]> gcc.gnu.org Git - gcc.git/blame - gcc/haifa-sched.c
haifa-sched: handle fallthru edge to EXIT block (PR 85899)
[gcc.git] / gcc / haifa-sched.c
CommitLineData
8c660648 1/* Instruction scheduling pass.
a5544970 2 Copyright (C) 1992-2019 Free Software Foundation, Inc.
8c660648
JL
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
1322177d 6This file is part of GCC.
5d14e356 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
5d14e356 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
5d14e356
RK
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
8c660648 21
b4ead7d4 22/* Instruction scheduling pass. This file, along with sched-deps.c,
151e9aac 23 contains the generic parts. The actual entry point for
b4ead7d4 24 the normal instruction scheduling pass is found in sched-rgn.c.
8c660648
JL
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
8c660648
JL
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
2db45993
JL
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
8c660648
JL
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
151e9aac 80 compute_block_dependences ().
8c660648
JL
81
82 Dependencies set up by memory references are treated in exactly the
b198261f
MK
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
151e9aac 85 INSN_FORW_DEPS for the purpose of forward list scheduling.
8c660648
JL
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
a813c111 117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
8c660648
JL
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
b4ead7d4 123 beginning of basic blocks and regions that have been scheduled. */
8c660648 124\f
8c660648 125#include "config.h"
5835e573 126#include "system.h"
4977bab6 127#include "coretypes.h"
c7131fb2 128#include "backend.h"
957060b5 129#include "target.h"
8c660648 130#include "rtl.h"
957060b5 131#include "cfghooks.h"
c7131fb2 132#include "df.h"
4d0cdd0c 133#include "memmodel.h"
6baf1cc8 134#include "tm_p.h"
957060b5 135#include "insn-config.h"
8c660648 136#include "regs.h"
957060b5
AM
137#include "ira.h"
138#include "recog.h"
8c660648 139#include "insn-attr.h"
60393bbc
AM
140#include "cfgrtl.h"
141#include "cfgbuild.h"
1708fd40 142#include "sched-int.h"
677f3fa8 143#include "common/common-target.h"
496d7bb0 144#include "params.h"
6fb5fa3c 145#include "dbgcnt.h"
e855c69d 146#include "cfgloop.h"
7ee2468b 147#include "dumpfile.h"
013a8899 148#include "print-rtl.h"
8c660648 149
8c660648
JL
150#ifdef INSN_SCHEDULING
151
f20f2613
VM
152/* True if we do register pressure relief through live-range
153 shrinkage. */
154static bool live_range_shrinkage_p;
155
156/* Switch on live range shrinkage. */
157void
158initialize_live_range_shrinkage (void)
159{
160 live_range_shrinkage_p = true;
161}
162
163/* Switch off live range shrinkage. */
164void
165finish_live_range_shrinkage (void)
166{
167 live_range_shrinkage_p = false;
168}
169
8c660648
JL
170/* issue_rate is the number of insns that can be scheduled in the same
171 machine cycle. It can be defined in the config/mach/mach.h file,
172 otherwise we set it to 1. */
173
e855c69d 174int issue_rate;
8c660648 175
26965010
BS
176/* This can be set to true by a backend if the scheduler should not
177 enable a DCE pass. */
178bool sched_no_dce;
179
06d7e8e7
BS
180/* The current initiation interval used when modulo scheduling. */
181static int modulo_ii;
182
183/* The maximum number of stages we are prepared to handle. */
184static int modulo_max_stages;
185
186/* The number of insns that exist in each iteration of the loop. We use this
187 to detect when we've scheduled all insns from the first iteration. */
188static int modulo_n_insns;
189
190/* The current count of insns in the first iteration of the loop that have
191 already been scheduled. */
192static int modulo_insns_scheduled;
193
194/* The maximum uid of insns from the first iteration of the loop. */
195static int modulo_iter0_max_uid;
196
197/* The number of times we should attempt to backtrack when modulo scheduling.
198 Decreased each time we have to backtrack. */
199static int modulo_backtracks_left;
200
201/* The stage in which the last insn from the original loop was
202 scheduled. */
203static int modulo_last_stage;
204
cc132865 205/* sched-verbose controls the amount of debugging output the
409f8483 206 scheduler prints. It is controlled by -fsched-verbose=N:
4111f1c9
NB
207 N=0: no debugging output.
208 N=1: default value.
8c660648
JL
209 N=2: bb's probabilities, detailed ready list info, unit/insn info.
210 N=3: rtl at abort point, control-flow, regions info.
cc132865 211 N=5: dependences info. */
b4ead7d4 212int sched_verbose = 0;
8c660648 213
4111f1c9 214/* Debugging file. All printouts are sent to dump. */
c62c2659 215FILE *sched_dump = 0;
a88f02e7 216
b8698a0f 217/* This is a placeholder for the scheduler parameters common
e855c69d
AB
218 to all schedulers. */
219struct common_sched_info_def *common_sched_info;
f66d83e1 220
e855c69d 221#define INSN_TICK(INSN) (HID (INSN)->tick)
26965010
BS
222#define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
223#define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
e855c69d 224#define INTER_TICK(INSN) (HID (INSN)->inter_tick)
26965010
BS
225#define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
226#define SHADOW_P(INSN) (HID (INSN)->shadow_p)
e2724e63 227#define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
ffc1ded5 228/* Cached cost of the instruction. Use insn_sched_cost to get cost of the
1a83e602
BS
229 insn. -1 here means that the field is not initialized. */
230#define INSN_COST(INSN) (HID (INSN)->cost)
63f54b1a
MK
231
232/* If INSN_TICK of an instruction is equal to INVALID_TICK,
233 then it should be recalculated from scratch. */
234#define INVALID_TICK (-(max_insn_queue_index + 1))
235/* The minimal value of the INSN_TICK of an instruction. */
236#define MIN_TICK (-max_insn_queue_index)
8c660648 237
63387a85
MK
238/* Original order of insns in the ready list.
239 Used to keep order of normal insns while separating DEBUG_INSNs. */
240#define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
241
b75ae7f4
MK
242/* The deciding reason for INSN's place in the ready list. */
243#define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
244
8c660648
JL
245/* List of important notes we must keep around. This is a pointer to the
246 last element in the list. */
ce1ce33a 247rtx_insn *note_list;
8c660648 248
496d7bb0
MK
249static struct spec_info_def spec_info_var;
250/* Description of the speculative part of the scheduling.
251 If NULL - no speculation. */
e855c69d 252spec_info_t spec_info = NULL;
496d7bb0
MK
253
254/* True, if recovery block was added during scheduling of current block.
255 Used to determine, if we need to fix INSN_TICKs. */
e2f6ff94
MK
256static bool haifa_recovery_bb_recently_added_p;
257
258/* True, if recovery block was added during this scheduling pass.
259 Used to determine if we should have empty memory pools of dependencies
260 after finishing current region. */
261bool haifa_recovery_bb_ever_added_p;
496d7bb0 262
917f1b7e 263/* Counters of different types of speculative instructions. */
496d7bb0
MK
264static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
265
496d7bb0 266/* Array used in {unlink, restore}_bb_notes. */
9b517712 267static rtx_insn **bb_header = 0;
496d7bb0 268
496d7bb0
MK
269/* Basic block after which recovery blocks will be created. */
270static basic_block before_recovery;
271
e855c69d
AB
272/* Basic block just before the EXIT_BLOCK and after recovery, if we have
273 created it. */
274basic_block after_recovery;
275
276/* FALSE if we add bb to another region, so we don't need to initialize it. */
277bool adding_bb_to_current_region_p = true;
278
8c660648
JL
279/* Queues, etc. */
280
281/* An instruction is ready to be scheduled when all insns preceding it
282 have already been scheduled. It is important to ensure that all
283 insns which use its result will not be executed until its result
284 has been computed. An insn is maintained in one of four structures:
285
286 (P) the "Pending" set of insns which cannot be scheduled until
287 their dependencies have been satisfied.
288 (Q) the "Queued" set of insns that can be scheduled when sufficient
289 time has passed.
290 (R) the "Ready" list of unscheduled, uncommitted insns.
291 (S) the "Scheduled" list of insns.
292
293 Initially, all insns are either "Pending" or "Ready" depending on
294 whether their dependencies are satisfied.
295
296 Insns move from the "Ready" list to the "Scheduled" list as they
297 are committed to the schedule. As this occurs, the insns in the
298 "Pending" list have their dependencies satisfied and move to either
299 the "Ready" list or the "Queued" set depending on whether
300 sufficient time has passed to make them ready. As time passes,
fa0aee89 301 insns move from the "Queued" set to the "Ready" list.
8c660648 302
b198261f
MK
303 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
304 unscheduled insns, i.e., those that are ready, queued, and pending.
8c660648
JL
305 The "Queued" set (Q) is implemented by the variable `insn_queue'.
306 The "Ready" list (R) is implemented by the variables `ready' and
307 `n_ready'.
308 The "Scheduled" list (S) is the new insn chain built by this pass.
309
310 The transition (R->S) is implemented in the scheduling loop in
311 `schedule_block' when the best insn to schedule is chosen.
8c660648
JL
312 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
313 insns move from the ready list to the scheduled list.
314 The transition (Q->R) is implemented in 'queue_to_insn' as time
315 passes or stalls are introduced. */
316
317/* Implement a circular buffer to delay instructions until sufficient
fa0aee89 318 time has passed. For the new pipeline description interface,
63f54b1a 319 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
fa0aee89
PB
320 than maximal time of instruction execution computed by genattr.c on
321 the base maximal time of functional unit reservations and getting a
322 result. This is the longest time an insn may be queued. */
fae15c93 323
3dc99c19 324static rtx_insn_list **insn_queue;
8c660648
JL
325static int q_ptr = 0;
326static int q_size = 0;
fa0aee89
PB
327#define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
328#define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
fae15c93 329
63f54b1a
MK
330#define QUEUE_SCHEDULED (-3)
331#define QUEUE_NOWHERE (-2)
332#define QUEUE_READY (-1)
333/* QUEUE_SCHEDULED - INSN is scheduled.
334 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
335 queue or ready list.
336 QUEUE_READY - INSN is in ready list.
337 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
b8698a0f 338
e855c69d 339#define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
63f54b1a 340
fae15c93
VM
341/* The following variable value refers for all current and future
342 reservations of the processor units. */
343state_t curr_state;
344
345/* The following variable value is size of memory representing all
fa0aee89 346 current and future reservations of the processor units. */
e855c69d 347size_t dfa_state_size;
fae15c93
VM
348
349/* The following array is used to find the best insn from ready when
350 the automaton pipeline interface is used. */
4960a0cb 351signed char *ready_try = NULL;
8c660648 352
e855c69d 353/* The ready list. */
b5b8b0ac 354struct ready_list ready = {NULL, 0, 0, 0, 0};
176f9a7b 355
e855c69d
AB
356/* The pointer to the ready list (to be removed). */
357static struct ready_list *readyp = &ready;
63f54b1a
MK
358
359/* Scheduling clock. */
360static int clock_var;
361
26965010
BS
362/* Clock at which the previous instruction was issued. */
363static int last_clock_var;
364
365/* Set to true if, when queuing a shadow insn, we discover that it would be
366 scheduled too late. */
367static bool must_backtrack;
368
369/* The following variable value is number of essential insns issued on
370 the current cycle. An insn is essential one if it changes the
371 processors state. */
372int cycle_issued_insns;
373
86014d07
BS
374/* This records the actual schedule. It is built up during the main phase
375 of schedule_block, and afterwards used to reorder the insns in the RTL. */
ce1ce33a 376static vec<rtx_insn *> scheduled_insns;
86014d07 377
9678086d 378static int may_trap_exp (const_rtx, int);
15aab9c0
VM
379
380/* Nonzero iff the address is comprised from at most 1 register. */
381#define CONST_BASED_ADDRESS_P(x) \
f8cfc6aa 382 (REG_P (x) \
15aab9c0
VM
383 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
384 || (GET_CODE (x) == LO_SUM)) \
385 && (CONSTANT_P (XEXP (x, 0)) \
386 || CONSTANT_P (XEXP (x, 1)))))
387
388/* Returns a class that insn with GET_DEST(insn)=x may belong to,
389 as found by analyzing insn's expression. */
390
e855c69d
AB
391\f
392static int haifa_luid_for_non_insn (rtx x);
393
394/* Haifa version of sched_info hooks common to all headers. */
b8698a0f 395const struct common_sched_info_def haifa_common_sched_info =
e855c69d
AB
396 {
397 NULL, /* fix_recovery_cfg */
398 NULL, /* add_block */
399 NULL, /* estimate_number_of_insns */
400 haifa_luid_for_non_insn, /* luid_for_non_insn */
401 SCHED_PASS_UNKNOWN /* sched_pass_id */
402 };
403
e855c69d 404/* Mapping from instruction UID to its Logical UID. */
7de76362 405vec<int> sched_luids;
e855c69d
AB
406
407/* Next LUID to assign to an instruction. */
408int sched_max_luid = 1;
409
410/* Haifa Instruction Data. */
7de76362 411vec<haifa_insn_data_def> h_i_d;
e855c69d
AB
412
413void (* sched_init_only_bb) (basic_block, basic_block);
414
415/* Split block function. Different schedulers might use different functions
416 to handle their internal data consistent. */
417basic_block (* sched_split_block) (basic_block, rtx);
418
419/* Create empty basic block after the specified block. */
420basic_block (* sched_create_empty_bb) (basic_block);
421
7a1aca9c
RS
422/* Return the number of cycles until INSN is expected to be ready.
423 Return zero if it already is. */
424static int
f57aa6b0 425insn_delay (rtx_insn *insn)
7a1aca9c
RS
426{
427 return MAX (INSN_TICK (insn) - clock_var, 0);
428}
429
15aab9c0 430static int
9678086d 431may_trap_exp (const_rtx x, int is_store)
15aab9c0
VM
432{
433 enum rtx_code code;
434
435 if (x == 0)
436 return TRAP_FREE;
437 code = GET_CODE (x);
438 if (is_store)
439 {
440 if (code == MEM && may_trap_p (x))
441 return TRAP_RISKY;
442 else
443 return TRAP_FREE;
444 }
445 if (code == MEM)
446 {
447 /* The insn uses memory: a volatile load. */
448 if (MEM_VOLATILE_P (x))
449 return IRISKY;
450 /* An exception-free load. */
451 if (!may_trap_p (x))
452 return IFREE;
453 /* A load with 1 base register, to be further checked. */
454 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
455 return PFREE_CANDIDATE;
456 /* No info on the load, to be further checked. */
457 return PRISKY_CANDIDATE;
458 }
459 else
460 {
461 const char *fmt;
462 int i, insn_class = TRAP_FREE;
463
464 /* Neither store nor load, check if it may cause a trap. */
465 if (may_trap_p (x))
466 return TRAP_RISKY;
467 /* Recursive step: walk the insn... */
468 fmt = GET_RTX_FORMAT (code);
469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
470 {
471 if (fmt[i] == 'e')
472 {
473 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
474 insn_class = WORST_CLASS (insn_class, tmp_class);
475 }
476 else if (fmt[i] == 'E')
477 {
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
480 {
481 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
482 insn_class = WORST_CLASS (insn_class, tmp_class);
483 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
484 break;
485 }
486 }
487 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
488 break;
489 }
490 return insn_class;
491 }
492}
493
ac4a7e21
AM
494/* Classifies rtx X of an insn for the purpose of verifying that X can be
495 executed speculatively (and consequently the insn can be moved
496 speculatively), by examining X, returning:
15aab9c0
VM
497 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
498 TRAP_FREE: non-load insn.
a98ebe2e 499 IFREE: load from a globally safe location.
15aab9c0
VM
500 IRISKY: volatile load.
501 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
502 being either PFREE or PRISKY. */
503
ac4a7e21
AM
504static int
505haifa_classify_rtx (const_rtx x)
15aab9c0 506{
15aab9c0
VM
507 int tmp_class = TRAP_FREE;
508 int insn_class = TRAP_FREE;
509 enum rtx_code code;
510
ac4a7e21 511 if (GET_CODE (x) == PARALLEL)
15aab9c0 512 {
ac4a7e21 513 int i, len = XVECLEN (x, 0);
15aab9c0
VM
514
515 for (i = len - 1; i >= 0; i--)
516 {
ac4a7e21 517 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
15aab9c0
VM
518 insn_class = WORST_CLASS (insn_class, tmp_class);
519 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
520 break;
521 }
522 }
523 else
524 {
ac4a7e21 525 code = GET_CODE (x);
15aab9c0
VM
526 switch (code)
527 {
528 case CLOBBER:
529 /* Test if it is a 'store'. */
ac4a7e21 530 tmp_class = may_trap_exp (XEXP (x, 0), 1);
15aab9c0 531 break;
8df47bdf
AH
532 case CLOBBER_HIGH:
533 gcc_assert (REG_P (XEXP (x, 0)));
534 break;
15aab9c0
VM
535 case SET:
536 /* Test if it is a store. */
ac4a7e21 537 tmp_class = may_trap_exp (SET_DEST (x), 1);
15aab9c0
VM
538 if (tmp_class == TRAP_RISKY)
539 break;
540 /* Test if it is a load. */
541 tmp_class =
542 WORST_CLASS (tmp_class,
ac4a7e21 543 may_trap_exp (SET_SRC (x), 0));
15aab9c0
VM
544 break;
545 case COND_EXEC:
ac4a7e21
AM
546 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
547 if (tmp_class == TRAP_RISKY)
548 break;
549 tmp_class = WORST_CLASS (tmp_class,
550 may_trap_exp (COND_EXEC_TEST (x), 0));
551 break;
15aab9c0
VM
552 case TRAP_IF:
553 tmp_class = TRAP_RISKY;
554 break;
555 default:;
556 }
557 insn_class = tmp_class;
558 }
559
560 return insn_class;
561}
562
ac4a7e21
AM
563int
564haifa_classify_insn (const_rtx insn)
565{
566 return haifa_classify_rtx (PATTERN (insn));
567}
06d7e8e7
BS
568\f
569/* After the scheduler initialization function has been called, this function
570 can be called to enable modulo scheduling. II is the initiation interval
571 we should use, it affects the delays for delay_pairs that were recorded as
572 separated by a given number of stages.
573
574 MAX_STAGES provides us with a limit
575 after which we give up scheduling; the caller must have unrolled at least
576 as many copies of the loop body and recorded delay_pairs for them.
577
578 INSNS is the number of real (non-debug) insns in one iteration of
579 the loop. MAX_UID can be used to test whether an insn belongs to
580 the first iteration of the loop; all of them have a uid lower than
581 MAX_UID. */
582void
583set_modulo_params (int ii, int max_stages, int insns, int max_uid)
584{
585 modulo_ii = ii;
586 modulo_max_stages = max_stages;
587 modulo_n_insns = insns;
588 modulo_iter0_max_uid = max_uid;
589 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
590}
ac4a7e21 591
26965010
BS
592/* A structure to record a pair of insns where the first one is a real
593 insn that has delay slots, and the second is its delayed shadow.
594 I1 is scheduled normally and will emit an assembly instruction,
595 while I2 describes the side effect that takes place at the
596 transition between cycles CYCLES and (CYCLES + 1) after I1. */
597struct delay_pair
598{
599 struct delay_pair *next_same_i1;
ce1ce33a 600 rtx_insn *i1, *i2;
26965010 601 int cycles;
06d7e8e7
BS
602 /* When doing modulo scheduling, we a delay_pair can also be used to
603 show that I1 and I2 are the same insn in a different stage. If that
604 is the case, STAGES will be nonzero. */
605 int stages;
26965010
BS
606};
607
4a8fb1a1
LC
608/* Helpers for delay hashing. */
609
8d67ee55 610struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
4a8fb1a1 611{
67f58944
TS
612 typedef void *compare_type;
613 static inline hashval_t hash (const delay_pair *);
614 static inline bool equal (const delay_pair *, const void *);
4a8fb1a1
LC
615};
616
617/* Returns a hash value for X, based on hashing just I1. */
618
619inline hashval_t
67f58944 620delay_i1_hasher::hash (const delay_pair *x)
4a8fb1a1
LC
621{
622 return htab_hash_pointer (x->i1);
623}
624
625/* Return true if I1 of pair X is the same as that of pair Y. */
626
627inline bool
67f58944 628delay_i1_hasher::equal (const delay_pair *x, const void *y)
4a8fb1a1
LC
629{
630 return x->i1 == y;
631}
632
95fbe13e 633struct delay_i2_hasher : free_ptr_hash <delay_pair>
4a8fb1a1 634{
67f58944
TS
635 typedef void *compare_type;
636 static inline hashval_t hash (const delay_pair *);
637 static inline bool equal (const delay_pair *, const void *);
4a8fb1a1
LC
638};
639
640/* Returns a hash value for X, based on hashing just I2. */
641
642inline hashval_t
67f58944 643delay_i2_hasher::hash (const delay_pair *x)
4a8fb1a1
LC
644{
645 return htab_hash_pointer (x->i2);
646}
647
648/* Return true if I2 of pair X is the same as that of pair Y. */
649
650inline bool
67f58944 651delay_i2_hasher::equal (const delay_pair *x, const void *y)
4a8fb1a1
LC
652{
653 return x->i2 == y;
654}
655
26965010
BS
656/* Two hash tables to record delay_pairs, one indexed by I1 and the other
657 indexed by I2. */
c203e8a7
TS
658static hash_table<delay_i1_hasher> *delay_htab;
659static hash_table<delay_i2_hasher> *delay_htab_i2;
26965010 660
06d7e8e7
BS
661/* Called through htab_traverse. Walk the hashtable using I2 as
662 index, and delete all elements involving an UID higher than
663 that pointed to by *DATA. */
4a8fb1a1
LC
664int
665haifa_htab_i2_traverse (delay_pair **slot, int *data)
06d7e8e7 666{
4a8fb1a1
LC
667 int maxuid = *data;
668 struct delay_pair *p = *slot;
06d7e8e7
BS
669 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
670 {
c203e8a7 671 delay_htab_i2->clear_slot (slot);
06d7e8e7
BS
672 }
673 return 1;
674}
675
676/* Called through htab_traverse. Walk the hashtable using I2 as
677 index, and delete all elements involving an UID higher than
678 that pointed to by *DATA. */
4a8fb1a1
LC
679int
680haifa_htab_i1_traverse (delay_pair **pslot, int *data)
06d7e8e7 681{
4a8fb1a1 682 int maxuid = *data;
06d7e8e7
BS
683 struct delay_pair *p, *first, **pprev;
684
685 if (INSN_UID ((*pslot)->i1) >= maxuid)
686 {
c203e8a7 687 delay_htab->clear_slot (pslot);
06d7e8e7
BS
688 return 1;
689 }
690 pprev = &first;
691 for (p = *pslot; p; p = p->next_same_i1)
692 {
693 if (INSN_UID (p->i2) < maxuid)
694 {
695 *pprev = p;
696 pprev = &p->next_same_i1;
697 }
698 }
699 *pprev = NULL;
700 if (first == NULL)
c203e8a7 701 delay_htab->clear_slot (pslot);
06d7e8e7
BS
702 else
703 *pslot = first;
704 return 1;
705}
706
707/* Discard all delay pairs which involve an insn with an UID higher
708 than MAX_UID. */
709void
710discard_delay_pairs_above (int max_uid)
711{
c203e8a7
TS
712 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
713 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
26965010
BS
714}
715
06d7e8e7
BS
716/* This function can be called by a port just before it starts the final
717 scheduling pass. It records the fact that an instruction with delay
718 slots has been split into two insns, I1 and I2. The first one will be
719 scheduled normally and initiates the operation. The second one is a
720 shadow which must follow a specific number of cycles after I1; its only
721 purpose is to show the side effect that occurs at that cycle in the RTL.
722 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
723 while I2 retains the original insn type.
724
725 There are two ways in which the number of cycles can be specified,
726 involving the CYCLES and STAGES arguments to this function. If STAGES
727 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
728 which is multiplied by MODULO_II to give the number of cycles. This is
729 only useful if the caller also calls set_modulo_params to enable modulo
730 scheduling. */
26965010
BS
731
732void
ce1ce33a 733record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
26965010
BS
734{
735 struct delay_pair *p = XNEW (struct delay_pair);
736 struct delay_pair **slot;
737
738 p->i1 = i1;
739 p->i2 = i2;
740 p->cycles = cycles;
06d7e8e7 741 p->stages = stages;
26965010 742
c203e8a7 743 if (!delay_htab)
26965010 744 {
c203e8a7
TS
745 delay_htab = new hash_table<delay_i1_hasher> (10);
746 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
26965010 747 }
c203e8a7 748 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
26965010
BS
749 p->next_same_i1 = *slot;
750 *slot = p;
c203e8a7 751 slot = delay_htab_i2->find_slot (p, INSERT);
26965010
BS
752 *slot = p;
753}
754
e2724e63
BS
755/* Examine the delay pair hashtable to see if INSN is a shadow for another,
756 and return the other insn if so. Return NULL otherwise. */
f57aa6b0
DM
757rtx_insn *
758real_insn_for_shadow (rtx_insn *insn)
e2724e63
BS
759{
760 struct delay_pair *pair;
761
c203e8a7 762 if (!delay_htab)
f57aa6b0 763 return NULL;
e2724e63 764
c203e8a7 765 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
e2724e63 766 if (!pair || pair->stages > 0)
f57aa6b0 767 return NULL;
e2724e63
BS
768 return pair->i1;
769}
770
26965010
BS
771/* For a pair P of insns, return the fixed distance in cycles from the first
772 insn after which the second must be scheduled. */
773static int
774pair_delay (struct delay_pair *p)
775{
06d7e8e7
BS
776 if (p->stages == 0)
777 return p->cycles;
778 else
779 return p->stages * modulo_ii;
26965010
BS
780}
781
782/* Given an insn INSN, add a dependence on its delayed shadow if it
783 has one. Also try to find situations where shadows depend on each other
784 and add dependencies to the real insns to limit the amount of backtracking
785 needed. */
786void
ce1ce33a 787add_delay_dependencies (rtx_insn *insn)
26965010
BS
788{
789 struct delay_pair *pair;
790 sd_iterator_def sd_it;
791 dep_t dep;
792
c203e8a7 793 if (!delay_htab)
26965010
BS
794 return;
795
c203e8a7 796 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
26965010
BS
797 if (!pair)
798 return;
799 add_dependence (insn, pair->i1, REG_DEP_ANTI);
06d7e8e7
BS
800 if (pair->stages)
801 return;
26965010
BS
802
803 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
804 {
9b517712 805 rtx_insn *pro = DEP_PRO (dep);
26965010 806 struct delay_pair *other_pair
c203e8a7 807 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
06d7e8e7 808 if (!other_pair || other_pair->stages)
26965010
BS
809 continue;
810 if (pair_delay (other_pair) >= pair_delay (pair))
811 {
812 if (sched_verbose >= 4)
813 {
814 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
815 INSN_UID (other_pair->i1),
816 INSN_UID (pair->i1));
817 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
818 INSN_UID (pair->i1),
819 INSN_UID (pair->i2),
820 pair_delay (pair));
821 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
822 INSN_UID (other_pair->i1),
823 INSN_UID (other_pair->i2),
824 pair_delay (other_pair));
825 }
826 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
827 }
828 }
829}
830\f
8c660648 831/* Forward declarations. */
fae15c93 832
079c81d0 833static int priority (rtx_insn *, bool force_recompute = false);
340c7904 834static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
1d088dee 835static int rank_for_schedule (const void *, const void *);
ce1ce33a
DM
836static void swap_sort (rtx_insn **, int);
837static void queue_insn (rtx_insn *, int, const char *);
838static int schedule_insn (rtx_insn *);
f57aa6b0 839static void adjust_priority (rtx_insn *);
1d088dee 840static void advance_one_cycle (void);
e855c69d
AB
841static void extend_h_i_d (void);
842
8c660648 843
8c660648
JL
844/* Notes handling mechanism:
845 =========================
846 Generally, NOTES are saved before scheduling and restored after scheduling.
07c02828 847 The scheduler distinguishes between two types of notes:
8c660648 848
6039a0c7 849 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
8c660648
JL
850 Before scheduling a region, a pointer to the note is added to the insn
851 that follows or precedes it. (This happens as part of the data dependence
852 computation). After scheduling an insn, the pointer contained in it is
853 used for regenerating the corresponding note (in reemit_notes).
854
6039a0c7 855 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
8c660648
JL
856 these notes are put in a list (in rm_other_notes() and
857 unlink_other_notes ()). After scheduling the block, these notes are
858 inserted at the beginning of the block (in schedule_block()). */
859
ce1ce33a
DM
860static void ready_add (struct ready_list *, rtx_insn *, bool);
861static rtx_insn *ready_remove_first (struct ready_list *);
862static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
3fe41456 863
1d088dee 864static void queue_to_ready (struct ready_list *);
569fa502 865static int early_queue_to_ready (state_t, struct ready_list *);
176f9a7b 866
fae15c93 867/* The following functions are used to implement multi-pass scheduling
fa0aee89 868 on the first cycle. */
ce1ce33a 869static rtx_insn *ready_remove (struct ready_list *, int);
90831096 870static void ready_remove_insn (rtx_insn *);
fae15c93 871
f57aa6b0 872static void fix_inter_tick (rtx_insn *, rtx_insn *);
ce1ce33a
DM
873static int fix_tick_ready (rtx_insn *);
874static void change_queue_index (rtx_insn *, int);
63f54b1a 875
496d7bb0
MK
876/* The following functions are used to implement scheduling of data/control
877 speculative instructions. */
878
879static void extend_h_i_d (void);
f57aa6b0
DM
880static void init_h_i_d (rtx_insn *);
881static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
ce1ce33a 882static void generate_recovery_code (rtx_insn *);
90831096 883static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
ce1ce33a 884static void begin_speculative_block (rtx_insn *);
6144a836 885static void add_to_speculative_block (rtx_insn *);
e855c69d 886static void init_before_recovery (basic_block *);
ce1ce33a 887static void create_check_block_twin (rtx_insn *, bool);
496d7bb0 888static void fix_recovery_deps (basic_block);
f57aa6b0
DM
889static bool haifa_change_pattern (rtx_insn *, rtx);
890static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
496d7bb0 891static void restore_bb_notes (basic_block);
f57aa6b0
DM
892static void fix_jump_move (rtx_insn *);
893static void move_block_after_check (rtx_insn *);
9771b263 894static void move_succs (vec<edge, va_gc> **, basic_block);
ce1ce33a 895static void sched_remove_insn (rtx_insn *);
6144a836 896static void clear_priorities (rtx_insn *, rtx_vec_t *);
916fa4f0 897static void calc_priorities (rtx_vec_t);
0e0ce50d 898static void add_jump_dependencies (rtx_insn *, rtx_insn *);
496d7bb0 899
8c660648
JL
900#endif /* INSN_SCHEDULING */
901\f
1708fd40 902/* Point to state used for the current scheduling pass. */
e855c69d 903struct haifa_sched_info *current_sched_info;
8c660648
JL
904\f
905#ifndef INSN_SCHEDULING
906void
10d22567 907schedule_insns (void)
8c660648
JL
908{
909}
910#else
cbb13457 911
ce18efcb
VM
912/* Do register pressure sensitive insn scheduling if the flag is set
913 up. */
60867e8c 914enum sched_pressure_algorithm sched_pressure;
ce18efcb 915
1756cb66 916/* Map regno -> its pressure class. The map defined only when
7a1aca9c 917 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
1756cb66 918enum reg_class *sched_regno_pressure_class;
ce18efcb 919
1756cb66 920/* The current register pressure. Only elements corresponding pressure
ce18efcb
VM
921 classes are defined. */
922static int curr_reg_pressure[N_REG_CLASSES];
923
924/* Saved value of the previous array. */
925static int saved_reg_pressure[N_REG_CLASSES];
926
927/* Register living at given scheduling point. */
928static bitmap curr_reg_live;
929
930/* Saved value of the previous array. */
931static bitmap saved_reg_live;
932
933/* Registers mentioned in the current region. */
934static bitmap region_ref_regs;
935
f380f608
RS
936/* Temporary bitmap used for SCHED_PRESSURE_MODEL. */
937static bitmap tmp_bitmap;
938
4dd9ac6c
MK
939/* Effective number of available registers of a given class (see comment
940 in sched_pressure_start_bb). */
941static int sched_class_regs_num[N_REG_CLASSES];
6d5c37d0 942/* Number of call_saved_regs and fixed_regs. Helpers for calculating of
4dd9ac6c 943 sched_class_regs_num. */
6d5c37d0
PH
944static int call_saved_regs_num[N_REG_CLASSES];
945static int fixed_regs_num[N_REG_CLASSES];
4dd9ac6c 946
ce18efcb
VM
947/* Initiate register pressure relative info for scheduling the current
948 region. Currently it is only clearing register mentioned in the
949 current region. */
950void
951sched_init_region_reg_pressure_info (void)
952{
953 bitmap_clear (region_ref_regs);
954}
955
7a1aca9c
RS
956/* PRESSURE[CL] describes the pressure on register class CL. Update it
957 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
958 LIVE tracks the set of live registers; if it is null, assume that
959 every birth or death is genuine. */
960static inline void
961mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
ce18efcb 962{
1756cb66 963 enum reg_class pressure_class;
ce18efcb 964
1756cb66 965 pressure_class = sched_regno_pressure_class[regno];
ce18efcb
VM
966 if (regno >= FIRST_PSEUDO_REGISTER)
967 {
1756cb66 968 if (pressure_class != NO_REGS)
ce18efcb
VM
969 {
970 if (birth_p)
971 {
7a1aca9c
RS
972 if (!live || bitmap_set_bit (live, regno))
973 pressure[pressure_class]
974 += (ira_reg_class_max_nregs
975 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
ce18efcb
VM
976 }
977 else
978 {
7a1aca9c
RS
979 if (!live || bitmap_clear_bit (live, regno))
980 pressure[pressure_class]
981 -= (ira_reg_class_max_nregs
982 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
ce18efcb
VM
983 }
984 }
985 }
1756cb66 986 else if (pressure_class != NO_REGS
ce18efcb
VM
987 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
988 {
989 if (birth_p)
990 {
7a1aca9c
RS
991 if (!live || bitmap_set_bit (live, regno))
992 pressure[pressure_class]++;
ce18efcb
VM
993 }
994 else
995 {
7a1aca9c
RS
996 if (!live || bitmap_clear_bit (live, regno))
997 pressure[pressure_class]--;
ce18efcb
VM
998 }
999 }
1000}
1001
1002/* Initiate current register pressure related info from living
1003 registers given by LIVE. */
1004static void
1005initiate_reg_pressure_info (bitmap live)
1006{
1007 int i;
1008 unsigned int j;
1009 bitmap_iterator bi;
1010
1756cb66
VM
1011 for (i = 0; i < ira_pressure_classes_num; i++)
1012 curr_reg_pressure[ira_pressure_classes[i]] = 0;
ce18efcb
VM
1013 bitmap_clear (curr_reg_live);
1014 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
7a1aca9c
RS
1015 if (sched_pressure == SCHED_PRESSURE_MODEL
1016 || current_nr_blocks == 1
1017 || bitmap_bit_p (region_ref_regs, j))
1018 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
ce18efcb
VM
1019}
1020
1021/* Mark registers in X as mentioned in the current region. */
1022static void
1023setup_ref_regs (rtx x)
1024{
07a737f3 1025 int i, j;
ce18efcb
VM
1026 const RTX_CODE code = GET_CODE (x);
1027 const char *fmt;
1028
1029 if (REG_P (x))
1030 {
07a737f3 1031 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
ce18efcb
VM
1032 return;
1033 }
1034 fmt = GET_RTX_FORMAT (code);
1035 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1036 if (fmt[i] == 'e')
1037 setup_ref_regs (XEXP (x, i));
1038 else if (fmt[i] == 'E')
1039 {
1040 for (j = 0; j < XVECLEN (x, i); j++)
1041 setup_ref_regs (XVECEXP (x, i, j));
1042 }
1043}
1044
1045/* Initiate current register pressure related info at the start of
1046 basic block BB. */
1047static void
1048initiate_bb_reg_pressure_info (basic_block bb)
1049{
6ab31ade 1050 unsigned int i ATTRIBUTE_UNUSED;
dc01c3d1 1051 rtx_insn *insn;
ce18efcb
VM
1052
1053 if (current_nr_blocks > 1)
1054 FOR_BB_INSNS (bb, insn)
69b45d71 1055 if (NONDEBUG_INSN_P (insn))
ce18efcb
VM
1056 setup_ref_regs (PATTERN (insn));
1057 initiate_reg_pressure_info (df_get_live_in (bb));
ce18efcb
VM
1058 if (bb_has_eh_pred (bb))
1059 for (i = 0; ; ++i)
1060 {
1061 unsigned int regno = EH_RETURN_DATA_REGNO (i);
b8698a0f 1062
ce18efcb
VM
1063 if (regno == INVALID_REGNUM)
1064 break;
1065 if (! bitmap_bit_p (df_get_live_in (bb), regno))
7a1aca9c
RS
1066 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1067 regno, true);
ce18efcb 1068 }
ce18efcb
VM
1069}
1070
1071/* Save current register pressure related info. */
1072static void
1073save_reg_pressure (void)
1074{
1075 int i;
b8698a0f 1076
1756cb66
VM
1077 for (i = 0; i < ira_pressure_classes_num; i++)
1078 saved_reg_pressure[ira_pressure_classes[i]]
1079 = curr_reg_pressure[ira_pressure_classes[i]];
ce18efcb
VM
1080 bitmap_copy (saved_reg_live, curr_reg_live);
1081}
1082
1083/* Restore saved register pressure related info. */
1084static void
1085restore_reg_pressure (void)
1086{
1087 int i;
b8698a0f 1088
1756cb66
VM
1089 for (i = 0; i < ira_pressure_classes_num; i++)
1090 curr_reg_pressure[ira_pressure_classes[i]]
1091 = saved_reg_pressure[ira_pressure_classes[i]];
ce18efcb
VM
1092 bitmap_copy (curr_reg_live, saved_reg_live);
1093}
1094
1095/* Return TRUE if the register is dying after its USE. */
1096static bool
1097dying_use_p (struct reg_use_data *use)
1098{
1099 struct reg_use_data *next;
1100
1101 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
bb956f3e
AO
1102 if (NONDEBUG_INSN_P (next->insn)
1103 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
ce18efcb
VM
1104 return false;
1105 return true;
1106}
1107
1108/* Print info about the current register pressure and its excess for
1756cb66 1109 each pressure class. */
ce18efcb
VM
1110static void
1111print_curr_reg_pressure (void)
1112{
1113 int i;
1114 enum reg_class cl;
1115
1116 fprintf (sched_dump, ";;\t");
1756cb66 1117 for (i = 0; i < ira_pressure_classes_num; i++)
ce18efcb 1118 {
1756cb66 1119 cl = ira_pressure_classes[i];
ce18efcb
VM
1120 gcc_assert (curr_reg_pressure[cl] >= 0);
1121 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1122 curr_reg_pressure[cl],
4dd9ac6c 1123 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
ce18efcb
VM
1124 }
1125 fprintf (sched_dump, "\n");
1126}
e2724e63
BS
1127\f
1128/* Determine if INSN has a condition that is clobbered if a register
1129 in SET_REGS is modified. */
1130static bool
ce1ce33a 1131cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
e2724e63
BS
1132{
1133 rtx pat = PATTERN (insn);
1134 gcc_assert (GET_CODE (pat) == COND_EXEC);
1135 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1136 {
1137 sd_iterator_def sd_it;
1138 dep_t dep;
1139 haifa_change_pattern (insn, ORIG_PAT (insn));
1140 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1141 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1142 TODO_SPEC (insn) = HARD_DEP;
1143 if (sched_verbose >= 2)
1144 fprintf (sched_dump,
1145 ";;\t\tdequeue insn %s because of clobbered condition\n",
1146 (*current_sched_info->print_insn) (insn, 0));
1147 return true;
1148 }
1149
1150 return false;
1151}
1152
1a83e602
BS
1153/* This function should be called after modifying the pattern of INSN,
1154 to update scheduler data structures as needed. */
1155static void
f57aa6b0 1156update_insn_after_change (rtx_insn *insn)
1a83e602
BS
1157{
1158 sd_iterator_def sd_it;
1159 dep_t dep;
1160
1161 dfa_clear_single_insn_cache (insn);
1162
1163 sd_it = sd_iterator_start (insn,
1164 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1165 while (sd_iterator_cond (&sd_it, &dep))
1166 {
1167 DEP_COST (dep) = UNKNOWN_DEP_COST;
1168 sd_iterator_next (&sd_it);
1169 }
1170
1171 /* Invalidate INSN_COST, so it'll be recalculated. */
1172 INSN_COST (insn) = -1;
1173 /* Invalidate INSN_TICK, so it'll be recalculated. */
1174 INSN_TICK (insn) = INVALID_TICK;
340c7904
MK
1175
1176 /* Invalidate autoprefetch data entry. */
1177 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1178 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1179 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1180 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1a83e602
BS
1181}
1182
1a83e602
BS
1183
1184/* Two VECs, one to hold dependencies for which pattern replacements
1185 need to be applied or restored at the start of the next cycle, and
1186 another to hold an integer that is either one, to apply the
1187 corresponding replacement, or zero to restore it. */
9771b263
DN
1188static vec<dep_t> next_cycle_replace_deps;
1189static vec<int> next_cycle_apply;
1a83e602
BS
1190
1191static void apply_replacement (dep_t, bool);
1192static void restore_pattern (dep_t, bool);
1193
e2724e63
BS
1194/* Look at the remaining dependencies for insn NEXT, and compute and return
1195 the TODO_SPEC value we should use for it. This is called after one of
1a83e602
BS
1196 NEXT's dependencies has been resolved.
1197 We also perform pattern replacements for predication, and for broken
1198 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1199 false. */
ce18efcb 1200
e2724e63 1201static ds_t
f57aa6b0 1202recompute_todo_spec (rtx_insn *next, bool for_backtrack)
e2724e63
BS
1203{
1204 ds_t new_ds;
1205 sd_iterator_def sd_it;
1a83e602 1206 dep_t dep, modify_dep = NULL;
e2724e63
BS
1207 int n_spec = 0;
1208 int n_control = 0;
1a83e602 1209 int n_replace = 0;
e2724e63
BS
1210 bool first_p = true;
1211
1212 if (sd_lists_empty_p (next, SD_LIST_BACK))
1213 /* NEXT has all its dependencies resolved. */
1214 return 0;
1215
1216 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1217 return HARD_DEP;
1218
61a17dca
JG
1219 /* If NEXT is intended to sit adjacent to this instruction, we don't
1220 want to try to break any dependencies. Treat it as a HARD_DEP. */
1221 if (SCHED_GROUP_P (next))
1222 return HARD_DEP;
1223
e2724e63
BS
1224 /* Now we've got NEXT with speculative deps only.
1225 1. Look at the deps to see what we have to do.
1226 2. Check if we can do 'todo'. */
1227 new_ds = 0;
1228
1229 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1230 {
9b517712 1231 rtx_insn *pro = DEP_PRO (dep);
e2724e63
BS
1232 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1233
1a83e602 1234 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
e2724e63
BS
1235 continue;
1236
1237 if (ds)
1238 {
1239 n_spec++;
1240 if (first_p)
1241 {
1242 first_p = false;
1243
1244 new_ds = ds;
1245 }
1246 else
1247 new_ds = ds_merge (new_ds, ds);
1248 }
1a83e602 1249 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
e2724e63 1250 {
1a83e602
BS
1251 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1252 {
1253 n_control++;
1254 modify_dep = dep;
1255 }
1256 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1257 }
1258 else if (DEP_REPLACE (dep) != NULL)
1259 {
1260 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1261 {
1262 n_replace++;
1263 modify_dep = dep;
1264 }
e2724e63
BS
1265 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1266 }
1267 }
1268
1a83e602
BS
1269 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1270 {
1271 if (!dbg_cnt (sched_breakdep))
1272 return HARD_DEP;
1273 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1274 {
1275 struct dep_replacement *desc = DEP_REPLACE (dep);
1276 if (desc != NULL)
1277 {
1278 if (desc->insn == next && !for_backtrack)
1279 {
1280 gcc_assert (n_replace == 1);
1281 apply_replacement (dep, true);
1282 }
1283 DEP_STATUS (dep) |= DEP_CANCELLED;
1284 }
1285 }
1286 return 0;
1287 }
1288
1289 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
e2724e63 1290 {
f57aa6b0
DM
1291 rtx_insn *pro, *other;
1292 rtx new_pat;
e2724e63
BS
1293 rtx cond = NULL_RTX;
1294 bool success;
ce1ce33a 1295 rtx_insn *prev = NULL;
e2724e63
BS
1296 int i;
1297 unsigned regno;
1298
1299 if ((current_sched_info->flags & DO_PREDICATION) == 0
1300 || (ORIG_PAT (next) != NULL_RTX
1301 && PREDICATED_PAT (next) == NULL_RTX))
1302 return HARD_DEP;
1303
1a83e602 1304 pro = DEP_PRO (modify_dep);
e2724e63
BS
1305 other = real_insn_for_shadow (pro);
1306 if (other != NULL_RTX)
1307 pro = other;
1308
1309 cond = sched_get_reverse_condition_uncached (pro);
1310 regno = REGNO (XEXP (cond, 0));
1311
1312 /* Find the last scheduled insn that modifies the condition register.
89ff14c2
BS
1313 We can stop looking once we find the insn we depend on through the
1314 REG_DEP_CONTROL; if the condition register isn't modified after it,
1315 we know that it still has the right value. */
1316 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
9771b263 1317 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
89ff14c2
BS
1318 {
1319 HARD_REG_SET t;
1320
356bf593 1321 find_all_hard_reg_sets (prev, &t, true);
89ff14c2
BS
1322 if (TEST_HARD_REG_BIT (t, regno))
1323 return HARD_DEP;
1324 if (prev == pro)
1325 break;
1326 }
e2724e63
BS
1327 if (ORIG_PAT (next) == NULL_RTX)
1328 {
1329 ORIG_PAT (next) = PATTERN (next);
1330
1331 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1332 success = haifa_change_pattern (next, new_pat);
1333 if (!success)
1334 return HARD_DEP;
1335 PREDICATED_PAT (next) = new_pat;
1336 }
1337 else if (PATTERN (next) != PREDICATED_PAT (next))
1338 {
1339 bool success = haifa_change_pattern (next,
1340 PREDICATED_PAT (next));
1341 gcc_assert (success);
1342 }
1a83e602 1343 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
e2724e63
BS
1344 return DEP_CONTROL;
1345 }
1346
1347 if (PREDICATED_PAT (next) != NULL_RTX)
1348 {
1349 int tick = INSN_TICK (next);
1350 bool success = haifa_change_pattern (next,
1351 ORIG_PAT (next));
1352 INSN_TICK (next) = tick;
1353 gcc_assert (success);
1354 }
1355
1356 /* We can't handle the case where there are both speculative and control
1357 dependencies, so we return HARD_DEP in such a case. Also fail if
1358 we have speculative dependencies with not enough points, or more than
1359 one control dependency. */
1a83e602 1360 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
e2724e63
BS
1361 || (n_spec > 0
1362 /* Too few points? */
1363 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1a83e602
BS
1364 || n_control > 0
1365 || n_replace > 0)
e2724e63
BS
1366 return HARD_DEP;
1367
1368 return new_ds;
1369}
1370\f
9b69cf83 1371/* Pointer to the last instruction scheduled. */
ce1ce33a 1372static rtx_insn *last_scheduled_insn;
8c660648 1373
5c24671b
AO
1374/* Pointer to the last nondebug instruction scheduled within the
1375 block, or the prev_head of the scheduling block. Used by
1376 rank_for_schedule, so that insns independent of the last scheduled
1377 insn will be preferred over dependent instructions. */
90831096 1378static rtx_insn *last_nondebug_scheduled_insn;
5c24671b 1379
9b69cf83
BS
1380/* Pointer that iterates through the list of unscheduled insns if we
1381 have a dbg_cnt enabled. It always points at an insn prior to the
1382 first unscheduled one. */
ce1ce33a 1383static rtx_insn *nonscheduled_insns_begin;
9b69cf83 1384
b198261f 1385/* Compute cost of executing INSN.
496d7bb0
MK
1386 This is the number of cycles between instruction issue and
1387 instruction results. */
5fd8300b 1388int
ffc1ded5 1389insn_sched_cost (rtx_insn *insn)
8c660648 1390{
e855c69d
AB
1391 int cost;
1392
b16abbcb
BC
1393 if (sched_fusion)
1394 return 0;
1395
e855c69d
AB
1396 if (sel_sched_p ())
1397 {
1398 if (recog_memoized (insn) < 0)
1399 return 0;
1400
1401 cost = insn_default_latency (insn);
1402 if (cost < 0)
1403 cost = 0;
1404
1405 return cost;
1406 }
1407
1408 cost = INSN_COST (insn);
8c660648 1409
fae15c93 1410 if (cost < 0)
8c660648 1411 {
fae15c93
VM
1412 /* A USE insn, or something else we don't need to
1413 understand. We can't pass these directly to
1414 result_ready_cost or insn_default_latency because it will
1415 trigger a fatal error for unrecognizable insns. */
1416 if (recog_memoized (insn) < 0)
8c660648 1417 {
fae15c93
VM
1418 INSN_COST (insn) = 0;
1419 return 0;
8c660648
JL
1420 }
1421 else
1422 {
fa0aee89 1423 cost = insn_default_latency (insn);
fae15c93
VM
1424 if (cost < 0)
1425 cost = 0;
1d088dee 1426
8c660648
JL
1427 INSN_COST (insn) = cost;
1428 }
1429 }
1430
b198261f
MK
1431 return cost;
1432}
1433
1434/* Compute cost of dependence LINK.
1435 This is the number of cycles between instruction issue and
078a70a1
AN
1436 instruction results.
1437 ??? We also use this function to call recog_memoized on all insns. */
b198261f 1438int
e855c69d 1439dep_cost_1 (dep_t link, dw_t dw)
b198261f 1440{
9b517712
DM
1441 rtx_insn *insn = DEP_PRO (link);
1442 rtx_insn *used = DEP_CON (link);
b198261f 1443 int cost;
8c660648 1444
a19af9c4
BS
1445 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1446 return DEP_COST (link);
1447
c203e8a7 1448 if (delay_htab)
26965010
BS
1449 {
1450 struct delay_pair *delay_entry;
1451 delay_entry
c203e8a7 1452 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
26965010
BS
1453 if (delay_entry)
1454 {
1455 if (delay_entry->i1 == insn)
1456 {
1457 DEP_COST (link) = pair_delay (delay_entry);
1458 return DEP_COST (link);
1459 }
1460 }
1461 }
1462
fae15c93
VM
1463 /* A USE insn should never require the value used to be computed.
1464 This allows the computation of a function's result and parameter
ce18efcb 1465 values to overlap the return and call. We don't care about the
dd5a833e 1466 dependence cost when only decreasing register pressure. */
fae15c93 1467 if (recog_memoized (used) < 0)
078a70a1
AN
1468 {
1469 cost = 0;
1470 recog_memoized (insn);
1471 }
fae15c93 1472 else
8c660648 1473 {
e2f6ff94 1474 enum reg_note dep_type = DEP_TYPE (link);
b198261f 1475
ffc1ded5 1476 cost = insn_sched_cost (insn);
496d7bb0 1477
fa0aee89 1478 if (INSN_CODE (insn) >= 0)
197043f5 1479 {
496d7bb0 1480 if (dep_type == REG_DEP_ANTI)
fa0aee89 1481 cost = 0;
496d7bb0 1482 else if (dep_type == REG_DEP_OUTPUT)
fae15c93 1483 {
fa0aee89
PB
1484 cost = (insn_default_latency (insn)
1485 - insn_default_latency (used));
1486 if (cost <= 0)
1487 cost = 1;
fae15c93 1488 }
fa0aee89
PB
1489 else if (bypass_p (insn))
1490 cost = insn_latency (insn, used);
197043f5 1491 }
b8698a0f 1492
b8ec5764 1493
b505225b
TS
1494 if (targetm.sched.adjust_cost)
1495 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1496 dw);
fae15c93
VM
1497
1498 if (cost < 0)
1499 cost = 0;
1500 }
1d088dee 1501
a19af9c4 1502 DEP_COST (link) = cost;
8c660648
JL
1503 return cost;
1504}
1505
e855c69d
AB
1506/* Compute cost of dependence LINK.
1507 This is the number of cycles between instruction issue and
1508 instruction results. */
1509int
1510dep_cost (dep_t link)
1511{
1512 return dep_cost_1 (link, 0);
1513}
1514
1515/* Use this sel-sched.c friendly function in reorder2 instead of increasing
1516 INSN_PRIORITY explicitly. */
1517void
f57aa6b0 1518increase_insn_priority (rtx_insn *insn, int amount)
e855c69d
AB
1519{
1520 if (!sel_sched_p ())
1521 {
1522 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1523 if (INSN_PRIORITY_KNOWN (insn))
1524 INSN_PRIORITY (insn) += amount;
1525 }
1526 else
1527 {
b8698a0f 1528 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
e855c69d
AB
1529 Use EXPR_PRIORITY instead. */
1530 sel_add_to_insn_priority (insn, amount);
1531 }
1532}
1533
916fa4f0
MK
1534/* Return 'true' if DEP should be included in priority calculations. */
1535static bool
1536contributes_to_priority_p (dep_t dep)
1537{
b5b8b0ac
AO
1538 if (DEBUG_INSN_P (DEP_CON (dep))
1539 || DEBUG_INSN_P (DEP_PRO (dep)))
1540 return false;
1541
916fa4f0
MK
1542 /* Critical path is meaningful in block boundaries only. */
1543 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1544 DEP_PRO (dep)))
1545 return false;
1546
1a83e602
BS
1547 if (DEP_REPLACE (dep) != NULL)
1548 return false;
1549
916fa4f0
MK
1550 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1551 then speculative instructions will less likely be
1552 scheduled. That is because the priority of
1553 their producers will increase, and, thus, the
1554 producers will more likely be scheduled, thus,
1555 resolving the dependence. */
e855c69d 1556 if (sched_deps_info->generate_spec_deps
916fa4f0
MK
1557 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1558 && (DEP_STATUS (dep) & SPECULATIVE))
1559 return false;
8c660648 1560
916fa4f0
MK
1561 return true;
1562}
1563
7a1aca9c 1564/* Compute the number of nondebug deps in list LIST for INSN. */
b5b8b0ac
AO
1565
1566static int
90831096 1567dep_list_size (rtx_insn *insn, sd_list_types_def list)
b5b8b0ac
AO
1568{
1569 sd_iterator_def sd_it;
1570 dep_t dep;
1571 int dbgcount = 0, nodbgcount = 0;
1572
1573 if (!MAY_HAVE_DEBUG_INSNS)
7a1aca9c 1574 return sd_lists_size (insn, list);
b5b8b0ac 1575
7a1aca9c 1576 FOR_EACH_DEP (insn, list, sd_it, dep)
b5b8b0ac
AO
1577 {
1578 if (DEBUG_INSN_P (DEP_CON (dep)))
1579 dbgcount++;
f49b295a 1580 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
b5b8b0ac
AO
1581 nodbgcount++;
1582 }
1583
7a1aca9c 1584 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
b5b8b0ac
AO
1585
1586 return nodbgcount;
1587}
1588
b16abbcb
BC
1589bool sched_fusion;
1590
916fa4f0 1591/* Compute the priority number for INSN. */
8c660648 1592static int
079c81d0 1593priority (rtx_insn *insn, bool force_recompute)
8c660648 1594{
2c3c49de 1595 if (! INSN_P (insn))
8c660648
JL
1596 return 0;
1597
c80b4100 1598 /* We should not be interested in priority of an already scheduled insn. */
916fa4f0
MK
1599 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1600
079c81d0 1601 if (force_recompute || !INSN_PRIORITY_KNOWN (insn))
8c660648 1602 {
e855c69d 1603 int this_priority = -1;
21e4c9a8 1604
b16abbcb
BC
1605 if (sched_fusion)
1606 {
1607 int this_fusion_priority;
1608
1609 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1610 &this_fusion_priority, &this_priority);
1611 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1612 }
1613 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
ffc1ded5
SB
1614 /* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn
1615 has some forward deps but all of them are ignored by
b198261f
MK
1616 contributes_to_priority hook. At the moment we set priority of
1617 such insn to 0. */
ffc1ded5 1618 this_priority = insn_sched_cost (insn);
8c660648 1619 else
21e4c9a8 1620 {
dc01c3d1 1621 rtx_insn *prev_first, *twin;
496d7bb0 1622 basic_block rec;
8c660648 1623
496d7bb0
MK
1624 /* For recovery check instructions we calculate priority slightly
1625 different than that of normal instructions. Instead of walking
b198261f
MK
1626 through INSN_FORW_DEPS (check) list, we walk through
1627 INSN_FORW_DEPS list of each instruction in the corresponding
b8698a0f 1628 recovery block. */
8c660648 1629
e855c69d
AB
1630 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1631 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
fefa31b5 1632 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0
MK
1633 {
1634 prev_first = PREV_INSN (insn);
1635 twin = insn;
1636 }
1637 else
1638 {
1639 prev_first = NEXT_INSN (BB_HEAD (rec));
1640 twin = PREV_INSN (BB_END (rec));
1641 }
8c660648 1642
496d7bb0
MK
1643 do
1644 {
e2f6ff94
MK
1645 sd_iterator_def sd_it;
1646 dep_t dep;
1647
1648 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
496d7bb0 1649 {
0e0ce50d 1650 rtx_insn *next;
496d7bb0 1651 int next_priority;
b198261f
MK
1652
1653 next = DEP_CON (dep);
1654
496d7bb0
MK
1655 if (BLOCK_FOR_INSN (next) != rec)
1656 {
b198261f
MK
1657 int cost;
1658
916fa4f0 1659 if (!contributes_to_priority_p (dep))
496d7bb0 1660 continue;
b198261f
MK
1661
1662 if (twin == insn)
1663 cost = dep_cost (dep);
1664 else
1665 {
1666 struct _dep _dep1, *dep1 = &_dep1;
1667
1668 init_dep (dep1, insn, next, REG_DEP_ANTI);
1669
1670 cost = dep_cost (dep1);
1671 }
1672
1673 next_priority = cost + priority (next);
496d7bb0
MK
1674
1675 if (next_priority > this_priority)
1676 this_priority = next_priority;
1677 }
1678 }
b8698a0f 1679
496d7bb0 1680 twin = PREV_INSN (twin);
21e4c9a8 1681 }
496d7bb0 1682 while (twin != prev_first);
21e4c9a8 1683 }
e855c69d
AB
1684
1685 if (this_priority < 0)
1686 {
1687 gcc_assert (this_priority == -1);
1688
ffc1ded5 1689 this_priority = insn_sched_cost (insn);
e855c69d
AB
1690 }
1691
8c660648 1692 INSN_PRIORITY (insn) = this_priority;
916fa4f0 1693 INSN_PRIORITY_STATUS (insn) = 1;
8c660648 1694 }
21e4c9a8
BS
1695
1696 return INSN_PRIORITY (insn);
8c660648
JL
1697}
1698\f
8c660648 1699/* Macros and functions for keeping the priority queue sorted, and
d91edf86 1700 dealing with queuing and dequeuing of instructions. */
8c660648 1701
7a1aca9c
RS
1702/* For each pressure class CL, set DEATH[CL] to the number of registers
1703 in that class that die in INSN. */
1704
1705static void
f57aa6b0 1706calculate_reg_deaths (rtx_insn *insn, int *death)
7a1aca9c
RS
1707{
1708 int i;
1709 struct reg_use_data *use;
1710
1711 for (i = 0; i < ira_pressure_classes_num; i++)
1712 death[ira_pressure_classes[i]] = 0;
1713 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1714 if (dying_use_p (use))
1715 mark_regno_birth_or_death (0, death, use->regno, true);
1716}
1717
ce18efcb
VM
1718/* Setup info about the current register pressure impact of scheduling
1719 INSN at the current scheduling point. */
1720static void
f57aa6b0 1721setup_insn_reg_pressure_info (rtx_insn *insn)
ce18efcb
VM
1722{
1723 int i, change, before, after, hard_regno;
1724 int excess_cost_change;
ef4bddc2 1725 machine_mode mode;
ce18efcb
VM
1726 enum reg_class cl;
1727 struct reg_pressure_data *pressure_info;
1728 int *max_reg_pressure;
ce18efcb
VM
1729 static int death[N_REG_CLASSES];
1730
c11b0b3b
AO
1731 gcc_checking_assert (!DEBUG_INSN_P (insn));
1732
ce18efcb 1733 excess_cost_change = 0;
7a1aca9c 1734 calculate_reg_deaths (insn, death);
ce18efcb
VM
1735 pressure_info = INSN_REG_PRESSURE (insn);
1736 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1737 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1756cb66 1738 for (i = 0; i < ira_pressure_classes_num; i++)
ce18efcb 1739 {
1756cb66 1740 cl = ira_pressure_classes[i];
ce18efcb
VM
1741 gcc_assert (curr_reg_pressure[cl] >= 0);
1742 change = (int) pressure_info[i].set_increase - death[cl];
4dd9ac6c 1743 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
ce18efcb 1744 after = MAX (0, max_reg_pressure[i] + change
4dd9ac6c 1745 - sched_class_regs_num[cl]);
ce18efcb
VM
1746 hard_regno = ira_class_hard_regs[cl][0];
1747 gcc_assert (hard_regno >= 0);
1748 mode = reg_raw_mode[hard_regno];
1749 excess_cost_change += ((after - before)
1750 * (ira_memory_move_cost[mode][cl][0]
1751 + ira_memory_move_cost[mode][cl][1]));
1752 }
1753 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1754}
7a1aca9c
RS
1755\f
1756/* This is the first page of code related to SCHED_PRESSURE_MODEL.
1757 It tries to make the scheduler take register pressure into account
1758 without introducing too many unnecessary stalls. It hooks into the
1759 main scheduling algorithm at several points:
1760
1761 - Before scheduling starts, model_start_schedule constructs a
1762 "model schedule" for the current block. This model schedule is
1763 chosen solely to keep register pressure down. It does not take the
1764 target's pipeline or the original instruction order into account,
1765 except as a tie-breaker. It also doesn't work to a particular
1766 pressure limit.
1767
1768 This model schedule gives us an idea of what pressure can be
1769 achieved for the block and gives us an example of a schedule that
1770 keeps to that pressure. It also makes the final schedule less
1771 dependent on the original instruction order. This is important
1772 because the original order can either be "wide" (many values live
1773 at once, such as in user-scheduled code) or "narrow" (few values
1774 live at once, such as after loop unrolling, where several
1775 iterations are executed sequentially).
1776
1777 We do not apply this model schedule to the rtx stream. We simply
1778 record it in model_schedule. We also compute the maximum pressure,
1779 MP, that was seen during this schedule.
1780
1781 - Instructions are added to the ready queue even if they require
1782 a stall. The length of the stall is instead computed as:
1783
1784 MAX (INSN_TICK (INSN) - clock_var, 0)
1785
1786 (= insn_delay). This allows rank_for_schedule to choose between
1787 introducing a deliberate stall or increasing pressure.
1788
1789 - Before sorting the ready queue, model_set_excess_costs assigns
1790 a pressure-based cost to each ready instruction in the queue.
1791 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1792 (ECC for short) and is effectively measured in cycles.
1793
1794 - rank_for_schedule ranks instructions based on:
1795
1796 ECC (insn) + insn_delay (insn)
1797
1798 then as:
1799
1800 insn_delay (insn)
1801
1802 So, for example, an instruction X1 with an ECC of 1 that can issue
1803 now will win over an instruction X0 with an ECC of zero that would
1804 introduce a stall of one cycle. However, an instruction X2 with an
1805 ECC of 2 that can issue now will lose to both X0 and X1.
1806
1807 - When an instruction is scheduled, model_recompute updates the model
1808 schedule with the new pressures (some of which might now exceed the
1809 original maximum pressure MP). model_update_limit_points then searches
1810 for the new point of maximum pressure, if not already known. */
1811
1812/* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1813 from surrounding debug information. */
1814#define MODEL_BAR \
1815 ";;\t\t+------------------------------------------------------\n"
1816
1817/* Information about the pressure on a particular register class at a
1818 particular point of the model schedule. */
1819struct model_pressure_data {
1820 /* The pressure at this point of the model schedule, or -1 if the
1821 point is associated with an instruction that has already been
1822 scheduled. */
1823 int ref_pressure;
1824
1825 /* The maximum pressure during or after this point of the model schedule. */
1826 int max_pressure;
1827};
1828
1829/* Per-instruction information that is used while building the model
1830 schedule. Here, "schedule" refers to the model schedule rather
1831 than the main schedule. */
1832struct model_insn_info {
1833 /* The instruction itself. */
40a243d4 1834 rtx_insn *insn;
7a1aca9c
RS
1835
1836 /* If this instruction is in model_worklist, these fields link to the
1837 previous (higher-priority) and next (lower-priority) instructions
1838 in the list. */
1839 struct model_insn_info *prev;
1840 struct model_insn_info *next;
1841
1842 /* While constructing the schedule, QUEUE_INDEX describes whether an
1843 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1844 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1845 old_queue records the value that QUEUE_INDEX had before scheduling
1846 started, so that we can restore it once the schedule is complete. */
1847 int old_queue;
1848
1849 /* The relative importance of an unscheduled instruction. Higher
1850 values indicate greater importance. */
1851 unsigned int model_priority;
1852
1853 /* The length of the longest path of satisfied true dependencies
1854 that leads to this instruction. */
1855 unsigned int depth;
1856
1857 /* The length of the longest path of dependencies of any kind
1858 that leads from this instruction. */
1859 unsigned int alap;
1860
1861 /* The number of predecessor nodes that must still be scheduled. */
1862 int unscheduled_preds;
1863};
1864
1865/* Information about the pressure limit for a particular register class.
1866 This structure is used when applying a model schedule to the main
1867 schedule. */
1868struct model_pressure_limit {
1869 /* The maximum register pressure seen in the original model schedule. */
1870 int orig_pressure;
1871
1872 /* The maximum register pressure seen in the current model schedule
1873 (which excludes instructions that have already been scheduled). */
1874 int pressure;
1875
1876 /* The point of the current model schedule at which PRESSURE is first
1877 reached. It is set to -1 if the value needs to be recomputed. */
1878 int point;
1879};
1880
1881/* Describes a particular way of measuring register pressure. */
1882struct model_pressure_group {
1883 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1884 struct model_pressure_limit limits[N_REG_CLASSES];
1885
1886 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1887 on register class ira_pressure_classes[PCI] at point POINT of the
1888 current model schedule. A POINT of model_num_insns describes the
1889 pressure at the end of the schedule. */
1890 struct model_pressure_data *model;
1891};
1892
1893/* Index POINT gives the instruction at point POINT of the model schedule.
1894 This array doesn't change during main scheduling. */
f57aa6b0 1895static vec<rtx_insn *> model_schedule;
7a1aca9c
RS
1896
1897/* The list of instructions in the model worklist, sorted in order of
1898 decreasing priority. */
1899static struct model_insn_info *model_worklist;
1900
1901/* Index I describes the instruction with INSN_LUID I. */
1902static struct model_insn_info *model_insns;
1903
1904/* The number of instructions in the model schedule. */
1905static int model_num_insns;
1906
1907/* The index of the first instruction in model_schedule that hasn't yet been
1908 added to the main schedule, or model_num_insns if all of them have. */
1909static int model_curr_point;
1910
1911/* Describes the pressure before each instruction in the model schedule. */
1912static struct model_pressure_group model_before_pressure;
1913
1914/* The first unused model_priority value (as used in model_insn_info). */
1915static unsigned int model_next_priority;
1916
1917
1918/* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1919 at point POINT of the model schedule. */
1920#define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1921 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1922
1923/* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1924 after point POINT of the model schedule. */
1925#define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1926 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1927
1928/* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1929 of the model schedule. */
1930#define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1931 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1932
1933/* Information about INSN that is used when creating the model schedule. */
1934#define MODEL_INSN_INFO(INSN) \
1935 (&model_insns[INSN_LUID (INSN)])
1936
1937/* The instruction at point POINT of the model schedule. */
1938#define MODEL_INSN(POINT) \
9771b263 1939 (model_schedule[POINT])
7a1aca9c
RS
1940
1941
1942/* Return INSN's index in the model schedule, or model_num_insns if it
1943 doesn't belong to that schedule. */
1944
1945static int
f57aa6b0 1946model_index (rtx_insn *insn)
7a1aca9c
RS
1947{
1948 if (INSN_MODEL_INDEX (insn) == 0)
1949 return model_num_insns;
1950 return INSN_MODEL_INDEX (insn) - 1;
1951}
1952
1953/* Make sure that GROUP->limits is up-to-date for the current point
1954 of the model schedule. */
1955
1956static void
1957model_update_limit_points_in_group (struct model_pressure_group *group)
1958{
1959 int pci, max_pressure, point;
1960
1961 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1962 {
1963 /* We may have passed the final point at which the pressure in
1964 group->limits[pci].pressure was reached. Update the limit if so. */
1965 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1966 group->limits[pci].pressure = max_pressure;
1967
1968 /* Find the point at which MAX_PRESSURE is first reached. We need
1969 to search in three cases:
1970
1971 - We've already moved past the previous pressure point.
1972 In this case we search forward from model_curr_point.
1973
1974 - We scheduled the previous point of maximum pressure ahead of
1975 its position in the model schedule, but doing so didn't bring
1976 the pressure point earlier. In this case we search forward
1977 from that previous pressure point.
1978
1979 - Scheduling an instruction early caused the maximum pressure
1980 to decrease. In this case we will have set the pressure
1981 point to -1, and we search forward from model_curr_point. */
1982 point = MAX (group->limits[pci].point, model_curr_point);
1983 while (point < model_num_insns
1984 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1985 point++;
1986 group->limits[pci].point = point;
1987
1988 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1989 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1990 }
1991}
1992
1993/* Make sure that all register-pressure limits are up-to-date for the
1994 current position in the model schedule. */
1995
1996static void
1997model_update_limit_points (void)
1998{
1999 model_update_limit_points_in_group (&model_before_pressure);
2000}
2001
2002/* Return the model_index of the last unscheduled use in chain USE
2003 outside of USE's instruction. Return -1 if there are no other uses,
2004 or model_num_insns if the register is live at the end of the block. */
2005
2006static int
2007model_last_use_except (struct reg_use_data *use)
2008{
2009 struct reg_use_data *next;
2010 int last, index;
2011
2012 last = -1;
2013 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2014 if (NONDEBUG_INSN_P (next->insn)
2015 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2016 {
2017 index = model_index (next->insn);
2018 if (index == model_num_insns)
2019 return model_num_insns;
2020 if (last < index)
2021 last = index;
2022 }
2023 return last;
2024}
2025
2026/* An instruction with model_index POINT has just been scheduled, and it
2027 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2028 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2029 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2030
2031static void
2032model_start_update_pressure (struct model_pressure_group *group,
2033 int point, int pci, int delta)
2034{
2035 int next_max_pressure;
2036
2037 if (point == model_num_insns)
2038 {
2039 /* The instruction wasn't part of the model schedule; it was moved
2040 from a different block. Update the pressure for the end of
2041 the model schedule. */
2042 MODEL_REF_PRESSURE (group, point, pci) += delta;
2043 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2044 }
2045 else
2046 {
2047 /* Record that this instruction has been scheduled. Nothing now
2048 changes between POINT and POINT + 1, so get the maximum pressure
2049 from the latter. If the maximum pressure decreases, the new
2050 pressure point may be before POINT. */
2051 MODEL_REF_PRESSURE (group, point, pci) = -1;
2052 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2053 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2054 {
2055 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2056 if (group->limits[pci].point == point)
2057 group->limits[pci].point = -1;
2058 }
2059 }
2060}
2061
2062/* Record that scheduling a later instruction has changed the pressure
2063 at point POINT of the model schedule by DELTA (which might be 0).
2064 Update GROUP accordingly. Return nonzero if these changes might
2065 trigger changes to previous points as well. */
2066
2067static int
2068model_update_pressure (struct model_pressure_group *group,
2069 int point, int pci, int delta)
2070{
2071 int ref_pressure, max_pressure, next_max_pressure;
2072
2073 /* If POINT hasn't yet been scheduled, update its pressure. */
2074 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2075 if (ref_pressure >= 0 && delta != 0)
2076 {
2077 ref_pressure += delta;
2078 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2079
2080 /* Check whether the maximum pressure in the overall schedule
2081 has increased. (This means that the MODEL_MAX_PRESSURE of
4dd9ac6c 2082 every point <= POINT will need to increase too; see below.) */
7a1aca9c
RS
2083 if (group->limits[pci].pressure < ref_pressure)
2084 group->limits[pci].pressure = ref_pressure;
2085
2086 /* If we are at maximum pressure, and the maximum pressure
2087 point was previously unknown or later than POINT,
2088 bring it forward. */
2089 if (group->limits[pci].pressure == ref_pressure
2090 && !IN_RANGE (group->limits[pci].point, 0, point))
2091 group->limits[pci].point = point;
2092
2093 /* If POINT used to be the point of maximum pressure, but isn't
2094 any longer, we need to recalculate it using a forward walk. */
2095 if (group->limits[pci].pressure > ref_pressure
2096 && group->limits[pci].point == point)
2097 group->limits[pci].point = -1;
2098 }
2099
2100 /* Update the maximum pressure at POINT. Changes here might also
2101 affect the maximum pressure at POINT - 1. */
2102 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2103 max_pressure = MAX (ref_pressure, next_max_pressure);
2104 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2105 {
2106 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2107 return 1;
2108 }
2109 return 0;
2110}
2111
2112/* INSN has just been scheduled. Update the model schedule accordingly. */
2113
2114static void
f57aa6b0 2115model_recompute (rtx_insn *insn)
7a1aca9c
RS
2116{
2117 struct {
2118 int last_use;
2119 int regno;
2120 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2121 struct reg_use_data *use;
2122 struct reg_pressure_data *reg_pressure;
2123 int delta[N_REG_CLASSES];
2124 int pci, point, mix, new_last, cl, ref_pressure, queue;
2125 unsigned int i, num_uses, num_pending_births;
2126 bool print_p;
2127
2128 /* The destinations of INSN were previously live from POINT onwards, but are
2129 now live from model_curr_point onwards. Set up DELTA accordingly. */
2130 point = model_index (insn);
2131 reg_pressure = INSN_REG_PRESSURE (insn);
2132 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2133 {
2134 cl = ira_pressure_classes[pci];
2135 delta[cl] = reg_pressure[pci].set_increase;
2136 }
2137
2138 /* Record which registers previously died at POINT, but which now die
2139 before POINT. Adjust DELTA so that it represents the effect of
2140 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2141 registers that will be born in the range [model_curr_point, POINT). */
2142 num_uses = 0;
2143 num_pending_births = 0;
f380f608 2144 bitmap_clear (tmp_bitmap);
7a1aca9c
RS
2145 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2146 {
2147 new_last = model_last_use_except (use);
f380f608 2148 if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
7a1aca9c
RS
2149 {
2150 gcc_assert (num_uses < ARRAY_SIZE (uses));
2151 uses[num_uses].last_use = new_last;
2152 uses[num_uses].regno = use->regno;
2153 /* This register is no longer live after POINT - 1. */
2154 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2155 num_uses++;
2156 if (new_last >= 0)
2157 num_pending_births++;
2158 }
2159 }
2160
2161 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2162 Also set each group pressure limit for POINT. */
2163 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2164 {
2165 cl = ira_pressure_classes[pci];
2166 model_start_update_pressure (&model_before_pressure,
2167 point, pci, delta[cl]);
2168 }
2169
2170 /* Walk the model schedule backwards, starting immediately before POINT. */
2171 print_p = false;
2172 if (point != model_curr_point)
2173 do
2174 {
2175 point--;
2176 insn = MODEL_INSN (point);
2177 queue = QUEUE_INDEX (insn);
2178
2179 if (queue != QUEUE_SCHEDULED)
2180 {
2181 /* DELTA describes the effect of the move on the register pressure
2182 after POINT. Make it describe the effect on the pressure
2183 before POINT. */
2184 i = 0;
2185 while (i < num_uses)
2186 {
2187 if (uses[i].last_use == point)
2188 {
2189 /* This register is now live again. */
2190 mark_regno_birth_or_death (NULL, delta,
2191 uses[i].regno, true);
2192
2193 /* Remove this use from the array. */
2194 uses[i] = uses[num_uses - 1];
2195 num_uses--;
2196 num_pending_births--;
2197 }
2198 else
2199 i++;
2200 }
2201
2202 if (sched_verbose >= 5)
2203 {
7a1aca9c
RS
2204 if (!print_p)
2205 {
2206 fprintf (sched_dump, MODEL_BAR);
2207 fprintf (sched_dump, ";;\t\t| New pressure for model"
2208 " schedule\n");
2209 fprintf (sched_dump, MODEL_BAR);
2210 print_p = true;
2211 }
2212
7a1aca9c 2213 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
7eba871a
SB
2214 point, INSN_UID (insn),
2215 str_pattern_slim (PATTERN (insn)));
7a1aca9c
RS
2216 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2217 {
2218 cl = ira_pressure_classes[pci];
2219 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2220 point, pci);
2221 fprintf (sched_dump, " %s:[%d->%d]",
2222 reg_class_names[ira_pressure_classes[pci]],
2223 ref_pressure, ref_pressure + delta[cl]);
2224 }
2225 fprintf (sched_dump, "\n");
2226 }
2227 }
2228
2229 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2230 might have changed as well. */
2231 mix = num_pending_births;
2232 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2233 {
2234 cl = ira_pressure_classes[pci];
2235 mix |= delta[cl];
2236 mix |= model_update_pressure (&model_before_pressure,
2237 point, pci, delta[cl]);
2238 }
2239 }
2240 while (mix && point > model_curr_point);
2241
2242 if (print_p)
2243 fprintf (sched_dump, MODEL_BAR);
2244}
1a83e602
BS
2245
2246/* After DEP, which was cancelled, has been resolved for insn NEXT,
2247 check whether the insn's pattern needs restoring. */
2248static bool
f57aa6b0 2249must_restore_pattern_p (rtx_insn *next, dep_t dep)
1a83e602
BS
2250{
2251 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2252 return false;
2253
2254 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2255 {
2256 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2257 gcc_assert (next == DEP_CON (dep));
2258 }
2259 else
2260 {
2261 struct dep_replacement *desc = DEP_REPLACE (dep);
2262 if (desc->insn != next)
2263 {
2264 gcc_assert (*desc->loc == desc->orig);
2265 return false;
2266 }
2267 }
2268 return true;
2269}
7a1aca9c
RS
2270\f
2271/* model_spill_cost (CL, P, P') returns the cost of increasing the
2272 pressure on CL from P to P'. We use this to calculate a "base ECC",
2273 baseECC (CL, X), for each pressure class CL and each instruction X.
2274 Supposing X changes the pressure on CL from P to P', and that the
2275 maximum pressure on CL in the current model schedule is MP', then:
2276
2277 * if X occurs before or at the next point of maximum pressure in
2278 the model schedule and P' > MP', then:
2279
2280 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2281
2282 The idea is that the pressure after scheduling a fixed set of
2283 instructions -- in this case, the set up to and including the
2284 next maximum pressure point -- is going to be the same regardless
2285 of the order; we simply want to keep the intermediate pressure
2286 under control. Thus X has a cost of zero unless scheduling it
2287 now would exceed MP'.
2288
2289 If all increases in the set are by the same amount, no zero-cost
2290 instruction will ever cause the pressure to exceed MP'. However,
2291 if X is instead moved past an instruction X' with pressure in the
2292 range (MP' - (P' - P), MP'), the pressure at X' will increase
2293 beyond MP'. Since baseECC is very much a heuristic anyway,
2294 it doesn't seem worth the overhead of tracking cases like these.
2295
2296 The cost of exceeding MP' is always based on the original maximum
2297 pressure MP. This is so that going 2 registers over the original
2298 limit has the same cost regardless of whether it comes from two
2299 separate +1 deltas or from a single +2 delta.
2300
2301 * if X occurs after the next point of maximum pressure in the model
2302 schedule and P' > P, then:
2303
2304 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2305
2306 That is, if we move X forward across a point of maximum pressure,
2307 and if X increases the pressure by P' - P, then we conservatively
2308 assume that scheduling X next would increase the maximum pressure
2309 by P' - P. Again, the cost of doing this is based on the original
2310 maximum pressure MP, for the same reason as above.
2311
2312 * if P' < P, P > MP, and X occurs at or after the next point of
2313 maximum pressure, then:
2314
2315 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
ce18efcb 2316
7a1aca9c
RS
2317 That is, if we have already exceeded the original maximum pressure MP,
2318 and if X might reduce the maximum pressure again -- or at least push
2319 it further back, and thus allow more scheduling freedom -- it is given
2320 a negative cost to reflect the improvement.
2321
2322 * otherwise,
2323
2324 baseECC (CL, X) = 0
2325
2326 In this case, X is not expected to affect the maximum pressure MP',
2327 so it has zero cost.
2328
2329 We then create a combined value baseECC (X) that is the sum of
2330 baseECC (CL, X) for each pressure class CL.
2331
2332 baseECC (X) could itself be used as the ECC value described above.
2333 However, this is often too conservative, in the sense that it
2334 tends to make high-priority instructions that increase pressure
2335 wait too long in cases where introducing a spill would be better.
2336 For this reason the final ECC is a priority-adjusted form of
2337 baseECC (X). Specifically, we calculate:
2338
2339 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2340 baseP = MAX { P (X) | baseECC (X) <= 0 }
2341
2342 Then:
2343
2344 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2345
2346 Thus an instruction's effect on pressure is ignored if it has a high
2347 enough priority relative to the ones that don't increase pressure.
2348 Negative values of baseECC (X) do not increase the priority of X
2349 itself, but they do make it harder for other instructions to
2350 increase the pressure further.
2351
2352 This pressure cost is deliberately timid. The intention has been
2353 to choose a heuristic that rarely interferes with the normal list
2354 scheduler in cases where that scheduler would produce good code.
2355 We simply want to curb some of its worst excesses. */
2356
2357/* Return the cost of increasing the pressure in class CL from FROM to TO.
2358
2359 Here we use the very simplistic cost model that every register above
4dd9ac6c 2360 sched_class_regs_num[CL] has a spill cost of 1. We could use other
7a1aca9c
RS
2361 measures instead, such as one based on MEMORY_MOVE_COST. However:
2362
2363 (1) In order for an instruction to be scheduled, the higher cost
2364 would need to be justified in a single saving of that many stalls.
2365 This is overly pessimistic, because the benefit of spilling is
2366 often to avoid a sequence of several short stalls rather than
2367 a single long one.
2368
2369 (2) The cost is still arbitrary. Because we are not allocating
2370 registers during scheduling, we have no way of knowing for
2371 sure how many memory accesses will be required by each spill,
2372 where the spills will be placed within the block, or even
2373 which block(s) will contain the spills.
2374
2375 So a higher cost than 1 is often too conservative in practice,
2376 forcing blocks to contain unnecessary stalls instead of spill code.
2377 The simple cost below seems to be the best compromise. It reduces
2378 the interference with the normal list scheduler, which helps make
2379 it more suitable for a default-on option. */
2380
2381static int
2382model_spill_cost (int cl, int from, int to)
2383{
4dd9ac6c 2384 from = MAX (from, sched_class_regs_num[cl]);
7a1aca9c
RS
2385 return MAX (to, from) - from;
2386}
2387
2388/* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2389 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2390 P' = P + DELTA. */
2391
2392static int
2393model_excess_group_cost (struct model_pressure_group *group,
2394 int point, int pci, int delta)
2395{
2396 int pressure, cl;
2397
2398 cl = ira_pressure_classes[pci];
2399 if (delta < 0 && point >= group->limits[pci].point)
2400 {
2401 pressure = MAX (group->limits[pci].orig_pressure,
2402 curr_reg_pressure[cl] + delta);
2403 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2404 }
2405
2406 if (delta > 0)
2407 {
2408 if (point > group->limits[pci].point)
2409 pressure = group->limits[pci].pressure + delta;
2410 else
2411 pressure = curr_reg_pressure[cl] + delta;
2412
2413 if (pressure > group->limits[pci].pressure)
2414 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2415 pressure);
2416 }
2417
2418 return 0;
2419}
2420
2421/* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2422 if PRINT_P. */
2423
2424static int
f57aa6b0 2425model_excess_cost (rtx_insn *insn, bool print_p)
7a1aca9c
RS
2426{
2427 int point, pci, cl, cost, this_cost, delta;
2428 struct reg_pressure_data *insn_reg_pressure;
2429 int insn_death[N_REG_CLASSES];
2430
2431 calculate_reg_deaths (insn, insn_death);
2432 point = model_index (insn);
2433 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2434 cost = 0;
2435
2436 if (print_p)
2437 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2438 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2439
2440 /* Sum up the individual costs for each register class. */
2441 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2442 {
2443 cl = ira_pressure_classes[pci];
2444 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2445 this_cost = model_excess_group_cost (&model_before_pressure,
2446 point, pci, delta);
2447 cost += this_cost;
2448 if (print_p)
2449 fprintf (sched_dump, " %s:[%d base cost %d]",
2450 reg_class_names[cl], delta, this_cost);
2451 }
2452
2453 if (print_p)
2454 fprintf (sched_dump, "\n");
2455
2456 return cost;
2457}
2458
2459/* Dump the next points of maximum pressure for GROUP. */
2460
2461static void
2462model_dump_pressure_points (struct model_pressure_group *group)
2463{
2464 int pci, cl;
2465
2466 fprintf (sched_dump, ";;\t\t| pressure points");
2467 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2468 {
2469 cl = ira_pressure_classes[pci];
2470 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2471 curr_reg_pressure[cl], group->limits[pci].pressure);
2472 if (group->limits[pci].point < model_num_insns)
2473 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2474 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2475 else
2476 fprintf (sched_dump, "end]");
2477 }
2478 fprintf (sched_dump, "\n");
2479}
2480
2481/* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2482
2483static void
ce1ce33a 2484model_set_excess_costs (rtx_insn **insns, int count)
7a1aca9c
RS
2485{
2486 int i, cost, priority_base, priority;
2487 bool print_p;
2488
2489 /* Record the baseECC value for each instruction in the model schedule,
4dd9ac6c 2490 except that negative costs are converted to zero ones now rather than
7a1aca9c
RS
2491 later. Do not assign a cost to debug instructions, since they must
2492 not change code-generation decisions. Experiments suggest we also
2493 get better results by not assigning a cost to instructions from
2494 a different block.
2495
2496 Set PRIORITY_BASE to baseP in the block comment above. This is the
2497 maximum priority of the "cheap" instructions, which should always
2498 include the next model instruction. */
2499 priority_base = 0;
2500 print_p = false;
2501 for (i = 0; i < count; i++)
2502 if (INSN_MODEL_INDEX (insns[i]))
2503 {
2504 if (sched_verbose >= 6 && !print_p)
2505 {
2506 fprintf (sched_dump, MODEL_BAR);
2507 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2508 model_dump_pressure_points (&model_before_pressure);
2509 fprintf (sched_dump, MODEL_BAR);
2510 print_p = true;
2511 }
2512 cost = model_excess_cost (insns[i], print_p);
2513 if (cost <= 0)
2514 {
2515 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2516 priority_base = MAX (priority_base, priority);
2517 cost = 0;
2518 }
2519 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2520 }
2521 if (print_p)
2522 fprintf (sched_dump, MODEL_BAR);
2523
2524 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2525 instruction. */
2526 for (i = 0; i < count; i++)
2527 {
2528 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2529 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2530 if (cost > 0 && priority > priority_base)
2531 {
2532 cost += priority_base - priority;
2533 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2534 }
2535 }
2536}
2537\f
4bd12f3d
MK
2538
2539/* Enum of rank_for_schedule heuristic decisions. */
2540enum rfs_decision {
696d5fa1 2541 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
4bd12f3d
MK
2542 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2543 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2544 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
d8d9514c 2545 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_COST, RFS_N };
4bd12f3d
MK
2546
2547/* Corresponding strings for print outs. */
2548static const char *rfs_str[RFS_N] = {
696d5fa1 2549 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
4bd12f3d
MK
2550 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2551 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2552 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
d8d9514c 2553 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION", "RFS_COST" };
4bd12f3d
MK
2554
2555/* Statistical breakdown of rank_for_schedule decisions. */
50686850 2556struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
4bd12f3d
MK
2557static rank_for_schedule_stats_t rank_for_schedule_stats;
2558
b75ae7f4
MK
2559/* Return the result of comparing insns TMP and TMP2 and update
2560 Rank_For_Schedule statistics. */
4bd12f3d 2561static int
b75ae7f4 2562rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
4bd12f3d
MK
2563{
2564 ++rank_for_schedule_stats.stats[decision];
b75ae7f4
MK
2565 if (result < 0)
2566 INSN_LAST_RFS_WIN (tmp) = decision;
2567 else if (result > 0)
2568 INSN_LAST_RFS_WIN (tmp2) = decision;
2569 else
2570 gcc_unreachable ();
4bd12f3d
MK
2571 return result;
2572}
2573
63387a85
MK
2574/* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2575 keeping normal insns in original order. */
2576
2577static int
2578rank_for_schedule_debug (const void *x, const void *y)
2579{
2580 rtx_insn *tmp = *(rtx_insn * const *) y;
2581 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2582
2583 /* Schedule debug insns as early as possible. */
2584 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
696d5fa1 2585 return -1;
63387a85 2586 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
696d5fa1 2587 return 1;
63387a85 2588 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
696d5fa1 2589 return INSN_LUID (tmp) - INSN_LUID (tmp2);
63387a85
MK
2590 else
2591 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2592}
2593
8c660648
JL
2594/* Returns a positive value if x is preferred; returns a negative value if
2595 y is preferred. Should never return 0, since that will make the sort
2596 unstable. */
2597
2598static int
1d088dee 2599rank_for_schedule (const void *x, const void *y)
8c660648 2600{
ce1ce33a
DM
2601 rtx_insn *tmp = *(rtx_insn * const *) y;
2602 rtx_insn *tmp2 = *(rtx_insn * const *) x;
b198261f 2603 int tmp_class, tmp2_class;
f20f2613 2604 int val, priority_val, info_val, diff;
8c660648 2605
f20f2613
VM
2606 if (live_range_shrinkage_p)
2607 {
2608 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2609 code. */
2610 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2611 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2612 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2613 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2614 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
b75ae7f4 2615 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
f20f2613
VM
2616 /* Sort by INSN_LUID (original insn order), so that we make the
2617 sort stable. This minimizes instruction movement, thus
2618 minimizing sched's effect on debugging and cross-jumping. */
4bd12f3d 2619 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
b75ae7f4 2620 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
f20f2613
VM
2621 }
2622
58fb7809 2623 /* The insn in a schedule group should be issued the first. */
b8698a0f 2624 if (flag_sched_group_heuristic &&
ee4764a8 2625 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
b75ae7f4
MK
2626 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2627 tmp, tmp2);
58fb7809 2628
916fa4f0
MK
2629 /* Make sure that priority of TMP and TMP2 are initialized. */
2630 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2631
b16abbcb
BC
2632 if (sched_fusion)
2633 {
2634 /* The instruction that has the same fusion priority as the last
2635 instruction is the instruction we picked next. If that is not
2636 the case, we sort ready list firstly by fusion priority, then
2637 by priority, and at last by INSN_LUID. */
2638 int a = INSN_FUSION_PRIORITY (tmp);
2639 int b = INSN_FUSION_PRIORITY (tmp2);
2640 int last = -1;
2641
2642 if (last_nondebug_scheduled_insn
2643 && !NOTE_P (last_nondebug_scheduled_insn)
2644 && BLOCK_FOR_INSN (tmp)
2645 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2646 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2647
2648 if (a != last && b != last)
2649 {
2650 if (a == b)
2651 {
2652 a = INSN_PRIORITY (tmp);
2653 b = INSN_PRIORITY (tmp2);
2654 }
2655 if (a != b)
2656 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2657 else
2658 return rfs_result (RFS_FUSION,
2659 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2660 }
2661 else if (a == b)
2662 {
2663 gcc_assert (last_nondebug_scheduled_insn
2664 && !NOTE_P (last_nondebug_scheduled_insn));
2665 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2666
2667 a = abs (INSN_PRIORITY (tmp) - last);
2668 b = abs (INSN_PRIORITY (tmp2) - last);
2669 if (a != b)
2670 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2671 else
2672 return rfs_result (RFS_FUSION,
2673 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2674 }
2675 else if (a == last)
2676 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2677 else
2678 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2679 }
2680
7a1aca9c 2681 if (sched_pressure != SCHED_PRESSURE_NONE)
ce18efcb 2682 {
ce18efcb
VM
2683 /* Prefer insn whose scheduling results in the smallest register
2684 pressure excess. */
2685 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
7a1aca9c 2686 + insn_delay (tmp)
ce18efcb 2687 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
7a1aca9c 2688 - insn_delay (tmp2))))
b75ae7f4 2689 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
ce18efcb
VM
2690 }
2691
7a1aca9c 2692 if (sched_pressure != SCHED_PRESSURE_NONE
88366b18
MK
2693 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2694 && INSN_TICK (tmp2) != INSN_TICK (tmp))
ce18efcb 2695 {
88366b18 2696 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
b75ae7f4 2697 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
ce18efcb 2698 }
26965010
BS
2699
2700 /* If we are doing backtracking in this schedule, prefer insns that
2701 have forward dependencies with negative cost against an insn that
2702 was already scheduled. */
2703 if (current_sched_info->flags & DO_BACKTRACKING)
2704 {
2705 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2706 if (priority_val)
b75ae7f4 2707 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
26965010
BS
2708 }
2709
63de6c74 2710 /* Prefer insn with higher priority. */
8c660648 2711 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
30028c85 2712
ee4764a8 2713 if (flag_sched_critical_path_heuristic && priority_val)
b75ae7f4 2714 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
b8698a0f 2715
340c7904
MK
2716 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2717 {
2718 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2719 if (autopref != 0)
2720 return autopref;
2721 }
2722
496d7bb0 2723 /* Prefer speculative insn with greater dependencies weakness. */
ee4764a8 2724 if (flag_sched_spec_insn_heuristic && spec_info)
496d7bb0
MK
2725 {
2726 ds_t ds1, ds2;
2727 dw_t dw1, dw2;
2728 int dw;
2729
2730 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2731 if (ds1)
e855c69d 2732 dw1 = ds_weak (ds1);
496d7bb0
MK
2733 else
2734 dw1 = NO_DEP_WEAK;
b8698a0f 2735
496d7bb0
MK
2736 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2737 if (ds2)
e855c69d 2738 dw2 = ds_weak (ds2);
496d7bb0
MK
2739 else
2740 dw2 = NO_DEP_WEAK;
2741
2742 dw = dw2 - dw1;
2743 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
b75ae7f4 2744 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
496d7bb0
MK
2745 }
2746
1708fd40 2747 info_val = (*current_sched_info->rank) (tmp, tmp2);
c3284718 2748 if (flag_sched_rank_heuristic && info_val)
b75ae7f4 2749 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
8c660648 2750
b5b8b0ac
AO
2751 /* Compare insns based on their relation to the last scheduled
2752 non-debug insn. */
5c24671b 2753 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
8c660648 2754 {
e2f6ff94
MK
2755 dep_t dep1;
2756 dep_t dep2;
90831096 2757 rtx_insn *last = last_nondebug_scheduled_insn;
e2f6ff94 2758
8c660648
JL
2759 /* Classify the instructions into three classes:
2760 1) Data dependent on last schedule insn.
2761 2) Anti/Output dependent on last scheduled insn.
2762 3) Independent of last scheduled insn, or has latency of one.
2763 Choose the insn from the highest numbered class if different. */
b5b8b0ac 2764 dep1 = sd_find_dep_between (last, tmp, true);
b198261f 2765
e2f6ff94 2766 if (dep1 == NULL || dep_cost (dep1) == 1)
8c660648 2767 tmp_class = 3;
b198261f 2768 else if (/* Data dependence. */
e2f6ff94 2769 DEP_TYPE (dep1) == REG_DEP_TRUE)
8c660648
JL
2770 tmp_class = 1;
2771 else
2772 tmp_class = 2;
2773
b5b8b0ac 2774 dep2 = sd_find_dep_between (last, tmp2, true);
b198261f 2775
e2f6ff94 2776 if (dep2 == NULL || dep_cost (dep2) == 1)
8c660648 2777 tmp2_class = 3;
b198261f 2778 else if (/* Data dependence. */
e2f6ff94 2779 DEP_TYPE (dep2) == REG_DEP_TRUE)
8c660648
JL
2780 tmp2_class = 1;
2781 else
2782 tmp2_class = 2;
2783
2784 if ((val = tmp2_class - tmp_class))
b75ae7f4 2785 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
8c660648
JL
2786 }
2787
7a1aca9c 2788 /* Prefer instructions that occur earlier in the model schedule. */
18fbe394 2789 if (sched_pressure == SCHED_PRESSURE_MODEL)
7a1aca9c 2790 {
7a1aca9c 2791 diff = model_index (tmp) - model_index (tmp2);
18fbe394
WD
2792 if (diff != 0)
2793 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
7a1aca9c
RS
2794 }
2795
7a403706 2796 /* Prefer the insn which has more later insns that depend on it.
2db45993
JL
2797 This gives the scheduler more freedom when scheduling later
2798 instructions at the expense of added register pressure. */
2db45993 2799
7a1aca9c
RS
2800 val = (dep_list_size (tmp2, SD_LIST_FORW)
2801 - dep_list_size (tmp, SD_LIST_FORW));
2db45993 2802
ee4764a8 2803 if (flag_sched_dep_count_heuristic && val != 0)
b75ae7f4 2804 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
7a403706 2805
d8d9514c
VL
2806 /* Sort by INSN_COST rather than INSN_LUID. This means that instructions
2807 which take longer to execute are prioritised and it leads to more
2808 dual-issue opportunities on in-order cores which have this feature. */
2809
2810 if (INSN_COST (tmp) != INSN_COST (tmp2))
2811 return rfs_result (RFS_COST, INSN_COST (tmp2) - INSN_COST (tmp),
2812 tmp, tmp2);
2813
8c660648
JL
2814 /* If insns are equally good, sort by INSN_LUID (original insn order),
2815 so that we make the sort stable. This minimizes instruction movement,
2816 thus minimizing sched's effect on debugging and cross-jumping. */
b75ae7f4 2817 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
8c660648
JL
2818}
2819
2820/* Resort the array A in which only element at index N may be out of order. */
2821
cbb13457 2822HAIFA_INLINE static void
ce1ce33a 2823swap_sort (rtx_insn **a, int n)
8c660648 2824{
ce1ce33a 2825 rtx_insn *insn = a[n - 1];
8c660648
JL
2826 int i = n - 2;
2827
2828 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2829 {
2830 a[i + 1] = a[i];
2831 i -= 1;
2832 }
2833 a[i + 1] = insn;
2834}
2835
8c660648
JL
2836/* Add INSN to the insn queue so that it can be executed at least
2837 N_CYCLES after the currently executing insn. Preserve insns
ec4efea9
BS
2838 chain for debugging purposes. REASON will be printed in debugging
2839 output. */
8c660648 2840
cbb13457 2841HAIFA_INLINE static void
ce1ce33a 2842queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
8c660648
JL
2843{
2844 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
3dc99c19 2845 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
26965010 2846 int new_tick;
63f54b1a
MK
2847
2848 gcc_assert (n_cycles <= max_insn_queue_index);
b5b8b0ac 2849 gcc_assert (!DEBUG_INSN_P (insn));
63f54b1a 2850
8c660648
JL
2851 insn_queue[next_q] = link;
2852 q_size += 1;
2853
2854 if (sched_verbose >= 2)
2855 {
1708fd40
BS
2856 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2857 (*current_sched_info->print_insn) (insn, 0));
8c660648 2858
ec4efea9 2859 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
8c660648 2860 }
e855c69d 2861
63f54b1a 2862 QUEUE_INDEX (insn) = next_q;
26965010
BS
2863
2864 if (current_sched_info->flags & DO_BACKTRACKING)
2865 {
2866 new_tick = clock_var + n_cycles;
2867 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2868 INSN_TICK (insn) = new_tick;
2869
2870 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2871 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2872 {
2873 must_backtrack = true;
2874 if (sched_verbose >= 2)
2875 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2876 }
2877 }
63f54b1a
MK
2878}
2879
2880/* Remove INSN from queue. */
2881static void
f57aa6b0 2882queue_remove (rtx_insn *insn)
63f54b1a
MK
2883{
2884 gcc_assert (QUEUE_INDEX (insn) >= 0);
2885 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2886 q_size--;
2887 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
176f9a7b
BS
2888}
2889
2890/* Return a pointer to the bottom of the ready list, i.e. the insn
2891 with the lowest priority. */
2892
ce1ce33a 2893rtx_insn **
1d088dee 2894ready_lastpos (struct ready_list *ready)
176f9a7b 2895{
63f54b1a 2896 gcc_assert (ready->n_ready >= 1);
176f9a7b
BS
2897 return ready->vec + ready->first - ready->n_ready + 1;
2898}
2899
63f54b1a 2900/* Add an element INSN to the ready list so that it ends up with the
917f1b7e 2901 lowest/highest priority depending on FIRST_P. */
176f9a7b 2902
63f54b1a 2903HAIFA_INLINE static void
ce1ce33a 2904ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
176f9a7b 2905{
63f54b1a 2906 if (!first_p)
176f9a7b 2907 {
63f54b1a
MK
2908 if (ready->first == ready->n_ready)
2909 {
2910 memmove (ready->vec + ready->veclen - ready->n_ready,
2911 ready_lastpos (ready),
2912 ready->n_ready * sizeof (rtx));
2913 ready->first = ready->veclen - 1;
2914 }
2915 ready->vec[ready->first - ready->n_ready] = insn;
176f9a7b 2916 }
63f54b1a
MK
2917 else
2918 {
2919 if (ready->first == ready->veclen - 1)
2920 {
2921 if (ready->n_ready)
2922 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2923 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2924 ready_lastpos (ready),
2925 ready->n_ready * sizeof (rtx));
2926 ready->first = ready->veclen - 2;
2927 }
2928 ready->vec[++(ready->first)] = insn;
2929 }
2930
176f9a7b 2931 ready->n_ready++;
b5b8b0ac
AO
2932 if (DEBUG_INSN_P (insn))
2933 ready->n_debug++;
63f54b1a
MK
2934
2935 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2936 QUEUE_INDEX (insn) = QUEUE_READY;
26965010
BS
2937
2938 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2939 && INSN_EXACT_TICK (insn) < clock_var)
2940 {
2941 must_backtrack = true;
2942 }
176f9a7b 2943}
8c660648 2944
176f9a7b
BS
2945/* Remove the element with the highest priority from the ready list and
2946 return it. */
2947
ce1ce33a 2948HAIFA_INLINE static rtx_insn *
1d088dee 2949ready_remove_first (struct ready_list *ready)
176f9a7b 2950{
ce1ce33a 2951 rtx_insn *t;
b8698a0f 2952
535a42b1 2953 gcc_assert (ready->n_ready);
176f9a7b
BS
2954 t = ready->vec[ready->first--];
2955 ready->n_ready--;
b5b8b0ac
AO
2956 if (DEBUG_INSN_P (t))
2957 ready->n_debug--;
176f9a7b
BS
2958 /* If the queue becomes empty, reset it. */
2959 if (ready->n_ready == 0)
2960 ready->first = ready->veclen - 1;
63f54b1a
MK
2961
2962 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2963 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2964
176f9a7b
BS
2965 return t;
2966}
2967
fae15c93
VM
2968/* The following code implements multi-pass scheduling for the first
2969 cycle. In other words, we will try to choose ready insn which
2970 permits to start maximum number of insns on the same cycle. */
2971
2972/* Return a pointer to the element INDEX from the ready. INDEX for
2973 insn with the highest priority is 0, and the lowest priority has
2974 N_READY - 1. */
2975
ce1ce33a 2976rtx_insn *
1d088dee 2977ready_element (struct ready_list *ready, int index)
fae15c93 2978{
535a42b1 2979 gcc_assert (ready->n_ready && index < ready->n_ready);
b8698a0f 2980
fae15c93
VM
2981 return ready->vec[ready->first - index];
2982}
2983
2984/* Remove the element INDEX from the ready list and return it. INDEX
2985 for insn with the highest priority is 0, and the lowest priority
2986 has N_READY - 1. */
2987
ce1ce33a 2988HAIFA_INLINE static rtx_insn *
1d088dee 2989ready_remove (struct ready_list *ready, int index)
fae15c93 2990{
ce1ce33a 2991 rtx_insn *t;
fae15c93
VM
2992 int i;
2993
2994 if (index == 0)
2995 return ready_remove_first (ready);
535a42b1 2996 gcc_assert (ready->n_ready && index < ready->n_ready);
fae15c93
VM
2997 t = ready->vec[ready->first - index];
2998 ready->n_ready--;
b5b8b0ac
AO
2999 if (DEBUG_INSN_P (t))
3000 ready->n_debug--;
fae15c93
VM
3001 for (i = index; i < ready->n_ready; i++)
3002 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
63f54b1a 3003 QUEUE_INDEX (t) = QUEUE_NOWHERE;
fae15c93
VM
3004 return t;
3005}
3006
63f54b1a
MK
3007/* Remove INSN from the ready list. */
3008static void
90831096 3009ready_remove_insn (rtx_insn *insn)
63f54b1a
MK
3010{
3011 int i;
3012
3013 for (i = 0; i < readyp->n_ready; i++)
3014 if (ready_element (readyp, i) == insn)
3015 {
3016 ready_remove (readyp, i);
3017 return;
3018 }
3019 gcc_unreachable ();
3020}
fae15c93 3021
4bd12f3d
MK
3022/* Calculate difference of two statistics set WAS and NOW.
3023 Result returned in WAS. */
3024static void
3025rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3026 const rank_for_schedule_stats_t *now)
3027{
3028 for (int i = 0; i < RFS_N; ++i)
3029 was->stats[i] = now->stats[i] - was->stats[i];
3030}
3031
3032/* Print rank_for_schedule statistics. */
3033static void
3034print_rank_for_schedule_stats (const char *prefix,
b75ae7f4
MK
3035 const rank_for_schedule_stats_t *stats,
3036 struct ready_list *ready)
4bd12f3d
MK
3037{
3038 for (int i = 0; i < RFS_N; ++i)
3039 if (stats->stats[i])
b75ae7f4
MK
3040 {
3041 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3042
3043 if (ready != NULL)
3044 /* Print out insns that won due to RFS_<I>. */
3045 {
3046 rtx_insn **p = ready_lastpos (ready);
3047
3048 fprintf (sched_dump, ":");
3049 /* Start with 1 since least-priority insn didn't have any wins. */
3050 for (int j = 1; j < ready->n_ready; ++j)
3051 if (INSN_LAST_RFS_WIN (p[j]) == i)
3052 fprintf (sched_dump, " %s",
3053 (*current_sched_info->print_insn) (p[j], 0));
3054 }
3055 fprintf (sched_dump, "\n");
3056 }
4bd12f3d
MK
3057}
3058
696d5fa1
MK
3059/* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3060 of array. */
3061static void
3062ready_sort_debug (struct ready_list *ready)
176f9a7b 3063{
ce18efcb 3064 int i;
ce1ce33a 3065 rtx_insn **first = ready_lastpos (ready);
ce18efcb 3066
63387a85 3067 for (i = 0; i < ready->n_ready; ++i)
696d5fa1
MK
3068 if (!DEBUG_INSN_P (first[i]))
3069 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
63387a85 3070
696d5fa1
MK
3071 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3072}
63387a85 3073
696d5fa1
MK
3074/* Sort non-debug insns in the ready list READY by ascending priority.
3075 Assumes that all debug insns are separated from the real insns. */
3076static void
3077ready_sort_real (struct ready_list *ready)
3078{
3079 int i;
3080 rtx_insn **first = ready_lastpos (ready);
3081 int n_ready_real = ready->n_ready - ready->n_debug;
3082
3083 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3084 for (i = 0; i < n_ready_real; ++i)
3085 setup_insn_reg_pressure_info (first[i]);
3086 else if (sched_pressure == SCHED_PRESSURE_MODEL
3087 && model_curr_point < model_num_insns)
3088 model_set_excess_costs (first, n_ready_real);
4bd12f3d
MK
3089
3090 rank_for_schedule_stats_t stats1;
3091 if (sched_verbose >= 4)
3092 stats1 = rank_for_schedule_stats;
3093
696d5fa1
MK
3094 if (n_ready_real == 2)
3095 swap_sort (first, n_ready_real);
3096 else if (n_ready_real > 2)
f9f43fb3 3097 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
4bd12f3d
MK
3098
3099 if (sched_verbose >= 4)
3100 {
3101 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
b75ae7f4 3102 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
4bd12f3d 3103 }
8c660648
JL
3104}
3105
696d5fa1
MK
3106/* Sort the ready list READY by ascending priority. */
3107static void
3108ready_sort (struct ready_list *ready)
3109{
3110 if (ready->n_debug > 0)
3111 ready_sort_debug (ready);
3112 else
3113 ready_sort_real (ready);
3114}
3115
8c660648 3116/* PREV is an insn that is ready to execute. Adjust its priority if that
c46a37c4 3117 will help shorten or lengthen register lifetimes as appropriate. Also
fa10beec 3118 provide a hook for the target to tweak itself. */
8c660648 3119
cbb13457 3120HAIFA_INLINE static void
f57aa6b0 3121adjust_priority (rtx_insn *prev)
8c660648 3122{
c46a37c4
RH
3123 /* ??? There used to be code here to try and estimate how an insn
3124 affected register lifetimes, but it did it by looking at REG_DEAD
7a403706 3125 notes, which we removed in schedule_region. Nor did it try to
c46a37c4 3126 take into account register pressure or anything useful like that.
8c660648 3127
c46a37c4 3128 Revisit when we have a machine model to work with and not before. */
197043f5 3129
c237e94a
ZW
3130 if (targetm.sched.adjust_priority)
3131 INSN_PRIORITY (prev) =
5fd9b178 3132 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
8c660648
JL
3133}
3134
e855c69d
AB
3135/* Advance DFA state STATE on one cycle. */
3136void
3137advance_state (state_t state)
fae15c93 3138{
1c3d0d93
MK
3139 if (targetm.sched.dfa_pre_advance_cycle)
3140 targetm.sched.dfa_pre_advance_cycle ();
3141
fa0aee89 3142 if (targetm.sched.dfa_pre_cycle_insn)
e855c69d 3143 state_transition (state,
fa0aee89
PB
3144 targetm.sched.dfa_pre_cycle_insn ());
3145
e855c69d 3146 state_transition (state, NULL);
b8698a0f 3147
fa0aee89 3148 if (targetm.sched.dfa_post_cycle_insn)
e855c69d 3149 state_transition (state,
fa0aee89 3150 targetm.sched.dfa_post_cycle_insn ());
1c3d0d93
MK
3151
3152 if (targetm.sched.dfa_post_advance_cycle)
3153 targetm.sched.dfa_post_advance_cycle ();
fae15c93
VM
3154}
3155
e855c69d
AB
3156/* Advance time on one cycle. */
3157HAIFA_INLINE static void
3158advance_one_cycle (void)
3159{
3160 advance_state (curr_state);
d5c67efd 3161 if (sched_verbose >= 4)
f50d71ec 3162 fprintf (sched_dump, ";;\tAdvance the current state.\n");
e855c69d
AB
3163}
3164
ce18efcb
VM
3165/* Update register pressure after scheduling INSN. */
3166static void
f57aa6b0 3167update_register_pressure (rtx_insn *insn)
ce18efcb
VM
3168{
3169 struct reg_use_data *use;
3170 struct reg_set_data *set;
3171
c11b0b3b
AO
3172 gcc_checking_assert (!DEBUG_INSN_P (insn));
3173
ce18efcb 3174 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
7a1aca9c
RS
3175 if (dying_use_p (use))
3176 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3177 use->regno, false);
ce18efcb 3178 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
7a1aca9c
RS
3179 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3180 set->regno, true);
ce18efcb
VM
3181}
3182
3183/* Set up or update (if UPDATE_P) max register pressure (see its
3184 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3185 after insn AFTER. */
3186static void
dc01c3d1 3187setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
ce18efcb
VM
3188{
3189 int i, p;
3190 bool eq_p;
f57aa6b0 3191 rtx_insn *insn;
ce18efcb
VM
3192 static int max_reg_pressure[N_REG_CLASSES];
3193
3194 save_reg_pressure ();
1756cb66
VM
3195 for (i = 0; i < ira_pressure_classes_num; i++)
3196 max_reg_pressure[ira_pressure_classes[i]]
3197 = curr_reg_pressure[ira_pressure_classes[i]];
ce18efcb 3198 for (insn = NEXT_INSN (after);
0495bafc
VM
3199 insn != NULL_RTX && ! BARRIER_P (insn)
3200 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
ce18efcb
VM
3201 insn = NEXT_INSN (insn))
3202 if (NONDEBUG_INSN_P (insn))
3203 {
3204 eq_p = true;
1756cb66 3205 for (i = 0; i < ira_pressure_classes_num; i++)
ce18efcb 3206 {
1756cb66 3207 p = max_reg_pressure[ira_pressure_classes[i]];
ce18efcb
VM
3208 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3209 {
3210 eq_p = false;
3211 INSN_MAX_REG_PRESSURE (insn)[i]
1756cb66 3212 = max_reg_pressure[ira_pressure_classes[i]];
ce18efcb
VM
3213 }
3214 }
3215 if (update_p && eq_p)
3216 break;
3217 update_register_pressure (insn);
1756cb66
VM
3218 for (i = 0; i < ira_pressure_classes_num; i++)
3219 if (max_reg_pressure[ira_pressure_classes[i]]
3220 < curr_reg_pressure[ira_pressure_classes[i]])
3221 max_reg_pressure[ira_pressure_classes[i]]
3222 = curr_reg_pressure[ira_pressure_classes[i]];
ce18efcb
VM
3223 }
3224 restore_reg_pressure ();
3225}
3226
3227/* Update the current register pressure after scheduling INSN. Update
3228 also max register pressure for unscheduled insns of the current
3229 BB. */
3230static void
f57aa6b0 3231update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
ce18efcb
VM
3232{
3233 int i;
3234 int before[N_REG_CLASSES];
3235
1756cb66
VM
3236 for (i = 0; i < ira_pressure_classes_num; i++)
3237 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
ce18efcb 3238 update_register_pressure (insn);
1756cb66
VM
3239 for (i = 0; i < ira_pressure_classes_num; i++)
3240 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
ce18efcb 3241 break;
1756cb66 3242 if (i < ira_pressure_classes_num)
ce18efcb
VM
3243 setup_insn_max_reg_pressure (insn, true);
3244}
3245
3246/* Set up register pressure at the beginning of basic block BB whose
3247 insns starting after insn AFTER. Set up also max register pressure
3248 for all insns of the basic block. */
3249void
dc01c3d1 3250sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
ce18efcb 3251{
60867e8c 3252 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
ce18efcb
VM
3253 initiate_bb_reg_pressure_info (bb);
3254 setup_insn_max_reg_pressure (after, false);
3255}
51564684 3256\f
e2724e63
BS
3257/* If doing predication while scheduling, verify whether INSN, which
3258 has just been scheduled, clobbers the conditions of any
3259 instructions that must be predicated in order to break their
3260 dependencies. If so, remove them from the queues so that they will
3261 only be scheduled once their control dependency is resolved. */
3262
3263static void
90831096 3264check_clobbered_conditions (rtx_insn *insn)
e2724e63
BS
3265{
3266 HARD_REG_SET t;
3267 int i;
3268
3269 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3270 return;
3271
356bf593 3272 find_all_hard_reg_sets (insn, &t, true);
e2724e63
BS
3273
3274 restart:
3275 for (i = 0; i < ready.n_ready; i++)
3276 {
ce1ce33a 3277 rtx_insn *x = ready_element (&ready, i);
e2724e63
BS
3278 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3279 {
3280 ready_remove_insn (x);
3281 goto restart;
3282 }
3283 }
3284 for (i = 0; i <= max_insn_queue_index; i++)
3285 {
96b70414 3286 rtx_insn_list *link;
e2724e63
BS
3287 int q = NEXT_Q_AFTER (q_ptr, i);
3288
3289 restart_queue:
96b70414 3290 for (link = insn_queue[q]; link; link = link->next ())
e2724e63 3291 {
96b70414 3292 rtx_insn *x = link->insn ();
e2724e63
BS
3293 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3294 {
3295 queue_remove (x);
3296 goto restart_queue;
3297 }
3298 }
3299 }
3300}
3301\f
7a1aca9c
RS
3302/* Return (in order):
3303
3304 - positive if INSN adversely affects the pressure on one
3305 register class
3306
3307 - negative if INSN reduces the pressure on one register class
3308
3309 - 0 if INSN doesn't affect the pressure on any register class. */
3310
3311static int
3312model_classify_pressure (struct model_insn_info *insn)
3313{
3314 struct reg_pressure_data *reg_pressure;
3315 int death[N_REG_CLASSES];
3316 int pci, cl, sum;
3317
3318 calculate_reg_deaths (insn->insn, death);
3319 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3320 sum = 0;
3321 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3322 {
3323 cl = ira_pressure_classes[pci];
3324 if (death[cl] < reg_pressure[pci].set_increase)
3325 return 1;
3326 sum += reg_pressure[pci].set_increase - death[cl];
3327 }
3328 return sum;
3329}
3330
3331/* Return true if INSN1 should come before INSN2 in the model schedule. */
3332
3333static int
3334model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3335{
3336 unsigned int height1, height2;
3337 unsigned int priority1, priority2;
3338
3339 /* Prefer instructions with a higher model priority. */
3340 if (insn1->model_priority != insn2->model_priority)
3341 return insn1->model_priority > insn2->model_priority;
3342
3343 /* Combine the length of the longest path of satisfied true dependencies
3344 that leads to each instruction (depth) with the length of the longest
3345 path of any dependencies that leads from the instruction (alap).
3346 Prefer instructions with the greatest combined length. If the combined
3347 lengths are equal, prefer instructions with the greatest depth.
3348
3349 The idea is that, if we have a set S of "equal" instructions that each
3350 have ALAP value X, and we pick one such instruction I, any true-dependent
3351 successors of I that have ALAP value X - 1 should be preferred over S.
3352 This encourages the schedule to be "narrow" rather than "wide".
3353 However, if I is a low-priority instruction that we decided to
3354 schedule because of its model_classify_pressure, and if there
3355 is a set of higher-priority instructions T, the aforementioned
3356 successors of I should not have the edge over T. */
3357 height1 = insn1->depth + insn1->alap;
3358 height2 = insn2->depth + insn2->alap;
3359 if (height1 != height2)
3360 return height1 > height2;
3361 if (insn1->depth != insn2->depth)
3362 return insn1->depth > insn2->depth;
3363
3364 /* We have no real preference between INSN1 an INSN2 as far as attempts
3365 to reduce pressure go. Prefer instructions with higher priorities. */
3366 priority1 = INSN_PRIORITY (insn1->insn);
3367 priority2 = INSN_PRIORITY (insn2->insn);
3368 if (priority1 != priority2)
3369 return priority1 > priority2;
3370
3371 /* Use the original rtl sequence as a tie-breaker. */
3372 return insn1 < insn2;
3373}
3374
3375/* Add INSN to the model worklist immediately after PREV. Add it to the
3376 beginning of the list if PREV is null. */
3377
3378static void
3379model_add_to_worklist_at (struct model_insn_info *insn,
3380 struct model_insn_info *prev)
3381{
3382 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3383 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3384
3385 insn->prev = prev;
3386 if (prev)
3387 {
3388 insn->next = prev->next;
3389 prev->next = insn;
3390 }
3391 else
3392 {
3393 insn->next = model_worklist;
3394 model_worklist = insn;
3395 }
3396 if (insn->next)
3397 insn->next->prev = insn;
3398}
3399
3400/* Remove INSN from the model worklist. */
3401
3402static void
3403model_remove_from_worklist (struct model_insn_info *insn)
3404{
3405 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3406 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3407
3408 if (insn->prev)
3409 insn->prev->next = insn->next;
3410 else
3411 model_worklist = insn->next;
3412 if (insn->next)
3413 insn->next->prev = insn->prev;
3414}
3415
3416/* Add INSN to the model worklist. Start looking for a suitable position
3417 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3418 insns either side. A null PREV indicates the beginning of the list and
3419 a null NEXT indicates the end. */
3420
3421static void
3422model_add_to_worklist (struct model_insn_info *insn,
3423 struct model_insn_info *prev,
3424 struct model_insn_info *next)
3425{
3426 int count;
3427
3428 count = MAX_SCHED_READY_INSNS;
3429 if (count > 0 && prev && model_order_p (insn, prev))
3430 do
3431 {
3432 count--;
3433 prev = prev->prev;
3434 }
3435 while (count > 0 && prev && model_order_p (insn, prev));
3436 else
3437 while (count > 0 && next && model_order_p (next, insn))
3438 {
3439 count--;
3440 prev = next;
3441 next = next->next;
3442 }
3443 model_add_to_worklist_at (insn, prev);
3444}
3445
3446/* INSN may now have a higher priority (in the model_order_p sense)
3447 than before. Move it up the worklist if necessary. */
3448
3449static void
3450model_promote_insn (struct model_insn_info *insn)
3451{
3452 struct model_insn_info *prev;
3453 int count;
3454
3455 prev = insn->prev;
3456 count = MAX_SCHED_READY_INSNS;
3457 while (count > 0 && prev && model_order_p (insn, prev))
3458 {
3459 count--;
3460 prev = prev->prev;
3461 }
3462 if (prev != insn->prev)
3463 {
3464 model_remove_from_worklist (insn);
3465 model_add_to_worklist_at (insn, prev);
3466 }
3467}
3468
3469/* Add INSN to the end of the model schedule. */
3470
3471static void
f57aa6b0 3472model_add_to_schedule (rtx_insn *insn)
7a1aca9c
RS
3473{
3474 unsigned int point;
3475
3476 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3477 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3478
9771b263
DN
3479 point = model_schedule.length ();
3480 model_schedule.quick_push (insn);
7a1aca9c
RS
3481 INSN_MODEL_INDEX (insn) = point + 1;
3482}
3483
3484/* Analyze the instructions that are to be scheduled, setting up
3485 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3486 instructions to model_worklist. */
3487
3488static void
3489model_analyze_insns (void)
3490{
40a243d4 3491 rtx_insn *start, *end, *iter;
7a1aca9c
RS
3492 sd_iterator_def sd_it;
3493 dep_t dep;
3494 struct model_insn_info *insn, *con;
3495
3496 model_num_insns = 0;
3497 start = PREV_INSN (current_sched_info->next_tail);
3498 end = current_sched_info->prev_head;
3499 for (iter = start; iter != end; iter = PREV_INSN (iter))
3500 if (NONDEBUG_INSN_P (iter))
3501 {
3502 insn = MODEL_INSN_INFO (iter);
3503 insn->insn = iter;
3504 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3505 {
3506 con = MODEL_INSN_INFO (DEP_CON (dep));
3507 if (con->insn && insn->alap < con->alap + 1)
3508 insn->alap = con->alap + 1;
3509 }
3510
3511 insn->old_queue = QUEUE_INDEX (iter);
3512 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3513
3514 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3515 if (insn->unscheduled_preds == 0)
3516 model_add_to_worklist (insn, NULL, model_worklist);
3517
3518 model_num_insns++;
3519 }
3520}
3521
3522/* The global state describes the register pressure at the start of the
3523 model schedule. Initialize GROUP accordingly. */
3524
3525static void
3526model_init_pressure_group (struct model_pressure_group *group)
3527{
3528 int pci, cl;
3529
3530 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3531 {
3532 cl = ira_pressure_classes[pci];
3533 group->limits[pci].pressure = curr_reg_pressure[cl];
3534 group->limits[pci].point = 0;
3535 }
3536 /* Use index model_num_insns to record the state after the last
3537 instruction in the model schedule. */
3538 group->model = XNEWVEC (struct model_pressure_data,
3539 (model_num_insns + 1) * ira_pressure_classes_num);
3540}
3541
3542/* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3543 Update the maximum pressure for the whole schedule. */
3544
3545static void
3546model_record_pressure (struct model_pressure_group *group,
3547 int point, int pci, int pressure)
3548{
3549 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3550 if (group->limits[pci].pressure < pressure)
3551 {
3552 group->limits[pci].pressure = pressure;
3553 group->limits[pci].point = point;
3554 }
3555}
3556
3557/* INSN has just been added to the end of the model schedule. Record its
3558 register-pressure information. */
3559
3560static void
3561model_record_pressures (struct model_insn_info *insn)
3562{
3563 struct reg_pressure_data *reg_pressure;
3564 int point, pci, cl, delta;
3565 int death[N_REG_CLASSES];
3566
3567 point = model_index (insn->insn);
3568 if (sched_verbose >= 2)
3569 {
7a1aca9c
RS
3570 if (point == 0)
3571 {
3572 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3573 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3574 }
7a1aca9c
RS
3575 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3576 point, INSN_UID (insn->insn), insn->model_priority,
3577 insn->depth + insn->alap, insn->depth,
7eba871a
SB
3578 INSN_PRIORITY (insn->insn),
3579 str_pattern_slim (PATTERN (insn->insn)));
7a1aca9c
RS
3580 }
3581 calculate_reg_deaths (insn->insn, death);
3582 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3583 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3584 {
3585 cl = ira_pressure_classes[pci];
3586 delta = reg_pressure[pci].set_increase - death[cl];
3587 if (sched_verbose >= 2)
3588 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3589 curr_reg_pressure[cl], delta);
3590 model_record_pressure (&model_before_pressure, point, pci,
3591 curr_reg_pressure[cl]);
3592 }
3593 if (sched_verbose >= 2)
3594 fprintf (sched_dump, "\n");
3595}
3596
3597/* All instructions have been added to the model schedule. Record the
3598 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3599
3600static void
3601model_record_final_pressures (struct model_pressure_group *group)
3602{
3603 int point, pci, max_pressure, ref_pressure, cl;
3604
3605 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3606 {
3607 /* Record the final pressure for this class. */
3608 cl = ira_pressure_classes[pci];
3609 point = model_num_insns;
3610 ref_pressure = curr_reg_pressure[cl];
3611 model_record_pressure (group, point, pci, ref_pressure);
3612
3613 /* Record the original maximum pressure. */
3614 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3615
3616 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3617 max_pressure = ref_pressure;
3618 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3619 while (point > 0)
3620 {
3621 point--;
3622 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3623 max_pressure = MAX (max_pressure, ref_pressure);
3624 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3625 }
3626 }
3627}
3628
3629/* Update all successors of INSN, given that INSN has just been scheduled. */
3630
3631static void
3632model_add_successors_to_worklist (struct model_insn_info *insn)
3633{
3634 sd_iterator_def sd_it;
3635 struct model_insn_info *con;
3636 dep_t dep;
3637
3638 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3639 {
3640 con = MODEL_INSN_INFO (DEP_CON (dep));
3641 /* Ignore debug instructions, and instructions from other blocks. */
3642 if (con->insn)
3643 {
3644 con->unscheduled_preds--;
3645
3646 /* Update the depth field of each true-dependent successor.
3647 Increasing the depth gives them a higher priority than
3648 before. */
3649 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3650 {
3651 con->depth = insn->depth + 1;
3652 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3653 model_promote_insn (con);
3654 }
3655
3656 /* If this is a true dependency, or if there are no remaining
3657 dependencies for CON (meaning that CON only had non-true
3658 dependencies), make sure that CON is on the worklist.
3659 We don't bother otherwise because it would tend to fill the
3660 worklist with a lot of low-priority instructions that are not
3661 yet ready to issue. */
3662 if ((con->depth > 0 || con->unscheduled_preds == 0)
3663 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3664 model_add_to_worklist (con, insn, insn->next);
3665 }
3666 }
3667}
3668
3669/* Give INSN a higher priority than any current instruction, then give
3670 unscheduled predecessors of INSN a higher priority still. If any of
3671 those predecessors are not on the model worklist, do the same for its
3672 predecessors, and so on. */
3673
3674static void
3675model_promote_predecessors (struct model_insn_info *insn)
3676{
3677 struct model_insn_info *pro, *first;
3678 sd_iterator_def sd_it;
3679 dep_t dep;
3680
3681 if (sched_verbose >= 7)
3682 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3683 INSN_UID (insn->insn), model_next_priority);
3684 insn->model_priority = model_next_priority++;
3685 model_remove_from_worklist (insn);
3686 model_add_to_worklist_at (insn, NULL);
3687
3688 first = NULL;
3689 for (;;)
3690 {
3691 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3692 {
3693 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3694 /* The first test is to ignore debug instructions, and instructions
3695 from other blocks. */
3696 if (pro->insn
3697 && pro->model_priority != model_next_priority
3698 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3699 {
3700 pro->model_priority = model_next_priority;
3701 if (sched_verbose >= 7)
3702 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3703 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3704 {
3705 /* PRO is already in the worklist, but it now has
3706 a higher priority than before. Move it at the
3707 appropriate place. */
3708 model_remove_from_worklist (pro);
3709 model_add_to_worklist (pro, NULL, model_worklist);
3710 }
3711 else
3712 {
3713 /* PRO isn't in the worklist. Recursively process
3714 its predecessors until we find one that is. */
3715 pro->next = first;
3716 first = pro;
3717 }
3718 }
3719 }
3720 if (!first)
3721 break;
3722 insn = first;
3723 first = insn->next;
3724 }
3725 if (sched_verbose >= 7)
3726 fprintf (sched_dump, " = %d\n", model_next_priority);
3727 model_next_priority++;
3728}
3729
3730/* Pick one instruction from model_worklist and process it. */
3731
3732static void
3733model_choose_insn (void)
3734{
3735 struct model_insn_info *insn, *fallback;
3736 int count;
3737
3738 if (sched_verbose >= 7)
3739 {
3740 fprintf (sched_dump, ";;\t+--- worklist:\n");
3741 insn = model_worklist;
3742 count = MAX_SCHED_READY_INSNS;
3743 while (count > 0 && insn)
3744 {
3745 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3746 INSN_UID (insn->insn), insn->model_priority,
3747 insn->depth + insn->alap, insn->depth,
3748 INSN_PRIORITY (insn->insn));
3749 count--;
3750 insn = insn->next;
3751 }
3752 }
3753
3754 /* Look for a ready instruction whose model_classify_priority is zero
3755 or negative, picking the highest-priority one. Adding such an
3756 instruction to the schedule now should do no harm, and may actually
3757 do some good.
3758
3759 Failing that, see whether there is an instruction with the highest
3760 extant model_priority that is not yet ready, but which would reduce
3761 pressure if it became ready. This is designed to catch cases like:
3762
3763 (set (mem (reg R1)) (reg R2))
3764
3765 where the instruction is the last remaining use of R1 and where the
3766 value of R2 is not yet available (or vice versa). The death of R1
3767 means that this instruction already reduces pressure. It is of
3768 course possible that the computation of R2 involves other registers
3769 that are hard to kill, but such cases are rare enough for this
3770 heuristic to be a win in general.
3771
3772 Failing that, just pick the highest-priority instruction in the
3773 worklist. */
3774 count = MAX_SCHED_READY_INSNS;
3775 insn = model_worklist;
3776 fallback = 0;
3777 for (;;)
3778 {
3779 if (count == 0 || !insn)
3780 {
3781 insn = fallback ? fallback : model_worklist;
3782 break;
3783 }
3784 if (insn->unscheduled_preds)
3785 {
3786 if (model_worklist->model_priority == insn->model_priority
3787 && !fallback
3788 && model_classify_pressure (insn) < 0)
3789 fallback = insn;
3790 }
3791 else
3792 {
3793 if (model_classify_pressure (insn) <= 0)
3794 break;
3795 }
3796 count--;
3797 insn = insn->next;
3798 }
3799
3800 if (sched_verbose >= 7 && insn != model_worklist)
3801 {
3802 if (insn->unscheduled_preds)
3803 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3804 INSN_UID (insn->insn));
3805 else
3806 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3807 INSN_UID (insn->insn));
3808 }
3809 if (insn->unscheduled_preds)
3810 /* INSN isn't yet ready to issue. Give all its predecessors the
3811 highest priority. */
3812 model_promote_predecessors (insn);
3813 else
3814 {
3815 /* INSN is ready. Add it to the end of model_schedule and
3816 process its successors. */
3817 model_add_successors_to_worklist (insn);
3818 model_remove_from_worklist (insn);
3819 model_add_to_schedule (insn->insn);
3820 model_record_pressures (insn);
3821 update_register_pressure (insn->insn);
3822 }
3823}
3824
3825/* Restore all QUEUE_INDEXs to the values that they had before
3826 model_start_schedule was called. */
3827
3828static void
3829model_reset_queue_indices (void)
3830{
3831 unsigned int i;
f57aa6b0 3832 rtx_insn *insn;
7a1aca9c 3833
9771b263 3834 FOR_EACH_VEC_ELT (model_schedule, i, insn)
7a1aca9c
RS
3835 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3836}
3837
3838/* We have calculated the model schedule and spill costs. Print a summary
3839 to sched_dump. */
3840
3841static void
3842model_dump_pressure_summary (void)
3843{
3844 int pci, cl;
3845
3846 fprintf (sched_dump, ";; Pressure summary:");
3847 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3848 {
3849 cl = ira_pressure_classes[pci];
3850 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3851 model_before_pressure.limits[pci].pressure);
3852 }
3853 fprintf (sched_dump, "\n\n");
3854}
3855
3856/* Initialize the SCHED_PRESSURE_MODEL information for the current
3857 scheduling region. */
3858
3859static void
4dd9ac6c 3860model_start_schedule (basic_block bb)
7a1aca9c 3861{
7a1aca9c 3862 model_next_priority = 1;
9771b263 3863 model_schedule.create (sched_max_luid);
7a1aca9c
RS
3864 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3865
4dd9ac6c 3866 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
7a1aca9c
RS
3867 initiate_reg_pressure_info (df_get_live_in (bb));
3868
3869 model_analyze_insns ();
3870 model_init_pressure_group (&model_before_pressure);
3871 while (model_worklist)
3872 model_choose_insn ();
9771b263 3873 gcc_assert (model_num_insns == (int) model_schedule.length ());
7a1aca9c
RS
3874 if (sched_verbose >= 2)
3875 fprintf (sched_dump, "\n");
3876
3877 model_record_final_pressures (&model_before_pressure);
3878 model_reset_queue_indices ();
3879
3880 XDELETEVEC (model_insns);
3881
3882 model_curr_point = 0;
3883 initiate_reg_pressure_info (df_get_live_in (bb));
3884 if (sched_verbose >= 1)
3885 model_dump_pressure_summary ();
3886}
3887
3888/* Free the information associated with GROUP. */
3889
3890static void
3891model_finalize_pressure_group (struct model_pressure_group *group)
3892{
3893 XDELETEVEC (group->model);
3894}
3895
3896/* Free the information created by model_start_schedule. */
3897
3898static void
3899model_end_schedule (void)
3900{
3901 model_finalize_pressure_group (&model_before_pressure);
9771b263 3902 model_schedule.release ();
7a1aca9c 3903}
4dd9ac6c
MK
3904
3905/* Prepare reg pressure scheduling for basic block BB. */
3906static void
3907sched_pressure_start_bb (basic_block bb)
3908{
3909 /* Set the number of available registers for each class taking into account
3910 relative probability of current basic block versus function prologue and
3911 epilogue.
3912 * If the basic block executes much more often than the prologue/epilogue
3913 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3914 nil, so the effective number of available registers is
6d5c37d0 3915 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
4dd9ac6c
MK
3916 * If the basic block executes as often as the prologue/epilogue,
3917 then spill in the block is as costly as in the prologue, so the effective
3918 number of available registers is
6d5c37d0
PH
3919 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3920 - call_saved_regs_num[cl]).
4dd9ac6c
MK
3921 Note that all-else-equal, we prefer to spill in the prologue, since that
3922 allows "extra" registers for other basic blocks of the function.
3923 * If the basic block is on the cold path of the function and executes
3924 rarely, then we should always prefer to spill in the block, rather than
3925 in the prologue/epilogue. The effective number of available register is
6d5c37d0
PH
3926 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3927 - call_saved_regs_num[cl]). */
4dd9ac6c
MK
3928 {
3929 int i;
e7a74006
JH
3930 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.to_frequency (cfun);
3931 int bb_freq = bb->count.to_frequency (cfun);
4dd9ac6c
MK
3932
3933 if (bb_freq == 0)
3934 {
3935 if (entry_freq == 0)
3936 entry_freq = bb_freq = 1;
3937 }
3938 if (bb_freq < entry_freq)
3939 bb_freq = entry_freq;
3940
3941 for (i = 0; i < ira_pressure_classes_num; ++i)
3942 {
3943 enum reg_class cl = ira_pressure_classes[i];
6d5c37d0
PH
3944 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
3945 - fixed_regs_num[cl];
4dd9ac6c 3946 sched_class_regs_num[cl]
6d5c37d0 3947 -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
4dd9ac6c
MK
3948 }
3949 }
3950
3951 if (sched_pressure == SCHED_PRESSURE_MODEL)
3952 model_start_schedule (bb);
3953}
7a1aca9c 3954\f
51564684
BS
3955/* A structure that holds local state for the loop in schedule_block. */
3956struct sched_block_state
3957{
3958 /* True if no real insns have been scheduled in the current cycle. */
3959 bool first_cycle_insn_p;
26965010
BS
3960 /* True if a shadow insn has been scheduled in the current cycle, which
3961 means that no more normal insns can be issued. */
3962 bool shadows_only_p;
06d7e8e7
BS
3963 /* True if we're winding down a modulo schedule, which means that we only
3964 issue insns with INSN_EXACT_TICK set. */
3965 bool modulo_epilogue;
51564684
BS
3966 /* Initialized with the machine's issue rate every cycle, and updated
3967 by calls to the variable_issue hook. */
3968 int can_issue_more;
3969};
ce18efcb 3970
8c660648 3971/* INSN is the "currently executing insn". Launch each insn which was
176f9a7b 3972 waiting on INSN. READY is the ready list which contains the insns
58fb7809
VM
3973 that are ready to fire. CLOCK is the current cycle. The function
3974 returns necessary cycle advance after issuing the insn (it is not
3975 zero for insns in a schedule group). */
8c660648 3976
58fb7809 3977static int
ce1ce33a 3978schedule_insn (rtx_insn *insn)
8c660648 3979{
e2f6ff94
MK
3980 sd_iterator_def sd_it;
3981 dep_t dep;
ce18efcb 3982 int i;
58fb7809 3983 int advance = 0;
8c660648 3984
fa0aee89 3985 if (sched_verbose >= 1)
8c660648 3986 {
ce18efcb 3987 struct reg_pressure_data *pressure_info;
d5c67efd 3988 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
7eba871a
SB
3989 clock_var, (*current_sched_info->print_insn) (insn, 1),
3990 str_pattern_slim (PATTERN (insn)));
fae15c93 3991
6d0de005
JH
3992 if (recog_memoized (insn) < 0)
3993 fprintf (sched_dump, "nothing");
3994 else
3995 print_reservation (sched_dump, insn);
ce18efcb
VM
3996 pressure_info = INSN_REG_PRESSURE (insn);
3997 if (pressure_info != NULL)
3998 {
3999 fputc (':', sched_dump);
1756cb66 4000 for (i = 0; i < ira_pressure_classes_num; i++)
f20f2613
VM
4001 fprintf (sched_dump, "%s%s%+d(%d)",
4002 scheduled_insns.length () > 1
4003 && INSN_LUID (insn)
4004 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
1756cb66 4005 reg_class_names[ira_pressure_classes[i]],
ce18efcb
VM
4006 pressure_info[i].set_increase, pressure_info[i].change);
4007 }
7a1aca9c
RS
4008 if (sched_pressure == SCHED_PRESSURE_MODEL
4009 && model_curr_point < model_num_insns
4010 && model_index (insn) == model_curr_point)
4011 fprintf (sched_dump, ":model %d", model_curr_point);
6d0de005
JH
4012 fputc ('\n', sched_dump);
4013 }
8c660648 4014
60867e8c 4015 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
ce18efcb
VM
4016 update_reg_and_insn_max_reg_pressure (insn);
4017
63f54b1a
MK
4018 /* Scheduling instruction should have all its dependencies resolved and
4019 should have been removed from the ready list. */
e2724e63 4020 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
569fa502 4021
f49b295a 4022 /* Reset debug insns invalidated by moving this insn. */
36f52e8f 4023 if (MAY_HAVE_DEBUG_BIND_INSNS && !DEBUG_INSN_P (insn))
f49b295a
AO
4024 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4025 sd_iterator_cond (&sd_it, &dep);)
4026 {
9b517712 4027 rtx_insn *dbg = DEP_PRO (dep);
1de12eab 4028 struct reg_use_data *use, *next;
f49b295a 4029
e2724e63
BS
4030 if (DEP_STATUS (dep) & DEP_CANCELLED)
4031 {
4032 sd_iterator_next (&sd_it);
4033 continue;
4034 }
4035
36f52e8f 4036 gcc_assert (DEBUG_BIND_INSN_P (dbg));
f49b295a
AO
4037
4038 if (sched_verbose >= 6)
4039 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4040 INSN_UID (dbg));
4041
4042 /* ??? Rather than resetting the debug insn, we might be able
4043 to emit a debug temp before the just-scheduled insn, but
4044 this would involve checking that the expression at the
4045 point of the debug insn is equivalent to the expression
4046 before the just-scheduled insn. They might not be: the
4047 expression in the debug insn may depend on other insns not
4048 yet scheduled that set MEMs, REGs or even other debug
4049 insns. It's not clear that attempting to preserve debug
4050 information in these cases is worth the effort, given how
4051 uncommon these resets are and the likelihood that the debug
4052 temps introduced won't survive the schedule change. */
4053 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4054 df_insn_rescan (dbg);
4055
1de12eab
JJ
4056 /* Unknown location doesn't use any registers. */
4057 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4058 {
14db98d4
JJ
4059 struct reg_use_data *prev = use;
4060
4061 /* Remove use from the cyclic next_regno_use chain first. */
4062 while (prev->next_regno_use != use)
4063 prev = prev->next_regno_use;
4064 prev->next_regno_use = use->next_regno_use;
1de12eab
JJ
4065 next = use->next_insn_use;
4066 free (use);
4067 }
4068 INSN_REG_USE_LIST (dbg) = NULL;
4069
f49b295a
AO
4070 /* We delete rather than resolve these deps, otherwise we
4071 crash in sched_free_deps(), because forward deps are
4072 expected to be released before backward deps. */
4073 sd_delete_dep (sd_it);
4074 }
4075
b198261f 4076 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
63f54b1a 4077 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
b198261f 4078
7a1aca9c
RS
4079 if (sched_pressure == SCHED_PRESSURE_MODEL
4080 && model_curr_point < model_num_insns
4081 && NONDEBUG_INSN_P (insn))
4082 {
4083 if (model_index (insn) == model_curr_point)
4084 do
4085 model_curr_point++;
4086 while (model_curr_point < model_num_insns
4087 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4088 == QUEUE_SCHEDULED));
4089 else
4090 model_recompute (insn);
4091 model_update_limit_points ();
4092 update_register_pressure (insn);
4093 if (sched_verbose >= 2)
4094 print_curr_reg_pressure ();
4095 }
4096
63f54b1a
MK
4097 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4098 if (INSN_TICK (insn) > clock_var)
4099 /* INSN has been prematurely moved from the queue to the ready list.
b16abbcb
BC
4100 This is possible only if following flags are set. */
4101 gcc_assert (flag_sched_stalled_insns || sched_fusion);
63f54b1a
MK
4102
4103 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4104 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4105 INSN_TICK (insn) = clock_var;
4106
e2724e63
BS
4107 check_clobbered_conditions (insn);
4108
1a83e602
BS
4109 /* Update dependent instructions. First, see if by scheduling this insn
4110 now we broke a dependence in a way that requires us to change another
4111 insn. */
4112 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4113 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4114 {
4115 struct dep_replacement *desc = DEP_REPLACE (dep);
9b517712 4116 rtx_insn *pro = DEP_PRO (dep);
1a83e602
BS
4117 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4118 && desc != NULL && desc->insn == pro)
4119 apply_replacement (dep, false);
4120 }
4121
4122 /* Go through and resolve forward dependencies. */
e2f6ff94
MK
4123 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4124 sd_iterator_cond (&sd_it, &dep);)
8c660648 4125 {
9b517712 4126 rtx_insn *next = DEP_CON (dep);
e2724e63 4127 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
8c660648 4128
e2f6ff94
MK
4129 /* Resolve the dependence between INSN and NEXT.
4130 sd_resolve_dep () moves current dep to another list thus
4131 advancing the iterator. */
4132 sd_resolve_dep (sd_it);
8c660648 4133
e2724e63
BS
4134 if (cancelled)
4135 {
1a83e602
BS
4136 if (must_restore_pattern_p (next, dep))
4137 restore_pattern (dep, false);
e2724e63
BS
4138 continue;
4139 }
4140
f49b295a
AO
4141 /* Don't bother trying to mark next as ready if insn is a debug
4142 insn. If insn is the last hard dependency, it will have
4143 already been discounted. */
4144 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4145 continue;
4146
d7bfd907 4147 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
496d7bb0 4148 {
b8698a0f
L
4149 int effective_cost;
4150
496d7bb0 4151 effective_cost = try_ready (next);
b8698a0f 4152
496d7bb0
MK
4153 if (effective_cost >= 0
4154 && SCHED_GROUP_P (next)
4155 && advance < effective_cost)
4156 advance = effective_cost;
4157 }
4158 else
4159 /* Check always has only one forward dependence (to the first insn in
4160 the recovery block), therefore, this will be executed only once. */
4161 {
e2f6ff94 4162 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
496d7bb0
MK
4163 fix_recovery_deps (RECOVERY_BLOCK (insn));
4164 }
8c660648
JL
4165 }
4166
7a403706 4167 /* Annotate the instruction with issue information -- TImode
4bdc8810
RH
4168 indicates that the instruction is expected not to be able
4169 to issue on the same cycle as the previous insn. A machine
4170 may use this information to decide how the instruction should
4171 be aligned. */
30028c85 4172 if (issue_rate > 1
fae15c93 4173 && GET_CODE (PATTERN (insn)) != USE
b5b8b0ac
AO
4174 && GET_CODE (PATTERN (insn)) != CLOBBER
4175 && !DEBUG_INSN_P (insn))
4bdc8810 4176 {
30028c85 4177 if (reload_completed)
63f54b1a
MK
4178 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4179 last_clock_var = clock_var;
4bdc8810 4180 }
63f54b1a 4181
06bc63d1
MK
4182 if (nonscheduled_insns_begin != NULL_RTX)
4183 /* Indicate to debug counters that INSN is scheduled. */
4184 nonscheduled_insns_begin = insn;
4185
58fb7809 4186 return advance;
8c660648
JL
4187}
4188
63de6c74 4189/* Functions for handling of notes. */
8c660648 4190
e855c69d
AB
4191/* Add note list that ends on FROM_END to the end of TO_ENDP. */
4192void
b311fd0f 4193concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
e855c69d 4194{
b311fd0f 4195 rtx_insn *from_start;
e855c69d 4196
e67271bd 4197 /* It's easy when have nothing to concat. */
e855c69d 4198 if (from_end == NULL)
e855c69d
AB
4199 return;
4200
e67271bd 4201 /* It's also easy when destination is empty. */
e855c69d 4202 if (*to_endp == NULL)
e855c69d
AB
4203 {
4204 *to_endp = from_end;
4205 return;
4206 }
4207
4208 from_start = from_end;
b8698a0f 4209 while (PREV_INSN (from_start) != NULL)
e855c69d
AB
4210 from_start = PREV_INSN (from_start);
4211
0f82e5c9
DM
4212 SET_PREV_INSN (from_start) = *to_endp;
4213 SET_NEXT_INSN (*to_endp) = from_start;
e855c69d
AB
4214 *to_endp = from_end;
4215}
4216
e67271bd
RH
4217/* Delete notes between HEAD and TAIL and put them in the chain
4218 of notes ended by NOTE_LIST. */
4219void
ce1ce33a 4220remove_notes (rtx_insn *head, rtx_insn *tail)
8c660648 4221{
ce1ce33a 4222 rtx_insn *next_tail, *insn, *next;
8c660648 4223
e67271bd
RH
4224 note_list = 0;
4225 if (head == tail && !INSN_P (head))
4226 return;
4227
4228 next_tail = NEXT_INSN (tail);
e67271bd 4229 for (insn = head; insn != next_tail; insn = next)
8c660648 4230 {
e67271bd
RH
4231 next = NEXT_INSN (insn);
4232 if (!NOTE_P (insn))
1124098b 4233 continue;
f70b22c9 4234
e67271bd
RH
4235 switch (NOTE_KIND (insn))
4236 {
4237 case NOTE_INSN_BASIC_BLOCK:
e67271bd 4238 continue;
8c660648 4239
e67271bd
RH
4240 case NOTE_INSN_EPILOGUE_BEG:
4241 if (insn != tail)
4242 {
4243 remove_insn (insn);
4244 add_reg_note (next, REG_SAVE_NOTE,
4245 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4246 break;
4247 }
4248 /* FALLTHRU */
e855c69d 4249
e67271bd
RH
4250 default:
4251 remove_insn (insn);
e855c69d 4252
e67271bd 4253 /* Add the note to list that ends at NOTE_LIST. */
0f82e5c9
DM
4254 SET_PREV_INSN (insn) = note_list;
4255 SET_NEXT_INSN (insn) = NULL_RTX;
e67271bd 4256 if (note_list)
0f82e5c9 4257 SET_NEXT_INSN (note_list) = insn;
e67271bd
RH
4258 note_list = insn;
4259 break;
4260 }
4261
4262 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4263 }
8c660648
JL
4264}
4265
26965010
BS
4266/* A structure to record enough data to allow us to backtrack the scheduler to
4267 a previous state. */
4268struct haifa_saved_data
4269{
4270 /* Next entry on the list. */
4271 struct haifa_saved_data *next;
4272
4273 /* Backtracking is associated with scheduling insns that have delay slots.
4274 DELAY_PAIR points to the structure that contains the insns involved, and
4275 the number of cycles between them. */
4276 struct delay_pair *delay_pair;
4277
4278 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4279 void *fe_saved_data;
4280 /* Data used by the backend. */
4281 void *be_saved_data;
4282
4283 /* Copies of global state. */
4284 int clock_var, last_clock_var;
4285 struct ready_list ready;
4286 state_t curr_state;
4287
ce1ce33a 4288 rtx_insn *last_scheduled_insn;
90831096 4289 rtx_insn *last_nondebug_scheduled_insn;
ce1ce33a 4290 rtx_insn *nonscheduled_insns_begin;
26965010
BS
4291 int cycle_issued_insns;
4292
4293 /* Copies of state used in the inner loop of schedule_block. */
4294 struct sched_block_state sched_block;
4295
4296 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4297 to 0 when restoring. */
4298 int q_size;
3dc99c19 4299 rtx_insn_list **insn_queue;
1a83e602
BS
4300
4301 /* Describe pattern replacements that occurred since this backtrack point
4302 was queued. */
9771b263
DN
4303 vec<dep_t> replacement_deps;
4304 vec<int> replace_apply;
1a83e602
BS
4305
4306 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4307 point. */
9771b263
DN
4308 vec<dep_t> next_cycle_deps;
4309 vec<int> next_cycle_apply;
26965010
BS
4310};
4311
4312/* A record, in reverse order, of all scheduled insns which have delay slots
4313 and may require backtracking. */
4314static struct haifa_saved_data *backtrack_queue;
4315
4316/* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4317 to SET_P. */
4318static void
90831096 4319mark_backtrack_feeds (rtx_insn *insn, int set_p)
26965010
BS
4320{
4321 sd_iterator_def sd_it;
4322 dep_t dep;
4323 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4324 {
4325 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4326 }
4327}
4328
26965010
BS
4329/* Save the current scheduler state so that we can backtrack to it
4330 later if necessary. PAIR gives the insns that make it necessary to
4331 save this point. SCHED_BLOCK is the local state of schedule_block
4332 that need to be saved. */
4333static void
4334save_backtrack_point (struct delay_pair *pair,
4335 struct sched_block_state sched_block)
4336{
4337 int i;
4338 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4339
4340 save->curr_state = xmalloc (dfa_state_size);
4341 memcpy (save->curr_state, curr_state, dfa_state_size);
4342
4343 save->ready.first = ready.first;
4344 save->ready.n_ready = ready.n_ready;
4345 save->ready.n_debug = ready.n_debug;
4346 save->ready.veclen = ready.veclen;
ce1ce33a 4347 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
26965010
BS
4348 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4349
3dc99c19 4350 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
26965010
BS
4351 save->q_size = q_size;
4352 for (i = 0; i <= max_insn_queue_index; i++)
4353 {
4354 int q = NEXT_Q_AFTER (q_ptr, i);
e2724e63 4355 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
26965010
BS
4356 }
4357
4358 save->clock_var = clock_var;
4359 save->last_clock_var = last_clock_var;
4360 save->cycle_issued_insns = cycle_issued_insns;
4361 save->last_scheduled_insn = last_scheduled_insn;
4362 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
06bc63d1 4363 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
26965010
BS
4364
4365 save->sched_block = sched_block;
4366
9771b263
DN
4367 save->replacement_deps.create (0);
4368 save->replace_apply.create (0);
4369 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4370 save->next_cycle_apply = next_cycle_apply.copy ();
1a83e602 4371
26965010
BS
4372 if (current_sched_info->save_state)
4373 save->fe_saved_data = (*current_sched_info->save_state) ();
4374
4375 if (targetm.sched.alloc_sched_context)
4376 {
4377 save->be_saved_data = targetm.sched.alloc_sched_context ();
4378 targetm.sched.init_sched_context (save->be_saved_data, false);
4379 }
4380 else
4381 save->be_saved_data = NULL;
4382
4383 save->delay_pair = pair;
4384
4385 save->next = backtrack_queue;
4386 backtrack_queue = save;
4387
4388 while (pair)
4389 {
4390 mark_backtrack_feeds (pair->i2, 1);
4391 INSN_TICK (pair->i2) = INVALID_TICK;
4392 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
06d7e8e7 4393 SHADOW_P (pair->i2) = pair->stages == 0;
26965010
BS
4394 pair = pair->next_same_i1;
4395 }
4396}
4397
e2724e63
BS
4398/* Walk the ready list and all queues. If any insns have unresolved backwards
4399 dependencies, these must be cancelled deps, broken by predication. Set or
4400 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4401
4402static void
4403toggle_cancelled_flags (bool set)
4404{
4405 int i;
4406 sd_iterator_def sd_it;
4407 dep_t dep;
4408
4409 if (ready.n_ready > 0)
4410 {
ce1ce33a 4411 rtx_insn **first = ready_lastpos (&ready);
e2724e63
BS
4412 for (i = 0; i < ready.n_ready; i++)
4413 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4414 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4415 {
4416 if (set)
4417 DEP_STATUS (dep) |= DEP_CANCELLED;
4418 else
4419 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4420 }
4421 }
4422 for (i = 0; i <= max_insn_queue_index; i++)
4423 {
4424 int q = NEXT_Q_AFTER (q_ptr, i);
96b70414
DM
4425 rtx_insn_list *link;
4426 for (link = insn_queue[q]; link; link = link->next ())
e2724e63 4427 {
96b70414 4428 rtx_insn *insn = link->insn ();
e2724e63
BS
4429 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4430 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4431 {
4432 if (set)
4433 DEP_STATUS (dep) |= DEP_CANCELLED;
4434 else
4435 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4436 }
4437 }
4438 }
4439}
4440
1a83e602
BS
4441/* Undo the replacements that have occurred after backtrack point SAVE
4442 was placed. */
4443static void
4444undo_replacements_for_backtrack (struct haifa_saved_data *save)
4445{
9771b263 4446 while (!save->replacement_deps.is_empty ())
1a83e602 4447 {
9771b263
DN
4448 dep_t dep = save->replacement_deps.pop ();
4449 int apply_p = save->replace_apply.pop ();
1a83e602
BS
4450
4451 if (apply_p)
4452 restore_pattern (dep, true);
4453 else
4454 apply_replacement (dep, true);
4455 }
9771b263
DN
4456 save->replacement_deps.release ();
4457 save->replace_apply.release ();
1a83e602
BS
4458}
4459
26965010
BS
4460/* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4461 Restore their dependencies to an unresolved state, and mark them as
4462 queued nowhere. */
4463
4464static void
90831096 4465unschedule_insns_until (rtx_insn *insn)
26965010 4466{
f57aa6b0 4467 auto_vec<rtx_insn *> recompute_vec;
e2724e63
BS
4468
4469 /* Make two passes over the insns to be unscheduled. First, we clear out
4470 dependencies and other trivial bookkeeping. */
26965010
BS
4471 for (;;)
4472 {
f57aa6b0 4473 rtx_insn *last;
26965010
BS
4474 sd_iterator_def sd_it;
4475 dep_t dep;
4476
9771b263 4477 last = scheduled_insns.pop ();
26965010
BS
4478
4479 /* This will be changed by restore_backtrack_point if the insn is in
4480 any queue. */
4481 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4482 if (last != insn)
4483 INSN_TICK (last) = INVALID_TICK;
4484
06d7e8e7
BS
4485 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4486 modulo_insns_scheduled--;
4487
26965010
BS
4488 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4489 sd_iterator_cond (&sd_it, &dep);)
4490 {
9b517712 4491 rtx_insn *con = DEP_CON (dep);
26965010 4492 sd_unresolve_dep (sd_it);
e2724e63
BS
4493 if (!MUST_RECOMPUTE_SPEC_P (con))
4494 {
4495 MUST_RECOMPUTE_SPEC_P (con) = 1;
9771b263 4496 recompute_vec.safe_push (con);
e2724e63 4497 }
26965010
BS
4498 }
4499
4500 if (last == insn)
4501 break;
4502 }
e2724e63
BS
4503
4504 /* A second pass, to update ready and speculation status for insns
4505 depending on the unscheduled ones. The first pass must have
4506 popped the scheduled_insns vector up to the point where we
4507 restart scheduling, as recompute_todo_spec requires it to be
4508 up-to-date. */
9771b263 4509 while (!recompute_vec.is_empty ())
e2724e63 4510 {
f57aa6b0 4511 rtx_insn *con;
e2724e63 4512
9771b263 4513 con = recompute_vec.pop ();
e2724e63
BS
4514 MUST_RECOMPUTE_SPEC_P (con) = 0;
4515 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4516 {
4517 TODO_SPEC (con) = HARD_DEP;
4518 INSN_TICK (con) = INVALID_TICK;
4519 if (PREDICATED_PAT (con) != NULL_RTX)
4520 haifa_change_pattern (con, ORIG_PAT (con));
4521 }
4522 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
1a83e602 4523 TODO_SPEC (con) = recompute_todo_spec (con, true);
e2724e63 4524 }
26965010
BS
4525}
4526
4527/* Restore scheduler state from the topmost entry on the backtracking queue.
4528 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4529 overwrite with the saved data.
4530 The caller must already have called unschedule_insns_until. */
4531
4532static void
4533restore_last_backtrack_point (struct sched_block_state *psched_block)
26965010 4534{
26965010
BS
4535 int i;
4536 struct haifa_saved_data *save = backtrack_queue;
4537
4538 backtrack_queue = save->next;
4539
4540 if (current_sched_info->restore_state)
4541 (*current_sched_info->restore_state) (save->fe_saved_data);
4542
4543 if (targetm.sched.alloc_sched_context)
4544 {
4545 targetm.sched.set_sched_context (save->be_saved_data);
4546 targetm.sched.free_sched_context (save->be_saved_data);
4547 }
4548
1a83e602
BS
4549 /* Do this first since it clobbers INSN_TICK of the involved
4550 instructions. */
4551 undo_replacements_for_backtrack (save);
4552
26965010
BS
4553 /* Clear the QUEUE_INDEX of everything in the ready list or one
4554 of the queues. */
4555 if (ready.n_ready > 0)
4556 {
ce1ce33a 4557 rtx_insn **first = ready_lastpos (&ready);
26965010
BS
4558 for (i = 0; i < ready.n_ready; i++)
4559 {
ce1ce33a 4560 rtx_insn *insn = first[i];
e2724e63
BS
4561 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4562 INSN_TICK (insn) = INVALID_TICK;
26965010
BS
4563 }
4564 }
4565 for (i = 0; i <= max_insn_queue_index; i++)
4566 {
4567 int q = NEXT_Q_AFTER (q_ptr, i);
4568
96b70414 4569 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
26965010 4570 {
96b70414 4571 rtx_insn *x = link->insn ();
26965010
BS
4572 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4573 INSN_TICK (x) = INVALID_TICK;
4574 }
4575 free_INSN_LIST_list (&insn_queue[q]);
4576 }
4577
4578 free (ready.vec);
4579 ready = save->ready;
4580
4581 if (ready.n_ready > 0)
4582 {
ce1ce33a 4583 rtx_insn **first = ready_lastpos (&ready);
26965010
BS
4584 for (i = 0; i < ready.n_ready; i++)
4585 {
ce1ce33a 4586 rtx_insn *insn = first[i];
e2724e63 4587 QUEUE_INDEX (insn) = QUEUE_READY;
1a83e602 4588 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
e2724e63 4589 INSN_TICK (insn) = save->clock_var;
26965010
BS
4590 }
4591 }
4592
4593 q_ptr = 0;
4594 q_size = save->q_size;
4595 for (i = 0; i <= max_insn_queue_index; i++)
4596 {
4597 int q = NEXT_Q_AFTER (q_ptr, i);
4598
4599 insn_queue[q] = save->insn_queue[q];
4600
96b70414 4601 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
26965010 4602 {
96b70414 4603 rtx_insn *x = link->insn ();
26965010 4604 QUEUE_INDEX (x) = i;
1a83e602 4605 TODO_SPEC (x) = recompute_todo_spec (x, true);
26965010
BS
4606 INSN_TICK (x) = save->clock_var + i;
4607 }
4608 }
4609 free (save->insn_queue);
4610
e2724e63
BS
4611 toggle_cancelled_flags (true);
4612
26965010
BS
4613 clock_var = save->clock_var;
4614 last_clock_var = save->last_clock_var;
4615 cycle_issued_insns = save->cycle_issued_insns;
4616 last_scheduled_insn = save->last_scheduled_insn;
4617 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
06bc63d1 4618 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
26965010
BS
4619
4620 *psched_block = save->sched_block;
4621
4622 memcpy (curr_state, save->curr_state, dfa_state_size);
4623 free (save->curr_state);
4624
4625 mark_backtrack_feeds (save->delay_pair->i2, 0);
4626
9771b263
DN
4627 gcc_assert (next_cycle_replace_deps.is_empty ());
4628 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4629 next_cycle_apply = save->next_cycle_apply.copy ();
1a83e602 4630
26965010
BS
4631 free (save);
4632
4633 for (save = backtrack_queue; save; save = save->next)
4634 {
4635 mark_backtrack_feeds (save->delay_pair->i2, 1);
4636 }
4637}
4638
4639/* Discard all data associated with the topmost entry in the backtrack
4640 queue. If RESET_TICK is false, we just want to free the data. If true,
4641 we are doing this because we discovered a reason to backtrack. In the
4642 latter case, also reset the INSN_TICK for the shadow insn. */
4643static void
4644free_topmost_backtrack_point (bool reset_tick)
4645{
4646 struct haifa_saved_data *save = backtrack_queue;
4647 int i;
4648
4649 backtrack_queue = save->next;
4650
4651 if (reset_tick)
4652 {
4653 struct delay_pair *pair = save->delay_pair;
4654 while (pair)
4655 {
4656 INSN_TICK (pair->i2) = INVALID_TICK;
4657 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4658 pair = pair->next_same_i1;
4659 }
1a83e602
BS
4660 undo_replacements_for_backtrack (save);
4661 }
4662 else
4663 {
9771b263
DN
4664 save->replacement_deps.release ();
4665 save->replace_apply.release ();
26965010 4666 }
1a83e602 4667
26965010
BS
4668 if (targetm.sched.free_sched_context)
4669 targetm.sched.free_sched_context (save->be_saved_data);
4670 if (current_sched_info->restore_state)
4671 free (save->fe_saved_data);
4672 for (i = 0; i <= max_insn_queue_index; i++)
4673 free_INSN_LIST_list (&save->insn_queue[i]);
4674 free (save->insn_queue);
4675 free (save->curr_state);
4676 free (save->ready.vec);
4677 free (save);
4678}
4679
4680/* Free the entire backtrack queue. */
4681static void
4682free_backtrack_queue (void)
4683{
4684 while (backtrack_queue)
4685 free_topmost_backtrack_point (false);
4686}
4687
1a83e602
BS
4688/* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4689 may have to postpone the replacement until the start of the next cycle,
4690 at which point we will be called again with IMMEDIATELY true. This is
4691 only done for machines which have instruction packets with explicit
4692 parallelism however. */
4693static void
4694apply_replacement (dep_t dep, bool immediately)
4695{
4696 struct dep_replacement *desc = DEP_REPLACE (dep);
4697 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4698 {
9771b263
DN
4699 next_cycle_replace_deps.safe_push (dep);
4700 next_cycle_apply.safe_push (1);
1a83e602
BS
4701 }
4702 else
4703 {
4704 bool success;
4705
4706 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4707 return;
4708
4709 if (sched_verbose >= 5)
4710 fprintf (sched_dump, "applying replacement for insn %d\n",
4711 INSN_UID (desc->insn));
4712
4713 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4714 gcc_assert (success);
4715
079c81d0
RD
4716 rtx_insn *insn = DEP_PRO (dep);
4717
4718 /* Recompute priority since dependent priorities may have changed. */
4719 priority (insn, true);
1a83e602 4720 update_insn_after_change (desc->insn);
079c81d0 4721
1a83e602
BS
4722 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4723 fix_tick_ready (desc->insn);
4724
4725 if (backtrack_queue != NULL)
4726 {
9771b263
DN
4727 backtrack_queue->replacement_deps.safe_push (dep);
4728 backtrack_queue->replace_apply.safe_push (1);
1a83e602
BS
4729 }
4730 }
4731}
4732
4733/* We have determined that a pattern involved in DEP must be restored.
4734 If IMMEDIATELY is false, we may have to postpone the replacement
4735 until the start of the next cycle, at which point we will be called
4736 again with IMMEDIATELY true. */
4737static void
4738restore_pattern (dep_t dep, bool immediately)
4739{
9b517712 4740 rtx_insn *next = DEP_CON (dep);
1a83e602
BS
4741 int tick = INSN_TICK (next);
4742
4743 /* If we already scheduled the insn, the modified version is
4744 correct. */
4745 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4746 return;
4747
4748 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4749 {
9771b263
DN
4750 next_cycle_replace_deps.safe_push (dep);
4751 next_cycle_apply.safe_push (0);
1a83e602
BS
4752 return;
4753 }
4754
4755
4756 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4757 {
4758 if (sched_verbose >= 5)
4759 fprintf (sched_dump, "restoring pattern for insn %d\n",
4760 INSN_UID (next));
4761 haifa_change_pattern (next, ORIG_PAT (next));
4762 }
4763 else
4764 {
4765 struct dep_replacement *desc = DEP_REPLACE (dep);
4766 bool success;
4767
4768 if (sched_verbose >= 5)
4769 fprintf (sched_dump, "restoring pattern for insn %d\n",
4770 INSN_UID (desc->insn));
4771 tick = INSN_TICK (desc->insn);
4772
4773 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4774 gcc_assert (success);
079c81d0
RD
4775
4776 rtx_insn *insn = DEP_PRO (dep);
4777
4778 if (QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
4779 {
4780 /* Recompute priority since dependent priorities may have changed. */
4781 priority (insn, true);
4782 }
4783
1a83e602 4784 update_insn_after_change (desc->insn);
079c81d0 4785
1a83e602
BS
4786 if (backtrack_queue != NULL)
4787 {
9771b263
DN
4788 backtrack_queue->replacement_deps.safe_push (dep);
4789 backtrack_queue->replace_apply.safe_push (0);
1a83e602
BS
4790 }
4791 }
4792 INSN_TICK (next) = tick;
4793 if (TODO_SPEC (next) == DEP_POSTPONED)
4794 return;
4795
4796 if (sd_lists_empty_p (next, SD_LIST_BACK))
4797 TODO_SPEC (next) = 0;
4798 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4799 TODO_SPEC (next) = HARD_DEP;
4800}
4801
4802/* Perform pattern replacements that were queued up until the next
4803 cycle. */
4804static void
4805perform_replacements_new_cycle (void)
4806{
4807 int i;
4808 dep_t dep;
9771b263 4809 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
1a83e602 4810 {
9771b263 4811 int apply_p = next_cycle_apply[i];
1a83e602
BS
4812 if (apply_p)
4813 apply_replacement (dep, true);
4814 else
4815 restore_pattern (dep, true);
4816 }
9771b263
DN
4817 next_cycle_replace_deps.truncate (0);
4818 next_cycle_apply.truncate (0);
1a83e602
BS
4819}
4820
26965010
BS
4821/* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4822 instructions we've previously encountered, a set bit prevents
4823 recursion. BUDGET is a limit on how far ahead we look, it is
4824 reduced on recursive calls. Return true if we produced a good
4825 estimate, or false if we exceeded the budget. */
4826static bool
f57aa6b0 4827estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
26965010
BS
4828{
4829 sd_iterator_def sd_it;
4830 dep_t dep;
4831 int earliest = INSN_TICK (insn);
4832
4833 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4834 {
9b517712 4835 rtx_insn *pro = DEP_PRO (dep);
26965010
BS
4836 int t;
4837
e2724e63
BS
4838 if (DEP_STATUS (dep) & DEP_CANCELLED)
4839 continue;
4840
26965010
BS
4841 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4842 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4843 else
4844 {
4845 int cost = dep_cost (dep);
4846 if (cost >= budget)
4847 return false;
4848 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4849 {
4850 if (!estimate_insn_tick (processed, pro, budget - cost))
4851 return false;
4852 }
4853 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4854 t = INSN_TICK_ESTIMATE (pro) + cost;
4855 if (earliest == INVALID_TICK || t > earliest)
4856 earliest = t;
4857 }
4858 }
4859 bitmap_set_bit (processed, INSN_LUID (insn));
4860 INSN_TICK_ESTIMATE (insn) = earliest;
4861 return true;
4862}
4863
4864/* Examine the pair of insns in P, and estimate (optimistically, assuming
4865 infinite resources) the cycle in which the delayed shadow can be issued.
4866 Return the number of cycles that must pass before the real insn can be
4867 issued in order to meet this constraint. */
4868static int
4869estimate_shadow_tick (struct delay_pair *p)
4870{
8f9b31f7 4871 auto_bitmap processed;
26965010
BS
4872 int t;
4873 bool cutoff;
26965010 4874
8f9b31f7 4875 cutoff = !estimate_insn_tick (processed, p->i2,
26965010 4876 max_insn_queue_index + pair_delay (p));
26965010
BS
4877 if (cutoff)
4878 return max_insn_queue_index;
4879 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4880 if (t > 0)
4881 return t;
4882 return 0;
4883}
e67271bd 4884
06d7e8e7
BS
4885/* If INSN has no unresolved backwards dependencies, add it to the schedule and
4886 recursively resolve all its forward dependencies. */
4887static void
ce1ce33a 4888resolve_dependencies (rtx_insn *insn)
06d7e8e7
BS
4889{
4890 sd_iterator_def sd_it;
4891 dep_t dep;
4892
4893 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4894 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4895 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4896 return;
4897
4898 if (sched_verbose >= 4)
4899 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4900
4901 if (QUEUE_INDEX (insn) >= 0)
4902 queue_remove (insn);
4903
9771b263 4904 scheduled_insns.safe_push (insn);
06d7e8e7
BS
4905
4906 /* Update dependent instructions. */
4907 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4908 sd_iterator_cond (&sd_it, &dep);)
4909 {
9b517712 4910 rtx_insn *next = DEP_CON (dep);
06d7e8e7
BS
4911
4912 if (sched_verbose >= 4)
4913 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4914 INSN_UID (next));
4915
4916 /* Resolve the dependence between INSN and NEXT.
4917 sd_resolve_dep () moves current dep to another list thus
4918 advancing the iterator. */
4919 sd_resolve_dep (sd_it);
4920
4921 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4922 {
4923 resolve_dependencies (next);
4924 }
4925 else
4926 /* Check always has only one forward dependence (to the first insn in
4927 the recovery block), therefore, this will be executed only once. */
4928 {
4929 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4930 }
4931 }
4932}
4933
4934
496d7bb0
MK
4935/* Return the head and tail pointers of ebb starting at BEG and ending
4936 at END. */
b4ead7d4 4937void
52d251b5
DM
4938get_ebb_head_tail (basic_block beg, basic_block end,
4939 rtx_insn **headp, rtx_insn **tailp)
496d7bb0 4940{
52d251b5
DM
4941 rtx_insn *beg_head = BB_HEAD (beg);
4942 rtx_insn * beg_tail = BB_END (beg);
4943 rtx_insn * end_head = BB_HEAD (end);
4944 rtx_insn * end_tail = BB_END (end);
496d7bb0
MK
4945
4946 /* Don't include any notes or labels at the beginning of the BEG
4947 basic block, or notes at the end of the END basic blocks. */
4948
4949 if (LABEL_P (beg_head))
4950 beg_head = NEXT_INSN (beg_head);
4951
4952 while (beg_head != beg_tail)
a59d15cf 4953 if (NOTE_P (beg_head))
496d7bb0 4954 beg_head = NEXT_INSN (beg_head);
a59d15cf
AO
4955 else if (DEBUG_INSN_P (beg_head))
4956 {
52d251b5 4957 rtx_insn * note, *next;
a59d15cf
AO
4958
4959 for (note = NEXT_INSN (beg_head);
4960 note != beg_tail;
4961 note = next)
4962 {
4963 next = NEXT_INSN (note);
4964 if (NOTE_P (note))
4965 {
4966 if (sched_verbose >= 9)
4967 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4968
4969 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4970
4971 if (BLOCK_FOR_INSN (note) != beg)
4972 df_insn_change_bb (note, beg);
4973 }
4974 else if (!DEBUG_INSN_P (note))
4975 break;
4976 }
4977
4978 break;
4979 }
496d7bb0
MK
4980 else
4981 break;
4982
4983 *headp = beg_head;
4984
4985 if (beg == end)
4986 end_head = beg_head;
4987 else if (LABEL_P (end_head))
4988 end_head = NEXT_INSN (end_head);
4989
4990 while (end_head != end_tail)
a59d15cf 4991 if (NOTE_P (end_tail))
496d7bb0 4992 end_tail = PREV_INSN (end_tail);
a59d15cf
AO
4993 else if (DEBUG_INSN_P (end_tail))
4994 {
52d251b5 4995 rtx_insn * note, *prev;
a59d15cf
AO
4996
4997 for (note = PREV_INSN (end_tail);
4998 note != end_head;
4999 note = prev)
5000 {
5001 prev = PREV_INSN (note);
5002 if (NOTE_P (note))
5003 {
5004 if (sched_verbose >= 9)
5005 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
5006
5007 reorder_insns_nobb (note, note, end_tail);
5008
5009 if (end_tail == BB_END (end))
1130d5e3 5010 BB_END (end) = note;
a59d15cf
AO
5011
5012 if (BLOCK_FOR_INSN (note) != end)
5013 df_insn_change_bb (note, end);
5014 }
5015 else if (!DEBUG_INSN_P (note))
5016 break;
5017 }
5018
5019 break;
5020 }
496d7bb0
MK
5021 else
5022 break;
8c660648 5023
496d7bb0 5024 *tailp = end_tail;
8c660648
JL
5025}
5026
1708fd40
BS
5027/* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5028
b4ead7d4 5029int
dc01c3d1 5030no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
1708fd40
BS
5031{
5032 while (head != NEXT_INSN (tail))
5033 {
a59d15cf 5034 if (!NOTE_P (head) && !LABEL_P (head))
1708fd40
BS
5035 return 0;
5036 head = NEXT_INSN (head);
5037 }
5038 return 1;
5039}
5040
e855c69d
AB
5041/* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5042 previously found among the insns. Insert them just before HEAD. */
ce1ce33a
DM
5043rtx_insn *
5044restore_other_notes (rtx_insn *head, basic_block head_bb)
e855c69d
AB
5045{
5046 if (note_list != 0)
5047 {
ce1ce33a 5048 rtx_insn *note_head = note_list;
e855c69d
AB
5049
5050 if (head)
5051 head_bb = BLOCK_FOR_INSN (head);
5052 else
5053 head = NEXT_INSN (bb_note (head_bb));
5054
5055 while (PREV_INSN (note_head))
5056 {
5057 set_block_for_insn (note_head, head_bb);
5058 note_head = PREV_INSN (note_head);
8c660648 5059 }
e855c69d
AB
5060 /* In the above cycle we've missed this note. */
5061 set_block_for_insn (note_head, head_bb);
5062
0f82e5c9
DM
5063 SET_PREV_INSN (note_head) = PREV_INSN (head);
5064 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5065 SET_PREV_INSN (head) = note_list;
5066 SET_NEXT_INSN (note_list) = head;
e855c69d
AB
5067
5068 if (BLOCK_FOR_INSN (head) != head_bb)
1130d5e3 5069 BB_END (head_bb) = note_list;
e855c69d
AB
5070
5071 head = note_head;
8c660648 5072 }
e855c69d
AB
5073
5074 return head;
8c660648
JL
5075}
5076
1a83e602
BS
5077/* When we know we are going to discard the schedule due to a failed attempt
5078 at modulo scheduling, undo all replacements. */
5079static void
5080undo_all_replacements (void)
5081{
ce1ce33a 5082 rtx_insn *insn;
1a83e602
BS
5083 int i;
5084
9771b263 5085 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
1a83e602
BS
5086 {
5087 sd_iterator_def sd_it;
5088 dep_t dep;
5089
5090 /* See if we must undo a replacement. */
5091 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5092 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5093 {
5094 struct dep_replacement *desc = DEP_REPLACE (dep);
5095 if (desc != NULL)
5096 validate_change (desc->insn, desc->loc, desc->orig, 0);
5097 }
5098 }
5099}
5100
06bc63d1
MK
5101/* Return first non-scheduled insn in the current scheduling block.
5102 This is mostly used for debug-counter purposes. */
ce1ce33a 5103static rtx_insn *
06bc63d1
MK
5104first_nonscheduled_insn (void)
5105{
ce1ce33a
DM
5106 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5107 ? nonscheduled_insns_begin
5108 : current_sched_info->prev_head);
06bc63d1
MK
5109
5110 do
5111 {
5112 insn = next_nonnote_nondebug_insn (insn);
5113 }
5114 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5115
5116 return insn;
5117}
5118
8c660648
JL
5119/* Move insns that became ready to fire from queue to ready list. */
5120
176f9a7b 5121static void
1d088dee 5122queue_to_ready (struct ready_list *ready)
8c660648 5123{
ce1ce33a 5124 rtx_insn *insn;
3dc99c19 5125 rtx_insn_list *link;
90831096 5126 rtx_insn *skip_insn;
8c660648
JL
5127
5128 q_ptr = NEXT_Q (q_ptr);
5129
b631c5f7 5130 if (dbg_cnt (sched_insn) == false)
06bc63d1
MK
5131 /* If debug counter is activated do not requeue the first
5132 nonscheduled insn. */
5133 skip_insn = first_nonscheduled_insn ();
b631c5f7 5134 else
90831096 5135 skip_insn = NULL;
b631c5f7 5136
8c660648 5137 /* Add all pending insns that can be scheduled without stalls to the
b4ead7d4 5138 ready list. */
3dc99c19 5139 for (link = insn_queue[q_ptr]; link; link = link->next ())
b4ead7d4 5140 {
3dc99c19 5141 insn = link->insn ();
b4ead7d4 5142 q_size -= 1;
1708fd40 5143
b4ead7d4
BS
5144 if (sched_verbose >= 2)
5145 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5146 (*current_sched_info->print_insn) (insn, 0));
1708fd40 5147
6f8dd94b
EB
5148 /* If the ready list is full, delay the insn for 1 cycle.
5149 See the comment in schedule_block for the rationale. */
5150 if (!reload_completed
7a1aca9c
RS
5151 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5152 || (sched_pressure == SCHED_PRESSURE_MODEL
5153 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5154 instructions too. */
5155 && model_index (insn) > (model_curr_point
5156 + MAX_SCHED_READY_INSNS)))
5157 && !(sched_pressure == SCHED_PRESSURE_MODEL
5158 && model_curr_point < model_num_insns
5159 /* Always allow the next model instruction to issue. */
5160 && model_index (insn) == model_curr_point)
b631c5f7
SP
5161 && !SCHED_GROUP_P (insn)
5162 && insn != skip_insn)
d5c67efd
MK
5163 {
5164 if (sched_verbose >= 2)
5165 fprintf (sched_dump, "keeping in queue, ready full\n");
5166 queue_insn (insn, 1, "ready full");
5167 }
6f8dd94b
EB
5168 else
5169 {
5170 ready_add (ready, insn, false);
5171 if (sched_verbose >= 2)
5172 fprintf (sched_dump, "moving to ready without stalls\n");
5173 }
1708fd40 5174 }
63f54b1a 5175 free_INSN_LIST_list (&insn_queue[q_ptr]);
b4ead7d4
BS
5176
5177 /* If there are no ready insns, stall until one is ready and add all
5178 of the pending insns at that point to the ready list. */
5179 if (ready->n_ready == 0)
1708fd40 5180 {
b3694847 5181 int stalls;
1708fd40 5182
fa0aee89 5183 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
b4ead7d4
BS
5184 {
5185 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5186 {
3dc99c19 5187 for (; link; link = link->next ())
b4ead7d4 5188 {
96b70414 5189 insn = link->insn ();
b4ead7d4 5190 q_size -= 1;
1708fd40 5191
b4ead7d4
BS
5192 if (sched_verbose >= 2)
5193 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5194 (*current_sched_info->print_insn) (insn, 0));
1708fd40 5195
63f54b1a 5196 ready_add (ready, insn, false);
b4ead7d4
BS
5197 if (sched_verbose >= 2)
5198 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5199 }
63f54b1a 5200 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
1708fd40 5201
fae15c93
VM
5202 advance_one_cycle ();
5203
5204 break;
b4ead7d4 5205 }
fae15c93
VM
5206
5207 advance_one_cycle ();
b4ead7d4 5208 }
1708fd40 5209
b4ead7d4
BS
5210 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5211 clock_var += stalls;
d5c67efd
MK
5212 if (sched_verbose >= 2)
5213 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5214 stalls, clock_var);
1708fd40 5215 }
1708fd40
BS
5216}
5217
569fa502 5218/* Used by early_queue_to_ready. Determines whether it is "ok" to
b8698a0f
L
5219 prematurely move INSN from the queue to the ready list. Currently,
5220 if a target defines the hook 'is_costly_dependence', this function
569fa502 5221 uses the hook to check whether there exist any dependences which are
b8698a0f 5222 considered costly by the target, between INSN and other insns that
569fa502
DN
5223 have already been scheduled. Dependences are checked up to Y cycles
5224 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
b8698a0f
L
5225 controlling this value.
5226 (Other considerations could be taken into account instead (or in
569fa502
DN
5227 addition) depending on user flags and target hooks. */
5228
b8698a0f 5229static bool
90831096 5230ok_for_early_queue_removal (rtx_insn *insn)
569fa502 5231{
569fa502
DN
5232 if (targetm.sched.is_costly_dependence)
5233 {
9b69cf83 5234 int n_cycles;
9771b263 5235 int i = scheduled_insns.length ();
569fa502
DN
5236 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5237 {
9b69cf83 5238 while (i-- > 0)
569fa502 5239 {
b198261f 5240 int cost;
569fa502 5241
21afc57d 5242 rtx_insn *prev_insn = scheduled_insns[i];
ec8628e8 5243
4b4bf941 5244 if (!NOTE_P (prev_insn))
569fa502 5245 {
e2f6ff94 5246 dep_t dep;
b198261f 5247
e2f6ff94 5248 dep = sd_find_dep_between (prev_insn, insn, true);
b198261f 5249
e2f6ff94 5250 if (dep != NULL)
569fa502 5251 {
b198261f
MK
5252 cost = dep_cost (dep);
5253
5254 if (targetm.sched.is_costly_dependence (dep, cost,
569fa502
DN
5255 flag_sched_stalled_insns_dep - n_cycles))
5256 return false;
5257 }
5258 }
5259
5260 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5261 break;
5262 }
5263
9b69cf83 5264 if (i == 0)
569fa502 5265 break;
569fa502
DN
5266 }
5267 }
5268
5269 return true;
5270}
5271
5272
5273/* Remove insns from the queue, before they become "ready" with respect
6614fd40 5274 to FU latency considerations. */
569fa502 5275
b8698a0f 5276static int
569fa502
DN
5277early_queue_to_ready (state_t state, struct ready_list *ready)
5278{
ce1ce33a 5279 rtx_insn *insn;
3dc99c19
DM
5280 rtx_insn_list *link;
5281 rtx_insn_list *next_link;
5282 rtx_insn_list *prev_link;
569fa502
DN
5283 bool move_to_ready;
5284 int cost;
5285 state_t temp_state = alloca (dfa_state_size);
5286 int stalls;
5287 int insns_removed = 0;
5288
5289 /*
b8698a0f
L
5290 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5291 function:
569fa502 5292
b8698a0f 5293 X == 0: There is no limit on how many queued insns can be removed
569fa502
DN
5294 prematurely. (flag_sched_stalled_insns = -1).
5295
b8698a0f 5296 X >= 1: Only X queued insns can be removed prematurely in each
569fa502
DN
5297 invocation. (flag_sched_stalled_insns = X).
5298
5299 Otherwise: Early queue removal is disabled.
5300 (flag_sched_stalled_insns = 0)
5301 */
5302
b8698a0f 5303 if (! flag_sched_stalled_insns)
569fa502
DN
5304 return 0;
5305
fa0aee89 5306 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
569fa502
DN
5307 {
5308 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5309 {
5310 if (sched_verbose > 6)
5311 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5312
5313 prev_link = 0;
5314 while (link)
5315 {
3dc99c19
DM
5316 next_link = link->next ();
5317 insn = link->insn ();
569fa502
DN
5318 if (insn && sched_verbose > 6)
5319 print_rtl_single (sched_dump, insn);
5320
5321 memcpy (temp_state, state, dfa_state_size);
b8698a0f 5322 if (recog_memoized (insn) < 0)
569fa502
DN
5323 /* non-negative to indicate that it's not ready
5324 to avoid infinite Q->R->Q->R... */
5325 cost = 0;
5326 else
5327 cost = state_transition (temp_state, insn);
5328
5329 if (sched_verbose >= 6)
5330 fprintf (sched_dump, "transition cost = %d\n", cost);
5331
5332 move_to_ready = false;
b8698a0f 5333 if (cost < 0)
569fa502
DN
5334 {
5335 move_to_ready = ok_for_early_queue_removal (insn);
5336 if (move_to_ready == true)
5337 {
5338 /* move from Q to R */
5339 q_size -= 1;
63f54b1a 5340 ready_add (ready, insn, false);
569fa502 5341
b8698a0f 5342 if (prev_link)
569fa502
DN
5343 XEXP (prev_link, 1) = next_link;
5344 else
5345 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5346
5347 free_INSN_LIST_node (link);
5348
5349 if (sched_verbose >= 2)
5350 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5351 (*current_sched_info->print_insn) (insn, 0));
5352
5353 insns_removed++;
5354 if (insns_removed == flag_sched_stalled_insns)
63f54b1a
MK
5355 /* Remove no more than flag_sched_stalled_insns insns
5356 from Q at a time. */
569fa502
DN
5357 return insns_removed;
5358 }
5359 }
5360
5361 if (move_to_ready == false)
5362 prev_link = link;
5363
5364 link = next_link;
5365 } /* while link */
b8698a0f 5366 } /* if link */
569fa502
DN
5367
5368 } /* for stalls.. */
5369
b8698a0f 5370 return insns_removed;
569fa502
DN
5371}
5372
5373
d5c67efd
MK
5374/* Print the ready list for debugging purposes.
5375 If READY_TRY is non-zero then only print insns that max_issue
5376 will consider. */
b4ead7d4 5377static void
4960a0cb 5378debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
1708fd40 5379{
ce1ce33a 5380 rtx_insn **p;
b4ead7d4 5381 int i;
1708fd40 5382
b4ead7d4 5383 if (ready->n_ready == 0)
fae15c93
VM
5384 {
5385 fprintf (sched_dump, "\n");
5386 return;
5387 }
1708fd40 5388
b4ead7d4
BS
5389 p = ready_lastpos (ready);
5390 for (i = 0; i < ready->n_ready; i++)
ce18efcb 5391 {
d5c67efd
MK
5392 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5393 continue;
5394
ce18efcb
VM
5395 fprintf (sched_dump, " %s:%d",
5396 (*current_sched_info->print_insn) (p[i], 0),
5397 INSN_LUID (p[i]));
7a1aca9c 5398 if (sched_pressure != SCHED_PRESSURE_NONE)
ce18efcb
VM
5399 fprintf (sched_dump, "(cost=%d",
5400 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
d5c67efd 5401 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
ce18efcb
VM
5402 if (INSN_TICK (p[i]) > clock_var)
5403 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
b75ae7f4
MK
5404 if (sched_pressure == SCHED_PRESSURE_MODEL)
5405 fprintf (sched_dump, ":idx=%d",
5406 model_index (p[i]));
7a1aca9c 5407 if (sched_pressure != SCHED_PRESSURE_NONE)
ce18efcb
VM
5408 fprintf (sched_dump, ")");
5409 }
b4ead7d4
BS
5410 fprintf (sched_dump, "\n");
5411}
1708fd40 5412
d5c67efd
MK
5413/* Print the ready list. Callable from debugger. */
5414static void
5415debug_ready_list (struct ready_list *ready)
5416{
5417 debug_ready_list_1 (ready, NULL);
5418}
5419
e67271bd
RH
5420/* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5421 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5422 replaces the epilogue note in the correct basic block. */
e855c69d 5423void
b2908ba6 5424reemit_notes (rtx_insn *insn)
8c660648 5425{
b2908ba6
DM
5426 rtx note;
5427 rtx_insn *last = insn;
8c660648 5428
8c660648
JL
5429 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5430 {
c46a37c4 5431 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
8c660648 5432 {
81f40b79 5433 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
b3b42a4d 5434
63f4a88e
JH
5435 last = emit_note_before (note_type, last);
5436 remove_note (insn, note);
8c660648
JL
5437 }
5438 }
8c660648
JL
5439}
5440
496d7bb0
MK
5441/* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5442static void
e6eda746 5443move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
496d7bb0 5444{
496d7bb0
MK
5445 if (PREV_INSN (insn) != last)
5446 {
5447 basic_block bb;
ce1ce33a 5448 rtx_insn *note;
496d7bb0 5449 int jump_p = 0;
8c660648 5450
496d7bb0 5451 bb = BLOCK_FOR_INSN (insn);
b8698a0f 5452
496d7bb0 5453 /* BB_HEAD is either LABEL or NOTE. */
b8698a0f 5454 gcc_assert (BB_HEAD (bb) != insn);
496d7bb0
MK
5455
5456 if (BB_END (bb) == insn)
5457 /* If this is last instruction in BB, move end marker one
5458 instruction up. */
5459 {
5460 /* Jumps are always placed at the end of basic block. */
5461 jump_p = control_flow_insn_p (insn);
5462
5463 gcc_assert (!jump_p
e855c69d 5464 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
d7bfd907 5465 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
e855c69d
AB
5466 || (common_sched_info->sched_pass_id
5467 == SCHED_EBB_PASS));
b8698a0f 5468
496d7bb0
MK
5469 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5470
1130d5e3 5471 BB_END (bb) = PREV_INSN (insn);
496d7bb0 5472 }
8c660648 5473
496d7bb0 5474 gcc_assert (BB_END (bb) != last);
c9e03727 5475
496d7bb0
MK
5476 if (jump_p)
5477 /* We move the block note along with jump. */
5478 {
e855c69d 5479 gcc_assert (nt);
496d7bb0
MK
5480
5481 note = NEXT_INSN (insn);
5482 while (NOTE_NOT_BB_P (note) && note != nt)
5483 note = NEXT_INSN (note);
5484
5485 if (note != nt
5486 && (LABEL_P (note)
5487 || BARRIER_P (note)))
5488 note = NEXT_INSN (note);
b8698a0f 5489
496d7bb0
MK
5490 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5491 }
5492 else
5493 note = insn;
5494
0f82e5c9
DM
5495 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5496 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
496d7bb0 5497
0f82e5c9
DM
5498 SET_NEXT_INSN (note) = NEXT_INSN (last);
5499 SET_PREV_INSN (NEXT_INSN (last)) = note;
c9e03727 5500
0f82e5c9
DM
5501 SET_NEXT_INSN (last) = insn;
5502 SET_PREV_INSN (insn) = last;
496d7bb0
MK
5503
5504 bb = BLOCK_FOR_INSN (last);
5505
5506 if (jump_p)
5507 {
5508 fix_jump_move (insn);
5509
5510 if (BLOCK_FOR_INSN (insn) != bb)
5511 move_block_after_check (insn);
5512
5513 gcc_assert (BB_END (bb) == last);
5514 }
5515
63642d5a 5516 df_insn_change_bb (insn, bb);
b8698a0f 5517
496d7bb0
MK
5518 /* Update BB_END, if needed. */
5519 if (BB_END (bb) == last)
1130d5e3 5520 BB_END (bb) = insn;
496d7bb0 5521 }
58fb7809 5522
b8698a0f 5523 SCHED_GROUP_P (insn) = 0;
8c660648
JL
5524}
5525
356c23b3
MK
5526/* Return true if scheduling INSN will finish current clock cycle. */
5527static bool
ce1ce33a 5528insn_finishes_cycle_p (rtx_insn *insn)
356c23b3
MK
5529{
5530 if (SCHED_GROUP_P (insn))
5531 /* After issuing INSN, rest of the sched_group will be forced to issue
5532 in order. Don't make any plans for the rest of cycle. */
5533 return true;
5534
5535 /* Finishing the block will, apparently, finish the cycle. */
5536 if (current_sched_info->insn_finishes_block_p
5537 && current_sched_info->insn_finishes_block_p (insn))
5538 return true;
5539
5540 return false;
5541}
5542
613743a2
KT
5543/* Helper for autopref_multipass_init. Given a SET in PAT and whether
5544 we're expecting a memory WRITE or not, check that the insn is relevant to
5545 the autoprefetcher modelling code. Return true iff that is the case.
5546 If it is relevant, record the base register of the memory op in BASE and
5547 the offset in OFFSET. */
5548
5549static bool
5550analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5551{
5552 if (GET_CODE (pat) != SET)
5553 return false;
5554
5555 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5556 if (!MEM_P (mem))
5557 return false;
5558
5559 struct address_info info;
5560 decompose_mem_address (&info, mem);
5561
5562 /* TODO: Currently only (base+const) addressing is supported. */
5563 if (info.base == NULL || !REG_P (*info.base)
5564 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5565 return false;
5566
5567 *base = *info.base;
5568 *offset = info.disp ? INTVAL (*info.disp) : 0;
5569 return true;
5570}
5571
340c7904
MK
5572/* Functions to model cache auto-prefetcher.
5573
5574 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5575 memory prefetches if it sees instructions with consequitive memory accesses
5576 in the instruction stream. Details of such hardware units are not published,
5577 so we can only guess what exactly is going on there.
5578 In the scheduler, we model abstract auto-prefetcher. If there are memory
5579 insns in the ready list (or the queue) that have same memory base, but
5580 different offsets, then we delay the insns with larger offsets until insns
5581 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5582 is "1", then we look at the ready list; if it is N>1, then we also look
5583 through N-1 queue entries.
5584 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5585 among its heuristics.
5586 Param value of "-1" disables modelling of the auto-prefetcher. */
5587
5588/* Initialize autoprefetcher model data for INSN. */
5589static void
5590autopref_multipass_init (const rtx_insn *insn, int write)
5591{
5592 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5593
5594 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5595 data->base = NULL_RTX;
f9f43fb3 5596 data->offset = 0;
340c7904
MK
5597 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5598 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5599
613743a2
KT
5600 rtx pat = PATTERN (insn);
5601
5602 /* We have a multi-set insn like a load-multiple or store-multiple.
5603 We care about these as long as all the memory ops inside the PARALLEL
5604 have the same base register. We care about the minimum and maximum
5605 offsets from that base but don't check for the order of those offsets
5606 within the PARALLEL insn itself. */
5607 if (GET_CODE (pat) == PARALLEL)
5608 {
5609 int n_elems = XVECLEN (pat, 0);
5610
f9f43fb3
WD
5611 int i, offset;
5612 rtx base, prev_base = NULL_RTX;
5613 int min_offset = INT_MAX;
613743a2
KT
5614
5615 for (i = 0; i < n_elems; i++)
5616 {
5617 rtx set = XVECEXP (pat, 0, i);
5618 if (GET_CODE (set) != SET)
5619 return;
5620
613743a2
KT
5621 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5622 return;
5623
613743a2
KT
5624 /* Ensure that all memory operations in the PARALLEL use the same
5625 base register. */
f9f43fb3 5626 if (i > 0 && REGNO (base) != REGNO (prev_base))
613743a2 5627 return;
f9f43fb3
WD
5628 prev_base = base;
5629 min_offset = MIN (min_offset, offset);
613743a2
KT
5630 }
5631
f9f43fb3
WD
5632 /* If we reached here then we have a valid PARALLEL of multiple memory ops
5633 with prev_base as the base and min_offset containing the offset. */
613743a2
KT
5634 gcc_assert (prev_base);
5635 data->base = prev_base;
f9f43fb3 5636 data->offset = min_offset;
613743a2 5637 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
613743a2
KT
5638 return;
5639 }
5640
5641 /* Otherwise this is a single set memory operation. */
340c7904
MK
5642 rtx set = single_set (insn);
5643 if (set == NULL_RTX)
5644 return;
5645
613743a2 5646 if (!analyze_set_insn_for_autopref (set, write, &data->base,
f9f43fb3 5647 &data->offset))
340c7904
MK
5648 return;
5649
613743a2
KT
5650 /* This insn is relevant for the auto-prefetcher.
5651 The base and offset fields will have been filled in the
5652 analyze_set_insn_for_autopref call above. */
5653 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5654}
340c7904 5655
340c7904
MK
5656/* Helper function for rank_for_schedule sorting. */
5657static int
5658autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5659{
ab90c27b
AM
5660 int r = 0;
5661 for (int write = 0; write < 2 && !r; ++write)
340c7904
MK
5662 {
5663 autopref_multipass_data_t data1
5664 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5665 autopref_multipass_data_t data2
5666 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5667
5668 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5669 autopref_multipass_init (insn1, write);
340c7904
MK
5670
5671 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5672 autopref_multipass_init (insn2, write);
340c7904 5673
ab90c27b
AM
5674 int irrel1 = data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5675 int irrel2 = data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
340c7904 5676
ab90c27b 5677 if (!irrel1 && !irrel2)
f9f43fb3 5678 r = data1->offset - data2->offset;
ab90c27b
AM
5679 else
5680 r = irrel2 - irrel1;
340c7904
MK
5681 }
5682
ab90c27b 5683 return r;
340c7904
MK
5684}
5685
5686/* True if header of debug dump was printed. */
5687static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5688
5689/* Helper for autopref_multipass_dfa_lookahead_guard.
5690 Return "1" if INSN1 should be delayed in favor of INSN2. */
5691static int
5692autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5693 const rtx_insn *insn2, int write)
5694{
5695 autopref_multipass_data_t data1
5696 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5697 autopref_multipass_data_t data2
5698 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5699
5700 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5701 autopref_multipass_init (insn2, write);
5702 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5703 return 0;
5704
5705 if (rtx_equal_p (data1->base, data2->base)
f9f43fb3 5706 && data1->offset > data2->offset)
340c7904
MK
5707 {
5708 if (sched_verbose >= 2)
5709 {
5710 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5711 {
5712 fprintf (sched_dump,
5713 ";;\t\tnot trying in max_issue due to autoprefetch "
5714 "model: ");
5715 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5716 }
5717
5718 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5719 }
5720
5721 return 1;
5722 }
5723
5724 return 0;
5725}
5726
5727/* General note:
5728
5729 We could have also hooked autoprefetcher model into
5730 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5731 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5732 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5733 unblocked). We don't bother about this yet because target of interest
5734 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5735
5736/* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5737 Return "1" if INSN1 should not be considered in max_issue due to
5738 auto-prefetcher considerations. */
5739int
5740autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5741{
5742 int r = 0;
5743
df554b0e
KT
5744 /* Exit early if the param forbids this or if we're not entering here through
5745 normal haifa scheduling. This can happen if selective scheduling is
5746 explicitly enabled. */
5747 if (!insn_queue || PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
340c7904
MK
5748 return 0;
5749
5750 if (sched_verbose >= 2 && ready_index == 0)
5751 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5752
5753 for (int write = 0; write < 2; ++write)
5754 {
5755 autopref_multipass_data_t data1
5756 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5757
5758 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5759 autopref_multipass_init (insn1, write);
5760 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5761 continue;
5762
5763 if (ready_index == 0
5764 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5765 /* We allow only a single delay on priviledged instructions.
5766 Doing otherwise would cause infinite loop. */
5767 {
5768 if (sched_verbose >= 2)
5769 {
5770 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5771 {
5772 fprintf (sched_dump,
5773 ";;\t\tnot trying in max_issue due to autoprefetch "
5774 "model: ");
5775 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5776 }
5777
5778 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5779 }
5780 continue;
5781 }
5782
5783 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5784 {
5785 rtx_insn *insn2 = get_ready_element (i2);
5786 if (insn1 == insn2)
5787 continue;
5788 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5789 if (r)
5790 {
5791 if (ready_index == 0)
5792 {
5793 r = -1;
5794 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5795 }
5796 goto finish;
5797 }
5798 }
5799
5800 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5801 continue;
5802
5803 /* Everything from the current queue slot should have been moved to
5804 the ready list. */
5805 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5806
5807 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5808 if (n_stalls > max_insn_queue_index)
5809 n_stalls = max_insn_queue_index;
5810
5811 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5812 {
5813 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5814 link != NULL_RTX;
5815 link = link->next ())
5816 {
5817 rtx_insn *insn2 = link->insn ();
5818 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5819 write);
5820 if (r)
5821 {
5822 /* Queue INSN1 until INSN2 can issue. */
5823 r = -stalls;
5824 if (ready_index == 0)
5825 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5826 goto finish;
5827 }
5828 }
5829 }
5830 }
5831
5832 finish:
5833 if (sched_verbose >= 2
5834 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5835 && (ready_index == ready.n_ready - 1 || r < 0))
5836 /* This does not /always/ trigger. We don't output EOL if the last
5837 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5838 called. We can live with this. */
5839 fprintf (sched_dump, "\n");
5840
5841 return r;
5842}
5843
894fd6f2
MK
5844/* Define type for target data used in multipass scheduling. */
5845#ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5846# define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5847#endif
5848typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5849
30028c85
VM
5850/* The following structure describe an entry of the stack of choices. */
5851struct choice_entry
5852{
5853 /* Ordinal number of the issued insn in the ready queue. */
5854 int index;
5855 /* The number of the rest insns whose issues we should try. */
5856 int rest;
5857 /* The number of issued essential insns. */
5858 int n;
5859 /* State after issuing the insn. */
5860 state_t state;
894fd6f2
MK
5861 /* Target-specific data. */
5862 first_cycle_multipass_data_t target_data;
30028c85
VM
5863};
5864
5865/* The following array is used to implement a stack of choices used in
5866 function max_issue. */
5867static struct choice_entry *choice_stack;
5868
e855c69d
AB
5869/* This holds the value of the target dfa_lookahead hook. */
5870int dfa_lookahead;
30028c85 5871
880efc46
VM
5872/* The following variable value is maximal number of tries of issuing
5873 insns for the first cycle multipass insn scheduling. We define
5874 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5875 need this constraint if all real insns (with non-negative codes)
5876 had reservations because in this case the algorithm complexity is
5877 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5878 might be incomplete and such insn might occur. For such
5879 descriptions, the complexity of algorithm (without the constraint)
5880 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5881static int max_lookahead_tries;
5882
fae15c93
VM
5883/* The following function returns maximal (or close to maximal) number
5884 of insns which can be issued on the same cycle and one of which
30028c85 5885 insns is insns with the best rank (the first insn in READY). To
fae15c93
VM
5886 make this function tries different samples of ready insns. READY
5887 is current queue `ready'. Global array READY_TRY reflects what
84fabdde 5888 insns are already issued in this try. The function stops immediately,
496d7bb0
MK
5889 if it reached the such a solution, that all instruction can be issued.
5890 INDEX will contain index of the best insn in READY. The following
e855c69d
AB
5891 function is used only for first cycle multipass scheduling.
5892
5893 PRIVILEGED_N >= 0
5894
5895 This function expects recognized insns only. All USEs,
5896 CLOBBERs, etc must be filtered elsewhere. */
5897int
5898max_issue (struct ready_list *ready, int privileged_n, state_t state,
894fd6f2 5899 bool first_cycle_insn_p, int *index)
fae15c93 5900{
84fabdde 5901 int n, i, all, n_ready, best, delay, tries_num;
e855c69d 5902 int more_issue;
30028c85 5903 struct choice_entry *top;
ce1ce33a 5904 rtx_insn *insn;
fae15c93 5905
b16abbcb
BC
5906 if (sched_fusion)
5907 return 0;
5908
e855c69d
AB
5909 n_ready = ready->n_ready;
5910 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5911 && privileged_n <= n_ready);
5912
5913 /* Init MAX_LOOKAHEAD_TRIES. */
8aec463b 5914 if (max_lookahead_tries == 0)
e855c69d 5915 {
e855c69d
AB
5916 max_lookahead_tries = 100;
5917 for (i = 0; i < issue_rate; i++)
5918 max_lookahead_tries *= dfa_lookahead;
5919 }
5920
5921 /* Init max_points. */
e855c69d 5922 more_issue = issue_rate - cycle_issued_insns;
646e6f41 5923 gcc_assert (more_issue >= 0);
e855c69d 5924
e855c69d 5925 /* The number of the issued insns in the best solution. */
fae15c93 5926 best = 0;
e855c69d 5927
30028c85 5928 top = choice_stack;
e855c69d
AB
5929
5930 /* Set initial state of the search. */
5931 memcpy (top->state, state, dfa_state_size);
5932 top->rest = dfa_lookahead;
30028c85 5933 top->n = 0;
894fd6f2
MK
5934 if (targetm.sched.first_cycle_multipass_begin)
5935 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5936 ready_try, n_ready,
5937 first_cycle_insn_p);
e855c69d
AB
5938
5939 /* Count the number of the insns to search among. */
30028c85 5940 for (all = i = 0; i < n_ready; i++)
fae15c93 5941 if (!ready_try [i])
30028c85 5942 all++;
e855c69d 5943
d5c67efd
MK
5944 if (sched_verbose >= 2)
5945 {
5946 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5947 debug_ready_list_1 (ready, ready_try);
5948 }
5949
e855c69d 5950 /* I is the index of the insn to try next. */
30028c85 5951 i = 0;
880efc46 5952 tries_num = 0;
30028c85
VM
5953 for (;;)
5954 {
e855c69d
AB
5955 if (/* If we've reached a dead end or searched enough of what we have
5956 been asked... */
5957 top->rest == 0
84fabdde
JZ
5958 /* or have nothing else to try... */
5959 || i >= n_ready
5960 /* or should not issue more. */
5961 || top->n >= more_issue)
30028c85 5962 {
e855c69d
AB
5963 /* ??? (... || i == n_ready). */
5964 gcc_assert (i <= n_ready);
5965
84fabdde
JZ
5966 /* We should not issue more than issue_rate instructions. */
5967 gcc_assert (top->n <= more_issue);
5968
30028c85
VM
5969 if (top == choice_stack)
5970 break;
e855c69d
AB
5971
5972 if (best < top - choice_stack)
30028c85 5973 {
e855c69d
AB
5974 if (privileged_n)
5975 {
5976 n = privileged_n;
5977 /* Try to find issued privileged insn. */
e84a58ff
EB
5978 while (n && !ready_try[--n])
5979 ;
e855c69d
AB
5980 }
5981
5982 if (/* If all insns are equally good... */
5983 privileged_n == 0
5984 /* Or a privileged insn will be issued. */
5985 || ready_try[n])
5986 /* Then we have a solution. */
5987 {
5988 best = top - choice_stack;
5989 /* This is the index of the insn issued first in this
5990 solution. */
5991 *index = choice_stack [1].index;
84fabdde 5992 if (top->n == more_issue || best == all)
e855c69d
AB
5993 break;
5994 }
30028c85 5995 }
e855c69d
AB
5996
5997 /* Set ready-list index to point to the last insn
5998 ('i++' below will advance it to the next insn). */
30028c85 5999 i = top->index;
e855c69d
AB
6000
6001 /* Backtrack. */
30028c85 6002 ready_try [i] = 0;
894fd6f2
MK
6003
6004 if (targetm.sched.first_cycle_multipass_backtrack)
6005 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
6006 ready_try, n_ready);
6007
30028c85 6008 top--;
e855c69d 6009 memcpy (state, top->state, dfa_state_size);
30028c85
VM
6010 }
6011 else if (!ready_try [i])
6012 {
880efc46
VM
6013 tries_num++;
6014 if (tries_num > max_lookahead_tries)
6015 break;
30028c85 6016 insn = ready_element (ready, i);
e855c69d 6017 delay = state_transition (state, insn);
30028c85
VM
6018 if (delay < 0)
6019 {
356c23b3
MK
6020 if (state_dead_lock_p (state)
6021 || insn_finishes_cycle_p (insn))
9d701248
BS
6022 /* We won't issue any more instructions in the next
6023 choice_state. */
30028c85
VM
6024 top->rest = 0;
6025 else
6026 top->rest--;
e855c69d 6027
30028c85 6028 n = top->n;
e855c69d 6029 if (memcmp (top->state, state, dfa_state_size) != 0)
84fabdde 6030 n++;
e855c69d
AB
6031
6032 /* Advance to the next choice_entry. */
30028c85 6033 top++;
e855c69d
AB
6034 /* Initialize it. */
6035 top->rest = dfa_lookahead;
30028c85
VM
6036 top->index = i;
6037 top->n = n;
e855c69d 6038 memcpy (top->state, state, dfa_state_size);
30028c85 6039 ready_try [i] = 1;
894fd6f2
MK
6040
6041 if (targetm.sched.first_cycle_multipass_issue)
6042 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6043 ready_try, n_ready,
6044 insn,
6045 &((top - 1)
6046 ->target_data));
6047
30028c85
VM
6048 i = -1;
6049 }
6050 }
e855c69d
AB
6051
6052 /* Increase ready-list index. */
30028c85
VM
6053 i++;
6054 }
496d7bb0 6055
894fd6f2
MK
6056 if (targetm.sched.first_cycle_multipass_end)
6057 targetm.sched.first_cycle_multipass_end (best != 0
6058 ? &choice_stack[1].target_data
6059 : NULL);
6060
e855c69d 6061 /* Restore the original state of the DFA. */
b8698a0f 6062 memcpy (state, choice_stack->state, dfa_state_size);
e855c69d 6063
fae15c93
VM
6064 return best;
6065}
6066
6067/* The following function chooses insn from READY and modifies
e855c69d 6068 READY. The following function is used only for first
b631c5f7
SP
6069 cycle multipass scheduling.
6070 Return:
6071 -1 if cycle should be advanced,
6072 0 if INSN_PTR is set to point to the desirable insn,
6073 1 if choose_ready () should be restarted without advancing the cycle. */
6074static int
894fd6f2 6075choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
ce1ce33a 6076 rtx_insn **insn_ptr)
fae15c93 6077{
b631c5f7
SP
6078 if (dbg_cnt (sched_insn) == false)
6079 {
06bc63d1
MK
6080 if (nonscheduled_insns_begin == NULL_RTX)
6081 nonscheduled_insns_begin = current_sched_info->prev_head;
6082
ce1ce33a 6083 rtx_insn *insn = first_nonscheduled_insn ();
b631c5f7
SP
6084
6085 if (QUEUE_INDEX (insn) == QUEUE_READY)
6086 /* INSN is in the ready_list. */
6087 {
6088 ready_remove_insn (insn);
6089 *insn_ptr = insn;
6090 return 0;
6091 }
6092
6093 /* INSN is in the queue. Advance cycle to move it to the ready list. */
06bc63d1 6094 gcc_assert (QUEUE_INDEX (insn) >= 0);
b631c5f7
SP
6095 return -1;
6096 }
6097
8aec463b 6098 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
b5b8b0ac 6099 || DEBUG_INSN_P (ready_element (ready, 0)))
b631c5f7 6100 {
ac44248e 6101 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7942e47e
RY
6102 *insn_ptr = ready_remove_first_dispatch (ready);
6103 else
6104 *insn_ptr = ready_remove_first (ready);
6105
b631c5f7
SP
6106 return 0;
6107 }
fae15c93
VM
6108 else
6109 {
4960a0cb 6110 /* Try to choose the best insn. */
16d83dd6 6111 int index = 0, i;
ce1ce33a 6112 rtx_insn *insn;
b8698a0f 6113
30028c85
VM
6114 insn = ready_element (ready, 0);
6115 if (INSN_CODE (insn) < 0)
b631c5f7
SP
6116 {
6117 *insn_ptr = ready_remove_first (ready);
6118 return 0;
6119 }
496d7bb0 6120
4960a0cb
MK
6121 /* Filter the search space. */
6122 for (i = 0; i < ready->n_ready; i++)
496d7bb0 6123 {
4960a0cb 6124 ready_try[i] = 0;
496d7bb0 6125
4960a0cb 6126 insn = ready_element (ready, i);
496d7bb0 6127
4960a0cb
MK
6128 /* If this insn is recognizable we should have already
6129 recognized it earlier.
6130 ??? Not very clear where this is supposed to be done.
6131 See dep_cost_1. */
6132 gcc_checking_assert (INSN_CODE (insn) >= 0
6133 || recog_memoized (insn) < 0);
6134 if (INSN_CODE (insn) < 0)
6135 {
6136 /* Non-recognized insns at position 0 are handled above. */
6137 gcc_assert (i > 0);
6138 ready_try[i] = 1;
6139 continue;
6140 }
6141
6142 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6143 {
6144 ready_try[i]
6145 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6146 (insn, i));
6147
6148 if (ready_try[i] < 0)
6149 /* Queue instruction for several cycles.
6150 We need to restart choose_ready as we have changed
6151 the ready list. */
6152 {
6153 change_queue_index (insn, -ready_try[i]);
6154 return 1;
6155 }
6156
6157 /* Make sure that we didn't end up with 0'th insn filtered out.
6158 Don't be tempted to make life easier for backends and just
6159 requeue 0'th insn if (ready_try[0] == 0) and restart
6160 choose_ready. Backends should be very considerate about
6161 requeueing instructions -- especially the highest priority
6162 one at position 0. */
6163 gcc_assert (ready_try[i] == 0 || i > 0);
6164 if (ready_try[i])
6165 continue;
6166 }
6167
6168 gcc_assert (ready_try[i] == 0);
6169 /* INSN made it through the scrutiny of filters! */
6170 }
e855c69d 6171
894fd6f2 6172 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
b631c5f7
SP
6173 {
6174 *insn_ptr = ready_remove_first (ready);
9c575182 6175 if (sched_verbose >= 4)
b8698a0f 6176 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
9c575182 6177 (*current_sched_info->print_insn) (*insn_ptr, 0));
b631c5f7
SP
6178 return 0;
6179 }
fae15c93 6180 else
b631c5f7 6181 {
b8698a0f 6182 if (sched_verbose >= 4)
e855c69d
AB
6183 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6184 (*current_sched_info->print_insn)
6185 (ready_element (ready, index), 0));
b8698a0f 6186
b631c5f7
SP
6187 *insn_ptr = ready_remove (ready, index);
6188 return 0;
6189 }
fae15c93
VM
6190 }
6191}
6192
86014d07
BS
6193/* This function is called when we have successfully scheduled a
6194 block. It uses the schedule stored in the scheduled_insns vector
6195 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6196 append the scheduled insns; TAIL is the insn after the scheduled
6197 block. TARGET_BB is the argument passed to schedule_block. */
6198
6199static void
f57aa6b0 6200commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
86014d07 6201{
9b69cf83 6202 unsigned int i;
ce1ce33a 6203 rtx_insn *insn;
86014d07
BS
6204
6205 last_scheduled_insn = prev_head;
9b69cf83 6206 for (i = 0;
9771b263 6207 scheduled_insns.iterate (i, &insn);
9b69cf83 6208 i++)
86014d07 6209 {
86014d07
BS
6210 if (control_flow_insn_p (last_scheduled_insn)
6211 || current_sched_info->advance_target_bb (*target_bb, insn))
6212 {
6213 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6214
6215 if (sched_verbose)
6216 {
f57aa6b0 6217 rtx_insn *x;
86014d07
BS
6218
6219 x = next_real_insn (last_scheduled_insn);
6220 gcc_assert (x);
6221 dump_new_block_header (1, *target_bb, x, tail);
6222 }
6223
6224 last_scheduled_insn = bb_note (*target_bb);
6225 }
6226
6227 if (current_sched_info->begin_move_insn)
6228 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6229 move_insn (insn, last_scheduled_insn,
6230 current_sched_info->next_tail);
6231 if (!DEBUG_INSN_P (insn))
6232 reemit_notes (insn);
6233 last_scheduled_insn = insn;
6234 }
6235
9771b263 6236 scheduled_insns.truncate (0);
86014d07
BS
6237}
6238
9d701248
BS
6239/* Examine all insns on the ready list and queue those which can't be
6240 issued in this cycle. TEMP_STATE is temporary scheduler state we
6241 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6242 have been issued for the current cycle, which means it is valid to
26965010
BS
6243 issue an asm statement.
6244
6245 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
06d7e8e7
BS
6246 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6247 we only leave insns which have an INSN_EXACT_TICK. */
9d701248
BS
6248
6249static void
26965010 6250prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
06d7e8e7 6251 bool shadows_only_p, bool modulo_epilogue_p)
9d701248 6252{
05641603 6253 int i, pass;
b75f962c 6254 bool sched_group_found = false;
e9593da8 6255 int min_cost_group = 0;
9d701248 6256
b16abbcb
BC
6257 if (sched_fusion)
6258 return;
6259
9d701248
BS
6260 for (i = 0; i < ready.n_ready; i++)
6261 {
ce1ce33a 6262 rtx_insn *insn = ready_element (&ready, i);
05641603 6263 if (SCHED_GROUP_P (insn))
b75f962c
BS
6264 {
6265 sched_group_found = true;
05641603 6266 break;
b75f962c 6267 }
05641603 6268 }
b75f962c 6269
05641603 6270 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
e9593da8
JW
6271 such an insn first and note its cost. If at least one SCHED_GROUP_P insn
6272 gets queued, then all other insns get queued for one cycle later. */
05641603
BS
6273 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6274 {
6275 int n = ready.n_ready;
6276 for (i = 0; i < n; i++)
9d701248 6277 {
ce1ce33a 6278 rtx_insn *insn = ready_element (&ready, i);
05641603
BS
6279 int cost = 0;
6280 const char *reason = "resource conflict";
26965010 6281
05641603
BS
6282 if (DEBUG_INSN_P (insn))
6283 continue;
6284
e9593da8
JW
6285 if (sched_group_found && !SCHED_GROUP_P (insn)
6286 && ((pass == 0) || (min_cost_group >= 1)))
05641603
BS
6287 {
6288 if (pass == 0)
6289 continue;
6290 cost = min_cost_group;
6291 reason = "not in sched group";
6292 }
6293 else if (modulo_epilogue_p
6294 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6295 {
6296 cost = max_insn_queue_index;
6297 reason = "not an epilogue insn";
6298 }
6299 else if (shadows_only_p && !SHADOW_P (insn))
26965010 6300 {
05641603
BS
6301 cost = 1;
6302 reason = "not a shadow";
6303 }
6304 else if (recog_memoized (insn) < 0)
6305 {
6306 if (!first_cycle_insn_p
6307 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6308 || asm_noperands (PATTERN (insn)) >= 0))
6309 cost = 1;
6310 reason = "asm";
6311 }
7a1aca9c
RS
6312 else if (sched_pressure != SCHED_PRESSURE_NONE)
6313 {
6314 if (sched_pressure == SCHED_PRESSURE_MODEL
6315 && INSN_TICK (insn) <= clock_var)
6316 {
6317 memcpy (temp_state, curr_state, dfa_state_size);
6318 if (state_transition (temp_state, insn) >= 0)
6319 INSN_TICK (insn) = clock_var + 1;
6320 }
6321 cost = 0;
6322 }
05641603
BS
6323 else
6324 {
6325 int delay_cost = 0;
6326
c203e8a7 6327 if (delay_htab)
26965010 6328 {
05641603
BS
6329 struct delay_pair *delay_entry;
6330 delay_entry
c203e8a7
TS
6331 = delay_htab->find_with_hash (insn,
6332 htab_hash_pointer (insn));
05641603
BS
6333 while (delay_entry && delay_cost == 0)
6334 {
6335 delay_cost = estimate_shadow_tick (delay_entry);
6336 if (delay_cost > max_insn_queue_index)
6337 delay_cost = max_insn_queue_index;
6338 delay_entry = delay_entry->next_same_i1;
6339 }
26965010 6340 }
26965010 6341
05641603
BS
6342 memcpy (temp_state, curr_state, dfa_state_size);
6343 cost = state_transition (temp_state, insn);
6344 if (cost < 0)
6345 cost = 0;
6346 else if (cost == 0)
6347 cost = 1;
6348 if (cost < delay_cost)
6349 {
6350 cost = delay_cost;
6351 reason = "shadow tick";
6352 }
6353 }
6354 if (cost >= 1)
26965010 6355 {
05641603
BS
6356 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6357 min_cost_group = cost;
6358 ready_remove (&ready, i);
3f9b5ffb
JL
6359 /* Normally we'd want to queue INSN for COST cycles. However,
6360 if SCHED_GROUP_P is set, then we must ensure that nothing
6361 else comes between INSN and its predecessor. If there is
6362 some other insn ready to fire on the next cycle, then that
6363 invariant would be broken.
6364
6365 So when SCHED_GROUP_P is set, just queue this insn for a
6366 single cycle. */
6367 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
05641603
BS
6368 if (i + 1 < n)
6369 break;
26965010 6370 }
9d701248 6371 }
05641603
BS
6372 if (i == n)
6373 pass++;
9d701248
BS
6374 }
6375}
6376
26965010
BS
6377/* Called when we detect that the schedule is impossible. We examine the
6378 backtrack queue to find the earliest insn that caused this condition. */
6379
6380static struct haifa_saved_data *
6381verify_shadows (void)
6382{
6383 struct haifa_saved_data *save, *earliest_fail = NULL;
6384 for (save = backtrack_queue; save; save = save->next)
6385 {
6386 int t;
6387 struct delay_pair *pair = save->delay_pair;
f57aa6b0 6388 rtx_insn *i1 = pair->i1;
26965010
BS
6389
6390 for (; pair; pair = pair->next_same_i1)
6391 {
f57aa6b0 6392 rtx_insn *i2 = pair->i2;
26965010
BS
6393
6394 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6395 continue;
6396
6397 t = INSN_TICK (i1) + pair_delay (pair);
6398 if (t < clock_var)
6399 {
6400 if (sched_verbose >= 2)
6401 fprintf (sched_dump,
6402 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6403 ", not ready\n",
6404 INSN_UID (pair->i1), INSN_UID (pair->i2),
6405 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6406 earliest_fail = save;
6407 break;
6408 }
6409 if (QUEUE_INDEX (i2) >= 0)
6410 {
6411 int queued_for = INSN_TICK (i2);
6412
6413 if (t < queued_for)
6414 {
6415 if (sched_verbose >= 2)
6416 fprintf (sched_dump,
6417 ";;\t\tfailed delay requirements for %d/%d"
6418 " (%d->%d), queued too late\n",
6419 INSN_UID (pair->i1), INSN_UID (pair->i2),
6420 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6421 earliest_fail = save;
6422 break;
6423 }
6424 }
6425 }
6426 }
6427
6428 return earliest_fail;
6429}
6430
d5c67efd
MK
6431/* Print instructions together with useful scheduling information between
6432 HEAD and TAIL (inclusive). */
6433static void
f57aa6b0 6434dump_insn_stream (rtx_insn *head, rtx_insn *tail)
d5c67efd
MK
6435{
6436 fprintf (sched_dump, ";;\t| insn | prio |\n");
6437
f57aa6b0
DM
6438 rtx_insn *next_tail = NEXT_INSN (tail);
6439 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
d5c67efd
MK
6440 {
6441 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6442 const char *pattern = (NOTE_P (insn)
6443 ? "note"
6444 : str_pattern_slim (PATTERN (insn)));
6445
6446 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6447 INSN_UID (insn), priority, pattern);
6448
6449 if (sched_verbose >= 4)
6450 {
81e63b63 6451 if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
d5c67efd
MK
6452 fprintf (sched_dump, "nothing");
6453 else
6454 print_reservation (sched_dump, insn);
6455 }
6456 fprintf (sched_dump, "\n");
6457 }
6458}
6459
496d7bb0
MK
6460/* Use forward list scheduling to rearrange insns of block pointed to by
6461 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6462 region. */
8c660648 6463
06d7e8e7 6464bool
975ccf22 6465schedule_block (basic_block *target_bb, state_t init_state)
8c660648 6466{
894fd6f2 6467 int i;
06d7e8e7 6468 bool success = modulo_ii == 0;
51564684 6469 struct sched_block_state ls;
fae15c93 6470 state_t temp_state = NULL; /* It is used for multipass scheduling. */
58fb7809 6471 int sort_p, advance, start_clock_var;
8c660648 6472
63de6c74 6473 /* Head/tail info for this block. */
ce1ce33a 6474 rtx_insn *prev_head = current_sched_info->prev_head;
dc01c3d1 6475 rtx_insn *next_tail = current_sched_info->next_tail;
ce1ce33a
DM
6476 rtx_insn *head = NEXT_INSN (prev_head);
6477 rtx_insn *tail = PREV_INSN (next_tail);
8c660648 6478
4f66c9bc 6479 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
b16abbcb 6480 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
1a83e602
BS
6481 find_modifiable_mems (head, tail);
6482
484df988
JL
6483 /* We used to have code to avoid getting parameters moved from hard
6484 argument registers into pseudos.
8c660648 6485
484df988
JL
6486 However, it was removed when it proved to be of marginal benefit
6487 and caused problems because schedule_block and compute_forward_dependences
6488 had different notions of what the "head" insn was. */
8c660648 6489
535a42b1 6490 gcc_assert (head != tail || INSN_P (head));
8c660648 6491
e2f6ff94 6492 haifa_recovery_bb_recently_added_p = false;
496d7bb0 6493
26965010
BS
6494 backtrack_queue = NULL;
6495
63de6c74 6496 /* Debug info. */
8c660648 6497 if (sched_verbose)
d5c67efd
MK
6498 {
6499 dump_new_block_header (0, *target_bb, head, tail);
6500
6501 if (sched_verbose >= 2)
4bd12f3d
MK
6502 {
6503 dump_insn_stream (head, tail);
6504 memset (&rank_for_schedule_stats, 0,
6505 sizeof (rank_for_schedule_stats));
6506 }
d5c67efd 6507 }
8c660648 6508
975ccf22
BS
6509 if (init_state == NULL)
6510 state_reset (curr_state);
6511 else
6512 memcpy (curr_state, init_state, dfa_state_size);
8c660648 6513
e855c69d 6514 /* Clear the ready list. */
176f9a7b 6515 ready.first = ready.veclen - 1;
176f9a7b 6516 ready.n_ready = 0;
b5b8b0ac 6517 ready.n_debug = 0;
8c660648 6518
fa0aee89
PB
6519 /* It is used for first cycle multipass scheduling. */
6520 temp_state = alloca (dfa_state_size);
fae15c93 6521
38f8b050
JR
6522 if (targetm.sched.init)
6523 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
e4da5f6d 6524
89076bb3 6525 /* We start inserting insns after PREV_HEAD. */
06bc63d1 6526 last_scheduled_insn = prev_head;
90831096 6527 last_nondebug_scheduled_insn = NULL;
ce1ce33a 6528 nonscheduled_insns_begin = NULL;
8c660648 6529
b5b8b0ac 6530 gcc_assert ((NOTE_P (last_scheduled_insn)
a59d15cf 6531 || DEBUG_INSN_P (last_scheduled_insn))
496d7bb0
MK
6532 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6533
1708fd40
BS
6534 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6535 queue. */
8c660648
JL
6536 q_ptr = 0;
6537 q_size = 0;
fae15c93 6538
3dc99c19 6539 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
fa0aee89 6540 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
8c660648 6541
197043f5
RH
6542 /* Start just before the beginning of time. */
6543 clock_var = -1;
63f54b1a 6544
b8698a0f 6545 /* We need queue and ready lists and clock_var be initialized
63f54b1a
MK
6546 in try_ready () (which is called through init_ready_list ()). */
6547 (*current_sched_info->init_ready_list) ();
6548
4dd9ac6c
MK
6549 if (sched_pressure)
6550 sched_pressure_start_bb (*target_bb);
7a1aca9c 6551
6f8dd94b
EB
6552 /* The algorithm is O(n^2) in the number of ready insns at any given
6553 time in the worst case. Before reload we are more likely to have
6554 big lists so truncate them to a reasonable size. */
b5b8b0ac
AO
6555 if (!reload_completed
6556 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6f8dd94b 6557 {
696d5fa1
MK
6558 ready_sort_debug (&ready);
6559 ready_sort_real (&ready);
6f8dd94b 6560
b5b8b0ac
AO
6561 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6562 If there are debug insns, we know they're first. */
6563 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6f8dd94b
EB
6564 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6565 break;
6566
6567 if (sched_verbose >= 2)
6568 {
6569 fprintf (sched_dump,
696d5fa1
MK
6570 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6571 debug_ready_list (&ready);
6f8dd94b
EB
6572 fprintf (sched_dump,
6573 ";;\t\t before reload => truncated to %d insns\n", i);
6574 }
6575
b631c5f7
SP
6576 /* Delay all insns past it for 1 cycle. If debug counter is
6577 activated make an exception for the insn right after
9b69cf83 6578 nonscheduled_insns_begin. */
b631c5f7 6579 {
ce1ce33a 6580 rtx_insn *skip_insn;
b631c5f7
SP
6581
6582 if (dbg_cnt (sched_insn) == false)
06bc63d1 6583 skip_insn = first_nonscheduled_insn ();
b631c5f7 6584 else
ce1ce33a 6585 skip_insn = NULL;
b631c5f7
SP
6586
6587 while (i < ready.n_ready)
6588 {
ce1ce33a 6589 rtx_insn *insn;
b631c5f7
SP
6590
6591 insn = ready_remove (&ready, i);
6592
6593 if (insn != skip_insn)
ec4efea9 6594 queue_insn (insn, 1, "list truncated");
b631c5f7 6595 }
9b69cf83
BS
6596 if (skip_insn)
6597 ready_add (&ready, skip_insn, true);
b631c5f7 6598 }
6f8dd94b
EB
6599 }
6600
496d7bb0
MK
6601 /* Now we can restore basic block notes and maintain precise cfg. */
6602 restore_bb_notes (*target_bb);
6603
63f54b1a
MK
6604 last_clock_var = -1;
6605
58fb7809 6606 advance = 0;
197043f5 6607
9771b263 6608 gcc_assert (scheduled_insns.length () == 0);
30028c85 6609 sort_p = TRUE;
26965010 6610 must_backtrack = false;
06d7e8e7
BS
6611 modulo_insns_scheduled = 0;
6612
6613 ls.modulo_epilogue = false;
f50d71ec 6614 ls.first_cycle_insn_p = true;
26965010 6615
63de6c74 6616 /* Loop until all the insns in BB are scheduled. */
1708fd40 6617 while ((*current_sched_info->schedule_more_p) ())
8c660648 6618 {
1a83e602 6619 perform_replacements_new_cycle ();
58fb7809 6620 do
8c660648 6621 {
58fb7809
VM
6622 start_clock_var = clock_var;
6623
6624 clock_var++;
1d088dee 6625
58fb7809 6626 advance_one_cycle ();
1d088dee 6627
58fb7809
VM
6628 /* Add to the ready list all pending insns that can be issued now.
6629 If there are no ready insns, increment clock until one
6630 is ready and add all pending insns at that point to the ready
6631 list. */
6632 queue_to_ready (&ready);
1d088dee 6633
535a42b1 6634 gcc_assert (ready.n_ready);
1d088dee 6635
58fb7809
VM
6636 if (sched_verbose >= 2)
6637 {
d5c67efd 6638 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
58fb7809
VM
6639 debug_ready_list (&ready);
6640 }
6641 advance -= clock_var - start_clock_var;
8c660648 6642 }
58fb7809 6643 while (advance > 0);
8c660648 6644
06d7e8e7
BS
6645 if (ls.modulo_epilogue)
6646 {
6647 int stage = clock_var / modulo_ii;
6648 if (stage > modulo_last_stage * 2 + 2)
6649 {
6650 if (sched_verbose >= 2)
6651 fprintf (sched_dump,
6652 ";;\t\tmodulo scheduled succeeded at II %d\n",
6653 modulo_ii);
6654 success = true;
6655 goto end_schedule;
6656 }
6657 }
6658 else if (modulo_ii > 0)
6659 {
6660 int stage = clock_var / modulo_ii;
6661 if (stage > modulo_max_stages)
6662 {
6663 if (sched_verbose >= 2)
6664 fprintf (sched_dump,
6665 ";;\t\tfailing schedule due to excessive stages\n");
6666 goto end_schedule;
6667 }
6668 if (modulo_n_insns == modulo_insns_scheduled
6669 && stage > modulo_last_stage)
6670 {
6671 if (sched_verbose >= 2)
6672 fprintf (sched_dump,
6673 ";;\t\tfound kernel after %d stages, II %d\n",
6674 stage, modulo_ii);
6675 ls.modulo_epilogue = true;
6676 }
6677 }
6678
6679 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
9d701248 6680 if (ready.n_ready == 0)
7b1ac803 6681 continue;
26965010
BS
6682 if (must_backtrack)
6683 goto do_backtrack;
9d701248 6684
26965010 6685 ls.shadows_only_p = false;
7b1ac803 6686 cycle_issued_insns = 0;
51564684 6687 ls.can_issue_more = issue_rate;
7b1ac803 6688 for (;;)
30028c85 6689 {
ce1ce33a 6690 rtx_insn *insn;
7b1ac803 6691 int cost;
26965010 6692 bool asm_p;
1d088dee 6693
7b1ac803 6694 if (sort_p && ready.n_ready > 0)
30028c85 6695 {
7b1ac803
BS
6696 /* Sort the ready list based on priority. This must be
6697 done every iteration through the loop, as schedule_insn
6698 may have readied additional insns that will not be
6699 sorted correctly. */
6700 ready_sort (&ready);
6701
6702 if (sched_verbose >= 2)
6703 {
d5c67efd
MK
6704 fprintf (sched_dump,
6705 ";;\t\tReady list after ready_sort: ");
7b1ac803
BS
6706 debug_ready_list (&ready);
6707 }
30028c85 6708 }
197043f5 6709
7b1ac803
BS
6710 /* We don't want md sched reorder to even see debug isns, so put
6711 them out right away. */
6712 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6713 && (*current_sched_info->schedule_more_p) ())
b5b8b0ac 6714 {
7b1ac803
BS
6715 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6716 {
ce1ce33a 6717 rtx_insn *insn = ready_remove_first (&ready);
7b1ac803
BS
6718 gcc_assert (DEBUG_INSN_P (insn));
6719 (*current_sched_info->begin_schedule_ready) (insn);
9771b263 6720 scheduled_insns.safe_push (insn);
7b1ac803
BS
6721 last_scheduled_insn = insn;
6722 advance = schedule_insn (insn);
6723 gcc_assert (advance == 0);
6724 if (ready.n_ready > 0)
6725 ready_sort (&ready);
6726 }
b5b8b0ac
AO
6727 }
6728
51564684 6729 if (ls.first_cycle_insn_p && !ready.n_ready)
7b1ac803 6730 break;
e1306f49 6731
26965010 6732 resume_after_backtrack:
7b1ac803
BS
6733 /* Allow the target to reorder the list, typically for
6734 better instruction bundling. */
6735 if (sort_p
6736 && (ready.n_ready == 0
6737 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6738 {
51564684
BS
6739 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6740 ls.can_issue_more
7b1ac803
BS
6741 = targetm.sched.reorder (sched_dump, sched_verbose,
6742 ready_lastpos (&ready),
6743 &ready.n_ready, clock_var);
51564684
BS
6744 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6745 ls.can_issue_more
7b1ac803
BS
6746 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6747 ready.n_ready
6748 ? ready_lastpos (&ready) : NULL,
6749 &ready.n_ready, clock_var);
6750 }
fae15c93 6751
7b1ac803 6752 restart_choose_ready:
6d0de005 6753 if (sched_verbose >= 2)
fae15c93 6754 {
496d7bb0 6755 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
fae15c93
VM
6756 clock_var);
6757 debug_ready_list (&ready);
60867e8c 6758 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
ce18efcb 6759 print_curr_reg_pressure ();
fae15c93
VM
6760 }
6761
b8698a0f 6762 if (ready.n_ready == 0
51564684 6763 && ls.can_issue_more
b8698a0f 6764 && reload_completed)
fae15c93 6765 {
fa0aee89
PB
6766 /* Allow scheduling insns directly from the queue in case
6767 there's nothing better to do (ready list is empty) but
6768 there are still vacant dispatch slots in the current cycle. */
6769 if (sched_verbose >= 6)
62e5bf5d 6770 fprintf (sched_dump,";;\t\tSecond chance\n");
fa0aee89
PB
6771 memcpy (temp_state, curr_state, dfa_state_size);
6772 if (early_queue_to_ready (temp_state, &ready))
6773 ready_sort (&ready);
fae15c93 6774 }
569fa502 6775
b5b8b0ac 6776 if (ready.n_ready == 0
51564684 6777 || !ls.can_issue_more
fa0aee89
PB
6778 || state_dead_lock_p (curr_state)
6779 || !(*current_sched_info->schedule_more_p) ())
6780 break;
1d088dee 6781
fa0aee89
PB
6782 /* Select and remove the insn from the ready list. */
6783 if (sort_p)
496d7bb0 6784 {
b631c5f7
SP
6785 int res;
6786
ce1ce33a 6787 insn = NULL;
51564684 6788 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
b631c5f7
SP
6789
6790 if (res < 0)
6791 /* Finish cycle. */
6792 break;
6793 if (res > 0)
7b1ac803 6794 goto restart_choose_ready;
b631c5f7
SP
6795
6796 gcc_assert (insn != NULL_RTX);
496d7bb0 6797 }
fa0aee89
PB
6798 else
6799 insn = ready_remove_first (&ready);
1d088dee 6800
7a1aca9c 6801 if (sched_pressure != SCHED_PRESSURE_NONE
60867e8c 6802 && INSN_TICK (insn) > clock_var)
ce18efcb
VM
6803 {
6804 ready_add (&ready, insn, true);
6805 advance = 1;
6806 break;
6807 }
6808
fa0aee89
PB
6809 if (targetm.sched.dfa_new_cycle
6810 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6811 insn, last_clock_var,
6812 clock_var, &sort_p))
63f54b1a
MK
6813 /* SORT_P is used by the target to override sorting
6814 of the ready list. This is needed when the target
6815 has modified its internal structures expecting that
6816 the insn will be issued next. As we need the insn
6817 to have the highest priority (so it will be returned by
6818 the ready_remove_first call above), we invoke
6819 ready_add (&ready, insn, true).
b8698a0f
L
6820 But, still, there is one issue: INSN can be later
6821 discarded by scheduler's front end through
63f54b1a 6822 current_sched_info->can_schedule_ready_p, hence, won't
b8698a0f 6823 be issued next. */
fa0aee89 6824 {
63f54b1a
MK
6825 ready_add (&ready, insn, true);
6826 break;
fa0aee89 6827 }
1d088dee 6828
fa0aee89 6829 sort_p = TRUE;
e1306f49 6830
496d7bb0
MK
6831 if (current_sched_info->can_schedule_ready_p
6832 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6833 /* We normally get here only if we don't want to move
6834 insn from the split block. */
6835 {
1a83e602 6836 TODO_SPEC (insn) = DEP_POSTPONED;
7b1ac803 6837 goto restart_choose_ready;
496d7bb0
MK
6838 }
6839
c203e8a7 6840 if (delay_htab)
26965010
BS
6841 {
6842 /* If this insn is the first part of a delay-slot pair, record a
6843 backtrack point. */
6844 struct delay_pair *delay_entry;
6845 delay_entry
c203e8a7 6846 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
26965010
BS
6847 if (delay_entry)
6848 {
6849 save_backtrack_point (delay_entry, ls);
6850 if (sched_verbose >= 2)
6851 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6852 }
6853 }
6854
b8698a0f
L
6855 /* DECISION is made. */
6856
06d7e8e7
BS
6857 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6858 {
6859 modulo_insns_scheduled++;
6860 modulo_last_stage = clock_var / modulo_ii;
6861 }
496d7bb0
MK
6862 if (TODO_SPEC (insn) & SPECULATIVE)
6863 generate_recovery_code (insn);
6864
ac44248e 6865 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7942e47e
RY
6866 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6867
86014d07
BS
6868 /* Update counters, etc in the scheduler's front end. */
6869 (*current_sched_info->begin_schedule_ready) (insn);
9771b263 6870 scheduled_insns.safe_push (insn);
5c24671b
AO
6871 gcc_assert (NONDEBUG_INSN_P (insn));
6872 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
b8698a0f 6873
9d701248
BS
6874 if (recog_memoized (insn) >= 0)
6875 {
fca96842 6876 memcpy (temp_state, curr_state, dfa_state_size);
9d701248 6877 cost = state_transition (curr_state, insn);
b16abbcb 6878 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
9d701248 6879 gcc_assert (cost < 0);
fca96842
BS
6880 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6881 cycle_issued_insns++;
9d701248
BS
6882 asm_p = false;
6883 }
6884 else
6885 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6886 || asm_noperands (PATTERN (insn)) >= 0);
1d088dee 6887
c237e94a 6888 if (targetm.sched.variable_issue)
51564684 6889 ls.can_issue_more =
5fd9b178 6890 targetm.sched.variable_issue (sched_dump, sched_verbose,
51564684 6891 insn, ls.can_issue_more);
85d69216
JL
6892 /* A naked CLOBBER or USE generates no instruction, so do
6893 not count them against the issue rate. */
6894 else if (GET_CODE (PATTERN (insn)) != USE
6895 && GET_CODE (PATTERN (insn)) != CLOBBER)
51564684 6896 ls.can_issue_more--;
63f54b1a 6897 advance = schedule_insn (insn);
d57f1617 6898
26965010
BS
6899 if (SHADOW_P (insn))
6900 ls.shadows_only_p = true;
6901
d57f1617
VM
6902 /* After issuing an asm insn we should start a new cycle. */
6903 if (advance == 0 && asm_p)
6904 advance = 1;
26965010
BS
6905
6906 if (must_backtrack)
6907 break;
6908
58fb7809
VM
6909 if (advance != 0)
6910 break;
8c660648 6911
51564684 6912 ls.first_cycle_insn_p = false;
30028c85 6913 if (ready.n_ready > 0)
06d7e8e7
BS
6914 prune_ready_list (temp_state, false, ls.shadows_only_p,
6915 ls.modulo_epilogue);
b4ead7d4 6916 }
8c660648 6917
26965010
BS
6918 do_backtrack:
6919 if (!must_backtrack)
6920 for (i = 0; i < ready.n_ready; i++)
6921 {
f57aa6b0 6922 rtx_insn *insn = ready_element (&ready, i);
26965010
BS
6923 if (INSN_EXACT_TICK (insn) == clock_var)
6924 {
6925 must_backtrack = true;
6926 clock_var++;
6927 break;
6928 }
6929 }
06d7e8e7
BS
6930 if (must_backtrack && modulo_ii > 0)
6931 {
6932 if (modulo_backtracks_left == 0)
6933 goto end_schedule;
6934 modulo_backtracks_left--;
6935 }
26965010
BS
6936 while (must_backtrack)
6937 {
6938 struct haifa_saved_data *failed;
ce1ce33a 6939 rtx_insn *failed_insn;
26965010
BS
6940
6941 must_backtrack = false;
6942 failed = verify_shadows ();
6943 gcc_assert (failed);
6944
6945 failed_insn = failed->delay_pair->i1;
1a83e602
BS
6946 /* Clear these queues. */
6947 perform_replacements_new_cycle ();
e2724e63 6948 toggle_cancelled_flags (false);
26965010
BS
6949 unschedule_insns_until (failed_insn);
6950 while (failed != backtrack_queue)
6951 free_topmost_backtrack_point (true);
6952 restore_last_backtrack_point (&ls);
6953 if (sched_verbose >= 2)
6954 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6955 /* Delay by at least a cycle. This could cause additional
6956 backtracking. */
6957 queue_insn (failed_insn, 1, "backtracked");
6958 advance = 0;
6959 if (must_backtrack)
6960 continue;
6961 if (ready.n_ready > 0)
6962 goto resume_after_backtrack;
6963 else
6964 {
6965 if (clock_var == 0 && ls.first_cycle_insn_p)
6966 goto end_schedule;
6967 advance = 1;
6968 break;
6969 }
6970 }
f50d71ec 6971 ls.first_cycle_insn_p = true;
26965010 6972 }
06d7e8e7
BS
6973 if (ls.modulo_epilogue)
6974 success = true;
26965010 6975 end_schedule:
2fb5f0da 6976 if (!ls.first_cycle_insn_p || advance)
f50d71ec 6977 advance_one_cycle ();
1a83e602 6978 perform_replacements_new_cycle ();
06d7e8e7
BS
6979 if (modulo_ii > 0)
6980 {
6981 /* Once again, debug insn suckiness: they can be on the ready list
6982 even if they have unresolved dependencies. To make our view
6983 of the world consistent, remove such "ready" insns. */
6984 restart_debug_insn_loop:
6985 for (i = ready.n_ready - 1; i >= 0; i--)
6986 {
f57aa6b0 6987 rtx_insn *x;
06d7e8e7
BS
6988
6989 x = ready_element (&ready, i);
6990 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6991 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6992 {
6993 ready_remove (&ready, i);
6994 goto restart_debug_insn_loop;
6995 }
6996 }
6997 for (i = ready.n_ready - 1; i >= 0; i--)
6998 {
ce1ce33a 6999 rtx_insn *x;
06d7e8e7
BS
7000
7001 x = ready_element (&ready, i);
7002 resolve_dependencies (x);
7003 }
7004 for (i = 0; i <= max_insn_queue_index; i++)
7005 {
3dc99c19 7006 rtx_insn_list *link;
06d7e8e7
BS
7007 while ((link = insn_queue[i]) != NULL)
7008 {
3dc99c19
DM
7009 rtx_insn *x = link->insn ();
7010 insn_queue[i] = link->next ();
06d7e8e7
BS
7011 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7012 free_INSN_LIST_node (link);
7013 resolve_dependencies (x);
7014 }
7015 }
7016 }
7017
1a83e602
BS
7018 if (!success)
7019 undo_all_replacements ();
7020
b4ead7d4
BS
7021 /* Debug info. */
7022 if (sched_verbose)
7023 {
7024 fprintf (sched_dump, ";;\tReady list (final): ");
7025 debug_ready_list (&ready);
b4ead7d4 7026 }
8c660648 7027
06d7e8e7 7028 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
63f54b1a
MK
7029 /* Sanity check -- queue must be empty now. Meaningless if region has
7030 multiple bbs. */
b5b8b0ac 7031 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
06d7e8e7 7032 else if (modulo_ii == 0)
30028c85 7033 {
63f54b1a
MK
7034 /* We must maintain QUEUE_INDEX between blocks in region. */
7035 for (i = ready.n_ready - 1; i >= 0; i--)
496d7bb0 7036 {
f57aa6b0 7037 rtx_insn *x;
b8698a0f 7038
496d7bb0
MK
7039 x = ready_element (&ready, i);
7040 QUEUE_INDEX (x) = QUEUE_NOWHERE;
b953c2b8 7041 TODO_SPEC (x) = HARD_DEP;
496d7bb0 7042 }
63f54b1a 7043
b8698a0f 7044 if (q_size)
63f54b1a
MK
7045 for (i = 0; i <= max_insn_queue_index; i++)
7046 {
96b70414
DM
7047 rtx_insn_list *link;
7048 for (link = insn_queue[i]; link; link = link->next ())
496d7bb0 7049 {
f57aa6b0 7050 rtx_insn *x;
496d7bb0 7051
96b70414 7052 x = link->insn ();
496d7bb0 7053 QUEUE_INDEX (x) = QUEUE_NOWHERE;
b953c2b8 7054 TODO_SPEC (x) = HARD_DEP;
496d7bb0 7055 }
63f54b1a
MK
7056 free_INSN_LIST_list (&insn_queue[i]);
7057 }
496d7bb0 7058 }
1d088dee 7059
7a1aca9c
RS
7060 if (sched_pressure == SCHED_PRESSURE_MODEL)
7061 model_end_schedule ();
7062
06d7e8e7
BS
7063 if (success)
7064 {
7065 commit_schedule (prev_head, tail, target_bb);
7066 if (sched_verbose)
7067 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7068 }
7069 else
7070 last_scheduled_insn = tail;
7071
9771b263 7072 scheduled_insns.truncate (0);
e855c69d 7073
496d7bb0 7074 if (!current_sched_info->queue_must_finish_empty
e2f6ff94 7075 || haifa_recovery_bb_recently_added_p)
496d7bb0 7076 {
30028c85
VM
7077 /* INSN_TICK (minimum clock tick at which the insn becomes
7078 ready) may be not correct for the insn in the subsequent
7079 blocks of the region. We should use a correct value of
7080 `clock_var' or modify INSN_TICK. It is better to keep
7081 clock_var value equal to 0 at the start of a basic block.
7082 Therefore we modify INSN_TICK here. */
63f54b1a 7083 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
30028c85
VM
7084 }
7085
38f8b050 7086 if (targetm.sched.finish)
e2f6ff94 7087 {
38f8b050 7088 targetm.sched.finish (sched_dump, sched_verbose);
fa10beec 7089 /* Target might have added some instructions to the scheduled block
e2f6ff94
MK
7090 in its md_finish () hook. These new insns don't have any data
7091 initialized and to identify them we extend h_i_d so that they'll
e855c69d 7092 get zero luids. */
a95b23b4 7093 sched_extend_luids ();
e2f6ff94 7094 }
63f54b1a
MK
7095
7096 /* Update head/tail boundaries. */
7097 head = NEXT_INSN (prev_head);
7098 tail = last_scheduled_insn;
7099
d5c67efd
MK
7100 if (sched_verbose)
7101 {
7102 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7103 INSN_UID (head), INSN_UID (tail));
7104
7105 if (sched_verbose >= 2)
4bd12f3d
MK
7106 {
7107 dump_insn_stream (head, tail);
b75ae7f4
MK
7108 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7109 NULL);
4bd12f3d 7110 }
d5c67efd
MK
7111
7112 fprintf (sched_dump, "\n");
7113 }
7114
e855c69d 7115 head = restore_other_notes (head, NULL);
8c660648 7116
b4ead7d4
BS
7117 current_sched_info->head = head;
7118 current_sched_info->tail = tail;
26965010
BS
7119
7120 free_backtrack_queue ();
06d7e8e7
BS
7121
7122 return success;
8c660648 7123}
b4ead7d4 7124\f
63de6c74 7125/* Set_priorities: compute priority of each insn in the block. */
8c660648 7126
b4ead7d4 7127int
0e0ce50d 7128set_priorities (rtx_insn *head, rtx_insn *tail)
8c660648 7129{
0e0ce50d 7130 rtx_insn *insn;
8c660648 7131 int n_insn;
b8698a0f 7132 int sched_max_insns_priority =
79ae11c4 7133 current_sched_info->sched_max_insns_priority;
ce1ce33a 7134 rtx_insn *prev_head;
8c660648 7135
a59d15cf 7136 if (head == tail && ! INSN_P (head))
b5b8b0ac 7137 gcc_unreachable ();
8c660648
JL
7138
7139 n_insn = 0;
63f54b1a
MK
7140
7141 prev_head = PREV_INSN (head);
8c660648
JL
7142 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7143 {
63f54b1a 7144 if (!INSN_P (insn))
8c660648
JL
7145 continue;
7146
58fb7809 7147 n_insn++;
8c660648 7148 (void) priority (insn);
79ae11c4 7149
916fa4f0
MK
7150 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7151
7152 sched_max_insns_priority = MAX (sched_max_insns_priority,
7153 INSN_PRIORITY (insn));
8c660648 7154 }
63f54b1a
MK
7155
7156 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
8c660648
JL
7157
7158 return n_insn;
7159}
7160
4111f1c9 7161/* Set sched_dump and sched_verbose for the desired debugging output. */
e855c69d
AB
7162void
7163setup_sched_dump (void)
7164{
7165 sched_verbose = sched_verbose_param;
4111f1c9
NB
7166 sched_dump = dump_file;
7167 if (!dump_file)
7168 sched_verbose = 0;
e855c69d 7169}
496d7bb0 7170
c4cd7435
AB
7171/* Allocate data for register pressure sensitive scheduling. */
7172static void
7173alloc_global_sched_pressure_data (void)
7174{
7175 if (sched_pressure != SCHED_PRESSURE_NONE)
7176 {
7177 int i, max_regno = max_reg_num ();
7178
7179 if (sched_dump != NULL)
7180 /* We need info about pseudos for rtl dumps about pseudo
7181 classes and costs. */
7182 regstat_init_n_sets_and_refs ();
7183 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7184 sched_regno_pressure_class
7185 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7186 for (i = 0; i < max_regno; i++)
7187 sched_regno_pressure_class[i]
7188 = (i < FIRST_PSEUDO_REGISTER
7189 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7190 : ira_pressure_class_translate[reg_allocno_class (i)]);
7191 curr_reg_live = BITMAP_ALLOC (NULL);
7192 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7193 {
7194 saved_reg_live = BITMAP_ALLOC (NULL);
7195 region_ref_regs = BITMAP_ALLOC (NULL);
7196 }
f380f608
RS
7197 if (sched_pressure == SCHED_PRESSURE_MODEL)
7198 tmp_bitmap = BITMAP_ALLOC (NULL);
4dd9ac6c 7199
6d5c37d0
PH
7200 /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
7201 that we calculate register pressure for. */
4dd9ac6c
MK
7202 for (int c = 0; c < ira_pressure_classes_num; ++c)
7203 {
7204 enum reg_class cl = ira_pressure_classes[c];
7205
6d5c37d0
PH
7206 call_saved_regs_num[cl] = 0;
7207 fixed_regs_num[cl] = 0;
4dd9ac6c
MK
7208
7209 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
6d5c37d0
PH
7210 if (!call_used_regs[ira_class_hard_regs[cl][i]])
7211 ++call_saved_regs_num[cl];
7212 else if (fixed_regs[ira_class_hard_regs[cl][i]])
7213 ++fixed_regs_num[cl];
4dd9ac6c 7214 }
c4cd7435
AB
7215 }
7216}
7217
7218/* Free data for register pressure sensitive scheduling. Also called
7219 from schedule_region when stopping sched-pressure early. */
7220void
7221free_global_sched_pressure_data (void)
7222{
7223 if (sched_pressure != SCHED_PRESSURE_NONE)
7224 {
7225 if (regstat_n_sets_and_refs != NULL)
7226 regstat_free_n_sets_and_refs ();
7227 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7228 {
7229 BITMAP_FREE (region_ref_regs);
7230 BITMAP_FREE (saved_reg_live);
7231 }
f380f608
RS
7232 if (sched_pressure == SCHED_PRESSURE_MODEL)
7233 BITMAP_FREE (tmp_bitmap);
c4cd7435
AB
7234 BITMAP_FREE (curr_reg_live);
7235 free (sched_regno_pressure_class);
7236 }
7237}
7238
b8698a0f 7239/* Initialize some global state for the scheduler. This function works
e855c69d
AB
7240 with the common data shared between all the schedulers. It is called
7241 from the scheduler specific initialization routine. */
8c660648 7242
b4ead7d4 7243void
10d22567 7244sched_init (void)
8c660648 7245{
63de6c74 7246 /* Disable speculative loads in their presence if cc0 defined. */
058eb3b0 7247 if (HAVE_cc0)
8c660648 7248 flag_schedule_speculative_load = 0;
8c660648 7249
ac44248e
DM
7250 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7251 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7942e47e 7252
f20f2613
VM
7253 if (live_range_shrinkage_p)
7254 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7255 else if (flag_sched_pressure
7256 && !reload_completed
7257 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
c881de02
RS
7258 sched_pressure = ((enum sched_pressure_algorithm)
7259 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
60867e8c
RS
7260 else
7261 sched_pressure = SCHED_PRESSURE_NONE;
7942e47e 7262
7a1aca9c 7263 if (sched_pressure != SCHED_PRESSURE_NONE)
8d49e7ef 7264 ira_setup_eliminable_regset ();
ce18efcb 7265
496d7bb0
MK
7266 /* Initialize SPEC_INFO. */
7267 if (targetm.sched.set_sched_flags)
7268 {
7269 spec_info = &spec_info_var;
7270 targetm.sched.set_sched_flags (spec_info);
e855c69d
AB
7271
7272 if (spec_info->mask != 0)
7273 {
7274 spec_info->data_weakness_cutoff =
7275 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7276 spec_info->control_weakness_cutoff =
7277 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7278 * REG_BR_PROB_BASE) / 100;
7279 }
496d7bb0 7280 else
6fc0bb99 7281 /* So we won't read anything accidentally. */
e855c69d
AB
7282 spec_info = NULL;
7283
496d7bb0
MK
7284 }
7285 else
6fc0bb99 7286 /* So we won't read anything accidentally. */
496d7bb0
MK
7287 spec_info = 0;
7288
63de6c74 7289 /* Initialize issue_rate. */
c237e94a 7290 if (targetm.sched.issue_rate)
5fd9b178 7291 issue_rate = targetm.sched.issue_rate ();
c237e94a
ZW
7292 else
7293 issue_rate = 1;
8c660648 7294
d205caad
MK
7295 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7296 /* Don't use max_issue with reg_pressure scheduling. Multipass
7297 scheduling and reg_pressure scheduling undo each other's decisions. */
7298 && sched_pressure == SCHED_PRESSURE_NONE)
e855c69d
AB
7299 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7300 else
7301 dfa_lookahead = 0;
fae15c93 7302
8aec463b
MK
7303 /* Set to "0" so that we recalculate. */
7304 max_lookahead_tries = 0;
7305
fa0aee89
PB
7306 if (targetm.sched.init_dfa_pre_cycle_insn)
7307 targetm.sched.init_dfa_pre_cycle_insn ();
1d088dee 7308
fa0aee89
PB
7309 if (targetm.sched.init_dfa_post_cycle_insn)
7310 targetm.sched.init_dfa_post_cycle_insn ();
1d088dee 7311
fa0aee89
PB
7312 dfa_start ();
7313 dfa_state_size = state_size ();
fae15c93 7314
e855c69d 7315 init_alias_analysis ();
f77e39fc 7316
26965010
BS
7317 if (!sched_no_dce)
7318 df_set_flags (DF_LR_RUN_DCE);
e855c69d 7319 df_note_add_problem ();
f77e39fc 7320
e855c69d
AB
7321 /* More problems needed for interloop dep calculation in SMS. */
7322 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7323 {
7324 df_rd_add_problem ();
7325 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7326 }
7a403706 7327
e855c69d 7328 df_analyze ();
b8698a0f
L
7329
7330 /* Do not run DCE after reload, as this can kill nops inserted
e855c69d
AB
7331 by bundling. */
7332 if (reload_completed)
7333 df_clear_flags (DF_LR_RUN_DCE);
a88f02e7 7334
e855c69d 7335 regstat_compute_calls_crossed ();
a88f02e7 7336
38f8b050
JR
7337 if (targetm.sched.init_global)
7338 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
a88f02e7 7339
c4cd7435 7340 alloc_global_sched_pressure_data ();
b8698a0f 7341
e855c69d
AB
7342 curr_state = xmalloc (dfa_state_size);
7343}
58565a33 7344
e855c69d 7345static void haifa_init_only_bb (basic_block, basic_block);
496d7bb0 7346
e855c69d
AB
7347/* Initialize data structures specific to the Haifa scheduler. */
7348void
7349haifa_sched_init (void)
7350{
7351 setup_sched_dump ();
7352 sched_init ();
7353
9771b263 7354 scheduled_insns.create (0);
9b69cf83 7355
e855c69d
AB
7356 if (spec_info != NULL)
7357 {
7358 sched_deps_info->use_deps_list = 1;
7359 sched_deps_info->generate_spec_deps = 1;
7360 }
7361
7362 /* Initialize luids, dependency caches, target and h_i_d for the
7363 whole function. */
7364 {
e855c69d
AB
7365 sched_init_bbs ();
7366
8c681247
TS
7367 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7368 basic_block bb;
11cd3bed 7369 FOR_EACH_BB_FN (bb, cfun)
9771b263 7370 bbs.quick_push (bb);
a95b23b4 7371 sched_init_luids (bbs);
e855c69d
AB
7372 sched_deps_init (true);
7373 sched_extend_target ();
a95b23b4 7374 haifa_init_h_i_d (bbs);
e855c69d
AB
7375 }
7376
7377 sched_init_only_bb = haifa_init_only_bb;
7378 sched_split_block = sched_split_block_1;
7379 sched_create_empty_bb = sched_create_empty_bb_1;
e2f6ff94
MK
7380 haifa_recovery_bb_ever_added_p = false;
7381
e855c69d
AB
7382 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7383 before_recovery = 0;
7384 after_recovery = 0;
06d7e8e7
BS
7385
7386 modulo_ii = 0;
e855c69d 7387}
8c660648 7388
e855c69d 7389/* Finish work with the data specific to the Haifa scheduler. */
a88f02e7 7390void
e855c69d 7391haifa_sched_finish (void)
a88f02e7 7392{
e855c69d
AB
7393 sched_create_empty_bb = NULL;
7394 sched_split_block = NULL;
7395 sched_init_only_bb = NULL;
58565a33 7396
496d7bb0
MK
7397 if (spec_info && spec_info->dump)
7398 {
7399 char c = reload_completed ? 'a' : 'b';
7400
7401 fprintf (spec_info->dump,
7402 ";; %s:\n", current_function_name ());
7403
7404 fprintf (spec_info->dump,
7405 ";; Procedure %cr-begin-data-spec motions == %d\n",
7406 c, nr_begin_data);
7407 fprintf (spec_info->dump,
7408 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7409 c, nr_be_in_data);
7410 fprintf (spec_info->dump,
7411 ";; Procedure %cr-begin-control-spec motions == %d\n",
7412 c, nr_begin_control);
7413 fprintf (spec_info->dump,
7414 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7415 c, nr_be_in_control);
7416 }
7417
9771b263 7418 scheduled_insns.release ();
9b69cf83 7419
e855c69d
AB
7420 /* Finalize h_i_d, dependency caches, and luids for the whole
7421 function. Target will be finalized in md_global_finish (). */
7422 sched_deps_finish ();
7423 sched_finish_luids ();
7424 current_sched_info = NULL;
df554b0e 7425 insn_queue = NULL;
e855c69d
AB
7426 sched_finish ();
7427}
7428
b8698a0f 7429/* Free global data used during insn scheduling. This function works with
e855c69d
AB
7430 the common data shared between the schedulers. */
7431
7432void
7433sched_finish (void)
7434{
7435 haifa_finish_h_i_d ();
c4cd7435 7436 free_global_sched_pressure_data ();
e855c69d
AB
7437 free (curr_state);
7438
38f8b050
JR
7439 if (targetm.sched.finish_global)
7440 targetm.sched.finish_global (sched_dump, sched_verbose);
e855c69d
AB
7441
7442 end_alias_analysis ();
7443
7444 regstat_free_calls_crossed ();
7445
7446 dfa_finish ();
8c660648 7447}
63f54b1a 7448
26965010
BS
7449/* Free all delay_pair structures that were recorded. */
7450void
7451free_delay_pairs (void)
7452{
c203e8a7 7453 if (delay_htab)
26965010 7454 {
c203e8a7
TS
7455 delay_htab->empty ();
7456 delay_htab_i2->empty ();
26965010
BS
7457 }
7458}
7459
63f54b1a 7460/* Fix INSN_TICKs of the instructions in the current block as well as
917f1b7e 7461 INSN_TICKs of their dependents.
63f54b1a
MK
7462 HEAD and TAIL are the begin and the end of the current scheduled block. */
7463static void
f57aa6b0 7464fix_inter_tick (rtx_insn *head, rtx_insn *tail)
63f54b1a
MK
7465{
7466 /* Set of instructions with corrected INSN_TICK. */
8f9b31f7 7467 auto_bitmap processed;
e2f6ff94
MK
7468 /* ??? It is doubtful if we should assume that cycle advance happens on
7469 basic block boundaries. Basically insns that are unconditionally ready
7470 on the start of the block are more preferable then those which have
7471 a one cycle dependency over insn from the previous block. */
63f54b1a
MK
7472 int next_clock = clock_var + 1;
7473
63f54b1a
MK
7474 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7475 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7476 across different blocks. */
7477 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7478 {
7479 if (INSN_P (head))
7480 {
7481 int tick;
e2f6ff94
MK
7482 sd_iterator_def sd_it;
7483 dep_t dep;
b8698a0f 7484
63f54b1a
MK
7485 tick = INSN_TICK (head);
7486 gcc_assert (tick >= MIN_TICK);
b8698a0f 7487
63f54b1a 7488 /* Fix INSN_TICK of instruction from just scheduled block. */
8f9b31f7 7489 if (bitmap_set_bit (processed, INSN_LUID (head)))
63f54b1a 7490 {
63f54b1a 7491 tick -= next_clock;
b8698a0f 7492
63f54b1a
MK
7493 if (tick < MIN_TICK)
7494 tick = MIN_TICK;
b8698a0f
L
7495
7496 INSN_TICK (head) = tick;
63f54b1a 7497 }
b8698a0f 7498
35d59da7
UB
7499 if (DEBUG_INSN_P (head))
7500 continue;
7501
e2f6ff94 7502 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
63f54b1a 7503 {
9b517712 7504 rtx_insn *next;
b8698a0f 7505
e2f6ff94 7506 next = DEP_CON (dep);
63f54b1a
MK
7507 tick = INSN_TICK (next);
7508
7509 if (tick != INVALID_TICK
7510 /* If NEXT has its INSN_TICK calculated, fix it.
7511 If not - it will be properly calculated from
7512 scratch later in fix_tick_ready. */
8f9b31f7 7513 && bitmap_set_bit (processed, INSN_LUID (next)))
63f54b1a 7514 {
63f54b1a 7515 tick -= next_clock;
b8698a0f 7516
63f54b1a
MK
7517 if (tick < MIN_TICK)
7518 tick = MIN_TICK;
b8698a0f 7519
63f54b1a
MK
7520 if (tick > INTER_TICK (next))
7521 INTER_TICK (next) = tick;
7522 else
7523 tick = INTER_TICK (next);
e2f6ff94 7524
63f54b1a
MK
7525 INSN_TICK (next) = tick;
7526 }
7527 }
7528 }
7529 }
63f54b1a 7530}
e855c69d 7531
63f54b1a
MK
7532/* Check if NEXT is ready to be added to the ready or queue list.
7533 If "yes", add it to the proper list.
7534 Returns:
7535 -1 - is not ready yet,
7536 0 - added to the ready list,
7537 0 < N - queued for N cycles. */
7538int
ce1ce33a 7539try_ready (rtx_insn *next)
b8698a0f 7540{
b953c2b8 7541 ds_t old_ts, new_ts;
63f54b1a 7542
b953c2b8 7543 old_ts = TODO_SPEC (next);
63f54b1a 7544
1a83e602
BS
7545 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7546 && (old_ts == HARD_DEP
7547 || old_ts == DEP_POSTPONED
e2724e63 7548 || (old_ts & SPECULATIVE)
1a83e602 7549 || old_ts == DEP_CONTROL));
e2f6ff94 7550
1a83e602 7551 new_ts = recompute_todo_spec (next, false);
b198261f 7552
1a83e602 7553 if (new_ts & (HARD_DEP | DEP_POSTPONED))
e2724e63 7554 gcc_assert (new_ts == old_ts
496d7bb0
MK
7555 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7556 else if (current_sched_info->new_ready)
b953c2b8 7557 new_ts = current_sched_info->new_ready (next, new_ts);
496d7bb0 7558
b198261f 7559 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
496d7bb0
MK
7560 have its original pattern or changed (speculative) one. This is due
7561 to changing ebb in region scheduling.
7562 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7563 has speculative pattern.
b198261f 7564
b953c2b8 7565 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
496d7bb0
MK
7566 control-speculative NEXT could have been discarded by sched-rgn.c
7567 (the same case as when discarded by can_schedule_ready_p ()). */
b198261f 7568
b953c2b8
BS
7569 if ((new_ts & SPECULATIVE)
7570 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
496d7bb0 7571 need to change anything. */
b953c2b8 7572 && new_ts != old_ts)
496d7bb0
MK
7573 {
7574 int res;
7575 rtx new_pat;
b8698a0f 7576
e2724e63 7577 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
b8698a0f 7578
b953c2b8 7579 res = haifa_speculate_insn (next, new_ts, &new_pat);
b8698a0f 7580
496d7bb0
MK
7581 switch (res)
7582 {
7583 case -1:
7584 /* It would be nice to change DEP_STATUS of all dependences,
b953c2b8 7585 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
496d7bb0 7586 so we won't reanalyze anything. */
b953c2b8 7587 new_ts = HARD_DEP;
496d7bb0 7588 break;
b8698a0f 7589
496d7bb0
MK
7590 case 0:
7591 /* We follow the rule, that every speculative insn
7592 has non-null ORIG_PAT. */
7593 if (!ORIG_PAT (next))
7594 ORIG_PAT (next) = PATTERN (next);
7595 break;
b8698a0f
L
7596
7597 case 1:
496d7bb0
MK
7598 if (!ORIG_PAT (next))
7599 /* If we gonna to overwrite the original pattern of insn,
7600 save it. */
7601 ORIG_PAT (next) = PATTERN (next);
b8698a0f 7602
e2724e63
BS
7603 res = haifa_change_pattern (next, new_pat);
7604 gcc_assert (res);
496d7bb0 7605 break;
b8698a0f 7606
496d7bb0
MK
7607 default:
7608 gcc_unreachable ();
7609 }
7610 }
b8698a0f 7611
b953c2b8
BS
7612 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7613 either correct (new_ts & SPECULATIVE),
7614 or we simply don't care (new_ts & HARD_DEP). */
b8698a0f 7615
496d7bb0 7616 gcc_assert (!ORIG_PAT (next)
d7bfd907 7617 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
b8698a0f 7618
b953c2b8
BS
7619 TODO_SPEC (next) = new_ts;
7620
1a83e602 7621 if (new_ts & (HARD_DEP | DEP_POSTPONED))
496d7bb0
MK
7622 {
7623 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7624 control-speculative NEXT could have been discarded by sched-rgn.c
7625 (the same case as when discarded by can_schedule_ready_p ()). */
7626 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
b8698a0f 7627
496d7bb0 7628 change_queue_index (next, QUEUE_NOWHERE);
e2724e63 7629
496d7bb0
MK
7630 return -1;
7631 }
b953c2b8 7632 else if (!(new_ts & BEGIN_SPEC)
e2724e63
BS
7633 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7634 && !IS_SPECULATION_CHECK_P (next))
b8698a0f 7635 /* We should change pattern of every previously speculative
682b6a9e 7636 instruction - and we determine if NEXT was speculative by using
d7bfd907
MK
7637 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7638 pat too, so skip them. */
682b6a9e 7639 {
e2724e63
BS
7640 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7641 gcc_assert (success);
682b6a9e
MK
7642 ORIG_PAT (next) = 0;
7643 }
496d7bb0
MK
7644
7645 if (sched_verbose >= 2)
b8698a0f 7646 {
496d7bb0
MK
7647 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7648 (*current_sched_info->print_insn) (next, 0));
b8698a0f 7649
496d7bb0
MK
7650 if (spec_info && spec_info->dump)
7651 {
b953c2b8 7652 if (new_ts & BEGIN_DATA)
496d7bb0 7653 fprintf (spec_info->dump, "; data-spec;");
b953c2b8 7654 if (new_ts & BEGIN_CONTROL)
496d7bb0 7655 fprintf (spec_info->dump, "; control-spec;");
b953c2b8 7656 if (new_ts & BE_IN_CONTROL)
496d7bb0
MK
7657 fprintf (spec_info->dump, "; in-control-spec;");
7658 }
e2724e63
BS
7659 if (TODO_SPEC (next) & DEP_CONTROL)
7660 fprintf (sched_dump, " predicated");
496d7bb0 7661 fprintf (sched_dump, "\n");
b8698a0f
L
7662 }
7663
496d7bb0 7664 adjust_priority (next);
b8698a0f 7665
496d7bb0
MK
7666 return fix_tick_ready (next);
7667}
7668
7669/* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7670static int
ce1ce33a 7671fix_tick_ready (rtx_insn *next)
63f54b1a 7672{
63f54b1a
MK
7673 int tick, delay;
7674
b2cddfc8 7675 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
63f54b1a
MK
7676 {
7677 int full_p;
e2f6ff94
MK
7678 sd_iterator_def sd_it;
7679 dep_t dep;
63f54b1a
MK
7680
7681 tick = INSN_TICK (next);
496d7bb0 7682 /* if tick is not equal to INVALID_TICK, then update
63f54b1a 7683 INSN_TICK of NEXT with the most recent resolved dependence
917f1b7e 7684 cost. Otherwise, recalculate from scratch. */
b198261f
MK
7685 full_p = (tick == INVALID_TICK);
7686
e2f6ff94 7687 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
b8698a0f 7688 {
9b517712 7689 rtx_insn *pro = DEP_PRO (dep);
63f54b1a 7690 int tick1;
b8698a0f 7691
63f54b1a 7692 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
496d7bb0 7693
b198261f 7694 tick1 = INSN_TICK (pro) + dep_cost (dep);
63f54b1a
MK
7695 if (tick1 > tick)
7696 tick = tick1;
b198261f
MK
7697
7698 if (!full_p)
7699 break;
63f54b1a 7700 }
63f54b1a
MK
7701 }
7702 else
7703 tick = -1;
7704
7705 INSN_TICK (next) = tick;
7706
7707 delay = tick - clock_var;
b16abbcb 7708 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
63f54b1a
MK
7709 delay = QUEUE_READY;
7710
7711 change_queue_index (next, delay);
496d7bb0 7712
63f54b1a
MK
7713 return delay;
7714}
7715
7716/* Move NEXT to the proper queue list with (DELAY >= 1),
7717 or add it to the ready list (DELAY == QUEUE_READY),
7718 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7719static void
ce1ce33a 7720change_queue_index (rtx_insn *next, int delay)
63f54b1a
MK
7721{
7722 int i = QUEUE_INDEX (next);
7723
b8698a0f 7724 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
63f54b1a
MK
7725 && delay != 0);
7726 gcc_assert (i != QUEUE_SCHEDULED);
b8698a0f 7727
63f54b1a
MK
7728 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7729 || (delay < 0 && delay == i))
7730 /* We have nothing to do. */
7731 return;
7732
917f1b7e 7733 /* Remove NEXT from wherever it is now. */
63f54b1a
MK
7734 if (i == QUEUE_READY)
7735 ready_remove_insn (next);
7736 else if (i >= 0)
7737 queue_remove (next);
b8698a0f 7738
63f54b1a
MK
7739 /* Add it to the proper place. */
7740 if (delay == QUEUE_READY)
7741 ready_add (readyp, next, false);
7742 else if (delay >= 1)
ec4efea9 7743 queue_insn (next, delay, "change queue index");
b8698a0f 7744
63f54b1a 7745 if (sched_verbose >= 2)
b8698a0f 7746 {
63f54b1a
MK
7747 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7748 (*current_sched_info->print_insn) (next, 0));
b8698a0f 7749
63f54b1a
MK
7750 if (delay == QUEUE_READY)
7751 fprintf (sched_dump, " into ready\n");
7752 else if (delay >= 1)
7753 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7754 else
7755 fprintf (sched_dump, " removed from ready or queue lists\n");
7756 }
7757}
7758
e855c69d 7759static int sched_ready_n_insns = -1;
496d7bb0 7760
e855c69d
AB
7761/* Initialize per region data structures. */
7762void
7763sched_extend_ready_list (int new_sched_ready_n_insns)
496d7bb0
MK
7764{
7765 int i;
7766
e855c69d
AB
7767 if (sched_ready_n_insns == -1)
7768 /* At the first call we need to initialize one more choice_stack
7769 entry. */
7770 {
7771 i = 0;
7772 sched_ready_n_insns = 0;
9771b263 7773 scheduled_insns.reserve (new_sched_ready_n_insns);
e855c69d
AB
7774 }
7775 else
7776 i = sched_ready_n_insns + 1;
496d7bb0 7777
e855c69d 7778 ready.veclen = new_sched_ready_n_insns + issue_rate;
ce1ce33a 7779 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
496d7bb0 7780
e855c69d 7781 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
496d7bb0 7782
4960a0cb
MK
7783 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7784 sched_ready_n_insns,
7785 sizeof (*ready_try));
496d7bb0 7786
e855c69d
AB
7787 /* We allocate +1 element to save initial state in the choice_stack[0]
7788 entry. */
7789 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7790 new_sched_ready_n_insns + 1);
e2f6ff94 7791
e855c69d 7792 for (; i <= new_sched_ready_n_insns; i++)
894fd6f2
MK
7793 {
7794 choice_stack[i].state = xmalloc (dfa_state_size);
7795
7796 if (targetm.sched.first_cycle_multipass_init)
7797 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7798 .target_data));
7799 }
496d7bb0 7800
e855c69d 7801 sched_ready_n_insns = new_sched_ready_n_insns;
496d7bb0
MK
7802}
7803
e855c69d
AB
7804/* Free per region data structures. */
7805void
7806sched_finish_ready_list (void)
a0d33ff8 7807{
e855c69d 7808 int i;
a0d33ff8 7809
e855c69d
AB
7810 free (ready.vec);
7811 ready.vec = NULL;
7812 ready.veclen = 0;
a0d33ff8 7813
e855c69d
AB
7814 free (ready_try);
7815 ready_try = NULL;
496d7bb0 7816
e855c69d 7817 for (i = 0; i <= sched_ready_n_insns; i++)
894fd6f2
MK
7818 {
7819 if (targetm.sched.first_cycle_multipass_fini)
7820 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7821 .target_data));
7822
7823 free (choice_stack [i].state);
7824 }
e855c69d
AB
7825 free (choice_stack);
7826 choice_stack = NULL;
a0d33ff8 7827
e855c69d 7828 sched_ready_n_insns = -1;
496d7bb0
MK
7829}
7830
e855c69d
AB
7831static int
7832haifa_luid_for_non_insn (rtx x)
496d7bb0 7833{
e855c69d
AB
7834 gcc_assert (NOTE_P (x) || LABEL_P (x));
7835
7836 return 0;
496d7bb0
MK
7837}
7838
7839/* Generates recovery code for INSN. */
7840static void
ce1ce33a 7841generate_recovery_code (rtx_insn *insn)
496d7bb0
MK
7842{
7843 if (TODO_SPEC (insn) & BEGIN_SPEC)
7844 begin_speculative_block (insn);
b8698a0f 7845
496d7bb0
MK
7846 /* Here we have insn with no dependencies to
7847 instructions other then CHECK_SPEC ones. */
b8698a0f 7848
496d7bb0
MK
7849 if (TODO_SPEC (insn) & BE_IN_SPEC)
7850 add_to_speculative_block (insn);
7851}
7852
7853/* Helper function.
7854 Tries to add speculative dependencies of type FS between instructions
b198261f 7855 in deps_list L and TWIN. */
496d7bb0 7856static void
90831096 7857process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
496d7bb0 7858{
e2f6ff94
MK
7859 sd_iterator_def sd_it;
7860 dep_t dep;
b198261f 7861
e2f6ff94 7862 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
496d7bb0
MK
7863 {
7864 ds_t ds;
0e0ce50d 7865 rtx_insn *consumer;
496d7bb0 7866
e2f6ff94 7867 consumer = DEP_CON (dep);
496d7bb0 7868
e2f6ff94 7869 ds = DEP_STATUS (dep);
496d7bb0 7870
682b6a9e
MK
7871 if (/* If we want to create speculative dep. */
7872 fs
7873 /* And we can do that because this is a true dep. */
7874 && (ds & DEP_TYPES) == DEP_TRUE)
7875 {
7876 gcc_assert (!(ds & BE_IN_SPEC));
7877
917f1b7e 7878 if (/* If this dep can be overcome with 'begin speculation'. */
682b6a9e
MK
7879 ds & BEGIN_SPEC)
7880 /* Then we have a choice: keep the dep 'begin speculative'
7881 or transform it into 'be in speculative'. */
7882 {
7883 if (/* In try_ready we assert that if insn once became ready
7884 it can be removed from the ready (or queue) list only
7885 due to backend decision. Hence we can't let the
7886 probability of the speculative dep to decrease. */
e855c69d 7887 ds_weak (ds) <= ds_weak (fs))
93b4b4cc
MK
7888 {
7889 ds_t new_ds;
7890
7891 new_ds = (ds & ~BEGIN_SPEC) | fs;
b8698a0f 7892
93b4b4cc
MK
7893 if (/* consumer can 'be in speculative'. */
7894 sched_insn_is_legitimate_for_speculation_p (consumer,
7895 new_ds))
7896 /* Transform it to be in speculative. */
7897 ds = new_ds;
7898 }
682b6a9e
MK
7899 }
7900 else
7901 /* Mark the dep as 'be in speculative'. */
7902 ds |= fs;
7903 }
496d7bb0 7904
e2f6ff94
MK
7905 {
7906 dep_def _new_dep, *new_dep = &_new_dep;
7907
7908 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7909 sd_add_dep (new_dep, false);
7910 }
496d7bb0
MK
7911 }
7912}
7913
7914/* Generates recovery code for BEGIN speculative INSN. */
7915static void
ce1ce33a 7916begin_speculative_block (rtx_insn *insn)
496d7bb0
MK
7917{
7918 if (TODO_SPEC (insn) & BEGIN_DATA)
b8698a0f 7919 nr_begin_data++;
496d7bb0
MK
7920 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7921 nr_begin_control++;
7922
7923 create_check_block_twin (insn, false);
7924
7925 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7926}
7927
f57aa6b0 7928static void haifa_init_insn (rtx_insn *);
e855c69d 7929
496d7bb0
MK
7930/* Generates recovery code for BE_IN speculative INSN. */
7931static void
6144a836 7932add_to_speculative_block (rtx_insn *insn)
496d7bb0
MK
7933{
7934 ds_t ts;
e2f6ff94
MK
7935 sd_iterator_def sd_it;
7936 dep_t dep;
30a7199a 7937 auto_vec<rtx_insn *, 10> twins;
496d7bb0
MK
7938
7939 ts = TODO_SPEC (insn);
7940 gcc_assert (!(ts & ~BE_IN_SPEC));
7941
7942 if (ts & BE_IN_DATA)
7943 nr_be_in_data++;
7944 if (ts & BE_IN_CONTROL)
7945 nr_be_in_control++;
7946
7947 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7948 gcc_assert (!TODO_SPEC (insn));
b8698a0f 7949
496d7bb0
MK
7950 DONE_SPEC (insn) |= ts;
7951
7952 /* First we convert all simple checks to branchy. */
e2f6ff94
MK
7953 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7954 sd_iterator_cond (&sd_it, &dep);)
496d7bb0 7955 {
9b517712 7956 rtx_insn *check = DEP_PRO (dep);
496d7bb0 7957
d7bfd907 7958 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
496d7bb0
MK
7959 {
7960 create_check_block_twin (check, true);
b198261f
MK
7961
7962 /* Restart search. */
e2f6ff94 7963 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
496d7bb0
MK
7964 }
7965 else
b198261f 7966 /* Continue search. */
e2f6ff94 7967 sd_iterator_next (&sd_it);
496d7bb0
MK
7968 }
7969
8c681247 7970 auto_vec<rtx_insn *> priorities_roots;
916fa4f0 7971 clear_priorities (insn, &priorities_roots);
e2f6ff94
MK
7972
7973 while (1)
496d7bb0 7974 {
9b517712 7975 rtx_insn *check, *twin;
496d7bb0
MK
7976 basic_block rec;
7977
e2f6ff94
MK
7978 /* Get the first backward dependency of INSN. */
7979 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7980 if (!sd_iterator_cond (&sd_it, &dep))
7981 /* INSN has no backward dependencies left. */
7982 break;
496d7bb0 7983
e2f6ff94
MK
7984 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7985 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7986 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
b198261f 7987
e2f6ff94 7988 check = DEP_PRO (dep);
d7bfd907
MK
7989
7990 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
496d7bb0 7991 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
e2f6ff94 7992
496d7bb0 7993 rec = BLOCK_FOR_INSN (check);
e2f6ff94 7994
05742530 7995 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
e855c69d 7996 haifa_init_insn (twin);
496d7bb0 7997
e2f6ff94 7998 sd_copy_back_deps (twin, insn, true);
496d7bb0
MK
7999
8000 if (sched_verbose && spec_info->dump)
8001 /* INSN_BB (insn) isn't determined for twin insns yet.
8002 So we can't use current_sched_info->print_insn. */
8003 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8004 INSN_UID (twin), rec->index);
8005
30a7199a 8006 twins.safe_push (twin);
496d7bb0 8007
917f1b7e 8008 /* Add dependences between TWIN and all appropriate
496d7bb0 8009 instructions from REC. */
e2f6ff94
MK
8010 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
8011 {
9b517712 8012 rtx_insn *pro = DEP_PRO (dep);
b198261f 8013
e2f6ff94
MK
8014 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
8015
8016 /* INSN might have dependencies from the instructions from
8017 several recovery blocks. At this iteration we process those
8018 producers that reside in REC. */
8019 if (BLOCK_FOR_INSN (pro) == rec)
8020 {
8021 dep_def _new_dep, *new_dep = &_new_dep;
8022
8023 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
8024 sd_add_dep (new_dep, false);
496d7bb0 8025 }
496d7bb0 8026 }
496d7bb0 8027
e2f6ff94 8028 process_insn_forw_deps_be_in_spec (insn, twin, ts);
496d7bb0 8029
b198261f 8030 /* Remove all dependencies between INSN and insns in REC. */
e2f6ff94
MK
8031 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8032 sd_iterator_cond (&sd_it, &dep);)
496d7bb0 8033 {
9b517712 8034 rtx_insn *pro = DEP_PRO (dep);
b198261f 8035
e2f6ff94
MK
8036 if (BLOCK_FOR_INSN (pro) == rec)
8037 sd_delete_dep (sd_it);
496d7bb0 8038 else
e2f6ff94 8039 sd_iterator_next (&sd_it);
496d7bb0
MK
8040 }
8041 }
496d7bb0 8042
b198261f
MK
8043 /* We couldn't have added the dependencies between INSN and TWINS earlier
8044 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
30a7199a
TS
8045 unsigned int i;
8046 rtx_insn *twin;
8047 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
496d7bb0 8048 {
30a7199a 8049 dep_def _new_dep, *new_dep = &_new_dep;
496d7bb0 8050
30a7199a
TS
8051 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8052 sd_add_dep (new_dep, false);
496d7bb0 8053 }
916fa4f0
MK
8054
8055 calc_priorities (priorities_roots);
496d7bb0
MK
8056}
8057
8058/* Extends and fills with zeros (only the new part) array pointed to by P. */
8059void *
8060xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8061{
8062 gcc_assert (new_nmemb >= old_nmemb);
8063 p = XRESIZEVAR (void, p, new_nmemb * size);
8064 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8065 return p;
8066}
8067
496d7bb0
MK
8068/* Helper function.
8069 Find fallthru edge from PRED. */
e855c69d 8070edge
0fd4b31d 8071find_fallthru_edge_from (basic_block pred)
496d7bb0
MK
8072{
8073 edge e;
496d7bb0
MK
8074 basic_block succ;
8075
8076 succ = pred->next_bb;
8077 gcc_assert (succ->prev_bb == pred);
8078
8079 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8080 {
0fd4b31d
NF
8081 e = find_fallthru_edge (pred->succs);
8082
8083 if (e)
8084 {
50550600 8085 gcc_assert (e->dest == succ || e->dest->index == EXIT_BLOCK);
0fd4b31d
NF
8086 return e;
8087 }
496d7bb0
MK
8088 }
8089 else
8090 {
0fd4b31d
NF
8091 e = find_fallthru_edge (succ->preds);
8092
8093 if (e)
8094 {
8095 gcc_assert (e->src == pred);
8096 return e;
8097 }
496d7bb0
MK
8098 }
8099
8100 return NULL;
8101}
8102
e855c69d
AB
8103/* Extend per basic block data structures. */
8104static void
8105sched_extend_bb (void)
8106{
e855c69d 8107 /* The following is done to keep current_sched_info->next_tail non null. */
9b517712
DM
8108 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8109 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
cb5cb194 8110 if (NEXT_INSN (end) == 0
e855c69d
AB
8111 || (!NOTE_P (insn)
8112 && !LABEL_P (insn)
8113 /* Don't emit a NOTE if it would end up before a BARRIER. */
65f4b875 8114 && !BARRIER_P (next_nondebug_insn (end))))
e855c69d 8115 {
66e8df53 8116 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
cb5cb194 8117 /* Make note appear outside BB. */
e855c69d 8118 set_block_for_insn (note, NULL);
1130d5e3 8119 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
e855c69d
AB
8120 }
8121}
8122
8123/* Init per basic block data structures. */
8124void
8125sched_init_bbs (void)
8126{
8127 sched_extend_bb ();
8128}
8129
496d7bb0
MK
8130/* Initialize BEFORE_RECOVERY variable. */
8131static void
e855c69d 8132init_before_recovery (basic_block *before_recovery_ptr)
496d7bb0
MK
8133{
8134 basic_block last;
8135 edge e;
8136
fefa31b5 8137 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
0fd4b31d 8138 e = find_fallthru_edge_from (last);
496d7bb0
MK
8139
8140 if (e)
8141 {
b8698a0f 8142 /* We create two basic blocks:
496d7bb0 8143 1. Single instruction block is inserted right after E->SRC
b8698a0f 8144 and has jump to
496d7bb0
MK
8145 2. Empty block right before EXIT_BLOCK.
8146 Between these two blocks recovery blocks will be emitted. */
8147
8148 basic_block single, empty;
496d7bb0 8149
b8698a0f 8150 /* If the fallthrough edge to exit we've found is from the block we've
e855c69d
AB
8151 created before, don't do anything more. */
8152 if (last == after_recovery)
8153 return;
496d7bb0 8154
e855c69d
AB
8155 adding_bb_to_current_region_p = false;
8156
8157 single = sched_create_empty_bb (last);
8158 empty = sched_create_empty_bb (single);
8159
8160 /* Add new blocks to the root loop. */
8161 if (current_loops != NULL)
8162 {
9771b263
DN
8163 add_bb_to_loop (single, (*current_loops->larray)[0]);
8164 add_bb_to_loop (empty, (*current_loops->larray)[0]);
e855c69d
AB
8165 }
8166
8167 single->count = last->count;
496d7bb0 8168 empty->count = last->count;
496d7bb0
MK
8169 BB_COPY_PARTITION (single, last);
8170 BB_COPY_PARTITION (empty, last);
8171
8172 redirect_edge_succ (e, single);
8173 make_single_succ_edge (single, empty, 0);
fefa31b5
DM
8174 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8175 EDGE_FALLTHRU);
496d7bb0 8176
e67d1102 8177 rtx_code_label *label = block_label (empty);
ec4a505f 8178 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
e67d1102 8179 BB_END (single));
496d7bb0
MK
8180 JUMP_LABEL (x) = label;
8181 LABEL_NUSES (label)++;
e855c69d 8182 haifa_init_insn (x);
b8698a0f 8183
496d7bb0
MK
8184 emit_barrier_after (x);
8185
e855c69d
AB
8186 sched_init_only_bb (empty, NULL);
8187 sched_init_only_bb (single, NULL);
8188 sched_extend_bb ();
496d7bb0 8189
e855c69d 8190 adding_bb_to_current_region_p = true;
496d7bb0 8191 before_recovery = single;
e855c69d
AB
8192 after_recovery = empty;
8193
8194 if (before_recovery_ptr)
8195 *before_recovery_ptr = before_recovery;
496d7bb0
MK
8196
8197 if (sched_verbose >= 2 && spec_info->dump)
8198 fprintf (spec_info->dump,
b8698a0f
L
8199 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8200 last->index, single->index, empty->index);
496d7bb0
MK
8201 }
8202 else
8203 before_recovery = last;
8204}
8205
8206/* Returns new recovery block. */
e855c69d
AB
8207basic_block
8208sched_create_recovery_block (basic_block *before_recovery_ptr)
496d7bb0 8209{
9b517712 8210 rtx_insn *barrier;
496d7bb0 8211 basic_block rec;
b8698a0f 8212
e2f6ff94
MK
8213 haifa_recovery_bb_recently_added_p = true;
8214 haifa_recovery_bb_ever_added_p = true;
496d7bb0 8215
e855c69d 8216 init_before_recovery (before_recovery_ptr);
496d7bb0 8217
96370780
MK
8218 barrier = get_last_bb_insn (before_recovery);
8219 gcc_assert (BARRIER_P (barrier));
8220
e67d1102 8221 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
96370780
MK
8222
8223 rec = create_basic_block (label, label, before_recovery);
8224
e855c69d 8225 /* A recovery block always ends with an unconditional jump. */
496d7bb0
MK
8226 emit_barrier_after (BB_END (rec));
8227
8228 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8229 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
b8698a0f
L
8230
8231 if (sched_verbose && spec_info->dump)
496d7bb0
MK
8232 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8233 rec->index);
8234
496d7bb0
MK
8235 return rec;
8236}
8237
e855c69d
AB
8238/* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8239 and emit necessary jumps. */
8240void
8241sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8242 basic_block second_bb)
8243{
e855c69d
AB
8244 int edge_flags;
8245
8246 /* This is fixing of incoming edge. */
b8698a0f 8247 /* ??? Which other flags should be specified? */
e855c69d
AB
8248 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8249 /* Partition type is the same, if it is "unpartitioned". */
8250 edge_flags = EDGE_CROSSING;
8251 else
8252 edge_flags = 0;
b8698a0f 8253
cea768b0
JH
8254 edge e2 = single_succ_edge (first_bb);
8255 edge e = make_edge (first_bb, rec, edge_flags);
8256
8257 /* TODO: The actual probability can be determined and is computed as
8258 'todo_spec' variable in create_check_block_twin and
8259 in sel-sched.c `check_ds' in create_speculation_check. */
8260 e->probability = profile_probability::very_unlikely ();
ef30ab83 8261 rec->count = e->count ();
cea768b0 8262 e2->probability = e->probability.invert ();
cea768b0 8263
e67d1102 8264 rtx_code_label *label = block_label (second_bb);
ec4a505f
RS
8265 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8266 BB_END (rec));
e855c69d
AB
8267 JUMP_LABEL (jump) = label;
8268 LABEL_NUSES (label)++;
8269
8270 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8271 /* Partition type is the same, if it is "unpartitioned". */
8272 {
8273 /* Rewritten from cfgrtl.c. */
0b6bc904 8274 if (crtl->has_bb_partition && targetm_common.have_named_sections)
e855c69d 8275 {
efc0b2bd
ILT
8276 /* We don't need the same note for the check because
8277 any_condjump_p (check) == true. */
339ba33b 8278 CROSSING_JUMP_P (jump) = 1;
e855c69d
AB
8279 }
8280 edge_flags = EDGE_CROSSING;
8281 }
8282 else
b8698a0f 8283 edge_flags = 0;
e855c69d 8284
b8698a0f 8285 make_single_succ_edge (rec, second_bb, edge_flags);
00c4e97c
AB
8286 if (dom_info_available_p (CDI_DOMINATORS))
8287 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
e855c69d
AB
8288}
8289
496d7bb0
MK
8290/* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8291 INSN is a simple check, that should be converted to branchy one. */
8292static void
ce1ce33a 8293create_check_block_twin (rtx_insn *insn, bool mutate_p)
496d7bb0
MK
8294{
8295 basic_block rec;
ce1ce33a
DM
8296 rtx_insn *label, *check, *twin;
8297 rtx check_pat;
496d7bb0 8298 ds_t fs;
e2f6ff94
MK
8299 sd_iterator_def sd_it;
8300 dep_t dep;
8301 dep_def _new_dep, *new_dep = &_new_dep;
e855c69d 8302 ds_t todo_spec;
496d7bb0 8303
e855c69d
AB
8304 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8305
8306 if (!mutate_p)
8307 todo_spec = TODO_SPEC (insn);
8308 else
8309 {
8310 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8311 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8312
8313 todo_spec = CHECK_SPEC (insn);
8314 }
8315
8316 todo_spec &= SPECULATIVE;
496d7bb0
MK
8317
8318 /* Create recovery block. */
388092d5 8319 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
496d7bb0 8320 {
e855c69d 8321 rec = sched_create_recovery_block (NULL);
496d7bb0
MK
8322 label = BB_HEAD (rec);
8323 }
8324 else
8325 {
fefa31b5 8326 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
ce1ce33a 8327 label = NULL;
496d7bb0
MK
8328 }
8329
8330 /* Emit CHECK. */
ce1ce33a 8331 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
496d7bb0 8332
fefa31b5 8333 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0
MK
8334 {
8335 /* To have mem_reg alive at the beginning of second_bb,
b8698a0f 8336 we emit check BEFORE insn, so insn after splitting
496d7bb0
MK
8337 insn will be at the beginning of second_bb, which will
8338 provide us with the correct life information. */
ce1ce33a 8339 check = emit_jump_insn_before (check_pat, insn);
496d7bb0
MK
8340 JUMP_LABEL (check) = label;
8341 LABEL_NUSES (label)++;
8342 }
8343 else
ce1ce33a 8344 check = emit_insn_before (check_pat, insn);
496d7bb0
MK
8345
8346 /* Extend data structures. */
e855c69d
AB
8347 haifa_init_insn (check);
8348
8349 /* CHECK is being added to current region. Extend ready list. */
8350 gcc_assert (sched_ready_n_insns != -1);
8351 sched_extend_ready_list (sched_ready_n_insns + 1);
8352
8353 if (current_sched_info->add_remove_insn)
8354 current_sched_info->add_remove_insn (insn, 0);
8355
496d7bb0
MK
8356 RECOVERY_BLOCK (check) = rec;
8357
8358 if (sched_verbose && spec_info->dump)
8359 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8360 (*current_sched_info->print_insn) (check, 0));
8361
8362 gcc_assert (ORIG_PAT (insn));
8363
917f1b7e 8364 /* Initialize TWIN (twin is a duplicate of original instruction
496d7bb0 8365 in the recovery block). */
fefa31b5 8366 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0 8367 {
e2f6ff94
MK
8368 sd_iterator_def sd_it;
8369 dep_t dep;
8370
8371 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8372 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
496d7bb0 8373 {
e2f6ff94 8374 struct _dep _dep2, *dep2 = &_dep2;
b198261f 8375
e2f6ff94 8376 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
b198261f 8377
e2f6ff94 8378 sd_add_dep (dep2, true);
496d7bb0
MK
8379 }
8380
8381 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
e855c69d 8382 haifa_init_insn (twin);
496d7bb0
MK
8383
8384 if (sched_verbose && spec_info->dump)
8385 /* INSN_BB (insn) isn't determined for twin insns yet.
8386 So we can't use current_sched_info->print_insn. */
8387 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8388 INSN_UID (twin), rec->index);
8389 }
8390 else
8391 {
8392 ORIG_PAT (check) = ORIG_PAT (insn);
8393 HAS_INTERNAL_DEP (check) = 1;
8394 twin = check;
8395 /* ??? We probably should change all OUTPUT dependencies to
8396 (TRUE | OUTPUT). */
8397 }
8398
e2f6ff94
MK
8399 /* Copy all resolved back dependencies of INSN to TWIN. This will
8400 provide correct value for INSN_TICK (TWIN). */
8401 sd_copy_back_deps (twin, insn, true);
496d7bb0 8402
fefa31b5 8403 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0
MK
8404 /* In case of branchy check, fix CFG. */
8405 {
8406 basic_block first_bb, second_bb;
f57aa6b0 8407 rtx_insn *jump;
496d7bb0
MK
8408
8409 first_bb = BLOCK_FOR_INSN (check);
e855c69d 8410 second_bb = sched_split_block (first_bb, check);
496d7bb0 8411
e855c69d 8412 sched_create_recovery_edges (first_bb, rec, second_bb);
496d7bb0 8413
b8698a0f 8414 sched_init_only_bb (second_bb, first_bb);
fefa31b5 8415 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
8416
8417 jump = BB_END (rec);
8418 haifa_init_insn (jump);
496d7bb0
MK
8419 }
8420
b8698a0f 8421 /* Move backward dependences from INSN to CHECK and
496d7bb0 8422 move forward dependences from INSN to TWIN. */
e2f6ff94
MK
8423
8424 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8425 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
496d7bb0 8426 {
9b517712 8427 rtx_insn *pro = DEP_PRO (dep);
496d7bb0
MK
8428 ds_t ds;
8429
8430 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8431 check --TRUE--> producer ??? or ANTI ???
8432 twin --TRUE--> producer
8433 twin --ANTI--> check
b8698a0f 8434
496d7bb0
MK
8435 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8436 check --ANTI--> producer
8437 twin --ANTI--> producer
8438 twin --ANTI--> check
8439
8440 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8441 check ~~TRUE~~> producer
8442 twin ~~TRUE~~> producer
b8698a0f 8443 twin --ANTI--> check */
496d7bb0 8444
e2f6ff94 8445 ds = DEP_STATUS (dep);
496d7bb0
MK
8446
8447 if (ds & BEGIN_SPEC)
8448 {
8449 gcc_assert (!mutate_p);
8450 ds &= ~BEGIN_SPEC;
8451 }
8452
e2f6ff94
MK
8453 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8454 sd_add_dep (new_dep, false);
8455
fefa31b5 8456 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0 8457 {
0e0ce50d 8458 DEP_CON (new_dep) = twin;
e2f6ff94 8459 sd_add_dep (new_dep, false);
b8698a0f 8460 }
496d7bb0
MK
8461 }
8462
e2f6ff94
MK
8463 /* Second, remove backward dependencies of INSN. */
8464 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8465 sd_iterator_cond (&sd_it, &dep);)
8466 {
8467 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8468 || mutate_p)
8469 /* We can delete this dep because we overcome it with
8470 BEGIN_SPECULATION. */
8471 sd_delete_dep (sd_it);
8472 else
8473 sd_iterator_next (&sd_it);
8474 }
496d7bb0 8475
e2f6ff94 8476 /* Future Speculations. Determine what BE_IN speculations will be like. */
496d7bb0
MK
8477 fs = 0;
8478
8479 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8480 here. */
b8698a0f 8481
496d7bb0 8482 gcc_assert (!DONE_SPEC (insn));
b8698a0f 8483
496d7bb0 8484 if (!mutate_p)
b8698a0f 8485 {
496d7bb0
MK
8486 ds_t ts = TODO_SPEC (insn);
8487
8488 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8489 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8490
15dc95cb 8491 /* Luckiness of future speculations solely depends upon initial
e2f6ff94 8492 BEGIN speculation. */
496d7bb0
MK
8493 if (ts & BEGIN_DATA)
8494 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8495 if (ts & BEGIN_CONTROL)
e2f6ff94
MK
8496 fs = set_dep_weak (fs, BE_IN_CONTROL,
8497 get_dep_weak (ts, BEGIN_CONTROL));
496d7bb0
MK
8498 }
8499 else
8500 CHECK_SPEC (check) = CHECK_SPEC (insn);
8501
8502 /* Future speculations: call the helper. */
e2f6ff94 8503 process_insn_forw_deps_be_in_spec (insn, twin, fs);
496d7bb0 8504
fefa31b5 8505 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0
MK
8506 {
8507 /* Which types of dependencies should we use here is,
8508 generally, machine-dependent question... But, for now,
8509 it is not. */
8510
8511 if (!mutate_p)
8512 {
e2f6ff94
MK
8513 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8514 sd_add_dep (new_dep, false);
8515
8516 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8517 sd_add_dep (new_dep, false);
496d7bb0
MK
8518 }
8519 else
8520 {
b8698a0f 8521 if (spec_info->dump)
496d7bb0
MK
8522 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8523 (*current_sched_info->print_insn) (insn, 0));
8524
e2f6ff94
MK
8525 /* Remove all dependencies of the INSN. */
8526 {
8527 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8528 | SD_LIST_BACK
8529 | SD_LIST_RES_BACK));
8530 while (sd_iterator_cond (&sd_it, &dep))
8531 sd_delete_dep (sd_it);
8532 }
496d7bb0 8533
e2f6ff94
MK
8534 /* If former check (INSN) already was moved to the ready (or queue)
8535 list, add new check (CHECK) there too. */
496d7bb0
MK
8536 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8537 try_ready (check);
8538
e2f6ff94
MK
8539 /* Remove old check from instruction stream and free its
8540 data. */
496d7bb0
MK
8541 sched_remove_insn (insn);
8542 }
8543
e2f6ff94
MK
8544 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8545 sd_add_dep (new_dep, false);
496d7bb0
MK
8546 }
8547 else
e2f6ff94
MK
8548 {
8549 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8550 sd_add_dep (new_dep, false);
8551 }
496d7bb0
MK
8552
8553 if (!mutate_p)
917f1b7e 8554 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
496d7bb0
MK
8555 because it'll be done later in add_to_speculative_block. */
8556 {
8c681247 8557 auto_vec<rtx_insn *> priorities_roots;
916fa4f0
MK
8558
8559 clear_priorities (twin, &priorities_roots);
8560 calc_priorities (priorities_roots);
496d7bb0
MK
8561 }
8562}
8563
8564/* Removes dependency between instructions in the recovery block REC
8565 and usual region instructions. It keeps inner dependences so it
917f1b7e 8566 won't be necessary to recompute them. */
496d7bb0
MK
8567static void
8568fix_recovery_deps (basic_block rec)
8569{
9b517712 8570 rtx_insn *note, *insn, *jump;
9cad8a67 8571 auto_vec<rtx_insn *, 10> ready_list;
8f9b31f7 8572 auto_bitmap in_ready;
b8698a0f 8573
496d7bb0
MK
8574 /* NOTE - a basic block note. */
8575 note = NEXT_INSN (BB_HEAD (rec));
8576 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8577 insn = BB_END (rec);
8578 gcc_assert (JUMP_P (insn));
8579 insn = PREV_INSN (insn);
8580
8581 do
e2f6ff94
MK
8582 {
8583 sd_iterator_def sd_it;
8584 dep_t dep;
496d7bb0 8585
e2f6ff94
MK
8586 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8587 sd_iterator_cond (&sd_it, &dep);)
8588 {
9b517712 8589 rtx_insn *consumer = DEP_CON (dep);
496d7bb0
MK
8590
8591 if (BLOCK_FOR_INSN (consumer) != rec)
8592 {
e2f6ff94 8593 sd_delete_dep (sd_it);
496d7bb0 8594
8f9b31f7 8595 if (bitmap_set_bit (in_ready, INSN_LUID (consumer)))
9cad8a67 8596 ready_list.safe_push (consumer);
496d7bb0
MK
8597 }
8598 else
8599 {
e2f6ff94 8600 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
496d7bb0 8601
e2f6ff94 8602 sd_iterator_next (&sd_it);
496d7bb0
MK
8603 }
8604 }
b8698a0f 8605
496d7bb0
MK
8606 insn = PREV_INSN (insn);
8607 }
8608 while (insn != note);
8609
496d7bb0 8610 /* Try to add instructions to the ready or queue list. */
9cad8a67
TS
8611 unsigned int i;
8612 rtx_insn *temp;
8613 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8614 try_ready (temp);
496d7bb0
MK
8615
8616 /* Fixing jump's dependences. */
8617 insn = BB_HEAD (rec);
8618 jump = BB_END (rec);
b8698a0f 8619
496d7bb0
MK
8620 gcc_assert (LABEL_P (insn));
8621 insn = NEXT_INSN (insn);
b8698a0f 8622
496d7bb0
MK
8623 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8624 add_jump_dependencies (insn, jump);
8625}
8626
e2724e63
BS
8627/* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8628 instruction data. */
8629static bool
f57aa6b0 8630haifa_change_pattern (rtx_insn *insn, rtx new_pat)
496d7bb0
MK
8631{
8632 int t;
8633
8634 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
e2724e63
BS
8635 if (!t)
8636 return false;
e855c69d 8637
1a83e602 8638 update_insn_after_change (insn);
e2724e63 8639 return true;
496d7bb0
MK
8640}
8641
496d7bb0
MK
8642/* -1 - can't speculate,
8643 0 - for speculation with REQUEST mode it is OK to use
8644 current instruction pattern,
8645 1 - need to change pattern for *NEW_PAT to be speculative. */
e855c69d 8646int
ac44248e 8647sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
496d7bb0
MK
8648{
8649 gcc_assert (current_sched_info->flags & DO_SPECULATION
e2f6ff94
MK
8650 && (request & SPECULATIVE)
8651 && sched_insn_is_legitimate_for_speculation_p (insn, request));
496d7bb0 8652
e2f6ff94 8653 if ((request & spec_info->mask) != request)
496d7bb0 8654 return -1;
496d7bb0 8655
e2f6ff94
MK
8656 if (request & BE_IN_SPEC
8657 && !(request & BEGIN_SPEC))
8658 return 0;
496d7bb0 8659
e855c69d
AB
8660 return targetm.sched.speculate_insn (insn, request, new_pat);
8661}
8662
8663static int
f57aa6b0 8664haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
e855c69d
AB
8665{
8666 gcc_assert (sched_deps_info->generate_spec_deps
8667 && !IS_SPECULATION_CHECK_P (insn));
8668
8669 if (HAS_INTERNAL_DEP (insn)
8670 || SCHED_GROUP_P (insn))
8671 return -1;
8672
8673 return sched_speculate_insn (insn, request, new_pat);
496d7bb0
MK
8674}
8675
8676/* Print some information about block BB, which starts with HEAD and
8677 ends with TAIL, before scheduling it.
8678 I is zero, if scheduler is about to start with the fresh ebb. */
8679static void
f57aa6b0 8680dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
496d7bb0
MK
8681{
8682 if (!i)
8683 fprintf (sched_dump,
8684 ";; ======================================================\n");
8685 else
8686 fprintf (sched_dump,
8687 ";; =====================ADVANCING TO=====================\n");
8688 fprintf (sched_dump,
8689 ";; -- basic block %d from %d to %d -- %s reload\n",
8690 bb->index, INSN_UID (head), INSN_UID (tail),
8691 (reload_completed ? "after" : "before"));
8692 fprintf (sched_dump,
8693 ";; ======================================================\n");
8694 fprintf (sched_dump, "\n");
8695}
8696
8697/* Unlink basic block notes and labels and saves them, so they
8698 can be easily restored. We unlink basic block notes in EBB to
917f1b7e 8699 provide back-compatibility with the previous code, as target backends
496d7bb0
MK
8700 assume, that there'll be only instructions between
8701 current_sched_info->{head and tail}. We restore these notes as soon
8702 as we can.
8703 FIRST (LAST) is the first (last) basic block in the ebb.
8704 NB: In usual case (FIRST == LAST) nothing is really done. */
8705void
8706unlink_bb_notes (basic_block first, basic_block last)
8707{
8708 /* We DON'T unlink basic block notes of the first block in the ebb. */
8709 if (first == last)
8710 return;
8711
9b517712 8712 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
496d7bb0
MK
8713
8714 /* Make a sentinel. */
fefa31b5 8715 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0
MK
8716 bb_header[last->next_bb->index] = 0;
8717
8718 first = first->next_bb;
8719 do
8720 {
9b517712 8721 rtx_insn *prev, *label, *note, *next;
496d7bb0
MK
8722
8723 label = BB_HEAD (last);
8724 if (LABEL_P (label))
8725 note = NEXT_INSN (label);
8726 else
b8698a0f 8727 note = label;
496d7bb0
MK
8728 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8729
8730 prev = PREV_INSN (label);
8731 next = NEXT_INSN (note);
8732 gcc_assert (prev && next);
8733
0f82e5c9
DM
8734 SET_NEXT_INSN (prev) = next;
8735 SET_PREV_INSN (next) = prev;
496d7bb0
MK
8736
8737 bb_header[last->index] = label;
8738
8739 if (last == first)
8740 break;
b8698a0f 8741
496d7bb0
MK
8742 last = last->prev_bb;
8743 }
8744 while (1);
8745}
8746
8747/* Restore basic block notes.
8748 FIRST is the first basic block in the ebb. */
8749static void
8750restore_bb_notes (basic_block first)
8751{
8752 if (!bb_header)
8753 return;
8754
8755 /* We DON'T unlink basic block notes of the first block in the ebb. */
b8698a0f 8756 first = first->next_bb;
496d7bb0
MK
8757 /* Remember: FIRST is actually a second basic block in the ebb. */
8758
fefa31b5 8759 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
496d7bb0
MK
8760 && bb_header[first->index])
8761 {
9b517712 8762 rtx_insn *prev, *label, *note, *next;
b8698a0f 8763
496d7bb0
MK
8764 label = bb_header[first->index];
8765 prev = PREV_INSN (label);
8766 next = NEXT_INSN (prev);
8767
8768 if (LABEL_P (label))
8769 note = NEXT_INSN (label);
8770 else
b8698a0f 8771 note = label;
496d7bb0
MK
8772 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8773
8774 bb_header[first->index] = 0;
8775
0f82e5c9
DM
8776 SET_NEXT_INSN (prev) = label;
8777 SET_NEXT_INSN (note) = next;
8778 SET_PREV_INSN (next) = note;
b8698a0f 8779
496d7bb0
MK
8780 first = first->next_bb;
8781 }
8782
8783 free (bb_header);
8784 bb_header = 0;
8785}
8786
496d7bb0
MK
8787/* Helper function.
8788 Fix CFG after both in- and inter-block movement of
8789 control_flow_insn_p JUMP. */
8790static void
f57aa6b0 8791fix_jump_move (rtx_insn *jump)
496d7bb0
MK
8792{
8793 basic_block bb, jump_bb, jump_bb_next;
8794
8795 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8796 jump_bb = BLOCK_FOR_INSN (jump);
8797 jump_bb_next = jump_bb->next_bb;
8798
e855c69d 8799 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
d7bfd907 8800 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
b8698a0f 8801
496d7bb0
MK
8802 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8803 /* if jump_bb_next is not empty. */
1130d5e3 8804 BB_END (jump_bb) = BB_END (jump_bb_next);
496d7bb0
MK
8805
8806 if (BB_END (bb) != PREV_INSN (jump))
8807 /* Then there are instruction after jump that should be placed
8808 to jump_bb_next. */
1130d5e3 8809 BB_END (jump_bb_next) = BB_END (bb);
496d7bb0
MK
8810 else
8811 /* Otherwise jump_bb_next is empty. */
1130d5e3 8812 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
496d7bb0
MK
8813
8814 /* To make assertion in move_insn happy. */
1130d5e3 8815 BB_END (bb) = PREV_INSN (jump);
496d7bb0
MK
8816
8817 update_bb_for_insn (jump_bb_next);
8818}
8819
8820/* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8821static void
f57aa6b0 8822move_block_after_check (rtx_insn *jump)
496d7bb0
MK
8823{
8824 basic_block bb, jump_bb, jump_bb_next;
9771b263 8825 vec<edge, va_gc> *t;
496d7bb0
MK
8826
8827 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8828 jump_bb = BLOCK_FOR_INSN (jump);
8829 jump_bb_next = jump_bb->next_bb;
b8698a0f 8830
496d7bb0 8831 update_bb_for_insn (jump_bb);
b8698a0f 8832
d7bfd907
MK
8833 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8834 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
496d7bb0
MK
8835
8836 unlink_block (jump_bb_next);
8837 link_block (jump_bb_next, bb);
8838
8839 t = bb->succs;
8840 bb->succs = 0;
8841 move_succs (&(jump_bb->succs), bb);
8842 move_succs (&(jump_bb_next->succs), jump_bb);
8843 move_succs (&t, jump_bb_next);
6fb5fa3c
DB
8844
8845 df_mark_solutions_dirty ();
b8698a0f 8846
e855c69d
AB
8847 common_sched_info->fix_recovery_cfg
8848 (bb->index, jump_bb->index, jump_bb_next->index);
496d7bb0
MK
8849}
8850
8851/* Helper function for move_block_after_check.
8852 This functions attaches edge vector pointed to by SUCCSP to
8853 block TO. */
8854static void
9771b263 8855move_succs (vec<edge, va_gc> **succsp, basic_block to)
496d7bb0
MK
8856{
8857 edge e;
8858 edge_iterator ei;
8859
8860 gcc_assert (to->succs == 0);
8861
8862 to->succs = *succsp;
8863
8864 FOR_EACH_EDGE (e, ei, to->succs)
8865 e->src = to;
8866
8867 *succsp = 0;
8868}
8869
496d7bb0
MK
8870/* Remove INSN from the instruction stream.
8871 INSN should have any dependencies. */
8872static void
ce1ce33a 8873sched_remove_insn (rtx_insn *insn)
496d7bb0 8874{
e2f6ff94
MK
8875 sd_finish_insn (insn);
8876
496d7bb0
MK
8877 change_queue_index (insn, QUEUE_NOWHERE);
8878 current_sched_info->add_remove_insn (insn, 1);
1f397f45 8879 delete_insn (insn);
496d7bb0
MK
8880}
8881
916fa4f0
MK
8882/* Clear priorities of all instructions, that are forward dependent on INSN.
8883 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8884 be invoked to initialize all cleared priorities. */
496d7bb0 8885static void
6144a836 8886clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
496d7bb0 8887{
e2f6ff94
MK
8888 sd_iterator_def sd_it;
8889 dep_t dep;
916fa4f0
MK
8890 bool insn_is_root_p = true;
8891
8892 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
496d7bb0 8893
e2f6ff94 8894 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
496d7bb0 8895 {
9b517712 8896 rtx_insn *pro = DEP_PRO (dep);
496d7bb0 8897
916fa4f0
MK
8898 if (INSN_PRIORITY_STATUS (pro) >= 0
8899 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
496d7bb0 8900 {
916fa4f0
MK
8901 /* If DEP doesn't contribute to priority then INSN itself should
8902 be added to priority roots. */
8903 if (contributes_to_priority_p (dep))
8904 insn_is_root_p = false;
8905
8906 INSN_PRIORITY_STATUS (pro) = -1;
8907 clear_priorities (pro, roots_ptr);
496d7bb0
MK
8908 }
8909 }
916fa4f0
MK
8910
8911 if (insn_is_root_p)
9771b263 8912 roots_ptr->safe_push (insn);
496d7bb0
MK
8913}
8914
8915/* Recompute priorities of instructions, whose priorities might have been
916fa4f0
MK
8916 changed. ROOTS is a vector of instructions whose priority computation will
8917 trigger initialization of all cleared priorities. */
496d7bb0 8918static void
916fa4f0 8919calc_priorities (rtx_vec_t roots)
496d7bb0 8920{
916fa4f0 8921 int i;
6144a836 8922 rtx_insn *insn;
496d7bb0 8923
9771b263 8924 FOR_EACH_VEC_ELT (roots, i, insn)
916fa4f0 8925 priority (insn);
496d7bb0
MK
8926}
8927
8928
8929/* Add dependences between JUMP and other instructions in the recovery
8930 block. INSN is the first insn the recovery block. */
8931static void
0e0ce50d 8932add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
496d7bb0
MK
8933{
8934 do
8935 {
8936 insn = NEXT_INSN (insn);
8937 if (insn == jump)
8938 break;
b8698a0f 8939
7a1aca9c 8940 if (dep_list_size (insn, SD_LIST_FORW) == 0)
e2f6ff94
MK
8941 {
8942 dep_def _new_dep, *new_dep = &_new_dep;
8943
8944 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8945 sd_add_dep (new_dep, false);
8946 }
496d7bb0
MK
8947 }
8948 while (1);
b198261f 8949
e2f6ff94 8950 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
496d7bb0
MK
8951}
8952
e855c69d 8953/* Extend data structures for logical insn UID. */
a95b23b4
BS
8954void
8955sched_extend_luids (void)
e855c69d
AB
8956{
8957 int new_luids_max_uid = get_max_uid () + 1;
8958
9771b263 8959 sched_luids.safe_grow_cleared (new_luids_max_uid);
e855c69d
AB
8960}
8961
8962/* Initialize LUID for INSN. */
a95b23b4 8963void
f57aa6b0 8964sched_init_insn_luid (rtx_insn *insn)
e855c69d
AB
8965{
8966 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8967 int luid;
8968
8969 if (i >= 0)
8970 {
8971 luid = sched_max_luid;
8972 sched_max_luid += i;
8973 }
8974 else
8975 luid = -1;
8976
8977 SET_INSN_LUID (insn, luid);
8978}
8979
a95b23b4 8980/* Initialize luids for BBS.
e855c69d
AB
8981 The hook common_sched_info->luid_for_non_insn () is used to determine
8982 if notes, labels, etc. need luids. */
8983void
a95b23b4 8984sched_init_luids (bb_vec_t bbs)
e855c69d 8985{
a95b23b4
BS
8986 int i;
8987 basic_block bb;
8988
8989 sched_extend_luids ();
9771b263 8990 FOR_EACH_VEC_ELT (bbs, i, bb)
e855c69d 8991 {
f57aa6b0 8992 rtx_insn *insn;
e855c69d 8993
a95b23b4
BS
8994 FOR_BB_INSNS (bb, insn)
8995 sched_init_insn_luid (insn);
8996 }
e855c69d
AB
8997}
8998
8999/* Free LUIDs. */
9000void
9001sched_finish_luids (void)
9002{
9771b263 9003 sched_luids.release ();
e855c69d
AB
9004 sched_max_luid = 1;
9005}
9006
9007/* Return logical uid of INSN. Helpful while debugging. */
9008int
f57aa6b0 9009insn_luid (rtx_insn *insn)
e855c69d
AB
9010{
9011 return INSN_LUID (insn);
9012}
9013
9014/* Extend per insn data in the target. */
9015void
9016sched_extend_target (void)
9017{
9018 if (targetm.sched.h_i_d_extended)
9019 targetm.sched.h_i_d_extended ();
9020}
9021
9022/* Extend global scheduler structures (those, that live across calls to
9023 schedule_block) to include information about just emitted INSN. */
9024static void
9025extend_h_i_d (void)
9026{
9771b263 9027 int reserve = (get_max_uid () + 1 - h_i_d.length ());
b8698a0f 9028 if (reserve > 0
9771b263 9029 && ! h_i_d.space (reserve))
e855c69d 9030 {
9771b263 9031 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
e855c69d
AB
9032 sched_extend_target ();
9033 }
9034}
9035
9036/* Initialize h_i_d entry of the INSN with default values.
9037 Values, that are not explicitly initialized here, hold zero. */
9038static void
f57aa6b0 9039init_h_i_d (rtx_insn *insn)
e855c69d
AB
9040{
9041 if (INSN_LUID (insn) > 0)
9042 {
9043 INSN_COST (insn) = -1;
e855c69d
AB
9044 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9045 INSN_TICK (insn) = INVALID_TICK;
26965010 9046 INSN_EXACT_TICK (insn) = INVALID_TICK;
e855c69d
AB
9047 INTER_TICK (insn) = INVALID_TICK;
9048 TODO_SPEC (insn) = HARD_DEP;
340c7904
MK
9049 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9050 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9051 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9052 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
e855c69d
AB
9053 }
9054}
9055
a95b23b4 9056/* Initialize haifa_insn_data for BBS. */
e855c69d 9057void
a95b23b4 9058haifa_init_h_i_d (bb_vec_t bbs)
e855c69d 9059{
a95b23b4
BS
9060 int i;
9061 basic_block bb;
9062
9063 extend_h_i_d ();
9771b263 9064 FOR_EACH_VEC_ELT (bbs, i, bb)
e855c69d 9065 {
f57aa6b0 9066 rtx_insn *insn;
e855c69d 9067
a95b23b4
BS
9068 FOR_BB_INSNS (bb, insn)
9069 init_h_i_d (insn);
9070 }
e855c69d
AB
9071}
9072
9073/* Finalize haifa_insn_data. */
9074void
9075haifa_finish_h_i_d (void)
9076{
ce18efcb
VM
9077 int i;
9078 haifa_insn_data_t data;
36fb33de
ML
9079 reg_use_data *use, *next_use;
9080 reg_set_data *set, *next_set;
ce18efcb 9081
9771b263 9082 FOR_EACH_VEC_ELT (h_i_d, i, data)
ce18efcb 9083 {
7a1aca9c 9084 free (data->max_reg_pressure);
04695783 9085 free (data->reg_pressure);
36fb33de 9086 for (use = data->reg_use_list; use != NULL; use = next_use)
ce18efcb 9087 {
36fb33de 9088 next_use = use->next_insn_use;
ce18efcb
VM
9089 free (use);
9090 }
36fb33de
ML
9091 for (set = data->reg_set_list; set != NULL; set = next_set)
9092 {
9093 next_set = set->next_insn_set;
9094 free (set);
9095 }
9096
ce18efcb 9097 }
9771b263 9098 h_i_d.release ();
e855c69d
AB
9099}
9100
9101/* Init data for the new insn INSN. */
9102static void
f57aa6b0 9103haifa_init_insn (rtx_insn *insn)
e855c69d
AB
9104{
9105 gcc_assert (insn != NULL);
9106
a95b23b4
BS
9107 sched_extend_luids ();
9108 sched_init_insn_luid (insn);
e855c69d
AB
9109 sched_extend_target ();
9110 sched_deps_init (false);
a95b23b4
BS
9111 extend_h_i_d ();
9112 init_h_i_d (insn);
e855c69d
AB
9113
9114 if (adding_bb_to_current_region_p)
9115 {
9116 sd_init_insn (insn);
9117
9118 /* Extend dependency caches by one element. */
9119 extend_dependency_caches (1, false);
9120 }
7a1aca9c 9121 if (sched_pressure != SCHED_PRESSURE_NONE)
19ac7892 9122 init_insn_reg_pressure_info (insn);
e855c69d
AB
9123}
9124
9125/* Init data for the new basic block BB which comes after AFTER. */
9126static void
9127haifa_init_only_bb (basic_block bb, basic_block after)
9128{
9129 gcc_assert (bb != NULL);
9130
9131 sched_init_bbs ();
9132
9133 if (common_sched_info->add_block)
9134 /* This changes only data structures of the front-end. */
9135 common_sched_info->add_block (bb, after);
9136}
9137
9138/* A generic version of sched_split_block (). */
9139basic_block
9140sched_split_block_1 (basic_block first_bb, rtx after)
9141{
9142 edge e;
9143
9144 e = split_block (first_bb, after);
9145 gcc_assert (e->src == first_bb);
9146
b8698a0f 9147 /* sched_split_block emits note if *check == BB_END. Probably it
e855c69d
AB
9148 is better to rip that note off. */
9149
9150 return e->dest;
9151}
9152
9153/* A generic version of sched_create_empty_bb (). */
9154basic_block
9155sched_create_empty_bb_1 (basic_block after)
9156{
9157 return create_empty_bb (after);
9158}
9159
9dcc2e87
TS
9160/* Insert PAT as an INSN into the schedule and update the necessary data
9161 structures to account for it. */
ce1ce33a 9162rtx_insn *
9dcc2e87
TS
9163sched_emit_insn (rtx pat)
9164{
ce1ce33a 9165 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9dcc2e87 9166 haifa_init_insn (insn);
2dfdcb4b
UW
9167
9168 if (current_sched_info->add_remove_insn)
9169 current_sched_info->add_remove_insn (insn, 0);
9170
9171 (*current_sched_info->begin_schedule_ready) (insn);
9771b263 9172 scheduled_insns.safe_push (insn);
2dfdcb4b
UW
9173
9174 last_scheduled_insn = insn;
9dcc2e87
TS
9175 return insn;
9176}
9177
7942e47e
RY
9178/* This function returns a candidate satisfying dispatch constraints from
9179 the ready list. */
9180
ce1ce33a 9181static rtx_insn *
7942e47e
RY
9182ready_remove_first_dispatch (struct ready_list *ready)
9183{
9184 int i;
ce1ce33a 9185 rtx_insn *insn = ready_element (ready, 0);
7942e47e
RY
9186
9187 if (ready->n_ready == 1
7942e47e 9188 || !INSN_P (insn)
d7b6661b 9189 || INSN_CODE (insn) < 0
7942e47e
RY
9190 || !active_insn_p (insn)
9191 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9192 return ready_remove_first (ready);
9193
9194 for (i = 1; i < ready->n_ready; i++)
9195 {
9196 insn = ready_element (ready, i);
9197
d7b6661b
SB
9198 if (!INSN_P (insn)
9199 || INSN_CODE (insn) < 0
7942e47e
RY
9200 || !active_insn_p (insn))
9201 continue;
9202
9203 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9204 {
9205 /* Return ith element of ready. */
9206 insn = ready_remove (ready, i);
9207 return insn;
9208 }
9209 }
9210
ac44248e 9211 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
7942e47e
RY
9212 return ready_remove_first (ready);
9213
9214 for (i = 1; i < ready->n_ready; i++)
9215 {
9216 insn = ready_element (ready, i);
9217
98eaa66f 9218 if (!INSN_P (insn)
d7b6661b 9219 || INSN_CODE (insn) < 0
7942e47e
RY
9220 || !active_insn_p (insn))
9221 continue;
9222
9223 /* Return i-th element of ready. */
9224 if (targetm.sched.dispatch (insn, IS_CMP))
9225 return ready_remove (ready, i);
9226 }
9227
9228 return ready_remove_first (ready);
9229}
9230
9231/* Get number of ready insn in the ready list. */
9232
9233int
9234number_in_ready (void)
9235{
9236 return ready.n_ready;
9237}
9238
9239/* Get number of ready's in the ready list. */
9240
6a263466 9241rtx_insn *
7942e47e
RY
9242get_ready_element (int i)
9243{
9244 return ready_element (&ready, i);
9245}
9246
8c660648 9247#endif /* INSN_SCHEDULING */
This page took 9.241446 seconds and 5 git commands to generate.