]> gcc.gnu.org Git - gcc.git/blame - gcc/haifa-sched.c
Fix cygwin32 hosted dwarf2 target problem with line number info.
[gcc.git] / gcc / haifa-sched.c
CommitLineData
8c660648 1/* Instruction scheduling pass.
a4fc4b2d 2 Copyright (C) 1992, 93-97, 1998 Free Software Foundation, Inc.
8c660648
JL
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to the Free
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24/* Instruction scheduling pass.
25
26 This pass implements list scheduling within basic blocks. It is
27 run twice: (1) after flow analysis, but before register allocation,
28 and (2) after register allocation.
29
30 The first run performs interblock scheduling, moving insns between
31 different blocks in the same "region", and the second runs only
32 basic block scheduling.
33
34 Interblock motions performed are useful motions and speculative
35 motions, including speculative loads. Motions requiring code
36 duplication are not supported. The identification of motion type
37 and the check for validity of speculative motions requires
38 construction and analysis of the function's control flow graph.
39 The scheduler works as follows:
40
41 We compute insn priorities based on data dependencies. Flow
42 analysis only creates a fraction of the data-dependencies we must
43 observe: namely, only those dependencies which the combiner can be
44 expected to use. For this pass, we must therefore create the
45 remaining dependencies we need to observe: register dependencies,
46 memory dependencies, dependencies to keep function calls in order,
47 and the dependence between a conditional branch and the setting of
48 condition codes are all dealt with here.
49
50 The scheduler first traverses the data flow graph, starting with
51 the last instruction, and proceeding to the first, assigning values
52 to insn_priority as it goes. This sorts the instructions
53 topologically by data dependence.
54
55 Once priorities have been established, we order the insns using
56 list scheduling. This works as follows: starting with a list of
57 all the ready insns, and sorted according to priority number, we
58 schedule the insn from the end of the list by placing its
59 predecessors in the list according to their priority order. We
60 consider this insn scheduled by setting the pointer to the "end" of
61 the list to point to the previous insn. When an insn has no
62 predecessors, we either queue it until sufficient time has elapsed
63 or add it to the ready list. As the instructions are scheduled or
64 when stalls are introduced, the queue advances and dumps insns into
65 the ready list. When all insns down to the lowest priority have
66 been scheduled, the critical path of the basic block has been made
67 as short as possible. The remaining insns are then scheduled in
68 remaining slots.
69
70 Function unit conflicts are resolved during forward list scheduling
71 by tracking the time when each insn is committed to the schedule
72 and from that, the time the function units it uses must be free.
73 As insns on the ready list are considered for scheduling, those
74 that would result in a blockage of the already committed insns are
75 queued until no blockage will result.
76
77 The following list shows the order in which we want to break ties
78 among insns in the ready list:
79
80 1. choose insn with the longest path to end of bb, ties
81 broken by
82 2. choose insn with least contribution to register pressure,
83 ties broken by
84 3. prefer in-block upon interblock motion, ties broken by
85 4. prefer useful upon speculative motion, ties broken by
86 5. choose insn with largest control flow probability, ties
87 broken by
88 6. choose insn with the least dependences upon the previously
89 scheduled insn, or finally
2db45993
JL
90 7 choose the insn which has the most insns dependent on it.
91 8. choose insn with lowest UID.
8c660648
JL
92
93 Memory references complicate matters. Only if we can be certain
94 that memory references are not part of the data dependency graph
95 (via true, anti, or output dependence), can we move operations past
96 memory references. To first approximation, reads can be done
97 independently, while writes introduce dependencies. Better
98 approximations will yield fewer dependencies.
99
100 Before reload, an extended analysis of interblock data dependences
101 is required for interblock scheduling. This is performed in
102 compute_block_backward_dependences ().
103
104 Dependencies set up by memory references are treated in exactly the
105 same way as other dependencies, by using LOG_LINKS backward
106 dependences. LOG_LINKS are translated into INSN_DEPEND forward
107 dependences for the purpose of forward list scheduling.
108
109 Having optimized the critical path, we may have also unduly
110 extended the lifetimes of some registers. If an operation requires
111 that constants be loaded into registers, it is certainly desirable
112 to load those constants as early as necessary, but no earlier.
113 I.e., it will not do to load up a bunch of registers at the
114 beginning of a basic block only to use them at the end, if they
115 could be loaded later, since this may result in excessive register
116 utilization.
117
118 Note that since branches are never in basic blocks, but only end
119 basic blocks, this pass will not move branches. But that is ok,
120 since we can use GNU's delayed branch scheduling pass to take care
121 of this case.
122
123 Also note that no further optimizations based on algebraic
124 identities are performed, so this pass would be a good one to
125 perform instruction splitting, such as breaking up a multiply
126 instruction into shifts and adds where that is profitable.
127
128 Given the memory aliasing analysis that this pass should perform,
129 it should be possible to remove redundant stores to memory, and to
130 load values from registers instead of hitting memory.
131
132 Before reload, speculative insns are moved only if a 'proof' exists
133 that no exception will be caused by this, and if no live registers
134 exist that inhibit the motion (live registers constraints are not
135 represented by data dependence edges).
136
137 This pass must update information that subsequent passes expect to
138 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
139 reg_n_calls_crossed, and reg_live_length. Also, basic_block_head,
140 basic_block_end.
141
142 The information in the line number notes is carefully retained by
143 this pass. Notes that refer to the starting and ending of
144 exception regions are also carefully retained by this pass. All
145 other NOTE insns are grouped in their same relative order at the
146 beginning of basic blocks and regions that have been scheduled.
147
148 The main entry point for this pass is schedule_insns(), called for
149 each function. The work of the scheduler is organized in three
150 levels: (1) function level: insns are subject to splitting,
151 control-flow-graph is constructed, regions are computed (after
152 reload, each region is of one block), (2) region level: control
153 flow graph attributes required for interblock scheduling are
154 computed (dominators, reachability, etc.), data dependences and
155 priorities are computed, and (3) block level: insns in the block
156 are actually scheduled. */
157\f
8c660648 158#include "config.h"
5835e573 159#include "system.h"
8c660648
JL
160#include "rtl.h"
161#include "basic-block.h"
162#include "regs.h"
163#include "hard-reg-set.h"
164#include "flags.h"
165#include "insn-config.h"
166#include "insn-attr.h"
167#include "except.h"
487a6e06 168#include "toplev.h"
8c660648
JL
169
170extern char *reg_known_equiv_p;
171extern rtx *reg_known_value;
172
173#ifdef INSN_SCHEDULING
174
8c660648
JL
175/* target_units bitmask has 1 for each unit in the cpu. It should be
176 possible to compute this variable from the machine description.
177 But currently it is computed by examinning the insn list. Since
178 this is only needed for visualization, it seems an acceptable
179 solution. (For understanding the mapping of bits to units, see
180 definition of function_units[] in "insn-attrtab.c") */
181
61822835 182static int target_units = 0;
8c660648
JL
183
184/* issue_rate is the number of insns that can be scheduled in the same
185 machine cycle. It can be defined in the config/mach/mach.h file,
186 otherwise we set it to 1. */
187
188static int issue_rate;
189
62d65906
JL
190#ifndef ISSUE_RATE
191#define ISSUE_RATE 1
8c660648
JL
192#endif
193
cc132865 194/* sched-verbose controls the amount of debugging output the
8c660648
JL
195 scheduler prints. It is controlled by -fsched-verbose-N:
196 N>0 and no -DSR : the output is directed to stderr.
197 N>=10 will direct the printouts to stderr (regardless of -dSR).
198 N=1: same as -dSR.
199 N=2: bb's probabilities, detailed ready list info, unit/insn info.
200 N=3: rtl at abort point, control-flow, regions info.
cc132865 201 N=5: dependences info. */
8c660648
JL
202
203#define MAX_RGN_BLOCKS 10
204#define MAX_RGN_INSNS 100
205
8c660648
JL
206static int sched_verbose_param = 0;
207static int sched_verbose = 0;
8c660648
JL
208
209/* nr_inter/spec counts interblock/speculative motion for the function */
210static int nr_inter, nr_spec;
211
212
213/* debugging file. all printouts are sent to dump, which is always set,
214 either to stderr, or to the dump listing file (-dRS). */
215static FILE *dump = 0;
216
217/* fix_sched_param() is called from toplev.c upon detection
218 of the -fsched-***-N options. */
219
220void
221fix_sched_param (param, val)
222 char *param, *val;
223{
cc132865 224 if (!strcmp (param, "verbose"))
8c660648 225 sched_verbose_param = atoi (val);
8c660648
JL
226 else
227 warning ("fix_sched_param: unknown param: %s", param);
228}
229
230
231/* Arrays set up by scheduling for the same respective purposes as
232 similar-named arrays set up by flow analysis. We work with these
233 arrays during the scheduling pass so we can compare values against
234 unscheduled code.
235
236 Values of these arrays are copied at the end of this pass into the
237 arrays set up by flow analysis. */
238static int *sched_reg_n_calls_crossed;
239static int *sched_reg_live_length;
240static int *sched_reg_basic_block;
241
242/* We need to know the current block number during the post scheduling
243 update of live register information so that we can also update
244 REG_BASIC_BLOCK if a register changes blocks. */
245static int current_block_num;
246
247/* Element N is the next insn that sets (hard or pseudo) register
248 N within the current basic block; or zero, if there is no
249 such insn. Needed for new registers which may be introduced
250 by splitting insns. */
251static rtx *reg_last_uses;
252static rtx *reg_last_sets;
253static regset reg_pending_sets;
254static int reg_pending_sets_all;
255
256/* Vector indexed by INSN_UID giving the original ordering of the insns. */
257static int *insn_luid;
258#define INSN_LUID(INSN) (insn_luid[INSN_UID (INSN)])
259
260/* Vector indexed by INSN_UID giving each instruction a priority. */
261static int *insn_priority;
262#define INSN_PRIORITY(INSN) (insn_priority[INSN_UID (INSN)])
263
264static short *insn_costs;
265#define INSN_COST(INSN) insn_costs[INSN_UID (INSN)]
266
267/* Vector indexed by INSN_UID giving an encoding of the function units
268 used. */
269static short *insn_units;
270#define INSN_UNIT(INSN) insn_units[INSN_UID (INSN)]
271
272/* Vector indexed by INSN_UID giving each instruction a register-weight.
273 This weight is an estimation of the insn contribution to registers pressure. */
274static int *insn_reg_weight;
275#define INSN_REG_WEIGHT(INSN) (insn_reg_weight[INSN_UID (INSN)])
276
277/* Vector indexed by INSN_UID giving list of insns which
278 depend upon INSN. Unlike LOG_LINKS, it represents forward dependences. */
279static rtx *insn_depend;
280#define INSN_DEPEND(INSN) insn_depend[INSN_UID (INSN)]
281
282/* Vector indexed by INSN_UID. Initialized to the number of incoming
283 edges in forward dependence graph (= number of LOG_LINKS). As
284 scheduling procedes, dependence counts are decreased. An
285 instruction moves to the ready list when its counter is zero. */
286static int *insn_dep_count;
287#define INSN_DEP_COUNT(INSN) (insn_dep_count[INSN_UID (INSN)])
288
289/* Vector indexed by INSN_UID giving an encoding of the blockage range
290 function. The unit and the range are encoded. */
291static unsigned int *insn_blockage;
292#define INSN_BLOCKAGE(INSN) insn_blockage[INSN_UID (INSN)]
293#define UNIT_BITS 5
294#define BLOCKAGE_MASK ((1 << BLOCKAGE_BITS) - 1)
295#define ENCODE_BLOCKAGE(U, R) \
296((((U) << UNIT_BITS) << BLOCKAGE_BITS \
297 | MIN_BLOCKAGE_COST (R)) << BLOCKAGE_BITS \
298 | MAX_BLOCKAGE_COST (R))
299#define UNIT_BLOCKED(B) ((B) >> (2 * BLOCKAGE_BITS))
300#define BLOCKAGE_RANGE(B) \
301 (((((B) >> BLOCKAGE_BITS) & BLOCKAGE_MASK) << (HOST_BITS_PER_INT / 2)) \
5835e573 302 | ((B) & BLOCKAGE_MASK))
8c660648
JL
303
304/* Encodings of the `<name>_unit_blockage_range' function. */
305#define MIN_BLOCKAGE_COST(R) ((R) >> (HOST_BITS_PER_INT / 2))
306#define MAX_BLOCKAGE_COST(R) ((R) & ((1 << (HOST_BITS_PER_INT / 2)) - 1))
307
308#define DONE_PRIORITY -1
309#define MAX_PRIORITY 0x7fffffff
310#define TAIL_PRIORITY 0x7ffffffe
311#define LAUNCH_PRIORITY 0x7f000001
312#define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
313#define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
314
315/* Vector indexed by INSN_UID giving number of insns referring to this insn. */
316static int *insn_ref_count;
317#define INSN_REF_COUNT(INSN) (insn_ref_count[INSN_UID (INSN)])
318
319/* Vector indexed by INSN_UID giving line-number note in effect for each
320 insn. For line-number notes, this indicates whether the note may be
321 reused. */
322static rtx *line_note;
323#define LINE_NOTE(INSN) (line_note[INSN_UID (INSN)])
324
325/* Vector indexed by basic block number giving the starting line-number
326 for each basic block. */
327static rtx *line_note_head;
328
329/* List of important notes we must keep around. This is a pointer to the
330 last element in the list. */
331static rtx note_list;
332
333/* Regsets telling whether a given register is live or dead before the last
334 scheduled insn. Must scan the instructions once before scheduling to
335 determine what registers are live or dead at the end of the block. */
336static regset bb_live_regs;
337
338/* Regset telling whether a given register is live after the insn currently
339 being scheduled. Before processing an insn, this is equal to bb_live_regs
340 above. This is used so that we can find registers that are newly born/dead
341 after processing an insn. */
342static regset old_live_regs;
343
344/* The chain of REG_DEAD notes. REG_DEAD notes are removed from all insns
345 during the initial scan and reused later. If there are not exactly as
346 many REG_DEAD notes in the post scheduled code as there were in the
347 prescheduled code then we trigger an abort because this indicates a bug. */
348static rtx dead_notes;
349
350/* Queues, etc. */
351
352/* An instruction is ready to be scheduled when all insns preceding it
353 have already been scheduled. It is important to ensure that all
354 insns which use its result will not be executed until its result
355 has been computed. An insn is maintained in one of four structures:
356
357 (P) the "Pending" set of insns which cannot be scheduled until
358 their dependencies have been satisfied.
359 (Q) the "Queued" set of insns that can be scheduled when sufficient
360 time has passed.
361 (R) the "Ready" list of unscheduled, uncommitted insns.
362 (S) the "Scheduled" list of insns.
363
364 Initially, all insns are either "Pending" or "Ready" depending on
365 whether their dependencies are satisfied.
366
367 Insns move from the "Ready" list to the "Scheduled" list as they
368 are committed to the schedule. As this occurs, the insns in the
369 "Pending" list have their dependencies satisfied and move to either
370 the "Ready" list or the "Queued" set depending on whether
371 sufficient time has passed to make them ready. As time passes,
372 insns move from the "Queued" set to the "Ready" list. Insns may
373 move from the "Ready" list to the "Queued" set if they are blocked
374 due to a function unit conflict.
375
376 The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
377 insns, i.e., those that are ready, queued, and pending.
378 The "Queued" set (Q) is implemented by the variable `insn_queue'.
379 The "Ready" list (R) is implemented by the variables `ready' and
380 `n_ready'.
381 The "Scheduled" list (S) is the new insn chain built by this pass.
382
383 The transition (R->S) is implemented in the scheduling loop in
384 `schedule_block' when the best insn to schedule is chosen.
385 The transition (R->Q) is implemented in `queue_insn' when an
38e01259 386 insn is found to have a function unit conflict with the already
8c660648
JL
387 committed insns.
388 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
389 insns move from the ready list to the scheduled list.
390 The transition (Q->R) is implemented in 'queue_to_insn' as time
391 passes or stalls are introduced. */
392
393/* Implement a circular buffer to delay instructions until sufficient
394 time has passed. INSN_QUEUE_SIZE is a power of two larger than
395 MAX_BLOCKAGE and MAX_READY_COST computed by genattr.c. This is the
396 longest time an isnsn may be queued. */
397static rtx insn_queue[INSN_QUEUE_SIZE];
398static int q_ptr = 0;
399static int q_size = 0;
400#define NEXT_Q(X) (((X)+1) & (INSN_QUEUE_SIZE-1))
401#define NEXT_Q_AFTER(X, C) (((X)+C) & (INSN_QUEUE_SIZE-1))
402
403/* Vector indexed by INSN_UID giving the minimum clock tick at which
404 the insn becomes ready. This is used to note timing constraints for
405 insns in the pending list. */
406static int *insn_tick;
407#define INSN_TICK(INSN) (insn_tick[INSN_UID (INSN)])
408
409/* Data structure for keeping track of register information
410 during that register's life. */
411
412struct sometimes
413 {
414 int regno;
415 int live_length;
416 int calls_crossed;
417 };
418
419/* Forward declarations. */
420static void add_dependence PROTO ((rtx, rtx, enum reg_note));
421static void remove_dependence PROTO ((rtx, rtx));
422static rtx find_insn_list PROTO ((rtx, rtx));
423static int insn_unit PROTO ((rtx));
424static unsigned int blockage_range PROTO ((int, rtx));
425static void clear_units PROTO ((void));
426static int actual_hazard_this_instance PROTO ((int, int, rtx, int, int));
427static void schedule_unit PROTO ((int, rtx, int));
428static int actual_hazard PROTO ((int, rtx, int, int));
429static int potential_hazard PROTO ((int, rtx, int));
430static int insn_cost PROTO ((rtx, rtx, rtx));
431static int priority PROTO ((rtx));
432static void free_pending_lists PROTO ((void));
433static void add_insn_mem_dependence PROTO ((rtx *, rtx *, rtx, rtx));
434static void flush_pending_lists PROTO ((rtx, int));
435static void sched_analyze_1 PROTO ((rtx, rtx));
436static void sched_analyze_2 PROTO ((rtx, rtx));
437static void sched_analyze_insn PROTO ((rtx, rtx, rtx));
438static void sched_analyze PROTO ((rtx, rtx));
5835e573 439static void sched_note_set PROTO ((rtx, int));
01c7f350 440static int rank_for_schedule PROTO ((const GENERIC_PTR, const GENERIC_PTR));
8c660648
JL
441static void swap_sort PROTO ((rtx *, int));
442static void queue_insn PROTO ((rtx, int));
443static int schedule_insn PROTO ((rtx, rtx *, int, int));
444static void create_reg_dead_note PROTO ((rtx, rtx));
445static void attach_deaths PROTO ((rtx, rtx, int));
446static void attach_deaths_insn PROTO ((rtx));
447static int new_sometimes_live PROTO ((struct sometimes *, int, int));
448static void finish_sometimes_live PROTO ((struct sometimes *, int));
5835e573 449static int schedule_block PROTO ((int, int));
8c660648 450static rtx regno_use_in PROTO ((int, rtx));
5835e573 451static void split_hard_reg_notes PROTO ((rtx, rtx, rtx));
8c660648
JL
452static void new_insn_dead_notes PROTO ((rtx, rtx, rtx, rtx));
453static void update_n_sets PROTO ((rtx, int));
454static void update_flow_info PROTO ((rtx, rtx, rtx, rtx));
459b3825 455static char *safe_concat PROTO ((char *, char *, char *));
8c660648
JL
456
457/* Main entry point of this file. */
458void schedule_insns PROTO ((FILE *));
459
460/* Mapping of insns to their original block prior to scheduling. */
461static int *insn_orig_block;
462#define INSN_BLOCK(insn) (insn_orig_block[INSN_UID (insn)])
463
464/* Some insns (e.g. call) are not allowed to move across blocks. */
465static char *cant_move;
466#define CANT_MOVE(insn) (cant_move[INSN_UID (insn)])
467
468/* Control flow graph edges are kept in circular lists. */
469typedef struct
470 {
471 int from_block;
472 int to_block;
473 int next_in;
474 int next_out;
475 }
476edge;
477static edge *edge_table;
478
479#define NEXT_IN(edge) (edge_table[edge].next_in)
480#define NEXT_OUT(edge) (edge_table[edge].next_out)
481#define FROM_BLOCK(edge) (edge_table[edge].from_block)
482#define TO_BLOCK(edge) (edge_table[edge].to_block)
483
484/* Number of edges in the control flow graph. (in fact larger than
485 that by 1, since edge 0 is unused.) */
486static int nr_edges;
487
488/* Circular list of incoming/outgoing edges of a block */
489static int *in_edges;
490static int *out_edges;
491
492#define IN_EDGES(block) (in_edges[block])
493#define OUT_EDGES(block) (out_edges[block])
494
495/* List of labels which cannot be deleted, needed for control
496 flow graph construction. */
497extern rtx forced_labels;
498
499
168cbdf9 500static int is_cfg_nonregular PROTO ((void));
a2e68776
JL
501static int build_control_flow PROTO ((int_list_ptr *, int_list_ptr *,
502 int *, int *));
8c660648
JL
503static void new_edge PROTO ((int, int));
504
505
506/* A region is the main entity for interblock scheduling: insns
507 are allowed to move between blocks in the same region, along
508 control flow graph edges, in the 'up' direction. */
509typedef struct
510 {
511 int rgn_nr_blocks; /* number of blocks in region */
512 int rgn_blocks; /* blocks in the region (actually index in rgn_bb_table) */
513 }
514region;
515
516/* Number of regions in the procedure */
517static int nr_regions;
518
519/* Table of region descriptions */
520static region *rgn_table;
521
522/* Array of lists of regions' blocks */
523static int *rgn_bb_table;
524
525/* Topological order of blocks in the region (if b2 is reachable from
526 b1, block_to_bb[b2] > block_to_bb[b1]).
527 Note: A basic block is always referred to by either block or b,
528 while its topological order name (in the region) is refered to by
529 bb.
530 */
531static int *block_to_bb;
532
533/* The number of the region containing a block. */
534static int *containing_rgn;
535
536#define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
537#define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
538#define BLOCK_TO_BB(block) (block_to_bb[block])
539#define CONTAINING_RGN(block) (containing_rgn[block])
540
541void debug_regions PROTO ((void));
542static void find_single_block_region PROTO ((void));
a2e68776
JL
543static void find_rgns PROTO ((int_list_ptr *, int_list_ptr *,
544 int *, int *, sbitmap *));
8c660648
JL
545static int too_large PROTO ((int, int *, int *));
546
547extern void debug_live PROTO ((int, int));
548
549/* Blocks of the current region being scheduled. */
550static int current_nr_blocks;
551static int current_blocks;
552
553/* The mapping from bb to block */
554#define BB_TO_BLOCK(bb) (rgn_bb_table[current_blocks + (bb)])
555
556
557/* Bit vectors and bitset operations are needed for computations on
558 the control flow graph. */
559
560typedef unsigned HOST_WIDE_INT *bitset;
561typedef struct
562 {
563 int *first_member; /* pointer to the list start in bitlst_table. */
564 int nr_members; /* the number of members of the bit list. */
565 }
566bitlst;
567
61822835
JL
568static int bitlst_table_last;
569static int bitlst_table_size;
8c660648
JL
570static int *bitlst_table;
571
572static char bitset_member PROTO ((bitset, int, int));
573static void extract_bitlst PROTO ((bitset, int, bitlst *));
574
575/* target info declarations.
576
577 The block currently being scheduled is referred to as the "target" block,
578 while other blocks in the region from which insns can be moved to the
579 target are called "source" blocks. The candidate structure holds info
580 about such sources: are they valid? Speculative? Etc. */
581typedef bitlst bblst;
582typedef struct
583 {
584 char is_valid;
585 char is_speculative;
586 int src_prob;
587 bblst split_bbs;
588 bblst update_bbs;
589 }
590candidate;
591
592static candidate *candidate_table;
593
594/* A speculative motion requires checking live information on the path
595 from 'source' to 'target'. The split blocks are those to be checked.
596 After a speculative motion, live information should be modified in
597 the 'update' blocks.
598
599 Lists of split and update blocks for each candidate of the current
600 target are in array bblst_table */
61822835 601static int *bblst_table, bblst_size, bblst_last;
8c660648
JL
602
603#define IS_VALID(src) ( candidate_table[src].is_valid )
604#define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
605#define SRC_PROB(src) ( candidate_table[src].src_prob )
606
607/* The bb being currently scheduled. */
61822835 608static int target_bb;
8c660648
JL
609
610/* List of edges. */
611typedef bitlst edgelst;
612
613/* target info functions */
614static void split_edges PROTO ((int, int, edgelst *));
615static void compute_trg_info PROTO ((int));
616void debug_candidate PROTO ((int));
617void debug_candidates PROTO ((int));
618
619
620/* Bit-set of bbs, where bit 'i' stands for bb 'i'. */
621typedef bitset bbset;
622
623/* Number of words of the bbset. */
61822835 624static int bbset_size;
8c660648
JL
625
626/* Dominators array: dom[i] contains the bbset of dominators of
627 bb i in the region. */
61822835 628static bbset *dom;
8c660648
JL
629
630/* bb 0 is the only region entry */
631#define IS_RGN_ENTRY(bb) (!bb)
632
633/* Is bb_src dominated by bb_trg. */
634#define IS_DOMINATED(bb_src, bb_trg) \
635( bitset_member (dom[bb_src], bb_trg, bbset_size) )
636
637/* Probability: Prob[i] is a float in [0, 1] which is the probability
638 of bb i relative to the region entry. */
61822835 639static float *prob;
8c660648
JL
640
641/* The probability of bb_src, relative to bb_trg. Note, that while the
642 'prob[bb]' is a float in [0, 1], this macro returns an integer
643 in [0, 100]. */
644#define GET_SRC_PROB(bb_src, bb_trg) ((int) (100.0 * (prob[bb_src] / \
645 prob[bb_trg])))
646
647/* Bit-set of edges, where bit i stands for edge i. */
648typedef bitset edgeset;
649
650/* Number of edges in the region. */
61822835 651static int rgn_nr_edges;
8c660648
JL
652
653/* Array of size rgn_nr_edges. */
61822835 654static int *rgn_edges;
8c660648
JL
655
656/* Number of words in an edgeset. */
61822835 657static int edgeset_size;
8c660648
JL
658
659/* Mapping from each edge in the graph to its number in the rgn. */
61822835 660static int *edge_to_bit;
8c660648
JL
661#define EDGE_TO_BIT(edge) (edge_to_bit[edge])
662
663/* The split edges of a source bb is different for each target
664 bb. In order to compute this efficiently, the 'potential-split edges'
665 are computed for each bb prior to scheduling a region. This is actually
666 the split edges of each bb relative to the region entry.
667
668 pot_split[bb] is the set of potential split edges of bb. */
61822835 669static edgeset *pot_split;
8c660648
JL
670
671/* For every bb, a set of its ancestor edges. */
61822835 672static edgeset *ancestor_edges;
8c660648
JL
673
674static void compute_dom_prob_ps PROTO ((int));
675
676#define ABS_VALUE(x) (((x)<0)?(-(x)):(x))
677#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (INSN_BLOCK (INSN))))
678#define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (INSN_BLOCK (INSN))))
679#define INSN_BB(INSN) (BLOCK_TO_BB (INSN_BLOCK (INSN)))
680
681/* parameters affecting the decision of rank_for_schedule() */
682#define MIN_DIFF_PRIORITY 2
683#define MIN_PROBABILITY 40
684#define MIN_PROB_DIFF 10
685
686/* speculative scheduling functions */
687static int check_live_1 PROTO ((int, rtx));
688static void update_live_1 PROTO ((int, rtx));
5835e573
KG
689static int check_live PROTO ((rtx, int));
690static void update_live PROTO ((rtx, int));
8c660648
JL
691static void set_spec_fed PROTO ((rtx));
692static int is_pfree PROTO ((rtx, int, int));
693static int find_conditional_protection PROTO ((rtx, int));
694static int is_conditionally_protected PROTO ((rtx, int, int));
695static int may_trap_exp PROTO ((rtx, int));
ac957f13 696static int haifa_classify_insn PROTO ((rtx));
e009aaf3 697static int is_prisky PROTO ((rtx, int, int));
8c660648
JL
698static int is_exception_free PROTO ((rtx, int, int));
699
700static char find_insn_mem_list PROTO ((rtx, rtx, rtx, rtx));
701static void compute_block_forward_dependences PROTO ((int));
702static void init_rgn_data_dependences PROTO ((int));
703static void add_branch_dependences PROTO ((rtx, rtx));
704static void compute_block_backward_dependences PROTO ((int));
705void debug_dependencies PROTO ((void));
706
707/* Notes handling mechanism:
708 =========================
709 Generally, NOTES are saved before scheduling and restored after scheduling.
710 The scheduler distinguishes between three types of notes:
711
712 (1) LINE_NUMBER notes, generated and used for debugging. Here,
713 before scheduling a region, a pointer to the LINE_NUMBER note is
714 added to the insn following it (in save_line_notes()), and the note
715 is removed (in rm_line_notes() and unlink_line_notes()). After
716 scheduling the region, this pointer is used for regeneration of
717 the LINE_NUMBER note (in restore_line_notes()).
718
719 (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
720 Before scheduling a region, a pointer to the note is added to the insn
721 that follows or precedes it. (This happens as part of the data dependence
722 computation). After scheduling an insn, the pointer contained in it is
723 used for regenerating the corresponding note (in reemit_notes).
724
725 (3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
726 these notes are put in a list (in rm_other_notes() and
727 unlink_other_notes ()). After scheduling the block, these notes are
728 inserted at the beginning of the block (in schedule_block()). */
729
730static rtx unlink_other_notes PROTO ((rtx, rtx));
731static rtx unlink_line_notes PROTO ((rtx, rtx));
732static void rm_line_notes PROTO ((int));
733static void save_line_notes PROTO ((int));
734static void restore_line_notes PROTO ((int));
735static void rm_redundant_line_notes PROTO ((void));
736static void rm_other_notes PROTO ((rtx, rtx));
737static rtx reemit_notes PROTO ((rtx, rtx));
738
739static void get_block_head_tail PROTO ((int, rtx *, rtx *));
740
741static void find_pre_sched_live PROTO ((int));
742static void find_post_sched_live PROTO ((int));
743static void update_reg_usage PROTO ((void));
c6a754f2 744static int queue_to_ready PROTO ((rtx [], int));
8c660648
JL
745
746void debug_ready_list PROTO ((rtx[], int));
747static void init_target_units PROTO (());
748static void insn_print_units PROTO ((rtx));
749static int get_visual_tbl_length PROTO (());
750static void init_block_visualization PROTO (());
751static void print_block_visualization PROTO ((int, char *));
752static void visualize_scheduled_insns PROTO ((int, int));
753static void visualize_no_unit PROTO ((rtx));
754static void visualize_stall_cycles PROTO ((int, int));
755static void print_exp PROTO ((char *, rtx, int));
756static void print_value PROTO ((char *, rtx, int));
757static void print_pattern PROTO ((char *, rtx, int));
758static void print_insn PROTO ((char *, rtx, int));
759void debug_reg_vector PROTO ((regset));
760
761static rtx move_insn1 PROTO ((rtx, rtx));
762static rtx move_insn PROTO ((rtx, rtx));
763static rtx group_leader PROTO ((rtx));
764static int set_priorities PROTO ((int));
765static void init_rtx_vector PROTO ((rtx **, rtx *, int, int));
766static void schedule_region PROTO ((int));
767static void split_block_insns PROTO ((int));
768
769#endif /* INSN_SCHEDULING */
770\f
771#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
772
773/* Helper functions for instruction scheduling. */
774
ebb7b10b
RH
775/* An INSN_LIST containing all INSN_LISTs allocated but currently unused. */
776static rtx unused_insn_list;
777
778/* An EXPR_LIST containing all EXPR_LISTs allocated but currently unused. */
779static rtx unused_expr_list;
780
781static void free_list PROTO ((rtx *, rtx *));
782static rtx alloc_INSN_LIST PROTO ((rtx, rtx));
783static rtx alloc_EXPR_LIST PROTO ((int, rtx, rtx));
784
785static void
786free_list (listp, unused_listp)
787 rtx *listp, *unused_listp;
788{
789 register rtx link, prev_link;
790
791 if (*listp == 0)
792 return;
793
794 prev_link = *listp;
795 link = XEXP (prev_link, 1);
796
797 while (link)
798 {
799 prev_link = link;
800 link = XEXP (link, 1);
801 }
802
803 XEXP (prev_link, 1) = *unused_listp;
804 *unused_listp = *listp;
805 *listp = 0;
806}
807
459b3825 808static rtx
ebb7b10b
RH
809alloc_INSN_LIST (val, next)
810 rtx val, next;
811{
812 rtx r;
813
814 if (unused_insn_list)
815 {
816 r = unused_insn_list;
817 unused_insn_list = XEXP (r, 1);
818 XEXP (r, 0) = val;
819 XEXP (r, 1) = next;
820 PUT_REG_NOTE_KIND (r, VOIDmode);
821 }
822 else
823 r = gen_rtx_INSN_LIST (VOIDmode, val, next);
824
825 return r;
826}
827
459b3825 828static rtx
ebb7b10b
RH
829alloc_EXPR_LIST (kind, val, next)
830 int kind;
831 rtx val, next;
832{
833 rtx r;
834
835 if (unused_insn_list)
836 {
837 r = unused_insn_list;
838 unused_insn_list = XEXP (r, 1);
839 XEXP (r, 0) = val;
840 XEXP (r, 1) = next;
841 PUT_REG_NOTE_KIND (r, kind);
842 }
843 else
844 r = gen_rtx_EXPR_LIST (kind, val, next);
845
846 return r;
847}
848
8c660648
JL
849/* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
850 LOG_LINKS of INSN, if not already there. DEP_TYPE indicates the type
851 of dependence that this link represents. */
852
853static void
854add_dependence (insn, elem, dep_type)
855 rtx insn;
856 rtx elem;
857 enum reg_note dep_type;
858{
859 rtx link, next;
860
861 /* Don't depend an insn on itself. */
862 if (insn == elem)
863 return;
864
865 /* If elem is part of a sequence that must be scheduled together, then
866 make the dependence point to the last insn of the sequence.
867 When HAVE_cc0, it is possible for NOTEs to exist between users and
868 setters of the condition codes, so we must skip past notes here.
869 Otherwise, NOTEs are impossible here. */
870
871 next = NEXT_INSN (elem);
872
873#ifdef HAVE_cc0
874 while (next && GET_CODE (next) == NOTE)
875 next = NEXT_INSN (next);
876#endif
877
878 if (next && SCHED_GROUP_P (next)
879 && GET_CODE (next) != CODE_LABEL)
880 {
881 /* Notes will never intervene here though, so don't bother checking
882 for them. */
883 /* We must reject CODE_LABELs, so that we don't get confused by one
884 that has LABEL_PRESERVE_P set, which is represented by the same
885 bit in the rtl as SCHED_GROUP_P. A CODE_LABEL can never be
886 SCHED_GROUP_P. */
887 while (NEXT_INSN (next) && SCHED_GROUP_P (NEXT_INSN (next))
888 && GET_CODE (NEXT_INSN (next)) != CODE_LABEL)
889 next = NEXT_INSN (next);
890
891 /* Again, don't depend an insn on itself. */
892 if (insn == next)
893 return;
894
895 /* Make the dependence to NEXT, the last insn of the group, instead
896 of the original ELEM. */
897 elem = next;
898 }
899
900#ifdef INSN_SCHEDULING
901 /* (This code is guarded by INSN_SCHEDULING, otherwise INSN_BB is undefined.)
902 No need for interblock dependences with calls, since
903 calls are not moved between blocks. Note: the edge where
904 elem is a CALL is still required. */
905 if (GET_CODE (insn) == CALL_INSN
906 && (INSN_BB (elem) != INSN_BB (insn)))
907 return;
908
909#endif
910
911 /* Check that we don't already have this dependence. */
912 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
913 if (XEXP (link, 0) == elem)
914 {
915 /* If this is a more restrictive type of dependence than the existing
916 one, then change the existing dependence to this type. */
917 if ((int) dep_type < (int) REG_NOTE_KIND (link))
918 PUT_REG_NOTE_KIND (link, dep_type);
919 return;
920 }
921 /* Might want to check one level of transitivity to save conses. */
922
ebb7b10b
RH
923 link = alloc_INSN_LIST (elem, LOG_LINKS (insn));
924 LOG_LINKS (insn) = link;
925
8c660648
JL
926 /* Insn dependency, not data dependency. */
927 PUT_REG_NOTE_KIND (link, dep_type);
8c660648
JL
928}
929
930/* Remove ELEM wrapped in an INSN_LIST from the LOG_LINKS
931 of INSN. Abort if not found. */
932
933static void
934remove_dependence (insn, elem)
935 rtx insn;
936 rtx elem;
937{
ebb7b10b 938 rtx prev, link, next;
8c660648
JL
939 int found = 0;
940
ebb7b10b 941 for (prev = 0, link = LOG_LINKS (insn); link; link = next)
8c660648 942 {
ebb7b10b 943 next = XEXP (link, 1);
8c660648
JL
944 if (XEXP (link, 0) == elem)
945 {
946 if (prev)
ebb7b10b 947 XEXP (prev, 1) = next;
8c660648 948 else
ebb7b10b
RH
949 LOG_LINKS (insn) = next;
950
951 XEXP (link, 1) = unused_insn_list;
952 unused_insn_list = link;
953
8c660648
JL
954 found = 1;
955 }
6d8ccdbb
JL
956 else
957 prev = link;
8c660648
JL
958 }
959
960 if (!found)
961 abort ();
962 return;
963}
964\f
965#ifndef INSN_SCHEDULING
966void
967schedule_insns (dump_file)
968 FILE *dump_file;
969{
970}
971#else
972#ifndef __GNUC__
973#define __inline
974#endif
975
cbb13457
MM
976#ifndef HAIFA_INLINE
977#define HAIFA_INLINE __inline
978#endif
979
8c660648
JL
980/* Computation of memory dependencies. */
981
982/* The *_insns and *_mems are paired lists. Each pending memory operation
983 will have a pointer to the MEM rtx on one list and a pointer to the
984 containing insn on the other list in the same place in the list. */
985
986/* We can't use add_dependence like the old code did, because a single insn
987 may have multiple memory accesses, and hence needs to be on the list
988 once for each memory access. Add_dependence won't let you add an insn
989 to a list more than once. */
990
991/* An INSN_LIST containing all insns with pending read operations. */
992static rtx pending_read_insns;
993
994/* An EXPR_LIST containing all MEM rtx's which are pending reads. */
995static rtx pending_read_mems;
996
997/* An INSN_LIST containing all insns with pending write operations. */
998static rtx pending_write_insns;
999
1000/* An EXPR_LIST containing all MEM rtx's which are pending writes. */
1001static rtx pending_write_mems;
1002
1003/* Indicates the combined length of the two pending lists. We must prevent
1004 these lists from ever growing too large since the number of dependencies
1005 produced is at least O(N*N), and execution time is at least O(4*N*N), as
1006 a function of the length of these pending lists. */
1007
1008static int pending_lists_length;
1009
8c660648
JL
1010/* The last insn upon which all memory references must depend.
1011 This is an insn which flushed the pending lists, creating a dependency
1012 between it and all previously pending memory references. This creates
1013 a barrier (or a checkpoint) which no memory reference is allowed to cross.
1014
1015 This includes all non constant CALL_INSNs. When we do interprocedural
1016 alias analysis, this restriction can be relaxed.
1017 This may also be an INSN that writes memory if the pending lists grow
1018 too large. */
1019
1020static rtx last_pending_memory_flush;
1021
1022/* The last function call we have seen. All hard regs, and, of course,
1023 the last function call, must depend on this. */
1024
1025static rtx last_function_call;
1026
1027/* The LOG_LINKS field of this is a list of insns which use a pseudo register
1028 that does not already cross a call. We create dependencies between each
1029 of those insn and the next call insn, to ensure that they won't cross a call
1030 after scheduling is done. */
1031
1032static rtx sched_before_next_call;
1033
1034/* Pointer to the last instruction scheduled. Used by rank_for_schedule,
1035 so that insns independent of the last scheduled insn will be preferred
1036 over dependent instructions. */
1037
1038static rtx last_scheduled_insn;
1039
1040/* Data structures for the computation of data dependences in a regions. We
1041 keep one copy of each of the declared above variables for each bb in the
1042 region. Before analyzing the data dependences for a bb, its variables
1043 are initialized as a function of the variables of its predecessors. When
1044 the analysis for a bb completes, we save the contents of each variable X
1045 to a corresponding bb_X[bb] variable. For example, pending_read_insns is
1046 copied to bb_pending_read_insns[bb]. Another change is that few
1047 variables are now a list of insns rather than a single insn:
1048 last_pending_memory_flash, last_function_call, reg_last_sets. The
1049 manipulation of these variables was changed appropriately. */
1050
1051static rtx **bb_reg_last_uses;
1052static rtx **bb_reg_last_sets;
1053
1054static rtx *bb_pending_read_insns;
1055static rtx *bb_pending_read_mems;
1056static rtx *bb_pending_write_insns;
1057static rtx *bb_pending_write_mems;
1058static int *bb_pending_lists_length;
1059
1060static rtx *bb_last_pending_memory_flush;
1061static rtx *bb_last_function_call;
1062static rtx *bb_sched_before_next_call;
1063
1064/* functions for construction of the control flow graph. */
1065
1066/* Return 1 if control flow graph should not be constructed, 0 otherwise.
168cbdf9 1067
8c660648 1068 We decide not to build the control flow graph if there is possibly more
168cbdf9
JL
1069 than one entry to the function, if computed branches exist, of if we
1070 have nonlocal gotos. */
8c660648 1071
168cbdf9 1072static int
8c660648
JL
1073is_cfg_nonregular ()
1074{
1075 int b;
1076 rtx insn;
1077 RTX_CODE code;
1078
168cbdf9
JL
1079 /* If we have a label that could be the target of a nonlocal goto, then
1080 the cfg is not well structured. */
1081 if (nonlocal_label_rtx_list () != NULL)
1082 return 1;
8c660648 1083
168cbdf9 1084 /* If we have any forced labels, then the cfg is not well structured. */
8c660648 1085 if (forced_labels)
168cbdf9 1086 return 1;
8c660648 1087
4d1d8045
BS
1088 /* If this function has a computed jump, then we consider the cfg
1089 not well structured. */
1090 if (current_function_has_computed_jump)
1091 return 1;
1092
168cbdf9
JL
1093 /* If we have exception handlers, then we consider the cfg not well
1094 structured. ?!? We should be able to handle this now that flow.c
1095 computes an accurate cfg for EH. */
8c660648 1096 if (exception_handler_labels)
168cbdf9 1097 return 1;
8c660648 1098
168cbdf9
JL
1099 /* If we have non-jumping insns which refer to labels, then we consider
1100 the cfg not well structured. */
8c660648
JL
1101 /* check for labels referred to other thn by jumps */
1102 for (b = 0; b < n_basic_blocks; b++)
1103 for (insn = basic_block_head[b];; insn = NEXT_INSN (insn))
1104 {
1105 code = GET_CODE (insn);
1106 if (GET_RTX_CLASS (code) == 'i')
1107 {
1108 rtx note;
1109
1110 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1111 if (REG_NOTE_KIND (note) == REG_LABEL)
168cbdf9 1112 return 1;
8c660648
JL
1113 }
1114
1115 if (insn == basic_block_end[b])
1116 break;
1117 }
1118
168cbdf9 1119 /* All the tests passed. Consider the cfg well structured. */
8c660648
JL
1120 return 0;
1121}
1122
5ece9746
JL
1123/* Build the control flow graph and set nr_edges.
1124
1125 Instead of trying to build a cfg ourselves, we rely on flow to
168cbdf9 1126 do it for us. Stamp out useless code (and bug) duplication.
8c660648 1127
168cbdf9
JL
1128 Return nonzero if an irregularity in the cfg is found which would
1129 prevent cross block scheduling. */
1130
1131static int
a2e68776
JL
1132build_control_flow (s_preds, s_succs, num_preds, num_succs)
1133 int_list_ptr *s_preds;
1134 int_list_ptr *s_succs;
1135 int *num_preds;
1136 int *num_succs;
8c660648 1137{
081f5e7e 1138 int i;
5ece9746 1139 int_list_ptr succ;
168cbdf9 1140 int unreachable;
5ece9746 1141
168cbdf9
JL
1142 /* Count the number of edges in the cfg. */
1143 nr_edges = 0;
1144 unreachable = 0;
1145 for (i = 0; i < n_basic_blocks; i++)
1146 {
1147 nr_edges += num_succs[i];
15ebe47d
JL
1148
1149 /* Unreachable loops with more than one basic block are detected
1150 during the DFS traversal in find_rgns.
1151
1152 Unreachable loops with a single block are detected here. This
1153 test is redundant with the one in find_rgns, but it's much
1154 cheaper to go ahead and catch the trivial case here. */
a8afd67b
JW
1155 if (num_preds[i] == 0
1156 || (num_preds[i] == 1 && INT_LIST_VAL (s_preds[i]) == i))
168cbdf9
JL
1157 unreachable = 1;
1158 }
1159
1160 /* Account for entry/exit edges. */
1161 nr_edges += 2;
1162
1163 in_edges = (int *) xmalloc (n_basic_blocks * sizeof (int));
1164 out_edges = (int *) xmalloc (n_basic_blocks * sizeof (int));
1165 bzero ((char *) in_edges, n_basic_blocks * sizeof (int));
1166 bzero ((char *) out_edges, n_basic_blocks * sizeof (int));
1167
1168 edge_table = (edge *) xmalloc ((nr_edges) * sizeof (edge));
1169 bzero ((char *) edge_table, ((nr_edges) * sizeof (edge)));
1170
8c660648
JL
1171 nr_edges = 0;
1172 for (i = 0; i < n_basic_blocks; i++)
5ece9746
JL
1173 for (succ = s_succs[i]; succ; succ = succ->next)
1174 {
1175 if (INT_LIST_VAL (succ) != EXIT_BLOCK)
1176 new_edge (i, INT_LIST_VAL (succ));
1177 }
8c660648
JL
1178
1179 /* increment by 1, since edge 0 is unused. */
1180 nr_edges++;
1181
168cbdf9 1182 return unreachable;
8c660648
JL
1183}
1184
1185
5ece9746 1186/* Record an edge in the control flow graph from SOURCE to TARGET.
8c660648 1187
5ece9746
JL
1188 In theory, this is redundant with the s_succs computed above, but
1189 we have not converted all of haifa to use information from the
1190 integer lists. */
8c660648
JL
1191
1192static void
1193new_edge (source, target)
1194 int source, target;
1195{
1196 int e, next_edge;
1197 int curr_edge, fst_edge;
1198
1199 /* check for duplicates */
1200 fst_edge = curr_edge = OUT_EDGES (source);
1201 while (curr_edge)
1202 {
1203 if (FROM_BLOCK (curr_edge) == source
1204 && TO_BLOCK (curr_edge) == target)
1205 {
1206 return;
1207 }
1208
1209 curr_edge = NEXT_OUT (curr_edge);
1210
1211 if (fst_edge == curr_edge)
1212 break;
1213 }
1214
1215 e = ++nr_edges;
1216
1217 FROM_BLOCK (e) = source;
1218 TO_BLOCK (e) = target;
1219
1220 if (OUT_EDGES (source))
1221 {
1222 next_edge = NEXT_OUT (OUT_EDGES (source));
1223 NEXT_OUT (OUT_EDGES (source)) = e;
1224 NEXT_OUT (e) = next_edge;
1225 }
1226 else
1227 {
1228 OUT_EDGES (source) = e;
1229 NEXT_OUT (e) = e;
1230 }
1231
1232 if (IN_EDGES (target))
1233 {
1234 next_edge = NEXT_IN (IN_EDGES (target));
1235 NEXT_IN (IN_EDGES (target)) = e;
1236 NEXT_IN (e) = next_edge;
1237 }
1238 else
1239 {
1240 IN_EDGES (target) = e;
1241 NEXT_IN (e) = e;
1242 }
1243}
1244
1245
1246/* BITSET macros for operations on the control flow graph. */
1247
1248/* Compute bitwise union of two bitsets. */
1249#define BITSET_UNION(set1, set2, len) \
1250do { register bitset tp = set1, sp = set2; \
1251 register int i; \
1252 for (i = 0; i < len; i++) \
1253 *(tp++) |= *(sp++); } while (0)
1254
1255/* Compute bitwise intersection of two bitsets. */
1256#define BITSET_INTER(set1, set2, len) \
1257do { register bitset tp = set1, sp = set2; \
1258 register int i; \
1259 for (i = 0; i < len; i++) \
1260 *(tp++) &= *(sp++); } while (0)
1261
1262/* Compute bitwise difference of two bitsets. */
1263#define BITSET_DIFFER(set1, set2, len) \
1264do { register bitset tp = set1, sp = set2; \
1265 register int i; \
1266 for (i = 0; i < len; i++) \
1267 *(tp++) &= ~*(sp++); } while (0)
1268
1269/* Inverts every bit of bitset 'set' */
1270#define BITSET_INVERT(set, len) \
1271do { register bitset tmpset = set; \
1272 register int i; \
1273 for (i = 0; i < len; i++, tmpset++) \
1274 *tmpset = ~*tmpset; } while (0)
1275
1276/* Turn on the index'th bit in bitset set. */
1277#define BITSET_ADD(set, index, len) \
1278{ \
1279 if (index >= HOST_BITS_PER_WIDE_INT * len) \
1280 abort (); \
1281 else \
1282 set[index/HOST_BITS_PER_WIDE_INT] |= \
1283 1 << (index % HOST_BITS_PER_WIDE_INT); \
1284}
1285
1286/* Turn off the index'th bit in set. */
1287#define BITSET_REMOVE(set, index, len) \
1288{ \
1289 if (index >= HOST_BITS_PER_WIDE_INT * len) \
1290 abort (); \
1291 else \
1292 set[index/HOST_BITS_PER_WIDE_INT] &= \
1293 ~(1 << (index%HOST_BITS_PER_WIDE_INT)); \
1294}
1295
1296
1297/* Check if the index'th bit in bitset set is on. */
1298
1299static char
1300bitset_member (set, index, len)
1301 bitset set;
1302 int index, len;
1303{
1304 if (index >= HOST_BITS_PER_WIDE_INT * len)
1305 abort ();
1306 return (set[index / HOST_BITS_PER_WIDE_INT] &
1307 1 << (index % HOST_BITS_PER_WIDE_INT)) ? 1 : 0;
1308}
1309
1310
1311/* Translate a bit-set SET to a list BL of the bit-set members. */
1312
1313static void
1314extract_bitlst (set, len, bl)
1315 bitset set;
1316 int len;
1317 bitlst *bl;
1318{
1319 int i, j, offset;
1320 unsigned HOST_WIDE_INT word;
1321
1322 /* bblst table space is reused in each call to extract_bitlst */
1323 bitlst_table_last = 0;
1324
1325 bl->first_member = &bitlst_table[bitlst_table_last];
1326 bl->nr_members = 0;
1327
1328 for (i = 0; i < len; i++)
1329 {
1330 word = set[i];
1331 offset = i * HOST_BITS_PER_WIDE_INT;
1332 for (j = 0; word; j++)
1333 {
1334 if (word & 1)
1335 {
1336 bitlst_table[bitlst_table_last++] = offset;
1337 (bl->nr_members)++;
1338 }
1339 word >>= 1;
1340 ++offset;
1341 }
1342 }
1343
1344}
1345
1346
1347/* functions for the construction of regions */
1348
1349/* Print the regions, for debugging purposes. Callable from debugger. */
1350
1351void
1352debug_regions ()
1353{
1354 int rgn, bb;
1355
1356 fprintf (dump, "\n;; ------------ REGIONS ----------\n\n");
1357 for (rgn = 0; rgn < nr_regions; rgn++)
1358 {
1359 fprintf (dump, ";;\trgn %d nr_blocks %d:\n", rgn,
1360 rgn_table[rgn].rgn_nr_blocks);
1361 fprintf (dump, ";;\tbb/block: ");
1362
1363 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
1364 {
1365 current_blocks = RGN_BLOCKS (rgn);
1366
1367 if (bb != BLOCK_TO_BB (BB_TO_BLOCK (bb)))
1368 abort ();
1369
1370 fprintf (dump, " %d/%d ", bb, BB_TO_BLOCK (bb));
1371 }
1372
1373 fprintf (dump, "\n\n");
1374 }
1375}
1376
1377
1378/* Build a single block region for each basic block in the function.
1379 This allows for using the same code for interblock and basic block
1380 scheduling. */
1381
1382static void
1383find_single_block_region ()
1384{
1385 int i;
1386
1387 for (i = 0; i < n_basic_blocks; i++)
1388 {
1389 rgn_bb_table[i] = i;
1390 RGN_NR_BLOCKS (i) = 1;
1391 RGN_BLOCKS (i) = i;
1392 CONTAINING_RGN (i) = i;
1393 BLOCK_TO_BB (i) = 0;
1394 }
1395 nr_regions = n_basic_blocks;
1396}
1397
1398
1399/* Update number of blocks and the estimate for number of insns
1400 in the region. Return 1 if the region is "too large" for interblock
1401 scheduling (compile time considerations), otherwise return 0. */
1402
1403static int
1404too_large (block, num_bbs, num_insns)
1405 int block, *num_bbs, *num_insns;
1406{
1407 (*num_bbs)++;
1408 (*num_insns) += (INSN_LUID (basic_block_end[block]) -
1409 INSN_LUID (basic_block_head[block]));
cc132865 1410 if ((*num_bbs > MAX_RGN_BLOCKS) || (*num_insns > MAX_RGN_INSNS))
8c660648
JL
1411 return 1;
1412 else
1413 return 0;
1414}
1415
1416
1417/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
1418 is still an inner loop. Put in max_hdr[blk] the header of the most inner
1419 loop containing blk. */
1420#define UPDATE_LOOP_RELATIONS(blk, hdr) \
1421{ \
1422 if (max_hdr[blk] == -1) \
1423 max_hdr[blk] = hdr; \
1424 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
a2e68776 1425 RESET_BIT (inner, hdr); \
8c660648
JL
1426 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
1427 { \
a2e68776 1428 RESET_BIT (inner,max_hdr[blk]); \
8c660648
JL
1429 max_hdr[blk] = hdr; \
1430 } \
1431}
1432
1433
a2e68776
JL
1434/* Find regions for interblock scheduling.
1435
1436 A region for scheduling can be:
1437
1438 * A loop-free procedure, or
1439
1440 * A reducible inner loop, or
1441
1442 * A basic block not contained in any other region.
1443
1444
1445 ?!? In theory we could build other regions based on extended basic
1446 blocks or reverse extended basic blocks. Is it worth the trouble?
1447
1448 Loop blocks that form a region are put into the region's block list
1449 in topological order.
1450
1451 This procedure stores its results into the following global (ick) variables
1452
1453 * rgn_nr
1454 * rgn_table
1455 * rgn_bb_table
1456 * block_to_bb
1457 * containing region
1458
1459
1460 We use dominator relationships to avoid making regions out of non-reducible
1461 loops.
8c660648 1462
a2e68776
JL
1463 This procedure needs to be converted to work on pred/succ lists instead
1464 of edge tables. That would simplify it somewhat. */
8c660648
JL
1465
1466static void
a2e68776
JL
1467find_rgns (s_preds, s_succs, num_preds, num_succs, dom)
1468 int_list_ptr *s_preds;
1469 int_list_ptr *s_succs;
1470 int *num_preds;
1471 int *num_succs;
1472 sbitmap *dom;
8c660648
JL
1473{
1474 int *max_hdr, *dfs_nr, *stack, *queue, *degree;
a2e68776 1475 char no_loops = 1;
487a6e06 1476 int node, child, loop_head, i, head, tail;
8c660648 1477 int count = 0, sp, idx = 0, current_edge = out_edges[0];
15ebe47d 1478 int num_bbs, num_insns, unreachable;
8c660648 1479 int too_large_failure;
8c660648 1480
a2e68776
JL
1481 /* Note if an edge has been passed. */
1482 sbitmap passed;
1483
1484 /* Note if a block is a natural loop header. */
1485 sbitmap header;
1486
1487 /* Note if a block is an natural inner loop header. */
1488 sbitmap inner;
1489
1490 /* Note if a block is in the block queue. */
1491 sbitmap in_queue;
1492
cc132865
JL
1493 /* Note if a block is in the block queue. */
1494 sbitmap in_stack;
1495
a2e68776
JL
1496 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
1497 and a mapping from block to its loop header (if the block is contained
1498 in a loop, else -1).
1499
1500 Store results in HEADER, INNER, and MAX_HDR respectively, these will
1501 be used as inputs to the second traversal.
1502
1503 STACK, SP and DFS_NR are only used during the first traversal. */
1504
1505 /* Allocate and initialize variables for the first traversal. */
8c660648
JL
1506 max_hdr = (int *) alloca (n_basic_blocks * sizeof (int));
1507 dfs_nr = (int *) alloca (n_basic_blocks * sizeof (int));
52b7724b 1508 bzero ((char *) dfs_nr, n_basic_blocks * sizeof (int));
8c660648 1509 stack = (int *) alloca (nr_edges * sizeof (int));
8c660648 1510
a2e68776
JL
1511 inner = sbitmap_alloc (n_basic_blocks);
1512 sbitmap_ones (inner);
1513
1514 header = sbitmap_alloc (n_basic_blocks);
1515 sbitmap_zero (header);
8c660648 1516
a2e68776
JL
1517 passed = sbitmap_alloc (nr_edges);
1518 sbitmap_zero (passed);
1519
1520 in_queue = sbitmap_alloc (n_basic_blocks);
1521 sbitmap_zero (in_queue);
8c660648 1522
cc132865
JL
1523 in_stack = sbitmap_alloc (n_basic_blocks);
1524 sbitmap_zero (in_stack);
1525
8c660648 1526 for (i = 0; i < n_basic_blocks; i++)
a2e68776 1527 max_hdr[i] = -1;
8c660648 1528
a2e68776 1529 /* DFS traversal to find inner loops in the cfg. */
8c660648 1530
8c660648
JL
1531 sp = -1;
1532 while (1)
1533 {
a2e68776 1534 if (current_edge == 0 || TEST_BIT (passed, current_edge))
8c660648 1535 {
a2e68776 1536 /* We have reached a leaf node or a node that was already
cc132865 1537 processed. Pop edges off the stack until we find
a2e68776
JL
1538 an edge that has not yet been processed. */
1539 while (sp >= 0
1540 && (current_edge == 0 || TEST_BIT (passed, current_edge)))
8c660648 1541 {
a2e68776 1542 /* Pop entry off the stack. */
8c660648
JL
1543 current_edge = stack[sp--];
1544 node = FROM_BLOCK (current_edge);
1545 child = TO_BLOCK (current_edge);
cc132865
JL
1546 RESET_BIT (in_stack, child);
1547 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
8c660648
JL
1548 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
1549 current_edge = NEXT_OUT (current_edge);
1550 }
1551
a2e68776
JL
1552 /* See if have finished the DFS tree traversal. */
1553 if (sp < 0 && TEST_BIT (passed, current_edge))
8c660648 1554 break;
a2e68776
JL
1555
1556 /* Nope, continue the traversal with the popped node. */
8c660648
JL
1557 continue;
1558 }
1559
a2e68776 1560 /* Process a node. */
8c660648 1561 node = FROM_BLOCK (current_edge);
8c660648 1562 child = TO_BLOCK (current_edge);
cc132865 1563 SET_BIT (in_stack, node);
a2e68776 1564 dfs_nr[node] = ++count;
8c660648 1565
cc132865
JL
1566 /* If the successor is in the stack, then we've found a loop.
1567 Mark the loop, if it is not a natural loop, then it will
1568 be rejected during the second traversal. */
1569 if (TEST_BIT (in_stack, child))
8c660648
JL
1570 {
1571 no_loops = 0;
a2e68776 1572 SET_BIT (header, child);
8c660648 1573 UPDATE_LOOP_RELATIONS (node, child);
a2e68776 1574 SET_BIT (passed, current_edge);
8c660648
JL
1575 current_edge = NEXT_OUT (current_edge);
1576 continue;
1577 }
1578
a2e68776
JL
1579 /* If the child was already visited, then there is no need to visit
1580 it again. Just update the loop relationships and restart
1581 with a new edge. */
8c660648
JL
1582 if (dfs_nr[child])
1583 {
cc132865 1584 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
8c660648 1585 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
a2e68776 1586 SET_BIT (passed, current_edge);
8c660648
JL
1587 current_edge = NEXT_OUT (current_edge);
1588 continue;
1589 }
1590
a2e68776 1591 /* Push an entry on the stack and continue DFS traversal. */
8c660648 1592 stack[++sp] = current_edge;
a2e68776 1593 SET_BIT (passed, current_edge);
8c660648 1594 current_edge = OUT_EDGES (child);
a2e68776 1595 }
8c660648 1596
15ebe47d
JL
1597 /* Another check for unreachable blocks. The earlier test in
1598 is_cfg_nonregular only finds unreachable blocks that do not
1599 form a loop.
a2e68776 1600
15ebe47d
JL
1601 The DFS traversal will mark every block that is reachable from
1602 the entry node by placing a nonzero value in dfs_nr. Thus if
1603 dfs_nr is zero for any block, then it must be unreachable. */
1604 unreachable = 0;
1605 for (i = 0; i < n_basic_blocks; i++)
1606 if (dfs_nr[i] == 0)
1607 {
1608 unreachable = 1;
1609 break;
1610 }
a2e68776
JL
1611
1612 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
1613 to hold degree counts. */
1614 degree = dfs_nr;
8c660648 1615
a2e68776 1616 /* Compute the in-degree of every block in the graph */
8c660648 1617 for (i = 0; i < n_basic_blocks; i++)
a2e68776
JL
1618 degree[i] = num_preds[i];
1619
15ebe47d
JL
1620 /* Do not perform region scheduling if there are any unreachable
1621 blocks. */
1622 if (!unreachable)
8c660648 1623 {
15ebe47d
JL
1624 if (no_loops)
1625 SET_BIT (header, 0);
8c660648 1626
15ebe47d
JL
1627 /* Second travsersal:find reducible inner loops and topologically sort
1628 block of each region. */
8c660648 1629
15ebe47d 1630 queue = (int *) alloca (n_basic_blocks * sizeof (int));
8c660648 1631
cc132865
JL
1632 /* Find blocks which are inner loop headers. We still have non-reducible
1633 loops to consider at this point. */
15ebe47d
JL
1634 for (i = 0; i < n_basic_blocks; i++)
1635 {
1636 if (TEST_BIT (header, i) && TEST_BIT (inner, i))
1637 {
1638 int_list_ptr ps;
cc132865
JL
1639 int j;
1640
1641 /* Now check that the loop is reducible. We do this separate
1642 from finding inner loops so that we do not find a reducible
1643 loop which contains an inner non-reducible loop.
1644
1645 A simple way to find reducible/natrual loops is to verify
1646 that each block in the loop is dominated by the loop
1647 header.
1648
1649 If there exists a block that is not dominated by the loop
1650 header, then the block is reachable from outside the loop
1651 and thus the loop is not a natural loop. */
1652 for (j = 0; j < n_basic_blocks; j++)
1653 {
1654 /* First identify blocks in the loop, except for the loop
1655 entry block. */
1656 if (i == max_hdr[j] && i != j)
1657 {
1658 /* Now verify that the block is dominated by the loop
1659 header. */
1660 if (!TEST_BIT (dom[j], i))
1661 break;
1662 }
1663 }
1664
1665 /* If we exited the loop early, then I is the header of a non
1666 reducible loop and we should quit processing it now. */
1667 if (j != n_basic_blocks)
1668 continue;
8c660648 1669
cc132865
JL
1670 /* I is a header of an inner loop, or block 0 in a subroutine
1671 with no loops at all. */
15ebe47d
JL
1672 head = tail = -1;
1673 too_large_failure = 0;
1674 loop_head = max_hdr[i];
8c660648 1675
15ebe47d 1676 /* Decrease degree of all I's successors for topological
a59bfd78 1677 ordering. */
15ebe47d
JL
1678 for (ps = s_succs[i]; ps; ps = ps->next)
1679 if (INT_LIST_VAL (ps) != EXIT_BLOCK
1680 && INT_LIST_VAL (ps) != ENTRY_BLOCK)
cc132865 1681 --degree[INT_LIST_VAL(ps)];
a2e68776 1682
15ebe47d
JL
1683 /* Estimate # insns, and count # blocks in the region. */
1684 num_bbs = 1;
1685 num_insns = (INSN_LUID (basic_block_end[i])
1686 - INSN_LUID (basic_block_head[i]));
8c660648 1687
15ebe47d
JL
1688
1689 /* Find all loop latches (blocks which back edges to the loop
1690 header) or all the leaf blocks in the cfg has no loops.
1691
1692 Place those blocks into the queue. */
1693 if (no_loops)
1694 {
1695 for (j = 0; j < n_basic_blocks; j++)
1696 /* Leaf nodes have only a single successor which must
1697 be EXIT_BLOCK. */
1698 if (num_succs[j] == 1
1699 && INT_LIST_VAL (s_succs[j]) == EXIT_BLOCK)
8c660648 1700 {
15ebe47d
JL
1701 queue[++tail] = j;
1702 SET_BIT (in_queue, j);
1703
1704 if (too_large (j, &num_bbs, &num_insns))
1705 {
1706 too_large_failure = 1;
1707 break;
1708 }
8c660648 1709 }
15ebe47d
JL
1710 }
1711 else
8c660648 1712 {
15ebe47d 1713 int_list_ptr ps;
a2e68776 1714
15ebe47d 1715 for (ps = s_preds[i]; ps; ps = ps->next)
8c660648 1716 {
15ebe47d 1717 node = INT_LIST_VAL (ps);
8c660648 1718
15ebe47d
JL
1719 if (node == ENTRY_BLOCK || node == EXIT_BLOCK)
1720 continue;
1721
1722 if (max_hdr[node] == loop_head && node != i)
8c660648 1723 {
15ebe47d
JL
1724 /* This is a loop latch. */
1725 queue[++tail] = node;
1726 SET_BIT (in_queue, node);
1727
1728 if (too_large (node, &num_bbs, &num_insns))
1729 {
1730 too_large_failure = 1;
1731 break;
1732 }
8c660648 1733 }
15ebe47d 1734
8c660648 1735 }
8c660648 1736 }
8c660648 1737
15ebe47d 1738 /* Now add all the blocks in the loop to the queue.
a2e68776
JL
1739
1740 We know the loop is a natural loop; however the algorithm
1741 above will not always mark certain blocks as being in the
1742 loop. Consider:
1743 node children
1744 a b,c
1745 b c
1746 c a,d
1747 d b
1748
1749
1750 The algorithm in the DFS traversal may not mark B & D as part
1751 of the loop (ie they will not have max_hdr set to A).
1752
1753 We know they can not be loop latches (else they would have
1754 had max_hdr set since they'd have a backedge to a dominator
1755 block). So we don't need them on the initial queue.
1756
1757 We know they are part of the loop because they are dominated
1758 by the loop header and can be reached by a backwards walk of
1759 the edges starting with nodes on the initial queue.
1760
1761 It is safe and desirable to include those nodes in the
1762 loop/scheduling region. To do so we would need to decrease
1763 the degree of a node if it is the target of a backedge
1764 within the loop itself as the node is placed in the queue.
1765
1766 We do not do this because I'm not sure that the actual
1767 scheduling code will properly handle this case. ?!? */
1768
15ebe47d 1769 while (head < tail && !too_large_failure)
8c660648 1770 {
15ebe47d
JL
1771 int_list_ptr ps;
1772 child = queue[++head];
8c660648 1773
15ebe47d 1774 for (ps = s_preds[child]; ps; ps = ps->next)
8c660648 1775 {
15ebe47d 1776 node = INT_LIST_VAL (ps);
8c660648 1777
15ebe47d
JL
1778 /* See discussion above about nodes not marked as in
1779 this loop during the initial DFS traversal. */
1780 if (node == ENTRY_BLOCK || node == EXIT_BLOCK
1781 || max_hdr[node] != loop_head)
8c660648 1782 {
15ebe47d 1783 tail = -1;
8c660648
JL
1784 break;
1785 }
15ebe47d
JL
1786 else if (!TEST_BIT (in_queue, node) && node != i)
1787 {
1788 queue[++tail] = node;
1789 SET_BIT (in_queue, node);
1790
1791 if (too_large (node, &num_bbs, &num_insns))
1792 {
1793 too_large_failure = 1;
1794 break;
1795 }
1796 }
8c660648 1797 }
8c660648 1798 }
8c660648 1799
15ebe47d
JL
1800 if (tail >= 0 && !too_large_failure)
1801 {
1802 /* Place the loop header into list of region blocks. */
1803 degree[i] = -1;
1804 rgn_bb_table[idx] = i;
1805 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1806 RGN_BLOCKS (nr_regions) = idx++;
1807 CONTAINING_RGN (i) = nr_regions;
1808 BLOCK_TO_BB (i) = count = 0;
1809
1810 /* Remove blocks from queue[] when their in degree becomes
a2e68776
JL
1811 zero. Repeat until no blocks are left on the list. This
1812 produces a topological list of blocks in the region. */
15ebe47d 1813 while (tail >= 0)
8c660648 1814 {
15ebe47d
JL
1815 int_list_ptr ps;
1816
1817 if (head < 0)
1818 head = tail;
1819 child = queue[head];
1820 if (degree[child] == 0)
1821 {
1822 degree[child] = -1;
1823 rgn_bb_table[idx++] = child;
1824 BLOCK_TO_BB (child) = ++count;
1825 CONTAINING_RGN (child) = nr_regions;
1826 queue[head] = queue[tail--];
1827
1828 for (ps = s_succs[child]; ps; ps = ps->next)
1829 if (INT_LIST_VAL (ps) != ENTRY_BLOCK
1830 && INT_LIST_VAL (ps) != EXIT_BLOCK)
1831 --degree[INT_LIST_VAL (ps)];
1832 }
1833 else
1834 --head;
8c660648 1835 }
15ebe47d 1836 ++nr_regions;
8c660648 1837 }
8c660648
JL
1838 }
1839 }
1840 }
1841
a2e68776
JL
1842 /* Any block that did not end up in a region is placed into a region
1843 by itself. */
8c660648
JL
1844 for (i = 0; i < n_basic_blocks; i++)
1845 if (degree[i] >= 0)
1846 {
1847 rgn_bb_table[idx] = i;
1848 RGN_NR_BLOCKS (nr_regions) = 1;
1849 RGN_BLOCKS (nr_regions) = idx++;
1850 CONTAINING_RGN (i) = nr_regions++;
1851 BLOCK_TO_BB (i) = 0;
1852 }
1853
a2e68776
JL
1854 free (passed);
1855 free (header);
1856 free (inner);
1857 free (in_queue);
cc132865 1858 free (in_stack);
a2e68776 1859}
8c660648
JL
1860
1861
1862/* functions for regions scheduling information */
1863
1864/* Compute dominators, probability, and potential-split-edges of bb.
1865 Assume that these values were already computed for bb's predecessors. */
1866
1867static void
1868compute_dom_prob_ps (bb)
1869 int bb;
1870{
1871 int nxt_in_edge, fst_in_edge, pred;
1872 int fst_out_edge, nxt_out_edge, nr_out_edges, nr_rgn_out_edges;
1873
1874 prob[bb] = 0.0;
1875 if (IS_RGN_ENTRY (bb))
1876 {
1877 BITSET_ADD (dom[bb], 0, bbset_size);
1878 prob[bb] = 1.0;
1879 return;
1880 }
1881
1882 fst_in_edge = nxt_in_edge = IN_EDGES (BB_TO_BLOCK (bb));
1883
1884 /* intialize dom[bb] to '111..1' */
1885 BITSET_INVERT (dom[bb], bbset_size);
1886
1887 do
1888 {
1889 pred = FROM_BLOCK (nxt_in_edge);
1890 BITSET_INTER (dom[bb], dom[BLOCK_TO_BB (pred)], bbset_size);
1891
1892 BITSET_UNION (ancestor_edges[bb], ancestor_edges[BLOCK_TO_BB (pred)],
1893 edgeset_size);
1894
1895 BITSET_ADD (ancestor_edges[bb], EDGE_TO_BIT (nxt_in_edge), edgeset_size);
1896
1897 nr_out_edges = 1;
1898 nr_rgn_out_edges = 0;
1899 fst_out_edge = OUT_EDGES (pred);
1900 nxt_out_edge = NEXT_OUT (fst_out_edge);
1901 BITSET_UNION (pot_split[bb], pot_split[BLOCK_TO_BB (pred)],
1902 edgeset_size);
1903
1904 BITSET_ADD (pot_split[bb], EDGE_TO_BIT (fst_out_edge), edgeset_size);
1905
1906 /* the successor doesn't belong the region? */
1907 if (CONTAINING_RGN (TO_BLOCK (fst_out_edge)) !=
1908 CONTAINING_RGN (BB_TO_BLOCK (bb)))
1909 ++nr_rgn_out_edges;
1910
1911 while (fst_out_edge != nxt_out_edge)
1912 {
1913 ++nr_out_edges;
1914 /* the successor doesn't belong the region? */
1915 if (CONTAINING_RGN (TO_BLOCK (nxt_out_edge)) !=
1916 CONTAINING_RGN (BB_TO_BLOCK (bb)))
1917 ++nr_rgn_out_edges;
1918 BITSET_ADD (pot_split[bb], EDGE_TO_BIT (nxt_out_edge), edgeset_size);
1919 nxt_out_edge = NEXT_OUT (nxt_out_edge);
1920
1921 }
1922
1923 /* now nr_rgn_out_edges is the number of region-exit edges from pred,
1924 and nr_out_edges will be the number of pred out edges not leaving
1925 the region. */
1926 nr_out_edges -= nr_rgn_out_edges;
1927 if (nr_rgn_out_edges > 0)
1928 prob[bb] += 0.9 * prob[BLOCK_TO_BB (pred)] / nr_out_edges;
1929 else
1930 prob[bb] += prob[BLOCK_TO_BB (pred)] / nr_out_edges;
1931 nxt_in_edge = NEXT_IN (nxt_in_edge);
1932 }
1933 while (fst_in_edge != nxt_in_edge);
1934
1935 BITSET_ADD (dom[bb], bb, bbset_size);
1936 BITSET_DIFFER (pot_split[bb], ancestor_edges[bb], edgeset_size);
1937
1938 if (sched_verbose >= 2)
1939 fprintf (dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb), (int) (100.0 * prob[bb]));
1940} /* compute_dom_prob_ps */
1941
1942/* functions for target info */
1943
1944/* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1945 Note that bb_trg dominates bb_src. */
1946
1947static void
1948split_edges (bb_src, bb_trg, bl)
1949 int bb_src;
1950 int bb_trg;
1951 edgelst *bl;
1952{
1953 int es = edgeset_size;
1954 edgeset src = (edgeset) alloca (es * sizeof (HOST_WIDE_INT));
1955
1956 while (es--)
1957 src[es] = (pot_split[bb_src])[es];
1958 BITSET_DIFFER (src, pot_split[bb_trg], edgeset_size);
1959 extract_bitlst (src, edgeset_size, bl);
1960}
1961
1962
1963/* Find the valid candidate-source-blocks for the target block TRG, compute
1964 their probability, and check if they are speculative or not.
1965 For speculative sources, compute their update-blocks and split-blocks. */
1966
1967static void
1968compute_trg_info (trg)
1969 int trg;
1970{
1971 register candidate *sp;
1972 edgelst el;
1973 int check_block, update_idx;
1974 int i, j, k, fst_edge, nxt_edge;
1975
1976 /* define some of the fields for the target bb as well */
1977 sp = candidate_table + trg;
1978 sp->is_valid = 1;
1979 sp->is_speculative = 0;
1980 sp->src_prob = 100;
1981
1982 for (i = trg + 1; i < current_nr_blocks; i++)
1983 {
1984 sp = candidate_table + i;
1985
1986 sp->is_valid = IS_DOMINATED (i, trg);
1987 if (sp->is_valid)
1988 {
1989 sp->src_prob = GET_SRC_PROB (i, trg);
1990 sp->is_valid = (sp->src_prob >= MIN_PROBABILITY);
1991 }
1992
1993 if (sp->is_valid)
1994 {
1995 split_edges (i, trg, &el);
1996 sp->is_speculative = (el.nr_members) ? 1 : 0;
1997 if (sp->is_speculative && !flag_schedule_speculative)
1998 sp->is_valid = 0;
1999 }
2000
2001 if (sp->is_valid)
2002 {
2003 sp->split_bbs.first_member = &bblst_table[bblst_last];
2004 sp->split_bbs.nr_members = el.nr_members;
2005 for (j = 0; j < el.nr_members; bblst_last++, j++)
2006 bblst_table[bblst_last] =
2007 TO_BLOCK (rgn_edges[el.first_member[j]]);
2008 sp->update_bbs.first_member = &bblst_table[bblst_last];
2009 update_idx = 0;
2010 for (j = 0; j < el.nr_members; j++)
2011 {
2012 check_block = FROM_BLOCK (rgn_edges[el.first_member[j]]);
2013 fst_edge = nxt_edge = OUT_EDGES (check_block);
2014 do
2015 {
2016 for (k = 0; k < el.nr_members; k++)
2017 if (EDGE_TO_BIT (nxt_edge) == el.first_member[k])
2018 break;
2019
2020 if (k >= el.nr_members)
2021 {
2022 bblst_table[bblst_last++] = TO_BLOCK (nxt_edge);
2023 update_idx++;
2024 }
2025
2026 nxt_edge = NEXT_OUT (nxt_edge);
2027 }
2028 while (fst_edge != nxt_edge);
2029 }
2030 sp->update_bbs.nr_members = update_idx;
2031
2032 }
2033 else
2034 {
2035 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
2036
2037 sp->is_speculative = 0;
2038 sp->src_prob = 0;
2039 }
2040 }
2041} /* compute_trg_info */
2042
2043
2044/* Print candidates info, for debugging purposes. Callable from debugger. */
2045
2046void
2047debug_candidate (i)
2048 int i;
2049{
2050 if (!candidate_table[i].is_valid)
2051 return;
2052
2053 if (candidate_table[i].is_speculative)
2054 {
2055 int j;
2056 fprintf (dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
2057
2058 fprintf (dump, "split path: ");
2059 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
2060 {
2061 int b = candidate_table[i].split_bbs.first_member[j];
2062
2063 fprintf (dump, " %d ", b);
2064 }
2065 fprintf (dump, "\n");
2066
2067 fprintf (dump, "update path: ");
2068 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
2069 {
2070 int b = candidate_table[i].update_bbs.first_member[j];
2071
2072 fprintf (dump, " %d ", b);
2073 }
2074 fprintf (dump, "\n");
2075 }
2076 else
2077 {
2078 fprintf (dump, " src %d equivalent\n", BB_TO_BLOCK (i));
2079 }
2080}
2081
2082
2083/* Print candidates info, for debugging purposes. Callable from debugger. */
2084
2085void
2086debug_candidates (trg)
2087 int trg;
2088{
2089 int i;
2090
2091 fprintf (dump, "----------- candidate table: target: b=%d bb=%d ---\n",
2092 BB_TO_BLOCK (trg), trg);
2093 for (i = trg + 1; i < current_nr_blocks; i++)
2094 debug_candidate (i);
2095}
2096
2097
2098/* functions for speculative scheduing */
2099
2100/* Return 0 if x is a set of a register alive in the beginning of one
2101 of the split-blocks of src, otherwise return 1. */
2102
2103static int
2104check_live_1 (src, x)
2105 int src;
2106 rtx x;
2107{
5835e573 2108 register int i;
8c660648
JL
2109 register int regno;
2110 register rtx reg = SET_DEST (x);
2111
2112 if (reg == 0)
2113 return 1;
2114
2115 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
2116 || GET_CODE (reg) == SIGN_EXTRACT
2117 || GET_CODE (reg) == STRICT_LOW_PART)
2118 reg = XEXP (reg, 0);
2119
2120 if (GET_CODE (reg) != REG)
2121 return 1;
2122
2123 regno = REGNO (reg);
2124
2125 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2126 {
2127 /* Global registers are assumed live */
2128 return 0;
2129 }
2130 else
2131 {
2132 if (regno < FIRST_PSEUDO_REGISTER)
2133 {
2134 /* check for hard registers */
2135 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2136 while (--j >= 0)
2137 {
2138 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
2139 {
2140 int b = candidate_table[src].split_bbs.first_member[i];
2141
2142 if (REGNO_REG_SET_P (basic_block_live_at_start[b], regno + j))
2143 {
2144 return 0;
2145 }
2146 }
2147 }
2148 }
2149 else
2150 {
2151 /* check for psuedo registers */
2152 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
2153 {
2154 int b = candidate_table[src].split_bbs.first_member[i];
2155
2156 if (REGNO_REG_SET_P (basic_block_live_at_start[b], regno))
2157 {
2158 return 0;
2159 }
2160 }
2161 }
2162 }
2163
2164 return 1;
2165}
2166
2167
2168/* If x is a set of a register R, mark that R is alive in the beginning
2169 of every update-block of src. */
2170
2171static void
2172update_live_1 (src, x)
2173 int src;
2174 rtx x;
2175{
5835e573 2176 register int i;
8c660648
JL
2177 register int regno;
2178 register rtx reg = SET_DEST (x);
2179
2180 if (reg == 0)
2181 return;
2182
2183 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
2184 || GET_CODE (reg) == SIGN_EXTRACT
2185 || GET_CODE (reg) == STRICT_LOW_PART)
2186 reg = XEXP (reg, 0);
2187
2188 if (GET_CODE (reg) != REG)
2189 return;
2190
2191 /* Global registers are always live, so the code below does not apply
2192 to them. */
2193
2194 regno = REGNO (reg);
2195
2196 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
2197 {
2198 if (regno < FIRST_PSEUDO_REGISTER)
2199 {
2200 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2201 while (--j >= 0)
2202 {
2203 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
2204 {
2205 int b = candidate_table[src].update_bbs.first_member[i];
2206
2207 SET_REGNO_REG_SET (basic_block_live_at_start[b], regno + j);
2208 }
2209 }
2210 }
2211 else
2212 {
2213 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
2214 {
2215 int b = candidate_table[src].update_bbs.first_member[i];
2216
2217 SET_REGNO_REG_SET (basic_block_live_at_start[b], regno);
2218 }
2219 }
2220 }
2221}
2222
2223
2224/* Return 1 if insn can be speculatively moved from block src to trg,
2225 otherwise return 0. Called before first insertion of insn to
2226 ready-list or before the scheduling. */
2227
2228static int
5835e573 2229check_live (insn, src)
8c660648
JL
2230 rtx insn;
2231 int src;
8c660648
JL
2232{
2233 /* find the registers set by instruction */
2234 if (GET_CODE (PATTERN (insn)) == SET
2235 || GET_CODE (PATTERN (insn)) == CLOBBER)
2236 return check_live_1 (src, PATTERN (insn));
2237 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2238 {
2239 int j;
2240 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
2241 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
2242 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
2243 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
2244 return 0;
2245
2246 return 1;
2247 }
2248
2249 return 1;
2250}
2251
2252
2253/* Update the live registers info after insn was moved speculatively from
2254 block src to trg. */
2255
2256static void
5835e573 2257update_live (insn, src)
8c660648 2258 rtx insn;
5835e573 2259 int src;
8c660648
JL
2260{
2261 /* find the registers set by instruction */
2262 if (GET_CODE (PATTERN (insn)) == SET
2263 || GET_CODE (PATTERN (insn)) == CLOBBER)
2264 update_live_1 (src, PATTERN (insn));
2265 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2266 {
2267 int j;
2268 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
2269 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
2270 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
2271 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
2272 }
2273}
2274
2275/* Exception Free Loads:
2276
2277 We define five classes of speculative loads: IFREE, IRISKY,
2278 PFREE, PRISKY, and MFREE.
2279
2280 IFREE loads are loads that are proved to be exception-free, just
2281 by examining the load insn. Examples for such loads are loads
2282 from TOC and loads of global data.
2283
2284 IRISKY loads are loads that are proved to be exception-risky,
2285 just by examining the load insn. Examples for such loads are
2286 volatile loads and loads from shared memory.
2287
2288 PFREE loads are loads for which we can prove, by examining other
2289 insns, that they are exception-free. Currently, this class consists
2290 of loads for which we are able to find a "similar load", either in
2291 the target block, or, if only one split-block exists, in that split
2292 block. Load2 is similar to load1 if both have same single base
2293 register. We identify only part of the similar loads, by finding
2294 an insn upon which both load1 and load2 have a DEF-USE dependence.
2295
2296 PRISKY loads are loads for which we can prove, by examining other
2297 insns, that they are exception-risky. Currently we have two proofs for
2298 such loads. The first proof detects loads that are probably guarded by a
2299 test on the memory address. This proof is based on the
2300 backward and forward data dependence information for the region.
2301 Let load-insn be the examined load.
2302 Load-insn is PRISKY iff ALL the following hold:
2303
2304 - insn1 is not in the same block as load-insn
2305 - there is a DEF-USE dependence chain (insn1, ..., load-insn)
2306 - test-insn is either a compare or a branch, not in the same block as load-insn
2307 - load-insn is reachable from test-insn
2308 - there is a DEF-USE dependence chain (insn1, ..., test-insn)
2309
2310 This proof might fail when the compare and the load are fed
2311 by an insn not in the region. To solve this, we will add to this
2312 group all loads that have no input DEF-USE dependence.
2313
2314 The second proof detects loads that are directly or indirectly
2315 fed by a speculative load. This proof is affected by the
2316 scheduling process. We will use the flag fed_by_spec_load.
2317 Initially, all insns have this flag reset. After a speculative
2318 motion of an insn, if insn is either a load, or marked as
2319 fed_by_spec_load, we will also mark as fed_by_spec_load every
2320 insn1 for which a DEF-USE dependence (insn, insn1) exists. A
2321 load which is fed_by_spec_load is also PRISKY.
2322
2323 MFREE (maybe-free) loads are all the remaining loads. They may be
2324 exception-free, but we cannot prove it.
2325
2326 Now, all loads in IFREE and PFREE classes are considered
2327 exception-free, while all loads in IRISKY and PRISKY classes are
2328 considered exception-risky. As for loads in the MFREE class,
2329 these are considered either exception-free or exception-risky,
2330 depending on whether we are pessimistic or optimistic. We have
2331 to take the pessimistic approach to assure the safety of
2332 speculative scheduling, but we can take the optimistic approach
2333 by invoking the -fsched_spec_load_dangerous option. */
2334
2335enum INSN_TRAP_CLASS
2336{
2337 TRAP_FREE = 0, IFREE = 1, PFREE_CANDIDATE = 2,
2338 PRISKY_CANDIDATE = 3, IRISKY = 4, TRAP_RISKY = 5
2339};
2340
2341#define WORST_CLASS(class1, class2) \
2342((class1 > class2) ? class1 : class2)
2343
2344/* Indexed by INSN_UID, and set if there's DEF-USE dependence between */
2345/* some speculatively moved load insn and this one. */
2346char *fed_by_spec_load;
2347char *is_load_insn;
2348
2349/* Non-zero if block bb_to is equal to, or reachable from block bb_from. */
2350#define IS_REACHABLE(bb_from, bb_to) \
2351(bb_from == bb_to \
2352 || IS_RGN_ENTRY (bb_from) \
2353 || (bitset_member (ancestor_edges[bb_to], \
2354 EDGE_TO_BIT (IN_EDGES (BB_TO_BLOCK (bb_from))), \
2355 edgeset_size)))
2356#define FED_BY_SPEC_LOAD(insn) (fed_by_spec_load[INSN_UID (insn)])
2357#define IS_LOAD_INSN(insn) (is_load_insn[INSN_UID (insn)])
2358
2359/* Non-zero iff the address is comprised from at most 1 register */
2360#define CONST_BASED_ADDRESS_P(x) \
2361 (GET_CODE (x) == REG \
2362 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
2363 || (GET_CODE (x) == LO_SUM)) \
2364 && (GET_CODE (XEXP (x, 0)) == CONST_INT \
2365 || GET_CODE (XEXP (x, 1)) == CONST_INT)))
2366
2367/* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
2368
2369static void
2370set_spec_fed (load_insn)
2371 rtx load_insn;
2372{
2373 rtx link;
2374
2375 for (link = INSN_DEPEND (load_insn); link; link = XEXP (link, 1))
2376 if (GET_MODE (link) == VOIDmode)
2377 FED_BY_SPEC_LOAD (XEXP (link, 0)) = 1;
2378} /* set_spec_fed */
2379
2380/* On the path from the insn to load_insn_bb, find a conditional branch */
2381/* depending on insn, that guards the speculative load. */
2382
2383static int
2384find_conditional_protection (insn, load_insn_bb)
2385 rtx insn;
2386 int load_insn_bb;
2387{
2388 rtx link;
2389
2390 /* iterate through DEF-USE forward dependences */
2391 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
2392 {
2393 rtx next = XEXP (link, 0);
2394 if ((CONTAINING_RGN (INSN_BLOCK (next)) ==
2395 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
2396 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
2397 && load_insn_bb != INSN_BB (next)
2398 && GET_MODE (link) == VOIDmode
2399 && (GET_CODE (next) == JUMP_INSN
2400 || find_conditional_protection (next, load_insn_bb)))
2401 return 1;
2402 }
2403 return 0;
2404} /* find_conditional_protection */
2405
2406/* Returns 1 if the same insn1 that participates in the computation
2407 of load_insn's address is feeding a conditional branch that is
2408 guarding on load_insn. This is true if we find a the two DEF-USE
2409 chains:
2410 insn1 -> ... -> conditional-branch
2411 insn1 -> ... -> load_insn,
2412 and if a flow path exist:
2413 insn1 -> ... -> conditional-branch -> ... -> load_insn,
2414 and if insn1 is on the path
2415 region-entry -> ... -> bb_trg -> ... load_insn.
2416
2417 Locate insn1 by climbing on LOG_LINKS from load_insn.
2418 Locate the branch by following INSN_DEPEND from insn1. */
2419
2420static int
2421is_conditionally_protected (load_insn, bb_src, bb_trg)
2422 rtx load_insn;
2423 int bb_src, bb_trg;
2424{
2425 rtx link;
2426
2427 for (link = LOG_LINKS (load_insn); link; link = XEXP (link, 1))
2428 {
2429 rtx insn1 = XEXP (link, 0);
2430
2431 /* must be a DEF-USE dependence upon non-branch */
2432 if (GET_MODE (link) != VOIDmode
2433 || GET_CODE (insn1) == JUMP_INSN)
2434 continue;
2435
2436 /* must exist a path: region-entry -> ... -> bb_trg -> ... load_insn */
2437 if (INSN_BB (insn1) == bb_src
2438 || (CONTAINING_RGN (INSN_BLOCK (insn1))
2439 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
2440 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
2441 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
2442 continue;
2443
2444 /* now search for the conditional-branch */
2445 if (find_conditional_protection (insn1, bb_src))
2446 return 1;
2447
2448 /* recursive step: search another insn1, "above" current insn1. */
2449 return is_conditionally_protected (insn1, bb_src, bb_trg);
2450 }
2451
2452 /* the chain does not exsist */
2453 return 0;
2454} /* is_conditionally_protected */
2455
2456/* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
2457 load_insn can move speculatively from bb_src to bb_trg. All the
2458 following must hold:
2459
2460 (1) both loads have 1 base register (PFREE_CANDIDATEs).
2461 (2) load_insn and load1 have a def-use dependence upon
2462 the same insn 'insn1'.
2463 (3) either load2 is in bb_trg, or:
2464 - there's only one split-block, and
2465 - load1 is on the escape path, and
2466
2467 From all these we can conclude that the two loads access memory
2468 addresses that differ at most by a constant, and hence if moving
2469 load_insn would cause an exception, it would have been caused by
2470 load2 anyhow. */
2471
2472static int
2473is_pfree (load_insn, bb_src, bb_trg)
2474 rtx load_insn;
2475 int bb_src, bb_trg;
2476{
2477 rtx back_link;
2478 register candidate *candp = candidate_table + bb_src;
2479
2480 if (candp->split_bbs.nr_members != 1)
2481 /* must have exactly one escape block */
2482 return 0;
2483
2484 for (back_link = LOG_LINKS (load_insn);
2485 back_link; back_link = XEXP (back_link, 1))
2486 {
2487 rtx insn1 = XEXP (back_link, 0);
2488
2489 if (GET_MODE (back_link) == VOIDmode)
2490 {
2491 /* found a DEF-USE dependence (insn1, load_insn) */
2492 rtx fore_link;
2493
2494 for (fore_link = INSN_DEPEND (insn1);
2495 fore_link; fore_link = XEXP (fore_link, 1))
2496 {
2497 rtx insn2 = XEXP (fore_link, 0);
2498 if (GET_MODE (fore_link) == VOIDmode)
2499 {
2500 /* found a DEF-USE dependence (insn1, insn2) */
ac957f13 2501 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
8c660648
JL
2502 /* insn2 not guaranteed to be a 1 base reg load */
2503 continue;
2504
2505 if (INSN_BB (insn2) == bb_trg)
2506 /* insn2 is the similar load, in the target block */
2507 return 1;
2508
2509 if (*(candp->split_bbs.first_member) == INSN_BLOCK (insn2))
2510 /* insn2 is a similar load, in a split-block */
2511 return 1;
2512 }
2513 }
2514 }
2515 }
2516
2517 /* couldn't find a similar load */
2518 return 0;
2519} /* is_pfree */
2520
2521/* Returns a class that insn with GET_DEST(insn)=x may belong to,
2522 as found by analyzing insn's expression. */
2523
2524static int
2525may_trap_exp (x, is_store)
2526 rtx x;
2527 int is_store;
2528{
2529 enum rtx_code code;
2530
2531 if (x == 0)
2532 return TRAP_FREE;
2533 code = GET_CODE (x);
2534 if (is_store)
2535 {
2536 if (code == MEM)
2537 return TRAP_RISKY;
2538 else
2539 return TRAP_FREE;
2540 }
2541 if (code == MEM)
2542 {
2543 /* The insn uses memory */
2544 /* a volatile load */
2545 if (MEM_VOLATILE_P (x))
2546 return IRISKY;
2547 /* an exception-free load */
2548 if (!may_trap_p (x))
2549 return IFREE;
2550 /* a load with 1 base register, to be further checked */
2551 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
2552 return PFREE_CANDIDATE;
2553 /* no info on the load, to be further checked */
2554 return PRISKY_CANDIDATE;
2555 }
2556 else
2557 {
2558 char *fmt;
2559 int i, insn_class = TRAP_FREE;
2560
2561 /* neither store nor load, check if it may cause a trap */
2562 if (may_trap_p (x))
2563 return TRAP_RISKY;
2564 /* recursive step: walk the insn... */
2565 fmt = GET_RTX_FORMAT (code);
2566 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2567 {
2568 if (fmt[i] == 'e')
2569 {
2570 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
2571 insn_class = WORST_CLASS (insn_class, tmp_class);
2572 }
2573 else if (fmt[i] == 'E')
2574 {
2575 int j;
2576 for (j = 0; j < XVECLEN (x, i); j++)
2577 {
2578 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
2579 insn_class = WORST_CLASS (insn_class, tmp_class);
2580 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
2581 break;
2582 }
2583 }
2584 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
2585 break;
2586 }
2587 return insn_class;
2588 }
2589} /* may_trap_exp */
2590
2591
2592/* Classifies insn for the purpose of verifying that it can be
2593 moved speculatively, by examining it's patterns, returning:
2594 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
2595 TRAP_FREE: non-load insn.
2596 IFREE: load from a globaly safe location.
2597 IRISKY: volatile load.
2598 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
2599 being either PFREE or PRISKY. */
2600
2601static int
ac957f13 2602haifa_classify_insn (insn)
8c660648
JL
2603 rtx insn;
2604{
2605 rtx pat = PATTERN (insn);
2606 int tmp_class = TRAP_FREE;
2607 int insn_class = TRAP_FREE;
2608 enum rtx_code code;
2609
2610 if (GET_CODE (pat) == PARALLEL)
2611 {
2612 int i, len = XVECLEN (pat, 0);
2613
2614 for (i = len - 1; i >= 0; i--)
2615 {
2616 code = GET_CODE (XVECEXP (pat, 0, i));
2617 switch (code)
2618 {
2619 case CLOBBER:
2620 /* test if it is a 'store' */
2621 tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
2622 break;
2623 case SET:
2624 /* test if it is a store */
2625 tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
2626 if (tmp_class == TRAP_RISKY)
2627 break;
2628 /* test if it is a load */
2629 tmp_class =
2630 WORST_CLASS (tmp_class,
2631 may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)), 0));
e0cd0770
JC
2632 break;
2633 case TRAP_IF:
2634 tmp_class = TRAP_RISKY;
2635 break;
8c660648
JL
2636 default:;
2637 }
2638 insn_class = WORST_CLASS (insn_class, tmp_class);
2639 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
2640 break;
2641 }
2642 }
2643 else
2644 {
2645 code = GET_CODE (pat);
2646 switch (code)
2647 {
2648 case CLOBBER:
2649 /* test if it is a 'store' */
2650 tmp_class = may_trap_exp (XEXP (pat, 0), 1);
2651 break;
2652 case SET:
2653 /* test if it is a store */
2654 tmp_class = may_trap_exp (SET_DEST (pat), 1);
2655 if (tmp_class == TRAP_RISKY)
2656 break;
2657 /* test if it is a load */
2658 tmp_class =
2659 WORST_CLASS (tmp_class,
2660 may_trap_exp (SET_SRC (pat), 0));
e0cd0770
JC
2661 break;
2662 case TRAP_IF:
2663 tmp_class = TRAP_RISKY;
2664 break;
8c660648
JL
2665 default:;
2666 }
2667 insn_class = tmp_class;
2668 }
2669
2670 return insn_class;
2671
ac957f13 2672} /* haifa_classify_insn */
8c660648
JL
2673
2674/* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
2675 a load moved speculatively, or if load_insn is protected by
2676 a compare on load_insn's address). */
2677
2678static int
2679is_prisky (load_insn, bb_src, bb_trg)
2680 rtx load_insn;
2681 int bb_src, bb_trg;
2682{
2683 if (FED_BY_SPEC_LOAD (load_insn))
2684 return 1;
2685
2686 if (LOG_LINKS (load_insn) == NULL)
2687 /* dependence may 'hide' out of the region. */
2688 return 1;
2689
2690 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2691 return 1;
2692
2693 return 0;
2694} /* is_prisky */
2695
2696/* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2697 Return 1 if insn is exception-free (and the motion is valid)
2698 and 0 otherwise. */
2699
2700static int
2701is_exception_free (insn, bb_src, bb_trg)
2702 rtx insn;
2703 int bb_src, bb_trg;
2704{
ac957f13 2705 int insn_class = haifa_classify_insn (insn);
8c660648
JL
2706
2707 /* handle non-load insns */
2708 switch (insn_class)
2709 {
2710 case TRAP_FREE:
2711 return 1;
2712 case TRAP_RISKY:
2713 return 0;
2714 default:;
2715 }
2716
2717 /* handle loads */
2718 if (!flag_schedule_speculative_load)
2719 return 0;
2720 IS_LOAD_INSN (insn) = 1;
2721 switch (insn_class)
2722 {
2723 case IFREE:
2724 return (1);
2725 case IRISKY:
2726 return 0;
2727 case PFREE_CANDIDATE:
2728 if (is_pfree (insn, bb_src, bb_trg))
2729 return 1;
2730 /* don't 'break' here: PFREE-candidate is also PRISKY-candidate */
2731 case PRISKY_CANDIDATE:
2732 if (!flag_schedule_speculative_load_dangerous
2733 || is_prisky (insn, bb_src, bb_trg))
2734 return 0;
2735 break;
2736 default:;
2737 }
2738
2739 return flag_schedule_speculative_load_dangerous;
2740} /* is_exception_free */
2741
2742
2743/* Process an insn's memory dependencies. There are four kinds of
2744 dependencies:
2745
2746 (0) read dependence: read follows read
2747 (1) true dependence: read follows write
2748 (2) anti dependence: write follows read
2749 (3) output dependence: write follows write
2750
2751 We are careful to build only dependencies which actually exist, and
2752 use transitivity to avoid building too many links. */
2753\f
2754/* Return the INSN_LIST containing INSN in LIST, or NULL
2755 if LIST does not contain INSN. */
2756
cbb13457 2757HAIFA_INLINE static rtx
8c660648
JL
2758find_insn_list (insn, list)
2759 rtx insn;
2760 rtx list;
2761{
2762 while (list)
2763 {
2764 if (XEXP (list, 0) == insn)
2765 return list;
2766 list = XEXP (list, 1);
2767 }
2768 return 0;
2769}
2770
2771
2772/* Return 1 if the pair (insn, x) is found in (LIST, LIST1), or 0 otherwise. */
2773
cbb13457 2774HAIFA_INLINE static char
8c660648
JL
2775find_insn_mem_list (insn, x, list, list1)
2776 rtx insn, x;
2777 rtx list, list1;
2778{
2779 while (list)
2780 {
2781 if (XEXP (list, 0) == insn
2782 && XEXP (list1, 0) == x)
2783 return 1;
2784 list = XEXP (list, 1);
2785 list1 = XEXP (list1, 1);
2786 }
2787 return 0;
2788}
2789
2790
2791/* Compute the function units used by INSN. This caches the value
2792 returned by function_units_used. A function unit is encoded as the
2793 unit number if the value is non-negative and the compliment of a
2794 mask if the value is negative. A function unit index is the
2795 non-negative encoding. */
2796
cbb13457 2797HAIFA_INLINE static int
8c660648
JL
2798insn_unit (insn)
2799 rtx insn;
2800{
2801 register int unit = INSN_UNIT (insn);
2802
2803 if (unit == 0)
2804 {
2805 recog_memoized (insn);
2806
2807 /* A USE insn, or something else we don't need to understand.
2808 We can't pass these directly to function_units_used because it will
2809 trigger a fatal error for unrecognizable insns. */
2810 if (INSN_CODE (insn) < 0)
2811 unit = -1;
2812 else
2813 {
2814 unit = function_units_used (insn);
2815 /* Increment non-negative values so we can cache zero. */
2816 if (unit >= 0)
2817 unit++;
2818 }
2819 /* We only cache 16 bits of the result, so if the value is out of
2820 range, don't cache it. */
2821 if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
2822 || unit >= 0
2823 || (~unit & ((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
2824 INSN_UNIT (insn) = unit;
2825 }
2826 return (unit > 0 ? unit - 1 : unit);
2827}
2828
2829/* Compute the blockage range for executing INSN on UNIT. This caches
2830 the value returned by the blockage_range_function for the unit.
2831 These values are encoded in an int where the upper half gives the
2832 minimum value and the lower half gives the maximum value. */
2833
cbb13457 2834HAIFA_INLINE static unsigned int
8c660648
JL
2835blockage_range (unit, insn)
2836 int unit;
2837 rtx insn;
2838{
2839 unsigned int blockage = INSN_BLOCKAGE (insn);
2840 unsigned int range;
2841
2842 if (UNIT_BLOCKED (blockage) != unit + 1)
2843 {
2844 range = function_units[unit].blockage_range_function (insn);
2845 /* We only cache the blockage range for one unit and then only if
2846 the values fit. */
2847 if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
2848 INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
2849 }
2850 else
2851 range = BLOCKAGE_RANGE (blockage);
2852
2853 return range;
2854}
2855
2856/* A vector indexed by function unit instance giving the last insn to use
2857 the unit. The value of the function unit instance index for unit U
2858 instance I is (U + I * FUNCTION_UNITS_SIZE). */
2859static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
2860
2861/* A vector indexed by function unit instance giving the minimum time when
2862 the unit will unblock based on the maximum blockage cost. */
2863static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
2864
2865/* A vector indexed by function unit number giving the number of insns
2866 that remain to use the unit. */
2867static int unit_n_insns[FUNCTION_UNITS_SIZE];
2868
2869/* Reset the function unit state to the null state. */
2870
2871static void
2872clear_units ()
2873{
2874 bzero ((char *) unit_last_insn, sizeof (unit_last_insn));
2875 bzero ((char *) unit_tick, sizeof (unit_tick));
2876 bzero ((char *) unit_n_insns, sizeof (unit_n_insns));
2877}
2878
2879/* Return the issue-delay of an insn */
2880
cbb13457 2881HAIFA_INLINE static int
8c660648
JL
2882insn_issue_delay (insn)
2883 rtx insn;
2884{
8c660648
JL
2885 int i, delay = 0;
2886 int unit = insn_unit (insn);
2887
2888 /* efficiency note: in fact, we are working 'hard' to compute a
2889 value that was available in md file, and is not available in
2890 function_units[] structure. It would be nice to have this
2891 value there, too. */
2892 if (unit >= 0)
2893 {
2894 if (function_units[unit].blockage_range_function &&
2895 function_units[unit].blockage_function)
2896 delay = function_units[unit].blockage_function (insn, insn);
2897 }
2898 else
2899 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
2900 if ((unit & 1) != 0 && function_units[i].blockage_range_function
2901 && function_units[i].blockage_function)
2902 delay = MAX (delay, function_units[i].blockage_function (insn, insn));
2903
2904 return delay;
2905}
2906
2907/* Return the actual hazard cost of executing INSN on the unit UNIT,
2908 instance INSTANCE at time CLOCK if the previous actual hazard cost
2909 was COST. */
2910
cbb13457 2911HAIFA_INLINE static int
8c660648
JL
2912actual_hazard_this_instance (unit, instance, insn, clock, cost)
2913 int unit, instance, clock, cost;
2914 rtx insn;
2915{
2916 int tick = unit_tick[instance]; /* issue time of the last issued insn */
2917
2918 if (tick - clock > cost)
2919 {
2920 /* The scheduler is operating forward, so unit's last insn is the
2921 executing insn and INSN is the candidate insn. We want a
2922 more exact measure of the blockage if we execute INSN at CLOCK
2923 given when we committed the execution of the unit's last insn.
2924
2925 The blockage value is given by either the unit's max blockage
2926 constant, blockage range function, or blockage function. Use
2927 the most exact form for the given unit. */
2928
2929 if (function_units[unit].blockage_range_function)
2930 {
2931 if (function_units[unit].blockage_function)
2932 tick += (function_units[unit].blockage_function
2933 (unit_last_insn[instance], insn)
2934 - function_units[unit].max_blockage);
2935 else
2936 tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
2937 - function_units[unit].max_blockage);
2938 }
2939 if (tick - clock > cost)
2940 cost = tick - clock;
2941 }
2942 return cost;
2943}
2944
2945/* Record INSN as having begun execution on the units encoded by UNIT at
2946 time CLOCK. */
2947
cbb13457 2948HAIFA_INLINE static void
8c660648
JL
2949schedule_unit (unit, insn, clock)
2950 int unit, clock;
2951 rtx insn;
2952{
2953 int i;
2954
2955 if (unit >= 0)
2956 {
2957 int instance = unit;
2958#if MAX_MULTIPLICITY > 1
2959 /* Find the first free instance of the function unit and use that
2960 one. We assume that one is free. */
2961 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
2962 {
2963 if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
2964 break;
2965 instance += FUNCTION_UNITS_SIZE;
2966 }
2967#endif
2968 unit_last_insn[instance] = insn;
2969 unit_tick[instance] = (clock + function_units[unit].max_blockage);
2970 }
2971 else
2972 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
2973 if ((unit & 1) != 0)
2974 schedule_unit (i, insn, clock);
2975}
2976
2977/* Return the actual hazard cost of executing INSN on the units encoded by
2978 UNIT at time CLOCK if the previous actual hazard cost was COST. */
2979
cbb13457 2980HAIFA_INLINE static int
8c660648
JL
2981actual_hazard (unit, insn, clock, cost)
2982 int unit, clock, cost;
2983 rtx insn;
2984{
2985 int i;
2986
2987 if (unit >= 0)
2988 {
2989 /* Find the instance of the function unit with the minimum hazard. */
2990 int instance = unit;
2991 int best_cost = actual_hazard_this_instance (unit, instance, insn,
2992 clock, cost);
2993 int this_cost;
2994
2995#if MAX_MULTIPLICITY > 1
2996 if (best_cost > cost)
2997 {
2998 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
2999 {
3000 instance += FUNCTION_UNITS_SIZE;
3001 this_cost = actual_hazard_this_instance (unit, instance, insn,
3002 clock, cost);
3003 if (this_cost < best_cost)
3004 {
3005 best_cost = this_cost;
3006 if (this_cost <= cost)
3007 break;
3008 }
3009 }
3010 }
3011#endif
3012 cost = MAX (cost, best_cost);
3013 }
3014 else
3015 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
3016 if ((unit & 1) != 0)
3017 cost = actual_hazard (i, insn, clock, cost);
3018
3019 return cost;
3020}
3021
3022/* Return the potential hazard cost of executing an instruction on the
3023 units encoded by UNIT if the previous potential hazard cost was COST.
3024 An insn with a large blockage time is chosen in preference to one
3025 with a smaller time; an insn that uses a unit that is more likely
3026 to be used is chosen in preference to one with a unit that is less
3027 used. We are trying to minimize a subsequent actual hazard. */
3028
cbb13457 3029HAIFA_INLINE static int
8c660648
JL
3030potential_hazard (unit, insn, cost)
3031 int unit, cost;
3032 rtx insn;
3033{
3034 int i, ncost;
3035 unsigned int minb, maxb;
3036
3037 if (unit >= 0)
3038 {
3039 minb = maxb = function_units[unit].max_blockage;
3040 if (maxb > 1)
3041 {
3042 if (function_units[unit].blockage_range_function)
3043 {
3044 maxb = minb = blockage_range (unit, insn);
3045 maxb = MAX_BLOCKAGE_COST (maxb);
3046 minb = MIN_BLOCKAGE_COST (minb);
3047 }
3048
3049 if (maxb > 1)
3050 {
3051 /* Make the number of instructions left dominate. Make the
3052 minimum delay dominate the maximum delay. If all these
3053 are the same, use the unit number to add an arbitrary
3054 ordering. Other terms can be added. */
3055 ncost = minb * 0x40 + maxb;
3056 ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
3057 if (ncost > cost)
3058 cost = ncost;
3059 }
3060 }
3061 }
3062 else
3063 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
3064 if ((unit & 1) != 0)
3065 cost = potential_hazard (i, insn, cost);
3066
3067 return cost;
3068}
3069
3070/* Compute cost of executing INSN given the dependence LINK on the insn USED.
3071 This is the number of cycles between instruction issue and
3072 instruction results. */
3073
cbb13457 3074HAIFA_INLINE static int
8c660648
JL
3075insn_cost (insn, link, used)
3076 rtx insn, link, used;
3077{
3078 register int cost = INSN_COST (insn);
3079
3080 if (cost == 0)
3081 {
3082 recog_memoized (insn);
3083
3084 /* A USE insn, or something else we don't need to understand.
3085 We can't pass these directly to result_ready_cost because it will
3086 trigger a fatal error for unrecognizable insns. */
3087 if (INSN_CODE (insn) < 0)
3088 {
3089 INSN_COST (insn) = 1;
3090 return 1;
3091 }
3092 else
3093 {
3094 cost = result_ready_cost (insn);
3095
3096 if (cost < 1)
3097 cost = 1;
3098
3099 INSN_COST (insn) = cost;
3100 }
3101 }
3102
3103 /* in this case estimate cost without caring how insn is used. */
3104 if (link == 0 && used == 0)
3105 return cost;
3106
3107 /* A USE insn should never require the value used to be computed. This
3108 allows the computation of a function's result and parameter values to
3109 overlap the return and call. */
3110 recog_memoized (used);
3111 if (INSN_CODE (used) < 0)
3112 LINK_COST_FREE (link) = 1;
3113
3114 /* If some dependencies vary the cost, compute the adjustment. Most
3115 commonly, the adjustment is complete: either the cost is ignored
3116 (in the case of an output- or anti-dependence), or the cost is
3117 unchanged. These values are cached in the link as LINK_COST_FREE
3118 and LINK_COST_ZERO. */
3119
3120 if (LINK_COST_FREE (link))
3121 cost = 1;
3122#ifdef ADJUST_COST
3123 else if (!LINK_COST_ZERO (link))
3124 {
3125 int ncost = cost;
3126
3127 ADJUST_COST (used, link, insn, ncost);
3128 if (ncost <= 1)
3129 LINK_COST_FREE (link) = ncost = 1;
3130 if (cost == ncost)
3131 LINK_COST_ZERO (link) = 1;
3132 cost = ncost;
3133 }
3134#endif
3135 return cost;
3136}
3137
3138/* Compute the priority number for INSN. */
3139
3140static int
3141priority (insn)
3142 rtx insn;
3143{
3144 int this_priority;
3145 rtx link;
3146
3147 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
3148 return 0;
3149
3150 if ((this_priority = INSN_PRIORITY (insn)) == 0)
3151 {
3152 if (INSN_DEPEND (insn) == 0)
3153 this_priority = insn_cost (insn, 0, 0);
3154 else
3155 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
3156 {
3157 rtx next;
3158 int next_priority;
3159
6d8ccdbb
JL
3160 if (RTX_INTEGRATED_P (link))
3161 continue;
3162
8c660648
JL
3163 next = XEXP (link, 0);
3164
3165 /* critical path is meaningful in block boundaries only */
3166 if (INSN_BLOCK (next) != INSN_BLOCK (insn))
3167 continue;
3168
3169 next_priority = insn_cost (insn, link, next) + priority (next);
3170 if (next_priority > this_priority)
3171 this_priority = next_priority;
3172 }
3173 INSN_PRIORITY (insn) = this_priority;
3174 }
3175 return this_priority;
3176}
3177\f
3178
3179/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
3180 them to the unused_*_list variables, so that they can be reused. */
3181
8c660648
JL
3182static void
3183free_pending_lists ()
3184{
8c660648
JL
3185 if (current_nr_blocks <= 1)
3186 {
ebb7b10b
RH
3187 free_list (&pending_read_insns, &unused_insn_list);
3188 free_list (&pending_write_insns, &unused_insn_list);
3189 free_list (&pending_read_mems, &unused_expr_list);
3190 free_list (&pending_write_mems, &unused_expr_list);
8c660648
JL
3191 }
3192 else
3193 {
3194 /* interblock scheduling */
3195 int bb;
3196
3197 for (bb = 0; bb < current_nr_blocks; bb++)
3198 {
ebb7b10b
RH
3199 free_list (&bb_pending_read_insns[bb], &unused_insn_list);
3200 free_list (&bb_pending_write_insns[bb], &unused_insn_list);
3201 free_list (&bb_pending_read_mems[bb], &unused_expr_list);
3202 free_list (&bb_pending_write_mems[bb], &unused_expr_list);
8c660648
JL
3203 }
3204 }
3205}
3206
3207/* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
3208 The MEM is a memory reference contained within INSN, which we are saving
3209 so that we can do memory aliasing on it. */
3210
3211static void
3212add_insn_mem_dependence (insn_list, mem_list, insn, mem)
3213 rtx *insn_list, *mem_list, insn, mem;
3214{
3215 register rtx link;
3216
ebb7b10b 3217 link = alloc_INSN_LIST (insn, *insn_list);
8c660648
JL
3218 *insn_list = link;
3219
ebb7b10b 3220 link = alloc_EXPR_LIST (VOIDmode, mem, *mem_list);
8c660648
JL
3221 *mem_list = link;
3222
3223 pending_lists_length++;
3224}
3225\f
3226
3227/* Make a dependency between every memory reference on the pending lists
3228 and INSN, thus flushing the pending lists. If ONLY_WRITE, don't flush
3229 the read list. */
3230
3231static void
3232flush_pending_lists (insn, only_write)
3233 rtx insn;
3234 int only_write;
3235{
3236 rtx u;
3237 rtx link;
3238
3239 while (pending_read_insns && ! only_write)
3240 {
3241 add_dependence (insn, XEXP (pending_read_insns, 0), REG_DEP_ANTI);
3242
3243 link = pending_read_insns;
3244 pending_read_insns = XEXP (pending_read_insns, 1);
3245 XEXP (link, 1) = unused_insn_list;
3246 unused_insn_list = link;
3247
3248 link = pending_read_mems;
3249 pending_read_mems = XEXP (pending_read_mems, 1);
3250 XEXP (link, 1) = unused_expr_list;
3251 unused_expr_list = link;
3252 }
3253 while (pending_write_insns)
3254 {
3255 add_dependence (insn, XEXP (pending_write_insns, 0), REG_DEP_ANTI);
3256
3257 link = pending_write_insns;
3258 pending_write_insns = XEXP (pending_write_insns, 1);
3259 XEXP (link, 1) = unused_insn_list;
3260 unused_insn_list = link;
3261
3262 link = pending_write_mems;
3263 pending_write_mems = XEXP (pending_write_mems, 1);
3264 XEXP (link, 1) = unused_expr_list;
3265 unused_expr_list = link;
3266 }
3267 pending_lists_length = 0;
3268
3269 /* last_pending_memory_flush is now a list of insns */
3270 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
3271 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3272
ebb7b10b
RH
3273 free_list (&last_pending_memory_flush, &unused_insn_list);
3274 last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
8c660648
JL
3275}
3276
3277/* Analyze a single SET or CLOBBER rtx, X, creating all dependencies generated
3278 by the write to the destination of X, and reads of everything mentioned. */
3279
3280static void
3281sched_analyze_1 (x, insn)
3282 rtx x;
3283 rtx insn;
3284{
3285 register int regno;
3286 register rtx dest = SET_DEST (x);
3287
3288 if (dest == 0)
3289 return;
3290
3291 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
3292 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
3293 {
3294 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
3295 {
3296 /* The second and third arguments are values read by this insn. */
3297 sched_analyze_2 (XEXP (dest, 1), insn);
3298 sched_analyze_2 (XEXP (dest, 2), insn);
3299 }
3300 dest = SUBREG_REG (dest);
3301 }
3302
3303 if (GET_CODE (dest) == REG)
3304 {
3305 register int i;
3306
3307 regno = REGNO (dest);
3308
3309 /* A hard reg in a wide mode may really be multiple registers.
3310 If so, mark all of them just like the first. */
3311 if (regno < FIRST_PSEUDO_REGISTER)
3312 {
3313 i = HARD_REGNO_NREGS (regno, GET_MODE (dest));
3314 while (--i >= 0)
3315 {
3316 rtx u;
3317
3318 for (u = reg_last_uses[regno + i]; u; u = XEXP (u, 1))
3319 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3320 reg_last_uses[regno + i] = 0;
3321
3322 for (u = reg_last_sets[regno + i]; u; u = XEXP (u, 1))
3323 add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
3324
3325 SET_REGNO_REG_SET (reg_pending_sets, regno + i);
3326
3327 if ((call_used_regs[regno + i] || global_regs[regno + i]))
3328 /* Function calls clobber all call_used regs. */
3329 for (u = last_function_call; u; u = XEXP (u, 1))
3330 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3331 }
3332 }
3333 else
3334 {
3335 rtx u;
3336
3337 for (u = reg_last_uses[regno]; u; u = XEXP (u, 1))
3338 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3339 reg_last_uses[regno] = 0;
3340
3341 for (u = reg_last_sets[regno]; u; u = XEXP (u, 1))
3342 add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
3343
3344 SET_REGNO_REG_SET (reg_pending_sets, regno);
3345
3346 /* Pseudos that are REG_EQUIV to something may be replaced
3347 by that during reloading. We need only add dependencies for
3348 the address in the REG_EQUIV note. */
3349 if (!reload_completed
3350 && reg_known_equiv_p[regno]
3351 && GET_CODE (reg_known_value[regno]) == MEM)
3352 sched_analyze_2 (XEXP (reg_known_value[regno], 0), insn);
3353
3354 /* Don't let it cross a call after scheduling if it doesn't
3355 already cross one. */
3356
3357 if (REG_N_CALLS_CROSSED (regno) == 0)
3358 for (u = last_function_call; u; u = XEXP (u, 1))
3359 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3360 }
3361 }
3362 else if (GET_CODE (dest) == MEM)
3363 {
3364 /* Writing memory. */
3365
3366 if (pending_lists_length > 32)
3367 {
3368 /* Flush all pending reads and writes to prevent the pending lists
3369 from getting any larger. Insn scheduling runs too slowly when
3370 these lists get long. The number 32 was chosen because it
3371 seems like a reasonable number. When compiling GCC with itself,
3372 this flush occurs 8 times for sparc, and 10 times for m88k using
3373 the number 32. */
3374 flush_pending_lists (insn, 0);
3375 }
3376 else
3377 {
3378 rtx u;
3379 rtx pending, pending_mem;
3380
3381 pending = pending_read_insns;
3382 pending_mem = pending_read_mems;
3383 while (pending)
3384 {
3385 /* If a dependency already exists, don't create a new one. */
3386 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3387 if (anti_dependence (XEXP (pending_mem, 0), dest))
3388 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
3389
3390 pending = XEXP (pending, 1);
3391 pending_mem = XEXP (pending_mem, 1);
3392 }
3393
3394 pending = pending_write_insns;
3395 pending_mem = pending_write_mems;
3396 while (pending)
3397 {
3398 /* If a dependency already exists, don't create a new one. */
3399 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3400 if (output_dependence (XEXP (pending_mem, 0), dest))
3401 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
3402
3403 pending = XEXP (pending, 1);
3404 pending_mem = XEXP (pending_mem, 1);
3405 }
3406
3407 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
3408 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3409
3410 add_insn_mem_dependence (&pending_write_insns, &pending_write_mems,
3411 insn, dest);
3412 }
3413 sched_analyze_2 (XEXP (dest, 0), insn);
3414 }
3415
3416 /* Analyze reads. */
3417 if (GET_CODE (x) == SET)
3418 sched_analyze_2 (SET_SRC (x), insn);
3419}
3420
3421/* Analyze the uses of memory and registers in rtx X in INSN. */
3422
3423static void
3424sched_analyze_2 (x, insn)
3425 rtx x;
3426 rtx insn;
3427{
3428 register int i;
3429 register int j;
3430 register enum rtx_code code;
3431 register char *fmt;
3432
3433 if (x == 0)
3434 return;
3435
3436 code = GET_CODE (x);
3437
3438 switch (code)
3439 {
3440 case CONST_INT:
3441 case CONST_DOUBLE:
3442 case SYMBOL_REF:
3443 case CONST:
3444 case LABEL_REF:
3445 /* Ignore constants. Note that we must handle CONST_DOUBLE here
3446 because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
3447 this does not mean that this insn is using cc0. */
3448 return;
3449
3450#ifdef HAVE_cc0
3451 case CC0:
3452 {
3453 rtx link, prev;
3454
3455 /* User of CC0 depends on immediately preceding insn. */
3456 SCHED_GROUP_P (insn) = 1;
3457
3458 /* There may be a note before this insn now, but all notes will
3459 be removed before we actually try to schedule the insns, so
3460 it won't cause a problem later. We must avoid it here though. */
3461 prev = prev_nonnote_insn (insn);
3462
3463 /* Make a copy of all dependencies on the immediately previous insn,
3464 and add to this insn. This is so that all the dependencies will
3465 apply to the group. Remove an explicit dependence on this insn
3466 as SCHED_GROUP_P now represents it. */
3467
3468 if (find_insn_list (prev, LOG_LINKS (insn)))
3469 remove_dependence (insn, prev);
3470
3471 for (link = LOG_LINKS (prev); link; link = XEXP (link, 1))
3472 add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
3473
3474 return;
3475 }
3476#endif
3477
3478 case REG:
3479 {
3480 rtx u;
3481 int regno = REGNO (x);
3482 if (regno < FIRST_PSEUDO_REGISTER)
3483 {
3484 int i;
3485
3486 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
3487 while (--i >= 0)
3488 {
3489 reg_last_uses[regno + i]
ebb7b10b 3490 = alloc_INSN_LIST (insn, reg_last_uses[regno + i]);
8c660648
JL
3491
3492 for (u = reg_last_sets[regno + i]; u; u = XEXP (u, 1))
3493 add_dependence (insn, XEXP (u, 0), 0);
3494
3495 if ((call_used_regs[regno + i] || global_regs[regno + i]))
3496 /* Function calls clobber all call_used regs. */
3497 for (u = last_function_call; u; u = XEXP (u, 1))
3498 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3499 }
3500 }
3501 else
3502 {
ebb7b10b 3503 reg_last_uses[regno] = alloc_INSN_LIST (insn, reg_last_uses[regno]);
8c660648
JL
3504
3505 for (u = reg_last_sets[regno]; u; u = XEXP (u, 1))
3506 add_dependence (insn, XEXP (u, 0), 0);
3507
3508 /* Pseudos that are REG_EQUIV to something may be replaced
3509 by that during reloading. We need only add dependencies for
3510 the address in the REG_EQUIV note. */
3511 if (!reload_completed
3512 && reg_known_equiv_p[regno]
3513 && GET_CODE (reg_known_value[regno]) == MEM)
3514 sched_analyze_2 (XEXP (reg_known_value[regno], 0), insn);
3515
3516 /* If the register does not already cross any calls, then add this
3517 insn to the sched_before_next_call list so that it will still
3518 not cross calls after scheduling. */
3519 if (REG_N_CALLS_CROSSED (regno) == 0)
3520 add_dependence (sched_before_next_call, insn, REG_DEP_ANTI);
3521 }
3522 return;
3523 }
3524
3525 case MEM:
3526 {
3527 /* Reading memory. */
3528 rtx u;
3529 rtx pending, pending_mem;
3530
3531 pending = pending_read_insns;
3532 pending_mem = pending_read_mems;
3533 while (pending)
3534 {
3535 /* If a dependency already exists, don't create a new one. */
3536 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3537 if (read_dependence (XEXP (pending_mem, 0), x))
3538 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
3539
3540 pending = XEXP (pending, 1);
3541 pending_mem = XEXP (pending_mem, 1);
3542 }
3543
3544 pending = pending_write_insns;
3545 pending_mem = pending_write_mems;
3546 while (pending)
3547 {
3548 /* If a dependency already exists, don't create a new one. */
3549 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3550 if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
3551 x, rtx_varies_p))
3552 add_dependence (insn, XEXP (pending, 0), 0);
3553
3554 pending = XEXP (pending, 1);
3555 pending_mem = XEXP (pending_mem, 1);
3556 }
3557
3558 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
3559 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3560
3561 /* Always add these dependencies to pending_reads, since
3562 this insn may be followed by a write. */
3563 add_insn_mem_dependence (&pending_read_insns, &pending_read_mems,
3564 insn, x);
3565
3566 /* Take advantage of tail recursion here. */
3567 sched_analyze_2 (XEXP (x, 0), insn);
3568 return;
3569 }
3570
e0cd0770
JC
3571 /* Force pending stores to memory in case a trap handler needs them. */
3572 case TRAP_IF:
3573 flush_pending_lists (insn, 1);
3574 break;
3575
8c660648
JL
3576 case ASM_OPERANDS:
3577 case ASM_INPUT:
3578 case UNSPEC_VOLATILE:
8c660648
JL
3579 {
3580 rtx u;
3581
3582 /* Traditional and volatile asm instructions must be considered to use
3583 and clobber all hard registers, all pseudo-registers and all of
3584 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3585
3586 Consider for instance a volatile asm that changes the fpu rounding
3587 mode. An insn should not be moved across this even if it only uses
3588 pseudo-regs because it might give an incorrectly rounded result. */
3589 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3590 {
3591 int max_reg = max_reg_num ();
3592 for (i = 0; i < max_reg; i++)
3593 {
3594 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3595 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3596 reg_last_uses[i] = 0;
3597
3598 /* reg_last_sets[r] is now a list of insns */
3599 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3600 add_dependence (insn, XEXP (u, 0), 0);
3601 }
3602 reg_pending_sets_all = 1;
3603
3604 flush_pending_lists (insn, 0);
3605 }
3606
3607 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3608 We can not just fall through here since then we would be confused
3609 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3610 traditional asms unlike their normal usage. */
3611
3612 if (code == ASM_OPERANDS)
3613 {
3614 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3615 sched_analyze_2 (ASM_OPERANDS_INPUT (x, j), insn);
3616 return;
3617 }
3618 break;
3619 }
3620
3621 case PRE_DEC:
3622 case POST_DEC:
3623 case PRE_INC:
3624 case POST_INC:
3625 /* These both read and modify the result. We must handle them as writes
3626 to get proper dependencies for following instructions. We must handle
3627 them as reads to get proper dependencies from this to previous
3628 instructions. Thus we need to pass them to both sched_analyze_1
3629 and sched_analyze_2. We must call sched_analyze_2 first in order
3630 to get the proper antecedent for the read. */
3631 sched_analyze_2 (XEXP (x, 0), insn);
3632 sched_analyze_1 (x, insn);
3633 return;
5835e573
KG
3634
3635 default:
3636 break;
8c660648
JL
3637 }
3638
3639 /* Other cases: walk the insn. */
3640 fmt = GET_RTX_FORMAT (code);
3641 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3642 {
3643 if (fmt[i] == 'e')
3644 sched_analyze_2 (XEXP (x, i), insn);
3645 else if (fmt[i] == 'E')
3646 for (j = 0; j < XVECLEN (x, i); j++)
3647 sched_analyze_2 (XVECEXP (x, i, j), insn);
3648 }
3649}
3650
3651/* Analyze an INSN with pattern X to find all dependencies. */
3652
3653static void
3654sched_analyze_insn (x, insn, loop_notes)
3655 rtx x, insn;
3656 rtx loop_notes;
3657{
3658 register RTX_CODE code = GET_CODE (x);
3659 rtx link;
3660 int maxreg = max_reg_num ();
3661 int i;
3662
3663 if (code == SET || code == CLOBBER)
3664 sched_analyze_1 (x, insn);
3665 else if (code == PARALLEL)
3666 {
3667 register int i;
3668 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
3669 {
3670 code = GET_CODE (XVECEXP (x, 0, i));
3671 if (code == SET || code == CLOBBER)
3672 sched_analyze_1 (XVECEXP (x, 0, i), insn);
3673 else
3674 sched_analyze_2 (XVECEXP (x, 0, i), insn);
3675 }
3676 }
3677 else
3678 sched_analyze_2 (x, insn);
3679
3680 /* Mark registers CLOBBERED or used by called function. */
3681 if (GET_CODE (insn) == CALL_INSN)
3682 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
3683 {
3684 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
3685 sched_analyze_1 (XEXP (link, 0), insn);
3686 else
3687 sched_analyze_2 (XEXP (link, 0), insn);
3688 }
3689
3690 /* If there is a {LOOP,EHREGION}_{BEG,END} note in the middle of a basic block, then
3691 we must be sure that no instructions are scheduled across it.
3692 Otherwise, the reg_n_refs info (which depends on loop_depth) would
3693 become incorrect. */
3694
3695 if (loop_notes)
3696 {
3697 int max_reg = max_reg_num ();
3698 rtx link;
3699
3700 for (i = 0; i < max_reg; i++)
3701 {
3702 rtx u;
3703 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3704 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3705 reg_last_uses[i] = 0;
3706
3707 /* reg_last_sets[r] is now a list of insns */
3708 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3709 add_dependence (insn, XEXP (u, 0), 0);
3710 }
3711 reg_pending_sets_all = 1;
3712
3713 flush_pending_lists (insn, 0);
3714
3715 link = loop_notes;
3716 while (XEXP (link, 1))
3717 link = XEXP (link, 1);
3718 XEXP (link, 1) = REG_NOTES (insn);
3719 REG_NOTES (insn) = loop_notes;
3720 }
3721
3722 /* After reload, it is possible for an instruction to have a REG_DEAD note
3723 for a register that actually dies a few instructions earlier. For
3724 example, this can happen with SECONDARY_MEMORY_NEEDED reloads.
3725 In this case, we must consider the insn to use the register mentioned
3726 in the REG_DEAD note. Otherwise, we may accidentally move this insn
3727 after another insn that sets the register, thus getting obviously invalid
3728 rtl. This confuses reorg which believes that REG_DEAD notes are still
3729 meaningful.
3730
3731 ??? We would get better code if we fixed reload to put the REG_DEAD
3732 notes in the right places, but that may not be worth the effort. */
3733
3734 if (reload_completed)
3735 {
3736 rtx note;
3737
3738 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3739 if (REG_NOTE_KIND (note) == REG_DEAD)
3740 sched_analyze_2 (XEXP (note, 0), insn);
3741 }
3742
3743 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i,
3744 {
3745 /* reg_last_sets[r] is now a list of insns */
ebb7b10b 3746 free_list (&reg_last_sets[i], &unused_insn_list);
8c660648 3747 reg_last_sets[i]
ebb7b10b 3748 = alloc_INSN_LIST (insn, NULL_RTX);
8c660648
JL
3749 });
3750 CLEAR_REG_SET (reg_pending_sets);
3751
3752 if (reg_pending_sets_all)
3753 {
3754 for (i = 0; i < maxreg; i++)
ebb7b10b
RH
3755 {
3756 /* reg_last_sets[r] is now a list of insns */
3757 free_list (&reg_last_sets[i], &unused_insn_list);
3758 reg_last_sets[i] = alloc_INSN_LIST (insn, NULL_RTX);
3759 }
8c660648
JL
3760
3761 reg_pending_sets_all = 0;
3762 }
3763
3764 /* Handle function calls and function returns created by the epilogue
3765 threading code. */
3766 if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3767 {
3768 rtx dep_insn;
3769 rtx prev_dep_insn;
3770
3771 /* When scheduling instructions, we make sure calls don't lose their
3772 accompanying USE insns by depending them one on another in order.
3773
3774 Also, we must do the same thing for returns created by the epilogue
3775 threading code. Note this code works only in this special case,
3776 because other passes make no guarantee that they will never emit
3777 an instruction between a USE and a RETURN. There is such a guarantee
3778 for USE instructions immediately before a call. */
3779
3780 prev_dep_insn = insn;
3781 dep_insn = PREV_INSN (insn);
3782 while (GET_CODE (dep_insn) == INSN
3783 && GET_CODE (PATTERN (dep_insn)) == USE
3784 && GET_CODE (XEXP (PATTERN (dep_insn), 0)) == REG)
3785 {
3786 SCHED_GROUP_P (prev_dep_insn) = 1;
3787
3788 /* Make a copy of all dependencies on dep_insn, and add to insn.
3789 This is so that all of the dependencies will apply to the
3790 group. */
3791
3792 for (link = LOG_LINKS (dep_insn); link; link = XEXP (link, 1))
3793 add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
3794
3795 prev_dep_insn = dep_insn;
3796 dep_insn = PREV_INSN (dep_insn);
3797 }
3798 }
3799}
3800
3801/* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
3802 for every dependency. */
3803
3804static void
3805sched_analyze (head, tail)
3806 rtx head, tail;
3807{
3808 register rtx insn;
3809 register rtx u;
3810 rtx loop_notes = 0;
3811
3812 for (insn = head;; insn = NEXT_INSN (insn))
3813 {
3814 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
3815 {
3816 sched_analyze_insn (PATTERN (insn), insn, loop_notes);
3817 loop_notes = 0;
3818 }
3819 else if (GET_CODE (insn) == CALL_INSN)
3820 {
3821 rtx x;
3822 register int i;
3823
3824 CANT_MOVE (insn) = 1;
3825
3826 /* Any instruction using a hard register which may get clobbered
3827 by a call needs to be marked as dependent on this call.
3828 This prevents a use of a hard return reg from being moved
3829 past a void call (i.e. it does not explicitly set the hard
3830 return reg). */
3831
3832 /* If this call is followed by a NOTE_INSN_SETJMP, then assume that
3833 all registers, not just hard registers, may be clobbered by this
3834 call. */
3835
3836 /* Insn, being a CALL_INSN, magically depends on
3837 `last_function_call' already. */
3838
3839 if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == NOTE
3840 && NOTE_LINE_NUMBER (NEXT_INSN (insn)) == NOTE_INSN_SETJMP)
3841 {
3842 int max_reg = max_reg_num ();
3843 for (i = 0; i < max_reg; i++)
3844 {
3845 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3846 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3847
3848 reg_last_uses[i] = 0;
3849
3850 /* reg_last_sets[r] is now a list of insns */
3851 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3852 add_dependence (insn, XEXP (u, 0), 0);
3853 }
3854 reg_pending_sets_all = 1;
3855
3856 /* Add a pair of fake REG_NOTE which we will later
3857 convert back into a NOTE_INSN_SETJMP note. See
3858 reemit_notes for why we use a pair of NOTEs. */
ebb7b10b
RH
3859 REG_NOTES (insn) = alloc_EXPR_LIST (REG_DEAD,
3860 GEN_INT (0),
3861 REG_NOTES (insn));
3862 REG_NOTES (insn) = alloc_EXPR_LIST (REG_DEAD,
3863 GEN_INT (NOTE_INSN_SETJMP),
3864 REG_NOTES (insn));
8c660648
JL
3865 }
3866 else
3867 {
3868 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3869 if (call_used_regs[i] || global_regs[i])
3870 {
3871 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3872 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3873 reg_last_uses[i] = 0;
3874
3875 /* reg_last_sets[r] is now a list of insns */
3876 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3877 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3878
3879 SET_REGNO_REG_SET (reg_pending_sets, i);
3880 }
3881 }
3882
3883 /* For each insn which shouldn't cross a call, add a dependence
3884 between that insn and this call insn. */
3885 x = LOG_LINKS (sched_before_next_call);
3886 while (x)
3887 {
3888 add_dependence (insn, XEXP (x, 0), REG_DEP_ANTI);
3889 x = XEXP (x, 1);
3890 }
3891 LOG_LINKS (sched_before_next_call) = 0;
3892
3893 sched_analyze_insn (PATTERN (insn), insn, loop_notes);
3894 loop_notes = 0;
3895
3896 /* In the absence of interprocedural alias analysis, we must flush
3897 all pending reads and writes, and start new dependencies starting
3898 from here. But only flush writes for constant calls (which may
3899 be passed a pointer to something we haven't written yet). */
3900 flush_pending_lists (insn, CONST_CALL_P (insn));
3901
3902 /* Depend this function call (actually, the user of this
3903 function call) on all hard register clobberage. */
3904
3905 /* last_function_call is now a list of insns */
ebb7b10b
RH
3906 free_list(&last_function_call, &unused_insn_list);
3907 last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
8c660648
JL
3908 }
3909
3910 /* See comments on reemit_notes as to why we do this. */
3911 else if (GET_CODE (insn) == NOTE
3912 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
3913 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
3914 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
3915 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
0dfa1860
MM
3916 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_START
3917 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_END
8c660648
JL
3918 || (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP
3919 && GET_CODE (PREV_INSN (insn)) != CALL_INSN)))
3920 {
ebb7b10b
RH
3921 loop_notes = alloc_EXPR_LIST (REG_DEAD,
3922 GEN_INT (NOTE_BLOCK_NUMBER (insn)),
3923 loop_notes);
3924 loop_notes = alloc_EXPR_LIST (REG_DEAD,
3925 GEN_INT (NOTE_LINE_NUMBER (insn)),
3926 loop_notes);
8c660648
JL
3927 CONST_CALL_P (loop_notes) = CONST_CALL_P (insn);
3928 }
3929
3930 if (insn == tail)
3931 return;
3932 }
3933 abort ();
3934}
3935\f
3936/* Called when we see a set of a register. If death is true, then we are
3937 scanning backwards. Mark that register as unborn. If nobody says
3938 otherwise, that is how things will remain. If death is false, then we
3939 are scanning forwards. Mark that register as being born. */
3940
3941static void
5835e573 3942sched_note_set (x, death)
8c660648
JL
3943 rtx x;
3944 int death;
3945{
3946 register int regno;
3947 register rtx reg = SET_DEST (x);
3948 int subreg_p = 0;
3949
3950 if (reg == 0)
3951 return;
3952
3953 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == STRICT_LOW_PART
3954 || GET_CODE (reg) == SIGN_EXTRACT || GET_CODE (reg) == ZERO_EXTRACT)
3955 {
3956 /* Must treat modification of just one hardware register of a multi-reg
3957 value or just a byte field of a register exactly the same way that
3958 mark_set_1 in flow.c does, i.e. anything except a paradoxical subreg
3959 does not kill the entire register. */
3960 if (GET_CODE (reg) != SUBREG
3961 || REG_SIZE (SUBREG_REG (reg)) > REG_SIZE (reg))
3962 subreg_p = 1;
3963
3964 reg = SUBREG_REG (reg);
3965 }
3966
3967 if (GET_CODE (reg) != REG)
3968 return;
3969
3970 /* Global registers are always live, so the code below does not apply
3971 to them. */
3972
3973 regno = REGNO (reg);
3974 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
3975 {
3976 if (death)
3977 {
3978 /* If we only set part of the register, then this set does not
3979 kill it. */
3980 if (subreg_p)
3981 return;
3982
3983 /* Try killing this register. */
3984 if (regno < FIRST_PSEUDO_REGISTER)
3985 {
3986 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
3987 while (--j >= 0)
3988 {
3989 CLEAR_REGNO_REG_SET (bb_live_regs, regno + j);
3990 }
3991 }
3992 else
3993 {
3994 /* Recompute REG_BASIC_BLOCK as we update all the other
3995 dataflow information. */
3996 if (sched_reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
3997 sched_reg_basic_block[regno] = current_block_num;
3998 else if (sched_reg_basic_block[regno] != current_block_num)
3999 sched_reg_basic_block[regno] = REG_BLOCK_GLOBAL;
4000
4001 CLEAR_REGNO_REG_SET (bb_live_regs, regno);
4002 }
4003 }
4004 else
4005 {
4006 /* Make the register live again. */
4007 if (regno < FIRST_PSEUDO_REGISTER)
4008 {
4009 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
4010 while (--j >= 0)
4011 {
4012 SET_REGNO_REG_SET (bb_live_regs, regno + j);
4013 }
4014 }
4015 else
4016 {
4017 SET_REGNO_REG_SET (bb_live_regs, regno);
4018 }
4019 }
4020 }
4021}
4022\f
4023/* Macros and functions for keeping the priority queue sorted, and
4024 dealing with queueing and dequeueing of instructions. */
4025
4026#define SCHED_SORT(READY, N_READY) \
4027do { if ((N_READY) == 2) \
4028 swap_sort (READY, N_READY); \
4029 else if ((N_READY) > 2) \
4030 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
4031while (0)
4032
4033/* Returns a positive value if x is preferred; returns a negative value if
4034 y is preferred. Should never return 0, since that will make the sort
4035 unstable. */
4036
4037static int
4038rank_for_schedule (x, y)
01c7f350
MM
4039 const GENERIC_PTR x;
4040 const GENERIC_PTR y;
8c660648 4041{
01c7f350
MM
4042 rtx tmp = *(rtx *)y;
4043 rtx tmp2 = *(rtx *)x;
8c660648 4044 rtx link;
2db45993 4045 int tmp_class, tmp2_class, depend_count1, depend_count2;
8c660648
JL
4046 int val, priority_val, spec_val, prob_val, weight_val;
4047
4048
8c660648
JL
4049 /* prefer insn with higher priority */
4050 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
4051 if (priority_val)
4052 return priority_val;
4053
4054 /* prefer an insn with smaller contribution to registers-pressure */
4055 if (!reload_completed &&
4056 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
4057 return (weight_val);
4058
4059 /* some comparison make sense in interblock scheduling only */
4060 if (INSN_BB (tmp) != INSN_BB (tmp2))
4061 {
4062 /* prefer an inblock motion on an interblock motion */
4063 if ((INSN_BB (tmp2) == target_bb) && (INSN_BB (tmp) != target_bb))
4064 return 1;
4065 if ((INSN_BB (tmp) == target_bb) && (INSN_BB (tmp2) != target_bb))
4066 return -1;
4067
4068 /* prefer a useful motion on a speculative one */
4069 if ((spec_val = IS_SPECULATIVE_INSN (tmp) - IS_SPECULATIVE_INSN (tmp2)))
4070 return (spec_val);
4071
4072 /* prefer a more probable (speculative) insn */
4073 prob_val = INSN_PROBABILITY (tmp2) - INSN_PROBABILITY (tmp);
4074 if (prob_val)
4075 return (prob_val);
4076 }
4077
4078 /* compare insns based on their relation to the last-scheduled-insn */
4079 if (last_scheduled_insn)
4080 {
4081 /* Classify the instructions into three classes:
4082 1) Data dependent on last schedule insn.
4083 2) Anti/Output dependent on last scheduled insn.
4084 3) Independent of last scheduled insn, or has latency of one.
4085 Choose the insn from the highest numbered class if different. */
4086 link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
4087 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
4088 tmp_class = 3;
4089 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
4090 tmp_class = 1;
4091 else
4092 tmp_class = 2;
4093
4094 link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
4095 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
4096 tmp2_class = 3;
4097 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
4098 tmp2_class = 1;
4099 else
4100 tmp2_class = 2;
4101
4102 if ((val = tmp2_class - tmp_class))
4103 return val;
4104 }
4105
2db45993
JL
4106 /* Prefer the insn which has more later insns that depend on it.
4107 This gives the scheduler more freedom when scheduling later
4108 instructions at the expense of added register pressure. */
4109 depend_count1 = 0;
4110 for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
4111 depend_count1++;
4112
4113 depend_count2 = 0;
4114 for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
4115 depend_count2++;
4116
4117 val = depend_count2 - depend_count1;
4118 if (val)
4119 return val;
4120
8c660648
JL
4121 /* If insns are equally good, sort by INSN_LUID (original insn order),
4122 so that we make the sort stable. This minimizes instruction movement,
4123 thus minimizing sched's effect on debugging and cross-jumping. */
4124 return INSN_LUID (tmp) - INSN_LUID (tmp2);
4125}
4126
4127/* Resort the array A in which only element at index N may be out of order. */
4128
cbb13457 4129HAIFA_INLINE static void
8c660648
JL
4130swap_sort (a, n)
4131 rtx *a;
4132 int n;
4133{
4134 rtx insn = a[n - 1];
4135 int i = n - 2;
4136
4137 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
4138 {
4139 a[i + 1] = a[i];
4140 i -= 1;
4141 }
4142 a[i + 1] = insn;
4143}
4144
4145static int max_priority;
4146
4147/* Add INSN to the insn queue so that it can be executed at least
4148 N_CYCLES after the currently executing insn. Preserve insns
4149 chain for debugging purposes. */
4150
cbb13457 4151HAIFA_INLINE static void
8c660648
JL
4152queue_insn (insn, n_cycles)
4153 rtx insn;
4154 int n_cycles;
4155{
4156 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
ebb7b10b 4157 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
8c660648
JL
4158 insn_queue[next_q] = link;
4159 q_size += 1;
4160
4161 if (sched_verbose >= 2)
4162 {
4163 fprintf (dump, ";;\t\tReady-->Q: insn %d: ", INSN_UID (insn));
4164
4165 if (INSN_BB (insn) != target_bb)
4166 fprintf (dump, "(b%d) ", INSN_BLOCK (insn));
4167
4168 fprintf (dump, "queued for %d cycles.\n", n_cycles);
4169 }
4170
4171}
4172
4173/* Return nonzero if PAT is the pattern of an insn which makes a
4174 register live. */
4175
cbb13457 4176HAIFA_INLINE static int
8c660648
JL
4177birthing_insn_p (pat)
4178 rtx pat;
4179{
4180 int j;
4181
4182 if (reload_completed == 1)
4183 return 0;
4184
4185 if (GET_CODE (pat) == SET
4186 && GET_CODE (SET_DEST (pat)) == REG)
4187 {
4188 rtx dest = SET_DEST (pat);
4189 int i = REGNO (dest);
4190
4191 /* It would be more accurate to use refers_to_regno_p or
4192 reg_mentioned_p to determine when the dest is not live before this
4193 insn. */
4194
4195 if (REGNO_REG_SET_P (bb_live_regs, i))
4196 return (REG_N_SETS (i) == 1);
4197
4198 return 0;
4199 }
4200 if (GET_CODE (pat) == PARALLEL)
4201 {
4202 for (j = 0; j < XVECLEN (pat, 0); j++)
4203 if (birthing_insn_p (XVECEXP (pat, 0, j)))
4204 return 1;
4205 }
4206 return 0;
4207}
4208
4209/* PREV is an insn that is ready to execute. Adjust its priority if that
4210 will help shorten register lifetimes. */
4211
cbb13457 4212HAIFA_INLINE static void
8c660648
JL
4213adjust_priority (prev)
4214 rtx prev;
4215{
4216 /* Trying to shorten register lives after reload has completed
4217 is useless and wrong. It gives inaccurate schedules. */
4218 if (reload_completed == 0)
4219 {
4220 rtx note;
4221 int n_deaths = 0;
4222
4223 /* ??? This code has no effect, because REG_DEAD notes are removed
4224 before we ever get here. */
4225 for (note = REG_NOTES (prev); note; note = XEXP (note, 1))
4226 if (REG_NOTE_KIND (note) == REG_DEAD)
4227 n_deaths += 1;
4228
4229 /* Defer scheduling insns which kill registers, since that
4230 shortens register lives. Prefer scheduling insns which
4231 make registers live for the same reason. */
4232 switch (n_deaths)
4233 {
4234 default:
4235 INSN_PRIORITY (prev) >>= 3;
4236 break;
4237 case 3:
4238 INSN_PRIORITY (prev) >>= 2;
4239 break;
4240 case 2:
4241 case 1:
4242 INSN_PRIORITY (prev) >>= 1;
4243 break;
4244 case 0:
4245 if (birthing_insn_p (PATTERN (prev)))
4246 {
4247 int max = max_priority;
4248
4249 if (max > INSN_PRIORITY (prev))
4250 INSN_PRIORITY (prev) = max;
4251 }
4252 break;
4253 }
4254#ifdef ADJUST_PRIORITY
4255 ADJUST_PRIORITY (prev);
4256#endif
4257 }
4258}
4259
4260/* INSN is the "currently executing insn". Launch each insn which was
4261 waiting on INSN. READY is a vector of insns which are ready to fire.
4262 N_READY is the number of elements in READY. CLOCK is the current
4263 cycle. */
4264
4265static int
4266schedule_insn (insn, ready, n_ready, clock)
4267 rtx insn;
4268 rtx *ready;
4269 int n_ready;
4270 int clock;
4271{
4272 rtx link;
4273 int unit;
4274
4275 unit = insn_unit (insn);
4276
4277 if (sched_verbose >= 2)
4278 {
4279 fprintf (dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ", INSN_UID (insn));
4280 insn_print_units (insn);
4281 fprintf (dump, "\n");
4282 }
4283
4284 if (sched_verbose && unit == -1)
4285 visualize_no_unit (insn);
4286
4287 if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
4288 schedule_unit (unit, insn, clock);
4289
4290 if (INSN_DEPEND (insn) == 0)
4291 return n_ready;
4292
4293 /* This is used by the function adjust_priority above. */
4294 if (n_ready > 0)
4295 max_priority = MAX (INSN_PRIORITY (ready[0]), INSN_PRIORITY (insn));
4296 else
4297 max_priority = INSN_PRIORITY (insn);
4298
4299 for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
4300 {
4301 rtx next = XEXP (link, 0);
4302 int cost = insn_cost (insn, link, next);
4303
4304 INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost);
4305
4306 if ((INSN_DEP_COUNT (next) -= 1) == 0)
4307 {
4308 int effective_cost = INSN_TICK (next) - clock;
4309
4310 /* For speculative insns, before inserting to ready/queue,
4311 check live, exception-free, and issue-delay */
4312 if (INSN_BB (next) != target_bb
4313 && (!IS_VALID (INSN_BB (next))
4314 || CANT_MOVE (next)
4315 || (IS_SPECULATIVE_INSN (next)
4316 && (insn_issue_delay (next) > 3
5835e573 4317 || !check_live (next, INSN_BB (next))
8c660648
JL
4318 || !is_exception_free (next, INSN_BB (next), target_bb)))))
4319 continue;
4320
4321 if (sched_verbose >= 2)
4322 {
4323 fprintf (dump, ";;\t\tdependences resolved: insn %d ", INSN_UID (next));
4324
4325 if (current_nr_blocks > 1 && INSN_BB (next) != target_bb)
4326 fprintf (dump, "/b%d ", INSN_BLOCK (next));
4327
4328 if (effective_cost <= 1)
4329 fprintf (dump, "into ready\n");
4330 else
4331 fprintf (dump, "into queue with cost=%d\n", effective_cost);
4332 }
4333
4334 /* Adjust the priority of NEXT and either put it on the ready
4335 list or queue it. */
4336 adjust_priority (next);
4337 if (effective_cost <= 1)
4338 ready[n_ready++] = next;
4339 else
4340 queue_insn (next, effective_cost);
4341 }
4342 }
4343
4344 return n_ready;
4345}
4346
4347
4348/* Add a REG_DEAD note for REG to INSN, reusing a REG_DEAD note from the
4349 dead_notes list. */
4350
4351static void
4352create_reg_dead_note (reg, insn)
4353 rtx reg, insn;
4354{
4355 rtx link;
4356
4357 /* The number of registers killed after scheduling must be the same as the
4358 number of registers killed before scheduling. The number of REG_DEAD
4359 notes may not be conserved, i.e. two SImode hard register REG_DEAD notes
4360 might become one DImode hard register REG_DEAD note, but the number of
4361 registers killed will be conserved.
4362
4363 We carefully remove REG_DEAD notes from the dead_notes list, so that
4364 there will be none left at the end. If we run out early, then there
4365 is a bug somewhere in flow, combine and/or sched. */
4366
4367 if (dead_notes == 0)
4368 {
4369 if (current_nr_blocks <= 1)
4370 abort ();
4371 else
ebb7b10b 4372 link = alloc_EXPR_LIST (REG_DEAD, NULL_RTX, NULL_RTX);
8c660648
JL
4373 }
4374 else
4375 {
4376 /* Number of regs killed by REG. */
4377 int regs_killed = (REGNO (reg) >= FIRST_PSEUDO_REGISTER ? 1
4378 : HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)));
4379 /* Number of regs killed by REG_DEAD notes taken off the list. */
4380 int reg_note_regs;
4381
4382 link = dead_notes;
4383 reg_note_regs = (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
4384 : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
4385 GET_MODE (XEXP (link, 0))));
4386 while (reg_note_regs < regs_killed)
4387 {
4388 link = XEXP (link, 1);
04029ca2
JL
4389
4390 /* LINK might be zero if we killed more registers after scheduling
4391 than before, and the last hard register we kill is actually
4392 multiple hard regs.
4393
4394 This is normal for interblock scheduling, so deal with it in
4395 that case, else abort. */
4396 if (link == NULL_RTX && current_nr_blocks <= 1)
4397 abort ();
4398 else if (link == NULL_RTX)
ebb7b10b
RH
4399 link = alloc_EXPR_LIST (REG_DEAD, gen_rtx_REG (word_mode, 0),
4400 NULL_RTX);
04029ca2 4401
8c660648
JL
4402 reg_note_regs += (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
4403 : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
4404 GET_MODE (XEXP (link, 0))));
4405 }
4406 dead_notes = XEXP (link, 1);
4407
4408 /* If we took too many regs kills off, put the extra ones back. */
4409 while (reg_note_regs > regs_killed)
4410 {
4411 rtx temp_reg, temp_link;
4412
38a448ca 4413 temp_reg = gen_rtx_REG (word_mode, 0);
ebb7b10b 4414 temp_link = alloc_EXPR_LIST (REG_DEAD, temp_reg, dead_notes);
8c660648
JL
4415 dead_notes = temp_link;
4416 reg_note_regs--;
4417 }
4418 }
4419
4420 XEXP (link, 0) = reg;
4421 XEXP (link, 1) = REG_NOTES (insn);
4422 REG_NOTES (insn) = link;
4423}
4424
4425/* Subroutine on attach_deaths_insn--handles the recursive search
4426 through INSN. If SET_P is true, then x is being modified by the insn. */
4427
4428static void
4429attach_deaths (x, insn, set_p)
4430 rtx x;
4431 rtx insn;
4432 int set_p;
4433{
4434 register int i;
4435 register int j;
4436 register enum rtx_code code;
4437 register char *fmt;
4438
4439 if (x == 0)
4440 return;
4441
4442 code = GET_CODE (x);
4443
4444 switch (code)
4445 {
4446 case CONST_INT:
4447 case CONST_DOUBLE:
4448 case LABEL_REF:
4449 case SYMBOL_REF:
4450 case CONST:
4451 case CODE_LABEL:
4452 case PC:
4453 case CC0:
4454 /* Get rid of the easy cases first. */
4455 return;
4456
4457 case REG:
4458 {
4459 /* If the register dies in this insn, queue that note, and mark
4460 this register as needing to die. */
4461 /* This code is very similar to mark_used_1 (if set_p is false)
4462 and mark_set_1 (if set_p is true) in flow.c. */
4463
4464 register int regno;
4465 int some_needed;
4466 int all_needed;
4467
4468 if (set_p)
4469 return;
4470
4471 regno = REGNO (x);
4472 all_needed = some_needed = REGNO_REG_SET_P (old_live_regs, regno);
4473 if (regno < FIRST_PSEUDO_REGISTER)
4474 {
4475 int n;
4476
4477 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
4478 while (--n > 0)
4479 {
4480 int needed = (REGNO_REG_SET_P (old_live_regs, regno + n));
4481 some_needed |= needed;
4482 all_needed &= needed;
4483 }
4484 }
4485
4486 /* If it wasn't live before we started, then add a REG_DEAD note.
4487 We must check the previous lifetime info not the current info,
4488 because we may have to execute this code several times, e.g.
4489 once for a clobber (which doesn't add a note) and later
4490 for a use (which does add a note).
4491
4492 Always make the register live. We must do this even if it was
4493 live before, because this may be an insn which sets and uses
4494 the same register, in which case the register has already been
4495 killed, so we must make it live again.
4496
4497 Global registers are always live, and should never have a REG_DEAD
4498 note added for them, so none of the code below applies to them. */
4499
4500 if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
4501 {
4502 /* Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
4503 STACK_POINTER_REGNUM, since these are always considered to be
4504 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
4505 if (regno != FRAME_POINTER_REGNUM
4506#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4507 && ! (regno == HARD_FRAME_POINTER_REGNUM)
4508#endif
4509#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
4510 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4511#endif
4512 && regno != STACK_POINTER_REGNUM)
4513 {
d6df9efb 4514 if (! all_needed && ! dead_or_set_p (insn, x))
8c660648
JL
4515 {
4516 /* Check for the case where the register dying partially
4517 overlaps the register set by this insn. */
4518 if (regno < FIRST_PSEUDO_REGISTER
4519 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
4520 {
4521 int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
4522 while (--n >= 0)
4523 some_needed |= dead_or_set_regno_p (insn, regno + n);
4524 }
4525
4526 /* If none of the words in X is needed, make a REG_DEAD
4527 note. Otherwise, we must make partial REG_DEAD
4528 notes. */
4529 if (! some_needed)
4530 create_reg_dead_note (x, insn);
4531 else
4532 {
4533 int i;
4534
4535 /* Don't make a REG_DEAD note for a part of a
4536 register that is set in the insn. */
4537 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
4538 i >= 0; i--)
4539 if (! REGNO_REG_SET_P (old_live_regs, regno+i)
4540 && ! dead_or_set_regno_p (insn, regno + i))
38a448ca
RH
4541 create_reg_dead_note (gen_rtx_REG (reg_raw_mode[regno + i],
4542 regno + i),
8c660648
JL
4543 insn);
4544 }
4545 }
4546 }
4547
4548 if (regno < FIRST_PSEUDO_REGISTER)
4549 {
4550 int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
4551 while (--j >= 0)
4552 {
4553 SET_REGNO_REG_SET (bb_live_regs, regno + j);
4554 }
4555 }
4556 else
4557 {
4558 /* Recompute REG_BASIC_BLOCK as we update all the other
4559 dataflow information. */
4560 if (sched_reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
4561 sched_reg_basic_block[regno] = current_block_num;
4562 else if (sched_reg_basic_block[regno] != current_block_num)
4563 sched_reg_basic_block[regno] = REG_BLOCK_GLOBAL;
4564
4565 SET_REGNO_REG_SET (bb_live_regs, regno);
4566 }
4567 }
4568 return;
4569 }
4570
4571 case MEM:
4572 /* Handle tail-recursive case. */
4573 attach_deaths (XEXP (x, 0), insn, 0);
4574 return;
4575
4576 case SUBREG:
d6df9efb
JL
4577 attach_deaths (SUBREG_REG (x), insn,
4578 set_p && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
4579 <= UNITS_PER_WORD)
4580 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
4581 == GET_MODE_SIZE (GET_MODE ((x))))));
4582 return;
4583
8c660648 4584 case STRICT_LOW_PART:
d6df9efb 4585 attach_deaths (XEXP (x, 0), insn, 0);
8c660648
JL
4586 return;
4587
4588 case ZERO_EXTRACT:
4589 case SIGN_EXTRACT:
d6df9efb 4590 attach_deaths (XEXP (x, 0), insn, 0);
8c660648
JL
4591 attach_deaths (XEXP (x, 1), insn, 0);
4592 attach_deaths (XEXP (x, 2), insn, 0);
4593 return;
4594
4595 default:
4596 /* Other cases: walk the insn. */
4597 fmt = GET_RTX_FORMAT (code);
4598 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4599 {
4600 if (fmt[i] == 'e')
4601 attach_deaths (XEXP (x, i), insn, 0);
4602 else if (fmt[i] == 'E')
4603 for (j = 0; j < XVECLEN (x, i); j++)
4604 attach_deaths (XVECEXP (x, i, j), insn, 0);
4605 }
4606 }
4607}
4608
4609/* After INSN has executed, add register death notes for each register
4610 that is dead after INSN. */
4611
4612static void
4613attach_deaths_insn (insn)
4614 rtx insn;
4615{
4616 rtx x = PATTERN (insn);
4617 register RTX_CODE code = GET_CODE (x);
4618 rtx link;
4619
4620 if (code == SET)
4621 {
4622 attach_deaths (SET_SRC (x), insn, 0);
4623
4624 /* A register might die here even if it is the destination, e.g.
4625 it is the target of a volatile read and is otherwise unused.
4626 Hence we must always call attach_deaths for the SET_DEST. */
4627 attach_deaths (SET_DEST (x), insn, 1);
4628 }
4629 else if (code == PARALLEL)
4630 {
4631 register int i;
4632 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4633 {
4634 code = GET_CODE (XVECEXP (x, 0, i));
4635 if (code == SET)
4636 {
4637 attach_deaths (SET_SRC (XVECEXP (x, 0, i)), insn, 0);
4638
4639 attach_deaths (SET_DEST (XVECEXP (x, 0, i)), insn, 1);
4640 }
4641 /* Flow does not add REG_DEAD notes to registers that die in
4642 clobbers, so we can't either. */
4643 else if (code != CLOBBER)
4644 attach_deaths (XVECEXP (x, 0, i), insn, 0);
4645 }
4646 }
4647 /* If this is a CLOBBER, only add REG_DEAD notes to registers inside a
4648 MEM being clobbered, just like flow. */
4649 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == MEM)
4650 attach_deaths (XEXP (XEXP (x, 0), 0), insn, 0);
4651 /* Otherwise don't add a death note to things being clobbered. */
4652 else if (code != CLOBBER)
4653 attach_deaths (x, insn, 0);
4654
4655 /* Make death notes for things used in the called function. */
4656 if (GET_CODE (insn) == CALL_INSN)
4657 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
4658 attach_deaths (XEXP (XEXP (link, 0), 0), insn,
4659 GET_CODE (XEXP (link, 0)) == CLOBBER);
4660}
4661
4662/* functions for handlnig of notes */
4663
4664/* Delete notes beginning with INSN and put them in the chain
4665 of notes ended by NOTE_LIST.
4666 Returns the insn following the notes. */
4667
4668static rtx
4669unlink_other_notes (insn, tail)
4670 rtx insn, tail;
4671{
4672 rtx prev = PREV_INSN (insn);
4673
4674 while (insn != tail && GET_CODE (insn) == NOTE)
4675 {
4676 rtx next = NEXT_INSN (insn);
4677 /* Delete the note from its current position. */
4678 if (prev)
4679 NEXT_INSN (prev) = next;
4680 if (next)
4681 PREV_INSN (next) = prev;
4682
4683 /* Don't save away NOTE_INSN_SETJMPs, because they must remain
4684 immediately after the call they follow. We use a fake
4685 (REG_DEAD (const_int -1)) note to remember them.
4686 Likewise with NOTE_INSN_{LOOP,EHREGION}_{BEG, END}. */
4687 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_SETJMP
4688 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
4689 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
0dfa1860
MM
4690 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_START
4691 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_END
8c660648
JL
4692 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
4693 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
4694 {
4695 /* Insert the note at the end of the notes list. */
4696 PREV_INSN (insn) = note_list;
4697 if (note_list)
4698 NEXT_INSN (note_list) = insn;
4699 note_list = insn;
4700 }
4701
4702 insn = next;
4703 }
4704 return insn;
4705}
4706
4707/* Delete line notes beginning with INSN. Record line-number notes so
4708 they can be reused. Returns the insn following the notes. */
4709
4710static rtx
4711unlink_line_notes (insn, tail)
4712 rtx insn, tail;
4713{
4714 rtx prev = PREV_INSN (insn);
4715
4716 while (insn != tail && GET_CODE (insn) == NOTE)
4717 {
4718 rtx next = NEXT_INSN (insn);
4719
4720 if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
4721 {
4722 /* Delete the note from its current position. */
4723 if (prev)
4724 NEXT_INSN (prev) = next;
4725 if (next)
4726 PREV_INSN (next) = prev;
4727
4728 /* Record line-number notes so they can be reused. */
4729 LINE_NOTE (insn) = insn;
4730 }
4731 else
4732 prev = insn;
4733
4734 insn = next;
4735 }
4736 return insn;
4737}
4738
4739/* Return the head and tail pointers of BB. */
4740
cbb13457 4741HAIFA_INLINE static void
8c660648
JL
4742get_block_head_tail (bb, headp, tailp)
4743 int bb;
4744 rtx *headp;
4745 rtx *tailp;
4746{
4747
55d89719
TK
4748 rtx head;
4749 rtx tail;
8c660648
JL
4750 int b;
4751
4752 b = BB_TO_BLOCK (bb);
4753
4754 /* HEAD and TAIL delimit the basic block being scheduled. */
4755 head = basic_block_head[b];
4756 tail = basic_block_end[b];
4757
4758 /* Don't include any notes or labels at the beginning of the
4759 basic block, or notes at the ends of basic blocks. */
4760 while (head != tail)
4761 {
4762 if (GET_CODE (head) == NOTE)
4763 head = NEXT_INSN (head);
4764 else if (GET_CODE (tail) == NOTE)
4765 tail = PREV_INSN (tail);
4766 else if (GET_CODE (head) == CODE_LABEL)
4767 head = NEXT_INSN (head);
4768 else
4769 break;
4770 }
4771
4772 *headp = head;
4773 *tailp = tail;
4774}
4775
4776/* Delete line notes from bb. Save them so they can be later restored
4777 (in restore_line_notes ()). */
4778
4779static void
4780rm_line_notes (bb)
4781 int bb;
4782{
4783 rtx next_tail;
4784 rtx tail;
4785 rtx head;
4786 rtx insn;
4787
4788 get_block_head_tail (bb, &head, &tail);
4789
4790 if (head == tail
4791 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
4792 return;
4793
4794 next_tail = NEXT_INSN (tail);
4795 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4796 {
4797 rtx prev;
4798
4799 /* Farm out notes, and maybe save them in NOTE_LIST.
4800 This is needed to keep the debugger from
4801 getting completely deranged. */
4802 if (GET_CODE (insn) == NOTE)
4803 {
4804 prev = insn;
4805 insn = unlink_line_notes (insn, next_tail);
4806
4807 if (prev == tail)
4808 abort ();
4809 if (prev == head)
4810 abort ();
4811 if (insn == next_tail)
4812 abort ();
4813 }
4814 }
4815}
4816
4817/* Save line number notes for each insn in bb. */
4818
4819static void
4820save_line_notes (bb)
4821 int bb;
4822{
4823 rtx head, tail;
4824 rtx next_tail;
4825
4826 /* We must use the true line number for the first insn in the block
4827 that was computed and saved at the start of this pass. We can't
4828 use the current line number, because scheduling of the previous
4829 block may have changed the current line number. */
4830
4831 rtx line = line_note_head[BB_TO_BLOCK (bb)];
4832 rtx insn;
4833
4834 get_block_head_tail (bb, &head, &tail);
4835 next_tail = NEXT_INSN (tail);
4836
4837 for (insn = basic_block_head[BB_TO_BLOCK (bb)];
4838 insn != next_tail;
4839 insn = NEXT_INSN (insn))
4840 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
4841 line = insn;
4842 else
4843 LINE_NOTE (insn) = line;
4844}
4845
4846
4847/* After bb was scheduled, insert line notes into the insns list. */
4848
4849static void
4850restore_line_notes (bb)
4851 int bb;
4852{
4853 rtx line, note, prev, new;
4854 int added_notes = 0;
4855 int b;
4856 rtx head, next_tail, insn;
4857
4858 b = BB_TO_BLOCK (bb);
4859
4860 head = basic_block_head[b];
4861 next_tail = NEXT_INSN (basic_block_end[b]);
4862
4863 /* Determine the current line-number. We want to know the current
4864 line number of the first insn of the block here, in case it is
4865 different from the true line number that was saved earlier. If
4866 different, then we need a line number note before the first insn
4867 of this block. If it happens to be the same, then we don't want to
4868 emit another line number note here. */
4869 for (line = head; line; line = PREV_INSN (line))
4870 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
4871 break;
4872
4873 /* Walk the insns keeping track of the current line-number and inserting
4874 the line-number notes as needed. */
4875 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4876 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
4877 line = insn;
4878 /* This used to emit line number notes before every non-deleted note.
4879 However, this confuses a debugger, because line notes not separated
4880 by real instructions all end up at the same address. I can find no
4881 use for line number notes before other notes, so none are emitted. */
4882 else if (GET_CODE (insn) != NOTE
4883 && (note = LINE_NOTE (insn)) != 0
4884 && note != line
4885 && (line == 0
4886 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
4887 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
4888 {
4889 line = note;
4890 prev = PREV_INSN (insn);
4891 if (LINE_NOTE (note))
4892 {
4893 /* Re-use the original line-number note. */
4894 LINE_NOTE (note) = 0;
4895 PREV_INSN (note) = prev;
4896 NEXT_INSN (prev) = note;
4897 PREV_INSN (insn) = note;
4898 NEXT_INSN (note) = insn;
4899 }
4900 else
4901 {
4902 added_notes++;
4903 new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
4904 NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
4905 RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
4906 }
4907 }
4908 if (sched_verbose && added_notes)
4909 fprintf (dump, ";; added %d line-number notes\n", added_notes);
4910}
4911
4912/* After scheduling the function, delete redundant line notes from the
4913 insns list. */
4914
4915static void
4916rm_redundant_line_notes ()
4917{
4918 rtx line = 0;
4919 rtx insn = get_insns ();
4920 int active_insn = 0;
4921 int notes = 0;
4922
4923 /* Walk the insns deleting redundant line-number notes. Many of these
4924 are already present. The remainder tend to occur at basic
4925 block boundaries. */
4926 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
4927 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
4928 {
4929 /* If there are no active insns following, INSN is redundant. */
4930 if (active_insn == 0)
4931 {
4932 notes++;
4933 NOTE_SOURCE_FILE (insn) = 0;
4934 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
4935 }
4936 /* If the line number is unchanged, LINE is redundant. */
4937 else if (line
4938 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
4939 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
4940 {
4941 notes++;
4942 NOTE_SOURCE_FILE (line) = 0;
4943 NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
4944 line = insn;
4945 }
4946 else
4947 line = insn;
4948 active_insn = 0;
4949 }
4950 else if (!((GET_CODE (insn) == NOTE
4951 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
4952 || (GET_CODE (insn) == INSN
4953 && (GET_CODE (PATTERN (insn)) == USE
4954 || GET_CODE (PATTERN (insn)) == CLOBBER))))
4955 active_insn++;
4956
4957 if (sched_verbose && notes)
4958 fprintf (dump, ";; deleted %d line-number notes\n", notes);
4959}
4960
4961/* Delete notes between head and tail and put them in the chain
4962 of notes ended by NOTE_LIST. */
4963
4964static void
4965rm_other_notes (head, tail)
4966 rtx head;
4967 rtx tail;
4968{
4969 rtx next_tail;
4970 rtx insn;
4971
4972 if (head == tail
4973 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
4974 return;
4975
4976 next_tail = NEXT_INSN (tail);
4977 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4978 {
4979 rtx prev;
4980
4981 /* Farm out notes, and maybe save them in NOTE_LIST.
4982 This is needed to keep the debugger from
4983 getting completely deranged. */
4984 if (GET_CODE (insn) == NOTE)
4985 {
4986 prev = insn;
4987
4988 insn = unlink_other_notes (insn, next_tail);
4989
4990 if (prev == tail)
4991 abort ();
4992 if (prev == head)
4993 abort ();
4994 if (insn == next_tail)
4995 abort ();
4996 }
4997 }
4998}
4999
5000/* Constructor for `sometimes' data structure. */
5001
5002static int
5003new_sometimes_live (regs_sometimes_live, regno, sometimes_max)
5004 struct sometimes *regs_sometimes_live;
5005 int regno;
5006 int sometimes_max;
5007{
5008 register struct sometimes *p;
5009
5010 /* There should never be a register greater than max_regno here. If there
5011 is, it means that a define_split has created a new pseudo reg. This
5012 is not allowed, since there will not be flow info available for any
5013 new register, so catch the error here. */
5014 if (regno >= max_regno)
5015 abort ();
5016
5017 p = &regs_sometimes_live[sometimes_max];
5018 p->regno = regno;
5019 p->live_length = 0;
5020 p->calls_crossed = 0;
5021 sometimes_max++;
5022 return sometimes_max;
5023}
5024
5025/* Count lengths of all regs we are currently tracking,
5026 and find new registers no longer live. */
5027
5028static void
5029finish_sometimes_live (regs_sometimes_live, sometimes_max)
5030 struct sometimes *regs_sometimes_live;
5031 int sometimes_max;
5032{
5033 int i;
5034
5035 for (i = 0; i < sometimes_max; i++)
5036 {
5037 register struct sometimes *p = &regs_sometimes_live[i];
5038 int regno = p->regno;
5039
5040 sched_reg_live_length[regno] += p->live_length;
5041 sched_reg_n_calls_crossed[regno] += p->calls_crossed;
5042 }
5043}
5044
5045/* functions for computation of registers live/usage info */
5046
5047/* It is assumed that prior to scheduling basic_block_live_at_start (b)
5048 contains the registers that are alive at the entry to b.
5049
5050 Two passes follow: The first pass is performed before the scheduling
5051 of a region. It scans each block of the region forward, computing
5052 the set of registers alive at the end of the basic block and
5053 discard REG_DEAD notes (done by find_pre_sched_live ()).
5054
5055 The second path is invoked after scheduling all region blocks.
5056 It scans each block of the region backward, a block being traversed
5057 only after its succesors in the region. When the set of registers
5058 live at the end of a basic block may be changed by the scheduling
5059 (this may happen for multiple blocks region), it is computed as
5060 the union of the registers live at the start of its succesors.
5061 The last-use information is updated by inserting REG_DEAD notes.
5062 (done by find_post_sched_live ()) */
5063
5064/* Scan all the insns to be scheduled, removing register death notes.
5065 Register death notes end up in DEAD_NOTES.
5066 Recreate the register life information for the end of this basic
5067 block. */
5068
5069static void
5070find_pre_sched_live (bb)
5071 int bb;
5072{
5073 rtx insn, next_tail, head, tail;
5074 int b = BB_TO_BLOCK (bb);
5075
5076 get_block_head_tail (bb, &head, &tail);
5077 COPY_REG_SET (bb_live_regs, basic_block_live_at_start[b]);
5078 next_tail = NEXT_INSN (tail);
5079
5080 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
5081 {
5082 rtx prev, next, link;
5083 int reg_weight = 0;
5084
5085 /* Handle register life information. */
5086 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
5087 {
5088 /* See if the register gets born here. */
5089 /* We must check for registers being born before we check for
5090 registers dying. It is possible for a register to be born and
5091 die in the same insn, e.g. reading from a volatile memory
5092 location into an otherwise unused register. Such a register
5093 must be marked as dead after this insn. */
5094 if (GET_CODE (PATTERN (insn)) == SET
5095 || GET_CODE (PATTERN (insn)) == CLOBBER)
5096 {
5835e573 5097 sched_note_set (PATTERN (insn), 0);
8c660648
JL
5098 reg_weight++;
5099 }
5100
5101 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
5102 {
5103 int j;
5104 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
5105 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
5106 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
5107 {
5835e573 5108 sched_note_set (XVECEXP (PATTERN (insn), 0, j), 0);
8c660648
JL
5109 reg_weight++;
5110 }
5111
5112 /* ??? This code is obsolete and should be deleted. It
5113 is harmless though, so we will leave it in for now. */
5114 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
5115 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == USE)
5835e573 5116 sched_note_set (XVECEXP (PATTERN (insn), 0, j), 0);
8c660648
JL
5117 }
5118
5119 /* Each call cobbers (makes live) all call-clobbered regs
5120 that are not global or fixed. Note that the function-value
5121 reg is a call_clobbered reg. */
5122 if (GET_CODE (insn) == CALL_INSN)
5123 {
5124 int j;
5125 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
5126 if (call_used_regs[j] && !global_regs[j]
5127 && ! fixed_regs[j])
5128 {
5129 SET_REGNO_REG_SET (bb_live_regs, j);
8c660648
JL
5130 }
5131 }
5132
5133 /* Need to know what registers this insn kills. */
5134 for (prev = 0, link = REG_NOTES (insn); link; link = next)
5135 {
5136 next = XEXP (link, 1);
5137 if ((REG_NOTE_KIND (link) == REG_DEAD
5138 || REG_NOTE_KIND (link) == REG_UNUSED)
5139 /* Verify that the REG_NOTE has a valid value. */
5140 && GET_CODE (XEXP (link, 0)) == REG)
5141 {
5142 register int regno = REGNO (XEXP (link, 0));
5143
5144 reg_weight--;
5145
5146 /* Only unlink REG_DEAD notes; leave REG_UNUSED notes
5147 alone. */
5148 if (REG_NOTE_KIND (link) == REG_DEAD)
5149 {
5150 if (prev)
5151 XEXP (prev, 1) = next;
5152 else
5153 REG_NOTES (insn) = next;
5154 XEXP (link, 1) = dead_notes;
5155 dead_notes = link;
5156 }
5157 else
5158 prev = link;
5159
5160 if (regno < FIRST_PSEUDO_REGISTER)
5161 {
5162 int j = HARD_REGNO_NREGS (regno,
5163 GET_MODE (XEXP (link, 0)));
5164 while (--j >= 0)
5165 {
5166 CLEAR_REGNO_REG_SET (bb_live_regs, regno+j);
5167 }
5168 }
5169 else
5170 {
5171 CLEAR_REGNO_REG_SET (bb_live_regs, regno);
5172 }
5173 }
5174 else
5175 prev = link;
5176 }
5177 }
5178
5179 INSN_REG_WEIGHT (insn) = reg_weight;
5180 }
5181}
5182
5183/* Update register life and usage information for block bb
5184 after scheduling. Put register dead notes back in the code. */
5185
5186static void
5187find_post_sched_live (bb)
5188 int bb;
5189{
5190 int sometimes_max;
5191 int j, i;
5192 int b;
5193 rtx insn;
5194 rtx head, tail, prev_head, next_tail;
5195
5196 register struct sometimes *regs_sometimes_live;
5197
5198 b = BB_TO_BLOCK (bb);
5199
5200 /* compute live regs at the end of bb as a function of its successors. */
5201 if (current_nr_blocks > 1)
5202 {
5203 int e;
5204 int first_edge;
5205
5206 first_edge = e = OUT_EDGES (b);
5207 CLEAR_REG_SET (bb_live_regs);
5208
5209 if (e)
5210 do
5211 {
5212 int b_succ;
5213
5214 b_succ = TO_BLOCK (e);
5215 IOR_REG_SET (bb_live_regs, basic_block_live_at_start[b_succ]);
5216 e = NEXT_OUT (e);
5217 }
5218 while (e != first_edge);
5219 }
5220
5221 get_block_head_tail (bb, &head, &tail);
5222 next_tail = NEXT_INSN (tail);
5223 prev_head = PREV_INSN (head);
5224
7eea6443
JL
5225 EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, FIRST_PSEUDO_REGISTER, i,
5226 {
5227 sched_reg_basic_block[i] = REG_BLOCK_GLOBAL;
5228 });
8c660648
JL
5229
5230 /* if the block is empty, same regs are alive at its end and its start.
5231 since this is not guaranteed after interblock scheduling, make sure they
5232 are truly identical. */
5233 if (NEXT_INSN (prev_head) == tail
5234 && (GET_RTX_CLASS (GET_CODE (tail)) != 'i'))
5235 {
5236 if (current_nr_blocks > 1)
5237 COPY_REG_SET (basic_block_live_at_start[b], bb_live_regs);
5238
5239 return;
5240 }
5241
5242 b = BB_TO_BLOCK (bb);
5243 current_block_num = b;
5244
5245 /* Keep track of register lives. */
5246 old_live_regs = ALLOCA_REG_SET ();
5247 regs_sometimes_live
5248 = (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
5249 sometimes_max = 0;
5250
5251 /* initiate "sometimes" data, starting with registers live at end */
5252 sometimes_max = 0;
5253 COPY_REG_SET (old_live_regs, bb_live_regs);
5254 EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, 0, j,
5255 {
5256 sometimes_max
5257 = new_sometimes_live (regs_sometimes_live,
5258 j, sometimes_max);
5259 });
5260
5261 /* scan insns back, computing regs live info */
5262 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
5263 {
5264 /* First we kill registers set by this insn, and then we
5265 make registers used by this insn live. This is the opposite
5266 order used above because we are traversing the instructions
5267 backwards. */
5268
5269 /* Strictly speaking, we should scan REG_UNUSED notes and make
5270 every register mentioned there live, however, we will just
5271 kill them again immediately below, so there doesn't seem to
5272 be any reason why we bother to do this. */
5273
5274 /* See if this is the last notice we must take of a register. */
5275 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
5276 continue;
5277
5278 if (GET_CODE (PATTERN (insn)) == SET
5279 || GET_CODE (PATTERN (insn)) == CLOBBER)
5835e573 5280 sched_note_set (PATTERN (insn), 1);
8c660648
JL
5281 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
5282 {
5283 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
5284 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
5285 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
5835e573 5286 sched_note_set (XVECEXP (PATTERN (insn), 0, j), 1);
8c660648
JL
5287 }
5288
5289 /* This code keeps life analysis information up to date. */
5290 if (GET_CODE (insn) == CALL_INSN)
5291 {
5292 register struct sometimes *p;
5293
5294 /* A call kills all call used registers that are not
5295 global or fixed, except for those mentioned in the call
5296 pattern which will be made live again later. */
5297 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5298 if (call_used_regs[i] && ! global_regs[i]
5299 && ! fixed_regs[i])
5300 {
5301 CLEAR_REGNO_REG_SET (bb_live_regs, i);
8c660648
JL
5302 }
5303
5304 /* Regs live at the time of a call instruction must not
5305 go in a register clobbered by calls. Record this for
5306 all regs now live. Note that insns which are born or
5307 die in a call do not cross a call, so this must be done
5308 after the killings (above) and before the births
5309 (below). */
5310 p = regs_sometimes_live;
5311 for (i = 0; i < sometimes_max; i++, p++)
5312 if (REGNO_REG_SET_P (bb_live_regs, p->regno))
5313 p->calls_crossed += 1;
5314 }
5315
5316 /* Make every register used live, and add REG_DEAD notes for
5317 registers which were not live before we started. */
5318 attach_deaths_insn (insn);
5319
5320 /* Find registers now made live by that instruction. */
5321 EXECUTE_IF_AND_COMPL_IN_REG_SET (bb_live_regs, old_live_regs, 0, j,
5322 {
5323 sometimes_max
5324 = new_sometimes_live (regs_sometimes_live,
5325 j, sometimes_max);
5326 });
5327 IOR_REG_SET (old_live_regs, bb_live_regs);
5328
5329 /* Count lengths of all regs we are worrying about now,
5330 and handle registers no longer live. */
5331
5332 for (i = 0; i < sometimes_max; i++)
5333 {
5334 register struct sometimes *p = &regs_sometimes_live[i];
5335 int regno = p->regno;
5336
5337 p->live_length += 1;
5338
5339 if (!REGNO_REG_SET_P (bb_live_regs, regno))
5340 {
5341 /* This is the end of one of this register's lifetime
5342 segments. Save the lifetime info collected so far,
5343 and clear its bit in the old_live_regs entry. */
5344 sched_reg_live_length[regno] += p->live_length;
5345 sched_reg_n_calls_crossed[regno] += p->calls_crossed;
5346 CLEAR_REGNO_REG_SET (old_live_regs, p->regno);
5347
5348 /* Delete the reg_sometimes_live entry for this reg by
5349 copying the last entry over top of it. */
5350 *p = regs_sometimes_live[--sometimes_max];
5351 /* ...and decrement i so that this newly copied entry
5352 will be processed. */
5353 i--;
5354 }
5355 }
5356 }
5357
5358 finish_sometimes_live (regs_sometimes_live, sometimes_max);
5359
5360 /* In interblock scheduling, basic_block_live_at_start may have changed. */
5361 if (current_nr_blocks > 1)
5362 COPY_REG_SET (basic_block_live_at_start[b], bb_live_regs);
5363
f187056f
JL
5364
5365 FREE_REG_SET (old_live_regs);
8c660648
JL
5366} /* find_post_sched_live */
5367
5368/* After scheduling the subroutine, restore information about uses of
5369 registers. */
5370
5371static void
5372update_reg_usage ()
5373{
5374 int regno;
5375
5376 if (n_basic_blocks > 0)
7eea6443
JL
5377 EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, FIRST_PSEUDO_REGISTER, regno,
5378 {
5379 sched_reg_basic_block[regno]
5380 = REG_BLOCK_GLOBAL;
5381 });
8c660648
JL
5382
5383 for (regno = 0; regno < max_regno; regno++)
5384 if (sched_reg_live_length[regno])
5385 {
5386 if (sched_verbose)
5387 {
5388 if (REG_LIVE_LENGTH (regno) > sched_reg_live_length[regno])
5389 fprintf (dump,
5390 ";; register %d life shortened from %d to %d\n",
5391 regno, REG_LIVE_LENGTH (regno),
5392 sched_reg_live_length[regno]);
5393 /* Negative values are special; don't overwrite the current
5394 reg_live_length value if it is negative. */
5395 else if (REG_LIVE_LENGTH (regno) < sched_reg_live_length[regno]
5396 && REG_LIVE_LENGTH (regno) >= 0)
5397 fprintf (dump,
5398 ";; register %d life extended from %d to %d\n",
5399 regno, REG_LIVE_LENGTH (regno),
5400 sched_reg_live_length[regno]);
5401
5402 if (!REG_N_CALLS_CROSSED (regno)
5403 && sched_reg_n_calls_crossed[regno])
5404 fprintf (dump,
5405 ";; register %d now crosses calls\n", regno);
5406 else if (REG_N_CALLS_CROSSED (regno)
5407 && !sched_reg_n_calls_crossed[regno]
5408 && REG_BASIC_BLOCK (regno) != REG_BLOCK_GLOBAL)
5409 fprintf (dump,
5410 ";; register %d no longer crosses calls\n", regno);
5411
5412 if (REG_BASIC_BLOCK (regno) != sched_reg_basic_block[regno]
5413 && sched_reg_basic_block[regno] != REG_BLOCK_UNKNOWN
5414 && REG_BASIC_BLOCK(regno) != REG_BLOCK_UNKNOWN)
5415 fprintf (dump,
5416 ";; register %d changed basic block from %d to %d\n",
5417 regno, REG_BASIC_BLOCK(regno),
5418 sched_reg_basic_block[regno]);
5419
5420 }
5421 /* Negative values are special; don't overwrite the current
5422 reg_live_length value if it is negative. */
5423 if (REG_LIVE_LENGTH (regno) >= 0)
5424 REG_LIVE_LENGTH (regno) = sched_reg_live_length[regno];
5425
5426 if (sched_reg_basic_block[regno] != REG_BLOCK_UNKNOWN
5427 && REG_BASIC_BLOCK(regno) != REG_BLOCK_UNKNOWN)
5428 REG_BASIC_BLOCK(regno) = sched_reg_basic_block[regno];
5429
5430 /* We can't change the value of reg_n_calls_crossed to zero for
5431 pseudos which are live in more than one block.
5432
5433 This is because combine might have made an optimization which
5434 invalidated basic_block_live_at_start and reg_n_calls_crossed,
5435 but it does not update them. If we update reg_n_calls_crossed
5436 here, the two variables are now inconsistent, and this might
5437 confuse the caller-save code into saving a register that doesn't
5438 need to be saved. This is only a problem when we zero calls
5439 crossed for a pseudo live in multiple basic blocks.
5440
5441 Alternatively, we could try to correctly update basic block live
5442 at start here in sched, but that seems complicated.
5443
5444 Note: it is possible that a global register became local, as result
5445 of interblock motion, but will remain marked as a global register. */
5446 if (sched_reg_n_calls_crossed[regno]
5447 || REG_BASIC_BLOCK (regno) != REG_BLOCK_GLOBAL)
5448 REG_N_CALLS_CROSSED (regno) = sched_reg_n_calls_crossed[regno];
5449
5450 }
5451}
5452
5453/* Scheduling clock, modified in schedule_block() and queue_to_ready () */
5454static int clock_var;
5455
5456/* Move insns that became ready to fire from queue to ready list. */
5457
5458static int
5459queue_to_ready (ready, n_ready)
5460 rtx ready[];
5461 int n_ready;
5462{
5463 rtx insn;
5464 rtx link;
5465
5466 q_ptr = NEXT_Q (q_ptr);
5467
5468 /* Add all pending insns that can be scheduled without stalls to the
5469 ready list. */
5470 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
5471 {
5472
5473 insn = XEXP (link, 0);
5474 q_size -= 1;
5475
5476 if (sched_verbose >= 2)
5477 fprintf (dump, ";;\t\tQ-->Ready: insn %d: ", INSN_UID (insn));
5478
5479 if (sched_verbose >= 2 && INSN_BB (insn) != target_bb)
5480 fprintf (dump, "(b%d) ", INSN_BLOCK (insn));
5481
5482 ready[n_ready++] = insn;
5483 if (sched_verbose >= 2)
5484 fprintf (dump, "moving to ready without stalls\n");
5485 }
5486 insn_queue[q_ptr] = 0;
5487
5488 /* If there are no ready insns, stall until one is ready and add all
5489 of the pending insns at that point to the ready list. */
5490 if (n_ready == 0)
5491 {
5492 register int stalls;
5493
5494 for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
5495 {
5496 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5497 {
5498 for (; link; link = XEXP (link, 1))
5499 {
5500 insn = XEXP (link, 0);
5501 q_size -= 1;
5502
5503 if (sched_verbose >= 2)
5504 fprintf (dump, ";;\t\tQ-->Ready: insn %d: ", INSN_UID (insn));
5505
5506 if (sched_verbose >= 2 && INSN_BB (insn) != target_bb)
5507 fprintf (dump, "(b%d) ", INSN_BLOCK (insn));
5508
5509 ready[n_ready++] = insn;
5510 if (sched_verbose >= 2)
5511 fprintf (dump, "moving to ready with %d stalls\n", stalls);
5512 }
5513 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
5514
5515 if (n_ready)
5516 break;
5517 }
5518 }
5519
5520 if (sched_verbose && stalls)
5521 visualize_stall_cycles (BB_TO_BLOCK (target_bb), stalls);
5522 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5523 clock_var += stalls;
5524 }
5525 return n_ready;
5526}
5527
5528/* Print the ready list for debugging purposes. Callable from debugger. */
5529
5530extern void
5531debug_ready_list (ready, n_ready)
5532 rtx ready[];
5533 int n_ready;
5534{
5535 int i;
5536
5537 for (i = 0; i < n_ready; i++)
5538 {
5539 fprintf (dump, " %d", INSN_UID (ready[i]));
5540 if (current_nr_blocks > 1 && INSN_BB (ready[i]) != target_bb)
5541 fprintf (dump, "/b%d", INSN_BLOCK (ready[i]));
5542 }
5543 fprintf (dump, "\n");
5544}
5545
5546/* Print names of units on which insn can/should execute, for debugging. */
5547
5548static void
5549insn_print_units (insn)
5550 rtx insn;
5551{
5552 int i;
5553 int unit = insn_unit (insn);
5554
5555 if (unit == -1)
5556 fprintf (dump, "none");
5557 else if (unit >= 0)
5558 fprintf (dump, "%s", function_units[unit].name);
5559 else
5560 {
5561 fprintf (dump, "[");
5562 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
5563 if (unit & 1)
5564 {
5565 fprintf (dump, "%s", function_units[i].name);
5566 if (unit != 1)
5567 fprintf (dump, " ");
5568 }
5569 fprintf (dump, "]");
5570 }
5571}
5572
5573/* MAX_VISUAL_LINES is the maximum number of lines in visualization table
5574 of a basic block. If more lines are needed, table is splitted to two.
5575 n_visual_lines is the number of lines printed so far for a block.
5576 visual_tbl contains the block visualization info.
5577 vis_no_unit holds insns in a cycle that are not mapped to any unit. */
5578#define MAX_VISUAL_LINES 100
5579#define INSN_LEN 30
5580int n_visual_lines;
5581char *visual_tbl;
5582int n_vis_no_unit;
5583rtx vis_no_unit[10];
5584
5585/* Finds units that are in use in this fuction. Required only
5586 for visualization. */
5587
5588static void
5589init_target_units ()
5590{
5591 rtx insn;
5592 int unit;
5593
5594 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5595 {
5596 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
5597 continue;
5598
5599 unit = insn_unit (insn);
5600
5601 if (unit < 0)
5602 target_units |= ~unit;
5603 else
5604 target_units |= (1 << unit);
5605 }
5606}
5607
5608/* Return the length of the visualization table */
5609
5610static int
5611get_visual_tbl_length ()
5612{
5613 int unit, i;
5614 int n, n1;
5615 char *s;
5616
5617 /* compute length of one field in line */
5618 s = (char *) alloca (INSN_LEN + 5);
5619 sprintf (s, " %33s", "uname");
5620 n1 = strlen (s);
5621
5622 /* compute length of one line */
5623 n = strlen (";; ");
5624 n += n1;
5625 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
5626 if (function_units[unit].bitmask & target_units)
5627 for (i = 0; i < function_units[unit].multiplicity; i++)
5628 n += n1;
5629 n += n1;
5630 n += strlen ("\n") + 2;
5631
5632 /* compute length of visualization string */
5633 return (MAX_VISUAL_LINES * n);
5634}
5635
5636/* Init block visualization debugging info */
5637
5638static void
5639init_block_visualization ()
5640{
5641 strcpy (visual_tbl, "");
5642 n_visual_lines = 0;
5643 n_vis_no_unit = 0;
5644}
5645
5646#define BUF_LEN 256
5647
459b3825
MM
5648static char *
5649safe_concat (buf, cur, str)
5650 char *buf;
5651 char *cur;
5652 char *str;
5653{
5654 char *end = buf + BUF_LEN - 2; /* leave room for null */
5655 int c;
5656
5657 if (cur > end)
5658 {
5659 *end = '\0';
5660 return end;
5661 }
5662
5663 while (cur < end && (c = *str++) != '\0')
5664 *cur++ = c;
5665
5666 *cur = '\0';
5667 return cur;
5668}
5669
8c660648
JL
5670/* This recognizes rtx, I classified as expressions. These are always */
5671/* represent some action on values or results of other expression, */
5672/* that may be stored in objects representing values. */
5673
5674static void
5675print_exp (buf, x, verbose)
5676 char *buf;
5677 rtx x;
5678 int verbose;
5679{
459b3825
MM
5680 char tmp[BUF_LEN];
5681 char *st[4];
5682 char *cur = buf;
5683 char *fun = (char *)0;
5684 char *sep;
5685 rtx op[4];
5686 int i;
5687
5688 for (i = 0; i < 4; i++)
5689 {
5690 st[i] = (char *)0;
5691 op[i] = NULL_RTX;
5692 }
8c660648
JL
5693
5694 switch (GET_CODE (x))
5695 {
5696 case PLUS:
459b3825
MM
5697 op[0] = XEXP (x, 0);
5698 st[1] = "+";
5699 op[1] = XEXP (x, 1);
8c660648
JL
5700 break;
5701 case LO_SUM:
459b3825
MM
5702 op[0] = XEXP (x, 0);
5703 st[1] = "+low(";
5704 op[1] = XEXP (x, 1);
5705 st[2] = ")";
8c660648
JL
5706 break;
5707 case MINUS:
459b3825
MM
5708 op[0] = XEXP (x, 0);
5709 st[1] = "-";
5710 op[1] = XEXP (x, 1);
8c660648
JL
5711 break;
5712 case COMPARE:
459b3825
MM
5713 fun = "cmp";
5714 op[0] = XEXP (x, 0);
5715 op[1] = XEXP (x, 1);
8c660648
JL
5716 break;
5717 case NEG:
459b3825
MM
5718 st[0] = "-";
5719 op[0] = XEXP (x, 0);
8c660648
JL
5720 break;
5721 case MULT:
459b3825
MM
5722 op[0] = XEXP (x, 0);
5723 st[1] = "*";
5724 op[1] = XEXP (x, 1);
8c660648
JL
5725 break;
5726 case DIV:
459b3825
MM
5727 op[0] = XEXP (x, 0);
5728 st[1] = "/";
5729 op[1] = XEXP (x, 1);
8c660648
JL
5730 break;
5731 case UDIV:
459b3825
MM
5732 fun = "udiv";
5733 op[0] = XEXP (x, 0);
5734 op[1] = XEXP (x, 1);
8c660648
JL
5735 break;
5736 case MOD:
459b3825
MM
5737 op[0] = XEXP (x, 0);
5738 st[1] = "%";
5739 op[1] = XEXP (x, 1);
8c660648
JL
5740 break;
5741 case UMOD:
459b3825
MM
5742 fun = "umod";
5743 op[0] = XEXP (x, 0);
5744 op[1] = XEXP (x, 1);
8c660648
JL
5745 break;
5746 case SMIN:
459b3825
MM
5747 fun = "smin";
5748 op[0] = XEXP (x, 0);
5749 op[1] = XEXP (x, 1);
8c660648
JL
5750 break;
5751 case SMAX:
459b3825
MM
5752 fun = "smax";
5753 op[0] = XEXP (x, 0);
5754 op[1] = XEXP (x, 1);
8c660648
JL
5755 break;
5756 case UMIN:
459b3825
MM
5757 fun = "umin";
5758 op[0] = XEXP (x, 0);
5759 op[1] = XEXP (x, 1);
8c660648
JL
5760 break;
5761 case UMAX:
459b3825
MM
5762 fun = "umax";
5763 op[0] = XEXP (x, 0);
5764 op[1] = XEXP (x, 1);
8c660648
JL
5765 break;
5766 case NOT:
459b3825
MM
5767 st[0] = "!";
5768 op[0] = XEXP (x, 0);
8c660648
JL
5769 break;
5770 case AND:
459b3825
MM
5771 op[0] = XEXP (x, 0);
5772 st[1] = "&";
5773 op[1] = XEXP (x, 1);
8c660648
JL
5774 break;
5775 case IOR:
459b3825
MM
5776 op[0] = XEXP (x, 0);
5777 st[1] = "|";
5778 op[1] = XEXP (x, 1);
8c660648
JL
5779 break;
5780 case XOR:
459b3825
MM
5781 op[0] = XEXP (x, 0);
5782 st[1] = "^";
5783 op[1] = XEXP (x, 1);
8c660648
JL
5784 break;
5785 case ASHIFT:
459b3825
MM
5786 op[0] = XEXP (x, 0);
5787 st[1] = "<<";
5788 op[1] = XEXP (x, 1);
8c660648
JL
5789 break;
5790 case LSHIFTRT:
459b3825
MM
5791 op[0] = XEXP (x, 0);
5792 st[1] = " 0>>";
5793 op[1] = XEXP (x, 1);
8c660648
JL
5794 break;
5795 case ASHIFTRT:
459b3825
MM
5796 op[0] = XEXP (x, 0);
5797 st[1] = ">>";
5798 op[1] = XEXP (x, 1);
8c660648
JL
5799 break;
5800 case ROTATE:
459b3825
MM
5801 op[0] = XEXP (x, 0);
5802 st[1] = "<-<";
5803 op[1] = XEXP (x, 1);
8c660648
JL
5804 break;
5805 case ROTATERT:
459b3825
MM
5806 op[0] = XEXP (x, 0);
5807 st[1] = ">->";
5808 op[1] = XEXP (x, 1);
8c660648
JL
5809 break;
5810 case ABS:
459b3825
MM
5811 fun = "abs";
5812 op[0] = XEXP (x, 0);
8c660648
JL
5813 break;
5814 case SQRT:
459b3825
MM
5815 fun = "sqrt";
5816 op[0] = XEXP (x, 0);
8c660648
JL
5817 break;
5818 case FFS:
459b3825
MM
5819 fun = "ffs";
5820 op[0] = XEXP (x, 0);
8c660648
JL
5821 break;
5822 case EQ:
459b3825
MM
5823 op[0] = XEXP (x, 0);
5824 st[1] = "==";
5825 op[1] = XEXP (x, 1);
8c660648
JL
5826 break;
5827 case NE:
459b3825
MM
5828 op[0] = XEXP (x, 0);
5829 st[1] = "!=";
5830 op[1] = XEXP (x, 1);
8c660648
JL
5831 break;
5832 case GT:
459b3825
MM
5833 op[0] = XEXP (x, 0);
5834 st[1] = ">";
5835 op[1] = XEXP (x, 1);
8c660648
JL
5836 break;
5837 case GTU:
459b3825
MM
5838 fun = "gtu";
5839 op[0] = XEXP (x, 0);
5840 op[1] = XEXP (x, 1);
8c660648
JL
5841 break;
5842 case LT:
459b3825
MM
5843 op[0] = XEXP (x, 0);
5844 st[1] = "<";
5845 op[1] = XEXP (x, 1);
8c660648
JL
5846 break;
5847 case LTU:
459b3825
MM
5848 fun = "ltu";
5849 op[0] = XEXP (x, 0);
5850 op[1] = XEXP (x, 1);
8c660648
JL
5851 break;
5852 case GE:
459b3825
MM
5853 op[0] = XEXP (x, 0);
5854 st[1] = ">=";
5855 op[1] = XEXP (x, 1);
8c660648
JL
5856 break;
5857 case GEU:
459b3825
MM
5858 fun = "geu";
5859 op[0] = XEXP (x, 0);
5860 op[1] = XEXP (x, 1);
8c660648
JL
5861 break;
5862 case LE:
459b3825
MM
5863 op[0] = XEXP (x, 0);
5864 st[1] = "<=";
5865 op[1] = XEXP (x, 1);
8c660648
JL
5866 break;
5867 case LEU:
459b3825
MM
5868 fun = "leu";
5869 op[0] = XEXP (x, 0);
5870 op[1] = XEXP (x, 1);
8c660648
JL
5871 break;
5872 case SIGN_EXTRACT:
459b3825
MM
5873 fun = (verbose) ? "sign_extract" : "sxt";
5874 op[0] = XEXP (x, 0);
5875 op[1] = XEXP (x, 1);
5876 op[2] = XEXP (x, 2);
8c660648
JL
5877 break;
5878 case ZERO_EXTRACT:
459b3825
MM
5879 fun = (verbose) ? "zero_extract" : "zxt";
5880 op[0] = XEXP (x, 0);
5881 op[1] = XEXP (x, 1);
5882 op[2] = XEXP (x, 2);
8c660648
JL
5883 break;
5884 case SIGN_EXTEND:
459b3825
MM
5885 fun = (verbose) ? "sign_extend" : "sxn";
5886 op[0] = XEXP (x, 0);
8c660648
JL
5887 break;
5888 case ZERO_EXTEND:
459b3825
MM
5889 fun = (verbose) ? "zero_extend" : "zxn";
5890 op[0] = XEXP (x, 0);
8c660648
JL
5891 break;
5892 case FLOAT_EXTEND:
459b3825
MM
5893 fun = (verbose) ? "float_extend" : "fxn";
5894 op[0] = XEXP (x, 0);
8c660648
JL
5895 break;
5896 case TRUNCATE:
459b3825
MM
5897 fun = (verbose) ? "trunc" : "trn";
5898 op[0] = XEXP (x, 0);
8c660648
JL
5899 break;
5900 case FLOAT_TRUNCATE:
459b3825
MM
5901 fun = (verbose) ? "float_trunc" : "ftr";
5902 op[0] = XEXP (x, 0);
8c660648
JL
5903 break;
5904 case FLOAT:
459b3825
MM
5905 fun = (verbose) ? "float" : "flt";
5906 op[0] = XEXP (x, 0);
8c660648
JL
5907 break;
5908 case UNSIGNED_FLOAT:
459b3825
MM
5909 fun = (verbose) ? "uns_float" : "ufl";
5910 op[0] = XEXP (x, 0);
8c660648
JL
5911 break;
5912 case FIX:
459b3825
MM
5913 fun = "fix";
5914 op[0] = XEXP (x, 0);
8c660648
JL
5915 break;
5916 case UNSIGNED_FIX:
459b3825
MM
5917 fun = (verbose) ? "uns_fix" : "ufx";
5918 op[0] = XEXP (x, 0);
8c660648
JL
5919 break;
5920 case PRE_DEC:
459b3825
MM
5921 st[0] = "--";
5922 op[0] = XEXP (x, 0);
8c660648
JL
5923 break;
5924 case PRE_INC:
459b3825
MM
5925 st[0] = "++";
5926 op[0] = XEXP (x, 0);
8c660648
JL
5927 break;
5928 case POST_DEC:
459b3825
MM
5929 op[0] = XEXP (x, 0);
5930 st[1] = "--";
8c660648
JL
5931 break;
5932 case POST_INC:
459b3825
MM
5933 op[0] = XEXP (x, 0);
5934 st[1] = "++";
8c660648
JL
5935 break;
5936 case CALL:
459b3825
MM
5937 st[0] = "call ";
5938 op[0] = XEXP (x, 0);
8c660648
JL
5939 if (verbose)
5940 {
459b3825
MM
5941 st[1] = " argc:";
5942 op[1] = XEXP (x, 1);
8c660648 5943 }
8c660648
JL
5944 break;
5945 case IF_THEN_ELSE:
459b3825
MM
5946 st[0] = "{(";
5947 op[0] = XEXP (x, 0);
5948 st[1] = ")?";
5949 op[1] = XEXP (x, 1);
5950 st[2] = ":";
5951 op[2] = XEXP (x, 2);
5952 st[3] = "}";
8c660648
JL
5953 break;
5954 case TRAP_IF:
459b3825
MM
5955 fun = "trap_if";
5956 op[0] = TRAP_CONDITION (x);
8c660648
JL
5957 break;
5958 case UNSPEC:
8c660648
JL
5959 case UNSPEC_VOLATILE:
5960 {
459b3825
MM
5961 cur = safe_concat (buf, cur, "unspec");
5962 if (GET_CODE (x) == UNSPEC_VOLATILE)
5963 cur = safe_concat (buf, cur, "/v");
5964 cur = safe_concat (buf, cur, "[");
5965 sep = "";
8c660648
JL
5966 for (i = 0; i < XVECLEN (x, 0); i++)
5967 {
459b3825
MM
5968 print_pattern (tmp, XVECEXP (x, 0, i), verbose);
5969 cur = safe_concat (buf, cur, sep);
5970 cur = safe_concat (buf, cur, tmp);
5971 sep = ",";
8c660648 5972 }
459b3825
MM
5973 cur = safe_concat (buf, cur, "] ");
5974 sprintf (tmp, "%d", XINT (x, 1));
5975 cur = safe_concat (buf, cur, tmp);
8c660648
JL
5976 }
5977 break;
5978 default:
53c0919d
RH
5979 /* if (verbose) debug_rtx (x); */
5980 st[0] = GET_RTX_NAME (GET_CODE (x));
459b3825
MM
5981 break;
5982 }
5983
5984 /* Print this as a function? */
5985 if (fun)
5986 {
5987 cur = safe_concat (buf, cur, fun);
5988 cur = safe_concat (buf, cur, "(");
5989 }
5990
5991 for (i = 0; i < 4; i++)
5992 {
5993 if (st[i])
5994 cur = safe_concat (buf, cur, st[i]);
5995
5996 if (op[i])
5997 {
5998 if (fun && i != 0)
5999 cur = safe_concat (buf, cur, ",");
6000
6001 print_value (tmp, op[i], verbose);
6002 cur = safe_concat (buf, cur, tmp);
6003 }
8c660648 6004 }
459b3825
MM
6005
6006 if (fun)
6007 cur = safe_concat (buf, cur, ")");
6008} /* print_exp */
8c660648
JL
6009
6010/* Prints rtxes, i customly classified as values. They're constants, */
6011/* registers, labels, symbols and memory accesses. */
6012
6013static void
6014print_value (buf, x, verbose)
6015 char *buf;
6016 rtx x;
6017 int verbose;
6018{
6019 char t[BUF_LEN];
459b3825 6020 char *cur = buf;
8c660648
JL
6021
6022 switch (GET_CODE (x))
6023 {
6024 case CONST_INT:
459b3825
MM
6025 sprintf (t, "0x%lx", (long)INTVAL (x));
6026 cur = safe_concat (buf, cur, t);
8c660648
JL
6027 break;
6028 case CONST_DOUBLE:
459b3825
MM
6029 sprintf (t, "<0x%lx,0x%lx>", (long)XWINT (x, 2), (long)XWINT (x, 3));
6030 cur = safe_concat (buf, cur, t);
8c660648
JL
6031 break;
6032 case CONST_STRING:
459b3825
MM
6033 cur = safe_concat (buf, cur, "\"");
6034 cur = safe_concat (buf, cur, XSTR (x, 0));
6035 cur = safe_concat (buf, cur, "\"");
8c660648
JL
6036 break;
6037 case SYMBOL_REF:
459b3825
MM
6038 cur = safe_concat (buf, cur, "`");
6039 cur = safe_concat (buf, cur, XSTR (x, 0));
6040 cur = safe_concat (buf, cur, "'");
8c660648
JL
6041 break;
6042 case LABEL_REF:
459b3825
MM
6043 sprintf (t, "L%d", INSN_UID (XEXP (x, 0)));
6044 cur = safe_concat (buf, cur, t);
8c660648
JL
6045 break;
6046 case CONST:
459b3825
MM
6047 print_value (t, XEXP (x, 0), verbose);
6048 cur = safe_concat (buf, cur, "const(");
6049 cur = safe_concat (buf, cur, t);
6050 cur = safe_concat (buf, cur, ")");
8c660648
JL
6051 break;
6052 case HIGH:
459b3825
MM
6053 print_value (t, XEXP (x, 0), verbose);
6054 cur = safe_concat (buf, cur, "high(");
6055 cur = safe_concat (buf, cur, t);
6056 cur = safe_concat (buf, cur, ")");
8c660648
JL
6057 break;
6058 case REG:
459b3825
MM
6059 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
6060 {
6061 int c = reg_names[ REGNO (x) ][0];
6062 if (c >= '0' && c <= '9')
6063 cur = safe_concat (buf, cur, "%");
6064
6065 cur = safe_concat (buf, cur, reg_names[ REGNO (x) ]);
6066 }
8c660648 6067 else
459b3825
MM
6068 {
6069 sprintf (t, "r%d", REGNO (x));
6070 cur = safe_concat (buf, cur, t);
6071 }
8c660648
JL
6072 break;
6073 case SUBREG:
459b3825
MM
6074 print_value (t, SUBREG_REG (x), verbose);
6075 cur = safe_concat (buf, cur, t);
6b879bcc 6076 sprintf (t, "#%d", SUBREG_WORD (x));
459b3825 6077 cur = safe_concat (buf, cur, t);
8c660648
JL
6078 break;
6079 case SCRATCH:
459b3825 6080 cur = safe_concat (buf, cur, "scratch");
8c660648
JL
6081 break;
6082 case CC0:
459b3825 6083 cur = safe_concat (buf, cur, "cc0");
8c660648
JL
6084 break;
6085 case PC:
459b3825 6086 cur = safe_concat (buf, cur, "pc");
8c660648
JL
6087 break;
6088 case MEM:
6089 print_value (t, XEXP (x, 0), verbose);
459b3825
MM
6090 cur = safe_concat (buf, cur, "[");
6091 cur = safe_concat (buf, cur, t);
6092 cur = safe_concat (buf, cur, "]");
8c660648
JL
6093 break;
6094 default:
459b3825
MM
6095 print_exp (t, x, verbose);
6096 cur = safe_concat (buf, cur, t);
6097 break;
8c660648
JL
6098 }
6099} /* print_value */
6100
6101/* The next step in insn detalization, its pattern recognition */
6102
6103static void
6104print_pattern (buf, x, verbose)
6105 char *buf;
6106 rtx x;
6107 int verbose;
6108{
6109 char t1[BUF_LEN], t2[BUF_LEN], t3[BUF_LEN];
6110
6111 switch (GET_CODE (x))
6112 {
6113 case SET:
6114 print_value (t1, SET_DEST (x), verbose);
6115 print_value (t2, SET_SRC (x), verbose);
6116 sprintf (buf, "%s=%s", t1, t2);
6117 break;
6118 case RETURN:
6119 sprintf (buf, "return");
6120 break;
6121 case CALL:
6122 print_exp (buf, x, verbose);
6123 break;
6124 case CLOBBER:
6125 print_value (t1, XEXP (x, 0), verbose);
6126 sprintf (buf, "clobber %s", t1);
6127 break;
6128 case USE:
6129 print_value (t1, XEXP (x, 0), verbose);
6130 sprintf (buf, "use %s", t1);
6131 break;
6132 case PARALLEL:
6133 {
6134 int i;
6135
6136 sprintf (t1, "{");
6137 for (i = 0; i < XVECLEN (x, 0); i++)
6138 {
6139 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6140 sprintf (t3, "%s%s;", t1, t2);
6141 strcpy (t1, t3);
6142 }
6143 sprintf (buf, "%s}", t1);
6144 }
6145 break;
6146 case SEQUENCE:
6147 {
6148 int i;
6149
6150 sprintf (t1, "%%{");
6151 for (i = 0; i < XVECLEN (x, 0); i++)
6152 {
6153 print_insn (t2, XVECEXP (x, 0, i), verbose);
6154 sprintf (t3, "%s%s;", t1, t2);
6155 strcpy (t1, t3);
6156 }
6157 sprintf (buf, "%s%%}", t1);
6158 }
6159 break;
6160 case ASM_INPUT:
c4fa3460 6161 sprintf (buf, "asm {%s}", XSTR (x, 0));
8c660648
JL
6162 break;
6163 case ADDR_VEC:
6164 break;
6165 case ADDR_DIFF_VEC:
6166 print_value (buf, XEXP (x, 0), verbose);
6167 break;
6168 case TRAP_IF:
6169 print_value (t1, TRAP_CONDITION (x), verbose);
6170 sprintf (buf, "trap_if %s", t1);
6171 break;
6172 case UNSPEC:
6173 {
6174 int i;
6175
6176 sprintf (t1, "unspec{");
6177 for (i = 0; i < XVECLEN (x, 0); i++)
6178 {
6179 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6180 sprintf (t3, "%s%s;", t1, t2);
6181 strcpy (t1, t3);
6182 }
6183 sprintf (buf, "%s}", t1);
6184 }
6185 break;
6186 case UNSPEC_VOLATILE:
6187 {
6188 int i;
6189
6190 sprintf (t1, "unspec/v{");
6191 for (i = 0; i < XVECLEN (x, 0); i++)
6192 {
6193 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6194 sprintf (t3, "%s%s;", t1, t2);
6195 strcpy (t1, t3);
6196 }
6197 sprintf (buf, "%s}", t1);
6198 }
6199 break;
6200 default:
6201 print_value (buf, x, verbose);
6202 }
6203} /* print_pattern */
6204
6205/* This is the main function in rtl visualization mechanism. It
6206 accepts an rtx and tries to recognize it as an insn, then prints it
6207 properly in human readable form, resembling assembler mnemonics. */
6208/* For every insn it prints its UID and BB the insn belongs */
6209/* too. (probably the last "option" should be extended somehow, since */
6210/* it depends now on sched.c inner variables ...) */
6211
6212static void
6213print_insn (buf, x, verbose)
6214 char *buf;
6215 rtx x;
6216 int verbose;
6217{
6218 char t[BUF_LEN];
6219 rtx insn = x;
6220
6221 switch (GET_CODE (x))
6222 {
6223 case INSN:
6224 print_pattern (t, PATTERN (x), verbose);
6225 if (verbose)
6226 sprintf (buf, "b%d: i% 4d: %s", INSN_BB (x),
6227 INSN_UID (x), t);
6228 else
6229 sprintf (buf, "%-4d %s", INSN_UID (x), t);
6230 break;
6231 case JUMP_INSN:
6232 print_pattern (t, PATTERN (x), verbose);
6233 if (verbose)
6234 sprintf (buf, "b%d: i% 4d: jump %s", INSN_BB (x),
6235 INSN_UID (x), t);
6236 else
6237 sprintf (buf, "%-4d %s", INSN_UID (x), t);
6238 break;
6239 case CALL_INSN:
6240 x = PATTERN (insn);
6241 if (GET_CODE (x) == PARALLEL)
6242 {
6243 x = XVECEXP (x, 0, 0);
6244 print_pattern (t, x, verbose);
6245 }
6246 else
6247 strcpy (t, "call <...>");
6248 if (verbose)
6249 sprintf (buf, "b%d: i% 4d: %s", INSN_BB (insn),
6250 INSN_UID (insn), t);
6251 else
6252 sprintf (buf, "%-4d %s", INSN_UID (insn), t);
6253 break;
6254 case CODE_LABEL:
6255 sprintf (buf, "L%d:", INSN_UID (x));
6256 break;
6257 case BARRIER:
6258 sprintf (buf, "i% 4d: barrier", INSN_UID (x));
6259 break;
6260 case NOTE:
6261 if (NOTE_LINE_NUMBER (x) > 0)
6262 sprintf (buf, "%4d note \"%s\" %d", INSN_UID (x),
6263 NOTE_SOURCE_FILE (x), NOTE_LINE_NUMBER (x));
6264 else
6265 sprintf (buf, "%4d %s", INSN_UID (x),
6266 GET_NOTE_INSN_NAME (NOTE_LINE_NUMBER (x)));
6267 break;
6268 default:
6269 if (verbose)
6270 {
6271 sprintf (buf, "Not an INSN at all\n");
6272 debug_rtx (x);
6273 }
6274 else
6275 sprintf (buf, "i%-4d <What?>", INSN_UID (x));
6276 }
6277} /* print_insn */
6278
6279void
6280print_insn_chain (rtx_first)
6281 rtx rtx_first;
6282{
6283 register rtx tmp_rtx;
6284 char str[BUF_LEN];
6285
6286 strcpy (str, "(nil)\n");
6287 if (rtx_first != 0)
6288 switch (GET_CODE (rtx_first))
6289 {
6290 case INSN:
6291 case JUMP_INSN:
6292 case CALL_INSN:
6293 case NOTE:
6294 case CODE_LABEL:
6295 case BARRIER:
6296 for (tmp_rtx = rtx_first; tmp_rtx != NULL;
6297 tmp_rtx = NEXT_INSN (tmp_rtx))
6298 {
6299 print_insn (str, tmp_rtx, 0);
6300 printf ("%s\n", str);
6301 }
6302 break;
6303 default:
6304 print_insn (str, rtx_first, 0);
6305 printf ("%s\n", str);
6306 }
6307} /* print_insn_chain */
6308
6309/* Print visualization debugging info */
6310
6311static void
6312print_block_visualization (b, s)
6313 int b;
6314 char *s;
6315{
6316 int unit, i;
8c660648
JL
6317
6318 /* print header */
6319 fprintf (dump, "\n;; ==================== scheduling visualization for block %d %s \n", b, s);
6320
6321 /* Print names of units */
2f308fec 6322 fprintf (dump, ";; %-8s", "clock");
8c660648
JL
6323 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
6324 if (function_units[unit].bitmask & target_units)
6325 for (i = 0; i < function_units[unit].multiplicity; i++)
2f308fec
RH
6326 fprintf (dump, " %-33s", function_units[unit].name);
6327 fprintf (dump, " %-8s\n", "no-unit");
6328
6329 fprintf (dump, ";; %-8s", "=====");
6330 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
6331 if (function_units[unit].bitmask & target_units)
6332 for (i = 0; i < function_units[unit].multiplicity; i++)
6333 fprintf (dump, " %-33s", "==============================");
6334 fprintf (dump, " %-8s\n", "=======");
8c660648
JL
6335
6336 /* Print insns in each cycle */
6337 fprintf (dump, "%s\n", visual_tbl);
6338}
6339
6340/* Print insns in the 'no_unit' column of visualization */
6341
6342static void
6343visualize_no_unit (insn)
6344 rtx insn;
6345{
6346 vis_no_unit[n_vis_no_unit] = insn;
6347 n_vis_no_unit++;
6348}
6349
6350/* Print insns scheduled in clock, for visualization. */
6351
6352static void
6353visualize_scheduled_insns (b, clock)
6354 int b, clock;
6355{
6356 int i, unit;
6357
6358 /* if no more room, split table into two */
6359 if (n_visual_lines >= MAX_VISUAL_LINES)
6360 {
6361 print_block_visualization (b, "(incomplete)");
6362 init_block_visualization ();
6363 }
6364
6365 n_visual_lines++;
6366
6367 sprintf (visual_tbl + strlen (visual_tbl), ";; %-8d", clock);
6368 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
6369 if (function_units[unit].bitmask & target_units)
6370 for (i = 0; i < function_units[unit].multiplicity; i++)
6371 {
6372 int instance = unit + i * FUNCTION_UNITS_SIZE;
6373 rtx insn = unit_last_insn[instance];
6374
6375 /* print insns that still keep the unit busy */
6376 if (insn &&
6377 actual_hazard_this_instance (unit, instance, insn, clock, 0))
6378 {
6379 char str[BUF_LEN];
6380 print_insn (str, insn, 0);
6381 str[INSN_LEN] = '\0';
6382 sprintf (visual_tbl + strlen (visual_tbl), " %-33s", str);
6383 }
6384 else
6385 sprintf (visual_tbl + strlen (visual_tbl), " %-33s", "------------------------------");
6386 }
6387
6388 /* print insns that are not assigned to any unit */
6389 for (i = 0; i < n_vis_no_unit; i++)
6390 sprintf (visual_tbl + strlen (visual_tbl), " %-8d",
6391 INSN_UID (vis_no_unit[i]));
6392 n_vis_no_unit = 0;
6393
6394 sprintf (visual_tbl + strlen (visual_tbl), "\n");
6395}
6396
6397/* Print stalled cycles */
6398
6399static void
6400visualize_stall_cycles (b, stalls)
6401 int b, stalls;
6402{
6403 int i;
6404
6405 /* if no more room, split table into two */
6406 if (n_visual_lines >= MAX_VISUAL_LINES)
6407 {
6408 print_block_visualization (b, "(incomplete)");
6409 init_block_visualization ();
6410 }
6411
6412 n_visual_lines++;
6413
6414 sprintf (visual_tbl + strlen (visual_tbl), ";; ");
6415 for (i = 0; i < stalls; i++)
6416 sprintf (visual_tbl + strlen (visual_tbl), ".");
6417 sprintf (visual_tbl + strlen (visual_tbl), "\n");
6418}
6419
6420/* move_insn1: Remove INSN from insn chain, and link it after LAST insn */
6421
6422static rtx
6423move_insn1 (insn, last)
6424 rtx insn, last;
6425{
6426 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
6427 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
6428
6429 NEXT_INSN (insn) = NEXT_INSN (last);
6430 PREV_INSN (NEXT_INSN (last)) = insn;
6431
6432 NEXT_INSN (last) = insn;
6433 PREV_INSN (insn) = last;
6434
6435 return insn;
6436}
6437
6438/* Search INSN for fake REG_DEAD note pairs for NOTE_INSN_SETJMP,
6439 NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
6440 NOTEs. The REG_DEAD note following first one is contains the saved
6441 value for NOTE_BLOCK_NUMBER which is useful for
6442 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. LAST is the last instruction
6443 output by the instruction scheduler. Return the new value of LAST. */
6444
6445static rtx
6446reemit_notes (insn, last)
6447 rtx insn;
6448 rtx last;
6449{
6450 rtx note, retval;
6451
6452 retval = last;
6453 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
6454 {
6455 if (REG_NOTE_KIND (note) == REG_DEAD
6456 && GET_CODE (XEXP (note, 0)) == CONST_INT)
6457 {
6458 if (INTVAL (XEXP (note, 0)) == NOTE_INSN_SETJMP)
6459 {
6460 retval = emit_note_after (INTVAL (XEXP (note, 0)), insn);
6461 CONST_CALL_P (retval) = CONST_CALL_P (note);
6462 remove_note (insn, note);
6463 note = XEXP (note, 1);
6464 }
6465 else
6466 {
6467 last = emit_note_before (INTVAL (XEXP (note, 0)), last);
6468 remove_note (insn, note);
6469 note = XEXP (note, 1);
6470 NOTE_BLOCK_NUMBER (last) = INTVAL (XEXP (note, 0));
6471 }
6472 remove_note (insn, note);
6473 }
6474 }
6475 return retval;
6476}
6477
6478/* Move INSN, and all insns which should be issued before it,
c9e03727
JL
6479 due to SCHED_GROUP_P flag. Reemit notes if needed.
6480
6481 Return the last insn emitted by the scheduler, which is the
6482 return value from the first call to reemit_notes. */
8c660648
JL
6483
6484static rtx
6485move_insn (insn, last)
6486 rtx insn, last;
6487{
c9e03727 6488 rtx retval = NULL;
8c660648 6489
c9e03727
JL
6490 /* If INSN has SCHED_GROUP_P set, then issue it and any other
6491 insns with SCHED_GROUP_P set first. */
8c660648
JL
6492 while (SCHED_GROUP_P (insn))
6493 {
6494 rtx prev = PREV_INSN (insn);
c9e03727
JL
6495
6496 /* Move a SCHED_GROUP_P insn. */
8c660648 6497 move_insn1 (insn, last);
c9e03727
JL
6498 /* If this is the first call to reemit_notes, then record
6499 its return value. */
6500 if (retval == NULL_RTX)
6501 retval = reemit_notes (insn, insn);
6502 else
6503 reemit_notes (insn, insn);
8c660648
JL
6504 insn = prev;
6505 }
6506
c9e03727 6507 /* Now move the first non SCHED_GROUP_P insn. */
8c660648 6508 move_insn1 (insn, last);
c9e03727
JL
6509
6510 /* If this is the first call to reemit_notes, then record
6511 its return value. */
6512 if (retval == NULL_RTX)
6513 retval = reemit_notes (insn, insn);
6514 else
6515 reemit_notes (insn, insn);
6516
6517 return retval;
8c660648
JL
6518}
6519
6520/* Return an insn which represents a SCHED_GROUP, which is
6521 the last insn in the group. */
6522
6523static rtx
6524group_leader (insn)
6525 rtx insn;
6526{
6527 rtx prev;
6528
6529 do
6530 {
6531 prev = insn;
6532 insn = next_nonnote_insn (insn);
6533 }
6534 while (insn && SCHED_GROUP_P (insn) && (GET_CODE (insn) != CODE_LABEL));
6535
6536 return prev;
6537}
6538
6539/* Use forward list scheduling to rearrange insns of block BB in region RGN,
6540 possibly bringing insns from subsequent blocks in the same region.
6541 Return number of insns scheduled. */
6542
6543static int
5835e573 6544schedule_block (bb, rgn_n_insns)
8c660648 6545 int bb;
8c660648
JL
6546 int rgn_n_insns;
6547{
6548 /* Local variables. */
6549 rtx insn, last;
6550 rtx *ready;
6551 int i;
6552 int n_ready = 0;
6553 int can_issue_more;
6554
6555 /* flow block of this bb */
6556 int b = BB_TO_BLOCK (bb);
6557
6558 /* target_n_insns == number of insns in b before scheduling starts.
6559 sched_target_n_insns == how many of b's insns were scheduled.
6560 sched_n_insns == how many insns were scheduled in b */
6561 int target_n_insns = 0;
6562 int sched_target_n_insns = 0;
6563 int sched_n_insns = 0;
6564
6565#define NEED_NOTHING 0
6566#define NEED_HEAD 1
6567#define NEED_TAIL 2
6568 int new_needs;
6569
6570 /* head/tail info for this block */
6571 rtx prev_head;
6572 rtx next_tail;
6573 rtx head;
6574 rtx tail;
6575 int bb_src;
6576
484df988
JL
6577 /* We used to have code to avoid getting parameters moved from hard
6578 argument registers into pseudos.
8c660648 6579
484df988
JL
6580 However, it was removed when it proved to be of marginal benefit
6581 and caused problems because schedule_block and compute_forward_dependences
6582 had different notions of what the "head" insn was. */
6583 get_block_head_tail (bb, &head, &tail);
8c660648 6584
1447b516
JL
6585 /* Interblock scheduling could have moved the original head insn from this
6586 block into a proceeding block. This may also cause schedule_block and
6587 compute_forward_dependences to have different notions of what the
6588 "head" insn was.
6589
6590 If the interblock movement happened to make this block start with
6591 some notes (LOOP, EH or SETJMP) before the first real insn, then
6592 HEAD will have various special notes attached to it which must be
6593 removed so that we don't end up with extra copies of the notes. */
6594 if (GET_RTX_CLASS (GET_CODE (head)) == 'i')
6595 {
6596 rtx note;
6597
6598 for (note = REG_NOTES (head); note; note = XEXP (note, 1))
6599 if (REG_NOTE_KIND (note) == REG_DEAD
6600 && GET_CODE (XEXP (note, 0)) == CONST_INT)
6601 remove_note (head, note);
6602 }
6603
8c660648
JL
6604 next_tail = NEXT_INSN (tail);
6605 prev_head = PREV_INSN (head);
6606
6607 /* If the only insn left is a NOTE or a CODE_LABEL, then there is no need
6608 to schedule this block. */
6609 if (head == tail
6610 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
6611 return (sched_n_insns);
6612
6613 /* debug info */
6614 if (sched_verbose)
6615 {
6616 fprintf (dump, ";; ======================================================\n");
6617 fprintf (dump,
6618 ";; -- basic block %d from %d to %d -- %s reload\n",
6619 b, INSN_UID (basic_block_head[b]),
6620 INSN_UID (basic_block_end[b]),
6621 (reload_completed ? "after" : "before"));
6622 fprintf (dump, ";; ======================================================\n");
8c660648
JL
6623 fprintf (dump, "\n");
6624
6625 visual_tbl = (char *) alloca (get_visual_tbl_length ());
6626 init_block_visualization ();
6627 }
6628
6629 /* remove remaining note insns from the block, save them in
6630 note_list. These notes are restored at the end of
6631 schedule_block (). */
6632 note_list = 0;
6633 rm_other_notes (head, tail);
6634
6635 target_bb = bb;
6636
6637 /* prepare current target block info */
6638 if (current_nr_blocks > 1)
6639 {
6640 candidate_table = (candidate *) alloca (current_nr_blocks * sizeof (candidate));
6641
6642 bblst_last = 0;
6643 /* ??? It is not clear why bblst_size is computed this way. The original
6644 number was clearly too small as it resulted in compiler failures.
6645 Multiplying by the original number by 2 (to account for update_bbs
6646 members) seems to be a reasonable solution. */
6647 /* ??? Or perhaps there is a bug somewhere else in this file? */
6648 bblst_size = (current_nr_blocks - bb) * rgn_nr_edges * 2;
6649 bblst_table = (int *) alloca (bblst_size * sizeof (int));
6650
6651 bitlst_table_last = 0;
6652 bitlst_table_size = rgn_nr_edges;
6653 bitlst_table = (int *) alloca (rgn_nr_edges * sizeof (int));
6654
6655 compute_trg_info (bb);
6656 }
6657
6658 clear_units ();
6659
6660 /* Allocate the ready list */
6661 ready = (rtx *) alloca ((rgn_n_insns + 1) * sizeof (rtx));
6662
6663 /* Print debugging information. */
6664 if (sched_verbose >= 5)
6665 debug_dependencies ();
6666
6667
6668 /* Initialize ready list with all 'ready' insns in target block.
6669 Count number of insns in the target block being scheduled. */
6670 n_ready = 0;
6671 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6672 {
6673 rtx next;
6674
6675 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6676 continue;
6677 next = NEXT_INSN (insn);
6678
6679 if (INSN_DEP_COUNT (insn) == 0
6680 && (SCHED_GROUP_P (next) == 0 || GET_RTX_CLASS (GET_CODE (next)) != 'i'))
6681 ready[n_ready++] = insn;
6682 if (!(SCHED_GROUP_P (insn)))
6683 target_n_insns++;
6684 }
6685
6686 /* Add to ready list all 'ready' insns in valid source blocks.
6687 For speculative insns, check-live, exception-free, and
6688 issue-delay. */
6689 for (bb_src = bb + 1; bb_src < current_nr_blocks; bb_src++)
6690 if (IS_VALID (bb_src))
6691 {
6692 rtx src_head;
6693 rtx src_next_tail;
6694 rtx tail, head;
6695
6696 get_block_head_tail (bb_src, &head, &tail);
6697 src_next_tail = NEXT_INSN (tail);
6698 src_head = head;
6699
6700 if (head == tail
6701 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
6702 continue;
6703
6704 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
6705 {
6706 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6707 continue;
6708
6709 if (!CANT_MOVE (insn)
6710 && (!IS_SPECULATIVE_INSN (insn)
6711 || (insn_issue_delay (insn) <= 3
5835e573 6712 && check_live (insn, bb_src)
8c660648
JL
6713 && is_exception_free (insn, bb_src, target_bb))))
6714
6715 {
6716 rtx next;
6717
6718 next = NEXT_INSN (insn);
6719 if (INSN_DEP_COUNT (insn) == 0
6720 && (SCHED_GROUP_P (next) == 0
6721 || GET_RTX_CLASS (GET_CODE (next)) != 'i'))
6722 ready[n_ready++] = insn;
6723 }
6724 }
6725 }
6726
6727 /* no insns scheduled in this block yet */
6728 last_scheduled_insn = 0;
6729
6730 /* Sort the ready list */
6731 SCHED_SORT (ready, n_ready);
6732
6733 if (sched_verbose >= 2)
6734 {
6d3352d9 6735 fprintf (dump, ";;\t\tReady list initially: ");
8c660648
JL
6736 debug_ready_list (ready, n_ready);
6737 }
6738
6739 /* Q_SIZE is the total number of insns in the queue. */
6740 q_ptr = 0;
6741 q_size = 0;
6742 clock_var = 0;
6743 bzero ((char *) insn_queue, sizeof (insn_queue));
6744
6745 /* We start inserting insns after PREV_HEAD. */
6746 last = prev_head;
6747
6748 /* Initialize INSN_QUEUE, LIST and NEW_NEEDS. */
6749 new_needs = (NEXT_INSN (prev_head) == basic_block_head[b]
6750 ? NEED_HEAD : NEED_NOTHING);
6751 if (PREV_INSN (next_tail) == basic_block_end[b])
6752 new_needs |= NEED_TAIL;
6753
6754 /* loop until all the insns in BB are scheduled. */
6755 while (sched_target_n_insns < target_n_insns)
6756 {
6757 int b1;
6758
8c660648
JL
6759 clock_var++;
6760
6761 /* Add to the ready list all pending insns that can be issued now.
6762 If there are no ready insns, increment clock until one
6763 is ready and add all pending insns at that point to the ready
6764 list. */
6765 n_ready = queue_to_ready (ready, n_ready);
6766
6767 if (n_ready == 0)
6768 abort ();
6769
6770 if (sched_verbose >= 2)
6771 {
6772 fprintf (dump, ";;\t\tReady list after queue_to_ready: ");
6773 debug_ready_list (ready, n_ready);
6774 }
6775
6776 /* Sort the ready list. */
6777 SCHED_SORT (ready, n_ready);
6778
6779 if (sched_verbose)
6780 {
47312d84 6781 fprintf (dump, "\n;;\tReady list (t =%3d): ", clock_var);
8c660648
JL
6782 debug_ready_list (ready, n_ready);
6783 }
6784
6785 /* Issue insns from ready list.
6786 It is important to count down from n_ready, because n_ready may change
6787 as insns are issued. */
6788 can_issue_more = issue_rate;
6789 for (i = n_ready - 1; i >= 0 && can_issue_more; i--)
6790 {
6791 rtx insn = ready[i];
6792 int cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
6793
6794 if (cost > 1)
6795 {
6796 queue_insn (insn, cost);
6797 ready[i] = ready[--n_ready]; /* remove insn from ready list */
6798 }
6799 else if (cost == 0)
6800 {
8c660648
JL
6801 /* an interblock motion? */
6802 if (INSN_BB (insn) != target_bb)
6803 {
4f64eaca
JL
6804 rtx temp;
6805
8c660648
JL
6806 if (IS_SPECULATIVE_INSN (insn))
6807 {
6808
5835e573 6809 if (!check_live (insn, INSN_BB (insn)))
8c660648
JL
6810 {
6811 /* speculative motion, live check failed, remove
6812 insn from ready list */
6813 ready[i] = ready[--n_ready];
6814 continue;
6815 }
5835e573 6816 update_live (insn, INSN_BB (insn));
8c660648
JL
6817
6818 /* for speculative load, mark insns fed by it. */
6819 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
6820 set_spec_fed (insn);
6821
6822 nr_spec++;
6823 }
6824 nr_inter++;
6825
4f64eaca
JL
6826 temp = insn;
6827 while (SCHED_GROUP_P (temp))
6828 temp = PREV_INSN (temp);
6829
6830 /* Update source block boundaries. */
6831 b1 = INSN_BLOCK (temp);
6832 if (temp == basic_block_head[b1]
8c660648
JL
6833 && insn == basic_block_end[b1])
6834 {
4f64eaca
JL
6835 /* We moved all the insns in the basic block.
6836 Emit a note after the last insn and update the
6837 begin/end boundaries to point to the note. */
6838 emit_note_after (NOTE_INSN_DELETED, insn);
6839 basic_block_end[b1] = NEXT_INSN (insn);
6840 basic_block_head[b1] = NEXT_INSN (insn);
8c660648
JL
6841 }
6842 else if (insn == basic_block_end[b1])
6843 {
4f64eaca
JL
6844 /* We took insns from the end of the basic block,
6845 so update the end of block boundary so that it
6846 points to the first insn we did not move. */
6847 basic_block_end[b1] = PREV_INSN (temp);
8c660648 6848 }
4f64eaca 6849 else if (temp == basic_block_head[b1])
8c660648 6850 {
4f64eaca
JL
6851 /* We took insns from the start of the basic block,
6852 so update the start of block boundary so that
6853 it points to the first insn we did not move. */
8c660648
JL
6854 basic_block_head[b1] = NEXT_INSN (insn);
6855 }
6856 }
6857 else
6858 {
6859 /* in block motion */
6860 sched_target_n_insns++;
6861 }
6862
6863 last_scheduled_insn = insn;
6864 last = move_insn (insn, last);
6865 sched_n_insns++;
6866
6867 can_issue_more--;
6868
8c660648
JL
6869 n_ready = schedule_insn (insn, ready, n_ready, clock_var);
6870
6871 /* remove insn from ready list */
6872 ready[i] = ready[--n_ready];
6873
6874 /* close this block after scheduling its jump */
6875 if (GET_CODE (last_scheduled_insn) == JUMP_INSN)
6876 break;
6877 }
6878 }
6879
6880 /* debug info */
6881 if (sched_verbose)
6882 {
6883 visualize_scheduled_insns (b, clock_var);
8c660648
JL
6884 }
6885 }
6886
6887 /* debug info */
6888 if (sched_verbose)
6889 {
6890 fprintf (dump, ";;\tReady list (final): ");
6891 debug_ready_list (ready, n_ready);
6892 print_block_visualization (b, "");
6893 }
6894
6895 /* Sanity check -- queue must be empty now. Meaningless if region has
cc132865 6896 multiple bbs. */
8c660648 6897 if (current_nr_blocks > 1)
cc132865
JL
6898 if (!flag_schedule_interblock && q_size != 0)
6899 abort ();
8c660648
JL
6900
6901 /* update head/tail boundaries. */
6902 head = NEXT_INSN (prev_head);
6903 tail = last;
6904
8c660648
JL
6905 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
6906 previously found among the insns. Insert them at the beginning
6907 of the insns. */
6908 if (note_list != 0)
6909 {
6910 rtx note_head = note_list;
6911
6912 while (PREV_INSN (note_head))
6913 {
6914 note_head = PREV_INSN (note_head);
6915 }
6916
6917 PREV_INSN (note_head) = PREV_INSN (head);
6918 NEXT_INSN (PREV_INSN (head)) = note_head;
6919 PREV_INSN (head) = note_list;
6920 NEXT_INSN (note_list) = head;
6921 head = note_head;
6922 }
6923
6924 /* update target block boundaries. */
6925 if (new_needs & NEED_HEAD)
6926 basic_block_head[b] = head;
6927
6928 if (new_needs & NEED_TAIL)
6929 basic_block_end[b] = tail;
6930
6931 /* debugging */
6932 if (sched_verbose)
6933 {
6934 fprintf (dump, ";; total time = %d\n;; new basic block head = %d\n",
6935 clock_var, INSN_UID (basic_block_head[b]));
6936 fprintf (dump, ";; new basic block end = %d\n\n",
6937 INSN_UID (basic_block_end[b]));
6938 }
6939
6940 return (sched_n_insns);
6941} /* schedule_block () */
6942\f
6943
6944/* print the bit-set of registers, S. callable from debugger */
6945
6946extern void
6947debug_reg_vector (s)
6948 regset s;
6949{
6950 int regno;
6951
6952 EXECUTE_IF_SET_IN_REG_SET (s, 0, regno,
6953 {
6954 fprintf (dump, " %d", regno);
6955 });
6956
6957 fprintf (dump, "\n");
6958}
6959
6960/* Use the backward dependences from LOG_LINKS to build
6961 forward dependences in INSN_DEPEND. */
6962
6963static void
6964compute_block_forward_dependences (bb)
6965 int bb;
6966{
6967 rtx insn, link;
6968 rtx tail, head;
6969 rtx next_tail;
6970 enum reg_note dep_type;
6971
6972 get_block_head_tail (bb, &head, &tail);
6973 next_tail = NEXT_INSN (tail);
6974 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6975 {
6976 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6977 continue;
6978
6979 insn = group_leader (insn);
6980
6981 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
6982 {
6983 rtx x = group_leader (XEXP (link, 0));
6984 rtx new_link;
6985
6986 if (x != XEXP (link, 0))
6987 continue;
6988
6989 /* Ignore dependences upon deleted insn */
6990 if (GET_CODE (x) == NOTE || INSN_DELETED_P (x))
6991 continue;
6992 if (find_insn_list (insn, INSN_DEPEND (x)))
6993 continue;
6994
ebb7b10b 6995 new_link = alloc_INSN_LIST (insn, INSN_DEPEND (x));
8c660648
JL
6996
6997 dep_type = REG_NOTE_KIND (link);
6998 PUT_REG_NOTE_KIND (new_link, dep_type);
6999
8c660648
JL
7000 INSN_DEPEND (x) = new_link;
7001 INSN_DEP_COUNT (insn) += 1;
7002 }
7003 }
7004}
7005
7006/* Initialize variables for region data dependence analysis.
7007 n_bbs is the number of region blocks */
7008
6d3352d9 7009__inline static void
8c660648
JL
7010init_rgn_data_dependences (n_bbs)
7011 int n_bbs;
7012{
7013 int bb;
7014
7015 /* variables for which one copy exists for each block */
7016 bzero ((char *) bb_pending_read_insns, n_bbs * sizeof (rtx));
7017 bzero ((char *) bb_pending_read_mems, n_bbs * sizeof (rtx));
7018 bzero ((char *) bb_pending_write_insns, n_bbs * sizeof (rtx));
7019 bzero ((char *) bb_pending_write_mems, n_bbs * sizeof (rtx));
7020 bzero ((char *) bb_pending_lists_length, n_bbs * sizeof (rtx));
7021 bzero ((char *) bb_last_pending_memory_flush, n_bbs * sizeof (rtx));
7022 bzero ((char *) bb_last_function_call, n_bbs * sizeof (rtx));
7023 bzero ((char *) bb_sched_before_next_call, n_bbs * sizeof (rtx));
7024
7025 /* Create an insn here so that we can hang dependencies off of it later. */
7026 for (bb = 0; bb < n_bbs; bb++)
7027 {
7028 bb_sched_before_next_call[bb] =
38a448ca
RH
7029 gen_rtx_INSN (VOIDmode, 0, NULL_RTX, NULL_RTX,
7030 NULL_RTX, 0, NULL_RTX, NULL_RTX);
8c660648
JL
7031 LOG_LINKS (bb_sched_before_next_call[bb]) = 0;
7032 }
7033}
7034
7035/* Add dependences so that branches are scheduled to run last in their block */
7036
7037static void
7038add_branch_dependences (head, tail)
7039 rtx head, tail;
7040{
7041
7042 rtx insn, last;
7043
7044 /* For all branches, calls, uses, and cc0 setters, force them to remain
7045 in order at the end of the block by adding dependencies and giving
7046 the last a high priority. There may be notes present, and prev_head
7047 may also be a note.
7048
7049 Branches must obviously remain at the end. Calls should remain at the
7050 end since moving them results in worse register allocation. Uses remain
7051 at the end to ensure proper register allocation. cc0 setters remaim
7052 at the end because they can't be moved away from their cc0 user. */
7053 insn = tail;
7054 last = 0;
7055 while (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
7056 || (GET_CODE (insn) == INSN
7057 && (GET_CODE (PATTERN (insn)) == USE
7058#ifdef HAVE_cc0
7059 || sets_cc0_p (PATTERN (insn))
7060#endif
7061 ))
7062 || GET_CODE (insn) == NOTE)
7063 {
7064 if (GET_CODE (insn) != NOTE)
7065 {
7066 if (last != 0
7067 && !find_insn_list (insn, LOG_LINKS (last)))
7068 {
7069 add_dependence (last, insn, REG_DEP_ANTI);
7070 INSN_REF_COUNT (insn)++;
7071 }
7072
7073 CANT_MOVE (insn) = 1;
7074
7075 last = insn;
326ee7a3
JL
7076 /* Skip over insns that are part of a group.
7077 Make each insn explicitly depend on the previous insn.
7078 This ensures that only the group header will ever enter
7079 the ready queue (and, when scheduled, will automatically
7080 schedule the SCHED_GROUP_P block). */
8c660648 7081 while (SCHED_GROUP_P (insn))
326ee7a3
JL
7082 {
7083 rtx temp = prev_nonnote_insn (insn);
7084 add_dependence (insn, temp, REG_DEP_ANTI);
7085 insn = temp;
7086 }
8c660648
JL
7087 }
7088
7089 /* Don't overrun the bounds of the basic block. */
7090 if (insn == head)
7091 break;
7092
7093 insn = PREV_INSN (insn);
7094 }
7095
7096 /* make sure these insns are scheduled last in their block */
7097 insn = last;
7098 if (insn != 0)
7099 while (insn != head)
7100 {
7101 insn = prev_nonnote_insn (insn);
7102
7103 if (INSN_REF_COUNT (insn) != 0)
7104 continue;
7105
7106 if (!find_insn_list (last, LOG_LINKS (insn)))
7107 add_dependence (last, insn, REG_DEP_ANTI);
7108 INSN_REF_COUNT (insn) = 1;
7109
7110 /* Skip over insns that are part of a group. */
7111 while (SCHED_GROUP_P (insn))
7112 insn = prev_nonnote_insn (insn);
7113 }
7114}
7115
7116/* Compute bacward dependences inside BB. In a multiple blocks region:
7117 (1) a bb is analyzed after its predecessors, and (2) the lists in
7118 effect at the end of bb (after analyzing for bb) are inherited by
7119 bb's successrs.
7120
7121 Specifically for reg-reg data dependences, the block insns are
7122 scanned by sched_analyze () top-to-bottom. Two lists are
7123 naintained by sched_analyze (): reg_last_defs[] for register DEFs,
7124 and reg_last_uses[] for register USEs.
7125
7126 When analysis is completed for bb, we update for its successors:
7127 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
7128 ; - USES[succ] = Union (USES [succ], DEFS [bb])
7129
7130 The mechanism for computing mem-mem data dependence is very
7131 similar, and the result is interblock dependences in the region. */
7132
7133static void
7134compute_block_backward_dependences (bb)
7135 int bb;
7136{
7137 int b;
7138 rtx x;
7139 rtx head, tail;
7140 int max_reg = max_reg_num ();
7141
7142 b = BB_TO_BLOCK (bb);
7143
7144 if (current_nr_blocks == 1)
7145 {
7146 reg_last_uses = (rtx *) alloca (max_reg * sizeof (rtx));
7147 reg_last_sets = (rtx *) alloca (max_reg * sizeof (rtx));
7148
7149 bzero ((char *) reg_last_uses, max_reg * sizeof (rtx));
7150 bzero ((char *) reg_last_sets, max_reg * sizeof (rtx));
7151
7152 pending_read_insns = 0;
7153 pending_read_mems = 0;
7154 pending_write_insns = 0;
7155 pending_write_mems = 0;
7156 pending_lists_length = 0;
7157 last_function_call = 0;
7158 last_pending_memory_flush = 0;
7159 sched_before_next_call
38a448ca
RH
7160 = gen_rtx_INSN (VOIDmode, 0, NULL_RTX, NULL_RTX,
7161 NULL_RTX, 0, NULL_RTX, NULL_RTX);
8c660648
JL
7162 LOG_LINKS (sched_before_next_call) = 0;
7163 }
7164 else
7165 {
7166 reg_last_uses = bb_reg_last_uses[bb];
7167 reg_last_sets = bb_reg_last_sets[bb];
7168
7169 pending_read_insns = bb_pending_read_insns[bb];
7170 pending_read_mems = bb_pending_read_mems[bb];
7171 pending_write_insns = bb_pending_write_insns[bb];
7172 pending_write_mems = bb_pending_write_mems[bb];
7173 pending_lists_length = bb_pending_lists_length[bb];
7174 last_function_call = bb_last_function_call[bb];
7175 last_pending_memory_flush = bb_last_pending_memory_flush[bb];
7176
7177 sched_before_next_call = bb_sched_before_next_call[bb];
7178 }
7179
7180 /* do the analysis for this block */
7181 get_block_head_tail (bb, &head, &tail);
7182 sched_analyze (head, tail);
7183 add_branch_dependences (head, tail);
7184
7185 if (current_nr_blocks > 1)
7186 {
7187 int e, first_edge;
7188 int b_succ, bb_succ;
7189 int reg;
7190 rtx link_insn, link_mem;
7191 rtx u;
7192
7193 /* these lists should point to the right place, for correct freeing later. */
7194 bb_pending_read_insns[bb] = pending_read_insns;
7195 bb_pending_read_mems[bb] = pending_read_mems;
7196 bb_pending_write_insns[bb] = pending_write_insns;
7197 bb_pending_write_mems[bb] = pending_write_mems;
7198
7199 /* bb's structures are inherited by it's successors */
7200 first_edge = e = OUT_EDGES (b);
7201 if (e > 0)
7202 do
7203 {
7204 b_succ = TO_BLOCK (e);
7205 bb_succ = BLOCK_TO_BB (b_succ);
7206
7207 /* only bbs "below" bb, in the same region, are interesting */
7208 if (CONTAINING_RGN (b) != CONTAINING_RGN (b_succ)
7209 || bb_succ <= bb)
7210 {
7211 e = NEXT_OUT (e);
7212 continue;
7213 }
7214
7215 for (reg = 0; reg < max_reg; reg++)
7216 {
7217
7218 /* reg-last-uses lists are inherited by bb_succ */
7219 for (u = reg_last_uses[reg]; u; u = XEXP (u, 1))
7220 {
7221 if (find_insn_list (XEXP (u, 0), (bb_reg_last_uses[bb_succ])[reg]))
7222 continue;
7223
7224 (bb_reg_last_uses[bb_succ])[reg]
ebb7b10b
RH
7225 = alloc_INSN_LIST (XEXP (u, 0),
7226 (bb_reg_last_uses[bb_succ])[reg]);
8c660648
JL
7227 }
7228
7229 /* reg-last-defs lists are inherited by bb_succ */
7230 for (u = reg_last_sets[reg]; u; u = XEXP (u, 1))
7231 {
7232 if (find_insn_list (XEXP (u, 0), (bb_reg_last_sets[bb_succ])[reg]))
7233 continue;
7234
7235 (bb_reg_last_sets[bb_succ])[reg]
ebb7b10b
RH
7236 = alloc_INSN_LIST (XEXP (u, 0),
7237 (bb_reg_last_sets[bb_succ])[reg]);
8c660648
JL
7238 }
7239 }
7240
7241 /* mem read/write lists are inherited by bb_succ */
7242 link_insn = pending_read_insns;
7243 link_mem = pending_read_mems;
7244 while (link_insn)
7245 {
7246 if (!(find_insn_mem_list (XEXP (link_insn, 0), XEXP (link_mem, 0),
7247 bb_pending_read_insns[bb_succ],
7248 bb_pending_read_mems[bb_succ])))
7249 add_insn_mem_dependence (&bb_pending_read_insns[bb_succ],
7250 &bb_pending_read_mems[bb_succ],
7251 XEXP (link_insn, 0), XEXP (link_mem, 0));
7252 link_insn = XEXP (link_insn, 1);
7253 link_mem = XEXP (link_mem, 1);
7254 }
7255
7256 link_insn = pending_write_insns;
7257 link_mem = pending_write_mems;
7258 while (link_insn)
7259 {
7260 if (!(find_insn_mem_list (XEXP (link_insn, 0), XEXP (link_mem, 0),
7261 bb_pending_write_insns[bb_succ],
7262 bb_pending_write_mems[bb_succ])))
7263 add_insn_mem_dependence (&bb_pending_write_insns[bb_succ],
7264 &bb_pending_write_mems[bb_succ],
7265 XEXP (link_insn, 0), XEXP (link_mem, 0));
7266
7267 link_insn = XEXP (link_insn, 1);
7268 link_mem = XEXP (link_mem, 1);
7269 }
7270
7271 /* last_function_call is inherited by bb_succ */
7272 for (u = last_function_call; u; u = XEXP (u, 1))
7273 {
7274 if (find_insn_list (XEXP (u, 0), bb_last_function_call[bb_succ]))
7275 continue;
7276
7277 bb_last_function_call[bb_succ]
ebb7b10b
RH
7278 = alloc_INSN_LIST (XEXP (u, 0),
7279 bb_last_function_call[bb_succ]);
8c660648
JL
7280 }
7281
7282 /* last_pending_memory_flush is inherited by bb_succ */
7283 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
7284 {
7285 if (find_insn_list (XEXP (u, 0), bb_last_pending_memory_flush[bb_succ]))
7286 continue;
7287
7288 bb_last_pending_memory_flush[bb_succ]
ebb7b10b
RH
7289 = alloc_INSN_LIST (XEXP (u, 0),
7290 bb_last_pending_memory_flush[bb_succ]);
8c660648
JL
7291 }
7292
7293 /* sched_before_next_call is inherited by bb_succ */
7294 x = LOG_LINKS (sched_before_next_call);
7295 for (; x; x = XEXP (x, 1))
7296 add_dependence (bb_sched_before_next_call[bb_succ],
7297 XEXP (x, 0), REG_DEP_ANTI);
7298
7299 e = NEXT_OUT (e);
7300 }
7301 while (e != first_edge);
7302 }
ebb7b10b 7303
7eea6443
JL
7304 /* Free up the INSN_LISTs
7305
7306 Note this loop is executed max_reg * nr_regions times. It's first
7307 implementation accounted for over 90% of the calls to free_list.
7308 The list was empty for the vast majority of those calls. On the PA,
7309 not calling free_list in those cases improves -O2 compile times by
7310 3-5% on average. */
ebb7b10b
RH
7311 for (b = 0; b < max_reg; ++b)
7312 {
7eea6443
JL
7313 if (reg_last_sets[b])
7314 free_list (&reg_last_sets[b], &unused_insn_list);
7315 if (reg_last_uses[b])
7316 free_list (&reg_last_uses[b], &unused_insn_list);
ebb7b10b
RH
7317 }
7318
7319 /* Assert that we won't need bb_reg_last_* for this block anymore. */
7320 if (current_nr_blocks > 1)
7321 {
7322 bb_reg_last_uses[bb] = (rtx *) NULL_RTX;
7323 bb_reg_last_sets[bb] = (rtx *) NULL_RTX;
7324 }
8c660648
JL
7325}
7326
7327/* Print dependences for debugging, callable from debugger */
7328
7329void
7330debug_dependencies ()
7331{
7332 int bb;
7333
7334 fprintf (dump, ";; --------------- forward dependences: ------------ \n");
7335 for (bb = 0; bb < current_nr_blocks; bb++)
7336 {
7337 if (1)
7338 {
7339 rtx head, tail;
7340 rtx next_tail;
7341 rtx insn;
7342
7343 get_block_head_tail (bb, &head, &tail);
7344 next_tail = NEXT_INSN (tail);
7345 fprintf (dump, "\n;; --- Region Dependences --- b %d bb %d \n",
7346 BB_TO_BLOCK (bb), bb);
7347
7348 fprintf (dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
7349 "insn", "code", "bb", "dep", "prio", "cost", "blockage", "units");
7350 fprintf (dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
7351 "----", "----", "--", "---", "----", "----", "--------", "-----");
7352 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
7353 {
7354 rtx link;
7355 int unit, range;
7356
7357 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7358 {
7359 int n;
7360 fprintf (dump, ";; %6d ", INSN_UID (insn));
7361 if (GET_CODE (insn) == NOTE)
ebc25a17
MM
7362 {
7363 n = NOTE_LINE_NUMBER (insn);
7364 if (n < 0)
7365 fprintf (dump, "%s\n", GET_NOTE_INSN_NAME (n));
7366 else
7367 fprintf (dump, "line %d, file %s\n", n,
7368 NOTE_SOURCE_FILE (insn));
7369 }
7370 else
4f64eaca 7371 fprintf (dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
8c660648
JL
7372 continue;
7373 }
7374
7375 unit = insn_unit (insn);
7376 range = (unit < 0
7377 || function_units[unit].blockage_range_function == 0) ? 0 :
7378 function_units[unit].blockage_range_function (insn);
7379 fprintf (dump,
7380 ";; %s%5d%6d%6d%6d%6d%6d %3d -%3d ",
7381 (SCHED_GROUP_P (insn) ? "+" : " "),
7382 INSN_UID (insn),
7383 INSN_CODE (insn),
7384 INSN_BB (insn),
7385 INSN_DEP_COUNT (insn),
7386 INSN_PRIORITY (insn),
7387 insn_cost (insn, 0, 0),
7388 (int) MIN_BLOCKAGE_COST (range),
7389 (int) MAX_BLOCKAGE_COST (range));
7390 insn_print_units (insn);
7391 fprintf (dump, "\t: ");
7392 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
7393 fprintf (dump, "%d ", INSN_UID (XEXP (link, 0)));
7394 fprintf (dump, "\n");
7395 }
7396 }
7397 }
7398 fprintf (dump, "\n");
7399}
7400
7401/* Set_priorities: compute priority of each insn in the block */
7402
7403static int
7404set_priorities (bb)
7405 int bb;
7406{
7407 rtx insn;
7408 int n_insn;
7409
7410 rtx tail;
7411 rtx prev_head;
7412 rtx head;
7413
7414 get_block_head_tail (bb, &head, &tail);
7415 prev_head = PREV_INSN (head);
7416
7417 if (head == tail
7418 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
7419 return 0;
7420
7421 n_insn = 0;
7422 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7423 {
7424
7425 if (GET_CODE (insn) == NOTE)
7426 continue;
7427
7428 if (!(SCHED_GROUP_P (insn)))
7429 n_insn++;
7430 (void) priority (insn);
7431 }
7432
7433 return n_insn;
7434}
7435
7436/* Make each element of VECTOR point at an rtx-vector,
7437 taking the space for all those rtx-vectors from SPACE.
7438 SPACE is of type (rtx *), but it is really as long as NELTS rtx-vectors.
7439 BYTES_PER_ELT is the number of bytes in one rtx-vector.
7440 (this is the same as init_regset_vector () in flow.c) */
7441
7442static void
7443init_rtx_vector (vector, space, nelts, bytes_per_elt)
7444 rtx **vector;
7445 rtx *space;
7446 int nelts;
7447 int bytes_per_elt;
7448{
7449 register int i;
7450 register rtx *p = space;
7451
7452 for (i = 0; i < nelts; i++)
7453 {
7454 vector[i] = p;
7455 p += bytes_per_elt / sizeof (*p);
7456 }
7457}
7458
7459/* Schedule a region. A region is either an inner loop, a loop-free
7460 subroutine, or a single basic block. Each bb in the region is
7461 scheduled after its flow predecessors. */
7462
7463static void
7464schedule_region (rgn)
7465 int rgn;
7466{
7467 int bb;
7468 int rgn_n_insns = 0;
7469 int sched_rgn_n_insns = 0;
7470
7471 /* set variables for the current region */
7472 current_nr_blocks = RGN_NR_BLOCKS (rgn);
7473 current_blocks = RGN_BLOCKS (rgn);
7474
7475 reg_pending_sets = ALLOCA_REG_SET ();
7476 reg_pending_sets_all = 0;
7477
7478 /* initializations for region data dependence analyisis */
7479 if (current_nr_blocks > 1)
7480 {
7481 rtx *space;
7482 int maxreg = max_reg_num ();
7483
7484 bb_reg_last_uses = (rtx **) alloca (current_nr_blocks * sizeof (rtx *));
7485 space = (rtx *) alloca (current_nr_blocks * maxreg * sizeof (rtx));
7486 bzero ((char *) space, current_nr_blocks * maxreg * sizeof (rtx));
7487 init_rtx_vector (bb_reg_last_uses, space, current_nr_blocks, maxreg * sizeof (rtx *));
7488
7489 bb_reg_last_sets = (rtx **) alloca (current_nr_blocks * sizeof (rtx *));
7490 space = (rtx *) alloca (current_nr_blocks * maxreg * sizeof (rtx));
7491 bzero ((char *) space, current_nr_blocks * maxreg * sizeof (rtx));
7492 init_rtx_vector (bb_reg_last_sets, space, current_nr_blocks, maxreg * sizeof (rtx *));
7493
7494 bb_pending_read_insns = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7495 bb_pending_read_mems = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7496 bb_pending_write_insns = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7497 bb_pending_write_mems = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7498 bb_pending_lists_length = (int *) alloca (current_nr_blocks * sizeof (int));
7499 bb_last_pending_memory_flush = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7500 bb_last_function_call = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7501 bb_sched_before_next_call = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7502
7503 init_rgn_data_dependences (current_nr_blocks);
7504 }
7505
7506 /* compute LOG_LINKS */
7507 for (bb = 0; bb < current_nr_blocks; bb++)
7508 compute_block_backward_dependences (bb);
7509
7510 /* compute INSN_DEPEND */
7511 for (bb = current_nr_blocks - 1; bb >= 0; bb--)
7512 compute_block_forward_dependences (bb);
7513
7514 /* Delete line notes, compute live-regs at block end, and set priorities. */
7515 dead_notes = 0;
7516 for (bb = 0; bb < current_nr_blocks; bb++)
7517 {
7518 if (reload_completed == 0)
7519 find_pre_sched_live (bb);
7520
7521 if (write_symbols != NO_DEBUG)
7522 {
7523 save_line_notes (bb);
7524 rm_line_notes (bb);
7525 }
7526
7527 rgn_n_insns += set_priorities (bb);
7528 }
7529
7530 /* compute interblock info: probabilities, split-edges, dominators, etc. */
7531 if (current_nr_blocks > 1)
7532 {
7533 int i;
7534
7535 prob = (float *) alloca ((current_nr_blocks) * sizeof (float));
7536
7537 bbset_size = current_nr_blocks / HOST_BITS_PER_WIDE_INT + 1;
7538 dom = (bbset *) alloca (current_nr_blocks * sizeof (bbset));
7539 for (i = 0; i < current_nr_blocks; i++)
7540 {
7541 dom[i] = (bbset) alloca (bbset_size * sizeof (HOST_WIDE_INT));
7542 bzero ((char *) dom[i], bbset_size * sizeof (HOST_WIDE_INT));
7543 }
7544
7545 /* edge to bit */
7546 rgn_nr_edges = 0;
7547 edge_to_bit = (int *) alloca (nr_edges * sizeof (int));
7548 for (i = 1; i < nr_edges; i++)
7549 if (CONTAINING_RGN (FROM_BLOCK (i)) == rgn)
7550 EDGE_TO_BIT (i) = rgn_nr_edges++;
7551 rgn_edges = (int *) alloca (rgn_nr_edges * sizeof (int));
7552
7553 rgn_nr_edges = 0;
7554 for (i = 1; i < nr_edges; i++)
7555 if (CONTAINING_RGN (FROM_BLOCK (i)) == (rgn))
7556 rgn_edges[rgn_nr_edges++] = i;
7557
7558 /* split edges */
7559 edgeset_size = rgn_nr_edges / HOST_BITS_PER_WIDE_INT + 1;
7560 pot_split = (edgeset *) alloca (current_nr_blocks * sizeof (edgeset));
7561 ancestor_edges = (edgeset *) alloca (current_nr_blocks * sizeof (edgeset));
7562 for (i = 0; i < current_nr_blocks; i++)
7563 {
7564 pot_split[i] =
7565 (edgeset) alloca (edgeset_size * sizeof (HOST_WIDE_INT));
7566 bzero ((char *) pot_split[i],
7567 edgeset_size * sizeof (HOST_WIDE_INT));
7568 ancestor_edges[i] =
7569 (edgeset) alloca (edgeset_size * sizeof (HOST_WIDE_INT));
7570 bzero ((char *) ancestor_edges[i],
7571 edgeset_size * sizeof (HOST_WIDE_INT));
7572 }
7573
7574 /* compute probabilities, dominators, split_edges */
7575 for (bb = 0; bb < current_nr_blocks; bb++)
7576 compute_dom_prob_ps (bb);
7577 }
7578
7579 /* now we can schedule all blocks */
7580 for (bb = 0; bb < current_nr_blocks; bb++)
7581 {
5835e573 7582 sched_rgn_n_insns += schedule_block (bb, rgn_n_insns);
8c660648
JL
7583
7584#ifdef USE_C_ALLOCA
7585 alloca (0);
7586#endif
7587 }
7588
cc132865
JL
7589 /* sanity check: verify that all region insns were scheduled */
7590 if (sched_rgn_n_insns != rgn_n_insns)
7591 abort ();
8c660648
JL
7592
7593 /* update register life and usage information */
7594 if (reload_completed == 0)
7595 {
7596 for (bb = current_nr_blocks - 1; bb >= 0; bb--)
7597 find_post_sched_live (bb);
7598
7599 if (current_nr_blocks <= 1)
7600 /* Sanity check. There should be no REG_DEAD notes leftover at the end.
7601 In practice, this can occur as the result of bugs in flow, combine.c,
7602 and/or sched.c. The values of the REG_DEAD notes remaining are
7603 meaningless, because dead_notes is just used as a free list. */
7604 if (dead_notes != 0)
7605 abort ();
7606 }
7607
7608 /* restore line notes. */
7609 if (write_symbols != NO_DEBUG)
7610 {
7611 for (bb = 0; bb < current_nr_blocks; bb++)
7612 restore_line_notes (bb);
7613 }
7614
7615 /* Done with this region */
7616 free_pending_lists ();
f187056f
JL
7617
7618 FREE_REG_SET (reg_pending_sets);
8c660648
JL
7619}
7620
7621/* Subroutine of split_hard_reg_notes. Searches X for any reference to
7622 REGNO, returning the rtx of the reference found if any. Otherwise,
7623 returns 0. */
7624
7625static rtx
7626regno_use_in (regno, x)
7627 int regno;
7628 rtx x;
7629{
7630 register char *fmt;
7631 int i, j;
7632 rtx tem;
7633
7634 if (GET_CODE (x) == REG && REGNO (x) == regno)
7635 return x;
7636
7637 fmt = GET_RTX_FORMAT (GET_CODE (x));
7638 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
7639 {
7640 if (fmt[i] == 'e')
7641 {
7642 if ((tem = regno_use_in (regno, XEXP (x, i))))
7643 return tem;
7644 }
7645 else if (fmt[i] == 'E')
7646 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7647 if ((tem = regno_use_in (regno, XVECEXP (x, i, j))))
7648 return tem;
7649 }
7650
7651 return 0;
7652}
7653
7654/* Subroutine of update_flow_info. Determines whether any new REG_NOTEs are
7655 needed for the hard register mentioned in the note. This can happen
7656 if the reference to the hard register in the original insn was split into
7657 several smaller hard register references in the split insns. */
7658
7659static void
5835e573
KG
7660split_hard_reg_notes (note, first, last)
7661 rtx note, first, last;
8c660648
JL
7662{
7663 rtx reg, temp, link;
7664 int n_regs, i, new_reg;
7665 rtx insn;
7666
7667 /* Assume that this is a REG_DEAD note. */
7668 if (REG_NOTE_KIND (note) != REG_DEAD)
7669 abort ();
7670
7671 reg = XEXP (note, 0);
7672
7673 n_regs = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
7674
7675 for (i = 0; i < n_regs; i++)
7676 {
7677 new_reg = REGNO (reg) + i;
7678
7679 /* Check for references to new_reg in the split insns. */
7680 for (insn = last;; insn = PREV_INSN (insn))
7681 {
7682 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7683 && (temp = regno_use_in (new_reg, PATTERN (insn))))
7684 {
7685 /* Create a new reg dead note ere. */
ebb7b10b 7686 link = alloc_EXPR_LIST (REG_DEAD, temp, REG_NOTES (insn));
8c660648
JL
7687 REG_NOTES (insn) = link;
7688
7689 /* If killed multiple registers here, then add in the excess. */
7690 i += HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)) - 1;
7691
7692 break;
7693 }
7694 /* It isn't mentioned anywhere, so no new reg note is needed for
7695 this register. */
7696 if (insn == first)
7697 break;
7698 }
7699 }
7700}
7701
7702/* Subroutine of update_flow_info. Determines whether a SET or CLOBBER in an
7703 insn created by splitting needs a REG_DEAD or REG_UNUSED note added. */
7704
7705static void
7706new_insn_dead_notes (pat, insn, last, orig_insn)
7707 rtx pat, insn, last, orig_insn;
7708{
7709 rtx dest, tem, set;
7710
7711 /* PAT is either a CLOBBER or a SET here. */
7712 dest = XEXP (pat, 0);
7713
7714 while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
7715 || GET_CODE (dest) == STRICT_LOW_PART
7716 || GET_CODE (dest) == SIGN_EXTRACT)
7717 dest = XEXP (dest, 0);
7718
7719 if (GET_CODE (dest) == REG)
7720 {
93da030f
R
7721 /* If the original insn already used this register, we may not add new
7722 notes for it. One example for a split that needs this test is
7723 when a multi-word memory access with register-indirect addressing
7724 is split into multiple memory accesses with auto-increment and
7725 one adjusting add instruction for the address register. */
7726 if (reg_referenced_p (dest, PATTERN (orig_insn)))
7727 return;
8c660648
JL
7728 for (tem = last; tem != insn; tem = PREV_INSN (tem))
7729 {
7730 if (GET_RTX_CLASS (GET_CODE (tem)) == 'i'
7731 && reg_overlap_mentioned_p (dest, PATTERN (tem))
7732 && (set = single_set (tem)))
7733 {
7734 rtx tem_dest = SET_DEST (set);
7735
7736 while (GET_CODE (tem_dest) == ZERO_EXTRACT
7737 || GET_CODE (tem_dest) == SUBREG
7738 || GET_CODE (tem_dest) == STRICT_LOW_PART
7739 || GET_CODE (tem_dest) == SIGN_EXTRACT)
7740 tem_dest = XEXP (tem_dest, 0);
7741
7742 if (!rtx_equal_p (tem_dest, dest))
7743 {
7744 /* Use the same scheme as combine.c, don't put both REG_DEAD
7745 and REG_UNUSED notes on the same insn. */
7746 if (!find_regno_note (tem, REG_UNUSED, REGNO (dest))
7747 && !find_regno_note (tem, REG_DEAD, REGNO (dest)))
7748 {
ebb7b10b
RH
7749 rtx note = alloc_EXPR_LIST (REG_DEAD, dest,
7750 REG_NOTES (tem));
8c660648
JL
7751 REG_NOTES (tem) = note;
7752 }
7753 /* The reg only dies in one insn, the last one that uses
7754 it. */
7755 break;
7756 }
7757 else if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
7758 /* We found an instruction that both uses the register,
7759 and sets it, so no new REG_NOTE is needed for this set. */
7760 break;
7761 }
7762 }
7763 /* If this is a set, it must die somewhere, unless it is the dest of
7764 the original insn, and hence is live after the original insn. Abort
7765 if it isn't supposed to be live after the original insn.
7766
7767 If this is a clobber, then just add a REG_UNUSED note. */
7768 if (tem == insn)
7769 {
7770 int live_after_orig_insn = 0;
7771 rtx pattern = PATTERN (orig_insn);
7772 int i;
7773
7774 if (GET_CODE (pat) == CLOBBER)
7775 {
ebb7b10b 7776 rtx note = alloc_EXPR_LIST (REG_UNUSED, dest, REG_NOTES (insn));
8c660648
JL
7777 REG_NOTES (insn) = note;
7778 return;
7779 }
7780
7781 /* The original insn could have multiple sets, so search the
7782 insn for all sets. */
7783 if (GET_CODE (pattern) == SET)
7784 {
7785 if (reg_overlap_mentioned_p (dest, SET_DEST (pattern)))
7786 live_after_orig_insn = 1;
7787 }
7788 else if (GET_CODE (pattern) == PARALLEL)
7789 {
7790 for (i = 0; i < XVECLEN (pattern, 0); i++)
7791 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET
7792 && reg_overlap_mentioned_p (dest,
7793 SET_DEST (XVECEXP (pattern,
7794 0, i))))
7795 live_after_orig_insn = 1;
7796 }
7797
7798 if (!live_after_orig_insn)
7799 abort ();
7800 }
7801 }
7802}
7803
7804/* Subroutine of update_flow_info. Update the value of reg_n_sets for all
7805 registers modified by X. INC is -1 if the containing insn is being deleted,
7806 and is 1 if the containing insn is a newly generated insn. */
7807
7808static void
7809update_n_sets (x, inc)
7810 rtx x;
7811 int inc;
7812{
7813 rtx dest = SET_DEST (x);
7814
7815 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
7816 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
7817 dest = SUBREG_REG (dest);
7818
7819 if (GET_CODE (dest) == REG)
7820 {
7821 int regno = REGNO (dest);
7822
7823 if (regno < FIRST_PSEUDO_REGISTER)
7824 {
7825 register int i;
7826 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (dest));
7827
7828 for (i = regno; i < endregno; i++)
7829 REG_N_SETS (i) += inc;
7830 }
7831 else
7832 REG_N_SETS (regno) += inc;
7833 }
7834}
7835
7836/* Updates all flow-analysis related quantities (including REG_NOTES) for
7837 the insns from FIRST to LAST inclusive that were created by splitting
7838 ORIG_INSN. NOTES are the original REG_NOTES. */
7839
7840static void
7841update_flow_info (notes, first, last, orig_insn)
7842 rtx notes;
7843 rtx first, last;
7844 rtx orig_insn;
7845{
7846 rtx insn, note;
7847 rtx next;
7848 rtx orig_dest, temp;
7849 rtx set;
7850
7851 /* Get and save the destination set by the original insn. */
7852
7853 orig_dest = single_set (orig_insn);
7854 if (orig_dest)
7855 orig_dest = SET_DEST (orig_dest);
7856
7857 /* Move REG_NOTES from the original insn to where they now belong. */
7858
7859 for (note = notes; note; note = next)
7860 {
7861 next = XEXP (note, 1);
7862 switch (REG_NOTE_KIND (note))
7863 {
7864 case REG_DEAD:
7865 case REG_UNUSED:
7866 /* Move these notes from the original insn to the last new insn where
7867 the register is now set. */
7868
7869 for (insn = last;; insn = PREV_INSN (insn))
7870 {
7871 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7872 && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
7873 {
7874 /* If this note refers to a multiple word hard register, it
7875 may have been split into several smaller hard register
7876 references, so handle it specially. */
7877 temp = XEXP (note, 0);
7878 if (REG_NOTE_KIND (note) == REG_DEAD
7879 && GET_CODE (temp) == REG
7880 && REGNO (temp) < FIRST_PSEUDO_REGISTER
7881 && HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)) > 1)
5835e573 7882 split_hard_reg_notes (note, first, last);
8c660648
JL
7883 else
7884 {
7885 XEXP (note, 1) = REG_NOTES (insn);
7886 REG_NOTES (insn) = note;
7887 }
7888
7889 /* Sometimes need to convert REG_UNUSED notes to REG_DEAD
7890 notes. */
7891 /* ??? This won't handle multiple word registers correctly,
7892 but should be good enough for now. */
7893 if (REG_NOTE_KIND (note) == REG_UNUSED
272299b9 7894 && GET_CODE (XEXP (note, 0)) != SCRATCH
8c660648
JL
7895 && !dead_or_set_p (insn, XEXP (note, 0)))
7896 PUT_REG_NOTE_KIND (note, REG_DEAD);
7897
7898 /* The reg only dies in one insn, the last one that uses
7899 it. */
7900 break;
7901 }
7902 /* It must die somewhere, fail it we couldn't find where it died.
7903
7904 If this is a REG_UNUSED note, then it must be a temporary
7905 register that was not needed by this instantiation of the
7906 pattern, so we can safely ignore it. */
7907 if (insn == first)
7908 {
7909 /* After reload, REG_DEAD notes come sometimes an
7910 instruction after the register actually dies. */
7911 if (reload_completed && REG_NOTE_KIND (note) == REG_DEAD)
7912 {
7913 XEXP (note, 1) = REG_NOTES (insn);
7914 REG_NOTES (insn) = note;
7915 break;
7916 }
7917
7918 if (REG_NOTE_KIND (note) != REG_UNUSED)
7919 abort ();
7920
7921 break;
7922 }
7923 }
7924 break;
7925
7926 case REG_WAS_0:
fcdc0d6e
R
7927 /* If the insn that set the register to 0 was deleted, this
7928 note cannot be relied on any longer. The destination might
7929 even have been moved to memory.
7930 This was observed for SH4 with execute/920501-6.c compilation,
7931 -O2 -fomit-frame-pointer -finline-functions . */
7932 if (GET_CODE (XEXP (note, 0)) == NOTE
7933 || INSN_DELETED_P (XEXP (note, 0)))
7934 break;
8c660648
JL
7935 /* This note applies to the dest of the original insn. Find the
7936 first new insn that now has the same dest, and move the note
7937 there. */
7938
7939 if (!orig_dest)
7940 abort ();
7941
7942 for (insn = first;; insn = NEXT_INSN (insn))
7943 {
7944 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7945 && (temp = single_set (insn))
7946 && rtx_equal_p (SET_DEST (temp), orig_dest))
7947 {
7948 XEXP (note, 1) = REG_NOTES (insn);
7949 REG_NOTES (insn) = note;
7950 /* The reg is only zero before one insn, the first that
7951 uses it. */
7952 break;
7953 }
7954 /* If this note refers to a multiple word hard
7955 register, it may have been split into several smaller
7956 hard register references. We could split the notes,
7957 but simply dropping them is good enough. */
7958 if (GET_CODE (orig_dest) == REG
7959 && REGNO (orig_dest) < FIRST_PSEUDO_REGISTER
7960 && HARD_REGNO_NREGS (REGNO (orig_dest),
7961 GET_MODE (orig_dest)) > 1)
7962 break;
7963 /* It must be set somewhere, fail if we couldn't find where it
7964 was set. */
7965 if (insn == last)
7966 abort ();
7967 }
7968 break;
7969
7970 case REG_EQUAL:
7971 case REG_EQUIV:
7972 /* A REG_EQUIV or REG_EQUAL note on an insn with more than one
7973 set is meaningless. Just drop the note. */
7974 if (!orig_dest)
7975 break;
7976
7977 case REG_NO_CONFLICT:
7978 /* These notes apply to the dest of the original insn. Find the last
7979 new insn that now has the same dest, and move the note there. */
7980
7981 if (!orig_dest)
7982 abort ();
7983
7984 for (insn = last;; insn = PREV_INSN (insn))
7985 {
7986 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7987 && (temp = single_set (insn))
7988 && rtx_equal_p (SET_DEST (temp), orig_dest))
7989 {
7990 XEXP (note, 1) = REG_NOTES (insn);
7991 REG_NOTES (insn) = note;
7992 /* Only put this note on one of the new insns. */
7993 break;
7994 }
7995
7996 /* The original dest must still be set someplace. Abort if we
7997 couldn't find it. */
7998 if (insn == first)
7999 {
8000 /* However, if this note refers to a multiple word hard
8001 register, it may have been split into several smaller
8002 hard register references. We could split the notes,
8003 but simply dropping them is good enough. */
8004 if (GET_CODE (orig_dest) == REG
8005 && REGNO (orig_dest) < FIRST_PSEUDO_REGISTER
8006 && HARD_REGNO_NREGS (REGNO (orig_dest),
8007 GET_MODE (orig_dest)) > 1)
8008 break;
8009 /* Likewise for multi-word memory references. */
8010 if (GET_CODE (orig_dest) == MEM
9ae4ec46 8011 && SIZE_FOR_MODE (orig_dest) > UNITS_PER_WORD)
8c660648
JL
8012 break;
8013 abort ();
8014 }
8015 }
8016 break;
8017
8018 case REG_LIBCALL:
8019 /* Move a REG_LIBCALL note to the first insn created, and update
8020 the corresponding REG_RETVAL note. */
8021 XEXP (note, 1) = REG_NOTES (first);
8022 REG_NOTES (first) = note;
8023
8024 insn = XEXP (note, 0);
8025 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
8026 if (note)
8027 XEXP (note, 0) = first;
8028 break;
8029
8030 case REG_EXEC_COUNT:
8031 /* Move a REG_EXEC_COUNT note to the first insn created. */
8032 XEXP (note, 1) = REG_NOTES (first);
8033 REG_NOTES (first) = note;
8034 break;
8035
8036 case REG_RETVAL:
8037 /* Move a REG_RETVAL note to the last insn created, and update
8038 the corresponding REG_LIBCALL note. */
8039 XEXP (note, 1) = REG_NOTES (last);
8040 REG_NOTES (last) = note;
8041
8042 insn = XEXP (note, 0);
8043 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
8044 if (note)
8045 XEXP (note, 0) = last;
8046 break;
8047
8048 case REG_NONNEG:
8049 case REG_BR_PROB:
8050 /* This should be moved to whichever instruction is a JUMP_INSN. */
8051
8052 for (insn = last;; insn = PREV_INSN (insn))
8053 {
8054 if (GET_CODE (insn) == JUMP_INSN)
8055 {
8056 XEXP (note, 1) = REG_NOTES (insn);
8057 REG_NOTES (insn) = note;
8058 /* Only put this note on one of the new insns. */
8059 break;
8060 }
8061 /* Fail if we couldn't find a JUMP_INSN. */
8062 if (insn == first)
8063 abort ();
8064 }
8065 break;
8066
8067 case REG_INC:
8068 /* reload sometimes leaves obsolete REG_INC notes around. */
8069 if (reload_completed)
8070 break;
8071 /* This should be moved to whichever instruction now has the
8072 increment operation. */
8073 abort ();
8074
8075 case REG_LABEL:
8076 /* Should be moved to the new insn(s) which use the label. */
8077 for (insn = first; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
8078 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8079 && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
ebb7b10b
RH
8080 {
8081 REG_NOTES (insn) = alloc_EXPR_LIST (REG_LABEL,
38a448ca
RH
8082 XEXP (note, 0),
8083 REG_NOTES (insn));
ebb7b10b 8084 }
8c660648
JL
8085 break;
8086
8087 case REG_CC_SETTER:
8088 case REG_CC_USER:
8089 /* These two notes will never appear until after reorg, so we don't
8090 have to handle them here. */
8091 default:
8092 abort ();
8093 }
8094 }
8095
8096 /* Each new insn created, except the last, has a new set. If the destination
8097 is a register, then this reg is now live across several insns, whereas
8098 previously the dest reg was born and died within the same insn. To
8099 reflect this, we now need a REG_DEAD note on the insn where this
8100 dest reg dies.
8101
8102 Similarly, the new insns may have clobbers that need REG_UNUSED notes. */
8103
8104 for (insn = first; insn != last; insn = NEXT_INSN (insn))
8105 {
8106 rtx pat;
8107 int i;
8108
8109 pat = PATTERN (insn);
8110 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
8111 new_insn_dead_notes (pat, insn, last, orig_insn);
8112 else if (GET_CODE (pat) == PARALLEL)
8113 {
8114 for (i = 0; i < XVECLEN (pat, 0); i++)
8115 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
8116 || GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER)
8117 new_insn_dead_notes (XVECEXP (pat, 0, i), insn, last, orig_insn);
8118 }
8119 }
8120
8121 /* If any insn, except the last, uses the register set by the last insn,
8122 then we need a new REG_DEAD note on that insn. In this case, there
8123 would not have been a REG_DEAD note for this register in the original
8124 insn because it was used and set within one insn. */
8125
8126 set = single_set (last);
8127 if (set)
8128 {
8129 rtx dest = SET_DEST (set);
8130
8131 while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
8132 || GET_CODE (dest) == STRICT_LOW_PART
8133 || GET_CODE (dest) == SIGN_EXTRACT)
8134 dest = XEXP (dest, 0);
8135
8136 if (GET_CODE (dest) == REG
8137 /* Global registers are always live, so the code below does not
8138 apply to them. */
8139 && (REGNO (dest) >= FIRST_PSEUDO_REGISTER
8140 || ! global_regs[REGNO (dest)]))
8141 {
8142 rtx stop_insn = PREV_INSN (first);
8143
8144 /* If the last insn uses the register that it is setting, then
8145 we don't want to put a REG_DEAD note there. Search backwards
8146 to find the first insn that sets but does not use DEST. */
8147
8148 insn = last;
8149 if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
8150 {
8151 for (insn = PREV_INSN (insn); insn != first;
8152 insn = PREV_INSN (insn))
8153 {
8154 if ((set = single_set (insn))
8155 && reg_mentioned_p (dest, SET_DEST (set))
8156 && ! reg_overlap_mentioned_p (dest, SET_SRC (set)))
8157 break;
8158 }
8159 }
8160
8161 /* Now find the first insn that uses but does not set DEST. */
8162
8163 for (insn = PREV_INSN (insn); insn != stop_insn;
8164 insn = PREV_INSN (insn))
8165 {
8166 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8167 && reg_mentioned_p (dest, PATTERN (insn))
8168 && (set = single_set (insn)))
8169 {
8170 rtx insn_dest = SET_DEST (set);
8171
8172 while (GET_CODE (insn_dest) == ZERO_EXTRACT
8173 || GET_CODE (insn_dest) == SUBREG
8174 || GET_CODE (insn_dest) == STRICT_LOW_PART
8175 || GET_CODE (insn_dest) == SIGN_EXTRACT)
8176 insn_dest = XEXP (insn_dest, 0);
8177
8178 if (insn_dest != dest)
8179 {
ebb7b10b 8180 note = alloc_EXPR_LIST (REG_DEAD, dest, REG_NOTES (insn));
8c660648
JL
8181 REG_NOTES (insn) = note;
8182 /* The reg only dies in one insn, the last one
8183 that uses it. */
8184 break;
8185 }
8186 }
8187 }
8188 }
8189 }
8190
8191 /* If the original dest is modifying a multiple register target, and the
8192 original instruction was split such that the original dest is now set
8193 by two or more SUBREG sets, then the split insns no longer kill the
8194 destination of the original insn.
8195
8196 In this case, if there exists an instruction in the same basic block,
8197 before the split insn, which uses the original dest, and this use is
8198 killed by the original insn, then we must remove the REG_DEAD note on
8199 this insn, because it is now superfluous.
8200
8201 This does not apply when a hard register gets split, because the code
8202 knows how to handle overlapping hard registers properly. */
8203 if (orig_dest && GET_CODE (orig_dest) == REG)
8204 {
8205 int found_orig_dest = 0;
8206 int found_split_dest = 0;
8207
8208 for (insn = first;; insn = NEXT_INSN (insn))
8209 {
acceac1a
R
8210 rtx pat;
8211 int i;
8212
8213 /* I'm not sure if this can happen, but let's be safe. */
8214 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
8215 continue;
8216
8217 pat = PATTERN (insn);
8218 i = GET_CODE (pat) == PARALLEL ? XVECLEN (pat, 0) : 0;
8219 set = pat;
8220
8221 for (;;)
8c660648 8222 {
acceac1a 8223 if (GET_CODE (set) == SET)
8c660648 8224 {
acceac1a
R
8225 if (GET_CODE (SET_DEST (set)) == REG
8226 && REGNO (SET_DEST (set)) == REGNO (orig_dest))
8227 {
8228 found_orig_dest = 1;
8229 break;
8230 }
8231 else if (GET_CODE (SET_DEST (set)) == SUBREG
8232 && SUBREG_REG (SET_DEST (set)) == orig_dest)
8233 {
8234 found_split_dest = 1;
8235 break;
8236 }
8c660648 8237 }
acceac1a
R
8238 if (--i < 0)
8239 break;
8240 set = XVECEXP (pat, 0, i);
8c660648
JL
8241 }
8242
8243 if (insn == last)
8244 break;
8245 }
8246
8247 if (found_split_dest)
8248 {
8249 /* Search backwards from FIRST, looking for the first insn that uses
8250 the original dest. Stop if we pass a CODE_LABEL or a JUMP_INSN.
8251 If we find an insn, and it has a REG_DEAD note, then delete the
8252 note. */
8253
8254 for (insn = first; insn; insn = PREV_INSN (insn))
8255 {
8256 if (GET_CODE (insn) == CODE_LABEL
8257 || GET_CODE (insn) == JUMP_INSN)
8258 break;
8259 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8260 && reg_mentioned_p (orig_dest, insn))
8261 {
8262 note = find_regno_note (insn, REG_DEAD, REGNO (orig_dest));
8263 if (note)
8264 remove_note (insn, note);
8265 }
8266 }
8267 }
8268 else if (!found_orig_dest)
8269 {
8270 /* This should never happen. */
8271 abort ();
8272 }
8273 }
8274
8275 /* Update reg_n_sets. This is necessary to prevent local alloc from
8276 converting REG_EQUAL notes to REG_EQUIV when splitting has modified
8277 a reg from set once to set multiple times. */
8278
8279 {
8280 rtx x = PATTERN (orig_insn);
8281 RTX_CODE code = GET_CODE (x);
8282
8283 if (code == SET || code == CLOBBER)
8284 update_n_sets (x, -1);
8285 else if (code == PARALLEL)
8286 {
8287 int i;
8288 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
8289 {
8290 code = GET_CODE (XVECEXP (x, 0, i));
8291 if (code == SET || code == CLOBBER)
8292 update_n_sets (XVECEXP (x, 0, i), -1);
8293 }
8294 }
8295
8296 for (insn = first;; insn = NEXT_INSN (insn))
8297 {
8298 x = PATTERN (insn);
8299 code = GET_CODE (x);
8300
8301 if (code == SET || code == CLOBBER)
8302 update_n_sets (x, 1);
8303 else if (code == PARALLEL)
8304 {
8305 int i;
8306 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
8307 {
8308 code = GET_CODE (XVECEXP (x, 0, i));
8309 if (code == SET || code == CLOBBER)
8310 update_n_sets (XVECEXP (x, 0, i), 1);
8311 }
8312 }
8313
8314 if (insn == last)
8315 break;
8316 }
8317 }
8318}
8319
8320/* Do the splitting of insns in the block b. */
8321
8322static void
8323split_block_insns (b)
8324 int b;
8325{
8326 rtx insn, next;
8327
8328 for (insn = basic_block_head[b];; insn = next)
8329 {
4ed43ff8 8330 rtx set, last, first, notes;
8c660648
JL
8331
8332 /* Can't use `next_real_insn' because that
8333 might go across CODE_LABELS and short-out basic blocks. */
8334 next = NEXT_INSN (insn);
8335 if (GET_CODE (insn) != INSN)
8336 {
8337 if (insn == basic_block_end[b])
8338 break;
8339
8340 continue;
8341 }
8342
8343 /* Don't split no-op move insns. These should silently disappear
8344 later in final. Splitting such insns would break the code
8345 that handles REG_NO_CONFLICT blocks. */
8346 set = single_set (insn);
8347 if (set && rtx_equal_p (SET_SRC (set), SET_DEST (set)))
8348 {
8349 if (insn == basic_block_end[b])
8350 break;
8351
8352 /* Nops get in the way while scheduling, so delete them now if
8353 register allocation has already been done. It is too risky
8354 to try to do this before register allocation, and there are
8355 unlikely to be very many nops then anyways. */
8356 if (reload_completed)
8357 {
8358 PUT_CODE (insn, NOTE);
8359 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8360 NOTE_SOURCE_FILE (insn) = 0;
8361 }
8362
8363 continue;
8364 }
8365
8366 /* Split insns here to get max fine-grain parallelism. */
4ed43ff8
RH
8367 first = PREV_INSN (insn);
8368 notes = REG_NOTES (insn);
8369 last = try_split (PATTERN (insn), insn, 1);
8370 if (last != insn)
8c660648 8371 {
4ed43ff8
RH
8372 /* try_split returns the NOTE that INSN became. */
8373 first = NEXT_INSN (first);
8374 update_flow_info (notes, first, last, insn);
8375
8376 PUT_CODE (insn, NOTE);
8377 NOTE_SOURCE_FILE (insn) = 0;
8378 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8379 if (insn == basic_block_head[b])
8380 basic_block_head[b] = first;
8381 if (insn == basic_block_end[b])
8c660648 8382 {
4ed43ff8
RH
8383 basic_block_end[b] = last;
8384 break;
8c660648
JL
8385 }
8386 }
8387
8388 if (insn == basic_block_end[b])
8389 break;
8390 }
8391}
8392
8393/* The one entry point in this file. DUMP_FILE is the dump file for
8394 this pass. */
8395
8396void
8397schedule_insns (dump_file)
8398 FILE *dump_file;
8399{
8400
8401 int max_uid;
8402 int b;
8c660648
JL
8403 rtx insn;
8404 int rgn;
8405
8406 int luid;
8407
8408 /* disable speculative loads in their presence if cc0 defined */
8409#ifdef HAVE_cc0
8410 flag_schedule_speculative_load = 0;
8411#endif
8412
8413 /* Taking care of this degenerate case makes the rest of
8414 this code simpler. */
8415 if (n_basic_blocks == 0)
8416 return;
8417
8418 /* set dump and sched_verbose for the desired debugging output. If no
8419 dump-file was specified, but -fsched-verbose-N (any N), print to stderr.
8420 For -fsched-verbose-N, N>=10, print everything to stderr. */
8421 sched_verbose = sched_verbose_param;
8422 if (sched_verbose_param == 0 && dump_file)
8423 sched_verbose = 1;
8424 dump = ((sched_verbose_param >= 10 || !dump_file) ? stderr : dump_file);
8425
8426 nr_inter = 0;
8427 nr_spec = 0;
8428
8429 /* Initialize the unused_*_lists. We can't use the ones left over from
8430 the previous function, because gcc has freed that memory. We can use
8431 the ones left over from the first sched pass in the second pass however,
8432 so only clear them on the first sched pass. The first pass is before
8433 reload if flag_schedule_insns is set, otherwise it is afterwards. */
8434
8435 if (reload_completed == 0 || !flag_schedule_insns)
8436 {
8437 unused_insn_list = 0;
8438 unused_expr_list = 0;
8439 }
8440
8441 /* initialize issue_rate */
62d65906 8442 issue_rate = ISSUE_RATE;
8c660648
JL
8443
8444 /* do the splitting first for all blocks */
8445 for (b = 0; b < n_basic_blocks; b++)
8446 split_block_insns (b);
8447
8448 max_uid = (get_max_uid () + 1);
8449
8450 cant_move = (char *) alloca (max_uid * sizeof (char));
8451 bzero ((char *) cant_move, max_uid * sizeof (char));
8452
8453 fed_by_spec_load = (char *) alloca (max_uid * sizeof (char));
8454 bzero ((char *) fed_by_spec_load, max_uid * sizeof (char));
8455
8456 is_load_insn = (char *) alloca (max_uid * sizeof (char));
8457 bzero ((char *) is_load_insn, max_uid * sizeof (char));
8458
8459 insn_orig_block = (int *) alloca (max_uid * sizeof (int));
8460 insn_luid = (int *) alloca (max_uid * sizeof (int));
8461
8462 luid = 0;
8463 for (b = 0; b < n_basic_blocks; b++)
8464 for (insn = basic_block_head[b];; insn = NEXT_INSN (insn))
8465 {
8466 INSN_BLOCK (insn) = b;
8467 INSN_LUID (insn) = luid++;
8468
8469 if (insn == basic_block_end[b])
8470 break;
8471 }
8472
8473 /* after reload, remove inter-blocks dependences computed before reload. */
8474 if (reload_completed)
8475 {
8476 int b;
8477 rtx insn;
8478
8479 for (b = 0; b < n_basic_blocks; b++)
8480 for (insn = basic_block_head[b];; insn = NEXT_INSN (insn))
8481 {
c995fea1 8482 rtx link, prev;
8c660648
JL
8483
8484 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
8485 {
c995fea1
RH
8486 prev = NULL_RTX;
8487 link = LOG_LINKS (insn);
8488 while (link)
8c660648
JL
8489 {
8490 rtx x = XEXP (link, 0);
8491
8492 if (INSN_BLOCK (x) != b)
c995fea1
RH
8493 {
8494 remove_dependence (insn, x);
8495 link = prev ? XEXP (prev, 1) : LOG_LINKS (insn);
8496 }
8497 else
8498 prev = link, link = XEXP (prev, 1);
8c660648
JL
8499 }
8500 }
8501
8502 if (insn == basic_block_end[b])
8503 break;
8504 }
8505 }
8506
8507 nr_regions = 0;
8508 rgn_table = (region *) alloca ((n_basic_blocks) * sizeof (region));
8509 rgn_bb_table = (int *) alloca ((n_basic_blocks) * sizeof (int));
8510 block_to_bb = (int *) alloca ((n_basic_blocks) * sizeof (int));
8511 containing_rgn = (int *) alloca ((n_basic_blocks) * sizeof (int));
8512
8513 /* compute regions for scheduling */
8514 if (reload_completed
8515 || n_basic_blocks == 1
8516 || !flag_schedule_interblock)
8517 {
8518 find_single_block_region ();
8519 }
8520 else
8521 {
8c660648 8522 /* verify that a 'good' control flow graph can be built */
168cbdf9 8523 if (is_cfg_nonregular ())
8c660648
JL
8524 {
8525 find_single_block_region ();
8526 }
8527 else
8528 {
a2e68776
JL
8529 int_list_ptr *s_preds, *s_succs;
8530 int *num_preds, *num_succs;
8531 sbitmap *dom, *pdom;
8532
8533 s_preds = (int_list_ptr *) alloca (n_basic_blocks
8534 * sizeof (int_list_ptr));
8535 s_succs = (int_list_ptr *) alloca (n_basic_blocks
8536 * sizeof (int_list_ptr));
8537 num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
8538 num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
8539 dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
8540 pdom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
8541
8542 /* The scheduler runs after flow; therefore, we can't blindly call
8543 back into find_basic_blocks since doing so could invalidate the
8544 info in basic_block_live_at_start.
8545
8546 Consider a block consisting entirely of dead stores; after life
8547 analysis it would be a block of NOTE_INSN_DELETED notes. If
8548 we call find_basic_blocks again, then the block would be removed
8549 entirely and invalidate our the register live information.
8550
8551 We could (should?) recompute register live information. Doing
8552 so may even be beneficial. */
8553
5d27de7d 8554 compute_preds_succs (s_preds, s_succs, num_preds, num_succs);
a2e68776
JL
8555
8556 /* Compute the dominators and post dominators. We don't currently use
8557 post dominators, but we should for speculative motion analysis. */
8558 compute_dominators (dom, pdom, s_preds, s_succs);
8559
168cbdf9
JL
8560 /* build_control_flow will return nonzero if it detects unreachable
8561 blocks or any other irregularity with the cfg which prevents
8562 cross block scheduling. */
a2e68776 8563 if (build_control_flow (s_preds, s_succs, num_preds, num_succs) != 0)
168cbdf9
JL
8564 find_single_block_region ();
8565 else
a2e68776 8566 find_rgns (s_preds, s_succs, num_preds, num_succs, dom);
8c660648
JL
8567
8568 if (sched_verbose >= 3)
a2e68776 8569 debug_regions ();
8c660648 8570
a2e68776
JL
8571 /* For now. This will move as more and more of haifa is converted
8572 to using the cfg code in flow.c */
8573 free_bb_mem ();
8574 free (dom);
8575 free (pdom);
8c660648
JL
8576 }
8577 }
8578
8579 /* Allocate data for this pass. See comments, above,
8580 for what these vectors do. */
8581 insn_priority = (int *) alloca (max_uid * sizeof (int));
8582 insn_reg_weight = (int *) alloca (max_uid * sizeof (int));
8583 insn_tick = (int *) alloca (max_uid * sizeof (int));
8584 insn_costs = (short *) alloca (max_uid * sizeof (short));
8585 insn_units = (short *) alloca (max_uid * sizeof (short));
8586 insn_blockage = (unsigned int *) alloca (max_uid * sizeof (unsigned int));
8587 insn_ref_count = (int *) alloca (max_uid * sizeof (int));
8588
8589 /* Allocate for forward dependencies */
8590 insn_dep_count = (int *) alloca (max_uid * sizeof (int));
8591 insn_depend = (rtx *) alloca (max_uid * sizeof (rtx));
8592
8593 if (reload_completed == 0)
8594 {
8595 int i;
8596
8597 sched_reg_n_calls_crossed = (int *) alloca (max_regno * sizeof (int));
8598 sched_reg_live_length = (int *) alloca (max_regno * sizeof (int));
8599 sched_reg_basic_block = (int *) alloca (max_regno * sizeof (int));
8600 bb_live_regs = ALLOCA_REG_SET ();
8601 bzero ((char *) sched_reg_n_calls_crossed, max_regno * sizeof (int));
8602 bzero ((char *) sched_reg_live_length, max_regno * sizeof (int));
8603
8604 for (i = 0; i < max_regno; i++)
8605 sched_reg_basic_block[i] = REG_BLOCK_UNKNOWN;
8606 }
8607 else
8608 {
8609 sched_reg_n_calls_crossed = 0;
8610 sched_reg_live_length = 0;
8611 bb_live_regs = 0;
8612 }
8613 init_alias_analysis ();
8614
8615 if (write_symbols != NO_DEBUG)
8616 {
8617 rtx line;
8618
8619 line_note = (rtx *) alloca (max_uid * sizeof (rtx));
8620 bzero ((char *) line_note, max_uid * sizeof (rtx));
8621 line_note_head = (rtx *) alloca (n_basic_blocks * sizeof (rtx));
8622 bzero ((char *) line_note_head, n_basic_blocks * sizeof (rtx));
8623
8624 /* Save-line-note-head:
8625 Determine the line-number at the start of each basic block.
8626 This must be computed and saved now, because after a basic block's
8627 predecessor has been scheduled, it is impossible to accurately
8628 determine the correct line number for the first insn of the block. */
8629
8630 for (b = 0; b < n_basic_blocks; b++)
8631 for (line = basic_block_head[b]; line; line = PREV_INSN (line))
8632 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
8633 {
8634 line_note_head[b] = line;
8635 break;
8636 }
8637 }
8638
8639 bzero ((char *) insn_priority, max_uid * sizeof (int));
8640 bzero ((char *) insn_reg_weight, max_uid * sizeof (int));
8641 bzero ((char *) insn_tick, max_uid * sizeof (int));
8642 bzero ((char *) insn_costs, max_uid * sizeof (short));
8643 bzero ((char *) insn_units, max_uid * sizeof (short));
8644 bzero ((char *) insn_blockage, max_uid * sizeof (unsigned int));
8645 bzero ((char *) insn_ref_count, max_uid * sizeof (int));
8646
8647 /* Initialize for forward dependencies */
8648 bzero ((char *) insn_depend, max_uid * sizeof (rtx));
8649 bzero ((char *) insn_dep_count, max_uid * sizeof (int));
8650
8651 /* Find units used in this fuction, for visualization */
8652 if (sched_verbose)
8653 init_target_units ();
8654
8655 /* ??? Add a NOTE after the last insn of the last basic block. It is not
8656 known why this is done. */
8657
8658 insn = basic_block_end[n_basic_blocks - 1];
8659 if (NEXT_INSN (insn) == 0
8660 || (GET_CODE (insn) != NOTE
8661 && GET_CODE (insn) != CODE_LABEL
8662 /* Don't emit a NOTE if it would end up between an unconditional
8663 jump and a BARRIER. */
8664 && !(GET_CODE (insn) == JUMP_INSN
8665 && GET_CODE (NEXT_INSN (insn)) == BARRIER)))
8666 emit_note_after (NOTE_INSN_DELETED, basic_block_end[n_basic_blocks - 1]);
8667
8668 /* Schedule every region in the subroutine */
8669 for (rgn = 0; rgn < nr_regions; rgn++)
8670 {
8671 schedule_region (rgn);
8672
8673#ifdef USE_C_ALLOCA
8674 alloca (0);
8675#endif
8676 }
8677
8678 /* Reposition the prologue and epilogue notes in case we moved the
8679 prologue/epilogue insns. */
8680 if (reload_completed)
8681 reposition_prologue_and_epilogue_notes (get_insns ());
8682
8683 /* delete redundant line notes. */
8684 if (write_symbols != NO_DEBUG)
8685 rm_redundant_line_notes ();
8686
8687 /* Update information about uses of registers in the subroutine. */
8688 if (reload_completed == 0)
8689 update_reg_usage ();
8690
8691 if (sched_verbose)
8692 {
8693 if (reload_completed == 0 && flag_schedule_interblock)
8694 {
8695 fprintf (dump, "\n;; Procedure interblock/speculative motions == %d/%d \n",
8696 nr_inter, nr_spec);
8697 }
8698 else
8699 {
8700 if (nr_inter > 0)
8701 abort ();
8702 }
8703 fprintf (dump, "\n\n");
8704 }
f187056f
JL
8705
8706 if (bb_live_regs)
8707 FREE_REG_SET (bb_live_regs);
168cbdf9
JL
8708
8709 if (edge_table)
8710 {
8711 free (edge_table);
8712 edge_table = NULL;
8713 }
8714
8715 if (in_edges)
8716 {
8717 free (in_edges);
8718 in_edges = NULL;
8719 }
8720 if (out_edges)
8721 {
8722 free (out_edges);
8723 out_edges = NULL;
8724 }
8c660648
JL
8725}
8726#endif /* INSN_SCHEDULING */
This page took 1.062194 seconds and 5 git commands to generate.