec || rec == EXIT_BLOCK_PTR)
742 {
743 prev_first = PREV_INSN (insn);
744 twin = insn;
745 }
746 else
747 {
748 prev_first = NEXT_INSN (BB_HEAD (rec));
749 twin = PREV_INSN (BB_END (rec));
750 }
8c660648 751
496d7bb0
MK
752 do
753 {
754 for (link = INSN_DEPEND (twin); link; link = XEXP (link, 1))
755 {
756 rtx next;
757 int next_priority;
758
759 next = XEXP (link, 0);
760
761 if (BLOCK_FOR_INSN (next) != rec)
762 {
763 /* Critical path is meaningful in block boundaries
764 only. */
765 if (! (*current_sched_info->contributes_to_priority)
766 (next, insn)
767 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
768 then speculative instructions will less likely be
769 scheduled. That is because the priority of
770 their producers will increase, and, thus, the
771 producers will more likely be scheduled, thus,
772 resolving the dependence. */
773 || ((current_sched_info->flags & DO_SPECULATION)
774 && (DEP_STATUS (link) & SPECULATIVE)
775 && !(spec_info->flags
776 & COUNT_SPEC_IN_CRITICAL_PATH)))
777 continue;
778
779 next_priority = insn_cost1 (insn,
780 twin == insn ?
781 REG_NOTE_KIND (link) :
782 REG_DEP_ANTI,
783 twin == insn ? link : 0,
784 next) + priority (next);
785
786 if (next_priority > this_priority)
787 this_priority = next_priority;
788 }
789 }
790
791 twin = PREV_INSN (twin);
21e4c9a8 792 }
496d7bb0 793 while (twin != prev_first);
21e4c9a8 794 }
8c660648 795 INSN_PRIORITY (insn) = this_priority;
21e4c9a8 796 INSN_PRIORITY_KNOWN (insn) = 1;
8c660648 797 }
21e4c9a8
BS
798
799 return INSN_PRIORITY (insn);
8c660648
JL
800}
801\f
8c660648 802/* Macros and functions for keeping the priority queue sorted, and
d91edf86 803 dealing with queuing and dequeuing of instructions. */
8c660648
JL
804
805#define SCHED_SORT(READY, N_READY) \
806do { if ((N_READY) == 2) \
807 swap_sort (READY, N_READY); \
808 else if ((N_READY) > 2) \
809 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
810while (0)
811
812/* Returns a positive value if x is preferred; returns a negative value if
813 y is preferred. Should never return 0, since that will make the sort
814 unstable. */
815
816static int
1d088dee 817rank_for_schedule (const void *x, const void *y)
8c660648 818{
7a403706
KH
819 rtx tmp = *(const rtx *) y;
820 rtx tmp2 = *(const rtx *) x;
8f39865a 821 rtx link;
2db45993 822 int tmp_class, tmp2_class, depend_count1, depend_count2;
1708fd40 823 int val, priority_val, weight_val, info_val;
8c660648 824
58fb7809
VM
825 /* The insn in a schedule group should be issued the first. */
826 if (SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
827 return SCHED_GROUP_P (tmp2) ? 1 : -1;
828
63de6c74 829 /* Prefer insn with higher priority. */
8c660648 830 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
30028c85 831
8c660648
JL
832 if (priority_val)
833 return priority_val;
834
496d7bb0
MK
835 /* Prefer speculative insn with greater dependencies weakness. */
836 if (spec_info)
837 {
838 ds_t ds1, ds2;
839 dw_t dw1, dw2;
840 int dw;
841
842 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
843 if (ds1)
844 dw1 = dep_weak (ds1);
845 else
846 dw1 = NO_DEP_WEAK;
847
848 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
849 if (ds2)
850 dw2 = dep_weak (ds2);
851 else
852 dw2 = NO_DEP_WEAK;
853
854 dw = dw2 - dw1;
855 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
856 return dw;
857 }
858
63de6c74 859 /* Prefer an insn with smaller contribution to registers-pressure. */
8c660648
JL
860 if (!reload_completed &&
861 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
4977bab6 862 return weight_val;
8c660648 863
1708fd40
BS
864 info_val = (*current_sched_info->rank) (tmp, tmp2);
865 if (info_val)
866 return info_val;
8c660648 867
63de6c74 868 /* Compare insns based on their relation to the last-scheduled-insn. */
63f54b1a 869 if (INSN_P (last_scheduled_insn))
8c660648
JL
870 {
871 /* Classify the instructions into three classes:
872 1) Data dependent on last schedule insn.
873 2) Anti/Output dependent on last scheduled insn.
874 3) Independent of last scheduled insn, or has latency of one.
875 Choose the insn from the highest numbered class if different. */
8f39865a
DM
876 link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
877 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
8c660648
JL
878 tmp_class = 3;
879 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
880 tmp_class = 1;
881 else
882 tmp_class = 2;
883
8f39865a
DM
884 link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
885 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
8c660648
JL
886 tmp2_class = 3;
887 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
888 tmp2_class = 1;
889 else
890 tmp2_class = 2;
891
892 if ((val = tmp2_class - tmp_class))
893 return val;
894 }
895
7a403706 896 /* Prefer the insn which has more later insns that depend on it.
2db45993
JL
897 This gives the scheduler more freedom when scheduling later
898 instructions at the expense of added register pressure. */
899 depend_count1 = 0;
900 for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
901 depend_count1++;
902
903 depend_count2 = 0;
904 for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
905 depend_count2++;
906
907 val = depend_count2 - depend_count1;
908 if (val)
909 return val;
7a403706 910
8c660648
JL
911 /* If insns are equally good, sort by INSN_LUID (original insn order),
912 so that we make the sort stable. This minimizes instruction movement,
913 thus minimizing sched's effect on debugging and cross-jumping. */
914 return INSN_LUID (tmp) - INSN_LUID (tmp2);
915}
916
917/* Resort the array A in which only element at index N may be out of order. */
918
cbb13457 919HAIFA_INLINE static void
1d088dee 920swap_sort (rtx *a, int n)
8c660648
JL
921{
922 rtx insn = a[n - 1];
923 int i = n - 2;
924
925 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
926 {
927 a[i + 1] = a[i];
928 i -= 1;
929 }
930 a[i + 1] = insn;
931}
932
8c660648
JL
933/* Add INSN to the insn queue so that it can be executed at least
934 N_CYCLES after the currently executing insn. Preserve insns
935 chain for debugging purposes. */
936
cbb13457 937HAIFA_INLINE static void
1d088dee 938queue_insn (rtx insn, int n_cycles)
8c660648
JL
939{
940 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
ebb7b10b 941 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
63f54b1a
MK
942
943 gcc_assert (n_cycles <= max_insn_queue_index);
944
8c660648
JL
945 insn_queue[next_q] = link;
946 q_size += 1;
947
948 if (sched_verbose >= 2)
949 {
1708fd40
BS
950 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
951 (*current_sched_info->print_insn) (insn, 0));
8c660648 952
a88f02e7 953 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
8c660648 954 }
63f54b1a
MK
955
956 QUEUE_INDEX (insn) = next_q;
957}
958
959/* Remove INSN from queue. */
960static void
961queue_remove (rtx insn)
962{
963 gcc_assert (QUEUE_INDEX (insn) >= 0);
964 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
965 q_size--;
966 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
176f9a7b
BS
967}
968
969/* Return a pointer to the bottom of the ready list, i.e. the insn
970 with the lowest priority. */
971
972HAIFA_INLINE static rtx *
1d088dee 973ready_lastpos (struct ready_list *ready)
176f9a7b 974{
63f54b1a 975 gcc_assert (ready->n_ready >= 1);
176f9a7b
BS
976 return ready->vec + ready->first - ready->n_ready + 1;
977}
978
63f54b1a
MK
979/* Add an element INSN to the ready list so that it ends up with the
980 lowest/highest priority dependending on FIRST_P. */
176f9a7b 981
63f54b1a
MK
982HAIFA_INLINE static void
983ready_add (struct ready_list *ready, rtx insn, bool first_p)
176f9a7b 984{
63f54b1a 985 if (!first_p)
176f9a7b 986 {
63f54b1a
MK
987 if (ready->first == ready->n_ready)
988 {
989 memmove (ready->vec + ready->veclen - ready->n_ready,
990 ready_lastpos (ready),
991 ready->n_ready * sizeof (rtx));
992 ready->first = ready->veclen - 1;
993 }
994 ready->vec[ready->first - ready->n_ready] = insn;
176f9a7b 995 }
63f54b1a
MK
996 else
997 {
998 if (ready->first == ready->veclen - 1)
999 {
1000 if (ready->n_ready)
1001 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
1002 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
1003 ready_lastpos (ready),
1004 ready->n_ready * sizeof (rtx));
1005 ready->first = ready->veclen - 2;
1006 }
1007 ready->vec[++(ready->first)] = insn;
1008 }
1009
176f9a7b 1010 ready->n_ready++;
63f54b1a
MK
1011
1012 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
1013 QUEUE_INDEX (insn) = QUEUE_READY;
176f9a7b 1014}
8c660648 1015
176f9a7b
BS
1016/* Remove the element with the highest priority from the ready list and
1017 return it. */
1018
1019HAIFA_INLINE static rtx
1d088dee 1020ready_remove_first (struct ready_list *ready)
176f9a7b
BS
1021{
1022 rtx t;
535a42b1
NS
1023
1024 gcc_assert (ready->n_ready);
176f9a7b
BS
1025 t = ready->vec[ready->first--];
1026 ready->n_ready--;
1027 /* If the queue becomes empty, reset it. */
1028 if (ready->n_ready == 0)
1029 ready->first = ready->veclen - 1;
63f54b1a
MK
1030
1031 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
1032 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1033
176f9a7b
BS
1034 return t;
1035}
1036
fae15c93
VM
1037/* The following code implements multi-pass scheduling for the first
1038 cycle. In other words, we will try to choose ready insn which
1039 permits to start maximum number of insns on the same cycle. */
1040
1041/* Return a pointer to the element INDEX from the ready. INDEX for
1042 insn with the highest priority is 0, and the lowest priority has
1043 N_READY - 1. */
1044
1045HAIFA_INLINE static rtx
1d088dee 1046ready_element (struct ready_list *ready, int index)
fae15c93 1047{
535a42b1
NS
1048 gcc_assert (ready->n_ready && index < ready->n_ready);
1049
fae15c93
VM
1050 return ready->vec[ready->first - index];
1051}
1052
1053/* Remove the element INDEX from the ready list and return it. INDEX
1054 for insn with the highest priority is 0, and the lowest priority
1055 has N_READY - 1. */
1056
1057HAIFA_INLINE static rtx
1d088dee 1058ready_remove (struct ready_list *ready, int index)
fae15c93
VM
1059{
1060 rtx t;
1061 int i;
1062
1063 if (index == 0)
1064 return ready_remove_first (ready);
535a42b1 1065 gcc_assert (ready->n_ready && index < ready->n_ready);
fae15c93
VM
1066 t = ready->vec[ready->first - index];
1067 ready->n_ready--;
1068 for (i = index; i < ready->n_ready; i++)
1069 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
63f54b1a 1070 QUEUE_INDEX (t) = QUEUE_NOWHERE;
fae15c93
VM
1071 return t;
1072}
1073
63f54b1a
MK
1074/* Remove INSN from the ready list. */
1075static void
1076ready_remove_insn (rtx insn)
1077{
1078 int i;
1079
1080 for (i = 0; i < readyp->n_ready; i++)
1081 if (ready_element (readyp, i) == insn)
1082 {
1083 ready_remove (readyp, i);
1084 return;
1085 }
1086 gcc_unreachable ();
1087}
fae15c93 1088
176f9a7b
BS
1089/* Sort the ready list READY by ascending priority, using the SCHED_SORT
1090 macro. */
1091
1092HAIFA_INLINE static void
1d088dee 1093ready_sort (struct ready_list *ready)
176f9a7b
BS
1094{
1095 rtx *first = ready_lastpos (ready);
1096 SCHED_SORT (first, ready->n_ready);
8c660648
JL
1097}
1098
8c660648 1099/* PREV is an insn that is ready to execute. Adjust its priority if that
c46a37c4
RH
1100 will help shorten or lengthen register lifetimes as appropriate. Also
1101 provide a hook for the target to tweek itself. */
8c660648 1102
cbb13457 1103HAIFA_INLINE static void
1d088dee 1104adjust_priority (rtx prev)
8c660648 1105{
c46a37c4
RH
1106 /* ??? There used to be code here to try and estimate how an insn
1107 affected register lifetimes, but it did it by looking at REG_DEAD
7a403706 1108 notes, which we removed in schedule_region. Nor did it try to
c46a37c4 1109 take into account register pressure or anything useful like that.
8c660648 1110
c46a37c4 1111 Revisit when we have a machine model to work with and not before. */
197043f5 1112
c237e94a
ZW
1113 if (targetm.sched.adjust_priority)
1114 INSN_PRIORITY (prev) =
5fd9b178 1115 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
8c660648
JL
1116}
1117
fae15c93
VM
1118/* Advance time on one cycle. */
1119HAIFA_INLINE static void
1d088dee 1120advance_one_cycle (void)
fae15c93 1121{
fa0aee89
PB
1122 if (targetm.sched.dfa_pre_cycle_insn)
1123 state_transition (curr_state,
1124 targetm.sched.dfa_pre_cycle_insn ());
1125
1126 state_transition (curr_state, NULL);
1127
1128 if (targetm.sched.dfa_post_cycle_insn)
1129 state_transition (curr_state,
1130 targetm.sched.dfa_post_cycle_insn ());
fae15c93
VM
1131}
1132
4bdc8810
RH
1133/* Clock at which the previous instruction was issued. */
1134static int last_clock_var;
1135
8c660648 1136/* INSN is the "currently executing insn". Launch each insn which was
176f9a7b 1137 waiting on INSN. READY is the ready list which contains the insns
58fb7809
VM
1138 that are ready to fire. CLOCK is the current cycle. The function
1139 returns necessary cycle advance after issuing the insn (it is not
1140 zero for insns in a schedule group). */
8c660648 1141
58fb7809 1142static int
63f54b1a 1143schedule_insn (rtx insn)
8c660648
JL
1144{
1145 rtx link;
58fb7809 1146 int advance = 0;
8c660648 1147
fa0aee89 1148 if (sched_verbose >= 1)
8c660648 1149 {
6d0de005 1150 char buf[2048];
fae15c93 1151
6d0de005 1152 print_insn (buf, insn, 0);
6a87d634 1153 buf[40] = 0;
63f54b1a 1154 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
fae15c93 1155
6d0de005
JH
1156 if (recog_memoized (insn) < 0)
1157 fprintf (sched_dump, "nothing");
1158 else
1159 print_reservation (sched_dump, insn);
1160 fputc ('\n', sched_dump);
1161 }
8c660648 1162
63f54b1a
MK
1163 /* Scheduling instruction should have all its dependencies resolved and
1164 should have been removed from the ready list. */
1165 gcc_assert (INSN_DEP_COUNT (insn) == 0);
1166 gcc_assert (!LOG_LINKS (insn));
1167 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
569fa502 1168
63f54b1a
MK
1169 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
1170
1171 /* Now we can free RESOLVED_DEPS list. */
1172 if (current_sched_info->flags & USE_DEPS_LIST)
1173 free_DEPS_LIST_list (&RESOLVED_DEPS (insn));
1174 else
1175 free_INSN_LIST_list (&RESOLVED_DEPS (insn));
1176
1177 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
1178 if (INSN_TICK (insn) > clock_var)
1179 /* INSN has been prematurely moved from the queue to the ready list.
1180 This is possible only if following flag is set. */
1181 gcc_assert (flag_sched_stalled_insns);
1182
1183 /* ??? Probably, if INSN is scheduled prematurely, we should leave
1184 INSN_TICK untouched. This is a machine-dependent issue, actually. */
1185 INSN_TICK (insn) = clock_var;
1186
1187 /* Update dependent instructions. */
1188 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
8c660648
JL
1189 {
1190 rtx next = XEXP (link, 0);
8c660648 1191
63f54b1a 1192 resolve_dep (next, insn);
8c660648 1193
496d7bb0
MK
1194 if (!RECOVERY_BLOCK (insn)
1195 || RECOVERY_BLOCK (insn) == EXIT_BLOCK_PTR)
1196 {
1197 int effective_cost;
1198
1199 effective_cost = try_ready (next);
1200
1201 if (effective_cost >= 0
1202 && SCHED_GROUP_P (next)
1203 && advance < effective_cost)
1204 advance = effective_cost;
1205 }
1206 else
1207 /* Check always has only one forward dependence (to the first insn in
1208 the recovery block), therefore, this will be executed only once. */
1209 {
1210 gcc_assert (XEXP (link, 1) == 0);
1211 fix_recovery_deps (RECOVERY_BLOCK (insn));
1212 }
8c660648
JL
1213 }
1214
7a403706 1215 /* Annotate the instruction with issue information -- TImode
4bdc8810
RH
1216 indicates that the instruction is expected not to be able
1217 to issue on the same cycle as the previous insn. A machine
1218 may use this information to decide how the instruction should
1219 be aligned. */
30028c85 1220 if (issue_rate > 1
fae15c93
VM
1221 && GET_CODE (PATTERN (insn)) != USE
1222 && GET_CODE (PATTERN (insn)) != CLOBBER)
4bdc8810 1223 {
30028c85 1224 if (reload_completed)
63f54b1a
MK
1225 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
1226 last_clock_var = clock_var;
4bdc8810 1227 }
63f54b1a 1228
58fb7809 1229 return advance;
8c660648
JL
1230}
1231
63de6c74 1232/* Functions for handling of notes. */
8c660648
JL
1233
1234/* Delete notes beginning with INSN and put them in the chain
1235 of notes ended by NOTE_LIST.
1236 Returns the insn following the notes. */
1237
1238static rtx
1d088dee 1239unlink_other_notes (rtx insn, rtx tail)
8c660648
JL
1240{
1241 rtx prev = PREV_INSN (insn);
1242
496d7bb0 1243 while (insn != tail && NOTE_NOT_BB_P (insn))
8c660648
JL
1244 {
1245 rtx next = NEXT_INSN (insn);
1246 /* Delete the note from its current position. */
1247 if (prev)
1248 NEXT_INSN (prev) = next;
1249 if (next)
1250 PREV_INSN (next) = prev;
1251
c46a37c4 1252 /* See sched_analyze to see how these are handled. */
496d7bb0 1253 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
8c660648
JL
1254 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
1255 {
1256 /* Insert the note at the end of the notes list. */
1257 PREV_INSN (insn) = note_list;
1258 if (note_list)
1259 NEXT_INSN (note_list) = insn;
1260 note_list = insn;
1261 }
1262
1263 insn = next;
1264 }
1265 return insn;
1266}
1267
1268/* Delete line notes beginning with INSN. Record line-number notes so
1269 they can be reused. Returns the insn following the notes. */
1270
1271static rtx
1d088dee 1272unlink_line_notes (rtx insn, rtx tail)
8c660648
JL
1273{
1274 rtx prev = PREV_INSN (insn);
1275
4b4bf941 1276 while (insn != tail && NOTE_P (insn))
8c660648
JL
1277 {
1278 rtx next = NEXT_INSN (insn);
1279
1280 if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
1281 {
1282 /* Delete the note from its current position. */
1283 if (prev)
1284 NEXT_INSN (prev) = next;
1285 if (next)
1286 PREV_INSN (next) = prev;
1287
1288 /* Record line-number notes so they can be reused. */
1289 LINE_NOTE (insn) = insn;
1290 }
1291 else
1292 prev = insn;
1293
1294 insn = next;
1295 }
1296 return insn;
1297}
1298
496d7bb0
MK
1299/* Return the head and tail pointers of ebb starting at BEG and ending
1300 at END. */
8c660648 1301
b4ead7d4 1302void
496d7bb0
MK
1303get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
1304{
1305 rtx beg_head = BB_HEAD (beg);
1306 rtx beg_tail = BB_END (beg);
1307 rtx end_head = BB_HEAD (end);
1308 rtx end_tail = BB_END (end);
1309
1310 /* Don't include any notes or labels at the beginning of the BEG
1311 basic block, or notes at the end of the END basic blocks. */
1312
1313 if (LABEL_P (beg_head))
1314 beg_head = NEXT_INSN (beg_head);
1315
1316 while (beg_head != beg_tail)
1317 if (NOTE_P (beg_head))
1318 beg_head = NEXT_INSN (beg_head);
1319 else
1320 break;
1321
1322 *headp = beg_head;
1323
1324 if (beg == end)
1325 end_head = beg_head;
1326 else if (LABEL_P (end_head))
1327 end_head = NEXT_INSN (end_head);
1328
1329 while (end_head != end_tail)
1330 if (NOTE_P (end_tail))
1331 end_tail = PREV_INSN (end_tail);
1332 else
1333 break;
8c660648 1334
496d7bb0 1335 *tailp = end_tail;
8c660648
JL
1336}
1337
1708fd40
BS
1338/* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1339
b4ead7d4 1340int
1d088dee 1341no_real_insns_p (rtx head, rtx tail)
1708fd40
BS
1342{
1343 while (head != NEXT_INSN (tail))
1344 {
4b4bf941 1345 if (!NOTE_P (head) && !LABEL_P (head))
1708fd40
BS
1346 return 0;
1347 head = NEXT_INSN (head);
1348 }
1349 return 1;
1350}
1351
79c2ffde
BS
1352/* Delete line notes from one block. Save them so they can be later restored
1353 (in restore_line_notes). HEAD and TAIL are the boundaries of the
1354 block in which notes should be processed. */
8c660648 1355
b4ead7d4 1356void
1d088dee 1357rm_line_notes (rtx head, rtx tail)
8c660648
JL
1358{
1359 rtx next_tail;
8c660648
JL
1360 rtx insn;
1361
8c660648
JL
1362 next_tail = NEXT_INSN (tail);
1363 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1364 {
1365 rtx prev;
1366
1367 /* Farm out notes, and maybe save them in NOTE_LIST.
1368 This is needed to keep the debugger from
1369 getting completely deranged. */
496d7bb0 1370 if (NOTE_NOT_BB_P (insn))
8c660648
JL
1371 {
1372 prev = insn;
1373 insn = unlink_line_notes (insn, next_tail);
1374
535a42b1 1375 gcc_assert (prev != tail && prev != head && insn != next_tail);
8c660648
JL
1376 }
1377 }
1378}
1379
79c2ffde 1380/* Save line number notes for each insn in block B. HEAD and TAIL are
3ef42a0c 1381 the boundaries of the block in which notes should be processed. */
8c660648 1382
b4ead7d4 1383void
1d088dee 1384save_line_notes (int b, rtx head, rtx tail)
8c660648 1385{
8c660648
JL
1386 rtx next_tail;
1387
1388 /* We must use the true line number for the first insn in the block
1389 that was computed and saved at the start of this pass. We can't
1390 use the current line number, because scheduling of the previous
1391 block may have changed the current line number. */
1392
b4ead7d4 1393 rtx line = line_note_head[b];
8c660648
JL
1394 rtx insn;
1395
8c660648
JL
1396 next_tail = NEXT_INSN (tail);
1397
79c2ffde 1398 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4b4bf941 1399 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
8c660648
JL
1400 line = insn;
1401 else
1402 LINE_NOTE (insn) = line;
1403}
1404
14052b68 1405/* After a block was scheduled, insert line notes into the insns list.
79c2ffde 1406 HEAD and TAIL are the boundaries of the block in which notes should
3ef42a0c 1407 be processed. */
8c660648 1408
b4ead7d4 1409void
1d088dee 1410restore_line_notes (rtx head, rtx tail)
8c660648
JL
1411{
1412 rtx line, note, prev, new;
1413 int added_notes = 0;
79c2ffde 1414 rtx next_tail, insn;
8c660648 1415
79c2ffde
BS
1416 head = head;
1417 next_tail = NEXT_INSN (tail);
8c660648
JL
1418
1419 /* Determine the current line-number. We want to know the current
1420 line number of the first insn of the block here, in case it is
1421 different from the true line number that was saved earlier. If
1422 different, then we need a line number note before the first insn
1423 of this block. If it happens to be the same, then we don't want to
1424 emit another line number note here. */
1425 for (line = head; line; line = PREV_INSN (line))
4b4bf941 1426 if (NOTE_P (line) && NOTE_LINE_NUMBER (line) > 0)
8c660648
JL
1427 break;
1428
1429 /* Walk the insns keeping track of the current line-number and inserting
1430 the line-number notes as needed. */
1431 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4b4bf941 1432 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
8c660648
JL
1433 line = insn;
1434 /* This used to emit line number notes before every non-deleted note.
1435 However, this confuses a debugger, because line notes not separated
1436 by real instructions all end up at the same address. I can find no
1437 use for line number notes before other notes, so none are emitted. */
4b4bf941 1438 else if (!NOTE_P (insn)
79c2ffde 1439 && INSN_UID (insn) < old_max_uid
8c660648
JL
1440 && (note = LINE_NOTE (insn)) != 0
1441 && note != line
1442 && (line == 0
6773e15f
PB
1443#ifdef USE_MAPPED_LOCATION
1444 || NOTE_SOURCE_LOCATION (note) != NOTE_SOURCE_LOCATION (line)
1445#else
8c660648 1446 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
6773e15f
PB
1447 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)
1448#endif
1449 ))
8c660648
JL
1450 {
1451 line = note;
1452 prev = PREV_INSN (insn);
1453 if (LINE_NOTE (note))
1454 {
1455 /* Re-use the original line-number note. */
1456 LINE_NOTE (note) = 0;
1457 PREV_INSN (note) = prev;
1458 NEXT_INSN (prev) = note;
1459 PREV_INSN (insn) = note;
1460 NEXT_INSN (note) = insn;
496d7bb0 1461 set_block_for_insn (note, BLOCK_FOR_INSN (insn));
8c660648
JL
1462 }
1463 else
1464 {
1465 added_notes++;
1466 new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
6773e15f 1467#ifndef USE_MAPPED_LOCATION
8c660648 1468 NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
6773e15f 1469#endif
8c660648
JL
1470 }
1471 }
1472 if (sched_verbose && added_notes)
a88f02e7 1473 fprintf (sched_dump, ";; added %d line-number notes\n", added_notes);
8c660648
JL
1474}
1475
1476/* After scheduling the function, delete redundant line notes from the
1477 insns list. */
1478
b4ead7d4 1479void
1d088dee 1480rm_redundant_line_notes (void)
8c660648
JL
1481{
1482 rtx line = 0;
1483 rtx insn = get_insns ();
1484 int active_insn = 0;
1485 int notes = 0;
1486
1487 /* Walk the insns deleting redundant line-number notes. Many of these
1488 are already present. The remainder tend to occur at basic
1489 block boundaries. */
1490 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
4b4bf941 1491 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
8c660648
JL
1492 {
1493 /* If there are no active insns following, INSN is redundant. */
1494 if (active_insn == 0)
1495 {
1496 notes++;
6773e15f 1497 SET_INSN_DELETED (insn);
8c660648
JL
1498 }
1499 /* If the line number is unchanged, LINE is redundant. */
1500 else if (line
6773e15f
PB
1501#ifdef USE_MAPPED_LOCATION
1502 && NOTE_SOURCE_LOCATION (line) == NOTE_SOURCE_LOCATION (insn)
1503#else
8c660648 1504 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
6773e15f
PB
1505 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn)
1506#endif
1507)
8c660648
JL
1508 {
1509 notes++;
6773e15f 1510 SET_INSN_DELETED (line);
8c660648
JL
1511 line = insn;
1512 }
1513 else
1514 line = insn;
1515 active_insn = 0;
1516 }
4b4bf941 1517 else if (!((NOTE_P (insn)
8c660648 1518 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
4b4bf941 1519 || (NONJUMP_INSN_P (insn)
8c660648
JL
1520 && (GET_CODE (PATTERN (insn)) == USE
1521 || GET_CODE (PATTERN (insn)) == CLOBBER))))
1522 active_insn++;
1523
1524 if (sched_verbose && notes)
a88f02e7 1525 fprintf (sched_dump, ";; deleted %d line-number notes\n", notes);
8c660648
JL
1526}
1527
79c2ffde 1528/* Delete notes between HEAD and TAIL and put them in the chain
8c660648
JL
1529 of notes ended by NOTE_LIST. */
1530
b4ead7d4 1531void
1d088dee 1532rm_other_notes (rtx head, rtx tail)
8c660648
JL
1533{
1534 rtx next_tail;
1535 rtx insn;
1536
b4ead7d4 1537 note_list = 0;
2c3c49de 1538 if (head == tail && (! INSN_P (head)))
8c660648
JL
1539 return;
1540
1541 next_tail = NEXT_INSN (tail);
1542 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1543 {
1544 rtx prev;
1545
1546 /* Farm out notes, and maybe save them in NOTE_LIST.
1547 This is needed to keep the debugger from
1548 getting completely deranged. */
496d7bb0 1549 if (NOTE_NOT_BB_P (insn))
8c660648
JL
1550 {
1551 prev = insn;
1552
1553 insn = unlink_other_notes (insn, next_tail);
1554
535a42b1 1555 gcc_assert (prev != tail && prev != head && insn != next_tail);
8c660648
JL
1556 }
1557 }
1558}
1559
63de6c74 1560/* Functions for computation of registers live/usage info. */
8c660648 1561
30028c85
VM
1562/* This function looks for a new register being defined.
1563 If the destination register is already used by the source,
32dd366d 1564 a new register is not needed. */
30028c85
VM
1565
1566static int
1d088dee 1567find_set_reg_weight (rtx x)
30028c85
VM
1568{
1569 if (GET_CODE (x) == CLOBBER
1570 && register_operand (SET_DEST (x), VOIDmode))
1571 return 1;
1572 if (GET_CODE (x) == SET
1573 && register_operand (SET_DEST (x), VOIDmode))
1574 {
f8cfc6aa 1575 if (REG_P (SET_DEST (x)))
30028c85
VM
1576 {
1577 if (!reg_mentioned_p (SET_DEST (x), SET_SRC (x)))
1578 return 1;
1579 else
1580 return 0;
1581 }
1582 return 1;
1583 }
1584 return 0;
1585}
1586
c46a37c4 1587/* Calculate INSN_REG_WEIGHT for all insns of a block. */
8c660648
JL
1588
1589static void
496d7bb0 1590find_insn_reg_weight (basic_block bb)
8c660648
JL
1591{
1592 rtx insn, next_tail, head, tail;
8c660648 1593
496d7bb0 1594 get_ebb_head_tail (bb, bb, &head, &tail);
8c660648
JL
1595 next_tail = NEXT_INSN (tail);
1596
1597 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
496d7bb0
MK
1598 find_insn_reg_weight1 (insn);
1599}
8c660648 1600
496d7bb0
MK
1601/* Calculate INSN_REG_WEIGHT for single insntruction.
1602 Separated from find_insn_reg_weight because of need
1603 to initialize new instruction in generate_recovery_code. */
1604static void
1605find_insn_reg_weight1 (rtx insn)
1606{
1607 int reg_weight = 0;
1608 rtx x;
1609
1610 /* Handle register life information. */
1611 if (! INSN_P (insn))
1612 return;
1613
1614 /* Increment weight for each register born here. */
1615 x = PATTERN (insn);
1616 reg_weight += find_set_reg_weight (x);
1617 if (GET_CODE (x) == PARALLEL)
1618 {
1619 int j;
1620 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
8c660648 1621 {
496d7bb0
MK
1622 x = XVECEXP (PATTERN (insn), 0, j);
1623 reg_weight += find_set_reg_weight (x);
8c660648 1624 }
8c660648 1625 }
496d7bb0
MK
1626 /* Decrement weight for each register that dies here. */
1627 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1628 {
1629 if (REG_NOTE_KIND (x) == REG_DEAD
1630 || REG_NOTE_KIND (x) == REG_UNUSED)
1631 reg_weight--;
1632 }
1633
1634 INSN_REG_WEIGHT (insn) = reg_weight;
8c660648
JL
1635}
1636
8c660648
JL
1637/* Move insns that became ready to fire from queue to ready list. */
1638
176f9a7b 1639static void
1d088dee 1640queue_to_ready (struct ready_list *ready)
8c660648
JL
1641{
1642 rtx insn;
1643 rtx link;
1644
1645 q_ptr = NEXT_Q (q_ptr);
1646
1647 /* Add all pending insns that can be scheduled without stalls to the
b4ead7d4
BS
1648 ready list. */
1649 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
1650 {
1651 insn = XEXP (link, 0);
1652 q_size -= 1;
1708fd40 1653
b4ead7d4
BS
1654 if (sched_verbose >= 2)
1655 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1656 (*current_sched_info->print_insn) (insn, 0));
1708fd40 1657
63f54b1a 1658 ready_add (ready, insn, false);
b4ead7d4
BS
1659 if (sched_verbose >= 2)
1660 fprintf (sched_dump, "moving to ready without stalls\n");
1708fd40 1661 }
63f54b1a 1662 free_INSN_LIST_list (&insn_queue[q_ptr]);
b4ead7d4
BS
1663
1664 /* If there are no ready insns, stall until one is ready and add all
1665 of the pending insns at that point to the ready list. */
1666 if (ready->n_ready == 0)
1708fd40 1667 {
b3694847 1668 int stalls;
1708fd40 1669
fa0aee89 1670 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
b4ead7d4
BS
1671 {
1672 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1673 {
1674 for (; link; link = XEXP (link, 1))
1675 {
1676 insn = XEXP (link, 0);
1677 q_size -= 1;
1708fd40 1678
b4ead7d4
BS
1679 if (sched_verbose >= 2)
1680 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1681 (*current_sched_info->print_insn) (insn, 0));
1708fd40 1682
63f54b1a 1683 ready_add (ready, insn, false);
b4ead7d4
BS
1684 if (sched_verbose >= 2)
1685 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
1686 }
63f54b1a 1687 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
1708fd40 1688
fae15c93
VM
1689 advance_one_cycle ();
1690
1691 break;
b4ead7d4 1692 }
fae15c93
VM
1693
1694 advance_one_cycle ();
b4ead7d4 1695 }
1708fd40 1696
b4ead7d4
BS
1697 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
1698 clock_var += stalls;
1708fd40 1699 }
1708fd40
BS
1700}
1701
569fa502
DN
1702/* Used by early_queue_to_ready. Determines whether it is "ok" to
1703 prematurely move INSN from the queue to the ready list. Currently,
1704 if a target defines the hook 'is_costly_dependence', this function
1705 uses the hook to check whether there exist any dependences which are
1706 considered costly by the target, between INSN and other insns that
1707 have already been scheduled. Dependences are checked up to Y cycles
1708 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
1709 controlling this value.
1710 (Other considerations could be taken into account instead (or in
1711 addition) depending on user flags and target hooks. */
1712
1713static bool
1714ok_for_early_queue_removal (rtx insn)
1715{
1716 int n_cycles;
1717 rtx prev_insn = last_scheduled_insn;
1718
1719 if (targetm.sched.is_costly_dependence)
1720 {
1721 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
1722 {
1723 for ( ; prev_insn; prev_insn = PREV_INSN (prev_insn))
1724 {
1725 rtx dep_link = 0;
1726 int dep_cost;
1727
4b4bf941 1728 if (!NOTE_P (prev_insn))
569fa502
DN
1729 {
1730 dep_link = find_insn_list (insn, INSN_DEPEND (prev_insn));
1731 if (dep_link)
1732 {
1733 dep_cost = insn_cost (prev_insn, dep_link, insn) ;
1734 if (targetm.sched.is_costly_dependence (prev_insn, insn,
1735 dep_link, dep_cost,
1736 flag_sched_stalled_insns_dep - n_cycles))
1737 return false;
1738 }
1739 }
1740
1741 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
1742 break;
1743 }
1744
1745 if (!prev_insn)
1746 break;
1747 prev_insn = PREV_INSN (prev_insn);
1748 }
1749 }
1750
1751 return true;
1752}
1753
1754
1755/* Remove insns from the queue, before they become "ready" with respect
6614fd40 1756 to FU latency considerations. */
569fa502
DN
1757
1758static int
1759early_queue_to_ready (state_t state, struct ready_list *ready)
1760{
1761 rtx insn;
1762 rtx link;
1763 rtx next_link;
1764 rtx prev_link;
1765 bool move_to_ready;
1766 int cost;
1767 state_t temp_state = alloca (dfa_state_size);
1768 int stalls;
1769 int insns_removed = 0;
1770
1771 /*
1772 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
1773 function:
1774
1775 X == 0: There is no limit on how many queued insns can be removed
1776 prematurely. (flag_sched_stalled_insns = -1).
1777
1778 X >= 1: Only X queued insns can be removed prematurely in each
1779 invocation. (flag_sched_stalled_insns = X).
1780
1781 Otherwise: Early queue removal is disabled.
1782 (flag_sched_stalled_insns = 0)
1783 */
1784
1785 if (! flag_sched_stalled_insns)
1786 return 0;
1787
fa0aee89 1788 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
569fa502
DN
1789 {
1790 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1791 {
1792 if (sched_verbose > 6)
1793 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
1794
1795 prev_link = 0;
1796 while (link)
1797 {
1798 next_link = XEXP (link, 1);
1799 insn = XEXP (link, 0);
1800 if (insn && sched_verbose > 6)
1801 print_rtl_single (sched_dump, insn);
1802
1803 memcpy (temp_state, state, dfa_state_size);
1804 if (recog_memoized (insn) < 0)
1805 /* non-negative to indicate that it's not ready
1806 to avoid infinite Q->R->Q->R... */
1807 cost = 0;
1808 else
1809 cost = state_transition (temp_state, insn);
1810
1811 if (sched_verbose >= 6)
1812 fprintf (sched_dump, "transition cost = %d\n", cost);
1813
1814 move_to_ready = false;
1815 if (cost < 0)
1816 {
1817 move_to_ready = ok_for_early_queue_removal (insn);
1818 if (move_to_ready == true)
1819 {
1820 /* move from Q to R */
1821 q_size -= 1;
63f54b1a 1822 ready_add (ready, insn, false);
569fa502
DN
1823
1824 if (prev_link)
1825 XEXP (prev_link, 1) = next_link;
1826 else
1827 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
1828
1829 free_INSN_LIST_node (link);
1830
1831 if (sched_verbose >= 2)
1832 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
1833 (*current_sched_info->print_insn) (insn, 0));
1834
1835 insns_removed++;
1836 if (insns_removed == flag_sched_stalled_insns)
63f54b1a
MK
1837 /* Remove no more than flag_sched_stalled_insns insns
1838 from Q at a time. */
569fa502
DN
1839 return insns_removed;
1840 }
1841 }
1842
1843 if (move_to_ready == false)
1844 prev_link = link;
1845
1846 link = next_link;
1847 } /* while link */
1848 } /* if link */
1849
1850 } /* for stalls.. */
1851
1852 return insns_removed;
1853}
1854
1855
b4ead7d4 1856/* Print the ready list for debugging purposes. Callable from debugger. */
1708fd40 1857
b4ead7d4 1858static void
1d088dee 1859debug_ready_list (struct ready_list *ready)
1708fd40 1860{
b4ead7d4
BS
1861 rtx *p;
1862 int i;
1708fd40 1863
b4ead7d4 1864 if (ready->n_ready == 0)
fae15c93
VM
1865 {
1866 fprintf (sched_dump, "\n");
1867 return;
1868 }
1708fd40 1869
b4ead7d4
BS
1870 p = ready_lastpos (ready);
1871 for (i = 0; i < ready->n_ready; i++)
1872 fprintf (sched_dump, " %s", (*current_sched_info->print_insn) (p[i], 0));
1873 fprintf (sched_dump, "\n");
1874}
1708fd40 1875
570a98eb 1876/* Search INSN for REG_SAVE_NOTE note pairs for
8b96512f 1877 NOTE_INSN_EHREGION_{BEG,END}; and convert them back into
c46a37c4
RH
1878 NOTEs. The REG_SAVE_NOTE note following first one is contains the
1879 saved value for NOTE_BLOCK_NUMBER which is useful for
496d7bb0 1880 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. */
8c660648 1881
496d7bb0
MK
1882static void
1883reemit_notes (rtx insn)
8c660648 1884{
496d7bb0 1885 rtx note, last = insn;
8c660648 1886
8c660648
JL
1887 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1888 {
c46a37c4 1889 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
8c660648 1890 {
b3b42a4d
RK
1891 enum insn_note note_type = INTVAL (XEXP (note, 0));
1892
63f4a88e
JH
1893 last = emit_note_before (note_type, last);
1894 remove_note (insn, note);
8c660648
JL
1895 }
1896 }
8c660648
JL
1897}
1898
496d7bb0
MK
1899/* Move INSN. Reemit notes if needed. Update CFG, if needed. */
1900static void
1901move_insn (rtx insn)
1902{
1903 rtx last = last_scheduled_insn;
c9e03727 1904
496d7bb0
MK
1905 if (PREV_INSN (insn) != last)
1906 {
1907 basic_block bb;
1908 rtx note;
1909 int jump_p = 0;
8c660648 1910
496d7bb0
MK
1911 bb = BLOCK_FOR_INSN (insn);
1912
1913 /* BB_HEAD is either LABEL or NOTE. */
1914 gcc_assert (BB_HEAD (bb) != insn);
1915
1916 if (BB_END (bb) == insn)
1917 /* If this is last instruction in BB, move end marker one
1918 instruction up. */
1919 {
1920 /* Jumps are always placed at the end of basic block. */
1921 jump_p = control_flow_insn_p (insn);
1922
1923 gcc_assert (!jump_p
1924 || ((current_sched_info->flags & SCHED_RGN)
1925 && RECOVERY_BLOCK (insn)
1926 && RECOVERY_BLOCK (insn) != EXIT_BLOCK_PTR)
1927 || (current_sched_info->flags & SCHED_EBB));
1928
1929 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
1930
1931 BB_END (bb) = PREV_INSN (insn);
1932 }
8c660648 1933
496d7bb0 1934 gcc_assert (BB_END (bb) != last);
c9e03727 1935
496d7bb0
MK
1936 if (jump_p)
1937 /* We move the block note along with jump. */
1938 {
1939 /* NT is needed for assertion below. */
1940 rtx nt = current_sched_info->next_tail;
1941
1942 note = NEXT_INSN (insn);
1943 while (NOTE_NOT_BB_P (note) && note != nt)
1944 note = NEXT_INSN (note);
1945
1946 if (note != nt
1947 && (LABEL_P (note)
1948 || BARRIER_P (note)))
1949 note = NEXT_INSN (note);
1950
1951 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
1952 }
1953 else
1954 note = insn;
1955
1956 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
1957 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
1958
1959 NEXT_INSN (note) = NEXT_INSN (last);
1960 PREV_INSN (NEXT_INSN (last)) = note;
c9e03727 1961
496d7bb0
MK
1962 NEXT_INSN (last) = insn;
1963 PREV_INSN (insn) = last;
1964
1965 bb = BLOCK_FOR_INSN (last);
1966
1967 if (jump_p)
1968 {
1969 fix_jump_move (insn);
1970
1971 if (BLOCK_FOR_INSN (insn) != bb)
1972 move_block_after_check (insn);
1973
1974 gcc_assert (BB_END (bb) == last);
1975 }
1976
1977 set_block_for_insn (insn, bb);
1978
1979 /* Update BB_END, if needed. */
1980 if (BB_END (bb) == last)
1981 BB_END (bb) = insn;
1982 }
1983
1984 reemit_notes (insn);
58fb7809 1985
496d7bb0 1986 SCHED_GROUP_P (insn) = 0;
8c660648
JL
1987}
1988
30028c85
VM
1989/* The following structure describe an entry of the stack of choices. */
1990struct choice_entry
1991{
1992 /* Ordinal number of the issued insn in the ready queue. */
1993 int index;
1994 /* The number of the rest insns whose issues we should try. */
1995 int rest;
1996 /* The number of issued essential insns. */
1997 int n;
1998 /* State after issuing the insn. */
1999 state_t state;
2000};
2001
2002/* The following array is used to implement a stack of choices used in
2003 function max_issue. */
2004static struct choice_entry *choice_stack;
2005
2006/* The following variable value is number of essential insns issued on
2007 the current cycle. An insn is essential one if it changes the
2008 processors state. */
2009static int cycle_issued_insns;
2010
880efc46
VM
2011/* The following variable value is maximal number of tries of issuing
2012 insns for the first cycle multipass insn scheduling. We define
2013 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
2014 need this constraint if all real insns (with non-negative codes)
2015 had reservations because in this case the algorithm complexity is
2016 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
2017 might be incomplete and such insn might occur. For such
2018 descriptions, the complexity of algorithm (without the constraint)
2019 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
2020static int max_lookahead_tries;
2021
2022/* The following value is value of hook
2023 `first_cycle_multipass_dfa_lookahead' at the last call of
2024 `max_issue'. */
2025static int cached_first_cycle_multipass_dfa_lookahead = 0;
2026
2027/* The following value is value of `issue_rate' at the last call of
2028 `sched_init'. */
2029static int cached_issue_rate = 0;
2030
fae15c93
VM
2031/* The following function returns maximal (or close to maximal) number
2032 of insns which can be issued on the same cycle and one of which
30028c85 2033 insns is insns with the best rank (the first insn in READY). To
fae15c93
VM
2034 make this function tries different samples of ready insns. READY
2035 is current queue `ready'. Global array READY_TRY reflects what
496d7bb0
MK
2036 insns are already issued in this try. MAX_POINTS is the sum of points
2037 of all instructions in READY. The function stops immediatelly,
2038 if it reached the such a solution, that all instruction can be issued.
2039 INDEX will contain index of the best insn in READY. The following
2040 function is used only for first cycle multipass scheduling. */
fae15c93 2041static int
496d7bb0 2042max_issue (struct ready_list *ready, int *index, int max_points)
fae15c93 2043{
496d7bb0 2044 int n, i, all, n_ready, best, delay, tries_num, points = -1;
30028c85 2045 struct choice_entry *top;
fae15c93 2046 rtx insn;
fae15c93 2047
fae15c93 2048 best = 0;
30028c85
VM
2049 memcpy (choice_stack->state, curr_state, dfa_state_size);
2050 top = choice_stack;
880efc46 2051 top->rest = cached_first_cycle_multipass_dfa_lookahead;
30028c85
VM
2052 top->n = 0;
2053 n_ready = ready->n_ready;
2054 for (all = i = 0; i < n_ready; i++)
fae15c93 2055 if (!ready_try [i])
30028c85
VM
2056 all++;
2057 i = 0;
880efc46 2058 tries_num = 0;
30028c85
VM
2059 for (;;)
2060 {
2061 if (top->rest == 0 || i >= n_ready)
2062 {
2063 if (top == choice_stack)
2064 break;
2065 if (best < top - choice_stack && ready_try [0])
2066 {
2067 best = top - choice_stack;
2068 *index = choice_stack [1].index;
496d7bb0
MK
2069 points = top->n;
2070 if (top->n == max_points || best == all)
30028c85
VM
2071 break;
2072 }
2073 i = top->index;
2074 ready_try [i] = 0;
2075 top--;
2076 memcpy (curr_state, top->state, dfa_state_size);
2077 }
2078 else if (!ready_try [i])
2079 {
880efc46
VM
2080 tries_num++;
2081 if (tries_num > max_lookahead_tries)
2082 break;
30028c85
VM
2083 insn = ready_element (ready, i);
2084 delay = state_transition (curr_state, insn);
2085 if (delay < 0)
2086 {
2087 if (state_dead_lock_p (curr_state))
2088 top->rest = 0;
2089 else
2090 top->rest--;
2091 n = top->n;
2092 if (memcmp (top->state, curr_state, dfa_state_size) != 0)
496d7bb0 2093 n += ISSUE_POINTS (insn);
30028c85 2094 top++;
880efc46 2095 top->rest = cached_first_cycle_multipass_dfa_lookahead;
30028c85
VM
2096 top->index = i;
2097 top->n = n;
2098 memcpy (top->state, curr_state, dfa_state_size);
2099 ready_try [i] = 1;
2100 i = -1;
2101 }
2102 }
2103 i++;
2104 }
2105 while (top != choice_stack)
2106 {
2107 ready_try [top->index] = 0;
2108 top--;
2109 }
496d7bb0
MK
2110 memcpy (curr_state, choice_stack->state, dfa_state_size);
2111
2112 if (sched_verbose >= 4)
2113 fprintf (sched_dump, ";;\t\tChoosed insn : %s; points: %d/%d\n",
2114 (*current_sched_info->print_insn) (ready_element (ready, *index),
2115 0),
2116 points, max_points);
2117
fae15c93
VM
2118 return best;
2119}
2120
2121/* The following function chooses insn from READY and modifies
2122 *N_READY and READY. The following function is used only for first
2123 cycle multipass scheduling. */
2124
2125static rtx
1d088dee 2126choose_ready (struct ready_list *ready)
fae15c93 2127{
880efc46
VM
2128 int lookahead = 0;
2129
2130 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
5fd9b178 2131 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
880efc46 2132 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0)))
fae15c93
VM
2133 return ready_remove_first (ready);
2134 else
2135 {
2136 /* Try to choose the better insn. */
496d7bb0 2137 int index = 0, i, n;
30028c85 2138 rtx insn;
496d7bb0
MK
2139 int more_issue, max_points, try_data = 1, try_control = 1;
2140
880efc46
VM
2141 if (cached_first_cycle_multipass_dfa_lookahead != lookahead)
2142 {
2143 cached_first_cycle_multipass_dfa_lookahead = lookahead;
2144 max_lookahead_tries = 100;
2145 for (i = 0; i < issue_rate; i++)
2146 max_lookahead_tries *= lookahead;
2147 }
30028c85
VM
2148 insn = ready_element (ready, 0);
2149 if (INSN_CODE (insn) < 0)
2150 return ready_remove_first (ready);
496d7bb0
MK
2151
2152 if (spec_info
2153 && spec_info->flags & (PREFER_NON_DATA_SPEC
2154 | PREFER_NON_CONTROL_SPEC))
2155 {
2156 rtx x;
2157 int s;
2158
2159 for (i = 0, n = ready->n_ready; i < n; i++)
2160 {
2161 x = ready_element (ready, i);
2162 s = TODO_SPEC (x);
2163
2164 if (spec_info->flags & PREFER_NON_DATA_SPEC
2165 && !(s & DATA_SPEC))
2166 {
2167 try_data = 0;
2168 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
2169 || !try_control)
2170 break;
2171 }
2172
2173 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
2174 && !(s & CONTROL_SPEC))
2175 {
2176 try_control = 0;
2177 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
2178 break;
2179 }
2180 }
2181 }
2182
2183 if ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
2184 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC))
2185 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
2186 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
2187 (insn)))
2188 {
2189 change_queue_index (insn, 1);
2190 return 0;
2191 }
2192
2193 max_points = ISSUE_POINTS (insn);
2194 more_issue = issue_rate - cycle_issued_insns - 1;
2195
30028c85
VM
2196 for (i = 1; i < ready->n_ready; i++)
2197 {
2198 insn = ready_element (ready, i);
2199 ready_try [i]
2200 = (INSN_CODE (insn) < 0
496d7bb0
MK
2201 || (!try_data && (TODO_SPEC (insn) & DATA_SPEC))
2202 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC))
30028c85 2203 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
496d7bb0
MK
2204 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2205 (insn)));
2206
2207 if (!ready_try [i] && more_issue-- > 0)
2208 max_points += ISSUE_POINTS (insn);
30028c85 2209 }
496d7bb0
MK
2210
2211 if (max_issue (ready, &index, max_points) == 0)
fae15c93
VM
2212 return ready_remove_first (ready);
2213 else
2214 return ready_remove (ready, index);
2215 }
2216}
2217
496d7bb0
MK
2218/* Use forward list scheduling to rearrange insns of block pointed to by
2219 TARGET_BB, possibly bringing insns from subsequent blocks in the same
2220 region. */
8c660648 2221
b4ead7d4 2222void
496d7bb0 2223schedule_block (basic_block *target_bb, int rgn_n_insns1)
8c660648 2224{
176f9a7b 2225 struct ready_list ready;
30028c85 2226 int i, first_cycle_insn_p;
8c660648 2227 int can_issue_more;
fae15c93 2228 state_t temp_state = NULL; /* It is used for multipass scheduling. */
58fb7809 2229 int sort_p, advance, start_clock_var;
8c660648 2230
63de6c74 2231 /* Head/tail info for this block. */
1708fd40
BS
2232 rtx prev_head = current_sched_info->prev_head;
2233 rtx next_tail = current_sched_info->next_tail;
2234 rtx head = NEXT_INSN (prev_head);
2235 rtx tail = PREV_INSN (next_tail);
8c660648 2236
484df988
JL
2237 /* We used to have code to avoid getting parameters moved from hard
2238 argument registers into pseudos.
8c660648 2239
484df988
JL
2240 However, it was removed when it proved to be of marginal benefit
2241 and caused problems because schedule_block and compute_forward_dependences
2242 had different notions of what the "head" insn was. */
8c660648 2243
535a42b1 2244 gcc_assert (head != tail || INSN_P (head));
8c660648 2245
496d7bb0
MK
2246 added_recovery_block_p = false;
2247
63de6c74 2248 /* Debug info. */
8c660648 2249 if (sched_verbose)
496d7bb0 2250 dump_new_block_header (0, *target_bb, head, tail);
8c660648 2251
fa0aee89 2252 state_reset (curr_state);
8c660648 2253
63de6c74 2254 /* Allocate the ready list. */
63f54b1a 2255 readyp = &ready;
496d7bb0
MK
2256 ready.vec = NULL;
2257 ready_try = NULL;
2258 choice_stack = NULL;
2259
2260 rgn_n_insns = -1;
2261 extend_ready (rgn_n_insns1 + 1);
2262
176f9a7b 2263 ready.first = ready.veclen - 1;
176f9a7b 2264 ready.n_ready = 0;
8c660648 2265
fa0aee89
PB
2266 /* It is used for first cycle multipass scheduling. */
2267 temp_state = alloca (dfa_state_size);
fae15c93 2268
c237e94a 2269 if (targetm.sched.md_init)
5fd9b178 2270 targetm.sched.md_init (sched_dump, sched_verbose, ready.veclen);
e4da5f6d 2271
89076bb3
RH
2272 /* We start inserting insns after PREV_HEAD. */
2273 last_scheduled_insn = prev_head;
8c660648 2274
496d7bb0
MK
2275 gcc_assert (NOTE_P (last_scheduled_insn)
2276 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
2277
1708fd40
BS
2278 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
2279 queue. */
8c660648
JL
2280 q_ptr = 0;
2281 q_size = 0;
fae15c93 2282
fa0aee89
PB
2283 insn_queue = alloca ((max_insn_queue_index + 1) * sizeof (rtx));
2284 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
8c660648 2285
197043f5
RH
2286 /* Start just before the beginning of time. */
2287 clock_var = -1;
63f54b1a
MK
2288
2289 /* We need queue and ready lists and clock_var be initialized
2290 in try_ready () (which is called through init_ready_list ()). */
2291 (*current_sched_info->init_ready_list) ();
2292
496d7bb0
MK
2293 /* Now we can restore basic block notes and maintain precise cfg. */
2294 restore_bb_notes (*target_bb);
2295
63f54b1a
MK
2296 last_clock_var = -1;
2297
58fb7809 2298 advance = 0;
197043f5 2299
30028c85 2300 sort_p = TRUE;
63de6c74 2301 /* Loop until all the insns in BB are scheduled. */
1708fd40 2302 while ((*current_sched_info->schedule_more_p) ())
8c660648 2303 {
58fb7809 2304 do
8c660648 2305 {
58fb7809
VM
2306 start_clock_var = clock_var;
2307
2308 clock_var++;
1d088dee 2309
58fb7809 2310 advance_one_cycle ();
1d088dee 2311
58fb7809
VM
2312 /* Add to the ready list all pending insns that can be issued now.
2313 If there are no ready insns, increment clock until one
2314 is ready and add all pending insns at that point to the ready
2315 list. */
2316 queue_to_ready (&ready);
1d088dee 2317
535a42b1 2318 gcc_assert (ready.n_ready);
1d088dee 2319
58fb7809
VM
2320 if (sched_verbose >= 2)
2321 {
2322 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
2323 debug_ready_list (&ready);
2324 }
2325 advance -= clock_var - start_clock_var;
8c660648 2326 }
58fb7809 2327 while (advance > 0);
8c660648 2328
30028c85
VM
2329 if (sort_p)
2330 {
2331 /* Sort the ready list based on priority. */
2332 ready_sort (&ready);
1d088dee 2333
30028c85
VM
2334 if (sched_verbose >= 2)
2335 {
2336 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
2337 debug_ready_list (&ready);
2338 }
2339 }
197043f5 2340
b4ead7d4
BS
2341 /* Allow the target to reorder the list, typically for
2342 better instruction bundling. */
14484a78 2343 if (sort_p && targetm.sched.reorder
58fb7809
VM
2344 && (ready.n_ready == 0
2345 || !SCHED_GROUP_P (ready_element (&ready, 0))))
c237e94a 2346 can_issue_more =
5fd9b178
KH
2347 targetm.sched.reorder (sched_dump, sched_verbose,
2348 ready_lastpos (&ready),
2349 &ready.n_ready, clock_var);
c237e94a
ZW
2350 else
2351 can_issue_more = issue_rate;
e1306f49 2352
fae15c93 2353 first_cycle_insn_p = 1;
30028c85 2354 cycle_issued_insns = 0;
fae15c93 2355 for (;;)
e1306f49 2356 {
fae15c93
VM
2357 rtx insn;
2358 int cost;
d57f1617 2359 bool asm_p = false;
fae15c93 2360
6d0de005 2361 if (sched_verbose >= 2)
fae15c93 2362 {
496d7bb0 2363 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
fae15c93
VM
2364 clock_var);
2365 debug_ready_list (&ready);
2366 }
2367
fa0aee89
PB
2368 if (ready.n_ready == 0
2369 && can_issue_more
2370 && reload_completed)
fae15c93 2371 {
fa0aee89
PB
2372 /* Allow scheduling insns directly from the queue in case
2373 there's nothing better to do (ready list is empty) but
2374 there are still vacant dispatch slots in the current cycle. */
2375 if (sched_verbose >= 6)
2376 fprintf(sched_dump,";;\t\tSecond chance\n");
2377 memcpy (temp_state, curr_state, dfa_state_size);
2378 if (early_queue_to_ready (temp_state, &ready))
2379 ready_sort (&ready);
fae15c93 2380 }
569fa502 2381
fa0aee89
PB
2382 if (ready.n_ready == 0 || !can_issue_more
2383 || state_dead_lock_p (curr_state)
2384 || !(*current_sched_info->schedule_more_p) ())
2385 break;
1d088dee 2386
fa0aee89
PB
2387 /* Select and remove the insn from the ready list. */
2388 if (sort_p)
496d7bb0
MK
2389 {
2390 insn = choose_ready (&ready);
2391 if (!insn)
2392 continue;
2393 }
fa0aee89
PB
2394 else
2395 insn = ready_remove_first (&ready);
1d088dee 2396
fa0aee89
PB
2397 if (targetm.sched.dfa_new_cycle
2398 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
2399 insn, last_clock_var,
2400 clock_var, &sort_p))
63f54b1a
MK
2401 /* SORT_P is used by the target to override sorting
2402 of the ready list. This is needed when the target
2403 has modified its internal structures expecting that
2404 the insn will be issued next. As we need the insn
2405 to have the highest priority (so it will be returned by
2406 the ready_remove_first call above), we invoke
2407 ready_add (&ready, insn, true).
2408 But, still, there is one issue: INSN can be later
2409 discarded by scheduler's front end through
2410 current_sched_info->can_schedule_ready_p, hence, won't
2411 be issued next. */
fa0aee89 2412 {
63f54b1a
MK
2413 ready_add (&ready, insn, true);
2414 break;
fa0aee89 2415 }
1d088dee 2416
fa0aee89
PB
2417 sort_p = TRUE;
2418 memcpy (temp_state, curr_state, dfa_state_size);
2419 if (recog_memoized (insn) < 0)
2420 {
2421 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
2422 || asm_noperands (PATTERN (insn)) >= 0);
2423 if (!first_cycle_insn_p && asm_p)
2424 /* This is asm insn which is tryed to be issued on the
2425 cycle not first. Issue it on the next cycle. */
2426 cost = 1;
fae15c93 2427 else
fa0aee89
PB
2428 /* A USE insn, or something else we don't need to
2429 understand. We can't pass these directly to
2430 state_transition because it will trigger a
2431 fatal error for unrecognizable insns. */
2432 cost = 0;
2433 }
2434 else
2435 {
2436 cost = state_transition (temp_state, insn);
2437 if (cost < 0)
2438 cost = 0;
2439 else if (cost == 0)
2440 cost = 1;
fae15c93 2441 }
e1306f49 2442
b4ead7d4
BS
2443 if (cost >= 1)
2444 {
2445 queue_insn (insn, cost);
dab80c81
AK
2446 if (SCHED_GROUP_P (insn))
2447 {
2448 advance = cost;
2449 break;
2450 }
2451
b4ead7d4
BS
2452 continue;
2453 }
e1306f49 2454
496d7bb0
MK
2455 if (current_sched_info->can_schedule_ready_p
2456 && ! (*current_sched_info->can_schedule_ready_p) (insn))
2457 /* We normally get here only if we don't want to move
2458 insn from the split block. */
2459 {
2460 TODO_SPEC (insn) = (TODO_SPEC (insn) & ~SPECULATIVE) | HARD_DEP;
2461 continue;
2462 }
2463
2464 /* DECISSION is made. */
2465
2466 if (TODO_SPEC (insn) & SPECULATIVE)
2467 generate_recovery_code (insn);
2468
2469 if (control_flow_insn_p (last_scheduled_insn)
2470 /* This is used to to switch basic blocks by request
2471 from scheduler front-end (actually, sched-ebb.c only).
2472 This is used to process blocks with single fallthru
2473 edge. If successing block has jump, it [jump] will try
2474 move at the end of current bb, thus corrupting CFG. */
2475 || current_sched_info->advance_target_bb (*target_bb, insn))
2476 {
2477 *target_bb = current_sched_info->advance_target_bb
2478 (*target_bb, 0);
2479
2480 if (sched_verbose)
2481 {
2482 rtx x;
8c660648 2483
496d7bb0
MK
2484 x = next_real_insn (last_scheduled_insn);
2485 gcc_assert (x);
2486 dump_new_block_header (1, *target_bb, x, tail);
2487 }
8c660648 2488
496d7bb0
MK
2489 last_scheduled_insn = bb_note (*target_bb);
2490 }
2491
2492 /* Update counters, etc in the scheduler's front end. */
2493 (*current_sched_info->begin_schedule_ready) (insn,
2494 last_scheduled_insn);
2495
2496 move_insn (insn);
2497 last_scheduled_insn = insn;
2498
fa0aee89 2499 if (memcmp (curr_state, temp_state, dfa_state_size) != 0)
63f54b1a
MK
2500 {
2501 cycle_issued_insns++;
2502 memcpy (curr_state, temp_state, dfa_state_size);
2503 }
1d088dee 2504
c237e94a
ZW
2505 if (targetm.sched.variable_issue)
2506 can_issue_more =
5fd9b178 2507 targetm.sched.variable_issue (sched_dump, sched_verbose,
c237e94a 2508 insn, can_issue_more);
85d69216
JL
2509 /* A naked CLOBBER or USE generates no instruction, so do
2510 not count them against the issue rate. */
2511 else if (GET_CODE (PATTERN (insn)) != USE
2512 && GET_CODE (PATTERN (insn)) != CLOBBER)
c237e94a 2513 can_issue_more--;
8c660648 2514
63f54b1a 2515 advance = schedule_insn (insn);
d57f1617
VM
2516
2517 /* After issuing an asm insn we should start a new cycle. */
2518 if (advance == 0 && asm_p)
2519 advance = 1;
58fb7809
VM
2520 if (advance != 0)
2521 break;
8c660648 2522
fae15c93
VM
2523 first_cycle_insn_p = 0;
2524
30028c85
VM
2525 /* Sort the ready list based on priority. This must be
2526 redone here, as schedule_insn may have readied additional
32dd366d 2527 insns that will not be sorted correctly. */
30028c85
VM
2528 if (ready.n_ready > 0)
2529 ready_sort (&ready);
2530
58fb7809
VM
2531 if (targetm.sched.reorder2
2532 && (ready.n_ready == 0
2533 || !SCHED_GROUP_P (ready_element (&ready, 0))))
c237e94a 2534 {
c237e94a 2535 can_issue_more =
5fd9b178
KH
2536 targetm.sched.reorder2 (sched_dump, sched_verbose,
2537 ready.n_ready
2538 ? ready_lastpos (&ready) : NULL,
2539 &ready.n_ready, clock_var);
c237e94a 2540 }
b4ead7d4 2541 }
b4ead7d4 2542 }
8c660648 2543
b4ead7d4
BS
2544 /* Debug info. */
2545 if (sched_verbose)
2546 {
2547 fprintf (sched_dump, ";;\tReady list (final): ");
2548 debug_ready_list (&ready);
b4ead7d4 2549 }
8c660648 2550
63f54b1a
MK
2551 if (current_sched_info->queue_must_finish_empty)
2552 /* Sanity check -- queue must be empty now. Meaningless if region has
2553 multiple bbs. */
2554 gcc_assert (!q_size && !ready.n_ready);
2555 else
30028c85 2556 {
63f54b1a
MK
2557 /* We must maintain QUEUE_INDEX between blocks in region. */
2558 for (i = ready.n_ready - 1; i >= 0; i--)
496d7bb0
MK
2559 {
2560 rtx x;
2561
2562 x = ready_element (&ready, i);
2563 QUEUE_INDEX (x) = QUEUE_NOWHERE;
2564 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
2565 }
63f54b1a
MK
2566
2567 if (q_size)
2568 for (i = 0; i <= max_insn_queue_index; i++)
2569 {
2570 rtx link;
2571 for (link = insn_queue[i]; link; link = XEXP (link, 1))
496d7bb0
MK
2572 {
2573 rtx x;
2574
2575 x = XEXP (link, 0);
2576 QUEUE_INDEX (x) = QUEUE_NOWHERE;
2577 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
2578 }
63f54b1a
MK
2579 free_INSN_LIST_list (&insn_queue[i]);
2580 }
496d7bb0 2581 }
1d088dee 2582
496d7bb0
MK
2583 if (!current_sched_info->queue_must_finish_empty
2584 || added_recovery_block_p)
2585 {
30028c85
VM
2586 /* INSN_TICK (minimum clock tick at which the insn becomes
2587 ready) may be not correct for the insn in the subsequent
2588 blocks of the region. We should use a correct value of
2589 `clock_var' or modify INSN_TICK. It is better to keep
2590 clock_var value equal to 0 at the start of a basic block.
2591 Therefore we modify INSN_TICK here. */
63f54b1a 2592 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
30028c85
VM
2593 }
2594
496d7bb0
MK
2595#ifdef ENABLE_CHECKING
2596 /* After the reload the ia64 backend doesn't maintain BB_END, so
2597 if we want to check anything, better do it now.
2598 And it already clobbered previously scheduled code. */
2599 if (reload_completed)
2600 check_cfg (BB_HEAD (BLOCK_FOR_INSN (prev_head)), 0);
2601#endif
2602
63f54b1a
MK
2603 if (targetm.sched.md_finish)
2604 targetm.sched.md_finish (sched_dump, sched_verbose);
2605
2606 /* Update head/tail boundaries. */
2607 head = NEXT_INSN (prev_head);
2608 tail = last_scheduled_insn;
2609
d73b1f07
RH
2610 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
2611 previously found among the insns. Insert them at the beginning
2612 of the insns. */
2613 if (note_list != 0)
2614 {
496d7bb0 2615 basic_block head_bb = BLOCK_FOR_INSN (head);
d73b1f07
RH
2616 rtx note_head = note_list;
2617
2618 while (PREV_INSN (note_head))
2619 {
496d7bb0 2620 set_block_for_insn (note_head, head_bb);
d73b1f07
RH
2621 note_head = PREV_INSN (note_head);
2622 }
496d7bb0
MK
2623 /* In the above cycle we've missed this note: */
2624 set_block_for_insn (note_head, head_bb);
d73b1f07
RH
2625
2626 PREV_INSN (note_head) = PREV_INSN (head);
2627 NEXT_INSN (PREV_INSN (head)) = note_head;
2628 PREV_INSN (head) = note_list;
2629 NEXT_INSN (note_list) = head;
2630 head = note_head;
2631 }
8c660648 2632
b4ead7d4
BS
2633 /* Debugging. */
2634 if (sched_verbose)
8c660648 2635 {
b4ead7d4
BS
2636 fprintf (sched_dump, ";; total time = %d\n;; new head = %d\n",
2637 clock_var, INSN_UID (head));
2638 fprintf (sched_dump, ";; new tail = %d\n\n",
2639 INSN_UID (tail));
b4ead7d4 2640 }
8c660648 2641
b4ead7d4
BS
2642 current_sched_info->head = head;
2643 current_sched_info->tail = tail;
8c660648 2644
b4ead7d4 2645 free (ready.vec);
fae15c93 2646
fa0aee89
PB
2647 free (ready_try);
2648 for (i = 0; i <= rgn_n_insns; i++)
2649 free (choice_stack [i].state);
2650 free (choice_stack);
8c660648 2651}
b4ead7d4 2652\f
63de6c74 2653/* Set_priorities: compute priority of each insn in the block. */
8c660648 2654
b4ead7d4 2655int
1d088dee 2656set_priorities (rtx head, rtx tail)
8c660648
JL
2657{
2658 rtx insn;
2659 int n_insn;
79ae11c4
DN
2660 int sched_max_insns_priority =
2661 current_sched_info->sched_max_insns_priority;
8c660648 2662 rtx prev_head;
8c660648 2663
2c3c49de 2664 if (head == tail && (! INSN_P (head)))
8c660648
JL
2665 return 0;
2666
2667 n_insn = 0;
63f54b1a
MK
2668
2669 prev_head = PREV_INSN (head);
8c660648
JL
2670 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
2671 {
63f54b1a 2672 if (!INSN_P (insn))
8c660648
JL
2673 continue;
2674
58fb7809 2675 n_insn++;
8c660648 2676 (void) priority (insn);
79ae11c4
DN
2677
2678 if (INSN_PRIORITY_KNOWN (insn))
2679 sched_max_insns_priority =
2680 MAX (sched_max_insns_priority, INSN_PRIORITY (insn));
8c660648 2681 }
63f54b1a
MK
2682
2683 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
8c660648
JL
2684
2685 return n_insn;
2686}
2687
496d7bb0
MK
2688/* Next LUID to assign to an instruction. */
2689static int luid;
2690
10d22567 2691/* Initialize some global state for the scheduler. */
8c660648 2692
b4ead7d4 2693void
10d22567 2694sched_init (void)
8c660648 2695{
e0082a72 2696 basic_block b;
8c660648 2697 rtx insn;
fae15c93 2698 int i;
8c660648 2699
496d7bb0
MK
2700 /* Switch to working copy of sched_info. */
2701 memcpy (&current_sched_info_var, current_sched_info,
2702 sizeof (current_sched_info_var));
2703 current_sched_info = &current_sched_info_var;
2704
63de6c74 2705 /* Disable speculative loads in their presence if cc0 defined. */
8c660648
JL
2706#ifdef HAVE_cc0
2707 flag_schedule_speculative_load = 0;
2708#endif
2709
63de6c74 2710 /* Set dump and sched_verbose for the desired debugging output. If no
409f8483
DE
2711 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
2712 For -fsched-verbose=N, N>=10, print everything to stderr. */
8c660648
JL
2713 sched_verbose = sched_verbose_param;
2714 if (sched_verbose_param == 0 && dump_file)
2715 sched_verbose = 1;
a88f02e7
BS
2716 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
2717 ? stderr : dump_file);
8c660648 2718
496d7bb0
MK
2719 /* Initialize SPEC_INFO. */
2720 if (targetm.sched.set_sched_flags)
2721 {
2722 spec_info = &spec_info_var;
2723 targetm.sched.set_sched_flags (spec_info);
2724 if (current_sched_info->flags & DO_SPECULATION)
2725 spec_info->weakness_cutoff =
2726 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
2727 else
2728 /* So we won't read anything accidently. */
2729 spec_info = 0;
2730#ifdef ENABLE_CHECKING
2731 check_sched_flags ();
2732#endif
2733 }
2734 else
2735 /* So we won't read anything accidently. */
2736 spec_info = 0;
2737
63de6c74 2738 /* Initialize issue_rate. */
c237e94a 2739 if (targetm.sched.issue_rate)
5fd9b178 2740 issue_rate = targetm.sched.issue_rate ();
c237e94a
ZW
2741 else
2742 issue_rate = 1;
8c660648 2743
880efc46
VM
2744 if (cached_issue_rate != issue_rate)
2745 {
2746 cached_issue_rate = issue_rate;
2747 /* To invalidate max_lookahead_tries: */
2748 cached_first_cycle_multipass_dfa_lookahead = 0;
2749 }
2750
496d7bb0
MK
2751 old_max_uid = 0;
2752 h_i_d = 0;
2753 extend_h_i_d ();
8c660648 2754
fae15c93 2755 for (i = 0; i < old_max_uid; i++)
63f54b1a
MK
2756 {
2757 h_i_d[i].cost = -1;
496d7bb0 2758 h_i_d[i].todo_spec = HARD_DEP;
63f54b1a
MK
2759 h_i_d[i].queue_index = QUEUE_NOWHERE;
2760 h_i_d[i].tick = INVALID_TICK;
2761 h_i_d[i].inter_tick = INVALID_TICK;
2762 }
fae15c93 2763
fa0aee89
PB
2764 if (targetm.sched.init_dfa_pre_cycle_insn)
2765 targetm.sched.init_dfa_pre_cycle_insn ();
1d088dee 2766
fa0aee89
PB
2767 if (targetm.sched.init_dfa_post_cycle_insn)
2768 targetm.sched.init_dfa_post_cycle_insn ();
1d088dee 2769
fa0aee89
PB
2770 dfa_start ();
2771 dfa_state_size = state_size ();
2772 curr_state = xmalloc (dfa_state_size);
fae15c93 2773
f66d83e1 2774 h_i_d[0].luid = 0;
356edbd7 2775 luid = 1;
e0082a72 2776 FOR_EACH_BB (b)
a813c111 2777 for (insn = BB_HEAD (b); ; insn = NEXT_INSN (insn))
8c660648 2778 {
f77e39fc
MM
2779 INSN_LUID (insn) = luid;
2780
2781 /* Increment the next luid, unless this is a note. We don't
2782 really need separate IDs for notes and we don't want to
2783 schedule differently depending on whether or not there are
2784 line-number notes, i.e., depending on whether or not we're
2785 generating debugging information. */
4b4bf941 2786 if (!NOTE_P (insn))
f77e39fc
MM
2787 ++luid;
2788
a813c111 2789 if (insn == BB_END (b))
8c660648
JL
2790 break;
2791 }
7a403706 2792
a88f02e7
BS
2793 init_dependency_caches (luid);
2794
a88f02e7
BS
2795 init_alias_analysis ();
2796
496d7bb0
MK
2797 line_note_head = 0;
2798 old_last_basic_block = 0;
2799 glat_start = 0;
2800 glat_end = 0;
2801 extend_bb (0);
a88f02e7 2802
496d7bb0
MK
2803 if (current_sched_info->flags & USE_GLAT)
2804 init_glat ();
a88f02e7
BS
2805
2806 /* Compute INSN_REG_WEIGHT for all blocks. We must do this before
2807 removing death notes. */
e0082a72 2808 FOR_EACH_BB_REVERSE (b)
496d7bb0 2809 find_insn_reg_weight (b);
58565a33
SKG
2810
2811 if (targetm.sched.md_init_global)
5fd9b178 2812 targetm.sched.md_init_global (sched_dump, sched_verbose, old_max_uid);
496d7bb0
MK
2813
2814 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
2815 before_recovery = 0;
2816
2817#ifdef ENABLE_CHECKING
2818 /* This is used preferably for finding bugs in check_cfg () itself. */
2819 check_cfg (0, 0);
2820#endif
a88f02e7
BS
2821}
2822
b4ead7d4 2823/* Free global data used during insn scheduling. */
8c660648 2824
a88f02e7 2825void
1d088dee 2826sched_finish (void)
a88f02e7 2827{
f66d83e1 2828 free (h_i_d);
fa0aee89
PB
2829 free (curr_state);
2830 dfa_finish ();
b4ead7d4
BS
2831 free_dependency_caches ();
2832 end_alias_analysis ();
496d7bb0
MK
2833 free (line_note_head);
2834 free_glat ();
58565a33
SKG
2835
2836 if (targetm.sched.md_finish_global)
496d7bb0
MK
2837 targetm.sched.md_finish_global (sched_dump, sched_verbose);
2838
2839 if (spec_info && spec_info->dump)
2840 {
2841 char c = reload_completed ? 'a' : 'b';
2842
2843 fprintf (spec_info->dump,
2844 ";; %s:\n", current_function_name ());
2845
2846 fprintf (spec_info->dump,
2847 ";; Procedure %cr-begin-data-spec motions == %d\n",
2848 c, nr_begin_data);
2849 fprintf (spec_info->dump,
2850 ";; Procedure %cr-be-in-data-spec motions == %d\n",
2851 c, nr_be_in_data);
2852 fprintf (spec_info->dump,
2853 ";; Procedure %cr-begin-control-spec motions == %d\n",
2854 c, nr_begin_control);
2855 fprintf (spec_info->dump,
2856 ";; Procedure %cr-be-in-control-spec motions == %d\n",
2857 c, nr_be_in_control);
2858 }
2859
2860#ifdef ENABLE_CHECKING
2861 /* After reload ia64 backend clobbers CFG, so can't check anything. */
2862 if (!reload_completed)
2863 check_cfg (0, 0);
2864#endif
a68e7e6c
PB
2865
2866 current_sched_info = NULL;
8c660648 2867}
63f54b1a
MK
2868
2869/* Fix INSN_TICKs of the instructions in the current block as well as
2870 INSN_TICKs of their dependants.
2871 HEAD and TAIL are the begin and the end of the current scheduled block. */
2872static void
2873fix_inter_tick (rtx head, rtx tail)
2874{
2875 /* Set of instructions with corrected INSN_TICK. */
2876 bitmap_head processed;
2877 int next_clock = clock_var + 1;
2878
2879 bitmap_initialize (&processed, 0);
2880
2881 /* Iterates over scheduled instructions and fix their INSN_TICKs and
2882 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
2883 across different blocks. */
2884 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
2885 {
2886 if (INSN_P (head))
2887 {
2888 int tick;
2889 rtx link;
2890
2891 tick = INSN_TICK (head);
2892 gcc_assert (tick >= MIN_TICK);
2893
2894 /* Fix INSN_TICK of instruction from just scheduled block. */
2895 if (!bitmap_bit_p (&processed, INSN_LUID (head)))
2896 {
2897 bitmap_set_bit (&processed, INSN_LUID (head));
2898 tick -= next_clock;
2899
2900 if (tick < MIN_TICK)
2901 tick = MIN_TICK;
2902
2903 INSN_TICK (head) = tick;
2904 }
2905
2906 for (link = INSN_DEPEND (head); link; link = XEXP (link, 1))
2907 {
2908 rtx next;
2909
2910 next = XEXP (link, 0);
2911 tick = INSN_TICK (next);
2912
2913 if (tick != INVALID_TICK
2914 /* If NEXT has its INSN_TICK calculated, fix it.
2915 If not - it will be properly calculated from
2916 scratch later in fix_tick_ready. */
2917 && !bitmap_bit_p (&processed, INSN_LUID (next)))
2918 {
2919 bitmap_set_bit (&processed, INSN_LUID (next));
2920 tick -= next_clock;
2921
2922 if (tick < MIN_TICK)
2923 tick = MIN_TICK;
2924
2925 if (tick > INTER_TICK (next))
2926 INTER_TICK (next) = tick;
2927 else
2928 tick = INTER_TICK (next);
2929
2930 INSN_TICK (next) = tick;
2931 }
2932 }
2933 }
2934 }
2935 bitmap_clear (&processed);
2936}
2937
2938/* Check if NEXT is ready to be added to the ready or queue list.
2939 If "yes", add it to the proper list.
2940 Returns:
2941 -1 - is not ready yet,
2942 0 - added to the ready list,
2943 0 < N - queued for N cycles. */
2944int
2945try_ready (rtx next)
496d7bb0
MK
2946{
2947 ds_t old_ts, *ts;
2948 rtx link;
63f54b1a 2949
496d7bb0
MK
2950 ts = &TODO_SPEC (next);
2951 old_ts = *ts;
63f54b1a 2952
496d7bb0
MK
2953 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP))
2954 && ((old_ts & HARD_DEP)
2955 || (old_ts & SPECULATIVE)));
2956
2957 if (!(current_sched_info->flags & DO_SPECULATION))
2958 {
2959 if (!LOG_LINKS (next))
2960 *ts &= ~HARD_DEP;
2961 }
2962 else
2963 {
2964 *ts &= ~SPECULATIVE & ~HARD_DEP;
2965
2966 link = LOG_LINKS (next);
2967 if (link)
2968 {
2969 /* LOG_LINKS are maintained sorted.
2970 So if DEP_STATUS of the first dep is SPECULATIVE,
2971 than all other deps are speculative too. */
2972 if (DEP_STATUS (link) & SPECULATIVE)
2973 {
2974 /* Now we've got NEXT with speculative deps only.
2975 1. Look at the deps to see what we have to do.
2976 2. Check if we can do 'todo'. */
2977 *ts = DEP_STATUS (link) & SPECULATIVE;
2978 while ((link = XEXP (link, 1)))
2979 *ts = ds_merge (*ts, DEP_STATUS (link) & SPECULATIVE);
2980
2981 if (dep_weak (*ts) < spec_info->weakness_cutoff)
2982 /* Too few points. */
2983 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
2984 }
2985 else
2986 *ts |= HARD_DEP;
2987 }
2988 }
2989
2990 if (*ts & HARD_DEP)
2991 gcc_assert (*ts == old_ts
2992 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
2993 else if (current_sched_info->new_ready)
2994 *ts = current_sched_info->new_ready (next, *ts);
2995
2996 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
2997 have its original pattern or changed (speculative) one. This is due
2998 to changing ebb in region scheduling.
2999 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
3000 has speculative pattern.
3001
3002 We can't assert (!(*ts & HARD_DEP) || *ts == old_ts) here because
3003 control-speculative NEXT could have been discarded by sched-rgn.c
3004 (the same case as when discarded by can_schedule_ready_p ()). */
3005
3006 if ((*ts & SPECULATIVE)
3007 /* If (old_ts == *ts), then (old_ts & SPECULATIVE) and we don't
3008 need to change anything. */
3009 && *ts != old_ts)
3010 {
3011 int res;
3012 rtx new_pat;
3013
3014 gcc_assert ((*ts & SPECULATIVE) && !(*ts & ~SPECULATIVE));
3015
3016 res = speculate_insn (next, *ts, &new_pat);
3017
3018 switch (res)
3019 {
3020 case -1:
3021 /* It would be nice to change DEP_STATUS of all dependences,
3022 which have ((DEP_STATUS & SPECULATIVE) == *ts) to HARD_DEP,
3023 so we won't reanalyze anything. */
3024 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
3025 break;
3026
3027 case 0:
3028 /* We follow the rule, that every speculative insn
3029 has non-null ORIG_PAT. */
3030 if (!ORIG_PAT (next))
3031 ORIG_PAT (next) = PATTERN (next);
3032 break;
3033
3034 case 1:
3035 if (!ORIG_PAT (next))
3036 /* If we gonna to overwrite the original pattern of insn,
3037 save it. */
3038 ORIG_PAT (next) = PATTERN (next);
3039
3040 change_pattern (next, new_pat);
3041 break;
3042
3043 default:
3044 gcc_unreachable ();
3045 }
3046 }
3047
3048 /* We need to restore pattern only if (*ts == 0), because otherwise it is
3049 either correct (*ts & SPECULATIVE),
3050 or we simply don't care (*ts & HARD_DEP). */
3051
3052 gcc_assert (!ORIG_PAT (next)
3053 || !RECOVERY_BLOCK (next)
3054 || RECOVERY_BLOCK (next) == EXIT_BLOCK_PTR);
3055
3056 if (*ts == 0 && ORIG_PAT (next) && !RECOVERY_BLOCK (next))
3057 /* We should change pattern of every previously speculative
3058 instruction - and we determine if NEXT was speculative by using
3059 ORIG_PAT field. Except one case - simple checks have ORIG_PAT
3060 pat too, hence we also check for the RECOVERY_BLOCK. */
3061 {
3062 change_pattern (next, ORIG_PAT (next));
3063 ORIG_PAT (next) = 0;
3064 }
3065
3066 if (*ts & HARD_DEP)
3067 {
3068 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
3069 control-speculative NEXT could have been discarded by sched-rgn.c
3070 (the same case as when discarded by can_schedule_ready_p ()). */
3071 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
3072
3073 change_queue_index (next, QUEUE_NOWHERE);
3074 return -1;
3075 }
3076
3077 if (sched_verbose >= 2)
3078 {
3079 int s = TODO_SPEC (next);
3080
3081 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
3082 (*current_sched_info->print_insn) (next, 0));
3083
3084 if (spec_info && spec_info->dump)
3085 {
3086 if (s & BEGIN_DATA)
3087 fprintf (spec_info->dump, "; data-spec;");
3088 if (s & BEGIN_CONTROL)
3089 fprintf (spec_info->dump, "; control-spec;");
3090 if (s & BE_IN_CONTROL)
3091 fprintf (spec_info->dump, "; in-control-spec;");
3092 }
3093
3094 fprintf (sched_dump, "\n");
3095 }
3096
3097 adjust_priority (next);
3098
3099 return fix_tick_ready (next);
3100}
3101
3102/* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
3103static int
63f54b1a
MK
3104fix_tick_ready (rtx next)
3105{
3106 rtx link;
3107 int tick, delay;
3108
3109 link = RESOLVED_DEPS (next);
3110
3111 if (link)
3112 {
3113 int full_p;
3114
3115 tick = INSN_TICK (next);
496d7bb0 3116 /* if tick is not equal to INVALID_TICK, then update
63f54b1a
MK
3117 INSN_TICK of NEXT with the most recent resolved dependence
3118 cost. Overwise, recalculate from scratch. */
3119 full_p = tick == INVALID_TICK;
3120 do
3121 {
3122 rtx pro;
3123 int tick1;
3124
3125 pro = XEXP (link, 0);
3126 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
496d7bb0 3127
63f54b1a
MK
3128 tick1 = INSN_TICK (pro) + insn_cost (pro, link, next);
3129 if (tick1 > tick)
3130 tick = tick1;
3131 }
3132 while ((link = XEXP (link, 1)) && full_p);
3133 }
3134 else
3135 tick = -1;
3136
3137 INSN_TICK (next) = tick;
3138
3139 delay = tick - clock_var;
3140 if (delay <= 0)
3141 delay = QUEUE_READY;
3142
3143 change_queue_index (next, delay);
496d7bb0 3144
63f54b1a
MK
3145 return delay;
3146}
3147
3148/* Move NEXT to the proper queue list with (DELAY >= 1),
3149 or add it to the ready list (DELAY == QUEUE_READY),
3150 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
3151static void
3152change_queue_index (rtx next, int delay)
3153{
3154 int i = QUEUE_INDEX (next);
3155
3156 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
3157 && delay != 0);
3158 gcc_assert (i != QUEUE_SCHEDULED);
3159
3160 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
3161 || (delay < 0 && delay == i))
3162 /* We have nothing to do. */
3163 return;
3164
3165 /* Remove NEXT from whereever it is now. */
3166 if (i == QUEUE_READY)
3167 ready_remove_insn (next);
3168 else if (i >= 0)
3169 queue_remove (next);
3170
3171 /* Add it to the proper place. */
3172 if (delay == QUEUE_READY)
3173 ready_add (readyp, next, false);
3174 else if (delay >= 1)
3175 queue_insn (next, delay);
3176
3177 if (sched_verbose >= 2)
3178 {
3179 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
3180 (*current_sched_info->print_insn) (next, 0));
3181
3182 if (delay == QUEUE_READY)
3183 fprintf (sched_dump, " into ready\n");
3184 else if (delay >= 1)
3185 fprintf (sched_dump, " into queue with cost=%d\n", delay);
3186 else
3187 fprintf (sched_dump, " removed from ready or queue lists\n");
3188 }
3189}
3190
3191/* INSN is being scheduled. Resolve the dependence between INSN and NEXT. */
3192static void
3193resolve_dep (rtx next, rtx insn)
3194{
3195 rtx dep;
3196
3197 INSN_DEP_COUNT (next)--;
3198
3199 dep = remove_list_elem (insn, &LOG_LINKS (next));
3200 XEXP (dep, 1) = RESOLVED_DEPS (next);
3201 RESOLVED_DEPS (next) = dep;
3202
3203 gcc_assert ((INSN_DEP_COUNT (next) != 0 || !LOG_LINKS (next))
3204 && (LOG_LINKS (next) || INSN_DEP_COUNT (next) == 0));
3205}
3206
496d7bb0
MK
3207/* Extend H_I_D data. */
3208static void
3209extend_h_i_d (void)
3210{
3211 /* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
3212 pseudos which do not cross calls. */
3213 int new_max_uid = get_max_uid() + 1;
3214
3215 h_i_d = xrecalloc (h_i_d, new_max_uid, old_max_uid, sizeof (*h_i_d));
3216 old_max_uid = new_max_uid;
3217
3218 if (targetm.sched.h_i_d_extended)
3219 targetm.sched.h_i_d_extended ();
3220}
3221
3222/* Extend READY, READY_TRY and CHOICE_STACK arrays.
3223 N_NEW_INSNS is the number of additional elements to allocate. */
3224static void
3225extend_ready (int n_new_insns)
3226{
3227 int i;
3228
3229 readyp->veclen = rgn_n_insns + n_new_insns + 1 + issue_rate;
3230 readyp->vec = XRESIZEVEC (rtx, readyp->vec, readyp->veclen);
3231
3232 ready_try = xrecalloc (ready_try, rgn_n_insns + n_new_insns + 1,
3233 rgn_n_insns + 1, sizeof (char));
3234
3235 rgn_n_insns += n_new_insns;
3236
3237 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
3238 rgn_n_insns + 1);
3239
3240 for (i = rgn_n_insns; n_new_insns--; i--)
3241 choice_stack[i].state = xmalloc (dfa_state_size);
3242}
3243
3244/* Extend global scheduler structures (those, that live across calls to
3245 schedule_block) to include information about just emitted INSN. */
3246static void
3247extend_global (rtx insn)
3248{
3249 gcc_assert (INSN_P (insn));
3250 /* These structures have scheduler scope. */
3251 extend_h_i_d ();
3252 init_h_i_d (insn);
3253
3254 extend_dependency_caches (1, 0);
3255}
3256
3257/* Extends global and local scheduler structures to include information
3258 about just emitted INSN. */
3259static void
3260extend_all (rtx insn)
3261{
3262 extend_global (insn);
3263
3264 /* These structures have block scope. */
3265 extend_ready (1);
3266
3267 (*current_sched_info->add_remove_insn) (insn, 0);
3268}
3269
3270/* Initialize h_i_d entry of the new INSN with default values.
3271 Values, that are not explicitly initialized here, hold zero. */
3272static void
3273init_h_i_d (rtx insn)
3274{
3275 INSN_LUID (insn) = luid++;
3276 INSN_COST (insn) = -1;
3277 TODO_SPEC (insn) = HARD_DEP;
3278 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
3279 INSN_TICK (insn) = INVALID_TICK;
3280 INTER_TICK (insn) = INVALID_TICK;
3281 find_insn_reg_weight1 (insn);
3282}
3283
3284/* Generates recovery code for INSN. */
3285static void
3286generate_recovery_code (rtx insn)
3287{
3288 if (TODO_SPEC (insn) & BEGIN_SPEC)
3289 begin_speculative_block (insn);
3290
3291 /* Here we have insn with no dependencies to
3292 instructions other then CHECK_SPEC ones. */
3293
3294 if (TODO_SPEC (insn) & BE_IN_SPEC)
3295 add_to_speculative_block (insn);
3296}
3297
3298/* Helper function.
3299 Tries to add speculative dependencies of type FS between instructions
3300 in LINK list and TWIN. */
3301static void
3302process_insn_depend_be_in_spec (rtx link, rtx twin, ds_t fs)
3303{
3304 for (; link; link = XEXP (link, 1))
3305 {
3306 ds_t ds;
3307 rtx consumer;
3308
3309 consumer = XEXP (link, 0);
3310
3311 ds = DEP_STATUS (link);
3312
3313 if (fs && (ds & DEP_TYPES) == DEP_TRUE)
3314 ds = (ds & ~BEGIN_SPEC) | fs;
3315
3316 add_back_forw_dep (consumer, twin, REG_NOTE_KIND (link), ds);
3317 }
3318}
3319
3320/* Generates recovery code for BEGIN speculative INSN. */
3321static void
3322begin_speculative_block (rtx insn)
3323{
3324 if (TODO_SPEC (insn) & BEGIN_DATA)
3325 nr_begin_data++;
3326 if (TODO_SPEC (insn) & BEGIN_CONTROL)
3327 nr_begin_control++;
3328
3329 create_check_block_twin (insn, false);
3330
3331 TODO_SPEC (insn) &= ~BEGIN_SPEC;
3332}
3333
3334/* Generates recovery code for BE_IN speculative INSN. */
3335static void
3336add_to_speculative_block (rtx insn)
3337{
3338 ds_t ts;
3339 rtx link, twins = NULL;
3340
3341 ts = TODO_SPEC (insn);
3342 gcc_assert (!(ts & ~BE_IN_SPEC));
3343
3344 if (ts & BE_IN_DATA)
3345 nr_be_in_data++;
3346 if (ts & BE_IN_CONTROL)
3347 nr_be_in_control++;
3348
3349 TODO_SPEC (insn) &= ~BE_IN_SPEC;
3350 gcc_assert (!TODO_SPEC (insn));
3351
3352 DONE_SPEC (insn) |= ts;
3353
3354 /* First we convert all simple checks to branchy. */
3355 for (link = LOG_LINKS (insn); link;)
3356 {
3357 rtx check;
3358
3359 check = XEXP (link, 0);
3360
3361 if (RECOVERY_BLOCK (check))
3362 {
3363 create_check_block_twin (check, true);
3364 link = LOG_LINKS (insn);
3365 }
3366 else
3367 link = XEXP (link, 1);
3368 }
3369
3370 clear_priorities (insn);
3371
3372 do
3373 {
3374 rtx link, check, twin;
3375 basic_block rec;
3376
3377 link = LOG_LINKS (insn);
3378 gcc_assert (!(DEP_STATUS (link) & BEGIN_SPEC)
3379 && (DEP_STATUS (link) & BE_IN_SPEC)
3380 && (DEP_STATUS (link) & DEP_TYPES) == DEP_TRUE);
3381
3382 check = XEXP (link, 0);
3383 gcc_assert (!RECOVERY_BLOCK (check) && !ORIG_PAT (check)
3384 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
3385
3386 rec = BLOCK_FOR_INSN (check);
3387
3388 twin = emit_insn_before (copy_rtx (PATTERN (insn)), BB_END (rec));
3389 extend_global (twin);
3390
3391 RESOLVED_DEPS (twin) = copy_DEPS_LIST_list (RESOLVED_DEPS (insn));
3392
3393 if (sched_verbose && spec_info->dump)
3394 /* INSN_BB (insn) isn't determined for twin insns yet.
3395 So we can't use current_sched_info->print_insn. */
3396 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
3397 INSN_UID (twin), rec->index);
3398
3399 twins = alloc_INSN_LIST (twin, twins);
3400
3401 /* Add dependences between TWIN and all apropriate
3402 instructions from REC. */
3403 do
3404 {
3405 add_back_forw_dep (twin, check, REG_DEP_TRUE, DEP_TRUE);
3406
3407 do
3408 {
3409 link = XEXP (link, 1);
3410 if (link)
3411 {
3412 check = XEXP (link, 0);
3413 if (BLOCK_FOR_INSN (check) == rec)
3414 break;
3415 }
3416 else
3417 break;
3418 }
3419 while (1);
3420 }
3421 while (link);
3422
3423 process_insn_depend_be_in_spec (INSN_DEPEND (insn), twin, ts);
3424
3425 for (link = LOG_LINKS (insn); link;)
3426 {
3427 check = XEXP (link, 0);
3428
3429 if (BLOCK_FOR_INSN (check) == rec)
3430 {
3431 delete_back_forw_dep (insn, check);
3432 link = LOG_LINKS (insn);
3433 }
3434 else
3435 link = XEXP (link, 1);
3436 }
3437 }
3438 while (LOG_LINKS (insn));
3439
3440 /* We can't add the dependence between insn and twin earlier because
3441 that would make twin appear in the INSN_DEPEND (insn). */
3442 while (twins)
3443 {
3444 rtx twin;
3445
3446 twin = XEXP (twins, 0);
3447 calc_priorities (twin);
3448 add_back_forw_dep (twin, insn, REG_DEP_OUTPUT, DEP_OUTPUT);
3449
3450 twin = XEXP (twins, 1);
3451 free_INSN_LIST_node (twins);
3452 twins = twin;
3453 }
3454}
3455
3456/* Extends and fills with zeros (only the new part) array pointed to by P. */
3457void *
3458xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
3459{
3460 gcc_assert (new_nmemb >= old_nmemb);
3461 p = XRESIZEVAR (void, p, new_nmemb * size);
3462 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
3463 return p;
3464}
3465
3466/* Return the probability of speculation success for the speculation
3467 status DS. */
3468static dw_t
3469dep_weak (ds_t ds)
3470{
3471 ds_t res = 1, dt;
3472 int n = 0;
3473
3474 dt = FIRST_SPEC_TYPE;
3475 do
3476 {
3477 if (ds & dt)
3478 {
3479 res *= (ds_t) get_dep_weak (ds, dt);
3480 n++;
3481 }
3482
3483 if (dt == LAST_SPEC_TYPE)
3484 break;
3485 dt <<= SPEC_TYPE_SHIFT;
3486 }
3487 while (1);
3488
3489 gcc_assert (n);
3490 while (--n)
3491 res /= MAX_DEP_WEAK;
3492
3493 if (res < MIN_DEP_WEAK)
3494 res = MIN_DEP_WEAK;
3495
3496 gcc_assert (res <= MAX_DEP_WEAK);
3497
3498 return (dw_t) res;
3499}
3500
3501/* Helper function.
3502 Find fallthru edge from PRED. */
3503static edge
3504find_fallthru_edge (basic_block pred)
3505{
3506 edge e;
3507 edge_iterator ei;
3508 basic_block succ;
3509
3510 succ = pred->next_bb;
3511 gcc_assert (succ->prev_bb == pred);
3512
3513 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
3514 {
3515 FOR_EACH_EDGE (e, ei, pred->succs)
3516 if (e->flags & EDGE_FALLTHRU)
3517 {
3518 gcc_assert (e->dest == succ);
3519 return e;
3520 }
3521 }
3522 else
3523 {
3524 FOR_EACH_EDGE (e, ei, succ->preds)
3525 if (e->flags & EDGE_FALLTHRU)
3526 {
3527 gcc_assert (e->src == pred);
3528 return e;
3529 }
3530 }
3531
3532 return NULL;
3533}
3534
3535/* Initialize BEFORE_RECOVERY variable. */
3536static void
3537init_before_recovery (void)
3538{
3539 basic_block last;
3540 edge e;
3541
3542 last = EXIT_BLOCK_PTR->prev_bb;
3543 e = find_fallthru_edge (last);
3544
3545 if (e)
3546 {
3547 /* We create two basic blocks:
3548 1. Single instruction block is inserted right after E->SRC
3549 and has jump to
3550 2. Empty block right before EXIT_BLOCK.
3551 Between these two blocks recovery blocks will be emitted. */
3552
3553 basic_block single, empty;
3554 rtx x, label;
3555
3556 single = create_empty_bb (last);
3557 empty = create_empty_bb (single);
3558
3559 single->count = last->count;
3560 empty->count = last->count;
3561 single->frequency = last->frequency;
3562 empty->frequency = last->frequency;
3563 BB_COPY_PARTITION (single, last);
3564 BB_COPY_PARTITION (empty, last);
3565
3566 redirect_edge_succ (e, single);
3567 make_single_succ_edge (single, empty, 0);
3568 make_single_succ_edge (empty, EXIT_BLOCK_PTR,
3569 EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
3570
3571 label = block_label (empty);
3572 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
3573 JUMP_LABEL (x) = label;
3574 LABEL_NUSES (label)++;
3575 extend_global (x);
3576
3577 emit_barrier_after (x);
3578
3579 add_block (empty, 0);
3580 add_block (single, 0);
3581
3582 before_recovery = single;
3583
3584 if (sched_verbose >= 2 && spec_info->dump)
3585 fprintf (spec_info->dump,
3586 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
3587 last->index, single->index, empty->index);
3588 }
3589 else
3590 before_recovery = last;
3591}
3592
3593/* Returns new recovery block. */
3594static basic_block
3595create_recovery_block (void)
3596{
3597 rtx label;
3598 basic_block rec;
3599
3600 added_recovery_block_p = true;
3601
3602 if (!before_recovery)
3603 init_before_recovery ();
3604
3605 label = gen_label_rtx ();
3606 gcc_assert (BARRIER_P (NEXT_INSN (BB_END (before_recovery))));
3607 label = emit_label_after (label, NEXT_INSN (BB_END (before_recovery)));
3608
3609 rec = create_basic_block (label, label, before_recovery);
3610 emit_barrier_after (BB_END (rec));
3611
3612 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
3613 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
3614
3615 if (sched_verbose && spec_info->dump)
3616 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
3617 rec->index);
3618
3619 before_recovery = rec;
3620
3621 return rec;
3622}
3623
3624/* This function creates recovery code for INSN. If MUTATE_P is nonzero,
3625 INSN is a simple check, that should be converted to branchy one. */
3626static void
3627create_check_block_twin (rtx insn, bool mutate_p)
3628{
3629 basic_block rec;
3630 rtx label, check, twin, link;
3631 ds_t fs;
3632
3633 gcc_assert (ORIG_PAT (insn)
3634 && (!mutate_p
3635 || (RECOVERY_BLOCK (insn) == EXIT_BLOCK_PTR
3636 && !(TODO_SPEC (insn) & SPECULATIVE))));
3637
3638 /* Create recovery block. */
3639 if (mutate_p || targetm.sched.needs_block_p (insn))
3640 {
3641 rec = create_recovery_block ();
3642 label = BB_HEAD (rec);
3643 }
3644 else
3645 {
3646 rec = EXIT_BLOCK_PTR;
3647 label = 0;
3648 }
3649
3650 /* Emit CHECK. */
3651 check = targetm.sched.gen_check (insn, label, mutate_p);
3652
3653 if (rec != EXIT_BLOCK_PTR)
3654 {
3655 /* To have mem_reg alive at the beginning of second_bb,
3656 we emit check BEFORE insn, so insn after splitting
3657 insn will be at the beginning of second_bb, which will
3658 provide us with the correct life information. */
3659 check = emit_jump_insn_before (check, insn);
3660 JUMP_LABEL (check) = label;
3661 LABEL_NUSES (label)++;
3662 }
3663 else
3664 check = emit_insn_before (check, insn);
3665
3666 /* Extend data structures. */
3667 extend_all (check);
3668 RECOVERY_BLOCK (check) = rec;
3669
3670 if (sched_verbose && spec_info->dump)
3671 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
3672 (*current_sched_info->print_insn) (check, 0));
3673
3674 gcc_assert (ORIG_PAT (insn));
3675
3676 /* Initialize TWIN (twin is a dublicate of original instruction
3677 in the recovery block). */
3678 if (rec != EXIT_BLOCK_PTR)
3679 {
3680 rtx link;
3681
3682 for (link = RESOLVED_DEPS (insn); link; link = XEXP (link, 1))
3683 if (DEP_STATUS (link) & DEP_OUTPUT)
3684 {
3685 RESOLVED_DEPS (check) =
3686 alloc_DEPS_LIST (XEXP (link, 0), RESOLVED_DEPS (check), DEP_TRUE);
3687 PUT_REG_NOTE_KIND (RESOLVED_DEPS (check), REG_DEP_TRUE);
3688 }
3689
3690 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
3691 extend_global (twin);
3692
3693 if (sched_verbose && spec_info->dump)
3694 /* INSN_BB (insn) isn't determined for twin insns yet.
3695 So we can't use current_sched_info->print_insn. */
3696 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
3697 INSN_UID (twin), rec->index);
3698 }
3699 else
3700 {
3701 ORIG_PAT (check) = ORIG_PAT (insn);
3702 HAS_INTERNAL_DEP (check) = 1;
3703 twin = check;
3704 /* ??? We probably should change all OUTPUT dependencies to
3705 (TRUE | OUTPUT). */
3706 }
3707
3708 RESOLVED_DEPS (twin) = copy_DEPS_LIST_list (RESOLVED_DEPS (insn));
3709
3710 if (rec != EXIT_BLOCK_PTR)
3711 /* In case of branchy check, fix CFG. */
3712 {
3713 basic_block first_bb, second_bb;
3714 rtx jump;
3715 edge e;
3716 int edge_flags;
3717
3718 first_bb = BLOCK_FOR_INSN (check);
3719 e = split_block (first_bb, check);
3720 /* split_block emits note if *check == BB_END. Probably it
3721 is better to rip that note off. */
3722 gcc_assert (e->src == first_bb);
3723 second_bb = e->dest;
3724
3725 /* This is fixing of incoming edge. */
3726 /* ??? Which other flags should be specified? */
3727 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
3728 /* Partition type is the same, if it is "unpartitioned". */
3729 edge_flags = EDGE_CROSSING;
3730 else
3731 edge_flags = 0;
3732
3733 e = make_edge (first_bb, rec, edge_flags);
3734
3735 add_block (second_bb, first_bb);
3736
3737 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (second_bb)));
3738 label = block_label (second_bb);
3739 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
3740 JUMP_LABEL (jump) = label;
3741 LABEL_NUSES (label)++;
3742 extend_global (jump);
3743
3744 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
3745 /* Partition type is the same, if it is "unpartitioned". */
3746 {
3747 /* Rewritten from cfgrtl.c. */
3748 if (flag_reorder_blocks_and_partition
3749 && targetm.have_named_sections
3750 /*&& !any_condjump_p (jump)*/)
3751 /* any_condjump_p (jump) == false.
3752 We don't need the same note for the check because
3753 any_condjump_p (check) == true. */
3754 {
3755 REG_NOTES (jump) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
3756 NULL_RTX,
3757 REG_NOTES (jump));
3758 }
3759 edge_flags = EDGE_CROSSING;
3760 }
3761 else
3762 edge_flags = 0;
3763
3764 make_single_succ_edge (rec, second_bb, edge_flags);
3765
3766 add_block (rec, EXIT_BLOCK_PTR);
3767 }
3768
3769 /* Move backward dependences from INSN to CHECK and
3770 move forward dependences from INSN to TWIN. */
3771 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3772 {
3773 ds_t ds;
3774
3775 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
3776 check --TRUE--> producer ??? or ANTI ???
3777 twin --TRUE--> producer
3778 twin --ANTI--> check
3779
3780 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
3781 check --ANTI--> producer
3782 twin --ANTI--> producer
3783 twin --ANTI--> check
3784
3785 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
3786 check ~~TRUE~~> producer
3787 twin ~~TRUE~~> producer
3788 twin --ANTI--> check */
3789
3790 ds = DEP_STATUS (link);
3791
3792 if (ds & BEGIN_SPEC)
3793 {
3794 gcc_assert (!mutate_p);
3795 ds &= ~BEGIN_SPEC;
3796 }
3797
3798 if (rec != EXIT_BLOCK_PTR)
3799 {
3800 add_back_forw_dep (check, XEXP (link, 0), REG_NOTE_KIND (link), ds);
3801 add_back_forw_dep (twin, XEXP (link, 0), REG_NOTE_KIND (link), ds);
3802 }
3803 else
3804 add_back_forw_dep (check, XEXP (link, 0), REG_NOTE_KIND (link), ds);
3805 }
3806
3807 for (link = LOG_LINKS (insn); link;)
3808 if ((DEP_STATUS (link) & BEGIN_SPEC)
3809 || mutate_p)
3810 /* We can delete this dep only if we totally overcome it with
3811 BEGIN_SPECULATION. */
3812 {
3813 delete_back_forw_dep (insn, XEXP (link, 0));
3814 link = LOG_LINKS (insn);
3815 }
3816 else
3817 link = XEXP (link, 1);
3818
3819 fs = 0;
3820
3821 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
3822 here. */
3823
3824 gcc_assert (!DONE_SPEC (insn));
3825
3826 if (!mutate_p)
3827 {
3828 ds_t ts = TODO_SPEC (insn);
3829
3830 DONE_SPEC (insn) = ts & BEGIN_SPEC;
3831 CHECK_SPEC (check) = ts & BEGIN_SPEC;
3832
3833 if (ts & BEGIN_DATA)
3834 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
3835 if (ts & BEGIN_CONTROL)
3836 fs = set_dep_weak (fs, BE_IN_CONTROL, get_dep_weak (ts, BEGIN_CONTROL));
3837 }
3838 else
3839 CHECK_SPEC (check) = CHECK_SPEC (insn);
3840
3841 /* Future speculations: call the helper. */
3842 process_insn_depend_be_in_spec (INSN_DEPEND (insn), twin, fs);
3843
3844 if (rec != EXIT_BLOCK_PTR)
3845 {
3846 /* Which types of dependencies should we use here is,
3847 generally, machine-dependent question... But, for now,
3848 it is not. */
3849
3850 if (!mutate_p)
3851 {
3852 add_back_forw_dep (check, insn, REG_DEP_TRUE, DEP_TRUE);
3853 add_back_forw_dep (twin, insn, REG_DEP_OUTPUT, DEP_OUTPUT);
3854 }
3855 else
3856 {
3857 if (spec_info->dump)
3858 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
3859 (*current_sched_info->print_insn) (insn, 0));
3860
3861 for (link = INSN_DEPEND (insn); link; link = INSN_DEPEND (insn))
3862 delete_back_forw_dep (XEXP (link, 0), insn);
3863
3864 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
3865 try_ready (check);
3866
3867 sched_remove_insn (insn);
3868 }
3869
3870 add_back_forw_dep (twin, check, REG_DEP_ANTI, DEP_ANTI);
3871 }
3872 else
3873 add_back_forw_dep (check, insn, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
3874
3875 if (!mutate_p)
3876 /* Fix priorities. If MUTATE_P is nonzero, this is not neccessary,
3877 because it'll be done later in add_to_speculative_block. */
3878 {
3879 clear_priorities (twin);
3880 calc_priorities (twin);
3881 }
3882}
3883
3884/* Removes dependency between instructions in the recovery block REC
3885 and usual region instructions. It keeps inner dependences so it
3886 won't be neccessary to recompute them. */
3887static void
3888fix_recovery_deps (basic_block rec)
3889{
3890 rtx note, insn, link, jump, ready_list = 0;
3891 bitmap_head in_ready;
3892
3893 bitmap_initialize (&in_ready, 0);
3894
3895 /* NOTE - a basic block note. */
3896 note = NEXT_INSN (BB_HEAD (rec));
3897 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
3898 insn = BB_END (rec);
3899 gcc_assert (JUMP_P (insn));
3900 insn = PREV_INSN (insn);
3901
3902 do
3903 {
3904 for (link = INSN_DEPEND (insn); link;)
3905 {
3906 rtx consumer;
3907
3908 consumer = XEXP (link, 0);
3909
3910 if (BLOCK_FOR_INSN (consumer) != rec)
3911 {
3912 delete_back_forw_dep (consumer, insn);
3913
3914 if (!bitmap_bit_p (&in_ready, INSN_LUID (consumer)))
3915 {
3916 ready_list = alloc_INSN_LIST (consumer, ready_list);
3917 bitmap_set_bit (&in_ready, INSN_LUID (consumer));
3918 }
3919
3920 link = INSN_DEPEND (insn);
3921 }
3922 else
3923 {
3924 gcc_assert ((DEP_STATUS (link) & DEP_TYPES) == DEP_TRUE);
3925
3926 link = XEXP (link, 1);
3927 }
3928 }
3929
3930 insn = PREV_INSN (insn);
3931 }
3932 while (insn != note);
3933
3934 bitmap_clear (&in_ready);
3935
3936 /* Try to add instructions to the ready or queue list. */
3937 for (link = ready_list; link; link = XEXP (link, 1))
3938 try_ready (XEXP (link, 0));
3939 free_INSN_LIST_list (&ready_list);
3940
3941 /* Fixing jump's dependences. */
3942 insn = BB_HEAD (rec);
3943 jump = BB_END (rec);
3944
3945 gcc_assert (LABEL_P (insn));
3946 insn = NEXT_INSN (insn);
3947
3948 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
3949 add_jump_dependencies (insn, jump);
3950}
3951
3952/* The function saves line notes at the beginning of block B. */
3953static void
3954associate_line_notes_with_blocks (basic_block b)
3955{
3956 rtx line;
3957
3958 for (line = BB_HEAD (b); line; line = PREV_INSN (line))
3959 if (NOTE_P (line) && NOTE_LINE_NUMBER (line) > 0)
3960 {
3961 line_note_head[b->index] = line;
3962 break;
3963 }
3964 /* Do a forward search as well, since we won't get to see the first
3965 notes in a basic block. */
3966 for (line = BB_HEAD (b); line; line = NEXT_INSN (line))
3967 {
3968 if (INSN_P (line))
3969 break;
3970 if (NOTE_P (line) && NOTE_LINE_NUMBER (line) > 0)
3971 line_note_head[b->index] = line;
3972 }
3973}
3974
3975/* Changes pattern of the INSN to NEW_PAT. */
3976static void
3977change_pattern (rtx insn, rtx new_pat)
3978{
3979 int t;
3980
3981 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
3982 gcc_assert (t);
3983 /* Invalidate INSN_COST, so it'll be recalculated. */
3984 INSN_COST (insn) = -1;
3985 /* Invalidate INSN_TICK, so it'll be recalculated. */
3986 INSN_TICK (insn) = INVALID_TICK;
3987 dfa_clear_single_insn_cache (insn);
3988}
3989
3990
3991/* -1 - can't speculate,
3992 0 - for speculation with REQUEST mode it is OK to use
3993 current instruction pattern,
3994 1 - need to change pattern for *NEW_PAT to be speculative. */
3995static int
3996speculate_insn (rtx insn, ds_t request, rtx *new_pat)
3997{
3998 gcc_assert (current_sched_info->flags & DO_SPECULATION
3999 && (request & SPECULATIVE));
4000
4001 if (!NONJUMP_INSN_P (insn)
4002 || HAS_INTERNAL_DEP (insn)
4003 || SCHED_GROUP_P (insn)
4004 || side_effects_p (PATTERN (insn))
4005 || (request & spec_info->mask) != request)
4006 return -1;
4007
4008 gcc_assert (!RECOVERY_BLOCK (insn));
4009
4010 if (request & BE_IN_SPEC)
4011 {
4012 if (may_trap_p (PATTERN (insn)))
4013 return -1;
4014
4015 if (!(request & BEGIN_SPEC))
4016 return 0;
4017 }
4018
4019 return targetm.sched.speculate_insn (insn, request & BEGIN_SPEC, new_pat);
4020}
4021
4022/* Print some information about block BB, which starts with HEAD and
4023 ends with TAIL, before scheduling it.
4024 I is zero, if scheduler is about to start with the fresh ebb. */
4025static void
4026dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
4027{
4028 if (!i)
4029 fprintf (sched_dump,
4030 ";; ======================================================\n");
4031 else
4032 fprintf (sched_dump,
4033 ";; =====================ADVANCING TO=====================\n");
4034 fprintf (sched_dump,
4035 ";; -- basic block %d from %d to %d -- %s reload\n",
4036 bb->index, INSN_UID (head), INSN_UID (tail),
4037 (reload_completed ? "after" : "before"));
4038 fprintf (sched_dump,
4039 ";; ======================================================\n");
4040 fprintf (sched_dump, "\n");
4041}
4042
4043/* Unlink basic block notes and labels and saves them, so they
4044 can be easily restored. We unlink basic block notes in EBB to
4045 provide back-compatability with the previous code, as target backends
4046 assume, that there'll be only instructions between
4047 current_sched_info->{head and tail}. We restore these notes as soon
4048 as we can.
4049 FIRST (LAST) is the first (last) basic block in the ebb.
4050 NB: In usual case (FIRST == LAST) nothing is really done. */
4051void
4052unlink_bb_notes (basic_block first, basic_block last)
4053{
4054 /* We DON'T unlink basic block notes of the first block in the ebb. */
4055 if (first == last)
4056 return;
4057
4058 bb_header = xmalloc (last_basic_block * sizeof (*bb_header));
4059
4060 /* Make a sentinel. */
4061 if (last->next_bb != EXIT_BLOCK_PTR)
4062 bb_header[last->next_bb->index] = 0;
4063
4064 first = first->next_bb;
4065 do
4066 {
4067 rtx prev, label, note, next;
4068
4069 label = BB_HEAD (last);
4070 if (LABEL_P (label))
4071 note = NEXT_INSN (label);
4072 else
4073 note = label;
4074 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4075
4076 prev = PREV_INSN (label);
4077 next = NEXT_INSN (note);
4078 gcc_assert (prev && next);
4079
4080 NEXT_INSN (prev) = next;
4081 PREV_INSN (next) = prev;
4082
4083 bb_header[last->index] = label;
4084
4085 if (last == first)
4086 break;
4087
4088 last = last->prev_bb;
4089 }
4090 while (1);
4091}
4092
4093/* Restore basic block notes.
4094 FIRST is the first basic block in the ebb. */
4095static void
4096restore_bb_notes (basic_block first)
4097{
4098 if (!bb_header)
4099 return;
4100
4101 /* We DON'T unlink basic block notes of the first block in the ebb. */
4102 first = first->next_bb;
4103 /* Remember: FIRST is actually a second basic block in the ebb. */
4104
4105 while (first != EXIT_BLOCK_PTR
4106 && bb_header[first->index])
4107 {
4108 rtx prev, label, note, next;
4109
4110 label = bb_header[first->index];
4111 prev = PREV_INSN (label);
4112 next = NEXT_INSN (prev);
4113
4114 if (LABEL_P (label))
4115 note = NEXT_INSN (label);
4116 else
4117 note = label;
4118 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4119
4120 bb_header[first->index] = 0;
4121
4122 NEXT_INSN (prev) = label;
4123 NEXT_INSN (note) = next;
4124 PREV_INSN (next) = note;
4125
4126 first = first->next_bb;
4127 }
4128
4129 free (bb_header);
4130 bb_header = 0;
4131}
4132
4133/* Extend per basic block data structures of the scheduler.
4134 If BB is NULL, initialize structures for the whole CFG.
4135 Otherwise, initialize them for the just created BB. */
4136static void
4137extend_bb (basic_block bb)
4138{
4139 rtx insn;
4140
4141 if (write_symbols != NO_DEBUG)
4142 {
4143 /* Save-line-note-head:
4144 Determine the line-number at the start of each basic block.
4145 This must be computed and saved now, because after a basic block's
4146 predecessor has been scheduled, it is impossible to accurately
4147 determine the correct line number for the first insn of the block. */
4148 line_note_head = xrecalloc (line_note_head, last_basic_block,
4149 old_last_basic_block,
4150 sizeof (*line_note_head));
4151
4152 if (bb)
4153 associate_line_notes_with_blocks (bb);
4154 else
4155 FOR_EACH_BB (bb)
4156 associate_line_notes_with_blocks (bb);
4157 }
4158
4159 old_last_basic_block = last_basic_block;
4160
4161 if (current_sched_info->flags & USE_GLAT)
4162 {
4163 glat_start = xrealloc (glat_start,
4164 last_basic_block * sizeof (*glat_start));
4165 glat_end = xrealloc (glat_end, last_basic_block * sizeof (*glat_end));
4166 }
4167
4168 /* The following is done to keep current_sched_info->next_tail non null. */
4169
4170 insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
4171 if (NEXT_INSN (insn) == 0
4172 || (!NOTE_P (insn)
4173 && !LABEL_P (insn)
4174 /* Don't emit a NOTE if it would end up before a BARRIER. */
4175 && !BARRIER_P (NEXT_INSN (insn))))
4176 {
4177 emit_note_after (NOTE_INSN_DELETED, insn);
4178 /* Make insn to appear outside BB. */
4179 BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
4180 }
4181}
4182
4183/* Add a basic block BB to extended basic block EBB.
4184 If EBB is EXIT_BLOCK_PTR, then BB is recovery block.
4185 If EBB is NULL, then BB should be a new region. */
4186void
4187add_block (basic_block bb, basic_block ebb)
4188{
4189 gcc_assert (current_sched_info->flags & DETACH_LIFE_INFO
4190 && bb->il.rtl->global_live_at_start == 0
4191 && bb->il.rtl->global_live_at_end == 0);
4192
4193 extend_bb (bb);
4194
4195 glat_start[bb->index] = 0;
4196 glat_end[bb->index] = 0;
4197
4198 if (current_sched_info->add_block)
4199 /* This changes only data structures of the front-end. */
4200 current_sched_info->add_block (bb, ebb);
4201}
4202
4203/* Helper function.
4204 Fix CFG after both in- and inter-block movement of
4205 control_flow_insn_p JUMP. */
4206static void
4207fix_jump_move (rtx jump)
4208{
4209 basic_block bb, jump_bb, jump_bb_next;
4210
4211 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
4212 jump_bb = BLOCK_FOR_INSN (jump);
4213 jump_bb_next = jump_bb->next_bb;
4214
4215 gcc_assert (current_sched_info->flags & SCHED_EBB
4216 || (RECOVERY_BLOCK (jump)
4217 && RECOVERY_BLOCK (jump) != EXIT_BLOCK_PTR));
4218
4219 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
4220 /* if jump_bb_next is not empty. */
4221 BB_END (jump_bb) = BB_END (jump_bb_next);
4222
4223 if (BB_END (bb) != PREV_INSN (jump))
4224 /* Then there are instruction after jump that should be placed
4225 to jump_bb_next. */
4226 BB_END (jump_bb_next) = BB_END (bb);
4227 else
4228 /* Otherwise jump_bb_next is empty. */
4229 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
4230
4231 /* To make assertion in move_insn happy. */
4232 BB_END (bb) = PREV_INSN (jump);
4233
4234 update_bb_for_insn (jump_bb_next);
4235}
4236
4237/* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
4238static void
4239move_block_after_check (rtx jump)
4240{
4241 basic_block bb, jump_bb, jump_bb_next;
4242 VEC(edge,gc) *t;
4243
4244 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
4245 jump_bb = BLOCK_FOR_INSN (jump);
4246 jump_bb_next = jump_bb->next_bb;
4247
4248 update_bb_for_insn (jump_bb);
4249
4250 gcc_assert (RECOVERY_BLOCK (jump)
4251 || RECOVERY_BLOCK (BB_END (jump_bb_next)));
4252
4253 unlink_block (jump_bb_next);
4254 link_block (jump_bb_next, bb);
4255
4256 t = bb->succs;
4257 bb->succs = 0;
4258 move_succs (&(jump_bb->succs), bb);
4259 move_succs (&(jump_bb_next->succs), jump_bb);
4260 move_succs (&t, jump_bb_next);
4261
4262 if (current_sched_info->fix_recovery_cfg)
4263 current_sched_info->fix_recovery_cfg
4264 (bb->index, jump_bb->index, jump_bb_next->index);
4265}
4266
4267/* Helper function for move_block_after_check.
4268 This functions attaches edge vector pointed to by SUCCSP to
4269 block TO. */
4270static void
4271move_succs (VEC(edge,gc) **succsp, basic_block to)
4272{
4273 edge e;
4274 edge_iterator ei;
4275
4276 gcc_assert (to->succs == 0);
4277
4278 to->succs = *succsp;
4279
4280 FOR_EACH_EDGE (e, ei, to->succs)
4281 e->src = to;
4282
4283 *succsp = 0;
4284}
4285
4286/* Initialize GLAT (global_live_at_{start, end}) structures.
4287 GLAT structures are used to substitute global_live_{start, end}
4288 regsets during scheduling. This is neccessary to use such functions as
4289 split_block (), as they assume consistancy of register live information. */
4290static void
4291init_glat (void)
4292{
4293 basic_block bb;
4294
4295 FOR_ALL_BB (bb)
4296 init_glat1 (bb);
4297}
4298
4299/* Helper function for init_glat. */
4300static void
4301init_glat1 (basic_block bb)
4302{
4303 gcc_assert (bb->il.rtl->global_live_at_start != 0
4304 && bb->il.rtl->global_live_at_end != 0);
4305
4306 glat_start[bb->index] = bb->il.rtl->global_live_at_start;
4307 glat_end[bb->index] = bb->il.rtl->global_live_at_end;
4308
4309 if (current_sched_info->flags & DETACH_LIFE_INFO)
4310 {
4311 bb->il.rtl->global_live_at_start = 0;
4312 bb->il.rtl->global_live_at_end = 0;
4313 }
4314}
4315
4316/* Attach reg_live_info back to basic blocks.
4317 Also save regsets, that should not have been changed during scheduling,
4318 for checking purposes (see check_reg_live). */
4319void
4320attach_life_info (void)
4321{
4322 basic_block bb;
4323
4324 FOR_ALL_BB (bb)
4325 attach_life_info1 (bb);
4326}
4327
4328/* Helper function for attach_life_info. */
4329static void
4330attach_life_info1 (basic_block bb)
4331{
4332 gcc_assert (bb->il.rtl->global_live_at_start == 0
4333 && bb->il.rtl->global_live_at_end == 0);
4334
4335 if (glat_start[bb->index])
4336 {
4337 gcc_assert (glat_end[bb->index]);
4338
4339 bb->il.rtl->global_live_at_start = glat_start[bb->index];
4340 bb->il.rtl->global_live_at_end = glat_end[bb->index];
4341
4342 /* Make them NULL, so they won't be freed in free_glat. */
4343 glat_start[bb->index] = 0;
4344 glat_end[bb->index] = 0;
4345
4346#ifdef ENABLE_CHECKING
4347 if (bb->index < NUM_FIXED_BLOCKS
4348 || current_sched_info->region_head_or_leaf_p (bb, 0))
4349 {
4350 glat_start[bb->index] = ALLOC_REG_SET (&reg_obstack);
4351 COPY_REG_SET (glat_start[bb->index],
4352 bb->il.rtl->global_live_at_start);
4353 }
4354
4355 if (bb->index < NUM_FIXED_BLOCKS
4356 || current_sched_info->region_head_or_leaf_p (bb, 1))
4357 {
4358 glat_end[bb->index] = ALLOC_REG_SET (&reg_obstack);
4359 COPY_REG_SET (glat_end[bb->index], bb->il.rtl->global_live_at_end);
4360 }
4361#endif
4362 }
4363 else
4364 {
4365 gcc_assert (!glat_end[bb->index]);
4366
4367 bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
4368 bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
4369 }
4370}
4371
4372/* Free GLAT information. */
4373static void
4374free_glat (void)
4375{
4376#ifdef ENABLE_CHECKING
4377 if (current_sched_info->flags & DETACH_LIFE_INFO)
4378 {
4379 basic_block bb;
4380
4381 FOR_ALL_BB (bb)
4382 {
4383 if (glat_start[bb->index])
4384 FREE_REG_SET (glat_start[bb->index]);
4385 if (glat_end[bb->index])
4386 FREE_REG_SET (glat_end[bb->index]);
4387 }
4388 }
4389#endif
4390
4391 free (glat_start);
4392 free (glat_end);
4393}
4394
4395/* Remove INSN from the instruction stream.
4396 INSN should have any dependencies. */
4397static void
4398sched_remove_insn (rtx insn)
4399{
4400 change_queue_index (insn, QUEUE_NOWHERE);
4401 current_sched_info->add_remove_insn (insn, 1);
4402 remove_insn (insn);
4403}
4404
4405/* Clear priorities of all instructions, that are
4406 forward dependent on INSN. */
4407static void
4408clear_priorities (rtx insn)
4409{
4410 rtx link;
4411
4412 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
4413 {
4414 rtx pro;
4415
4416 pro = XEXP (link, 0);
4417 if (INSN_PRIORITY_KNOWN (pro))
4418 {
4419 INSN_PRIORITY_KNOWN (pro) = 0;
4420 clear_priorities (pro);
4421 }
4422 }
4423}
4424
4425/* Recompute priorities of instructions, whose priorities might have been
4426 changed due to changes in INSN. */
4427static void
4428calc_priorities (rtx insn)
4429{
4430 rtx link;
4431
4432 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
4433 {
4434 rtx pro;
4435
4436 pro = XEXP (link, 0);
4437 if (!INSN_PRIORITY_KNOWN (pro))
4438 {
4439 priority (pro);
4440 calc_priorities (pro);
4441 }
4442 }
4443}
4444
4445
4446/* Add dependences between JUMP and other instructions in the recovery
4447 block. INSN is the first insn the recovery block. */
4448static void
4449add_jump_dependencies (rtx insn, rtx jump)
4450{
4451 do
4452 {
4453 insn = NEXT_INSN (insn);
4454 if (insn == jump)
4455 break;
4456
4457 if (!INSN_DEPEND (insn))
4458 add_back_forw_dep (jump, insn, REG_DEP_ANTI, DEP_ANTI);
4459 }
4460 while (1);
4461 gcc_assert (LOG_LINKS (jump));
4462}
4463
4464/* Return the NOTE_INSN_BASIC_BLOCK of BB. */
4465static rtx
4466bb_note (basic_block bb)
4467{
4468 rtx note;
4469
4470 note = BB_HEAD (bb);
4471 if (LABEL_P (note))
4472 note = NEXT_INSN (note);
4473
4474 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4475 return note;
4476}
4477
4478#ifdef ENABLE_CHECKING
4479extern void debug_spec_status (ds_t);
4480
4481/* Dump information about the dependence status S. */
4482void
4483debug_spec_status (ds_t s)
4484{
4485 FILE *f = stderr;
4486
4487 if (s & BEGIN_DATA)
4488 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak (s, BEGIN_DATA));
4489 if (s & BE_IN_DATA)
4490 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak (s, BE_IN_DATA));
4491 if (s & BEGIN_CONTROL)
4492 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak (s, BEGIN_CONTROL));
4493 if (s & BE_IN_CONTROL)
4494 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak (s, BE_IN_CONTROL));
4495
4496 if (s & HARD_DEP)
4497 fprintf (f, "HARD_DEP; ");
4498
4499 if (s & DEP_TRUE)
4500 fprintf (f, "DEP_TRUE; ");
4501 if (s & DEP_ANTI)
4502 fprintf (f, "DEP_ANTI; ");
4503 if (s & DEP_OUTPUT)
4504 fprintf (f, "DEP_OUTPUT; ");
4505
4506 fprintf (f, "\n");
4507}
4508
4509/* Helper function for check_cfg.
4510 Return non-zero, if edge vector pointed to by EL has edge with TYPE in
4511 its flags. */
4512static int
4513has_edge_p (VEC(edge,gc) *el, int type)
4514{
4515 edge e;
4516 edge_iterator ei;
4517
4518 FOR_EACH_EDGE (e, ei, el)
4519 if (e->flags & type)
4520 return 1;
4521 return 0;
4522}
4523
4524/* Check few properties of CFG between HEAD and TAIL.
4525 If HEAD (TAIL) is NULL check from the beginning (till the end) of the
4526 instruction stream. */
4527static void
4528check_cfg (rtx head, rtx tail)
4529{
4530 rtx next_tail;
4531 basic_block bb = 0;
4532 int not_first = 0, not_last;
4533
4534 if (head == NULL)
4535 head = get_insns ();
4536 if (tail == NULL)
4537 tail = get_last_insn ();
4538 next_tail = NEXT_INSN (tail);
4539
4540 do
4541 {
4542 not_last = head != tail;
4543
4544 if (not_first)
4545 gcc_assert (NEXT_INSN (PREV_INSN (head)) == head);
4546 if (not_last)
4547 gcc_assert (PREV_INSN (NEXT_INSN (head)) == head);
4548
4549 if (LABEL_P (head)
4550 || (NOTE_INSN_BASIC_BLOCK_P (head)
4551 && (!not_first
4552 || (not_first && !LABEL_P (PREV_INSN (head))))))
4553 {
4554 gcc_assert (bb == 0);
4555 bb = BLOCK_FOR_INSN (head);
4556 if (bb != 0)
4557 gcc_assert (BB_HEAD (bb) == head);
4558 else
4559 /* This is the case of jump table. See inside_basic_block_p (). */
4560 gcc_assert (LABEL_P (head) && !inside_basic_block_p (head));
4561 }
4562
4563 if (bb == 0)
4564 {
4565 gcc_assert (!inside_basic_block_p (head));
4566 head = NEXT_INSN (head);
4567 }
4568 else
4569 {
4570 gcc_assert (inside_basic_block_p (head)
4571 || NOTE_P (head));
4572 gcc_assert (BLOCK_FOR_INSN (head) == bb);
4573
4574 if (LABEL_P (head))
4575 {
4576 head = NEXT_INSN (head);
4577 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (head));
4578 }
4579 else
4580 {
4581 if (control_flow_insn_p (head))
4582 {
4583 gcc_assert (BB_END (bb) == head);
4584
4585 if (any_uncondjump_p (head))
4586 gcc_assert (EDGE_COUNT (bb->succs) == 1
4587 && BARRIER_P (NEXT_INSN (head)));
4588 else if (any_condjump_p (head))
4589 gcc_assert (EDGE_COUNT (bb->succs) > 1
4590 && !BARRIER_P (NEXT_INSN (head)));
4591 }
4592 if (BB_END (bb) == head)
4593 {
4594 if (EDGE_COUNT (bb->succs) > 1)
4595 gcc_assert (control_flow_insn_p (head)
4596 || has_edge_p (bb->succs, EDGE_COMPLEX));
4597 bb = 0;
4598 }
4599
4600 head = NEXT_INSN (head);
4601 }
4602 }
4603
4604 not_first = 1;
4605 }
4606 while (head != next_tail);
4607
4608 gcc_assert (bb == 0);
4609}
4610
4611/* Perform few consistancy checks of flags in different data structures. */
4612static void
4613check_sched_flags (void)
4614{
4615 unsigned int f = current_sched_info->flags;
4616
4617 if (flag_sched_stalled_insns)
4618 gcc_assert (!(f & DO_SPECULATION));
4619 if (f & DO_SPECULATION)
4620 gcc_assert (!flag_sched_stalled_insns
4621 && (f & DETACH_LIFE_INFO)
4622 && spec_info
4623 && spec_info->mask);
4624 if (f & DETACH_LIFE_INFO)
4625 gcc_assert (f & USE_GLAT);
4626}
4627
4628/* Checks global_live_at_{start, end} regsets. */
4629void
4630check_reg_live (void)
4631{
4632 basic_block bb;
4633
4634 FOR_ALL_BB (bb)
4635 {
4636 int i;
4637
4638 i = bb->index;
4639
4640 if (glat_start[i])
4641 gcc_assert (bitmap_equal_p (bb->il.rtl->global_live_at_start,
4642 glat_start[i]));
4643 if (glat_end[i])
4644 gcc_assert (bitmap_equal_p (bb->il.rtl->global_live_at_end,
4645 glat_end[i]));
4646 }
4647}
4648#endif /* ENABLE_CHECKING */
4649
8c660648 4650#endif /* INSN_SCHEDULING */
This page took 3.073162 seconds and 5 git commands to generate.