]> gcc.gnu.org Git - gcc.git/blame - gcc/haifa-sched.c
Flow fixes for cond_exec on ia64
[gcc.git] / gcc / haifa-sched.c
CommitLineData
8c660648 1/* Instruction scheduling pass.
d050d723
JL
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
8c660648
JL
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
5d14e356
RK
7This file is part of GNU CC.
8
9GNU CC is free software; you can redistribute it and/or modify it
10under the terms of the GNU General Public License as published by the
11Free Software Foundation; either version 2, or (at your option) any
12later version.
13
14GNU CC is distributed in the hope that it will be useful, but WITHOUT
15ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
20along with GNU CC; see the file COPYING. If not, write to the Free
21the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2202111-1307, USA. */
8c660648 23
b4ead7d4
BS
24/* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
8c660648
JL
27
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
36
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
41
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
56
57 Function unit conflicts are resolved during forward list scheduling
58 by tracking the time when each insn is committed to the schedule
59 and from that, the time the function units it uses must be free.
60 As insns on the ready list are considered for scheduling, those
61 that would result in a blockage of the already committed insns are
62 queued until no blockage will result.
63
64 The following list shows the order in which we want to break ties
65 among insns in the ready list:
66
67 1. choose insn with the longest path to end of bb, ties
68 broken by
69 2. choose insn with least contribution to register pressure,
70 ties broken by
71 3. prefer in-block upon interblock motion, ties broken by
72 4. prefer useful upon speculative motion, ties broken by
73 5. choose insn with largest control flow probability, ties
74 broken by
75 6. choose insn with the least dependences upon the previously
76 scheduled insn, or finally
2db45993
JL
77 7 choose the insn which has the most insns dependent on it.
78 8. choose insn with lowest UID.
8c660648
JL
79
80 Memory references complicate matters. Only if we can be certain
81 that memory references are not part of the data dependency graph
82 (via true, anti, or output dependence), can we move operations past
83 memory references. To first approximation, reads can be done
84 independently, while writes introduce dependencies. Better
85 approximations will yield fewer dependencies.
86
87 Before reload, an extended analysis of interblock data dependences
88 is required for interblock scheduling. This is performed in
89 compute_block_backward_dependences ().
90
91 Dependencies set up by memory references are treated in exactly the
92 same way as other dependencies, by using LOG_LINKS backward
93 dependences. LOG_LINKS are translated into INSN_DEPEND forward
94 dependences for the purpose of forward list scheduling.
95
96 Having optimized the critical path, we may have also unduly
97 extended the lifetimes of some registers. If an operation requires
98 that constants be loaded into registers, it is certainly desirable
99 to load those constants as early as necessary, but no earlier.
100 I.e., it will not do to load up a bunch of registers at the
101 beginning of a basic block only to use them at the end, if they
102 could be loaded later, since this may result in excessive register
103 utilization.
104
105 Note that since branches are never in basic blocks, but only end
106 basic blocks, this pass will not move branches. But that is ok,
107 since we can use GNU's delayed branch scheduling pass to take care
108 of this case.
109
110 Also note that no further optimizations based on algebraic
111 identities are performed, so this pass would be a good one to
112 perform instruction splitting, such as breaking up a multiply
113 instruction into shifts and adds where that is profitable.
114
115 Given the memory aliasing analysis that this pass should perform,
116 it should be possible to remove redundant stores to memory, and to
117 load values from registers instead of hitting memory.
118
119 Before reload, speculative insns are moved only if a 'proof' exists
120 that no exception will be caused by this, and if no live registers
121 exist that inhibit the motion (live registers constraints are not
122 represented by data dependence edges).
123
124 This pass must update information that subsequent passes expect to
125 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
3b413743
RH
126 reg_n_calls_crossed, and reg_live_length. Also, BLOCK_HEAD,
127 BLOCK_END.
8c660648
JL
128
129 The information in the line number notes is carefully retained by
130 this pass. Notes that refer to the starting and ending of
131 exception regions are also carefully retained by this pass. All
132 other NOTE insns are grouped in their same relative order at the
b4ead7d4 133 beginning of basic blocks and regions that have been scheduled. */
8c660648 134\f
8c660648 135#include "config.h"
5835e573 136#include "system.h"
01198c2f 137#include "toplev.h"
8c660648 138#include "rtl.h"
6baf1cc8 139#include "tm_p.h"
efc9bd41 140#include "hard-reg-set.h"
8c660648
JL
141#include "basic-block.h"
142#include "regs.h"
49ad7cfa 143#include "function.h"
8c660648
JL
144#include "flags.h"
145#include "insn-config.h"
146#include "insn-attr.h"
147#include "except.h"
487a6e06 148#include "toplev.h"
79c9824e 149#include "recog.h"
1708fd40 150#include "sched-int.h"
8c660648 151
8c660648
JL
152#ifdef INSN_SCHEDULING
153
8c660648
JL
154/* issue_rate is the number of insns that can be scheduled in the same
155 machine cycle. It can be defined in the config/mach/mach.h file,
156 otherwise we set it to 1. */
157
158static int issue_rate;
159
62d65906
JL
160#ifndef ISSUE_RATE
161#define ISSUE_RATE 1
8c660648
JL
162#endif
163
cc132865 164/* sched-verbose controls the amount of debugging output the
409f8483 165 scheduler prints. It is controlled by -fsched-verbose=N:
8c660648
JL
166 N>0 and no -DSR : the output is directed to stderr.
167 N>=10 will direct the printouts to stderr (regardless of -dSR).
168 N=1: same as -dSR.
169 N=2: bb's probabilities, detailed ready list info, unit/insn info.
170 N=3: rtl at abort point, control-flow, regions info.
cc132865 171 N=5: dependences info. */
8c660648 172
8c660648 173static int sched_verbose_param = 0;
b4ead7d4 174int sched_verbose = 0;
8c660648 175
63de6c74 176/* Debugging file. All printouts are sent to dump, which is always set,
8c660648 177 either to stderr, or to the dump listing file (-dRS). */
c62c2659 178FILE *sched_dump = 0;
a88f02e7
BS
179
180/* Highest uid before scheduling. */
181static int old_max_uid;
8c660648
JL
182
183/* fix_sched_param() is called from toplev.c upon detection
409f8483 184 of the -fsched-verbose=N option. */
8c660648
JL
185
186void
187fix_sched_param (param, val)
5f06c983 188 const char *param, *val;
8c660648 189{
cc132865 190 if (!strcmp (param, "verbose"))
8c660648 191 sched_verbose_param = atoi (val);
8c660648
JL
192 else
193 warning ("fix_sched_param: unknown param: %s", param);
194}
195
16f6ece6 196struct haifa_insn_data *h_i_d;
f66d83e1 197
8c660648
JL
198#define DONE_PRIORITY -1
199#define MAX_PRIORITY 0x7fffffff
200#define TAIL_PRIORITY 0x7ffffffe
201#define LAUNCH_PRIORITY 0x7f000001
202#define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
203#define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
204
f66d83e1
RH
205#define LINE_NOTE(INSN) (h_i_d[INSN_UID (INSN)].line_note)
206#define INSN_TICK(INSN) (h_i_d[INSN_UID (INSN)].tick)
8c660648
JL
207
208/* Vector indexed by basic block number giving the starting line-number
209 for each basic block. */
210static rtx *line_note_head;
211
212/* List of important notes we must keep around. This is a pointer to the
213 last element in the list. */
214static rtx note_list;
215
8c660648
JL
216/* Queues, etc. */
217
218/* An instruction is ready to be scheduled when all insns preceding it
219 have already been scheduled. It is important to ensure that all
220 insns which use its result will not be executed until its result
221 has been computed. An insn is maintained in one of four structures:
222
223 (P) the "Pending" set of insns which cannot be scheduled until
224 their dependencies have been satisfied.
225 (Q) the "Queued" set of insns that can be scheduled when sufficient
226 time has passed.
227 (R) the "Ready" list of unscheduled, uncommitted insns.
228 (S) the "Scheduled" list of insns.
229
230 Initially, all insns are either "Pending" or "Ready" depending on
231 whether their dependencies are satisfied.
232
233 Insns move from the "Ready" list to the "Scheduled" list as they
234 are committed to the schedule. As this occurs, the insns in the
235 "Pending" list have their dependencies satisfied and move to either
236 the "Ready" list or the "Queued" set depending on whether
237 sufficient time has passed to make them ready. As time passes,
238 insns move from the "Queued" set to the "Ready" list. Insns may
239 move from the "Ready" list to the "Queued" set if they are blocked
240 due to a function unit conflict.
241
242 The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
243 insns, i.e., those that are ready, queued, and pending.
244 The "Queued" set (Q) is implemented by the variable `insn_queue'.
245 The "Ready" list (R) is implemented by the variables `ready' and
246 `n_ready'.
247 The "Scheduled" list (S) is the new insn chain built by this pass.
248
249 The transition (R->S) is implemented in the scheduling loop in
250 `schedule_block' when the best insn to schedule is chosen.
251 The transition (R->Q) is implemented in `queue_insn' when an
38e01259 252 insn is found to have a function unit conflict with the already
8c660648
JL
253 committed insns.
254 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
255 insns move from the ready list to the scheduled list.
256 The transition (Q->R) is implemented in 'queue_to_insn' as time
257 passes or stalls are introduced. */
258
259/* Implement a circular buffer to delay instructions until sufficient
260 time has passed. INSN_QUEUE_SIZE is a power of two larger than
261 MAX_BLOCKAGE and MAX_READY_COST computed by genattr.c. This is the
262 longest time an isnsn may be queued. */
263static rtx insn_queue[INSN_QUEUE_SIZE];
264static int q_ptr = 0;
265static int q_size = 0;
266#define NEXT_Q(X) (((X)+1) & (INSN_QUEUE_SIZE-1))
267#define NEXT_Q_AFTER(X, C) (((X)+C) & (INSN_QUEUE_SIZE-1))
268
176f9a7b
BS
269/* Describe the ready list of the scheduler.
270 VEC holds space enough for all insns in the current region. VECLEN
271 says how many exactly.
272 FIRST is the index of the element with the highest priority; i.e. the
273 last one in the ready list, since elements are ordered by ascending
274 priority.
275 N_READY determines how many insns are on the ready list. */
276
277struct ready_list
278{
279 rtx *vec;
280 int veclen;
281 int first;
282 int n_ready;
283};
284
8c660648 285/* Forward declarations. */
3fe41456
KG
286static unsigned int blockage_range PARAMS ((int, rtx));
287static void clear_units PARAMS ((void));
3fe41456
KG
288static void schedule_unit PARAMS ((int, rtx, int));
289static int actual_hazard PARAMS ((int, rtx, int, int));
290static int potential_hazard PARAMS ((int, rtx, int));
3fe41456 291static int priority PARAMS ((rtx));
3fe41456
KG
292static int rank_for_schedule PARAMS ((const PTR, const PTR));
293static void swap_sort PARAMS ((rtx *, int));
294static void queue_insn PARAMS ((rtx, int));
176f9a7b 295static void schedule_insn PARAMS ((rtx, struct ready_list *, int));
3fe41456 296static void find_insn_reg_weight PARAMS ((int));
3fe41456 297static void adjust_priority PARAMS ((rtx));
8c660648 298
8c660648
JL
299/* Notes handling mechanism:
300 =========================
301 Generally, NOTES are saved before scheduling and restored after scheduling.
302 The scheduler distinguishes between three types of notes:
303
304 (1) LINE_NUMBER notes, generated and used for debugging. Here,
305 before scheduling a region, a pointer to the LINE_NUMBER note is
306 added to the insn following it (in save_line_notes()), and the note
307 is removed (in rm_line_notes() and unlink_line_notes()). After
308 scheduling the region, this pointer is used for regeneration of
309 the LINE_NUMBER note (in restore_line_notes()).
310
311 (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
312 Before scheduling a region, a pointer to the note is added to the insn
313 that follows or precedes it. (This happens as part of the data dependence
314 computation). After scheduling an insn, the pointer contained in it is
315 used for regenerating the corresponding note (in reemit_notes).
316
317 (3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
318 these notes are put in a list (in rm_other_notes() and
319 unlink_other_notes ()). After scheduling the block, these notes are
320 inserted at the beginning of the block (in schedule_block()). */
321
3fe41456
KG
322static rtx unlink_other_notes PARAMS ((rtx, rtx));
323static rtx unlink_line_notes PARAMS ((rtx, rtx));
3fe41456
KG
324static rtx reemit_notes PARAMS ((rtx, rtx));
325
176f9a7b
BS
326static rtx *ready_lastpos PARAMS ((struct ready_list *));
327static void ready_sort PARAMS ((struct ready_list *));
328static rtx ready_remove_first PARAMS ((struct ready_list *));
3fe41456 329
176f9a7b
BS
330static void queue_to_ready PARAMS ((struct ready_list *));
331
332static void debug_ready_list PARAMS ((struct ready_list *));
3fe41456
KG
333
334static rtx move_insn1 PARAMS ((rtx, rtx));
335static rtx move_insn PARAMS ((rtx, rtx));
8c660648
JL
336
337#endif /* INSN_SCHEDULING */
338\f
1708fd40
BS
339/* Point to state used for the current scheduling pass. */
340struct sched_info *current_sched_info;
8c660648
JL
341\f
342#ifndef INSN_SCHEDULING
343void
344schedule_insns (dump_file)
7bdb32b9 345 FILE *dump_file ATTRIBUTE_UNUSED;
8c660648
JL
346{
347}
348#else
cbb13457 349
8c660648
JL
350/* Pointer to the last instruction scheduled. Used by rank_for_schedule,
351 so that insns independent of the last scheduled insn will be preferred
352 over dependent instructions. */
353
354static rtx last_scheduled_insn;
355
b4ead7d4
BS
356/* Compute the function units used by INSN. This caches the value
357 returned by function_units_used. A function unit is encoded as the
358 unit number if the value is non-negative and the compliment of a
359 mask if the value is negative. A function unit index is the
360 non-negative encoding. */
168cbdf9 361
b4ead7d4
BS
362HAIFA_INLINE int
363insn_unit (insn)
364 rtx insn;
8c660648 365{
b4ead7d4 366 register int unit = INSN_UNIT (insn);
168cbdf9 367
b4ead7d4 368 if (unit == 0)
6b8cf0c5 369 {
b4ead7d4 370 recog_memoized (insn);
8c660648 371
b4ead7d4
BS
372 /* A USE insn, or something else we don't need to understand.
373 We can't pass these directly to function_units_used because it will
374 trigger a fatal error for unrecognizable insns. */
375 if (INSN_CODE (insn) < 0)
376 unit = -1;
377 else
8c660648 378 {
b4ead7d4
BS
379 unit = function_units_used (insn);
380 /* Increment non-negative values so we can cache zero. */
381 if (unit >= 0)
382 unit++;
8c660648 383 }
b4ead7d4
BS
384 /* We only cache 16 bits of the result, so if the value is out of
385 range, don't cache it. */
386 if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
387 || unit >= 0
388 || (unit & ~((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
389 INSN_UNIT (insn) = unit;
8c660648 390 }
b4ead7d4
BS
391 return (unit > 0 ? unit - 1 : unit);
392}
8c660648 393
b4ead7d4
BS
394/* Compute the blockage range for executing INSN on UNIT. This caches
395 the value returned by the blockage_range_function for the unit.
396 These values are encoded in an int where the upper half gives the
397 minimum value and the lower half gives the maximum value. */
8c660648 398
b4ead7d4
BS
399HAIFA_INLINE static unsigned int
400blockage_range (unit, insn)
401 int unit;
402 rtx insn;
403{
404 unsigned int blockage = INSN_BLOCKAGE (insn);
405 unsigned int range;
8c660648 406
b4ead7d4 407 if ((int) UNIT_BLOCKED (blockage) != unit + 1)
8c660648 408 {
b4ead7d4
BS
409 range = function_units[unit].blockage_range_function (insn);
410 /* We only cache the blockage range for one unit and then only if
411 the values fit. */
412 if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
413 INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
8c660648
JL
414 }
415 else
b4ead7d4 416 range = BLOCKAGE_RANGE (blockage);
8c660648 417
b4ead7d4 418 return range;
8c660648
JL
419}
420
b4ead7d4
BS
421/* A vector indexed by function unit instance giving the last insn to use
422 the unit. The value of the function unit instance index for unit U
423 instance I is (U + I * FUNCTION_UNITS_SIZE). */
424static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
8c660648 425
b4ead7d4
BS
426/* A vector indexed by function unit instance giving the minimum time when
427 the unit will unblock based on the maximum blockage cost. */
428static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
429
430/* A vector indexed by function unit number giving the number of insns
431 that remain to use the unit. */
432static int unit_n_insns[FUNCTION_UNITS_SIZE];
8c660648 433
b4ead7d4 434/* Access the unit_last_insn array. Used by the visualization code. */
8c660648 435
b4ead7d4
BS
436rtx
437get_unit_last_insn (instance)
438 int instance;
8c660648 439{
b4ead7d4 440 return unit_last_insn[instance];
8c660648
JL
441}
442
b4ead7d4 443/* Reset the function unit state to the null state. */
8c660648
JL
444
445static void
b4ead7d4 446clear_units ()
8c660648 447{
b4ead7d4
BS
448 memset ((char *) unit_last_insn, 0, sizeof (unit_last_insn));
449 memset ((char *) unit_tick, 0, sizeof (unit_tick));
450 memset ((char *) unit_n_insns, 0, sizeof (unit_n_insns));
451}
8c660648 452
b4ead7d4 453/* Return the issue-delay of an insn. */
8c660648 454
b4ead7d4
BS
455HAIFA_INLINE int
456insn_issue_delay (insn)
457 rtx insn;
458{
459 int i, delay = 0;
460 int unit = insn_unit (insn);
8c660648 461
b4ead7d4
BS
462 /* Efficiency note: in fact, we are working 'hard' to compute a
463 value that was available in md file, and is not available in
464 function_units[] structure. It would be nice to have this
465 value there, too. */
466 if (unit >= 0)
8c660648 467 {
b4ead7d4
BS
468 if (function_units[unit].blockage_range_function &&
469 function_units[unit].blockage_function)
470 delay = function_units[unit].blockage_function (insn, insn);
8c660648 471 }
b4ead7d4
BS
472 else
473 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
474 if ((unit & 1) != 0 && function_units[i].blockage_range_function
475 && function_units[i].blockage_function)
476 delay = MAX (delay, function_units[i].blockage_function (insn, insn));
8c660648 477
b4ead7d4 478 return delay;
8c660648
JL
479}
480
b4ead7d4
BS
481/* Return the actual hazard cost of executing INSN on the unit UNIT,
482 instance INSTANCE at time CLOCK if the previous actual hazard cost
483 was COST. */
8c660648 484
b4ead7d4
BS
485HAIFA_INLINE int
486actual_hazard_this_instance (unit, instance, insn, clock, cost)
487 int unit, instance, clock, cost;
488 rtx insn;
8c660648 489{
b4ead7d4 490 int tick = unit_tick[instance]; /* Issue time of the last issued insn. */
8c660648 491
b4ead7d4 492 if (tick - clock > cost)
8c660648 493 {
b4ead7d4
BS
494 /* The scheduler is operating forward, so unit's last insn is the
495 executing insn and INSN is the candidate insn. We want a
496 more exact measure of the blockage if we execute INSN at CLOCK
497 given when we committed the execution of the unit's last insn.
8c660648 498
b4ead7d4
BS
499 The blockage value is given by either the unit's max blockage
500 constant, blockage range function, or blockage function. Use
501 the most exact form for the given unit. */
8c660648 502
b4ead7d4
BS
503 if (function_units[unit].blockage_range_function)
504 {
505 if (function_units[unit].blockage_function)
506 tick += (function_units[unit].blockage_function
507 (unit_last_insn[instance], insn)
508 - function_units[unit].max_blockage);
509 else
510 tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
511 - function_units[unit].max_blockage);
8c660648 512 }
b4ead7d4
BS
513 if (tick - clock > cost)
514 cost = tick - clock;
8c660648 515 }
b4ead7d4 516 return cost;
8c660648
JL
517}
518
b4ead7d4
BS
519/* Record INSN as having begun execution on the units encoded by UNIT at
520 time CLOCK. */
8c660648 521
cbb13457 522HAIFA_INLINE static void
8c660648
JL
523schedule_unit (unit, insn, clock)
524 int unit, clock;
525 rtx insn;
526{
527 int i;
528
529 if (unit >= 0)
530 {
531 int instance = unit;
532#if MAX_MULTIPLICITY > 1
533 /* Find the first free instance of the function unit and use that
534 one. We assume that one is free. */
535 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
536 {
537 if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
538 break;
539 instance += FUNCTION_UNITS_SIZE;
540 }
541#endif
542 unit_last_insn[instance] = insn;
543 unit_tick[instance] = (clock + function_units[unit].max_blockage);
544 }
545 else
546 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
547 if ((unit & 1) != 0)
548 schedule_unit (i, insn, clock);
549}
550
551/* Return the actual hazard cost of executing INSN on the units encoded by
552 UNIT at time CLOCK if the previous actual hazard cost was COST. */
553
cbb13457 554HAIFA_INLINE static int
8c660648
JL
555actual_hazard (unit, insn, clock, cost)
556 int unit, clock, cost;
557 rtx insn;
558{
559 int i;
560
561 if (unit >= 0)
562 {
563 /* Find the instance of the function unit with the minimum hazard. */
564 int instance = unit;
565 int best_cost = actual_hazard_this_instance (unit, instance, insn,
566 clock, cost);
1eda7a81 567#if MAX_MULTIPLICITY > 1
8c660648
JL
568 int this_cost;
569
8c660648
JL
570 if (best_cost > cost)
571 {
572 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
573 {
574 instance += FUNCTION_UNITS_SIZE;
575 this_cost = actual_hazard_this_instance (unit, instance, insn,
576 clock, cost);
577 if (this_cost < best_cost)
578 {
579 best_cost = this_cost;
580 if (this_cost <= cost)
581 break;
582 }
583 }
584 }
585#endif
586 cost = MAX (cost, best_cost);
587 }
588 else
589 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
590 if ((unit & 1) != 0)
591 cost = actual_hazard (i, insn, clock, cost);
592
593 return cost;
594}
595
596/* Return the potential hazard cost of executing an instruction on the
597 units encoded by UNIT if the previous potential hazard cost was COST.
598 An insn with a large blockage time is chosen in preference to one
599 with a smaller time; an insn that uses a unit that is more likely
600 to be used is chosen in preference to one with a unit that is less
601 used. We are trying to minimize a subsequent actual hazard. */
602
cbb13457 603HAIFA_INLINE static int
8c660648
JL
604potential_hazard (unit, insn, cost)
605 int unit, cost;
606 rtx insn;
607{
608 int i, ncost;
609 unsigned int minb, maxb;
610
611 if (unit >= 0)
612 {
613 minb = maxb = function_units[unit].max_blockage;
614 if (maxb > 1)
615 {
616 if (function_units[unit].blockage_range_function)
617 {
618 maxb = minb = blockage_range (unit, insn);
619 maxb = MAX_BLOCKAGE_COST (maxb);
620 minb = MIN_BLOCKAGE_COST (minb);
621 }
622
623 if (maxb > 1)
624 {
625 /* Make the number of instructions left dominate. Make the
626 minimum delay dominate the maximum delay. If all these
627 are the same, use the unit number to add an arbitrary
628 ordering. Other terms can be added. */
629 ncost = minb * 0x40 + maxb;
630 ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
631 if (ncost > cost)
632 cost = ncost;
633 }
634 }
635 }
636 else
637 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
638 if ((unit & 1) != 0)
639 cost = potential_hazard (i, insn, cost);
640
641 return cost;
642}
643
644/* Compute cost of executing INSN given the dependence LINK on the insn USED.
645 This is the number of cycles between instruction issue and
646 instruction results. */
647
b4ead7d4 648HAIFA_INLINE int
8c660648
JL
649insn_cost (insn, link, used)
650 rtx insn, link, used;
651{
652 register int cost = INSN_COST (insn);
653
654 if (cost == 0)
655 {
656 recog_memoized (insn);
657
658 /* A USE insn, or something else we don't need to understand.
659 We can't pass these directly to result_ready_cost because it will
660 trigger a fatal error for unrecognizable insns. */
661 if (INSN_CODE (insn) < 0)
662 {
663 INSN_COST (insn) = 1;
664 return 1;
665 }
666 else
667 {
668 cost = result_ready_cost (insn);
669
670 if (cost < 1)
671 cost = 1;
672
673 INSN_COST (insn) = cost;
674 }
675 }
676
63de6c74 677 /* In this case estimate cost without caring how insn is used. */
8c660648
JL
678 if (link == 0 && used == 0)
679 return cost;
680
681 /* A USE insn should never require the value used to be computed. This
682 allows the computation of a function's result and parameter values to
683 overlap the return and call. */
684 recog_memoized (used);
685 if (INSN_CODE (used) < 0)
686 LINK_COST_FREE (link) = 1;
687
688 /* If some dependencies vary the cost, compute the adjustment. Most
689 commonly, the adjustment is complete: either the cost is ignored
690 (in the case of an output- or anti-dependence), or the cost is
691 unchanged. These values are cached in the link as LINK_COST_FREE
692 and LINK_COST_ZERO. */
693
694 if (LINK_COST_FREE (link))
197043f5 695 cost = 0;
8c660648
JL
696#ifdef ADJUST_COST
697 else if (!LINK_COST_ZERO (link))
698 {
699 int ncost = cost;
700
701 ADJUST_COST (used, link, insn, ncost);
197043f5
RH
702 if (ncost < 1)
703 {
704 LINK_COST_FREE (link) = 1;
705 ncost = 0;
706 }
8c660648
JL
707 if (cost == ncost)
708 LINK_COST_ZERO (link) = 1;
709 cost = ncost;
710 }
711#endif
712 return cost;
713}
714
715/* Compute the priority number for INSN. */
716
717static int
718priority (insn)
719 rtx insn;
720{
721 int this_priority;
722 rtx link;
723
2c3c49de 724 if (! INSN_P (insn))
8c660648
JL
725 return 0;
726
727 if ((this_priority = INSN_PRIORITY (insn)) == 0)
728 {
729 if (INSN_DEPEND (insn) == 0)
730 this_priority = insn_cost (insn, 0, 0);
731 else
732 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
733 {
734 rtx next;
735 int next_priority;
736
6d8ccdbb
JL
737 if (RTX_INTEGRATED_P (link))
738 continue;
739
8c660648
JL
740 next = XEXP (link, 0);
741
63de6c74 742 /* Critical path is meaningful in block boundaries only. */
c88e8206 743 if (BLOCK_NUM (next) != BLOCK_NUM (insn))
8c660648
JL
744 continue;
745
746 next_priority = insn_cost (insn, link, next) + priority (next);
747 if (next_priority > this_priority)
748 this_priority = next_priority;
749 }
750 INSN_PRIORITY (insn) = this_priority;
751 }
752 return this_priority;
753}
754\f
8c660648
JL
755/* Macros and functions for keeping the priority queue sorted, and
756 dealing with queueing and dequeueing of instructions. */
757
758#define SCHED_SORT(READY, N_READY) \
759do { if ((N_READY) == 2) \
760 swap_sort (READY, N_READY); \
761 else if ((N_READY) > 2) \
762 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
763while (0)
764
765/* Returns a positive value if x is preferred; returns a negative value if
766 y is preferred. Should never return 0, since that will make the sort
767 unstable. */
768
769static int
770rank_for_schedule (x, y)
e1b6684c
KG
771 const PTR x;
772 const PTR y;
8c660648 773{
7a403706
KH
774 rtx tmp = *(const rtx *) y;
775 rtx tmp2 = *(const rtx *) x;
8c660648 776 rtx link;
2db45993 777 int tmp_class, tmp2_class, depend_count1, depend_count2;
1708fd40 778 int val, priority_val, weight_val, info_val;
8c660648 779
63de6c74 780 /* Prefer insn with higher priority. */
8c660648
JL
781 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
782 if (priority_val)
783 return priority_val;
784
63de6c74 785 /* Prefer an insn with smaller contribution to registers-pressure. */
8c660648
JL
786 if (!reload_completed &&
787 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
788 return (weight_val);
789
1708fd40
BS
790 info_val = (*current_sched_info->rank) (tmp, tmp2);
791 if (info_val)
792 return info_val;
8c660648 793
63de6c74 794 /* Compare insns based on their relation to the last-scheduled-insn. */
8c660648
JL
795 if (last_scheduled_insn)
796 {
797 /* Classify the instructions into three classes:
798 1) Data dependent on last schedule insn.
799 2) Anti/Output dependent on last scheduled insn.
800 3) Independent of last scheduled insn, or has latency of one.
801 Choose the insn from the highest numbered class if different. */
802 link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
803 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
804 tmp_class = 3;
805 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
806 tmp_class = 1;
807 else
808 tmp_class = 2;
809
810 link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
811 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
812 tmp2_class = 3;
813 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
814 tmp2_class = 1;
815 else
816 tmp2_class = 2;
817
818 if ((val = tmp2_class - tmp_class))
819 return val;
820 }
821
7a403706 822 /* Prefer the insn which has more later insns that depend on it.
2db45993
JL
823 This gives the scheduler more freedom when scheduling later
824 instructions at the expense of added register pressure. */
825 depend_count1 = 0;
826 for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
827 depend_count1++;
828
829 depend_count2 = 0;
830 for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
831 depend_count2++;
832
833 val = depend_count2 - depend_count1;
834 if (val)
835 return val;
7a403706 836
8c660648
JL
837 /* If insns are equally good, sort by INSN_LUID (original insn order),
838 so that we make the sort stable. This minimizes instruction movement,
839 thus minimizing sched's effect on debugging and cross-jumping. */
840 return INSN_LUID (tmp) - INSN_LUID (tmp2);
841}
842
843/* Resort the array A in which only element at index N may be out of order. */
844
cbb13457 845HAIFA_INLINE static void
8c660648
JL
846swap_sort (a, n)
847 rtx *a;
848 int n;
849{
850 rtx insn = a[n - 1];
851 int i = n - 2;
852
853 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
854 {
855 a[i + 1] = a[i];
856 i -= 1;
857 }
858 a[i + 1] = insn;
859}
860
8c660648
JL
861/* Add INSN to the insn queue so that it can be executed at least
862 N_CYCLES after the currently executing insn. Preserve insns
863 chain for debugging purposes. */
864
cbb13457 865HAIFA_INLINE static void
8c660648
JL
866queue_insn (insn, n_cycles)
867 rtx insn;
868 int n_cycles;
869{
870 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
ebb7b10b 871 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
8c660648
JL
872 insn_queue[next_q] = link;
873 q_size += 1;
874
875 if (sched_verbose >= 2)
876 {
1708fd40
BS
877 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
878 (*current_sched_info->print_insn) (insn, 0));
8c660648 879
a88f02e7 880 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
8c660648 881 }
176f9a7b
BS
882}
883
884/* Return a pointer to the bottom of the ready list, i.e. the insn
885 with the lowest priority. */
886
887HAIFA_INLINE static rtx *
888ready_lastpos (ready)
889 struct ready_list *ready;
890{
891 if (ready->n_ready == 0)
892 abort ();
893 return ready->vec + ready->first - ready->n_ready + 1;
894}
895
896/* Add an element INSN to the ready list so that it ends up with the lowest
897 priority. */
898
b4ead7d4 899HAIFA_INLINE void
176f9a7b
BS
900ready_add (ready, insn)
901 struct ready_list *ready;
902 rtx insn;
903{
904 if (ready->first == ready->n_ready)
905 {
906 memmove (ready->vec + ready->veclen - ready->n_ready,
907 ready_lastpos (ready),
908 ready->n_ready * sizeof (rtx));
909 ready->first = ready->veclen - 1;
910 }
911 ready->vec[ready->first - ready->n_ready] = insn;
912 ready->n_ready++;
913}
8c660648 914
176f9a7b
BS
915/* Remove the element with the highest priority from the ready list and
916 return it. */
917
918HAIFA_INLINE static rtx
919ready_remove_first (ready)
920 struct ready_list *ready;
921{
922 rtx t;
923 if (ready->n_ready == 0)
924 abort ();
925 t = ready->vec[ready->first--];
926 ready->n_ready--;
927 /* If the queue becomes empty, reset it. */
928 if (ready->n_ready == 0)
929 ready->first = ready->veclen - 1;
930 return t;
931}
932
933/* Sort the ready list READY by ascending priority, using the SCHED_SORT
934 macro. */
935
936HAIFA_INLINE static void
937ready_sort (ready)
938 struct ready_list *ready;
939{
940 rtx *first = ready_lastpos (ready);
941 SCHED_SORT (first, ready->n_ready);
8c660648
JL
942}
943
8c660648 944/* PREV is an insn that is ready to execute. Adjust its priority if that
c46a37c4
RH
945 will help shorten or lengthen register lifetimes as appropriate. Also
946 provide a hook for the target to tweek itself. */
8c660648 947
cbb13457 948HAIFA_INLINE static void
8c660648 949adjust_priority (prev)
c46a37c4 950 rtx prev ATTRIBUTE_UNUSED;
8c660648 951{
c46a37c4
RH
952 /* ??? There used to be code here to try and estimate how an insn
953 affected register lifetimes, but it did it by looking at REG_DEAD
7a403706 954 notes, which we removed in schedule_region. Nor did it try to
c46a37c4 955 take into account register pressure or anything useful like that.
8c660648 956
c46a37c4 957 Revisit when we have a machine model to work with and not before. */
197043f5 958
8c660648 959#ifdef ADJUST_PRIORITY
197043f5 960 ADJUST_PRIORITY (prev);
8c660648 961#endif
8c660648
JL
962}
963
4bdc8810
RH
964/* Clock at which the previous instruction was issued. */
965static int last_clock_var;
966
8c660648 967/* INSN is the "currently executing insn". Launch each insn which was
176f9a7b
BS
968 waiting on INSN. READY is the ready list which contains the insns
969 that are ready to fire. CLOCK is the current cycle.
970 */
8c660648 971
176f9a7b
BS
972static void
973schedule_insn (insn, ready, clock)
8c660648 974 rtx insn;
176f9a7b 975 struct ready_list *ready;
8c660648
JL
976 int clock;
977{
978 rtx link;
979 int unit;
980
981 unit = insn_unit (insn);
982
983 if (sched_verbose >= 2)
984 {
a88f02e7 985 fprintf (sched_dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ",
63de6c74 986 INSN_UID (insn));
8c660648 987 insn_print_units (insn);
a88f02e7 988 fprintf (sched_dump, "\n");
8c660648
JL
989 }
990
991 if (sched_verbose && unit == -1)
992 visualize_no_unit (insn);
993
994 if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
995 schedule_unit (unit, insn, clock);
996
997 if (INSN_DEPEND (insn) == 0)
176f9a7b 998 return;
8c660648
JL
999
1000 for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
1001 {
1002 rtx next = XEXP (link, 0);
1003 int cost = insn_cost (insn, link, next);
1004
1005 INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost);
1006
1007 if ((INSN_DEP_COUNT (next) -= 1) == 0)
1008 {
1009 int effective_cost = INSN_TICK (next) - clock;
1010
1708fd40 1011 if (! (*current_sched_info->new_ready) (next))
8c660648
JL
1012 continue;
1013
1014 if (sched_verbose >= 2)
1015 {
1708fd40
BS
1016 fprintf (sched_dump, ";;\t\tdependences resolved: insn %s ",
1017 (*current_sched_info->print_insn) (next, 0));
8c660648 1018
197043f5 1019 if (effective_cost < 1)
a88f02e7 1020 fprintf (sched_dump, "into ready\n");
8c660648 1021 else
a88f02e7 1022 fprintf (sched_dump, "into queue with cost=%d\n", effective_cost);
8c660648
JL
1023 }
1024
1025 /* Adjust the priority of NEXT and either put it on the ready
1026 list or queue it. */
1027 adjust_priority (next);
197043f5 1028 if (effective_cost < 1)
176f9a7b 1029 ready_add (ready, next);
8c660648
JL
1030 else
1031 queue_insn (next, effective_cost);
1032 }
1033 }
1034
7a403706 1035 /* Annotate the instruction with issue information -- TImode
4bdc8810
RH
1036 indicates that the instruction is expected not to be able
1037 to issue on the same cycle as the previous insn. A machine
1038 may use this information to decide how the instruction should
1039 be aligned. */
1040 if (reload_completed && issue_rate > 1)
1041 {
1042 PUT_MODE (insn, clock > last_clock_var ? TImode : VOIDmode);
1043 last_clock_var = clock;
1044 }
8c660648
JL
1045}
1046
63de6c74 1047/* Functions for handling of notes. */
8c660648
JL
1048
1049/* Delete notes beginning with INSN and put them in the chain
1050 of notes ended by NOTE_LIST.
1051 Returns the insn following the notes. */
1052
1053static rtx
1054unlink_other_notes (insn, tail)
1055 rtx insn, tail;
1056{
1057 rtx prev = PREV_INSN (insn);
1058
1059 while (insn != tail && GET_CODE (insn) == NOTE)
1060 {
1061 rtx next = NEXT_INSN (insn);
1062 /* Delete the note from its current position. */
1063 if (prev)
1064 NEXT_INSN (prev) = next;
1065 if (next)
1066 PREV_INSN (next) = prev;
1067
c46a37c4 1068 /* See sched_analyze to see how these are handled. */
8c660648
JL
1069 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_SETJMP
1070 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
1071 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
b3b42a4d 1072 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_BEG
0dfa1860 1073 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_END
8c660648
JL
1074 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
1075 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
1076 {
1077 /* Insert the note at the end of the notes list. */
1078 PREV_INSN (insn) = note_list;
1079 if (note_list)
1080 NEXT_INSN (note_list) = insn;
1081 note_list = insn;
1082 }
1083
1084 insn = next;
1085 }
1086 return insn;
1087}
1088
1089/* Delete line notes beginning with INSN. Record line-number notes so
1090 they can be reused. Returns the insn following the notes. */
1091
1092static rtx
1093unlink_line_notes (insn, tail)
1094 rtx insn, tail;
1095{
1096 rtx prev = PREV_INSN (insn);
1097
1098 while (insn != tail && GET_CODE (insn) == NOTE)
1099 {
1100 rtx next = NEXT_INSN (insn);
1101
1102 if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
1103 {
1104 /* Delete the note from its current position. */
1105 if (prev)
1106 NEXT_INSN (prev) = next;
1107 if (next)
1108 PREV_INSN (next) = prev;
1109
1110 /* Record line-number notes so they can be reused. */
1111 LINE_NOTE (insn) = insn;
1112 }
1113 else
1114 prev = insn;
1115
1116 insn = next;
1117 }
1118 return insn;
1119}
1120
1121/* Return the head and tail pointers of BB. */
1122
b4ead7d4 1123void
49c3bb12
RH
1124get_block_head_tail (b, headp, tailp)
1125 int b;
8c660648
JL
1126 rtx *headp;
1127 rtx *tailp;
1128{
8c660648 1129 /* HEAD and TAIL delimit the basic block being scheduled. */
1708fd40
BS
1130 rtx head = BLOCK_HEAD (b);
1131 rtx tail = BLOCK_END (b);
8c660648
JL
1132
1133 /* Don't include any notes or labels at the beginning of the
1134 basic block, or notes at the ends of basic blocks. */
1135 while (head != tail)
1136 {
1137 if (GET_CODE (head) == NOTE)
1138 head = NEXT_INSN (head);
1139 else if (GET_CODE (tail) == NOTE)
1140 tail = PREV_INSN (tail);
1141 else if (GET_CODE (head) == CODE_LABEL)
1142 head = NEXT_INSN (head);
1143 else
1144 break;
1145 }
1146
1147 *headp = head;
1148 *tailp = tail;
1149}
1150
1708fd40
BS
1151/* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1152
b4ead7d4 1153int
1708fd40
BS
1154no_real_insns_p (head, tail)
1155 rtx head, tail;
1156{
1157 while (head != NEXT_INSN (tail))
1158 {
1159 if (GET_CODE (head) != NOTE && GET_CODE (head) != CODE_LABEL)
1160 return 0;
1161 head = NEXT_INSN (head);
1162 }
1163 return 1;
1164}
1165
8c660648
JL
1166/* Delete line notes from bb. Save them so they can be later restored
1167 (in restore_line_notes ()). */
1168
b4ead7d4
BS
1169void
1170rm_line_notes (b)
1171 int b;
8c660648
JL
1172{
1173 rtx next_tail;
1174 rtx tail;
1175 rtx head;
1176 rtx insn;
1177
b4ead7d4 1178 get_block_head_tail (b, &head, &tail);
8c660648 1179
2c3c49de 1180 if (head == tail && (! INSN_P (head)))
8c660648
JL
1181 return;
1182
1183 next_tail = NEXT_INSN (tail);
1184 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1185 {
1186 rtx prev;
1187
1188 /* Farm out notes, and maybe save them in NOTE_LIST.
1189 This is needed to keep the debugger from
1190 getting completely deranged. */
1191 if (GET_CODE (insn) == NOTE)
1192 {
1193 prev = insn;
1194 insn = unlink_line_notes (insn, next_tail);
1195
1196 if (prev == tail)
1197 abort ();
1198 if (prev == head)
1199 abort ();
1200 if (insn == next_tail)
1201 abort ();
1202 }
1203 }
1204}
1205
b4ead7d4 1206/* Save line number notes for each insn in block B. */
8c660648 1207
b4ead7d4
BS
1208void
1209save_line_notes (b)
1210 int b;
8c660648
JL
1211{
1212 rtx head, tail;
1213 rtx next_tail;
1214
1215 /* We must use the true line number for the first insn in the block
1216 that was computed and saved at the start of this pass. We can't
1217 use the current line number, because scheduling of the previous
1218 block may have changed the current line number. */
1219
b4ead7d4 1220 rtx line = line_note_head[b];
8c660648
JL
1221 rtx insn;
1222
b4ead7d4 1223 get_block_head_tail (b, &head, &tail);
8c660648
JL
1224 next_tail = NEXT_INSN (tail);
1225
b4ead7d4 1226 for (insn = BLOCK_HEAD (b); insn != next_tail; insn = NEXT_INSN (insn))
8c660648
JL
1227 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1228 line = insn;
1229 else
1230 LINE_NOTE (insn) = line;
1231}
1232
b4ead7d4 1233/* After block B was scheduled, insert line notes into the insns list. */
8c660648 1234
b4ead7d4
BS
1235void
1236restore_line_notes (b)
1237 int b;
8c660648
JL
1238{
1239 rtx line, note, prev, new;
1240 int added_notes = 0;
8c660648
JL
1241 rtx head, next_tail, insn;
1242
3b413743
RH
1243 head = BLOCK_HEAD (b);
1244 next_tail = NEXT_INSN (BLOCK_END (b));
8c660648
JL
1245
1246 /* Determine the current line-number. We want to know the current
1247 line number of the first insn of the block here, in case it is
1248 different from the true line number that was saved earlier. If
1249 different, then we need a line number note before the first insn
1250 of this block. If it happens to be the same, then we don't want to
1251 emit another line number note here. */
1252 for (line = head; line; line = PREV_INSN (line))
1253 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1254 break;
1255
1256 /* Walk the insns keeping track of the current line-number and inserting
1257 the line-number notes as needed. */
1258 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1259 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1260 line = insn;
1261 /* This used to emit line number notes before every non-deleted note.
1262 However, this confuses a debugger, because line notes not separated
1263 by real instructions all end up at the same address. I can find no
1264 use for line number notes before other notes, so none are emitted. */
1265 else if (GET_CODE (insn) != NOTE
1266 && (note = LINE_NOTE (insn)) != 0
1267 && note != line
1268 && (line == 0
1269 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
1270 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
1271 {
1272 line = note;
1273 prev = PREV_INSN (insn);
1274 if (LINE_NOTE (note))
1275 {
1276 /* Re-use the original line-number note. */
1277 LINE_NOTE (note) = 0;
1278 PREV_INSN (note) = prev;
1279 NEXT_INSN (prev) = note;
1280 PREV_INSN (insn) = note;
1281 NEXT_INSN (note) = insn;
1282 }
1283 else
1284 {
1285 added_notes++;
1286 new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
1287 NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
1288 RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
1289 }
1290 }
1291 if (sched_verbose && added_notes)
a88f02e7 1292 fprintf (sched_dump, ";; added %d line-number notes\n", added_notes);
8c660648
JL
1293}
1294
1295/* After scheduling the function, delete redundant line notes from the
1296 insns list. */
1297
b4ead7d4 1298void
8c660648
JL
1299rm_redundant_line_notes ()
1300{
1301 rtx line = 0;
1302 rtx insn = get_insns ();
1303 int active_insn = 0;
1304 int notes = 0;
1305
1306 /* Walk the insns deleting redundant line-number notes. Many of these
1307 are already present. The remainder tend to occur at basic
1308 block boundaries. */
1309 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1310 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1311 {
1312 /* If there are no active insns following, INSN is redundant. */
1313 if (active_insn == 0)
1314 {
1315 notes++;
1316 NOTE_SOURCE_FILE (insn) = 0;
1317 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1318 }
1319 /* If the line number is unchanged, LINE is redundant. */
1320 else if (line
1321 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
1322 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
1323 {
1324 notes++;
1325 NOTE_SOURCE_FILE (line) = 0;
1326 NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
1327 line = insn;
1328 }
1329 else
1330 line = insn;
1331 active_insn = 0;
1332 }
1333 else if (!((GET_CODE (insn) == NOTE
1334 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
1335 || (GET_CODE (insn) == INSN
1336 && (GET_CODE (PATTERN (insn)) == USE
1337 || GET_CODE (PATTERN (insn)) == CLOBBER))))
1338 active_insn++;
1339
1340 if (sched_verbose && notes)
a88f02e7 1341 fprintf (sched_dump, ";; deleted %d line-number notes\n", notes);
8c660648
JL
1342}
1343
1344/* Delete notes between head and tail and put them in the chain
1345 of notes ended by NOTE_LIST. */
1346
b4ead7d4 1347void
8c660648
JL
1348rm_other_notes (head, tail)
1349 rtx head;
1350 rtx tail;
1351{
1352 rtx next_tail;
1353 rtx insn;
1354
b4ead7d4 1355 note_list = 0;
2c3c49de 1356 if (head == tail && (! INSN_P (head)))
8c660648
JL
1357 return;
1358
1359 next_tail = NEXT_INSN (tail);
1360 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1361 {
1362 rtx prev;
1363
1364 /* Farm out notes, and maybe save them in NOTE_LIST.
1365 This is needed to keep the debugger from
1366 getting completely deranged. */
1367 if (GET_CODE (insn) == NOTE)
1368 {
1369 prev = insn;
1370
1371 insn = unlink_other_notes (insn, next_tail);
1372
1373 if (prev == tail)
1374 abort ();
1375 if (prev == head)
1376 abort ();
1377 if (insn == next_tail)
1378 abort ();
1379 }
1380 }
1381}
1382
63de6c74 1383/* Functions for computation of registers live/usage info. */
8c660648 1384
c46a37c4 1385/* Calculate INSN_REG_WEIGHT for all insns of a block. */
8c660648
JL
1386
1387static void
49c3bb12 1388find_insn_reg_weight (b)
7a403706 1389 int b;
8c660648
JL
1390{
1391 rtx insn, next_tail, head, tail;
8c660648 1392
49c3bb12 1393 get_block_head_tail (b, &head, &tail);
8c660648
JL
1394 next_tail = NEXT_INSN (tail);
1395
1396 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1397 {
8c660648 1398 int reg_weight = 0;
c46a37c4 1399 rtx x;
8c660648
JL
1400
1401 /* Handle register life information. */
2c3c49de 1402 if (! INSN_P (insn))
8c660648
JL
1403 continue;
1404
c46a37c4
RH
1405 /* Increment weight for each register born here. */
1406 x = PATTERN (insn);
1407 if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1408 && register_operand (SET_DEST (x), VOIDmode))
1409 reg_weight++;
1410 else if (GET_CODE (x) == PARALLEL)
8c660648 1411 {
c46a37c4
RH
1412 int j;
1413 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
1414 {
1415 x = XVECEXP (PATTERN (insn), 0, j);
1416 if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1417 && register_operand (SET_DEST (x), VOIDmode))
1418 reg_weight++;
1419 }
8c660648
JL
1420 }
1421
c46a37c4
RH
1422 /* Decrement weight for each register that dies here. */
1423 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
8c660648 1424 {
c46a37c4
RH
1425 if (REG_NOTE_KIND (x) == REG_DEAD
1426 || REG_NOTE_KIND (x) == REG_UNUSED)
1427 reg_weight--;
8c660648
JL
1428 }
1429
c46a37c4 1430 INSN_REG_WEIGHT (insn) = reg_weight;
8c660648 1431 }
8c660648
JL
1432}
1433
63de6c74 1434/* Scheduling clock, modified in schedule_block() and queue_to_ready (). */
8c660648
JL
1435static int clock_var;
1436
1437/* Move insns that became ready to fire from queue to ready list. */
1438
176f9a7b
BS
1439static void
1440queue_to_ready (ready)
1441 struct ready_list *ready;
8c660648
JL
1442{
1443 rtx insn;
1444 rtx link;
1445
1446 q_ptr = NEXT_Q (q_ptr);
1447
1448 /* Add all pending insns that can be scheduled without stalls to the
b4ead7d4
BS
1449 ready list. */
1450 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
1451 {
1452 insn = XEXP (link, 0);
1453 q_size -= 1;
1708fd40 1454
b4ead7d4
BS
1455 if (sched_verbose >= 2)
1456 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1457 (*current_sched_info->print_insn) (insn, 0));
1708fd40 1458
b4ead7d4
BS
1459 ready_add (ready, insn);
1460 if (sched_verbose >= 2)
1461 fprintf (sched_dump, "moving to ready without stalls\n");
1708fd40 1462 }
b4ead7d4
BS
1463 insn_queue[q_ptr] = 0;
1464
1465 /* If there are no ready insns, stall until one is ready and add all
1466 of the pending insns at that point to the ready list. */
1467 if (ready->n_ready == 0)
1708fd40 1468 {
b4ead7d4 1469 register int stalls;
1708fd40 1470
b4ead7d4
BS
1471 for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
1472 {
1473 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1474 {
1475 for (; link; link = XEXP (link, 1))
1476 {
1477 insn = XEXP (link, 0);
1478 q_size -= 1;
1708fd40 1479
b4ead7d4
BS
1480 if (sched_verbose >= 2)
1481 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1482 (*current_sched_info->print_insn) (insn, 0));
1708fd40 1483
b4ead7d4
BS
1484 ready_add (ready, insn);
1485 if (sched_verbose >= 2)
1486 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
1487 }
1488 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
1708fd40 1489
b4ead7d4
BS
1490 if (ready->n_ready)
1491 break;
1492 }
1493 }
1708fd40 1494
b4ead7d4
BS
1495 if (sched_verbose && stalls)
1496 visualize_stall_cycles (stalls);
1497 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
1498 clock_var += stalls;
1708fd40 1499 }
1708fd40
BS
1500}
1501
b4ead7d4 1502/* Print the ready list for debugging purposes. Callable from debugger. */
1708fd40 1503
b4ead7d4
BS
1504static void
1505debug_ready_list (ready)
1506 struct ready_list *ready;
1708fd40 1507{
b4ead7d4
BS
1508 rtx *p;
1509 int i;
1708fd40 1510
b4ead7d4
BS
1511 if (ready->n_ready == 0)
1512 return;
1708fd40 1513
b4ead7d4
BS
1514 p = ready_lastpos (ready);
1515 for (i = 0; i < ready->n_ready; i++)
1516 fprintf (sched_dump, " %s", (*current_sched_info->print_insn) (p[i], 0));
1517 fprintf (sched_dump, "\n");
1518}
1708fd40 1519
63de6c74 1520/* move_insn1: Remove INSN from insn chain, and link it after LAST insn. */
8c660648
JL
1521
1522static rtx
1523move_insn1 (insn, last)
1524 rtx insn, last;
1525{
1526 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1527 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1528
1529 NEXT_INSN (insn) = NEXT_INSN (last);
1530 PREV_INSN (NEXT_INSN (last)) = insn;
1531
1532 NEXT_INSN (last) = insn;
1533 PREV_INSN (insn) = last;
1534
1535 return insn;
1536}
1537
c46a37c4 1538/* Search INSN for REG_SAVE_NOTE note pairs for NOTE_INSN_SETJMP,
8c660648 1539 NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
c46a37c4
RH
1540 NOTEs. The REG_SAVE_NOTE note following first one is contains the
1541 saved value for NOTE_BLOCK_NUMBER which is useful for
8c660648
JL
1542 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. LAST is the last instruction
1543 output by the instruction scheduler. Return the new value of LAST. */
1544
1545static rtx
1546reemit_notes (insn, last)
1547 rtx insn;
1548 rtx last;
1549{
1550 rtx note, retval;
1551
1552 retval = last;
1553 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1554 {
c46a37c4 1555 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
8c660648 1556 {
b3b42a4d
RK
1557 enum insn_note note_type = INTVAL (XEXP (note, 0));
1558
6dfdecdb 1559 if (note_type == NOTE_INSN_SETJMP)
8c660648 1560 {
6dfdecdb 1561 retval = emit_note_after (NOTE_INSN_SETJMP, insn);
8c660648 1562 CONST_CALL_P (retval) = CONST_CALL_P (note);
7bd41ea6
MM
1563 remove_note (insn, note);
1564 note = XEXP (note, 1);
8c660648 1565 }
b3b42a4d 1566 else if (note_type == NOTE_INSN_RANGE_BEG
6dfdecdb
RH
1567 || note_type == NOTE_INSN_RANGE_END)
1568 {
1569 last = emit_note_before (note_type, last);
1570 remove_note (insn, note);
1571 note = XEXP (note, 1);
1572 NOTE_RANGE_INFO (last) = XEXP (note, 0);
1573 }
8c660648
JL
1574 else
1575 {
19699da4 1576 last = emit_note_before (note_type, last);
7bd41ea6
MM
1577 remove_note (insn, note);
1578 note = XEXP (note, 1);
1a4450c7
MM
1579 if (note_type == NOTE_INSN_EH_REGION_BEG
1580 || note_type == NOTE_INSN_EH_REGION_END)
7bd41ea6 1581 NOTE_EH_HANDLER (last) = INTVAL (XEXP (note, 0));
8c660648
JL
1582 }
1583 remove_note (insn, note);
1584 }
1585 }
1586 return retval;
1587}
1588
1589/* Move INSN, and all insns which should be issued before it,
c9e03727
JL
1590 due to SCHED_GROUP_P flag. Reemit notes if needed.
1591
1592 Return the last insn emitted by the scheduler, which is the
1593 return value from the first call to reemit_notes. */
8c660648
JL
1594
1595static rtx
1596move_insn (insn, last)
1597 rtx insn, last;
1598{
c9e03727 1599 rtx retval = NULL;
8c660648 1600
c9e03727
JL
1601 /* If INSN has SCHED_GROUP_P set, then issue it and any other
1602 insns with SCHED_GROUP_P set first. */
8c660648
JL
1603 while (SCHED_GROUP_P (insn))
1604 {
1605 rtx prev = PREV_INSN (insn);
c9e03727
JL
1606
1607 /* Move a SCHED_GROUP_P insn. */
8c660648 1608 move_insn1 (insn, last);
c9e03727
JL
1609 /* If this is the first call to reemit_notes, then record
1610 its return value. */
1611 if (retval == NULL_RTX)
1612 retval = reemit_notes (insn, insn);
1613 else
1614 reemit_notes (insn, insn);
8c660648
JL
1615 insn = prev;
1616 }
1617
c9e03727 1618 /* Now move the first non SCHED_GROUP_P insn. */
8c660648 1619 move_insn1 (insn, last);
c9e03727
JL
1620
1621 /* If this is the first call to reemit_notes, then record
1622 its return value. */
1623 if (retval == NULL_RTX)
1624 retval = reemit_notes (insn, insn);
1625 else
1626 reemit_notes (insn, insn);
1627
1628 return retval;
8c660648
JL
1629}
1630
b4ead7d4 1631/* Use forward list scheduling to rearrange insns of block B in region RGN,
1708fd40 1632 possibly bringing insns from subsequent blocks in the same region. */
8c660648 1633
b4ead7d4
BS
1634void
1635schedule_block (b, rgn_n_insns)
1636 int b;
8c660648
JL
1637 int rgn_n_insns;
1638{
1708fd40 1639 rtx last;
176f9a7b 1640 struct ready_list ready;
8c660648
JL
1641 int can_issue_more;
1642
63de6c74 1643 /* Head/tail info for this block. */
1708fd40
BS
1644 rtx prev_head = current_sched_info->prev_head;
1645 rtx next_tail = current_sched_info->next_tail;
1646 rtx head = NEXT_INSN (prev_head);
1647 rtx tail = PREV_INSN (next_tail);
8c660648 1648
484df988
JL
1649 /* We used to have code to avoid getting parameters moved from hard
1650 argument registers into pseudos.
8c660648 1651
484df988
JL
1652 However, it was removed when it proved to be of marginal benefit
1653 and caused problems because schedule_block and compute_forward_dependences
1654 had different notions of what the "head" insn was. */
8c660648 1655
2c3c49de 1656 if (head == tail && (! INSN_P (head)))
1708fd40 1657 abort ();
8c660648 1658
63de6c74 1659 /* Debug info. */
8c660648
JL
1660 if (sched_verbose)
1661 {
a88f02e7
BS
1662 fprintf (sched_dump, ";; ======================================================\n");
1663 fprintf (sched_dump,
8c660648 1664 ";; -- basic block %d from %d to %d -- %s reload\n",
3b413743 1665 b, INSN_UID (BLOCK_HEAD (b)), INSN_UID (BLOCK_END (b)),
8c660648 1666 (reload_completed ? "after" : "before"));
a88f02e7
BS
1667 fprintf (sched_dump, ";; ======================================================\n");
1668 fprintf (sched_dump, "\n");
8c660648 1669
c62c2659 1670 visualize_alloc ();
8c660648
JL
1671 init_block_visualization ();
1672 }
1673
8c660648
JL
1674 clear_units ();
1675
63de6c74 1676 /* Allocate the ready list. */
176f9a7b
BS
1677 ready.veclen = rgn_n_insns + 1 + ISSUE_RATE;
1678 ready.first = ready.veclen - 1;
1679 ready.vec = (rtx *) xmalloc (ready.veclen * sizeof (rtx));
1680 ready.n_ready = 0;
8c660648 1681
1708fd40 1682 (*current_sched_info->init_ready_list) (&ready);
8c660648 1683
e4da5f6d 1684#ifdef MD_SCHED_INIT
a88f02e7 1685 MD_SCHED_INIT (sched_dump, sched_verbose);
e4da5f6d
MM
1686#endif
1687
63de6c74 1688 /* No insns scheduled in this block yet. */
8c660648
JL
1689 last_scheduled_insn = 0;
1690
1708fd40
BS
1691 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
1692 queue. */
8c660648
JL
1693 q_ptr = 0;
1694 q_size = 0;
4bdc8810 1695 last_clock_var = 0;
961192e1 1696 memset ((char *) insn_queue, 0, sizeof (insn_queue));
8c660648 1697
197043f5
RH
1698 /* Start just before the beginning of time. */
1699 clock_var = -1;
1700
8c660648
JL
1701 /* We start inserting insns after PREV_HEAD. */
1702 last = prev_head;
1703
63de6c74 1704 /* Loop until all the insns in BB are scheduled. */
1708fd40 1705 while ((*current_sched_info->schedule_more_p) ())
8c660648 1706 {
8c660648
JL
1707 clock_var++;
1708
1709 /* Add to the ready list all pending insns that can be issued now.
1710 If there are no ready insns, increment clock until one
1711 is ready and add all pending insns at that point to the ready
1712 list. */
176f9a7b 1713 queue_to_ready (&ready);
8c660648 1714
176f9a7b 1715 if (ready.n_ready == 0)
8c660648
JL
1716 abort ();
1717
1718 if (sched_verbose >= 2)
1719 {
a88f02e7 1720 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
176f9a7b 1721 debug_ready_list (&ready);
8c660648
JL
1722 }
1723
197043f5 1724 /* Sort the ready list based on priority. */
176f9a7b 1725 ready_sort (&ready);
197043f5 1726
b4ead7d4
BS
1727 /* Allow the target to reorder the list, typically for
1728 better instruction bundling. */
1729#ifdef MD_SCHED_REORDER
1730 MD_SCHED_REORDER (sched_dump, sched_verbose, ready_lastpos (&ready),
1731 ready.n_ready, clock_var, can_issue_more);
1732#else
1733 can_issue_more = issue_rate;
1734#endif
e1306f49 1735
b4ead7d4 1736 if (sched_verbose)
e1306f49 1737 {
b4ead7d4
BS
1738 fprintf (sched_dump, "\n;;\tReady list (t =%3d): ", clock_var);
1739 debug_ready_list (&ready);
e1306f49
BS
1740 }
1741
b4ead7d4
BS
1742 /* Issue insns from ready list. */
1743 while (ready.n_ready != 0 && can_issue_more)
1744 {
1745 /* Select and remove the insn from the ready list. */
1746 rtx insn = ready_remove_first (&ready);
1747 int cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
e1306f49 1748
b4ead7d4
BS
1749 if (cost >= 1)
1750 {
1751 queue_insn (insn, cost);
1752 continue;
1753 }
e1306f49 1754
b4ead7d4
BS
1755 if (! (*current_sched_info->can_schedule_ready_p) (insn))
1756 goto next;
8c660648 1757
b4ead7d4
BS
1758 last_scheduled_insn = insn;
1759 last = move_insn (insn, last);
8c660648 1760
b4ead7d4
BS
1761#ifdef MD_SCHED_VARIABLE_ISSUE
1762 MD_SCHED_VARIABLE_ISSUE (sched_dump, sched_verbose, insn,
1763 can_issue_more);
1764#else
1765 can_issue_more--;
1766#endif
8c660648 1767
b4ead7d4 1768 schedule_insn (insn, &ready, clock_var);
8c660648 1769
b4ead7d4
BS
1770 next:
1771 /* Close this block after scheduling its jump. */
1772 if (GET_CODE (last_scheduled_insn) == JUMP_INSN)
1773 break;
1774 }
8c660648 1775
b4ead7d4
BS
1776 /* Debug info. */
1777 if (sched_verbose)
1778 visualize_scheduled_insns (clock_var);
1779 }
8c660648 1780
b4ead7d4
BS
1781 /* Debug info. */
1782 if (sched_verbose)
1783 {
1784 fprintf (sched_dump, ";;\tReady list (final): ");
1785 debug_ready_list (&ready);
1786 print_block_visualization ("");
1787 }
8c660648 1788
b4ead7d4
BS
1789 /* Sanity check -- queue must be empty now. Meaningless if region has
1790 multiple bbs. */
1791 if (current_sched_info->queue_must_finish_empty && q_size != 0)
1792 abort ();
ebb7b10b 1793
b4ead7d4
BS
1794 /* Update head/tail boundaries. */
1795 head = NEXT_INSN (prev_head);
1796 tail = last;
ebb7b10b 1797
b4ead7d4
BS
1798 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
1799 previously found among the insns. Insert them at the beginning
1800 of the insns. */
1801 if (note_list != 0)
1802 {
1803 rtx note_head = note_list;
8c660648 1804
b4ead7d4
BS
1805 while (PREV_INSN (note_head))
1806 {
1807 note_head = PREV_INSN (note_head);
1808 }
8c660648 1809
b4ead7d4
BS
1810 PREV_INSN (note_head) = PREV_INSN (head);
1811 NEXT_INSN (PREV_INSN (head)) = note_head;
1812 PREV_INSN (head) = note_list;
1813 NEXT_INSN (note_list) = head;
1814 head = note_head;
1815 }
8c660648 1816
b4ead7d4
BS
1817 /* Debugging. */
1818 if (sched_verbose)
8c660648 1819 {
b4ead7d4
BS
1820 fprintf (sched_dump, ";; total time = %d\n;; new head = %d\n",
1821 clock_var, INSN_UID (head));
1822 fprintf (sched_dump, ";; new tail = %d\n\n",
1823 INSN_UID (tail));
1824 visualize_free ();
1825 }
8c660648 1826
b4ead7d4
BS
1827 current_sched_info->head = head;
1828 current_sched_info->tail = tail;
8c660648 1829
b4ead7d4 1830 free (ready.vec);
8c660648 1831}
b4ead7d4 1832\f
63de6c74 1833/* Set_priorities: compute priority of each insn in the block. */
8c660648 1834
b4ead7d4
BS
1835int
1836set_priorities (b)
1837 int b;
8c660648
JL
1838{
1839 rtx insn;
1840 int n_insn;
1841
1842 rtx tail;
1843 rtx prev_head;
1844 rtx head;
1845
b4ead7d4 1846 get_block_head_tail (b, &head, &tail);
8c660648
JL
1847 prev_head = PREV_INSN (head);
1848
2c3c49de 1849 if (head == tail && (! INSN_P (head)))
8c660648
JL
1850 return 0;
1851
1852 n_insn = 0;
1853 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
1854 {
8c660648
JL
1855 if (GET_CODE (insn) == NOTE)
1856 continue;
1857
1858 if (!(SCHED_GROUP_P (insn)))
1859 n_insn++;
1860 (void) priority (insn);
1861 }
1862
1863 return n_insn;
1864}
1865
a88f02e7
BS
1866/* Initialize some global state for the scheduler. DUMP_FILE is to be used
1867 for debugging output. */
8c660648 1868
b4ead7d4 1869void
a88f02e7 1870sched_init (dump_file)
8c660648
JL
1871 FILE *dump_file;
1872{
a88f02e7 1873 int luid, b;
8c660648 1874 rtx insn;
8c660648 1875
63de6c74 1876 /* Disable speculative loads in their presence if cc0 defined. */
8c660648
JL
1877#ifdef HAVE_cc0
1878 flag_schedule_speculative_load = 0;
1879#endif
1880
63de6c74 1881 /* Set dump and sched_verbose for the desired debugging output. If no
409f8483
DE
1882 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
1883 For -fsched-verbose=N, N>=10, print everything to stderr. */
8c660648
JL
1884 sched_verbose = sched_verbose_param;
1885 if (sched_verbose_param == 0 && dump_file)
1886 sched_verbose = 1;
a88f02e7
BS
1887 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
1888 ? stderr : dump_file);
8c660648 1889
63de6c74 1890 /* Initialize issue_rate. */
62d65906 1891 issue_rate = ISSUE_RATE;
8c660648 1892
d3a923ee 1893 split_all_insns (1);
8c660648 1894
c88e8206
RH
1895 /* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
1896 pseudos which do not cross calls. */
a88f02e7 1897 old_max_uid = get_max_uid () + 1;
8c660648 1898
a88f02e7 1899 h_i_d = (struct haifa_insn_data *) xcalloc (old_max_uid, sizeof (*h_i_d));
8c660648 1900
f66d83e1 1901 h_i_d[0].luid = 0;
356edbd7 1902 luid = 1;
8c660648 1903 for (b = 0; b < n_basic_blocks; b++)
3b413743 1904 for (insn = BLOCK_HEAD (b);; insn = NEXT_INSN (insn))
8c660648 1905 {
f77e39fc
MM
1906 INSN_LUID (insn) = luid;
1907
1908 /* Increment the next luid, unless this is a note. We don't
1909 really need separate IDs for notes and we don't want to
1910 schedule differently depending on whether or not there are
1911 line-number notes, i.e., depending on whether or not we're
1912 generating debugging information. */
1913 if (GET_CODE (insn) != NOTE)
1914 ++luid;
1915
3b413743 1916 if (insn == BLOCK_END (b))
8c660648
JL
1917 break;
1918 }
7a403706 1919
a88f02e7
BS
1920 init_dependency_caches (luid);
1921
1922 compute_bb_for_insn (old_max_uid);
1923
1924 init_alias_analysis ();
1925
1926 if (write_symbols != NO_DEBUG)
aae0390e 1927 {
a88f02e7
BS
1928 rtx line;
1929
1930 line_note_head = (rtx *) xcalloc (n_basic_blocks, sizeof (rtx));
1931
1932 /* Save-line-note-head:
1933 Determine the line-number at the start of each basic block.
1934 This must be computed and saved now, because after a basic block's
1935 predecessor has been scheduled, it is impossible to accurately
1936 determine the correct line number for the first insn of the block. */
1937
1938 for (b = 0; b < n_basic_blocks; b++)
1939 for (line = BLOCK_HEAD (b); line; line = PREV_INSN (line))
1940 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1941 {
1942 line_note_head[b] = line;
1943 break;
1944 }
aae0390e 1945 }
8c660648 1946
a88f02e7
BS
1947 /* Find units used in this fuction, for visualization. */
1948 if (sched_verbose)
1949 init_target_units ();
1950
1951 /* ??? Add a NOTE after the last insn of the last basic block. It is not
1952 known why this is done. */
1953
1954 insn = BLOCK_END (n_basic_blocks - 1);
1955 if (NEXT_INSN (insn) == 0
1956 || (GET_CODE (insn) != NOTE
1957 && GET_CODE (insn) != CODE_LABEL
4cf37b4a
R
1958 /* Don't emit a NOTE if it would end up before a BARRIER. */
1959 && GET_CODE (NEXT_INSN (insn)) != BARRIER))
a88f02e7
BS
1960 emit_note_after (NOTE_INSN_DELETED, BLOCK_END (n_basic_blocks - 1));
1961
1962 /* Compute INSN_REG_WEIGHT for all blocks. We must do this before
1963 removing death notes. */
1964 for (b = n_basic_blocks - 1; b >= 0; b--)
1965 find_insn_reg_weight (b);
1966}
1967
b4ead7d4 1968/* Free global data used during insn scheduling. */
8c660648 1969
a88f02e7 1970void
b4ead7d4 1971sched_finish ()
a88f02e7 1972{
f66d83e1 1973 free (h_i_d);
b4ead7d4
BS
1974 free_dependency_caches ();
1975 end_alias_analysis ();
7c74b010 1976 if (write_symbols != NO_DEBUG)
f66d83e1 1977 free (line_note_head);
8c660648
JL
1978}
1979#endif /* INSN_SCHEDULING */
This page took 1.20682 seconds and 5 git commands to generate.