]> gcc.gnu.org Git - gcc.git/blame - gcc/haifa-sched.c
haifa-sched.c (sched_analyze_insn): Only create scheduling barriers for LOOP...
[gcc.git] / gcc / haifa-sched.c
CommitLineData
8c660648 1/* Instruction scheduling pass.
a4fc4b2d 2 Copyright (C) 1992, 93-97, 1998 Free Software Foundation, Inc.
8c660648
JL
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to the Free
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24/* Instruction scheduling pass.
25
26 This pass implements list scheduling within basic blocks. It is
27 run twice: (1) after flow analysis, but before register allocation,
28 and (2) after register allocation.
29
30 The first run performs interblock scheduling, moving insns between
31 different blocks in the same "region", and the second runs only
32 basic block scheduling.
33
34 Interblock motions performed are useful motions and speculative
35 motions, including speculative loads. Motions requiring code
36 duplication are not supported. The identification of motion type
37 and the check for validity of speculative motions requires
38 construction and analysis of the function's control flow graph.
39 The scheduler works as follows:
40
41 We compute insn priorities based on data dependencies. Flow
42 analysis only creates a fraction of the data-dependencies we must
43 observe: namely, only those dependencies which the combiner can be
44 expected to use. For this pass, we must therefore create the
45 remaining dependencies we need to observe: register dependencies,
46 memory dependencies, dependencies to keep function calls in order,
47 and the dependence between a conditional branch and the setting of
48 condition codes are all dealt with here.
49
50 The scheduler first traverses the data flow graph, starting with
51 the last instruction, and proceeding to the first, assigning values
52 to insn_priority as it goes. This sorts the instructions
53 topologically by data dependence.
54
55 Once priorities have been established, we order the insns using
56 list scheduling. This works as follows: starting with a list of
57 all the ready insns, and sorted according to priority number, we
58 schedule the insn from the end of the list by placing its
59 predecessors in the list according to their priority order. We
60 consider this insn scheduled by setting the pointer to the "end" of
61 the list to point to the previous insn. When an insn has no
62 predecessors, we either queue it until sufficient time has elapsed
63 or add it to the ready list. As the instructions are scheduled or
64 when stalls are introduced, the queue advances and dumps insns into
65 the ready list. When all insns down to the lowest priority have
66 been scheduled, the critical path of the basic block has been made
67 as short as possible. The remaining insns are then scheduled in
68 remaining slots.
69
70 Function unit conflicts are resolved during forward list scheduling
71 by tracking the time when each insn is committed to the schedule
72 and from that, the time the function units it uses must be free.
73 As insns on the ready list are considered for scheduling, those
74 that would result in a blockage of the already committed insns are
75 queued until no blockage will result.
76
77 The following list shows the order in which we want to break ties
78 among insns in the ready list:
79
80 1. choose insn with the longest path to end of bb, ties
81 broken by
82 2. choose insn with least contribution to register pressure,
83 ties broken by
84 3. prefer in-block upon interblock motion, ties broken by
85 4. prefer useful upon speculative motion, ties broken by
86 5. choose insn with largest control flow probability, ties
87 broken by
88 6. choose insn with the least dependences upon the previously
89 scheduled insn, or finally
2db45993
JL
90 7 choose the insn which has the most insns dependent on it.
91 8. choose insn with lowest UID.
8c660648
JL
92
93 Memory references complicate matters. Only if we can be certain
94 that memory references are not part of the data dependency graph
95 (via true, anti, or output dependence), can we move operations past
96 memory references. To first approximation, reads can be done
97 independently, while writes introduce dependencies. Better
98 approximations will yield fewer dependencies.
99
100 Before reload, an extended analysis of interblock data dependences
101 is required for interblock scheduling. This is performed in
102 compute_block_backward_dependences ().
103
104 Dependencies set up by memory references are treated in exactly the
105 same way as other dependencies, by using LOG_LINKS backward
106 dependences. LOG_LINKS are translated into INSN_DEPEND forward
107 dependences for the purpose of forward list scheduling.
108
109 Having optimized the critical path, we may have also unduly
110 extended the lifetimes of some registers. If an operation requires
111 that constants be loaded into registers, it is certainly desirable
112 to load those constants as early as necessary, but no earlier.
113 I.e., it will not do to load up a bunch of registers at the
114 beginning of a basic block only to use them at the end, if they
115 could be loaded later, since this may result in excessive register
116 utilization.
117
118 Note that since branches are never in basic blocks, but only end
119 basic blocks, this pass will not move branches. But that is ok,
120 since we can use GNU's delayed branch scheduling pass to take care
121 of this case.
122
123 Also note that no further optimizations based on algebraic
124 identities are performed, so this pass would be a good one to
125 perform instruction splitting, such as breaking up a multiply
126 instruction into shifts and adds where that is profitable.
127
128 Given the memory aliasing analysis that this pass should perform,
129 it should be possible to remove redundant stores to memory, and to
130 load values from registers instead of hitting memory.
131
132 Before reload, speculative insns are moved only if a 'proof' exists
133 that no exception will be caused by this, and if no live registers
134 exist that inhibit the motion (live registers constraints are not
135 represented by data dependence edges).
136
137 This pass must update information that subsequent passes expect to
138 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
139 reg_n_calls_crossed, and reg_live_length. Also, basic_block_head,
140 basic_block_end.
141
142 The information in the line number notes is carefully retained by
143 this pass. Notes that refer to the starting and ending of
144 exception regions are also carefully retained by this pass. All
145 other NOTE insns are grouped in their same relative order at the
146 beginning of basic blocks and regions that have been scheduled.
147
148 The main entry point for this pass is schedule_insns(), called for
149 each function. The work of the scheduler is organized in three
150 levels: (1) function level: insns are subject to splitting,
151 control-flow-graph is constructed, regions are computed (after
152 reload, each region is of one block), (2) region level: control
153 flow graph attributes required for interblock scheduling are
154 computed (dominators, reachability, etc.), data dependences and
155 priorities are computed, and (3) block level: insns in the block
156 are actually scheduled. */
157\f
8c660648 158#include "config.h"
5835e573 159#include "system.h"
8c660648
JL
160#include "rtl.h"
161#include "basic-block.h"
162#include "regs.h"
163#include "hard-reg-set.h"
164#include "flags.h"
165#include "insn-config.h"
166#include "insn-attr.h"
167#include "except.h"
487a6e06 168#include "toplev.h"
8c660648
JL
169
170extern char *reg_known_equiv_p;
171extern rtx *reg_known_value;
172
173#ifdef INSN_SCHEDULING
174
8c660648
JL
175/* target_units bitmask has 1 for each unit in the cpu. It should be
176 possible to compute this variable from the machine description.
177 But currently it is computed by examinning the insn list. Since
178 this is only needed for visualization, it seems an acceptable
179 solution. (For understanding the mapping of bits to units, see
180 definition of function_units[] in "insn-attrtab.c") */
181
61822835 182static int target_units = 0;
8c660648
JL
183
184/* issue_rate is the number of insns that can be scheduled in the same
185 machine cycle. It can be defined in the config/mach/mach.h file,
186 otherwise we set it to 1. */
187
188static int issue_rate;
189
62d65906
JL
190#ifndef ISSUE_RATE
191#define ISSUE_RATE 1
8c660648
JL
192#endif
193
cc132865 194/* sched-verbose controls the amount of debugging output the
8c660648
JL
195 scheduler prints. It is controlled by -fsched-verbose-N:
196 N>0 and no -DSR : the output is directed to stderr.
197 N>=10 will direct the printouts to stderr (regardless of -dSR).
198 N=1: same as -dSR.
199 N=2: bb's probabilities, detailed ready list info, unit/insn info.
200 N=3: rtl at abort point, control-flow, regions info.
cc132865 201 N=5: dependences info. */
8c660648
JL
202
203#define MAX_RGN_BLOCKS 10
204#define MAX_RGN_INSNS 100
205
8c660648
JL
206static int sched_verbose_param = 0;
207static int sched_verbose = 0;
8c660648
JL
208
209/* nr_inter/spec counts interblock/speculative motion for the function */
210static int nr_inter, nr_spec;
211
212
213/* debugging file. all printouts are sent to dump, which is always set,
214 either to stderr, or to the dump listing file (-dRS). */
215static FILE *dump = 0;
216
217/* fix_sched_param() is called from toplev.c upon detection
218 of the -fsched-***-N options. */
219
220void
221fix_sched_param (param, val)
222 char *param, *val;
223{
cc132865 224 if (!strcmp (param, "verbose"))
8c660648 225 sched_verbose_param = atoi (val);
8c660648
JL
226 else
227 warning ("fix_sched_param: unknown param: %s", param);
228}
229
230
231/* Arrays set up by scheduling for the same respective purposes as
232 similar-named arrays set up by flow analysis. We work with these
233 arrays during the scheduling pass so we can compare values against
234 unscheduled code.
235
236 Values of these arrays are copied at the end of this pass into the
237 arrays set up by flow analysis. */
238static int *sched_reg_n_calls_crossed;
239static int *sched_reg_live_length;
240static int *sched_reg_basic_block;
241
242/* We need to know the current block number during the post scheduling
243 update of live register information so that we can also update
244 REG_BASIC_BLOCK if a register changes blocks. */
245static int current_block_num;
246
247/* Element N is the next insn that sets (hard or pseudo) register
248 N within the current basic block; or zero, if there is no
249 such insn. Needed for new registers which may be introduced
250 by splitting insns. */
251static rtx *reg_last_uses;
252static rtx *reg_last_sets;
253static regset reg_pending_sets;
254static int reg_pending_sets_all;
255
256/* Vector indexed by INSN_UID giving the original ordering of the insns. */
257static int *insn_luid;
258#define INSN_LUID(INSN) (insn_luid[INSN_UID (INSN)])
259
260/* Vector indexed by INSN_UID giving each instruction a priority. */
261static int *insn_priority;
262#define INSN_PRIORITY(INSN) (insn_priority[INSN_UID (INSN)])
263
264static short *insn_costs;
265#define INSN_COST(INSN) insn_costs[INSN_UID (INSN)]
266
267/* Vector indexed by INSN_UID giving an encoding of the function units
268 used. */
269static short *insn_units;
270#define INSN_UNIT(INSN) insn_units[INSN_UID (INSN)]
271
272/* Vector indexed by INSN_UID giving each instruction a register-weight.
273 This weight is an estimation of the insn contribution to registers pressure. */
274static int *insn_reg_weight;
275#define INSN_REG_WEIGHT(INSN) (insn_reg_weight[INSN_UID (INSN)])
276
277/* Vector indexed by INSN_UID giving list of insns which
278 depend upon INSN. Unlike LOG_LINKS, it represents forward dependences. */
279static rtx *insn_depend;
280#define INSN_DEPEND(INSN) insn_depend[INSN_UID (INSN)]
281
282/* Vector indexed by INSN_UID. Initialized to the number of incoming
283 edges in forward dependence graph (= number of LOG_LINKS). As
284 scheduling procedes, dependence counts are decreased. An
285 instruction moves to the ready list when its counter is zero. */
286static int *insn_dep_count;
287#define INSN_DEP_COUNT(INSN) (insn_dep_count[INSN_UID (INSN)])
288
289/* Vector indexed by INSN_UID giving an encoding of the blockage range
290 function. The unit and the range are encoded. */
291static unsigned int *insn_blockage;
292#define INSN_BLOCKAGE(INSN) insn_blockage[INSN_UID (INSN)]
293#define UNIT_BITS 5
294#define BLOCKAGE_MASK ((1 << BLOCKAGE_BITS) - 1)
295#define ENCODE_BLOCKAGE(U, R) \
296((((U) << UNIT_BITS) << BLOCKAGE_BITS \
297 | MIN_BLOCKAGE_COST (R)) << BLOCKAGE_BITS \
298 | MAX_BLOCKAGE_COST (R))
299#define UNIT_BLOCKED(B) ((B) >> (2 * BLOCKAGE_BITS))
300#define BLOCKAGE_RANGE(B) \
301 (((((B) >> BLOCKAGE_BITS) & BLOCKAGE_MASK) << (HOST_BITS_PER_INT / 2)) \
5835e573 302 | ((B) & BLOCKAGE_MASK))
8c660648
JL
303
304/* Encodings of the `<name>_unit_blockage_range' function. */
305#define MIN_BLOCKAGE_COST(R) ((R) >> (HOST_BITS_PER_INT / 2))
306#define MAX_BLOCKAGE_COST(R) ((R) & ((1 << (HOST_BITS_PER_INT / 2)) - 1))
307
308#define DONE_PRIORITY -1
309#define MAX_PRIORITY 0x7fffffff
310#define TAIL_PRIORITY 0x7ffffffe
311#define LAUNCH_PRIORITY 0x7f000001
312#define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
313#define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
314
315/* Vector indexed by INSN_UID giving number of insns referring to this insn. */
316static int *insn_ref_count;
317#define INSN_REF_COUNT(INSN) (insn_ref_count[INSN_UID (INSN)])
318
319/* Vector indexed by INSN_UID giving line-number note in effect for each
320 insn. For line-number notes, this indicates whether the note may be
321 reused. */
322static rtx *line_note;
323#define LINE_NOTE(INSN) (line_note[INSN_UID (INSN)])
324
325/* Vector indexed by basic block number giving the starting line-number
326 for each basic block. */
327static rtx *line_note_head;
328
329/* List of important notes we must keep around. This is a pointer to the
330 last element in the list. */
331static rtx note_list;
332
333/* Regsets telling whether a given register is live or dead before the last
334 scheduled insn. Must scan the instructions once before scheduling to
335 determine what registers are live or dead at the end of the block. */
336static regset bb_live_regs;
337
338/* Regset telling whether a given register is live after the insn currently
339 being scheduled. Before processing an insn, this is equal to bb_live_regs
340 above. This is used so that we can find registers that are newly born/dead
341 after processing an insn. */
342static regset old_live_regs;
343
344/* The chain of REG_DEAD notes. REG_DEAD notes are removed from all insns
345 during the initial scan and reused later. If there are not exactly as
346 many REG_DEAD notes in the post scheduled code as there were in the
347 prescheduled code then we trigger an abort because this indicates a bug. */
348static rtx dead_notes;
349
350/* Queues, etc. */
351
352/* An instruction is ready to be scheduled when all insns preceding it
353 have already been scheduled. It is important to ensure that all
354 insns which use its result will not be executed until its result
355 has been computed. An insn is maintained in one of four structures:
356
357 (P) the "Pending" set of insns which cannot be scheduled until
358 their dependencies have been satisfied.
359 (Q) the "Queued" set of insns that can be scheduled when sufficient
360 time has passed.
361 (R) the "Ready" list of unscheduled, uncommitted insns.
362 (S) the "Scheduled" list of insns.
363
364 Initially, all insns are either "Pending" or "Ready" depending on
365 whether their dependencies are satisfied.
366
367 Insns move from the "Ready" list to the "Scheduled" list as they
368 are committed to the schedule. As this occurs, the insns in the
369 "Pending" list have their dependencies satisfied and move to either
370 the "Ready" list or the "Queued" set depending on whether
371 sufficient time has passed to make them ready. As time passes,
372 insns move from the "Queued" set to the "Ready" list. Insns may
373 move from the "Ready" list to the "Queued" set if they are blocked
374 due to a function unit conflict.
375
376 The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
377 insns, i.e., those that are ready, queued, and pending.
378 The "Queued" set (Q) is implemented by the variable `insn_queue'.
379 The "Ready" list (R) is implemented by the variables `ready' and
380 `n_ready'.
381 The "Scheduled" list (S) is the new insn chain built by this pass.
382
383 The transition (R->S) is implemented in the scheduling loop in
384 `schedule_block' when the best insn to schedule is chosen.
385 The transition (R->Q) is implemented in `queue_insn' when an
38e01259 386 insn is found to have a function unit conflict with the already
8c660648
JL
387 committed insns.
388 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
389 insns move from the ready list to the scheduled list.
390 The transition (Q->R) is implemented in 'queue_to_insn' as time
391 passes or stalls are introduced. */
392
393/* Implement a circular buffer to delay instructions until sufficient
394 time has passed. INSN_QUEUE_SIZE is a power of two larger than
395 MAX_BLOCKAGE and MAX_READY_COST computed by genattr.c. This is the
396 longest time an isnsn may be queued. */
397static rtx insn_queue[INSN_QUEUE_SIZE];
398static int q_ptr = 0;
399static int q_size = 0;
400#define NEXT_Q(X) (((X)+1) & (INSN_QUEUE_SIZE-1))
401#define NEXT_Q_AFTER(X, C) (((X)+C) & (INSN_QUEUE_SIZE-1))
402
403/* Vector indexed by INSN_UID giving the minimum clock tick at which
404 the insn becomes ready. This is used to note timing constraints for
405 insns in the pending list. */
406static int *insn_tick;
407#define INSN_TICK(INSN) (insn_tick[INSN_UID (INSN)])
408
409/* Data structure for keeping track of register information
410 during that register's life. */
411
412struct sometimes
413 {
414 int regno;
415 int live_length;
416 int calls_crossed;
417 };
418
419/* Forward declarations. */
420static void add_dependence PROTO ((rtx, rtx, enum reg_note));
421static void remove_dependence PROTO ((rtx, rtx));
422static rtx find_insn_list PROTO ((rtx, rtx));
423static int insn_unit PROTO ((rtx));
424static unsigned int blockage_range PROTO ((int, rtx));
425static void clear_units PROTO ((void));
426static int actual_hazard_this_instance PROTO ((int, int, rtx, int, int));
427static void schedule_unit PROTO ((int, rtx, int));
428static int actual_hazard PROTO ((int, rtx, int, int));
429static int potential_hazard PROTO ((int, rtx, int));
430static int insn_cost PROTO ((rtx, rtx, rtx));
431static int priority PROTO ((rtx));
432static void free_pending_lists PROTO ((void));
433static void add_insn_mem_dependence PROTO ((rtx *, rtx *, rtx, rtx));
434static void flush_pending_lists PROTO ((rtx, int));
435static void sched_analyze_1 PROTO ((rtx, rtx));
436static void sched_analyze_2 PROTO ((rtx, rtx));
437static void sched_analyze_insn PROTO ((rtx, rtx, rtx));
438static void sched_analyze PROTO ((rtx, rtx));
5835e573 439static void sched_note_set PROTO ((rtx, int));
01c7f350 440static int rank_for_schedule PROTO ((const GENERIC_PTR, const GENERIC_PTR));
8c660648
JL
441static void swap_sort PROTO ((rtx *, int));
442static void queue_insn PROTO ((rtx, int));
443static int schedule_insn PROTO ((rtx, rtx *, int, int));
444static void create_reg_dead_note PROTO ((rtx, rtx));
445static void attach_deaths PROTO ((rtx, rtx, int));
446static void attach_deaths_insn PROTO ((rtx));
447static int new_sometimes_live PROTO ((struct sometimes *, int, int));
448static void finish_sometimes_live PROTO ((struct sometimes *, int));
5835e573 449static int schedule_block PROTO ((int, int));
8c660648 450static rtx regno_use_in PROTO ((int, rtx));
5835e573 451static void split_hard_reg_notes PROTO ((rtx, rtx, rtx));
8c660648
JL
452static void new_insn_dead_notes PROTO ((rtx, rtx, rtx, rtx));
453static void update_n_sets PROTO ((rtx, int));
454static void update_flow_info PROTO ((rtx, rtx, rtx, rtx));
459b3825 455static char *safe_concat PROTO ((char *, char *, char *));
cc4fe0e2
L
456static int insn_issue_delay PROTO ((rtx));
457static int birthing_insn_p PROTO ((rtx));
458static void adjust_priority PROTO ((rtx));
8c660648
JL
459
460/* Mapping of insns to their original block prior to scheduling. */
461static int *insn_orig_block;
462#define INSN_BLOCK(insn) (insn_orig_block[INSN_UID (insn)])
463
464/* Some insns (e.g. call) are not allowed to move across blocks. */
465static char *cant_move;
466#define CANT_MOVE(insn) (cant_move[INSN_UID (insn)])
467
468/* Control flow graph edges are kept in circular lists. */
469typedef struct
470 {
471 int from_block;
472 int to_block;
473 int next_in;
474 int next_out;
475 }
476edge;
477static edge *edge_table;
478
479#define NEXT_IN(edge) (edge_table[edge].next_in)
480#define NEXT_OUT(edge) (edge_table[edge].next_out)
481#define FROM_BLOCK(edge) (edge_table[edge].from_block)
482#define TO_BLOCK(edge) (edge_table[edge].to_block)
483
484/* Number of edges in the control flow graph. (in fact larger than
485 that by 1, since edge 0 is unused.) */
486static int nr_edges;
487
488/* Circular list of incoming/outgoing edges of a block */
489static int *in_edges;
490static int *out_edges;
491
492#define IN_EDGES(block) (in_edges[block])
493#define OUT_EDGES(block) (out_edges[block])
494
495/* List of labels which cannot be deleted, needed for control
496 flow graph construction. */
497extern rtx forced_labels;
498
499
168cbdf9 500static int is_cfg_nonregular PROTO ((void));
a2e68776
JL
501static int build_control_flow PROTO ((int_list_ptr *, int_list_ptr *,
502 int *, int *));
8c660648
JL
503static void new_edge PROTO ((int, int));
504
505
506/* A region is the main entity for interblock scheduling: insns
507 are allowed to move between blocks in the same region, along
508 control flow graph edges, in the 'up' direction. */
509typedef struct
510 {
511 int rgn_nr_blocks; /* number of blocks in region */
512 int rgn_blocks; /* blocks in the region (actually index in rgn_bb_table) */
513 }
514region;
515
516/* Number of regions in the procedure */
517static int nr_regions;
518
519/* Table of region descriptions */
520static region *rgn_table;
521
522/* Array of lists of regions' blocks */
523static int *rgn_bb_table;
524
525/* Topological order of blocks in the region (if b2 is reachable from
526 b1, block_to_bb[b2] > block_to_bb[b1]).
527 Note: A basic block is always referred to by either block or b,
528 while its topological order name (in the region) is refered to by
529 bb.
530 */
531static int *block_to_bb;
532
533/* The number of the region containing a block. */
534static int *containing_rgn;
535
536#define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
537#define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
538#define BLOCK_TO_BB(block) (block_to_bb[block])
539#define CONTAINING_RGN(block) (containing_rgn[block])
540
541void debug_regions PROTO ((void));
542static void find_single_block_region PROTO ((void));
a2e68776
JL
543static void find_rgns PROTO ((int_list_ptr *, int_list_ptr *,
544 int *, int *, sbitmap *));
8c660648
JL
545static int too_large PROTO ((int, int *, int *));
546
547extern void debug_live PROTO ((int, int));
548
549/* Blocks of the current region being scheduled. */
550static int current_nr_blocks;
551static int current_blocks;
552
553/* The mapping from bb to block */
554#define BB_TO_BLOCK(bb) (rgn_bb_table[current_blocks + (bb)])
555
556
557/* Bit vectors and bitset operations are needed for computations on
558 the control flow graph. */
559
560typedef unsigned HOST_WIDE_INT *bitset;
561typedef struct
562 {
563 int *first_member; /* pointer to the list start in bitlst_table. */
564 int nr_members; /* the number of members of the bit list. */
565 }
566bitlst;
567
61822835
JL
568static int bitlst_table_last;
569static int bitlst_table_size;
8c660648
JL
570static int *bitlst_table;
571
572static char bitset_member PROTO ((bitset, int, int));
573static void extract_bitlst PROTO ((bitset, int, bitlst *));
574
575/* target info declarations.
576
577 The block currently being scheduled is referred to as the "target" block,
578 while other blocks in the region from which insns can be moved to the
579 target are called "source" blocks. The candidate structure holds info
580 about such sources: are they valid? Speculative? Etc. */
581typedef bitlst bblst;
582typedef struct
583 {
584 char is_valid;
585 char is_speculative;
586 int src_prob;
587 bblst split_bbs;
588 bblst update_bbs;
589 }
590candidate;
591
592static candidate *candidate_table;
593
594/* A speculative motion requires checking live information on the path
595 from 'source' to 'target'. The split blocks are those to be checked.
596 After a speculative motion, live information should be modified in
597 the 'update' blocks.
598
599 Lists of split and update blocks for each candidate of the current
600 target are in array bblst_table */
61822835 601static int *bblst_table, bblst_size, bblst_last;
8c660648
JL
602
603#define IS_VALID(src) ( candidate_table[src].is_valid )
604#define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
605#define SRC_PROB(src) ( candidate_table[src].src_prob )
606
607/* The bb being currently scheduled. */
61822835 608static int target_bb;
8c660648
JL
609
610/* List of edges. */
611typedef bitlst edgelst;
612
613/* target info functions */
614static void split_edges PROTO ((int, int, edgelst *));
615static void compute_trg_info PROTO ((int));
616void debug_candidate PROTO ((int));
617void debug_candidates PROTO ((int));
618
619
620/* Bit-set of bbs, where bit 'i' stands for bb 'i'. */
621typedef bitset bbset;
622
623/* Number of words of the bbset. */
61822835 624static int bbset_size;
8c660648
JL
625
626/* Dominators array: dom[i] contains the bbset of dominators of
627 bb i in the region. */
61822835 628static bbset *dom;
8c660648
JL
629
630/* bb 0 is the only region entry */
631#define IS_RGN_ENTRY(bb) (!bb)
632
633/* Is bb_src dominated by bb_trg. */
634#define IS_DOMINATED(bb_src, bb_trg) \
635( bitset_member (dom[bb_src], bb_trg, bbset_size) )
636
637/* Probability: Prob[i] is a float in [0, 1] which is the probability
638 of bb i relative to the region entry. */
61822835 639static float *prob;
8c660648
JL
640
641/* The probability of bb_src, relative to bb_trg. Note, that while the
642 'prob[bb]' is a float in [0, 1], this macro returns an integer
643 in [0, 100]. */
644#define GET_SRC_PROB(bb_src, bb_trg) ((int) (100.0 * (prob[bb_src] / \
645 prob[bb_trg])))
646
647/* Bit-set of edges, where bit i stands for edge i. */
648typedef bitset edgeset;
649
650/* Number of edges in the region. */
61822835 651static int rgn_nr_edges;
8c660648
JL
652
653/* Array of size rgn_nr_edges. */
61822835 654static int *rgn_edges;
8c660648
JL
655
656/* Number of words in an edgeset. */
61822835 657static int edgeset_size;
8c660648
JL
658
659/* Mapping from each edge in the graph to its number in the rgn. */
61822835 660static int *edge_to_bit;
8c660648
JL
661#define EDGE_TO_BIT(edge) (edge_to_bit[edge])
662
663/* The split edges of a source bb is different for each target
664 bb. In order to compute this efficiently, the 'potential-split edges'
665 are computed for each bb prior to scheduling a region. This is actually
666 the split edges of each bb relative to the region entry.
667
668 pot_split[bb] is the set of potential split edges of bb. */
61822835 669static edgeset *pot_split;
8c660648
JL
670
671/* For every bb, a set of its ancestor edges. */
61822835 672static edgeset *ancestor_edges;
8c660648
JL
673
674static void compute_dom_prob_ps PROTO ((int));
675
676#define ABS_VALUE(x) (((x)<0)?(-(x)):(x))
677#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (INSN_BLOCK (INSN))))
678#define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (INSN_BLOCK (INSN))))
679#define INSN_BB(INSN) (BLOCK_TO_BB (INSN_BLOCK (INSN)))
680
681/* parameters affecting the decision of rank_for_schedule() */
682#define MIN_DIFF_PRIORITY 2
683#define MIN_PROBABILITY 40
684#define MIN_PROB_DIFF 10
685
686/* speculative scheduling functions */
687static int check_live_1 PROTO ((int, rtx));
688static void update_live_1 PROTO ((int, rtx));
5835e573
KG
689static int check_live PROTO ((rtx, int));
690static void update_live PROTO ((rtx, int));
8c660648
JL
691static void set_spec_fed PROTO ((rtx));
692static int is_pfree PROTO ((rtx, int, int));
693static int find_conditional_protection PROTO ((rtx, int));
694static int is_conditionally_protected PROTO ((rtx, int, int));
695static int may_trap_exp PROTO ((rtx, int));
ac957f13 696static int haifa_classify_insn PROTO ((rtx));
e009aaf3 697static int is_prisky PROTO ((rtx, int, int));
8c660648
JL
698static int is_exception_free PROTO ((rtx, int, int));
699
700static char find_insn_mem_list PROTO ((rtx, rtx, rtx, rtx));
701static void compute_block_forward_dependences PROTO ((int));
702static void init_rgn_data_dependences PROTO ((int));
703static void add_branch_dependences PROTO ((rtx, rtx));
704static void compute_block_backward_dependences PROTO ((int));
705void debug_dependencies PROTO ((void));
706
707/* Notes handling mechanism:
708 =========================
709 Generally, NOTES are saved before scheduling and restored after scheduling.
710 The scheduler distinguishes between three types of notes:
711
712 (1) LINE_NUMBER notes, generated and used for debugging. Here,
713 before scheduling a region, a pointer to the LINE_NUMBER note is
714 added to the insn following it (in save_line_notes()), and the note
715 is removed (in rm_line_notes() and unlink_line_notes()). After
716 scheduling the region, this pointer is used for regeneration of
717 the LINE_NUMBER note (in restore_line_notes()).
718
719 (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
720 Before scheduling a region, a pointer to the note is added to the insn
721 that follows or precedes it. (This happens as part of the data dependence
722 computation). After scheduling an insn, the pointer contained in it is
723 used for regenerating the corresponding note (in reemit_notes).
724
725 (3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
726 these notes are put in a list (in rm_other_notes() and
727 unlink_other_notes ()). After scheduling the block, these notes are
728 inserted at the beginning of the block (in schedule_block()). */
729
730static rtx unlink_other_notes PROTO ((rtx, rtx));
731static rtx unlink_line_notes PROTO ((rtx, rtx));
732static void rm_line_notes PROTO ((int));
733static void save_line_notes PROTO ((int));
734static void restore_line_notes PROTO ((int));
735static void rm_redundant_line_notes PROTO ((void));
736static void rm_other_notes PROTO ((rtx, rtx));
737static rtx reemit_notes PROTO ((rtx, rtx));
738
739static void get_block_head_tail PROTO ((int, rtx *, rtx *));
740
741static void find_pre_sched_live PROTO ((int));
742static void find_post_sched_live PROTO ((int));
743static void update_reg_usage PROTO ((void));
c6a754f2 744static int queue_to_ready PROTO ((rtx [], int));
8c660648 745
9a8b0889 746static void debug_ready_list PROTO ((rtx[], int));
cc4fe0e2 747static void init_target_units PROTO ((void));
8c660648 748static void insn_print_units PROTO ((rtx));
cc4fe0e2
L
749static int get_visual_tbl_length PROTO ((void));
750static void init_block_visualization PROTO ((void));
8c660648
JL
751static void print_block_visualization PROTO ((int, char *));
752static void visualize_scheduled_insns PROTO ((int, int));
753static void visualize_no_unit PROTO ((rtx));
754static void visualize_stall_cycles PROTO ((int, int));
755static void print_exp PROTO ((char *, rtx, int));
756static void print_value PROTO ((char *, rtx, int));
757static void print_pattern PROTO ((char *, rtx, int));
758static void print_insn PROTO ((char *, rtx, int));
759void debug_reg_vector PROTO ((regset));
760
761static rtx move_insn1 PROTO ((rtx, rtx));
762static rtx move_insn PROTO ((rtx, rtx));
763static rtx group_leader PROTO ((rtx));
764static int set_priorities PROTO ((int));
765static void init_rtx_vector PROTO ((rtx **, rtx *, int, int));
766static void schedule_region PROTO ((int));
767static void split_block_insns PROTO ((int));
768
769#endif /* INSN_SCHEDULING */
770\f
771#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
772
773/* Helper functions for instruction scheduling. */
774
ebb7b10b
RH
775/* An INSN_LIST containing all INSN_LISTs allocated but currently unused. */
776static rtx unused_insn_list;
777
778/* An EXPR_LIST containing all EXPR_LISTs allocated but currently unused. */
779static rtx unused_expr_list;
780
781static void free_list PROTO ((rtx *, rtx *));
782static rtx alloc_INSN_LIST PROTO ((rtx, rtx));
783static rtx alloc_EXPR_LIST PROTO ((int, rtx, rtx));
784
785static void
786free_list (listp, unused_listp)
787 rtx *listp, *unused_listp;
788{
789 register rtx link, prev_link;
790
791 if (*listp == 0)
792 return;
793
794 prev_link = *listp;
795 link = XEXP (prev_link, 1);
796
797 while (link)
798 {
799 prev_link = link;
800 link = XEXP (link, 1);
801 }
802
803 XEXP (prev_link, 1) = *unused_listp;
804 *unused_listp = *listp;
805 *listp = 0;
806}
807
459b3825 808static rtx
ebb7b10b
RH
809alloc_INSN_LIST (val, next)
810 rtx val, next;
811{
812 rtx r;
813
814 if (unused_insn_list)
815 {
816 r = unused_insn_list;
817 unused_insn_list = XEXP (r, 1);
818 XEXP (r, 0) = val;
819 XEXP (r, 1) = next;
820 PUT_REG_NOTE_KIND (r, VOIDmode);
821 }
822 else
823 r = gen_rtx_INSN_LIST (VOIDmode, val, next);
824
825 return r;
826}
827
459b3825 828static rtx
ebb7b10b
RH
829alloc_EXPR_LIST (kind, val, next)
830 int kind;
831 rtx val, next;
832{
833 rtx r;
834
c92293e7 835 if (unused_expr_list)
ebb7b10b 836 {
c92293e7
CM
837 r = unused_expr_list;
838 unused_expr_list = XEXP (r, 1);
ebb7b10b
RH
839 XEXP (r, 0) = val;
840 XEXP (r, 1) = next;
841 PUT_REG_NOTE_KIND (r, kind);
842 }
843 else
844 r = gen_rtx_EXPR_LIST (kind, val, next);
845
846 return r;
847}
848
8c660648
JL
849/* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
850 LOG_LINKS of INSN, if not already there. DEP_TYPE indicates the type
851 of dependence that this link represents. */
852
853static void
854add_dependence (insn, elem, dep_type)
855 rtx insn;
856 rtx elem;
857 enum reg_note dep_type;
858{
859 rtx link, next;
860
861 /* Don't depend an insn on itself. */
862 if (insn == elem)
863 return;
864
865 /* If elem is part of a sequence that must be scheduled together, then
866 make the dependence point to the last insn of the sequence.
867 When HAVE_cc0, it is possible for NOTEs to exist between users and
868 setters of the condition codes, so we must skip past notes here.
869 Otherwise, NOTEs are impossible here. */
870
871 next = NEXT_INSN (elem);
872
873#ifdef HAVE_cc0
874 while (next && GET_CODE (next) == NOTE)
875 next = NEXT_INSN (next);
876#endif
877
878 if (next && SCHED_GROUP_P (next)
879 && GET_CODE (next) != CODE_LABEL)
880 {
881 /* Notes will never intervene here though, so don't bother checking
882 for them. */
883 /* We must reject CODE_LABELs, so that we don't get confused by one
884 that has LABEL_PRESERVE_P set, which is represented by the same
885 bit in the rtl as SCHED_GROUP_P. A CODE_LABEL can never be
886 SCHED_GROUP_P. */
887 while (NEXT_INSN (next) && SCHED_GROUP_P (NEXT_INSN (next))
888 && GET_CODE (NEXT_INSN (next)) != CODE_LABEL)
889 next = NEXT_INSN (next);
890
891 /* Again, don't depend an insn on itself. */
892 if (insn == next)
893 return;
894
895 /* Make the dependence to NEXT, the last insn of the group, instead
896 of the original ELEM. */
897 elem = next;
898 }
899
900#ifdef INSN_SCHEDULING
901 /* (This code is guarded by INSN_SCHEDULING, otherwise INSN_BB is undefined.)
902 No need for interblock dependences with calls, since
903 calls are not moved between blocks. Note: the edge where
904 elem is a CALL is still required. */
905 if (GET_CODE (insn) == CALL_INSN
906 && (INSN_BB (elem) != INSN_BB (insn)))
907 return;
908
909#endif
910
911 /* Check that we don't already have this dependence. */
912 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
913 if (XEXP (link, 0) == elem)
914 {
915 /* If this is a more restrictive type of dependence than the existing
916 one, then change the existing dependence to this type. */
917 if ((int) dep_type < (int) REG_NOTE_KIND (link))
918 PUT_REG_NOTE_KIND (link, dep_type);
919 return;
920 }
921 /* Might want to check one level of transitivity to save conses. */
922
ebb7b10b
RH
923 link = alloc_INSN_LIST (elem, LOG_LINKS (insn));
924 LOG_LINKS (insn) = link;
925
8c660648
JL
926 /* Insn dependency, not data dependency. */
927 PUT_REG_NOTE_KIND (link, dep_type);
8c660648
JL
928}
929
930/* Remove ELEM wrapped in an INSN_LIST from the LOG_LINKS
931 of INSN. Abort if not found. */
932
933static void
934remove_dependence (insn, elem)
935 rtx insn;
936 rtx elem;
937{
ebb7b10b 938 rtx prev, link, next;
8c660648
JL
939 int found = 0;
940
ebb7b10b 941 for (prev = 0, link = LOG_LINKS (insn); link; link = next)
8c660648 942 {
ebb7b10b 943 next = XEXP (link, 1);
8c660648
JL
944 if (XEXP (link, 0) == elem)
945 {
946 if (prev)
ebb7b10b 947 XEXP (prev, 1) = next;
8c660648 948 else
ebb7b10b
RH
949 LOG_LINKS (insn) = next;
950
951 XEXP (link, 1) = unused_insn_list;
952 unused_insn_list = link;
953
8c660648
JL
954 found = 1;
955 }
6d8ccdbb
JL
956 else
957 prev = link;
8c660648
JL
958 }
959
960 if (!found)
961 abort ();
962 return;
963}
964\f
965#ifndef INSN_SCHEDULING
966void
967schedule_insns (dump_file)
968 FILE *dump_file;
969{
970}
971#else
972#ifndef __GNUC__
973#define __inline
974#endif
975
cbb13457
MM
976#ifndef HAIFA_INLINE
977#define HAIFA_INLINE __inline
978#endif
979
8c660648
JL
980/* Computation of memory dependencies. */
981
982/* The *_insns and *_mems are paired lists. Each pending memory operation
983 will have a pointer to the MEM rtx on one list and a pointer to the
984 containing insn on the other list in the same place in the list. */
985
986/* We can't use add_dependence like the old code did, because a single insn
987 may have multiple memory accesses, and hence needs to be on the list
988 once for each memory access. Add_dependence won't let you add an insn
989 to a list more than once. */
990
991/* An INSN_LIST containing all insns with pending read operations. */
992static rtx pending_read_insns;
993
994/* An EXPR_LIST containing all MEM rtx's which are pending reads. */
995static rtx pending_read_mems;
996
997/* An INSN_LIST containing all insns with pending write operations. */
998static rtx pending_write_insns;
999
1000/* An EXPR_LIST containing all MEM rtx's which are pending writes. */
1001static rtx pending_write_mems;
1002
1003/* Indicates the combined length of the two pending lists. We must prevent
1004 these lists from ever growing too large since the number of dependencies
1005 produced is at least O(N*N), and execution time is at least O(4*N*N), as
1006 a function of the length of these pending lists. */
1007
1008static int pending_lists_length;
1009
8c660648
JL
1010/* The last insn upon which all memory references must depend.
1011 This is an insn which flushed the pending lists, creating a dependency
1012 between it and all previously pending memory references. This creates
1013 a barrier (or a checkpoint) which no memory reference is allowed to cross.
1014
1015 This includes all non constant CALL_INSNs. When we do interprocedural
1016 alias analysis, this restriction can be relaxed.
1017 This may also be an INSN that writes memory if the pending lists grow
1018 too large. */
1019
1020static rtx last_pending_memory_flush;
1021
1022/* The last function call we have seen. All hard regs, and, of course,
1023 the last function call, must depend on this. */
1024
1025static rtx last_function_call;
1026
1027/* The LOG_LINKS field of this is a list of insns which use a pseudo register
1028 that does not already cross a call. We create dependencies between each
1029 of those insn and the next call insn, to ensure that they won't cross a call
1030 after scheduling is done. */
1031
1032static rtx sched_before_next_call;
1033
1034/* Pointer to the last instruction scheduled. Used by rank_for_schedule,
1035 so that insns independent of the last scheduled insn will be preferred
1036 over dependent instructions. */
1037
1038static rtx last_scheduled_insn;
1039
1040/* Data structures for the computation of data dependences in a regions. We
1041 keep one copy of each of the declared above variables for each bb in the
1042 region. Before analyzing the data dependences for a bb, its variables
1043 are initialized as a function of the variables of its predecessors. When
1044 the analysis for a bb completes, we save the contents of each variable X
1045 to a corresponding bb_X[bb] variable. For example, pending_read_insns is
1046 copied to bb_pending_read_insns[bb]. Another change is that few
1047 variables are now a list of insns rather than a single insn:
1048 last_pending_memory_flash, last_function_call, reg_last_sets. The
1049 manipulation of these variables was changed appropriately. */
1050
1051static rtx **bb_reg_last_uses;
1052static rtx **bb_reg_last_sets;
1053
1054static rtx *bb_pending_read_insns;
1055static rtx *bb_pending_read_mems;
1056static rtx *bb_pending_write_insns;
1057static rtx *bb_pending_write_mems;
1058static int *bb_pending_lists_length;
1059
1060static rtx *bb_last_pending_memory_flush;
1061static rtx *bb_last_function_call;
1062static rtx *bb_sched_before_next_call;
1063
1064/* functions for construction of the control flow graph. */
1065
1066/* Return 1 if control flow graph should not be constructed, 0 otherwise.
168cbdf9 1067
8c660648 1068 We decide not to build the control flow graph if there is possibly more
168cbdf9
JL
1069 than one entry to the function, if computed branches exist, of if we
1070 have nonlocal gotos. */
8c660648 1071
168cbdf9 1072static int
8c660648
JL
1073is_cfg_nonregular ()
1074{
1075 int b;
1076 rtx insn;
1077 RTX_CODE code;
1078
168cbdf9
JL
1079 /* If we have a label that could be the target of a nonlocal goto, then
1080 the cfg is not well structured. */
1081 if (nonlocal_label_rtx_list () != NULL)
1082 return 1;
8c660648 1083
168cbdf9 1084 /* If we have any forced labels, then the cfg is not well structured. */
8c660648 1085 if (forced_labels)
168cbdf9 1086 return 1;
8c660648 1087
4d1d8045
BS
1088 /* If this function has a computed jump, then we consider the cfg
1089 not well structured. */
1090 if (current_function_has_computed_jump)
1091 return 1;
1092
168cbdf9
JL
1093 /* If we have exception handlers, then we consider the cfg not well
1094 structured. ?!? We should be able to handle this now that flow.c
1095 computes an accurate cfg for EH. */
8c660648 1096 if (exception_handler_labels)
168cbdf9 1097 return 1;
8c660648 1098
168cbdf9
JL
1099 /* If we have non-jumping insns which refer to labels, then we consider
1100 the cfg not well structured. */
8c660648
JL
1101 /* check for labels referred to other thn by jumps */
1102 for (b = 0; b < n_basic_blocks; b++)
1103 for (insn = basic_block_head[b];; insn = NEXT_INSN (insn))
1104 {
1105 code = GET_CODE (insn);
1106 if (GET_RTX_CLASS (code) == 'i')
1107 {
1108 rtx note;
1109
1110 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1111 if (REG_NOTE_KIND (note) == REG_LABEL)
168cbdf9 1112 return 1;
8c660648
JL
1113 }
1114
1115 if (insn == basic_block_end[b])
1116 break;
1117 }
1118
168cbdf9 1119 /* All the tests passed. Consider the cfg well structured. */
8c660648
JL
1120 return 0;
1121}
1122
5ece9746
JL
1123/* Build the control flow graph and set nr_edges.
1124
1125 Instead of trying to build a cfg ourselves, we rely on flow to
168cbdf9 1126 do it for us. Stamp out useless code (and bug) duplication.
8c660648 1127
168cbdf9
JL
1128 Return nonzero if an irregularity in the cfg is found which would
1129 prevent cross block scheduling. */
1130
1131static int
a2e68776
JL
1132build_control_flow (s_preds, s_succs, num_preds, num_succs)
1133 int_list_ptr *s_preds;
1134 int_list_ptr *s_succs;
1135 int *num_preds;
1136 int *num_succs;
8c660648 1137{
081f5e7e 1138 int i;
5ece9746 1139 int_list_ptr succ;
168cbdf9 1140 int unreachable;
5ece9746 1141
168cbdf9
JL
1142 /* Count the number of edges in the cfg. */
1143 nr_edges = 0;
1144 unreachable = 0;
1145 for (i = 0; i < n_basic_blocks; i++)
1146 {
1147 nr_edges += num_succs[i];
15ebe47d
JL
1148
1149 /* Unreachable loops with more than one basic block are detected
1150 during the DFS traversal in find_rgns.
1151
1152 Unreachable loops with a single block are detected here. This
1153 test is redundant with the one in find_rgns, but it's much
1154 cheaper to go ahead and catch the trivial case here. */
a8afd67b
JW
1155 if (num_preds[i] == 0
1156 || (num_preds[i] == 1 && INT_LIST_VAL (s_preds[i]) == i))
168cbdf9
JL
1157 unreachable = 1;
1158 }
1159
1160 /* Account for entry/exit edges. */
1161 nr_edges += 2;
1162
1163 in_edges = (int *) xmalloc (n_basic_blocks * sizeof (int));
1164 out_edges = (int *) xmalloc (n_basic_blocks * sizeof (int));
1165 bzero ((char *) in_edges, n_basic_blocks * sizeof (int));
1166 bzero ((char *) out_edges, n_basic_blocks * sizeof (int));
1167
1168 edge_table = (edge *) xmalloc ((nr_edges) * sizeof (edge));
1169 bzero ((char *) edge_table, ((nr_edges) * sizeof (edge)));
1170
8c660648
JL
1171 nr_edges = 0;
1172 for (i = 0; i < n_basic_blocks; i++)
5ece9746
JL
1173 for (succ = s_succs[i]; succ; succ = succ->next)
1174 {
1175 if (INT_LIST_VAL (succ) != EXIT_BLOCK)
1176 new_edge (i, INT_LIST_VAL (succ));
1177 }
8c660648
JL
1178
1179 /* increment by 1, since edge 0 is unused. */
1180 nr_edges++;
1181
168cbdf9 1182 return unreachable;
8c660648
JL
1183}
1184
1185
5ece9746 1186/* Record an edge in the control flow graph from SOURCE to TARGET.
8c660648 1187
5ece9746
JL
1188 In theory, this is redundant with the s_succs computed above, but
1189 we have not converted all of haifa to use information from the
1190 integer lists. */
8c660648
JL
1191
1192static void
1193new_edge (source, target)
1194 int source, target;
1195{
1196 int e, next_edge;
1197 int curr_edge, fst_edge;
1198
1199 /* check for duplicates */
1200 fst_edge = curr_edge = OUT_EDGES (source);
1201 while (curr_edge)
1202 {
1203 if (FROM_BLOCK (curr_edge) == source
1204 && TO_BLOCK (curr_edge) == target)
1205 {
1206 return;
1207 }
1208
1209 curr_edge = NEXT_OUT (curr_edge);
1210
1211 if (fst_edge == curr_edge)
1212 break;
1213 }
1214
1215 e = ++nr_edges;
1216
1217 FROM_BLOCK (e) = source;
1218 TO_BLOCK (e) = target;
1219
1220 if (OUT_EDGES (source))
1221 {
1222 next_edge = NEXT_OUT (OUT_EDGES (source));
1223 NEXT_OUT (OUT_EDGES (source)) = e;
1224 NEXT_OUT (e) = next_edge;
1225 }
1226 else
1227 {
1228 OUT_EDGES (source) = e;
1229 NEXT_OUT (e) = e;
1230 }
1231
1232 if (IN_EDGES (target))
1233 {
1234 next_edge = NEXT_IN (IN_EDGES (target));
1235 NEXT_IN (IN_EDGES (target)) = e;
1236 NEXT_IN (e) = next_edge;
1237 }
1238 else
1239 {
1240 IN_EDGES (target) = e;
1241 NEXT_IN (e) = e;
1242 }
1243}
1244
1245
1246/* BITSET macros for operations on the control flow graph. */
1247
1248/* Compute bitwise union of two bitsets. */
1249#define BITSET_UNION(set1, set2, len) \
1250do { register bitset tp = set1, sp = set2; \
1251 register int i; \
1252 for (i = 0; i < len; i++) \
1253 *(tp++) |= *(sp++); } while (0)
1254
1255/* Compute bitwise intersection of two bitsets. */
1256#define BITSET_INTER(set1, set2, len) \
1257do { register bitset tp = set1, sp = set2; \
1258 register int i; \
1259 for (i = 0; i < len; i++) \
1260 *(tp++) &= *(sp++); } while (0)
1261
1262/* Compute bitwise difference of two bitsets. */
1263#define BITSET_DIFFER(set1, set2, len) \
1264do { register bitset tp = set1, sp = set2; \
1265 register int i; \
1266 for (i = 0; i < len; i++) \
1267 *(tp++) &= ~*(sp++); } while (0)
1268
1269/* Inverts every bit of bitset 'set' */
1270#define BITSET_INVERT(set, len) \
1271do { register bitset tmpset = set; \
1272 register int i; \
1273 for (i = 0; i < len; i++, tmpset++) \
1274 *tmpset = ~*tmpset; } while (0)
1275
1276/* Turn on the index'th bit in bitset set. */
1277#define BITSET_ADD(set, index, len) \
1278{ \
1279 if (index >= HOST_BITS_PER_WIDE_INT * len) \
1280 abort (); \
1281 else \
1282 set[index/HOST_BITS_PER_WIDE_INT] |= \
1283 1 << (index % HOST_BITS_PER_WIDE_INT); \
1284}
1285
1286/* Turn off the index'th bit in set. */
1287#define BITSET_REMOVE(set, index, len) \
1288{ \
1289 if (index >= HOST_BITS_PER_WIDE_INT * len) \
1290 abort (); \
1291 else \
1292 set[index/HOST_BITS_PER_WIDE_INT] &= \
1293 ~(1 << (index%HOST_BITS_PER_WIDE_INT)); \
1294}
1295
1296
1297/* Check if the index'th bit in bitset set is on. */
1298
1299static char
1300bitset_member (set, index, len)
1301 bitset set;
1302 int index, len;
1303{
1304 if (index >= HOST_BITS_PER_WIDE_INT * len)
1305 abort ();
1306 return (set[index / HOST_BITS_PER_WIDE_INT] &
1307 1 << (index % HOST_BITS_PER_WIDE_INT)) ? 1 : 0;
1308}
1309
1310
1311/* Translate a bit-set SET to a list BL of the bit-set members. */
1312
1313static void
1314extract_bitlst (set, len, bl)
1315 bitset set;
1316 int len;
1317 bitlst *bl;
1318{
1319 int i, j, offset;
1320 unsigned HOST_WIDE_INT word;
1321
1322 /* bblst table space is reused in each call to extract_bitlst */
1323 bitlst_table_last = 0;
1324
1325 bl->first_member = &bitlst_table[bitlst_table_last];
1326 bl->nr_members = 0;
1327
1328 for (i = 0; i < len; i++)
1329 {
1330 word = set[i];
1331 offset = i * HOST_BITS_PER_WIDE_INT;
1332 for (j = 0; word; j++)
1333 {
1334 if (word & 1)
1335 {
1336 bitlst_table[bitlst_table_last++] = offset;
1337 (bl->nr_members)++;
1338 }
1339 word >>= 1;
1340 ++offset;
1341 }
1342 }
1343
1344}
1345
1346
1347/* functions for the construction of regions */
1348
1349/* Print the regions, for debugging purposes. Callable from debugger. */
1350
1351void
1352debug_regions ()
1353{
1354 int rgn, bb;
1355
1356 fprintf (dump, "\n;; ------------ REGIONS ----------\n\n");
1357 for (rgn = 0; rgn < nr_regions; rgn++)
1358 {
1359 fprintf (dump, ";;\trgn %d nr_blocks %d:\n", rgn,
1360 rgn_table[rgn].rgn_nr_blocks);
1361 fprintf (dump, ";;\tbb/block: ");
1362
1363 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
1364 {
1365 current_blocks = RGN_BLOCKS (rgn);
1366
1367 if (bb != BLOCK_TO_BB (BB_TO_BLOCK (bb)))
1368 abort ();
1369
1370 fprintf (dump, " %d/%d ", bb, BB_TO_BLOCK (bb));
1371 }
1372
1373 fprintf (dump, "\n\n");
1374 }
1375}
1376
1377
1378/* Build a single block region for each basic block in the function.
1379 This allows for using the same code for interblock and basic block
1380 scheduling. */
1381
1382static void
1383find_single_block_region ()
1384{
1385 int i;
1386
1387 for (i = 0; i < n_basic_blocks; i++)
1388 {
1389 rgn_bb_table[i] = i;
1390 RGN_NR_BLOCKS (i) = 1;
1391 RGN_BLOCKS (i) = i;
1392 CONTAINING_RGN (i) = i;
1393 BLOCK_TO_BB (i) = 0;
1394 }
1395 nr_regions = n_basic_blocks;
1396}
1397
1398
1399/* Update number of blocks and the estimate for number of insns
1400 in the region. Return 1 if the region is "too large" for interblock
1401 scheduling (compile time considerations), otherwise return 0. */
1402
1403static int
1404too_large (block, num_bbs, num_insns)
1405 int block, *num_bbs, *num_insns;
1406{
1407 (*num_bbs)++;
1408 (*num_insns) += (INSN_LUID (basic_block_end[block]) -
1409 INSN_LUID (basic_block_head[block]));
cc132865 1410 if ((*num_bbs > MAX_RGN_BLOCKS) || (*num_insns > MAX_RGN_INSNS))
8c660648
JL
1411 return 1;
1412 else
1413 return 0;
1414}
1415
1416
1417/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
1418 is still an inner loop. Put in max_hdr[blk] the header of the most inner
1419 loop containing blk. */
1420#define UPDATE_LOOP_RELATIONS(blk, hdr) \
1421{ \
1422 if (max_hdr[blk] == -1) \
1423 max_hdr[blk] = hdr; \
1424 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
a2e68776 1425 RESET_BIT (inner, hdr); \
8c660648
JL
1426 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
1427 { \
a2e68776 1428 RESET_BIT (inner,max_hdr[blk]); \
8c660648
JL
1429 max_hdr[blk] = hdr; \
1430 } \
1431}
1432
1433
a2e68776
JL
1434/* Find regions for interblock scheduling.
1435
1436 A region for scheduling can be:
1437
1438 * A loop-free procedure, or
1439
1440 * A reducible inner loop, or
1441
1442 * A basic block not contained in any other region.
1443
1444
1445 ?!? In theory we could build other regions based on extended basic
1446 blocks or reverse extended basic blocks. Is it worth the trouble?
1447
1448 Loop blocks that form a region are put into the region's block list
1449 in topological order.
1450
1451 This procedure stores its results into the following global (ick) variables
1452
1453 * rgn_nr
1454 * rgn_table
1455 * rgn_bb_table
1456 * block_to_bb
1457 * containing region
1458
1459
1460 We use dominator relationships to avoid making regions out of non-reducible
1461 loops.
8c660648 1462
a2e68776
JL
1463 This procedure needs to be converted to work on pred/succ lists instead
1464 of edge tables. That would simplify it somewhat. */
8c660648
JL
1465
1466static void
a2e68776
JL
1467find_rgns (s_preds, s_succs, num_preds, num_succs, dom)
1468 int_list_ptr *s_preds;
1469 int_list_ptr *s_succs;
1470 int *num_preds;
1471 int *num_succs;
1472 sbitmap *dom;
8c660648
JL
1473{
1474 int *max_hdr, *dfs_nr, *stack, *queue, *degree;
a2e68776 1475 char no_loops = 1;
487a6e06 1476 int node, child, loop_head, i, head, tail;
8c660648 1477 int count = 0, sp, idx = 0, current_edge = out_edges[0];
15ebe47d 1478 int num_bbs, num_insns, unreachable;
8c660648 1479 int too_large_failure;
8c660648 1480
a2e68776
JL
1481 /* Note if an edge has been passed. */
1482 sbitmap passed;
1483
1484 /* Note if a block is a natural loop header. */
1485 sbitmap header;
1486
1487 /* Note if a block is an natural inner loop header. */
1488 sbitmap inner;
1489
1490 /* Note if a block is in the block queue. */
1491 sbitmap in_queue;
1492
cc132865
JL
1493 /* Note if a block is in the block queue. */
1494 sbitmap in_stack;
1495
a2e68776
JL
1496 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
1497 and a mapping from block to its loop header (if the block is contained
1498 in a loop, else -1).
1499
1500 Store results in HEADER, INNER, and MAX_HDR respectively, these will
1501 be used as inputs to the second traversal.
1502
1503 STACK, SP and DFS_NR are only used during the first traversal. */
1504
1505 /* Allocate and initialize variables for the first traversal. */
8c660648
JL
1506 max_hdr = (int *) alloca (n_basic_blocks * sizeof (int));
1507 dfs_nr = (int *) alloca (n_basic_blocks * sizeof (int));
52b7724b 1508 bzero ((char *) dfs_nr, n_basic_blocks * sizeof (int));
8c660648 1509 stack = (int *) alloca (nr_edges * sizeof (int));
8c660648 1510
a2e68776
JL
1511 inner = sbitmap_alloc (n_basic_blocks);
1512 sbitmap_ones (inner);
1513
1514 header = sbitmap_alloc (n_basic_blocks);
1515 sbitmap_zero (header);
8c660648 1516
a2e68776
JL
1517 passed = sbitmap_alloc (nr_edges);
1518 sbitmap_zero (passed);
1519
1520 in_queue = sbitmap_alloc (n_basic_blocks);
1521 sbitmap_zero (in_queue);
8c660648 1522
cc132865
JL
1523 in_stack = sbitmap_alloc (n_basic_blocks);
1524 sbitmap_zero (in_stack);
1525
8c660648 1526 for (i = 0; i < n_basic_blocks; i++)
a2e68776 1527 max_hdr[i] = -1;
8c660648 1528
a2e68776 1529 /* DFS traversal to find inner loops in the cfg. */
8c660648 1530
8c660648
JL
1531 sp = -1;
1532 while (1)
1533 {
a2e68776 1534 if (current_edge == 0 || TEST_BIT (passed, current_edge))
8c660648 1535 {
a2e68776 1536 /* We have reached a leaf node or a node that was already
cc132865 1537 processed. Pop edges off the stack until we find
a2e68776
JL
1538 an edge that has not yet been processed. */
1539 while (sp >= 0
1540 && (current_edge == 0 || TEST_BIT (passed, current_edge)))
8c660648 1541 {
a2e68776 1542 /* Pop entry off the stack. */
8c660648
JL
1543 current_edge = stack[sp--];
1544 node = FROM_BLOCK (current_edge);
1545 child = TO_BLOCK (current_edge);
cc132865
JL
1546 RESET_BIT (in_stack, child);
1547 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
8c660648
JL
1548 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
1549 current_edge = NEXT_OUT (current_edge);
1550 }
1551
a2e68776
JL
1552 /* See if have finished the DFS tree traversal. */
1553 if (sp < 0 && TEST_BIT (passed, current_edge))
8c660648 1554 break;
a2e68776
JL
1555
1556 /* Nope, continue the traversal with the popped node. */
8c660648
JL
1557 continue;
1558 }
1559
a2e68776 1560 /* Process a node. */
8c660648 1561 node = FROM_BLOCK (current_edge);
8c660648 1562 child = TO_BLOCK (current_edge);
cc132865 1563 SET_BIT (in_stack, node);
a2e68776 1564 dfs_nr[node] = ++count;
8c660648 1565
cc132865
JL
1566 /* If the successor is in the stack, then we've found a loop.
1567 Mark the loop, if it is not a natural loop, then it will
1568 be rejected during the second traversal. */
1569 if (TEST_BIT (in_stack, child))
8c660648
JL
1570 {
1571 no_loops = 0;
a2e68776 1572 SET_BIT (header, child);
8c660648 1573 UPDATE_LOOP_RELATIONS (node, child);
a2e68776 1574 SET_BIT (passed, current_edge);
8c660648
JL
1575 current_edge = NEXT_OUT (current_edge);
1576 continue;
1577 }
1578
a2e68776
JL
1579 /* If the child was already visited, then there is no need to visit
1580 it again. Just update the loop relationships and restart
1581 with a new edge. */
8c660648
JL
1582 if (dfs_nr[child])
1583 {
cc132865 1584 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
8c660648 1585 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
a2e68776 1586 SET_BIT (passed, current_edge);
8c660648
JL
1587 current_edge = NEXT_OUT (current_edge);
1588 continue;
1589 }
1590
a2e68776 1591 /* Push an entry on the stack and continue DFS traversal. */
8c660648 1592 stack[++sp] = current_edge;
a2e68776 1593 SET_BIT (passed, current_edge);
8c660648 1594 current_edge = OUT_EDGES (child);
a2e68776 1595 }
8c660648 1596
15ebe47d
JL
1597 /* Another check for unreachable blocks. The earlier test in
1598 is_cfg_nonregular only finds unreachable blocks that do not
1599 form a loop.
a2e68776 1600
15ebe47d
JL
1601 The DFS traversal will mark every block that is reachable from
1602 the entry node by placing a nonzero value in dfs_nr. Thus if
1603 dfs_nr is zero for any block, then it must be unreachable. */
1604 unreachable = 0;
1605 for (i = 0; i < n_basic_blocks; i++)
1606 if (dfs_nr[i] == 0)
1607 {
1608 unreachable = 1;
1609 break;
1610 }
a2e68776
JL
1611
1612 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
1613 to hold degree counts. */
1614 degree = dfs_nr;
8c660648 1615
a2e68776 1616 /* Compute the in-degree of every block in the graph */
8c660648 1617 for (i = 0; i < n_basic_blocks; i++)
a2e68776
JL
1618 degree[i] = num_preds[i];
1619
15ebe47d
JL
1620 /* Do not perform region scheduling if there are any unreachable
1621 blocks. */
1622 if (!unreachable)
8c660648 1623 {
15ebe47d
JL
1624 if (no_loops)
1625 SET_BIT (header, 0);
8c660648 1626
15ebe47d
JL
1627 /* Second travsersal:find reducible inner loops and topologically sort
1628 block of each region. */
8c660648 1629
15ebe47d 1630 queue = (int *) alloca (n_basic_blocks * sizeof (int));
8c660648 1631
cc132865
JL
1632 /* Find blocks which are inner loop headers. We still have non-reducible
1633 loops to consider at this point. */
15ebe47d
JL
1634 for (i = 0; i < n_basic_blocks; i++)
1635 {
1636 if (TEST_BIT (header, i) && TEST_BIT (inner, i))
1637 {
1638 int_list_ptr ps;
cc132865
JL
1639 int j;
1640
1641 /* Now check that the loop is reducible. We do this separate
1642 from finding inner loops so that we do not find a reducible
1643 loop which contains an inner non-reducible loop.
1644
1645 A simple way to find reducible/natrual loops is to verify
1646 that each block in the loop is dominated by the loop
1647 header.
1648
1649 If there exists a block that is not dominated by the loop
1650 header, then the block is reachable from outside the loop
1651 and thus the loop is not a natural loop. */
1652 for (j = 0; j < n_basic_blocks; j++)
1653 {
1654 /* First identify blocks in the loop, except for the loop
1655 entry block. */
1656 if (i == max_hdr[j] && i != j)
1657 {
1658 /* Now verify that the block is dominated by the loop
1659 header. */
1660 if (!TEST_BIT (dom[j], i))
1661 break;
1662 }
1663 }
1664
1665 /* If we exited the loop early, then I is the header of a non
1666 reducible loop and we should quit processing it now. */
1667 if (j != n_basic_blocks)
1668 continue;
8c660648 1669
cc132865
JL
1670 /* I is a header of an inner loop, or block 0 in a subroutine
1671 with no loops at all. */
15ebe47d
JL
1672 head = tail = -1;
1673 too_large_failure = 0;
1674 loop_head = max_hdr[i];
8c660648 1675
15ebe47d 1676 /* Decrease degree of all I's successors for topological
a59bfd78 1677 ordering. */
15ebe47d
JL
1678 for (ps = s_succs[i]; ps; ps = ps->next)
1679 if (INT_LIST_VAL (ps) != EXIT_BLOCK
1680 && INT_LIST_VAL (ps) != ENTRY_BLOCK)
cc132865 1681 --degree[INT_LIST_VAL(ps)];
a2e68776 1682
15ebe47d
JL
1683 /* Estimate # insns, and count # blocks in the region. */
1684 num_bbs = 1;
1685 num_insns = (INSN_LUID (basic_block_end[i])
1686 - INSN_LUID (basic_block_head[i]));
8c660648 1687
15ebe47d
JL
1688
1689 /* Find all loop latches (blocks which back edges to the loop
1690 header) or all the leaf blocks in the cfg has no loops.
1691
1692 Place those blocks into the queue. */
1693 if (no_loops)
1694 {
1695 for (j = 0; j < n_basic_blocks; j++)
1696 /* Leaf nodes have only a single successor which must
1697 be EXIT_BLOCK. */
1698 if (num_succs[j] == 1
1699 && INT_LIST_VAL (s_succs[j]) == EXIT_BLOCK)
8c660648 1700 {
15ebe47d
JL
1701 queue[++tail] = j;
1702 SET_BIT (in_queue, j);
1703
1704 if (too_large (j, &num_bbs, &num_insns))
1705 {
1706 too_large_failure = 1;
1707 break;
1708 }
8c660648 1709 }
15ebe47d
JL
1710 }
1711 else
8c660648 1712 {
15ebe47d 1713 int_list_ptr ps;
a2e68776 1714
15ebe47d 1715 for (ps = s_preds[i]; ps; ps = ps->next)
8c660648 1716 {
15ebe47d 1717 node = INT_LIST_VAL (ps);
8c660648 1718
15ebe47d
JL
1719 if (node == ENTRY_BLOCK || node == EXIT_BLOCK)
1720 continue;
1721
1722 if (max_hdr[node] == loop_head && node != i)
8c660648 1723 {
15ebe47d
JL
1724 /* This is a loop latch. */
1725 queue[++tail] = node;
1726 SET_BIT (in_queue, node);
1727
1728 if (too_large (node, &num_bbs, &num_insns))
1729 {
1730 too_large_failure = 1;
1731 break;
1732 }
8c660648 1733 }
15ebe47d 1734
8c660648 1735 }
8c660648 1736 }
8c660648 1737
15ebe47d 1738 /* Now add all the blocks in the loop to the queue.
a2e68776
JL
1739
1740 We know the loop is a natural loop; however the algorithm
1741 above will not always mark certain blocks as being in the
1742 loop. Consider:
1743 node children
1744 a b,c
1745 b c
1746 c a,d
1747 d b
1748
1749
1750 The algorithm in the DFS traversal may not mark B & D as part
1751 of the loop (ie they will not have max_hdr set to A).
1752
1753 We know they can not be loop latches (else they would have
1754 had max_hdr set since they'd have a backedge to a dominator
1755 block). So we don't need them on the initial queue.
1756
1757 We know they are part of the loop because they are dominated
1758 by the loop header and can be reached by a backwards walk of
1759 the edges starting with nodes on the initial queue.
1760
1761 It is safe and desirable to include those nodes in the
1762 loop/scheduling region. To do so we would need to decrease
1763 the degree of a node if it is the target of a backedge
1764 within the loop itself as the node is placed in the queue.
1765
1766 We do not do this because I'm not sure that the actual
1767 scheduling code will properly handle this case. ?!? */
1768
15ebe47d 1769 while (head < tail && !too_large_failure)
8c660648 1770 {
15ebe47d
JL
1771 int_list_ptr ps;
1772 child = queue[++head];
8c660648 1773
15ebe47d 1774 for (ps = s_preds[child]; ps; ps = ps->next)
8c660648 1775 {
15ebe47d 1776 node = INT_LIST_VAL (ps);
8c660648 1777
15ebe47d
JL
1778 /* See discussion above about nodes not marked as in
1779 this loop during the initial DFS traversal. */
1780 if (node == ENTRY_BLOCK || node == EXIT_BLOCK
1781 || max_hdr[node] != loop_head)
8c660648 1782 {
15ebe47d 1783 tail = -1;
8c660648
JL
1784 break;
1785 }
15ebe47d
JL
1786 else if (!TEST_BIT (in_queue, node) && node != i)
1787 {
1788 queue[++tail] = node;
1789 SET_BIT (in_queue, node);
1790
1791 if (too_large (node, &num_bbs, &num_insns))
1792 {
1793 too_large_failure = 1;
1794 break;
1795 }
1796 }
8c660648 1797 }
8c660648 1798 }
8c660648 1799
15ebe47d
JL
1800 if (tail >= 0 && !too_large_failure)
1801 {
1802 /* Place the loop header into list of region blocks. */
1803 degree[i] = -1;
1804 rgn_bb_table[idx] = i;
1805 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1806 RGN_BLOCKS (nr_regions) = idx++;
1807 CONTAINING_RGN (i) = nr_regions;
1808 BLOCK_TO_BB (i) = count = 0;
1809
1810 /* Remove blocks from queue[] when their in degree becomes
a2e68776
JL
1811 zero. Repeat until no blocks are left on the list. This
1812 produces a topological list of blocks in the region. */
15ebe47d 1813 while (tail >= 0)
8c660648 1814 {
15ebe47d
JL
1815 int_list_ptr ps;
1816
1817 if (head < 0)
1818 head = tail;
1819 child = queue[head];
1820 if (degree[child] == 0)
1821 {
1822 degree[child] = -1;
1823 rgn_bb_table[idx++] = child;
1824 BLOCK_TO_BB (child) = ++count;
1825 CONTAINING_RGN (child) = nr_regions;
1826 queue[head] = queue[tail--];
1827
1828 for (ps = s_succs[child]; ps; ps = ps->next)
1829 if (INT_LIST_VAL (ps) != ENTRY_BLOCK
1830 && INT_LIST_VAL (ps) != EXIT_BLOCK)
1831 --degree[INT_LIST_VAL (ps)];
1832 }
1833 else
1834 --head;
8c660648 1835 }
15ebe47d 1836 ++nr_regions;
8c660648 1837 }
8c660648
JL
1838 }
1839 }
1840 }
1841
a2e68776
JL
1842 /* Any block that did not end up in a region is placed into a region
1843 by itself. */
8c660648
JL
1844 for (i = 0; i < n_basic_blocks; i++)
1845 if (degree[i] >= 0)
1846 {
1847 rgn_bb_table[idx] = i;
1848 RGN_NR_BLOCKS (nr_regions) = 1;
1849 RGN_BLOCKS (nr_regions) = idx++;
1850 CONTAINING_RGN (i) = nr_regions++;
1851 BLOCK_TO_BB (i) = 0;
1852 }
1853
a2e68776
JL
1854 free (passed);
1855 free (header);
1856 free (inner);
1857 free (in_queue);
cc132865 1858 free (in_stack);
a2e68776 1859}
8c660648
JL
1860
1861
1862/* functions for regions scheduling information */
1863
1864/* Compute dominators, probability, and potential-split-edges of bb.
1865 Assume that these values were already computed for bb's predecessors. */
1866
1867static void
1868compute_dom_prob_ps (bb)
1869 int bb;
1870{
1871 int nxt_in_edge, fst_in_edge, pred;
1872 int fst_out_edge, nxt_out_edge, nr_out_edges, nr_rgn_out_edges;
1873
1874 prob[bb] = 0.0;
1875 if (IS_RGN_ENTRY (bb))
1876 {
1877 BITSET_ADD (dom[bb], 0, bbset_size);
1878 prob[bb] = 1.0;
1879 return;
1880 }
1881
1882 fst_in_edge = nxt_in_edge = IN_EDGES (BB_TO_BLOCK (bb));
1883
1884 /* intialize dom[bb] to '111..1' */
1885 BITSET_INVERT (dom[bb], bbset_size);
1886
1887 do
1888 {
1889 pred = FROM_BLOCK (nxt_in_edge);
1890 BITSET_INTER (dom[bb], dom[BLOCK_TO_BB (pred)], bbset_size);
1891
1892 BITSET_UNION (ancestor_edges[bb], ancestor_edges[BLOCK_TO_BB (pred)],
1893 edgeset_size);
1894
1895 BITSET_ADD (ancestor_edges[bb], EDGE_TO_BIT (nxt_in_edge), edgeset_size);
1896
1897 nr_out_edges = 1;
1898 nr_rgn_out_edges = 0;
1899 fst_out_edge = OUT_EDGES (pred);
1900 nxt_out_edge = NEXT_OUT (fst_out_edge);
1901 BITSET_UNION (pot_split[bb], pot_split[BLOCK_TO_BB (pred)],
1902 edgeset_size);
1903
1904 BITSET_ADD (pot_split[bb], EDGE_TO_BIT (fst_out_edge), edgeset_size);
1905
1906 /* the successor doesn't belong the region? */
1907 if (CONTAINING_RGN (TO_BLOCK (fst_out_edge)) !=
1908 CONTAINING_RGN (BB_TO_BLOCK (bb)))
1909 ++nr_rgn_out_edges;
1910
1911 while (fst_out_edge != nxt_out_edge)
1912 {
1913 ++nr_out_edges;
1914 /* the successor doesn't belong the region? */
1915 if (CONTAINING_RGN (TO_BLOCK (nxt_out_edge)) !=
1916 CONTAINING_RGN (BB_TO_BLOCK (bb)))
1917 ++nr_rgn_out_edges;
1918 BITSET_ADD (pot_split[bb], EDGE_TO_BIT (nxt_out_edge), edgeset_size);
1919 nxt_out_edge = NEXT_OUT (nxt_out_edge);
1920
1921 }
1922
1923 /* now nr_rgn_out_edges is the number of region-exit edges from pred,
1924 and nr_out_edges will be the number of pred out edges not leaving
1925 the region. */
1926 nr_out_edges -= nr_rgn_out_edges;
1927 if (nr_rgn_out_edges > 0)
1928 prob[bb] += 0.9 * prob[BLOCK_TO_BB (pred)] / nr_out_edges;
1929 else
1930 prob[bb] += prob[BLOCK_TO_BB (pred)] / nr_out_edges;
1931 nxt_in_edge = NEXT_IN (nxt_in_edge);
1932 }
1933 while (fst_in_edge != nxt_in_edge);
1934
1935 BITSET_ADD (dom[bb], bb, bbset_size);
1936 BITSET_DIFFER (pot_split[bb], ancestor_edges[bb], edgeset_size);
1937
1938 if (sched_verbose >= 2)
1939 fprintf (dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb), (int) (100.0 * prob[bb]));
1940} /* compute_dom_prob_ps */
1941
1942/* functions for target info */
1943
1944/* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1945 Note that bb_trg dominates bb_src. */
1946
1947static void
1948split_edges (bb_src, bb_trg, bl)
1949 int bb_src;
1950 int bb_trg;
1951 edgelst *bl;
1952{
1953 int es = edgeset_size;
1954 edgeset src = (edgeset) alloca (es * sizeof (HOST_WIDE_INT));
1955
1956 while (es--)
1957 src[es] = (pot_split[bb_src])[es];
1958 BITSET_DIFFER (src, pot_split[bb_trg], edgeset_size);
1959 extract_bitlst (src, edgeset_size, bl);
1960}
1961
1962
1963/* Find the valid candidate-source-blocks for the target block TRG, compute
1964 their probability, and check if they are speculative or not.
1965 For speculative sources, compute their update-blocks and split-blocks. */
1966
1967static void
1968compute_trg_info (trg)
1969 int trg;
1970{
1971 register candidate *sp;
1972 edgelst el;
1973 int check_block, update_idx;
1974 int i, j, k, fst_edge, nxt_edge;
1975
1976 /* define some of the fields for the target bb as well */
1977 sp = candidate_table + trg;
1978 sp->is_valid = 1;
1979 sp->is_speculative = 0;
1980 sp->src_prob = 100;
1981
1982 for (i = trg + 1; i < current_nr_blocks; i++)
1983 {
1984 sp = candidate_table + i;
1985
1986 sp->is_valid = IS_DOMINATED (i, trg);
1987 if (sp->is_valid)
1988 {
1989 sp->src_prob = GET_SRC_PROB (i, trg);
1990 sp->is_valid = (sp->src_prob >= MIN_PROBABILITY);
1991 }
1992
1993 if (sp->is_valid)
1994 {
1995 split_edges (i, trg, &el);
1996 sp->is_speculative = (el.nr_members) ? 1 : 0;
1997 if (sp->is_speculative && !flag_schedule_speculative)
1998 sp->is_valid = 0;
1999 }
2000
2001 if (sp->is_valid)
2002 {
2003 sp->split_bbs.first_member = &bblst_table[bblst_last];
2004 sp->split_bbs.nr_members = el.nr_members;
2005 for (j = 0; j < el.nr_members; bblst_last++, j++)
2006 bblst_table[bblst_last] =
2007 TO_BLOCK (rgn_edges[el.first_member[j]]);
2008 sp->update_bbs.first_member = &bblst_table[bblst_last];
2009 update_idx = 0;
2010 for (j = 0; j < el.nr_members; j++)
2011 {
2012 check_block = FROM_BLOCK (rgn_edges[el.first_member[j]]);
2013 fst_edge = nxt_edge = OUT_EDGES (check_block);
2014 do
2015 {
2016 for (k = 0; k < el.nr_members; k++)
2017 if (EDGE_TO_BIT (nxt_edge) == el.first_member[k])
2018 break;
2019
2020 if (k >= el.nr_members)
2021 {
2022 bblst_table[bblst_last++] = TO_BLOCK (nxt_edge);
2023 update_idx++;
2024 }
2025
2026 nxt_edge = NEXT_OUT (nxt_edge);
2027 }
2028 while (fst_edge != nxt_edge);
2029 }
2030 sp->update_bbs.nr_members = update_idx;
2031
2032 }
2033 else
2034 {
2035 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
2036
2037 sp->is_speculative = 0;
2038 sp->src_prob = 0;
2039 }
2040 }
2041} /* compute_trg_info */
2042
2043
2044/* Print candidates info, for debugging purposes. Callable from debugger. */
2045
2046void
2047debug_candidate (i)
2048 int i;
2049{
2050 if (!candidate_table[i].is_valid)
2051 return;
2052
2053 if (candidate_table[i].is_speculative)
2054 {
2055 int j;
2056 fprintf (dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
2057
2058 fprintf (dump, "split path: ");
2059 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
2060 {
2061 int b = candidate_table[i].split_bbs.first_member[j];
2062
2063 fprintf (dump, " %d ", b);
2064 }
2065 fprintf (dump, "\n");
2066
2067 fprintf (dump, "update path: ");
2068 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
2069 {
2070 int b = candidate_table[i].update_bbs.first_member[j];
2071
2072 fprintf (dump, " %d ", b);
2073 }
2074 fprintf (dump, "\n");
2075 }
2076 else
2077 {
2078 fprintf (dump, " src %d equivalent\n", BB_TO_BLOCK (i));
2079 }
2080}
2081
2082
2083/* Print candidates info, for debugging purposes. Callable from debugger. */
2084
2085void
2086debug_candidates (trg)
2087 int trg;
2088{
2089 int i;
2090
2091 fprintf (dump, "----------- candidate table: target: b=%d bb=%d ---\n",
2092 BB_TO_BLOCK (trg), trg);
2093 for (i = trg + 1; i < current_nr_blocks; i++)
2094 debug_candidate (i);
2095}
2096
2097
2098/* functions for speculative scheduing */
2099
2100/* Return 0 if x is a set of a register alive in the beginning of one
2101 of the split-blocks of src, otherwise return 1. */
2102
2103static int
2104check_live_1 (src, x)
2105 int src;
2106 rtx x;
2107{
5835e573 2108 register int i;
8c660648
JL
2109 register int regno;
2110 register rtx reg = SET_DEST (x);
2111
2112 if (reg == 0)
2113 return 1;
2114
2115 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
2116 || GET_CODE (reg) == SIGN_EXTRACT
2117 || GET_CODE (reg) == STRICT_LOW_PART)
2118 reg = XEXP (reg, 0);
2119
2120 if (GET_CODE (reg) != REG)
2121 return 1;
2122
2123 regno = REGNO (reg);
2124
2125 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2126 {
2127 /* Global registers are assumed live */
2128 return 0;
2129 }
2130 else
2131 {
2132 if (regno < FIRST_PSEUDO_REGISTER)
2133 {
2134 /* check for hard registers */
2135 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2136 while (--j >= 0)
2137 {
2138 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
2139 {
2140 int b = candidate_table[src].split_bbs.first_member[i];
2141
2142 if (REGNO_REG_SET_P (basic_block_live_at_start[b], regno + j))
2143 {
2144 return 0;
2145 }
2146 }
2147 }
2148 }
2149 else
2150 {
2151 /* check for psuedo registers */
2152 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
2153 {
2154 int b = candidate_table[src].split_bbs.first_member[i];
2155
2156 if (REGNO_REG_SET_P (basic_block_live_at_start[b], regno))
2157 {
2158 return 0;
2159 }
2160 }
2161 }
2162 }
2163
2164 return 1;
2165}
2166
2167
2168/* If x is a set of a register R, mark that R is alive in the beginning
2169 of every update-block of src. */
2170
2171static void
2172update_live_1 (src, x)
2173 int src;
2174 rtx x;
2175{
5835e573 2176 register int i;
8c660648
JL
2177 register int regno;
2178 register rtx reg = SET_DEST (x);
2179
2180 if (reg == 0)
2181 return;
2182
2183 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
2184 || GET_CODE (reg) == SIGN_EXTRACT
2185 || GET_CODE (reg) == STRICT_LOW_PART)
2186 reg = XEXP (reg, 0);
2187
2188 if (GET_CODE (reg) != REG)
2189 return;
2190
2191 /* Global registers are always live, so the code below does not apply
2192 to them. */
2193
2194 regno = REGNO (reg);
2195
2196 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
2197 {
2198 if (regno < FIRST_PSEUDO_REGISTER)
2199 {
2200 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2201 while (--j >= 0)
2202 {
2203 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
2204 {
2205 int b = candidate_table[src].update_bbs.first_member[i];
2206
2207 SET_REGNO_REG_SET (basic_block_live_at_start[b], regno + j);
2208 }
2209 }
2210 }
2211 else
2212 {
2213 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
2214 {
2215 int b = candidate_table[src].update_bbs.first_member[i];
2216
2217 SET_REGNO_REG_SET (basic_block_live_at_start[b], regno);
2218 }
2219 }
2220 }
2221}
2222
2223
2224/* Return 1 if insn can be speculatively moved from block src to trg,
2225 otherwise return 0. Called before first insertion of insn to
2226 ready-list or before the scheduling. */
2227
2228static int
5835e573 2229check_live (insn, src)
8c660648
JL
2230 rtx insn;
2231 int src;
8c660648
JL
2232{
2233 /* find the registers set by instruction */
2234 if (GET_CODE (PATTERN (insn)) == SET
2235 || GET_CODE (PATTERN (insn)) == CLOBBER)
2236 return check_live_1 (src, PATTERN (insn));
2237 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2238 {
2239 int j;
2240 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
2241 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
2242 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
2243 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
2244 return 0;
2245
2246 return 1;
2247 }
2248
2249 return 1;
2250}
2251
2252
2253/* Update the live registers info after insn was moved speculatively from
2254 block src to trg. */
2255
2256static void
5835e573 2257update_live (insn, src)
8c660648 2258 rtx insn;
5835e573 2259 int src;
8c660648
JL
2260{
2261 /* find the registers set by instruction */
2262 if (GET_CODE (PATTERN (insn)) == SET
2263 || GET_CODE (PATTERN (insn)) == CLOBBER)
2264 update_live_1 (src, PATTERN (insn));
2265 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2266 {
2267 int j;
2268 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
2269 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
2270 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
2271 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
2272 }
2273}
2274
2275/* Exception Free Loads:
2276
2277 We define five classes of speculative loads: IFREE, IRISKY,
2278 PFREE, PRISKY, and MFREE.
2279
2280 IFREE loads are loads that are proved to be exception-free, just
2281 by examining the load insn. Examples for such loads are loads
2282 from TOC and loads of global data.
2283
2284 IRISKY loads are loads that are proved to be exception-risky,
2285 just by examining the load insn. Examples for such loads are
2286 volatile loads and loads from shared memory.
2287
2288 PFREE loads are loads for which we can prove, by examining other
2289 insns, that they are exception-free. Currently, this class consists
2290 of loads for which we are able to find a "similar load", either in
2291 the target block, or, if only one split-block exists, in that split
2292 block. Load2 is similar to load1 if both have same single base
2293 register. We identify only part of the similar loads, by finding
2294 an insn upon which both load1 and load2 have a DEF-USE dependence.
2295
2296 PRISKY loads are loads for which we can prove, by examining other
2297 insns, that they are exception-risky. Currently we have two proofs for
2298 such loads. The first proof detects loads that are probably guarded by a
2299 test on the memory address. This proof is based on the
2300 backward and forward data dependence information for the region.
2301 Let load-insn be the examined load.
2302 Load-insn is PRISKY iff ALL the following hold:
2303
2304 - insn1 is not in the same block as load-insn
2305 - there is a DEF-USE dependence chain (insn1, ..., load-insn)
2306 - test-insn is either a compare or a branch, not in the same block as load-insn
2307 - load-insn is reachable from test-insn
2308 - there is a DEF-USE dependence chain (insn1, ..., test-insn)
2309
2310 This proof might fail when the compare and the load are fed
2311 by an insn not in the region. To solve this, we will add to this
2312 group all loads that have no input DEF-USE dependence.
2313
2314 The second proof detects loads that are directly or indirectly
2315 fed by a speculative load. This proof is affected by the
2316 scheduling process. We will use the flag fed_by_spec_load.
2317 Initially, all insns have this flag reset. After a speculative
2318 motion of an insn, if insn is either a load, or marked as
2319 fed_by_spec_load, we will also mark as fed_by_spec_load every
2320 insn1 for which a DEF-USE dependence (insn, insn1) exists. A
2321 load which is fed_by_spec_load is also PRISKY.
2322
2323 MFREE (maybe-free) loads are all the remaining loads. They may be
2324 exception-free, but we cannot prove it.
2325
2326 Now, all loads in IFREE and PFREE classes are considered
2327 exception-free, while all loads in IRISKY and PRISKY classes are
2328 considered exception-risky. As for loads in the MFREE class,
2329 these are considered either exception-free or exception-risky,
2330 depending on whether we are pessimistic or optimistic. We have
2331 to take the pessimistic approach to assure the safety of
2332 speculative scheduling, but we can take the optimistic approach
2333 by invoking the -fsched_spec_load_dangerous option. */
2334
2335enum INSN_TRAP_CLASS
2336{
2337 TRAP_FREE = 0, IFREE = 1, PFREE_CANDIDATE = 2,
2338 PRISKY_CANDIDATE = 3, IRISKY = 4, TRAP_RISKY = 5
2339};
2340
2341#define WORST_CLASS(class1, class2) \
2342((class1 > class2) ? class1 : class2)
2343
2344/* Indexed by INSN_UID, and set if there's DEF-USE dependence between */
2345/* some speculatively moved load insn and this one. */
2346char *fed_by_spec_load;
2347char *is_load_insn;
2348
2349/* Non-zero if block bb_to is equal to, or reachable from block bb_from. */
2350#define IS_REACHABLE(bb_from, bb_to) \
2351(bb_from == bb_to \
2352 || IS_RGN_ENTRY (bb_from) \
2353 || (bitset_member (ancestor_edges[bb_to], \
2354 EDGE_TO_BIT (IN_EDGES (BB_TO_BLOCK (bb_from))), \
2355 edgeset_size)))
2356#define FED_BY_SPEC_LOAD(insn) (fed_by_spec_load[INSN_UID (insn)])
2357#define IS_LOAD_INSN(insn) (is_load_insn[INSN_UID (insn)])
2358
2359/* Non-zero iff the address is comprised from at most 1 register */
2360#define CONST_BASED_ADDRESS_P(x) \
2361 (GET_CODE (x) == REG \
2362 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
2363 || (GET_CODE (x) == LO_SUM)) \
2364 && (GET_CODE (XEXP (x, 0)) == CONST_INT \
2365 || GET_CODE (XEXP (x, 1)) == CONST_INT)))
2366
2367/* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
2368
2369static void
2370set_spec_fed (load_insn)
2371 rtx load_insn;
2372{
2373 rtx link;
2374
2375 for (link = INSN_DEPEND (load_insn); link; link = XEXP (link, 1))
2376 if (GET_MODE (link) == VOIDmode)
2377 FED_BY_SPEC_LOAD (XEXP (link, 0)) = 1;
2378} /* set_spec_fed */
2379
2380/* On the path from the insn to load_insn_bb, find a conditional branch */
2381/* depending on insn, that guards the speculative load. */
2382
2383static int
2384find_conditional_protection (insn, load_insn_bb)
2385 rtx insn;
2386 int load_insn_bb;
2387{
2388 rtx link;
2389
2390 /* iterate through DEF-USE forward dependences */
2391 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
2392 {
2393 rtx next = XEXP (link, 0);
2394 if ((CONTAINING_RGN (INSN_BLOCK (next)) ==
2395 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
2396 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
2397 && load_insn_bb != INSN_BB (next)
2398 && GET_MODE (link) == VOIDmode
2399 && (GET_CODE (next) == JUMP_INSN
2400 || find_conditional_protection (next, load_insn_bb)))
2401 return 1;
2402 }
2403 return 0;
2404} /* find_conditional_protection */
2405
2406/* Returns 1 if the same insn1 that participates in the computation
2407 of load_insn's address is feeding a conditional branch that is
2408 guarding on load_insn. This is true if we find a the two DEF-USE
2409 chains:
2410 insn1 -> ... -> conditional-branch
2411 insn1 -> ... -> load_insn,
2412 and if a flow path exist:
2413 insn1 -> ... -> conditional-branch -> ... -> load_insn,
2414 and if insn1 is on the path
2415 region-entry -> ... -> bb_trg -> ... load_insn.
2416
2417 Locate insn1 by climbing on LOG_LINKS from load_insn.
2418 Locate the branch by following INSN_DEPEND from insn1. */
2419
2420static int
2421is_conditionally_protected (load_insn, bb_src, bb_trg)
2422 rtx load_insn;
2423 int bb_src, bb_trg;
2424{
2425 rtx link;
2426
2427 for (link = LOG_LINKS (load_insn); link; link = XEXP (link, 1))
2428 {
2429 rtx insn1 = XEXP (link, 0);
2430
2431 /* must be a DEF-USE dependence upon non-branch */
2432 if (GET_MODE (link) != VOIDmode
2433 || GET_CODE (insn1) == JUMP_INSN)
2434 continue;
2435
2436 /* must exist a path: region-entry -> ... -> bb_trg -> ... load_insn */
2437 if (INSN_BB (insn1) == bb_src
2438 || (CONTAINING_RGN (INSN_BLOCK (insn1))
2439 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
2440 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
2441 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
2442 continue;
2443
2444 /* now search for the conditional-branch */
2445 if (find_conditional_protection (insn1, bb_src))
2446 return 1;
2447
2448 /* recursive step: search another insn1, "above" current insn1. */
2449 return is_conditionally_protected (insn1, bb_src, bb_trg);
2450 }
2451
2452 /* the chain does not exsist */
2453 return 0;
2454} /* is_conditionally_protected */
2455
2456/* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
2457 load_insn can move speculatively from bb_src to bb_trg. All the
2458 following must hold:
2459
2460 (1) both loads have 1 base register (PFREE_CANDIDATEs).
2461 (2) load_insn and load1 have a def-use dependence upon
2462 the same insn 'insn1'.
2463 (3) either load2 is in bb_trg, or:
2464 - there's only one split-block, and
2465 - load1 is on the escape path, and
2466
2467 From all these we can conclude that the two loads access memory
2468 addresses that differ at most by a constant, and hence if moving
2469 load_insn would cause an exception, it would have been caused by
2470 load2 anyhow. */
2471
2472static int
2473is_pfree (load_insn, bb_src, bb_trg)
2474 rtx load_insn;
2475 int bb_src, bb_trg;
2476{
2477 rtx back_link;
2478 register candidate *candp = candidate_table + bb_src;
2479
2480 if (candp->split_bbs.nr_members != 1)
2481 /* must have exactly one escape block */
2482 return 0;
2483
2484 for (back_link = LOG_LINKS (load_insn);
2485 back_link; back_link = XEXP (back_link, 1))
2486 {
2487 rtx insn1 = XEXP (back_link, 0);
2488
2489 if (GET_MODE (back_link) == VOIDmode)
2490 {
2491 /* found a DEF-USE dependence (insn1, load_insn) */
2492 rtx fore_link;
2493
2494 for (fore_link = INSN_DEPEND (insn1);
2495 fore_link; fore_link = XEXP (fore_link, 1))
2496 {
2497 rtx insn2 = XEXP (fore_link, 0);
2498 if (GET_MODE (fore_link) == VOIDmode)
2499 {
2500 /* found a DEF-USE dependence (insn1, insn2) */
ac957f13 2501 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
8c660648
JL
2502 /* insn2 not guaranteed to be a 1 base reg load */
2503 continue;
2504
2505 if (INSN_BB (insn2) == bb_trg)
2506 /* insn2 is the similar load, in the target block */
2507 return 1;
2508
2509 if (*(candp->split_bbs.first_member) == INSN_BLOCK (insn2))
2510 /* insn2 is a similar load, in a split-block */
2511 return 1;
2512 }
2513 }
2514 }
2515 }
2516
2517 /* couldn't find a similar load */
2518 return 0;
2519} /* is_pfree */
2520
2521/* Returns a class that insn with GET_DEST(insn)=x may belong to,
2522 as found by analyzing insn's expression. */
2523
2524static int
2525may_trap_exp (x, is_store)
2526 rtx x;
2527 int is_store;
2528{
2529 enum rtx_code code;
2530
2531 if (x == 0)
2532 return TRAP_FREE;
2533 code = GET_CODE (x);
2534 if (is_store)
2535 {
2536 if (code == MEM)
2537 return TRAP_RISKY;
2538 else
2539 return TRAP_FREE;
2540 }
2541 if (code == MEM)
2542 {
2543 /* The insn uses memory */
2544 /* a volatile load */
2545 if (MEM_VOLATILE_P (x))
2546 return IRISKY;
2547 /* an exception-free load */
2548 if (!may_trap_p (x))
2549 return IFREE;
2550 /* a load with 1 base register, to be further checked */
2551 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
2552 return PFREE_CANDIDATE;
2553 /* no info on the load, to be further checked */
2554 return PRISKY_CANDIDATE;
2555 }
2556 else
2557 {
2558 char *fmt;
2559 int i, insn_class = TRAP_FREE;
2560
2561 /* neither store nor load, check if it may cause a trap */
2562 if (may_trap_p (x))
2563 return TRAP_RISKY;
2564 /* recursive step: walk the insn... */
2565 fmt = GET_RTX_FORMAT (code);
2566 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2567 {
2568 if (fmt[i] == 'e')
2569 {
2570 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
2571 insn_class = WORST_CLASS (insn_class, tmp_class);
2572 }
2573 else if (fmt[i] == 'E')
2574 {
2575 int j;
2576 for (j = 0; j < XVECLEN (x, i); j++)
2577 {
2578 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
2579 insn_class = WORST_CLASS (insn_class, tmp_class);
2580 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
2581 break;
2582 }
2583 }
2584 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
2585 break;
2586 }
2587 return insn_class;
2588 }
2589} /* may_trap_exp */
2590
2591
2592/* Classifies insn for the purpose of verifying that it can be
2593 moved speculatively, by examining it's patterns, returning:
2594 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
2595 TRAP_FREE: non-load insn.
2596 IFREE: load from a globaly safe location.
2597 IRISKY: volatile load.
2598 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
2599 being either PFREE or PRISKY. */
2600
2601static int
ac957f13 2602haifa_classify_insn (insn)
8c660648
JL
2603 rtx insn;
2604{
2605 rtx pat = PATTERN (insn);
2606 int tmp_class = TRAP_FREE;
2607 int insn_class = TRAP_FREE;
2608 enum rtx_code code;
2609
2610 if (GET_CODE (pat) == PARALLEL)
2611 {
2612 int i, len = XVECLEN (pat, 0);
2613
2614 for (i = len - 1; i >= 0; i--)
2615 {
2616 code = GET_CODE (XVECEXP (pat, 0, i));
2617 switch (code)
2618 {
2619 case CLOBBER:
2620 /* test if it is a 'store' */
2621 tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
2622 break;
2623 case SET:
2624 /* test if it is a store */
2625 tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
2626 if (tmp_class == TRAP_RISKY)
2627 break;
2628 /* test if it is a load */
2629 tmp_class =
2630 WORST_CLASS (tmp_class,
2631 may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)), 0));
e0cd0770
JC
2632 break;
2633 case TRAP_IF:
2634 tmp_class = TRAP_RISKY;
2635 break;
8c660648
JL
2636 default:;
2637 }
2638 insn_class = WORST_CLASS (insn_class, tmp_class);
2639 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
2640 break;
2641 }
2642 }
2643 else
2644 {
2645 code = GET_CODE (pat);
2646 switch (code)
2647 {
2648 case CLOBBER:
2649 /* test if it is a 'store' */
2650 tmp_class = may_trap_exp (XEXP (pat, 0), 1);
2651 break;
2652 case SET:
2653 /* test if it is a store */
2654 tmp_class = may_trap_exp (SET_DEST (pat), 1);
2655 if (tmp_class == TRAP_RISKY)
2656 break;
2657 /* test if it is a load */
2658 tmp_class =
2659 WORST_CLASS (tmp_class,
2660 may_trap_exp (SET_SRC (pat), 0));
e0cd0770
JC
2661 break;
2662 case TRAP_IF:
2663 tmp_class = TRAP_RISKY;
2664 break;
8c660648
JL
2665 default:;
2666 }
2667 insn_class = tmp_class;
2668 }
2669
2670 return insn_class;
2671
ac957f13 2672} /* haifa_classify_insn */
8c660648
JL
2673
2674/* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
2675 a load moved speculatively, or if load_insn is protected by
2676 a compare on load_insn's address). */
2677
2678static int
2679is_prisky (load_insn, bb_src, bb_trg)
2680 rtx load_insn;
2681 int bb_src, bb_trg;
2682{
2683 if (FED_BY_SPEC_LOAD (load_insn))
2684 return 1;
2685
2686 if (LOG_LINKS (load_insn) == NULL)
2687 /* dependence may 'hide' out of the region. */
2688 return 1;
2689
2690 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2691 return 1;
2692
2693 return 0;
2694} /* is_prisky */
2695
2696/* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2697 Return 1 if insn is exception-free (and the motion is valid)
2698 and 0 otherwise. */
2699
2700static int
2701is_exception_free (insn, bb_src, bb_trg)
2702 rtx insn;
2703 int bb_src, bb_trg;
2704{
ac957f13 2705 int insn_class = haifa_classify_insn (insn);
8c660648
JL
2706
2707 /* handle non-load insns */
2708 switch (insn_class)
2709 {
2710 case TRAP_FREE:
2711 return 1;
2712 case TRAP_RISKY:
2713 return 0;
2714 default:;
2715 }
2716
2717 /* handle loads */
2718 if (!flag_schedule_speculative_load)
2719 return 0;
2720 IS_LOAD_INSN (insn) = 1;
2721 switch (insn_class)
2722 {
2723 case IFREE:
2724 return (1);
2725 case IRISKY:
2726 return 0;
2727 case PFREE_CANDIDATE:
2728 if (is_pfree (insn, bb_src, bb_trg))
2729 return 1;
2730 /* don't 'break' here: PFREE-candidate is also PRISKY-candidate */
2731 case PRISKY_CANDIDATE:
2732 if (!flag_schedule_speculative_load_dangerous
2733 || is_prisky (insn, bb_src, bb_trg))
2734 return 0;
2735 break;
2736 default:;
2737 }
2738
2739 return flag_schedule_speculative_load_dangerous;
2740} /* is_exception_free */
2741
2742
2743/* Process an insn's memory dependencies. There are four kinds of
2744 dependencies:
2745
2746 (0) read dependence: read follows read
2747 (1) true dependence: read follows write
2748 (2) anti dependence: write follows read
2749 (3) output dependence: write follows write
2750
2751 We are careful to build only dependencies which actually exist, and
2752 use transitivity to avoid building too many links. */
2753\f
2754/* Return the INSN_LIST containing INSN in LIST, or NULL
2755 if LIST does not contain INSN. */
2756
cbb13457 2757HAIFA_INLINE static rtx
8c660648
JL
2758find_insn_list (insn, list)
2759 rtx insn;
2760 rtx list;
2761{
2762 while (list)
2763 {
2764 if (XEXP (list, 0) == insn)
2765 return list;
2766 list = XEXP (list, 1);
2767 }
2768 return 0;
2769}
2770
2771
2772/* Return 1 if the pair (insn, x) is found in (LIST, LIST1), or 0 otherwise. */
2773
cbb13457 2774HAIFA_INLINE static char
8c660648
JL
2775find_insn_mem_list (insn, x, list, list1)
2776 rtx insn, x;
2777 rtx list, list1;
2778{
2779 while (list)
2780 {
2781 if (XEXP (list, 0) == insn
2782 && XEXP (list1, 0) == x)
2783 return 1;
2784 list = XEXP (list, 1);
2785 list1 = XEXP (list1, 1);
2786 }
2787 return 0;
2788}
2789
2790
2791/* Compute the function units used by INSN. This caches the value
2792 returned by function_units_used. A function unit is encoded as the
2793 unit number if the value is non-negative and the compliment of a
2794 mask if the value is negative. A function unit index is the
2795 non-negative encoding. */
2796
cbb13457 2797HAIFA_INLINE static int
8c660648
JL
2798insn_unit (insn)
2799 rtx insn;
2800{
2801 register int unit = INSN_UNIT (insn);
2802
2803 if (unit == 0)
2804 {
2805 recog_memoized (insn);
2806
2807 /* A USE insn, or something else we don't need to understand.
2808 We can't pass these directly to function_units_used because it will
2809 trigger a fatal error for unrecognizable insns. */
2810 if (INSN_CODE (insn) < 0)
2811 unit = -1;
2812 else
2813 {
2814 unit = function_units_used (insn);
2815 /* Increment non-negative values so we can cache zero. */
2816 if (unit >= 0)
2817 unit++;
2818 }
2819 /* We only cache 16 bits of the result, so if the value is out of
2820 range, don't cache it. */
2821 if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
2822 || unit >= 0
2823 || (~unit & ((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
2824 INSN_UNIT (insn) = unit;
2825 }
2826 return (unit > 0 ? unit - 1 : unit);
2827}
2828
2829/* Compute the blockage range for executing INSN on UNIT. This caches
2830 the value returned by the blockage_range_function for the unit.
2831 These values are encoded in an int where the upper half gives the
2832 minimum value and the lower half gives the maximum value. */
2833
cbb13457 2834HAIFA_INLINE static unsigned int
8c660648
JL
2835blockage_range (unit, insn)
2836 int unit;
2837 rtx insn;
2838{
2839 unsigned int blockage = INSN_BLOCKAGE (insn);
2840 unsigned int range;
2841
2842 if (UNIT_BLOCKED (blockage) != unit + 1)
2843 {
2844 range = function_units[unit].blockage_range_function (insn);
2845 /* We only cache the blockage range for one unit and then only if
2846 the values fit. */
2847 if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
2848 INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
2849 }
2850 else
2851 range = BLOCKAGE_RANGE (blockage);
2852
2853 return range;
2854}
2855
2856/* A vector indexed by function unit instance giving the last insn to use
2857 the unit. The value of the function unit instance index for unit U
2858 instance I is (U + I * FUNCTION_UNITS_SIZE). */
2859static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
2860
2861/* A vector indexed by function unit instance giving the minimum time when
2862 the unit will unblock based on the maximum blockage cost. */
2863static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
2864
2865/* A vector indexed by function unit number giving the number of insns
2866 that remain to use the unit. */
2867static int unit_n_insns[FUNCTION_UNITS_SIZE];
2868
2869/* Reset the function unit state to the null state. */
2870
2871static void
2872clear_units ()
2873{
2874 bzero ((char *) unit_last_insn, sizeof (unit_last_insn));
2875 bzero ((char *) unit_tick, sizeof (unit_tick));
2876 bzero ((char *) unit_n_insns, sizeof (unit_n_insns));
2877}
2878
2879/* Return the issue-delay of an insn */
2880
cbb13457 2881HAIFA_INLINE static int
8c660648
JL
2882insn_issue_delay (insn)
2883 rtx insn;
2884{
8c660648
JL
2885 int i, delay = 0;
2886 int unit = insn_unit (insn);
2887
2888 /* efficiency note: in fact, we are working 'hard' to compute a
2889 value that was available in md file, and is not available in
2890 function_units[] structure. It would be nice to have this
2891 value there, too. */
2892 if (unit >= 0)
2893 {
2894 if (function_units[unit].blockage_range_function &&
2895 function_units[unit].blockage_function)
2896 delay = function_units[unit].blockage_function (insn, insn);
2897 }
2898 else
2899 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
2900 if ((unit & 1) != 0 && function_units[i].blockage_range_function
2901 && function_units[i].blockage_function)
2902 delay = MAX (delay, function_units[i].blockage_function (insn, insn));
2903
2904 return delay;
2905}
2906
2907/* Return the actual hazard cost of executing INSN on the unit UNIT,
2908 instance INSTANCE at time CLOCK if the previous actual hazard cost
2909 was COST. */
2910
cbb13457 2911HAIFA_INLINE static int
8c660648
JL
2912actual_hazard_this_instance (unit, instance, insn, clock, cost)
2913 int unit, instance, clock, cost;
2914 rtx insn;
2915{
2916 int tick = unit_tick[instance]; /* issue time of the last issued insn */
2917
2918 if (tick - clock > cost)
2919 {
2920 /* The scheduler is operating forward, so unit's last insn is the
2921 executing insn and INSN is the candidate insn. We want a
2922 more exact measure of the blockage if we execute INSN at CLOCK
2923 given when we committed the execution of the unit's last insn.
2924
2925 The blockage value is given by either the unit's max blockage
2926 constant, blockage range function, or blockage function. Use
2927 the most exact form for the given unit. */
2928
2929 if (function_units[unit].blockage_range_function)
2930 {
2931 if (function_units[unit].blockage_function)
2932 tick += (function_units[unit].blockage_function
2933 (unit_last_insn[instance], insn)
2934 - function_units[unit].max_blockage);
2935 else
2936 tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
2937 - function_units[unit].max_blockage);
2938 }
2939 if (tick - clock > cost)
2940 cost = tick - clock;
2941 }
2942 return cost;
2943}
2944
2945/* Record INSN as having begun execution on the units encoded by UNIT at
2946 time CLOCK. */
2947
cbb13457 2948HAIFA_INLINE static void
8c660648
JL
2949schedule_unit (unit, insn, clock)
2950 int unit, clock;
2951 rtx insn;
2952{
2953 int i;
2954
2955 if (unit >= 0)
2956 {
2957 int instance = unit;
2958#if MAX_MULTIPLICITY > 1
2959 /* Find the first free instance of the function unit and use that
2960 one. We assume that one is free. */
2961 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
2962 {
2963 if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
2964 break;
2965 instance += FUNCTION_UNITS_SIZE;
2966 }
2967#endif
2968 unit_last_insn[instance] = insn;
2969 unit_tick[instance] = (clock + function_units[unit].max_blockage);
2970 }
2971 else
2972 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
2973 if ((unit & 1) != 0)
2974 schedule_unit (i, insn, clock);
2975}
2976
2977/* Return the actual hazard cost of executing INSN on the units encoded by
2978 UNIT at time CLOCK if the previous actual hazard cost was COST. */
2979
cbb13457 2980HAIFA_INLINE static int
8c660648
JL
2981actual_hazard (unit, insn, clock, cost)
2982 int unit, clock, cost;
2983 rtx insn;
2984{
2985 int i;
2986
2987 if (unit >= 0)
2988 {
2989 /* Find the instance of the function unit with the minimum hazard. */
2990 int instance = unit;
2991 int best_cost = actual_hazard_this_instance (unit, instance, insn,
2992 clock, cost);
2993 int this_cost;
2994
2995#if MAX_MULTIPLICITY > 1
2996 if (best_cost > cost)
2997 {
2998 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
2999 {
3000 instance += FUNCTION_UNITS_SIZE;
3001 this_cost = actual_hazard_this_instance (unit, instance, insn,
3002 clock, cost);
3003 if (this_cost < best_cost)
3004 {
3005 best_cost = this_cost;
3006 if (this_cost <= cost)
3007 break;
3008 }
3009 }
3010 }
3011#endif
3012 cost = MAX (cost, best_cost);
3013 }
3014 else
3015 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
3016 if ((unit & 1) != 0)
3017 cost = actual_hazard (i, insn, clock, cost);
3018
3019 return cost;
3020}
3021
3022/* Return the potential hazard cost of executing an instruction on the
3023 units encoded by UNIT if the previous potential hazard cost was COST.
3024 An insn with a large blockage time is chosen in preference to one
3025 with a smaller time; an insn that uses a unit that is more likely
3026 to be used is chosen in preference to one with a unit that is less
3027 used. We are trying to minimize a subsequent actual hazard. */
3028
cbb13457 3029HAIFA_INLINE static int
8c660648
JL
3030potential_hazard (unit, insn, cost)
3031 int unit, cost;
3032 rtx insn;
3033{
3034 int i, ncost;
3035 unsigned int minb, maxb;
3036
3037 if (unit >= 0)
3038 {
3039 minb = maxb = function_units[unit].max_blockage;
3040 if (maxb > 1)
3041 {
3042 if (function_units[unit].blockage_range_function)
3043 {
3044 maxb = minb = blockage_range (unit, insn);
3045 maxb = MAX_BLOCKAGE_COST (maxb);
3046 minb = MIN_BLOCKAGE_COST (minb);
3047 }
3048
3049 if (maxb > 1)
3050 {
3051 /* Make the number of instructions left dominate. Make the
3052 minimum delay dominate the maximum delay. If all these
3053 are the same, use the unit number to add an arbitrary
3054 ordering. Other terms can be added. */
3055 ncost = minb * 0x40 + maxb;
3056 ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
3057 if (ncost > cost)
3058 cost = ncost;
3059 }
3060 }
3061 }
3062 else
3063 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
3064 if ((unit & 1) != 0)
3065 cost = potential_hazard (i, insn, cost);
3066
3067 return cost;
3068}
3069
3070/* Compute cost of executing INSN given the dependence LINK on the insn USED.
3071 This is the number of cycles between instruction issue and
3072 instruction results. */
3073
cbb13457 3074HAIFA_INLINE static int
8c660648
JL
3075insn_cost (insn, link, used)
3076 rtx insn, link, used;
3077{
3078 register int cost = INSN_COST (insn);
3079
3080 if (cost == 0)
3081 {
3082 recog_memoized (insn);
3083
3084 /* A USE insn, or something else we don't need to understand.
3085 We can't pass these directly to result_ready_cost because it will
3086 trigger a fatal error for unrecognizable insns. */
3087 if (INSN_CODE (insn) < 0)
3088 {
3089 INSN_COST (insn) = 1;
3090 return 1;
3091 }
3092 else
3093 {
3094 cost = result_ready_cost (insn);
3095
3096 if (cost < 1)
3097 cost = 1;
3098
3099 INSN_COST (insn) = cost;
3100 }
3101 }
3102
3103 /* in this case estimate cost without caring how insn is used. */
3104 if (link == 0 && used == 0)
3105 return cost;
3106
3107 /* A USE insn should never require the value used to be computed. This
3108 allows the computation of a function's result and parameter values to
3109 overlap the return and call. */
3110 recog_memoized (used);
3111 if (INSN_CODE (used) < 0)
3112 LINK_COST_FREE (link) = 1;
3113
3114 /* If some dependencies vary the cost, compute the adjustment. Most
3115 commonly, the adjustment is complete: either the cost is ignored
3116 (in the case of an output- or anti-dependence), or the cost is
3117 unchanged. These values are cached in the link as LINK_COST_FREE
3118 and LINK_COST_ZERO. */
3119
3120 if (LINK_COST_FREE (link))
3121 cost = 1;
3122#ifdef ADJUST_COST
3123 else if (!LINK_COST_ZERO (link))
3124 {
3125 int ncost = cost;
3126
3127 ADJUST_COST (used, link, insn, ncost);
3128 if (ncost <= 1)
3129 LINK_COST_FREE (link) = ncost = 1;
3130 if (cost == ncost)
3131 LINK_COST_ZERO (link) = 1;
3132 cost = ncost;
3133 }
3134#endif
3135 return cost;
3136}
3137
3138/* Compute the priority number for INSN. */
3139
3140static int
3141priority (insn)
3142 rtx insn;
3143{
3144 int this_priority;
3145 rtx link;
3146
3147 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
3148 return 0;
3149
3150 if ((this_priority = INSN_PRIORITY (insn)) == 0)
3151 {
3152 if (INSN_DEPEND (insn) == 0)
3153 this_priority = insn_cost (insn, 0, 0);
3154 else
3155 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
3156 {
3157 rtx next;
3158 int next_priority;
3159
6d8ccdbb
JL
3160 if (RTX_INTEGRATED_P (link))
3161 continue;
3162
8c660648
JL
3163 next = XEXP (link, 0);
3164
3165 /* critical path is meaningful in block boundaries only */
3166 if (INSN_BLOCK (next) != INSN_BLOCK (insn))
3167 continue;
3168
3169 next_priority = insn_cost (insn, link, next) + priority (next);
3170 if (next_priority > this_priority)
3171 this_priority = next_priority;
3172 }
3173 INSN_PRIORITY (insn) = this_priority;
3174 }
3175 return this_priority;
3176}
3177\f
3178
3179/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
3180 them to the unused_*_list variables, so that they can be reused. */
3181
8c660648
JL
3182static void
3183free_pending_lists ()
3184{
8c660648
JL
3185 if (current_nr_blocks <= 1)
3186 {
ebb7b10b
RH
3187 free_list (&pending_read_insns, &unused_insn_list);
3188 free_list (&pending_write_insns, &unused_insn_list);
3189 free_list (&pending_read_mems, &unused_expr_list);
3190 free_list (&pending_write_mems, &unused_expr_list);
8c660648
JL
3191 }
3192 else
3193 {
3194 /* interblock scheduling */
3195 int bb;
3196
3197 for (bb = 0; bb < current_nr_blocks; bb++)
3198 {
ebb7b10b
RH
3199 free_list (&bb_pending_read_insns[bb], &unused_insn_list);
3200 free_list (&bb_pending_write_insns[bb], &unused_insn_list);
3201 free_list (&bb_pending_read_mems[bb], &unused_expr_list);
3202 free_list (&bb_pending_write_mems[bb], &unused_expr_list);
8c660648
JL
3203 }
3204 }
3205}
3206
3207/* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
3208 The MEM is a memory reference contained within INSN, which we are saving
3209 so that we can do memory aliasing on it. */
3210
3211static void
3212add_insn_mem_dependence (insn_list, mem_list, insn, mem)
3213 rtx *insn_list, *mem_list, insn, mem;
3214{
3215 register rtx link;
3216
ebb7b10b 3217 link = alloc_INSN_LIST (insn, *insn_list);
8c660648
JL
3218 *insn_list = link;
3219
ebb7b10b 3220 link = alloc_EXPR_LIST (VOIDmode, mem, *mem_list);
8c660648
JL
3221 *mem_list = link;
3222
3223 pending_lists_length++;
3224}
3225\f
3226
3227/* Make a dependency between every memory reference on the pending lists
3228 and INSN, thus flushing the pending lists. If ONLY_WRITE, don't flush
3229 the read list. */
3230
3231static void
3232flush_pending_lists (insn, only_write)
3233 rtx insn;
3234 int only_write;
3235{
3236 rtx u;
3237 rtx link;
3238
3239 while (pending_read_insns && ! only_write)
3240 {
3241 add_dependence (insn, XEXP (pending_read_insns, 0), REG_DEP_ANTI);
3242
3243 link = pending_read_insns;
3244 pending_read_insns = XEXP (pending_read_insns, 1);
3245 XEXP (link, 1) = unused_insn_list;
3246 unused_insn_list = link;
3247
3248 link = pending_read_mems;
3249 pending_read_mems = XEXP (pending_read_mems, 1);
3250 XEXP (link, 1) = unused_expr_list;
3251 unused_expr_list = link;
3252 }
3253 while (pending_write_insns)
3254 {
3255 add_dependence (insn, XEXP (pending_write_insns, 0), REG_DEP_ANTI);
3256
3257 link = pending_write_insns;
3258 pending_write_insns = XEXP (pending_write_insns, 1);
3259 XEXP (link, 1) = unused_insn_list;
3260 unused_insn_list = link;
3261
3262 link = pending_write_mems;
3263 pending_write_mems = XEXP (pending_write_mems, 1);
3264 XEXP (link, 1) = unused_expr_list;
3265 unused_expr_list = link;
3266 }
3267 pending_lists_length = 0;
3268
3269 /* last_pending_memory_flush is now a list of insns */
3270 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
3271 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3272
ebb7b10b
RH
3273 free_list (&last_pending_memory_flush, &unused_insn_list);
3274 last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
8c660648
JL
3275}
3276
3277/* Analyze a single SET or CLOBBER rtx, X, creating all dependencies generated
3278 by the write to the destination of X, and reads of everything mentioned. */
3279
3280static void
3281sched_analyze_1 (x, insn)
3282 rtx x;
3283 rtx insn;
3284{
3285 register int regno;
3286 register rtx dest = SET_DEST (x);
3287
3288 if (dest == 0)
3289 return;
3290
3291 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
3292 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
3293 {
3294 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
3295 {
3296 /* The second and third arguments are values read by this insn. */
3297 sched_analyze_2 (XEXP (dest, 1), insn);
3298 sched_analyze_2 (XEXP (dest, 2), insn);
3299 }
3300 dest = SUBREG_REG (dest);
3301 }
3302
3303 if (GET_CODE (dest) == REG)
3304 {
3305 register int i;
3306
3307 regno = REGNO (dest);
3308
3309 /* A hard reg in a wide mode may really be multiple registers.
3310 If so, mark all of them just like the first. */
3311 if (regno < FIRST_PSEUDO_REGISTER)
3312 {
3313 i = HARD_REGNO_NREGS (regno, GET_MODE (dest));
3314 while (--i >= 0)
3315 {
3316 rtx u;
3317
3318 for (u = reg_last_uses[regno + i]; u; u = XEXP (u, 1))
3319 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3320 reg_last_uses[regno + i] = 0;
3321
3322 for (u = reg_last_sets[regno + i]; u; u = XEXP (u, 1))
3323 add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
3324
3325 SET_REGNO_REG_SET (reg_pending_sets, regno + i);
3326
3327 if ((call_used_regs[regno + i] || global_regs[regno + i]))
3328 /* Function calls clobber all call_used regs. */
3329 for (u = last_function_call; u; u = XEXP (u, 1))
3330 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3331 }
3332 }
3333 else
3334 {
3335 rtx u;
3336
3337 for (u = reg_last_uses[regno]; u; u = XEXP (u, 1))
3338 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3339 reg_last_uses[regno] = 0;
3340
3341 for (u = reg_last_sets[regno]; u; u = XEXP (u, 1))
3342 add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
3343
3344 SET_REGNO_REG_SET (reg_pending_sets, regno);
3345
3346 /* Pseudos that are REG_EQUIV to something may be replaced
3347 by that during reloading. We need only add dependencies for
3348 the address in the REG_EQUIV note. */
3349 if (!reload_completed
3350 && reg_known_equiv_p[regno]
3351 && GET_CODE (reg_known_value[regno]) == MEM)
3352 sched_analyze_2 (XEXP (reg_known_value[regno], 0), insn);
3353
3354 /* Don't let it cross a call after scheduling if it doesn't
3355 already cross one. */
3356
3357 if (REG_N_CALLS_CROSSED (regno) == 0)
3358 for (u = last_function_call; u; u = XEXP (u, 1))
3359 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3360 }
3361 }
3362 else if (GET_CODE (dest) == MEM)
3363 {
3364 /* Writing memory. */
3365
3366 if (pending_lists_length > 32)
3367 {
3368 /* Flush all pending reads and writes to prevent the pending lists
3369 from getting any larger. Insn scheduling runs too slowly when
3370 these lists get long. The number 32 was chosen because it
3371 seems like a reasonable number. When compiling GCC with itself,
3372 this flush occurs 8 times for sparc, and 10 times for m88k using
3373 the number 32. */
3374 flush_pending_lists (insn, 0);
3375 }
3376 else
3377 {
3378 rtx u;
3379 rtx pending, pending_mem;
3380
3381 pending = pending_read_insns;
3382 pending_mem = pending_read_mems;
3383 while (pending)
3384 {
3385 /* If a dependency already exists, don't create a new one. */
3386 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3387 if (anti_dependence (XEXP (pending_mem, 0), dest))
3388 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
3389
3390 pending = XEXP (pending, 1);
3391 pending_mem = XEXP (pending_mem, 1);
3392 }
3393
3394 pending = pending_write_insns;
3395 pending_mem = pending_write_mems;
3396 while (pending)
3397 {
3398 /* If a dependency already exists, don't create a new one. */
3399 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3400 if (output_dependence (XEXP (pending_mem, 0), dest))
3401 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
3402
3403 pending = XEXP (pending, 1);
3404 pending_mem = XEXP (pending_mem, 1);
3405 }
3406
3407 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
3408 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3409
3410 add_insn_mem_dependence (&pending_write_insns, &pending_write_mems,
3411 insn, dest);
3412 }
3413 sched_analyze_2 (XEXP (dest, 0), insn);
3414 }
3415
3416 /* Analyze reads. */
3417 if (GET_CODE (x) == SET)
3418 sched_analyze_2 (SET_SRC (x), insn);
3419}
3420
3421/* Analyze the uses of memory and registers in rtx X in INSN. */
3422
3423static void
3424sched_analyze_2 (x, insn)
3425 rtx x;
3426 rtx insn;
3427{
3428 register int i;
3429 register int j;
3430 register enum rtx_code code;
3431 register char *fmt;
3432
3433 if (x == 0)
3434 return;
3435
3436 code = GET_CODE (x);
3437
3438 switch (code)
3439 {
3440 case CONST_INT:
3441 case CONST_DOUBLE:
3442 case SYMBOL_REF:
3443 case CONST:
3444 case LABEL_REF:
3445 /* Ignore constants. Note that we must handle CONST_DOUBLE here
3446 because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
3447 this does not mean that this insn is using cc0. */
3448 return;
3449
3450#ifdef HAVE_cc0
3451 case CC0:
3452 {
3453 rtx link, prev;
3454
3455 /* User of CC0 depends on immediately preceding insn. */
3456 SCHED_GROUP_P (insn) = 1;
3457
3458 /* There may be a note before this insn now, but all notes will
3459 be removed before we actually try to schedule the insns, so
3460 it won't cause a problem later. We must avoid it here though. */
3461 prev = prev_nonnote_insn (insn);
3462
3463 /* Make a copy of all dependencies on the immediately previous insn,
3464 and add to this insn. This is so that all the dependencies will
3465 apply to the group. Remove an explicit dependence on this insn
3466 as SCHED_GROUP_P now represents it. */
3467
3468 if (find_insn_list (prev, LOG_LINKS (insn)))
3469 remove_dependence (insn, prev);
3470
3471 for (link = LOG_LINKS (prev); link; link = XEXP (link, 1))
3472 add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
3473
3474 return;
3475 }
3476#endif
3477
3478 case REG:
3479 {
3480 rtx u;
3481 int regno = REGNO (x);
3482 if (regno < FIRST_PSEUDO_REGISTER)
3483 {
3484 int i;
3485
3486 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
3487 while (--i >= 0)
3488 {
3489 reg_last_uses[regno + i]
ebb7b10b 3490 = alloc_INSN_LIST (insn, reg_last_uses[regno + i]);
8c660648
JL
3491
3492 for (u = reg_last_sets[regno + i]; u; u = XEXP (u, 1))
3493 add_dependence (insn, XEXP (u, 0), 0);
3494
3495 if ((call_used_regs[regno + i] || global_regs[regno + i]))
3496 /* Function calls clobber all call_used regs. */
3497 for (u = last_function_call; u; u = XEXP (u, 1))
3498 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3499 }
3500 }
3501 else
3502 {
ebb7b10b 3503 reg_last_uses[regno] = alloc_INSN_LIST (insn, reg_last_uses[regno]);
8c660648
JL
3504
3505 for (u = reg_last_sets[regno]; u; u = XEXP (u, 1))
3506 add_dependence (insn, XEXP (u, 0), 0);
3507
3508 /* Pseudos that are REG_EQUIV to something may be replaced
3509 by that during reloading. We need only add dependencies for
3510 the address in the REG_EQUIV note. */
3511 if (!reload_completed
3512 && reg_known_equiv_p[regno]
3513 && GET_CODE (reg_known_value[regno]) == MEM)
3514 sched_analyze_2 (XEXP (reg_known_value[regno], 0), insn);
3515
3516 /* If the register does not already cross any calls, then add this
3517 insn to the sched_before_next_call list so that it will still
3518 not cross calls after scheduling. */
3519 if (REG_N_CALLS_CROSSED (regno) == 0)
3520 add_dependence (sched_before_next_call, insn, REG_DEP_ANTI);
3521 }
3522 return;
3523 }
3524
3525 case MEM:
3526 {
3527 /* Reading memory. */
3528 rtx u;
3529 rtx pending, pending_mem;
3530
3531 pending = pending_read_insns;
3532 pending_mem = pending_read_mems;
3533 while (pending)
3534 {
3535 /* If a dependency already exists, don't create a new one. */
3536 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3537 if (read_dependence (XEXP (pending_mem, 0), x))
3538 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
3539
3540 pending = XEXP (pending, 1);
3541 pending_mem = XEXP (pending_mem, 1);
3542 }
3543
3544 pending = pending_write_insns;
3545 pending_mem = pending_write_mems;
3546 while (pending)
3547 {
3548 /* If a dependency already exists, don't create a new one. */
3549 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3550 if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
3551 x, rtx_varies_p))
3552 add_dependence (insn, XEXP (pending, 0), 0);
3553
3554 pending = XEXP (pending, 1);
3555 pending_mem = XEXP (pending_mem, 1);
3556 }
3557
3558 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
3559 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3560
3561 /* Always add these dependencies to pending_reads, since
3562 this insn may be followed by a write. */
3563 add_insn_mem_dependence (&pending_read_insns, &pending_read_mems,
3564 insn, x);
3565
3566 /* Take advantage of tail recursion here. */
3567 sched_analyze_2 (XEXP (x, 0), insn);
3568 return;
3569 }
3570
e0cd0770
JC
3571 /* Force pending stores to memory in case a trap handler needs them. */
3572 case TRAP_IF:
3573 flush_pending_lists (insn, 1);
3574 break;
3575
8c660648
JL
3576 case ASM_OPERANDS:
3577 case ASM_INPUT:
3578 case UNSPEC_VOLATILE:
8c660648
JL
3579 {
3580 rtx u;
3581
3582 /* Traditional and volatile asm instructions must be considered to use
3583 and clobber all hard registers, all pseudo-registers and all of
3584 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3585
3586 Consider for instance a volatile asm that changes the fpu rounding
3587 mode. An insn should not be moved across this even if it only uses
3588 pseudo-regs because it might give an incorrectly rounded result. */
3589 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3590 {
3591 int max_reg = max_reg_num ();
3592 for (i = 0; i < max_reg; i++)
3593 {
3594 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3595 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3596 reg_last_uses[i] = 0;
3597
3598 /* reg_last_sets[r] is now a list of insns */
3599 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3600 add_dependence (insn, XEXP (u, 0), 0);
3601 }
3602 reg_pending_sets_all = 1;
3603
3604 flush_pending_lists (insn, 0);
3605 }
3606
3607 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3608 We can not just fall through here since then we would be confused
3609 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3610 traditional asms unlike their normal usage. */
3611
3612 if (code == ASM_OPERANDS)
3613 {
3614 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3615 sched_analyze_2 (ASM_OPERANDS_INPUT (x, j), insn);
3616 return;
3617 }
3618 break;
3619 }
3620
3621 case PRE_DEC:
3622 case POST_DEC:
3623 case PRE_INC:
3624 case POST_INC:
3625 /* These both read and modify the result. We must handle them as writes
3626 to get proper dependencies for following instructions. We must handle
3627 them as reads to get proper dependencies from this to previous
3628 instructions. Thus we need to pass them to both sched_analyze_1
3629 and sched_analyze_2. We must call sched_analyze_2 first in order
3630 to get the proper antecedent for the read. */
3631 sched_analyze_2 (XEXP (x, 0), insn);
3632 sched_analyze_1 (x, insn);
3633 return;
5835e573
KG
3634
3635 default:
3636 break;
8c660648
JL
3637 }
3638
3639 /* Other cases: walk the insn. */
3640 fmt = GET_RTX_FORMAT (code);
3641 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3642 {
3643 if (fmt[i] == 'e')
3644 sched_analyze_2 (XEXP (x, i), insn);
3645 else if (fmt[i] == 'E')
3646 for (j = 0; j < XVECLEN (x, i); j++)
3647 sched_analyze_2 (XVECEXP (x, i, j), insn);
3648 }
3649}
3650
3651/* Analyze an INSN with pattern X to find all dependencies. */
3652
3653static void
3654sched_analyze_insn (x, insn, loop_notes)
3655 rtx x, insn;
3656 rtx loop_notes;
3657{
3658 register RTX_CODE code = GET_CODE (x);
3659 rtx link;
3660 int maxreg = max_reg_num ();
3661 int i;
3662
3663 if (code == SET || code == CLOBBER)
3664 sched_analyze_1 (x, insn);
3665 else if (code == PARALLEL)
3666 {
3667 register int i;
3668 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
3669 {
3670 code = GET_CODE (XVECEXP (x, 0, i));
3671 if (code == SET || code == CLOBBER)
3672 sched_analyze_1 (XVECEXP (x, 0, i), insn);
3673 else
3674 sched_analyze_2 (XVECEXP (x, 0, i), insn);
3675 }
3676 }
3677 else
3678 sched_analyze_2 (x, insn);
3679
3680 /* Mark registers CLOBBERED or used by called function. */
3681 if (GET_CODE (insn) == CALL_INSN)
3682 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
3683 {
3684 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
3685 sched_analyze_1 (XEXP (link, 0), insn);
3686 else
3687 sched_analyze_2 (XEXP (link, 0), insn);
3688 }
3689
1f1ed00c
JL
3690 /* If there is a {LOOP,EHREGION}_{BEG,END} note in the middle of a basic
3691 block, then we must be sure that no instructions are scheduled across it.
8c660648
JL
3692 Otherwise, the reg_n_refs info (which depends on loop_depth) would
3693 become incorrect. */
3694
3695 if (loop_notes)
3696 {
3697 int max_reg = max_reg_num ();
1f1ed00c 3698 int schedule_barrier_found = 0;
8c660648
JL
3699 rtx link;
3700
1f1ed00c
JL
3701 /* Update loop_notes with any notes from this insn. Also determine
3702 if any of the notes on the list correspond to instruction scheduling
3703 barriers (loop, eh & setjmp notes, but not range notes. */
8c660648
JL
3704 link = loop_notes;
3705 while (XEXP (link, 1))
1f1ed00c
JL
3706 {
3707 if (XINT (link, 0) == NOTE_INSN_LOOP_BEG
3708 || XINT (link, 0) == NOTE_INSN_LOOP_END
3709 || XINT (link, 0) == NOTE_INSN_EH_REGION_BEG
3710 || XINT (link, 0) == NOTE_INSN_EH_REGION_END
3711 || XINT (link, 0) == NOTE_INSN_SETJMP)
3712 schedule_barrier_found = 1;
3713
3714 link = XEXP (link, 1);
3715 }
8c660648
JL
3716 XEXP (link, 1) = REG_NOTES (insn);
3717 REG_NOTES (insn) = loop_notes;
1f1ed00c
JL
3718
3719 /* Add dependencies if a scheduling barrier was found. */
3720 if (schedule_barrier_found)
3721 {
3722 for (i = 0; i < max_reg; i++)
3723 {
3724 rtx u;
3725 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3726 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3727 reg_last_uses[i] = 0;
3728
3729 /* reg_last_sets[r] is now a list of insns */
3730 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3731 add_dependence (insn, XEXP (u, 0), 0);
3732 }
3733 reg_pending_sets_all = 1;
3734
3735 flush_pending_lists (insn, 0);
3736 }
3737
8c660648
JL
3738 }
3739
3740 /* After reload, it is possible for an instruction to have a REG_DEAD note
3741 for a register that actually dies a few instructions earlier. For
3742 example, this can happen with SECONDARY_MEMORY_NEEDED reloads.
3743 In this case, we must consider the insn to use the register mentioned
3744 in the REG_DEAD note. Otherwise, we may accidentally move this insn
3745 after another insn that sets the register, thus getting obviously invalid
3746 rtl. This confuses reorg which believes that REG_DEAD notes are still
3747 meaningful.
3748
3749 ??? We would get better code if we fixed reload to put the REG_DEAD
3750 notes in the right places, but that may not be worth the effort. */
3751
3752 if (reload_completed)
3753 {
3754 rtx note;
3755
3756 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3757 if (REG_NOTE_KIND (note) == REG_DEAD)
3758 sched_analyze_2 (XEXP (note, 0), insn);
3759 }
3760
3761 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i,
3762 {
3763 /* reg_last_sets[r] is now a list of insns */
ebb7b10b 3764 free_list (&reg_last_sets[i], &unused_insn_list);
8c660648 3765 reg_last_sets[i]
ebb7b10b 3766 = alloc_INSN_LIST (insn, NULL_RTX);
8c660648
JL
3767 });
3768 CLEAR_REG_SET (reg_pending_sets);
3769
3770 if (reg_pending_sets_all)
3771 {
3772 for (i = 0; i < maxreg; i++)
ebb7b10b
RH
3773 {
3774 /* reg_last_sets[r] is now a list of insns */
3775 free_list (&reg_last_sets[i], &unused_insn_list);
3776 reg_last_sets[i] = alloc_INSN_LIST (insn, NULL_RTX);
3777 }
8c660648
JL
3778
3779 reg_pending_sets_all = 0;
3780 }
3781
3782 /* Handle function calls and function returns created by the epilogue
3783 threading code. */
3784 if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3785 {
3786 rtx dep_insn;
3787 rtx prev_dep_insn;
3788
3789 /* When scheduling instructions, we make sure calls don't lose their
3790 accompanying USE insns by depending them one on another in order.
3791
3792 Also, we must do the same thing for returns created by the epilogue
3793 threading code. Note this code works only in this special case,
3794 because other passes make no guarantee that they will never emit
3795 an instruction between a USE and a RETURN. There is such a guarantee
3796 for USE instructions immediately before a call. */
3797
3798 prev_dep_insn = insn;
3799 dep_insn = PREV_INSN (insn);
3800 while (GET_CODE (dep_insn) == INSN
3801 && GET_CODE (PATTERN (dep_insn)) == USE
3802 && GET_CODE (XEXP (PATTERN (dep_insn), 0)) == REG)
3803 {
3804 SCHED_GROUP_P (prev_dep_insn) = 1;
3805
3806 /* Make a copy of all dependencies on dep_insn, and add to insn.
3807 This is so that all of the dependencies will apply to the
3808 group. */
3809
3810 for (link = LOG_LINKS (dep_insn); link; link = XEXP (link, 1))
3811 add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
3812
3813 prev_dep_insn = dep_insn;
3814 dep_insn = PREV_INSN (dep_insn);
3815 }
3816 }
3817}
3818
3819/* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
3820 for every dependency. */
3821
3822static void
3823sched_analyze (head, tail)
3824 rtx head, tail;
3825{
3826 register rtx insn;
3827 register rtx u;
3828 rtx loop_notes = 0;
3829
3830 for (insn = head;; insn = NEXT_INSN (insn))
3831 {
3832 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
3833 {
062ae7ed
JL
3834 /* Make each JUMP_INSN a scheduling barrier for memory references. */
3835 if (GET_CODE (insn) == JUMP_INSN)
3836 last_pending_memory_flush
3837 = alloc_INSN_LIST (insn, last_pending_memory_flush);
8c660648
JL
3838 sched_analyze_insn (PATTERN (insn), insn, loop_notes);
3839 loop_notes = 0;
3840 }
3841 else if (GET_CODE (insn) == CALL_INSN)
3842 {
3843 rtx x;
3844 register int i;
3845
3846 CANT_MOVE (insn) = 1;
3847
3848 /* Any instruction using a hard register which may get clobbered
3849 by a call needs to be marked as dependent on this call.
3850 This prevents a use of a hard return reg from being moved
3851 past a void call (i.e. it does not explicitly set the hard
3852 return reg). */
3853
3854 /* If this call is followed by a NOTE_INSN_SETJMP, then assume that
3855 all registers, not just hard registers, may be clobbered by this
3856 call. */
3857
3858 /* Insn, being a CALL_INSN, magically depends on
3859 `last_function_call' already. */
3860
3861 if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == NOTE
3862 && NOTE_LINE_NUMBER (NEXT_INSN (insn)) == NOTE_INSN_SETJMP)
3863 {
3864 int max_reg = max_reg_num ();
3865 for (i = 0; i < max_reg; i++)
3866 {
3867 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3868 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3869
3870 reg_last_uses[i] = 0;
3871
3872 /* reg_last_sets[r] is now a list of insns */
3873 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3874 add_dependence (insn, XEXP (u, 0), 0);
3875 }
3876 reg_pending_sets_all = 1;
3877
3878 /* Add a pair of fake REG_NOTE which we will later
3879 convert back into a NOTE_INSN_SETJMP note. See
3880 reemit_notes for why we use a pair of NOTEs. */
ebb7b10b
RH
3881 REG_NOTES (insn) = alloc_EXPR_LIST (REG_DEAD,
3882 GEN_INT (0),
3883 REG_NOTES (insn));
3884 REG_NOTES (insn) = alloc_EXPR_LIST (REG_DEAD,
3885 GEN_INT (NOTE_INSN_SETJMP),
3886 REG_NOTES (insn));
8c660648
JL
3887 }
3888 else
3889 {
3890 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3891 if (call_used_regs[i] || global_regs[i])
3892 {
3893 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3894 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3895 reg_last_uses[i] = 0;
3896
3897 /* reg_last_sets[r] is now a list of insns */
3898 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3899 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3900
3901 SET_REGNO_REG_SET (reg_pending_sets, i);
3902 }
3903 }
3904
3905 /* For each insn which shouldn't cross a call, add a dependence
3906 between that insn and this call insn. */
3907 x = LOG_LINKS (sched_before_next_call);
3908 while (x)
3909 {
3910 add_dependence (insn, XEXP (x, 0), REG_DEP_ANTI);
3911 x = XEXP (x, 1);
3912 }
3913 LOG_LINKS (sched_before_next_call) = 0;
3914
3915 sched_analyze_insn (PATTERN (insn), insn, loop_notes);
3916 loop_notes = 0;
3917
3918 /* In the absence of interprocedural alias analysis, we must flush
3919 all pending reads and writes, and start new dependencies starting
3920 from here. But only flush writes for constant calls (which may
3921 be passed a pointer to something we haven't written yet). */
3922 flush_pending_lists (insn, CONST_CALL_P (insn));
3923
3924 /* Depend this function call (actually, the user of this
3925 function call) on all hard register clobberage. */
3926
3927 /* last_function_call is now a list of insns */
ebb7b10b
RH
3928 free_list(&last_function_call, &unused_insn_list);
3929 last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
8c660648
JL
3930 }
3931
3932 /* See comments on reemit_notes as to why we do this. */
3933 else if (GET_CODE (insn) == NOTE
3934 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
3935 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
3936 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
3937 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
0dfa1860
MM
3938 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_START
3939 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_END
8c660648
JL
3940 || (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP
3941 && GET_CODE (PREV_INSN (insn)) != CALL_INSN)))
3942 {
ebb7b10b
RH
3943 loop_notes = alloc_EXPR_LIST (REG_DEAD,
3944 GEN_INT (NOTE_BLOCK_NUMBER (insn)),
3945 loop_notes);
3946 loop_notes = alloc_EXPR_LIST (REG_DEAD,
3947 GEN_INT (NOTE_LINE_NUMBER (insn)),
3948 loop_notes);
8c660648
JL
3949 CONST_CALL_P (loop_notes) = CONST_CALL_P (insn);
3950 }
3951
3952 if (insn == tail)
3953 return;
3954 }
3955 abort ();
3956}
3957\f
3958/* Called when we see a set of a register. If death is true, then we are
3959 scanning backwards. Mark that register as unborn. If nobody says
3960 otherwise, that is how things will remain. If death is false, then we
3961 are scanning forwards. Mark that register as being born. */
3962
3963static void
5835e573 3964sched_note_set (x, death)
8c660648
JL
3965 rtx x;
3966 int death;
3967{
3968 register int regno;
3969 register rtx reg = SET_DEST (x);
3970 int subreg_p = 0;
3971
3972 if (reg == 0)
3973 return;
3974
3975 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == STRICT_LOW_PART
3976 || GET_CODE (reg) == SIGN_EXTRACT || GET_CODE (reg) == ZERO_EXTRACT)
3977 {
3978 /* Must treat modification of just one hardware register of a multi-reg
3979 value or just a byte field of a register exactly the same way that
3980 mark_set_1 in flow.c does, i.e. anything except a paradoxical subreg
3981 does not kill the entire register. */
3982 if (GET_CODE (reg) != SUBREG
3983 || REG_SIZE (SUBREG_REG (reg)) > REG_SIZE (reg))
3984 subreg_p = 1;
3985
3986 reg = SUBREG_REG (reg);
3987 }
3988
3989 if (GET_CODE (reg) != REG)
3990 return;
3991
3992 /* Global registers are always live, so the code below does not apply
3993 to them. */
3994
3995 regno = REGNO (reg);
3996 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
3997 {
3998 if (death)
3999 {
4000 /* If we only set part of the register, then this set does not
4001 kill it. */
4002 if (subreg_p)
4003 return;
4004
4005 /* Try killing this register. */
4006 if (regno < FIRST_PSEUDO_REGISTER)
4007 {
4008 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
4009 while (--j >= 0)
4010 {
4011 CLEAR_REGNO_REG_SET (bb_live_regs, regno + j);
4012 }
4013 }
4014 else
4015 {
4016 /* Recompute REG_BASIC_BLOCK as we update all the other
4017 dataflow information. */
4018 if (sched_reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
4019 sched_reg_basic_block[regno] = current_block_num;
4020 else if (sched_reg_basic_block[regno] != current_block_num)
4021 sched_reg_basic_block[regno] = REG_BLOCK_GLOBAL;
4022
4023 CLEAR_REGNO_REG_SET (bb_live_regs, regno);
4024 }
4025 }
4026 else
4027 {
4028 /* Make the register live again. */
4029 if (regno < FIRST_PSEUDO_REGISTER)
4030 {
4031 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
4032 while (--j >= 0)
4033 {
4034 SET_REGNO_REG_SET (bb_live_regs, regno + j);
4035 }
4036 }
4037 else
4038 {
4039 SET_REGNO_REG_SET (bb_live_regs, regno);
4040 }
4041 }
4042 }
4043}
4044\f
4045/* Macros and functions for keeping the priority queue sorted, and
4046 dealing with queueing and dequeueing of instructions. */
4047
4048#define SCHED_SORT(READY, N_READY) \
4049do { if ((N_READY) == 2) \
4050 swap_sort (READY, N_READY); \
4051 else if ((N_READY) > 2) \
4052 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
4053while (0)
4054
4055/* Returns a positive value if x is preferred; returns a negative value if
4056 y is preferred. Should never return 0, since that will make the sort
4057 unstable. */
4058
4059static int
4060rank_for_schedule (x, y)
01c7f350
MM
4061 const GENERIC_PTR x;
4062 const GENERIC_PTR y;
8c660648 4063{
01c7f350
MM
4064 rtx tmp = *(rtx *)y;
4065 rtx tmp2 = *(rtx *)x;
8c660648 4066 rtx link;
2db45993 4067 int tmp_class, tmp2_class, depend_count1, depend_count2;
8c660648
JL
4068 int val, priority_val, spec_val, prob_val, weight_val;
4069
4070
8c660648
JL
4071 /* prefer insn with higher priority */
4072 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
4073 if (priority_val)
4074 return priority_val;
4075
4076 /* prefer an insn with smaller contribution to registers-pressure */
4077 if (!reload_completed &&
4078 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
4079 return (weight_val);
4080
4081 /* some comparison make sense in interblock scheduling only */
4082 if (INSN_BB (tmp) != INSN_BB (tmp2))
4083 {
4084 /* prefer an inblock motion on an interblock motion */
4085 if ((INSN_BB (tmp2) == target_bb) && (INSN_BB (tmp) != target_bb))
4086 return 1;
4087 if ((INSN_BB (tmp) == target_bb) && (INSN_BB (tmp2) != target_bb))
4088 return -1;
4089
4090 /* prefer a useful motion on a speculative one */
4091 if ((spec_val = IS_SPECULATIVE_INSN (tmp) - IS_SPECULATIVE_INSN (tmp2)))
4092 return (spec_val);
4093
4094 /* prefer a more probable (speculative) insn */
4095 prob_val = INSN_PROBABILITY (tmp2) - INSN_PROBABILITY (tmp);
4096 if (prob_val)
4097 return (prob_val);
4098 }
4099
4100 /* compare insns based on their relation to the last-scheduled-insn */
4101 if (last_scheduled_insn)
4102 {
4103 /* Classify the instructions into three classes:
4104 1) Data dependent on last schedule insn.
4105 2) Anti/Output dependent on last scheduled insn.
4106 3) Independent of last scheduled insn, or has latency of one.
4107 Choose the insn from the highest numbered class if different. */
4108 link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
4109 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
4110 tmp_class = 3;
4111 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
4112 tmp_class = 1;
4113 else
4114 tmp_class = 2;
4115
4116 link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
4117 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
4118 tmp2_class = 3;
4119 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
4120 tmp2_class = 1;
4121 else
4122 tmp2_class = 2;
4123
4124 if ((val = tmp2_class - tmp_class))
4125 return val;
4126 }
4127
2db45993
JL
4128 /* Prefer the insn which has more later insns that depend on it.
4129 This gives the scheduler more freedom when scheduling later
4130 instructions at the expense of added register pressure. */
4131 depend_count1 = 0;
4132 for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
4133 depend_count1++;
4134
4135 depend_count2 = 0;
4136 for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
4137 depend_count2++;
4138
4139 val = depend_count2 - depend_count1;
4140 if (val)
4141 return val;
4142
8c660648
JL
4143 /* If insns are equally good, sort by INSN_LUID (original insn order),
4144 so that we make the sort stable. This minimizes instruction movement,
4145 thus minimizing sched's effect on debugging and cross-jumping. */
4146 return INSN_LUID (tmp) - INSN_LUID (tmp2);
4147}
4148
4149/* Resort the array A in which only element at index N may be out of order. */
4150
cbb13457 4151HAIFA_INLINE static void
8c660648
JL
4152swap_sort (a, n)
4153 rtx *a;
4154 int n;
4155{
4156 rtx insn = a[n - 1];
4157 int i = n - 2;
4158
4159 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
4160 {
4161 a[i + 1] = a[i];
4162 i -= 1;
4163 }
4164 a[i + 1] = insn;
4165}
4166
4167static int max_priority;
4168
4169/* Add INSN to the insn queue so that it can be executed at least
4170 N_CYCLES after the currently executing insn. Preserve insns
4171 chain for debugging purposes. */
4172
cbb13457 4173HAIFA_INLINE static void
8c660648
JL
4174queue_insn (insn, n_cycles)
4175 rtx insn;
4176 int n_cycles;
4177{
4178 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
ebb7b10b 4179 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
8c660648
JL
4180 insn_queue[next_q] = link;
4181 q_size += 1;
4182
4183 if (sched_verbose >= 2)
4184 {
4185 fprintf (dump, ";;\t\tReady-->Q: insn %d: ", INSN_UID (insn));
4186
4187 if (INSN_BB (insn) != target_bb)
4188 fprintf (dump, "(b%d) ", INSN_BLOCK (insn));
4189
4190 fprintf (dump, "queued for %d cycles.\n", n_cycles);
4191 }
4192
4193}
4194
4195/* Return nonzero if PAT is the pattern of an insn which makes a
4196 register live. */
4197
cbb13457 4198HAIFA_INLINE static int
8c660648
JL
4199birthing_insn_p (pat)
4200 rtx pat;
4201{
4202 int j;
4203
4204 if (reload_completed == 1)
4205 return 0;
4206
4207 if (GET_CODE (pat) == SET
4208 && GET_CODE (SET_DEST (pat)) == REG)
4209 {
4210 rtx dest = SET_DEST (pat);
4211 int i = REGNO (dest);
4212
4213 /* It would be more accurate to use refers_to_regno_p or
4214 reg_mentioned_p to determine when the dest is not live before this
4215 insn. */
4216
4217 if (REGNO_REG_SET_P (bb_live_regs, i))
4218 return (REG_N_SETS (i) == 1);
4219
4220 return 0;
4221 }
4222 if (GET_CODE (pat) == PARALLEL)
4223 {
4224 for (j = 0; j < XVECLEN (pat, 0); j++)
4225 if (birthing_insn_p (XVECEXP (pat, 0, j)))
4226 return 1;
4227 }
4228 return 0;
4229}
4230
4231/* PREV is an insn that is ready to execute. Adjust its priority if that
4232 will help shorten register lifetimes. */
4233
cbb13457 4234HAIFA_INLINE static void
8c660648
JL
4235adjust_priority (prev)
4236 rtx prev;
4237{
4238 /* Trying to shorten register lives after reload has completed
4239 is useless and wrong. It gives inaccurate schedules. */
4240 if (reload_completed == 0)
4241 {
4242 rtx note;
4243 int n_deaths = 0;
4244
4245 /* ??? This code has no effect, because REG_DEAD notes are removed
4246 before we ever get here. */
4247 for (note = REG_NOTES (prev); note; note = XEXP (note, 1))
4248 if (REG_NOTE_KIND (note) == REG_DEAD)
4249 n_deaths += 1;
4250
4251 /* Defer scheduling insns which kill registers, since that
4252 shortens register lives. Prefer scheduling insns which
4253 make registers live for the same reason. */
4254 switch (n_deaths)
4255 {
4256 default:
4257 INSN_PRIORITY (prev) >>= 3;
4258 break;
4259 case 3:
4260 INSN_PRIORITY (prev) >>= 2;
4261 break;
4262 case 2:
4263 case 1:
4264 INSN_PRIORITY (prev) >>= 1;
4265 break;
4266 case 0:
4267 if (birthing_insn_p (PATTERN (prev)))
4268 {
4269 int max = max_priority;
4270
4271 if (max > INSN_PRIORITY (prev))
4272 INSN_PRIORITY (prev) = max;
4273 }
4274 break;
4275 }
4276#ifdef ADJUST_PRIORITY
4277 ADJUST_PRIORITY (prev);
4278#endif
4279 }
4280}
4281
4282/* INSN is the "currently executing insn". Launch each insn which was
4283 waiting on INSN. READY is a vector of insns which are ready to fire.
4284 N_READY is the number of elements in READY. CLOCK is the current
4285 cycle. */
4286
4287static int
4288schedule_insn (insn, ready, n_ready, clock)
4289 rtx insn;
4290 rtx *ready;
4291 int n_ready;
4292 int clock;
4293{
4294 rtx link;
4295 int unit;
4296
4297 unit = insn_unit (insn);
4298
4299 if (sched_verbose >= 2)
4300 {
4301 fprintf (dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ", INSN_UID (insn));
4302 insn_print_units (insn);
4303 fprintf (dump, "\n");
4304 }
4305
4306 if (sched_verbose && unit == -1)
4307 visualize_no_unit (insn);
4308
4309 if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
4310 schedule_unit (unit, insn, clock);
4311
4312 if (INSN_DEPEND (insn) == 0)
4313 return n_ready;
4314
4315 /* This is used by the function adjust_priority above. */
4316 if (n_ready > 0)
4317 max_priority = MAX (INSN_PRIORITY (ready[0]), INSN_PRIORITY (insn));
4318 else
4319 max_priority = INSN_PRIORITY (insn);
4320
4321 for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
4322 {
4323 rtx next = XEXP (link, 0);
4324 int cost = insn_cost (insn, link, next);
4325
4326 INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost);
4327
4328 if ((INSN_DEP_COUNT (next) -= 1) == 0)
4329 {
4330 int effective_cost = INSN_TICK (next) - clock;
4331
4332 /* For speculative insns, before inserting to ready/queue,
4333 check live, exception-free, and issue-delay */
4334 if (INSN_BB (next) != target_bb
4335 && (!IS_VALID (INSN_BB (next))
4336 || CANT_MOVE (next)
4337 || (IS_SPECULATIVE_INSN (next)
4338 && (insn_issue_delay (next) > 3
5835e573 4339 || !check_live (next, INSN_BB (next))
8c660648
JL
4340 || !is_exception_free (next, INSN_BB (next), target_bb)))))
4341 continue;
4342
4343 if (sched_verbose >= 2)
4344 {
4345 fprintf (dump, ";;\t\tdependences resolved: insn %d ", INSN_UID (next));
4346
4347 if (current_nr_blocks > 1 && INSN_BB (next) != target_bb)
4348 fprintf (dump, "/b%d ", INSN_BLOCK (next));
4349
4350 if (effective_cost <= 1)
4351 fprintf (dump, "into ready\n");
4352 else
4353 fprintf (dump, "into queue with cost=%d\n", effective_cost);
4354 }
4355
4356 /* Adjust the priority of NEXT and either put it on the ready
4357 list or queue it. */
4358 adjust_priority (next);
4359 if (effective_cost <= 1)
4360 ready[n_ready++] = next;
4361 else
4362 queue_insn (next, effective_cost);
4363 }
4364 }
4365
4366 return n_ready;
4367}
4368
4369
4370/* Add a REG_DEAD note for REG to INSN, reusing a REG_DEAD note from the
4371 dead_notes list. */
4372
4373static void
4374create_reg_dead_note (reg, insn)
4375 rtx reg, insn;
4376{
4377 rtx link;
4378
4379 /* The number of registers killed after scheduling must be the same as the
4380 number of registers killed before scheduling. The number of REG_DEAD
4381 notes may not be conserved, i.e. two SImode hard register REG_DEAD notes
4382 might become one DImode hard register REG_DEAD note, but the number of
4383 registers killed will be conserved.
4384
4385 We carefully remove REG_DEAD notes from the dead_notes list, so that
4386 there will be none left at the end. If we run out early, then there
4387 is a bug somewhere in flow, combine and/or sched. */
4388
4389 if (dead_notes == 0)
4390 {
4391 if (current_nr_blocks <= 1)
4392 abort ();
4393 else
ebb7b10b 4394 link = alloc_EXPR_LIST (REG_DEAD, NULL_RTX, NULL_RTX);
8c660648
JL
4395 }
4396 else
4397 {
4398 /* Number of regs killed by REG. */
4399 int regs_killed = (REGNO (reg) >= FIRST_PSEUDO_REGISTER ? 1
4400 : HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)));
4401 /* Number of regs killed by REG_DEAD notes taken off the list. */
4402 int reg_note_regs;
4403
4404 link = dead_notes;
4405 reg_note_regs = (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
4406 : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
4407 GET_MODE (XEXP (link, 0))));
4408 while (reg_note_regs < regs_killed)
4409 {
4410 link = XEXP (link, 1);
04029ca2
JL
4411
4412 /* LINK might be zero if we killed more registers after scheduling
4413 than before, and the last hard register we kill is actually
4414 multiple hard regs.
4415
4416 This is normal for interblock scheduling, so deal with it in
4417 that case, else abort. */
4418 if (link == NULL_RTX && current_nr_blocks <= 1)
4419 abort ();
4420 else if (link == NULL_RTX)
ebb7b10b
RH
4421 link = alloc_EXPR_LIST (REG_DEAD, gen_rtx_REG (word_mode, 0),
4422 NULL_RTX);
04029ca2 4423
8c660648
JL
4424 reg_note_regs += (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
4425 : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
4426 GET_MODE (XEXP (link, 0))));
4427 }
4428 dead_notes = XEXP (link, 1);
4429
4430 /* If we took too many regs kills off, put the extra ones back. */
4431 while (reg_note_regs > regs_killed)
4432 {
4433 rtx temp_reg, temp_link;
4434
38a448ca 4435 temp_reg = gen_rtx_REG (word_mode, 0);
ebb7b10b 4436 temp_link = alloc_EXPR_LIST (REG_DEAD, temp_reg, dead_notes);
8c660648
JL
4437 dead_notes = temp_link;
4438 reg_note_regs--;
4439 }
4440 }
4441
4442 XEXP (link, 0) = reg;
4443 XEXP (link, 1) = REG_NOTES (insn);
4444 REG_NOTES (insn) = link;
4445}
4446
4447/* Subroutine on attach_deaths_insn--handles the recursive search
4448 through INSN. If SET_P is true, then x is being modified by the insn. */
4449
4450static void
4451attach_deaths (x, insn, set_p)
4452 rtx x;
4453 rtx insn;
4454 int set_p;
4455{
4456 register int i;
4457 register int j;
4458 register enum rtx_code code;
4459 register char *fmt;
4460
4461 if (x == 0)
4462 return;
4463
4464 code = GET_CODE (x);
4465
4466 switch (code)
4467 {
4468 case CONST_INT:
4469 case CONST_DOUBLE:
4470 case LABEL_REF:
4471 case SYMBOL_REF:
4472 case CONST:
4473 case CODE_LABEL:
4474 case PC:
4475 case CC0:
4476 /* Get rid of the easy cases first. */
4477 return;
4478
4479 case REG:
4480 {
4481 /* If the register dies in this insn, queue that note, and mark
4482 this register as needing to die. */
4483 /* This code is very similar to mark_used_1 (if set_p is false)
4484 and mark_set_1 (if set_p is true) in flow.c. */
4485
4486 register int regno;
4487 int some_needed;
4488 int all_needed;
4489
4490 if (set_p)
4491 return;
4492
4493 regno = REGNO (x);
4494 all_needed = some_needed = REGNO_REG_SET_P (old_live_regs, regno);
4495 if (regno < FIRST_PSEUDO_REGISTER)
4496 {
4497 int n;
4498
4499 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
4500 while (--n > 0)
4501 {
4502 int needed = (REGNO_REG_SET_P (old_live_regs, regno + n));
4503 some_needed |= needed;
4504 all_needed &= needed;
4505 }
4506 }
4507
4508 /* If it wasn't live before we started, then add a REG_DEAD note.
4509 We must check the previous lifetime info not the current info,
4510 because we may have to execute this code several times, e.g.
4511 once for a clobber (which doesn't add a note) and later
4512 for a use (which does add a note).
4513
4514 Always make the register live. We must do this even if it was
4515 live before, because this may be an insn which sets and uses
4516 the same register, in which case the register has already been
4517 killed, so we must make it live again.
4518
4519 Global registers are always live, and should never have a REG_DEAD
4520 note added for them, so none of the code below applies to them. */
4521
4522 if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
4523 {
4524 /* Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
4525 STACK_POINTER_REGNUM, since these are always considered to be
4526 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
4527 if (regno != FRAME_POINTER_REGNUM
4528#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4529 && ! (regno == HARD_FRAME_POINTER_REGNUM)
4530#endif
4531#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
4532 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4533#endif
4534 && regno != STACK_POINTER_REGNUM)
4535 {
d6df9efb 4536 if (! all_needed && ! dead_or_set_p (insn, x))
8c660648
JL
4537 {
4538 /* Check for the case where the register dying partially
4539 overlaps the register set by this insn. */
4540 if (regno < FIRST_PSEUDO_REGISTER
4541 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
4542 {
4543 int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
4544 while (--n >= 0)
4545 some_needed |= dead_or_set_regno_p (insn, regno + n);
4546 }
4547
4548 /* If none of the words in X is needed, make a REG_DEAD
4549 note. Otherwise, we must make partial REG_DEAD
4550 notes. */
4551 if (! some_needed)
4552 create_reg_dead_note (x, insn);
4553 else
4554 {
4555 int i;
4556
4557 /* Don't make a REG_DEAD note for a part of a
4558 register that is set in the insn. */
4559 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
4560 i >= 0; i--)
4561 if (! REGNO_REG_SET_P (old_live_regs, regno+i)
4562 && ! dead_or_set_regno_p (insn, regno + i))
38a448ca
RH
4563 create_reg_dead_note (gen_rtx_REG (reg_raw_mode[regno + i],
4564 regno + i),
8c660648
JL
4565 insn);
4566 }
4567 }
4568 }
4569
4570 if (regno < FIRST_PSEUDO_REGISTER)
4571 {
4572 int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
4573 while (--j >= 0)
4574 {
4575 SET_REGNO_REG_SET (bb_live_regs, regno + j);
4576 }
4577 }
4578 else
4579 {
4580 /* Recompute REG_BASIC_BLOCK as we update all the other
4581 dataflow information. */
4582 if (sched_reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
4583 sched_reg_basic_block[regno] = current_block_num;
4584 else if (sched_reg_basic_block[regno] != current_block_num)
4585 sched_reg_basic_block[regno] = REG_BLOCK_GLOBAL;
4586
4587 SET_REGNO_REG_SET (bb_live_regs, regno);
4588 }
4589 }
4590 return;
4591 }
4592
4593 case MEM:
4594 /* Handle tail-recursive case. */
4595 attach_deaths (XEXP (x, 0), insn, 0);
4596 return;
4597
4598 case SUBREG:
d6df9efb
JL
4599 attach_deaths (SUBREG_REG (x), insn,
4600 set_p && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
4601 <= UNITS_PER_WORD)
4602 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
4603 == GET_MODE_SIZE (GET_MODE ((x))))));
4604 return;
4605
8c660648 4606 case STRICT_LOW_PART:
d6df9efb 4607 attach_deaths (XEXP (x, 0), insn, 0);
8c660648
JL
4608 return;
4609
4610 case ZERO_EXTRACT:
4611 case SIGN_EXTRACT:
d6df9efb 4612 attach_deaths (XEXP (x, 0), insn, 0);
8c660648
JL
4613 attach_deaths (XEXP (x, 1), insn, 0);
4614 attach_deaths (XEXP (x, 2), insn, 0);
4615 return;
4616
4617 default:
4618 /* Other cases: walk the insn. */
4619 fmt = GET_RTX_FORMAT (code);
4620 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4621 {
4622 if (fmt[i] == 'e')
4623 attach_deaths (XEXP (x, i), insn, 0);
4624 else if (fmt[i] == 'E')
4625 for (j = 0; j < XVECLEN (x, i); j++)
4626 attach_deaths (XVECEXP (x, i, j), insn, 0);
4627 }
4628 }
4629}
4630
4631/* After INSN has executed, add register death notes for each register
4632 that is dead after INSN. */
4633
4634static void
4635attach_deaths_insn (insn)
4636 rtx insn;
4637{
4638 rtx x = PATTERN (insn);
4639 register RTX_CODE code = GET_CODE (x);
4640 rtx link;
4641
4642 if (code == SET)
4643 {
4644 attach_deaths (SET_SRC (x), insn, 0);
4645
4646 /* A register might die here even if it is the destination, e.g.
4647 it is the target of a volatile read and is otherwise unused.
4648 Hence we must always call attach_deaths for the SET_DEST. */
4649 attach_deaths (SET_DEST (x), insn, 1);
4650 }
4651 else if (code == PARALLEL)
4652 {
4653 register int i;
4654 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4655 {
4656 code = GET_CODE (XVECEXP (x, 0, i));
4657 if (code == SET)
4658 {
4659 attach_deaths (SET_SRC (XVECEXP (x, 0, i)), insn, 0);
4660
4661 attach_deaths (SET_DEST (XVECEXP (x, 0, i)), insn, 1);
4662 }
4663 /* Flow does not add REG_DEAD notes to registers that die in
4664 clobbers, so we can't either. */
4665 else if (code != CLOBBER)
4666 attach_deaths (XVECEXP (x, 0, i), insn, 0);
4667 }
4668 }
4669 /* If this is a CLOBBER, only add REG_DEAD notes to registers inside a
4670 MEM being clobbered, just like flow. */
4671 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == MEM)
4672 attach_deaths (XEXP (XEXP (x, 0), 0), insn, 0);
4673 /* Otherwise don't add a death note to things being clobbered. */
4674 else if (code != CLOBBER)
4675 attach_deaths (x, insn, 0);
4676
4677 /* Make death notes for things used in the called function. */
4678 if (GET_CODE (insn) == CALL_INSN)
4679 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
4680 attach_deaths (XEXP (XEXP (link, 0), 0), insn,
4681 GET_CODE (XEXP (link, 0)) == CLOBBER);
4682}
4683
4684/* functions for handlnig of notes */
4685
4686/* Delete notes beginning with INSN and put them in the chain
4687 of notes ended by NOTE_LIST.
4688 Returns the insn following the notes. */
4689
4690static rtx
4691unlink_other_notes (insn, tail)
4692 rtx insn, tail;
4693{
4694 rtx prev = PREV_INSN (insn);
4695
4696 while (insn != tail && GET_CODE (insn) == NOTE)
4697 {
4698 rtx next = NEXT_INSN (insn);
4699 /* Delete the note from its current position. */
4700 if (prev)
4701 NEXT_INSN (prev) = next;
4702 if (next)
4703 PREV_INSN (next) = prev;
4704
4705 /* Don't save away NOTE_INSN_SETJMPs, because they must remain
4706 immediately after the call they follow. We use a fake
4707 (REG_DEAD (const_int -1)) note to remember them.
4708 Likewise with NOTE_INSN_{LOOP,EHREGION}_{BEG, END}. */
4709 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_SETJMP
4710 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
4711 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
0dfa1860
MM
4712 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_START
4713 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_END
8c660648
JL
4714 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
4715 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
4716 {
4717 /* Insert the note at the end of the notes list. */
4718 PREV_INSN (insn) = note_list;
4719 if (note_list)
4720 NEXT_INSN (note_list) = insn;
4721 note_list = insn;
4722 }
4723
4724 insn = next;
4725 }
4726 return insn;
4727}
4728
4729/* Delete line notes beginning with INSN. Record line-number notes so
4730 they can be reused. Returns the insn following the notes. */
4731
4732static rtx
4733unlink_line_notes (insn, tail)
4734 rtx insn, tail;
4735{
4736 rtx prev = PREV_INSN (insn);
4737
4738 while (insn != tail && GET_CODE (insn) == NOTE)
4739 {
4740 rtx next = NEXT_INSN (insn);
4741
4742 if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
4743 {
4744 /* Delete the note from its current position. */
4745 if (prev)
4746 NEXT_INSN (prev) = next;
4747 if (next)
4748 PREV_INSN (next) = prev;
4749
4750 /* Record line-number notes so they can be reused. */
4751 LINE_NOTE (insn) = insn;
4752 }
4753 else
4754 prev = insn;
4755
4756 insn = next;
4757 }
4758 return insn;
4759}
4760
4761/* Return the head and tail pointers of BB. */
4762
cbb13457 4763HAIFA_INLINE static void
8c660648
JL
4764get_block_head_tail (bb, headp, tailp)
4765 int bb;
4766 rtx *headp;
4767 rtx *tailp;
4768{
4769
55d89719
TK
4770 rtx head;
4771 rtx tail;
8c660648
JL
4772 int b;
4773
4774 b = BB_TO_BLOCK (bb);
4775
4776 /* HEAD and TAIL delimit the basic block being scheduled. */
4777 head = basic_block_head[b];
4778 tail = basic_block_end[b];
4779
4780 /* Don't include any notes or labels at the beginning of the
4781 basic block, or notes at the ends of basic blocks. */
4782 while (head != tail)
4783 {
4784 if (GET_CODE (head) == NOTE)
4785 head = NEXT_INSN (head);
4786 else if (GET_CODE (tail) == NOTE)
4787 tail = PREV_INSN (tail);
4788 else if (GET_CODE (head) == CODE_LABEL)
4789 head = NEXT_INSN (head);
4790 else
4791 break;
4792 }
4793
4794 *headp = head;
4795 *tailp = tail;
4796}
4797
4798/* Delete line notes from bb. Save them so they can be later restored
4799 (in restore_line_notes ()). */
4800
4801static void
4802rm_line_notes (bb)
4803 int bb;
4804{
4805 rtx next_tail;
4806 rtx tail;
4807 rtx head;
4808 rtx insn;
4809
4810 get_block_head_tail (bb, &head, &tail);
4811
4812 if (head == tail
4813 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
4814 return;
4815
4816 next_tail = NEXT_INSN (tail);
4817 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4818 {
4819 rtx prev;
4820
4821 /* Farm out notes, and maybe save them in NOTE_LIST.
4822 This is needed to keep the debugger from
4823 getting completely deranged. */
4824 if (GET_CODE (insn) == NOTE)
4825 {
4826 prev = insn;
4827 insn = unlink_line_notes (insn, next_tail);
4828
4829 if (prev == tail)
4830 abort ();
4831 if (prev == head)
4832 abort ();
4833 if (insn == next_tail)
4834 abort ();
4835 }
4836 }
4837}
4838
4839/* Save line number notes for each insn in bb. */
4840
4841static void
4842save_line_notes (bb)
4843 int bb;
4844{
4845 rtx head, tail;
4846 rtx next_tail;
4847
4848 /* We must use the true line number for the first insn in the block
4849 that was computed and saved at the start of this pass. We can't
4850 use the current line number, because scheduling of the previous
4851 block may have changed the current line number. */
4852
4853 rtx line = line_note_head[BB_TO_BLOCK (bb)];
4854 rtx insn;
4855
4856 get_block_head_tail (bb, &head, &tail);
4857 next_tail = NEXT_INSN (tail);
4858
4859 for (insn = basic_block_head[BB_TO_BLOCK (bb)];
4860 insn != next_tail;
4861 insn = NEXT_INSN (insn))
4862 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
4863 line = insn;
4864 else
4865 LINE_NOTE (insn) = line;
4866}
4867
4868
4869/* After bb was scheduled, insert line notes into the insns list. */
4870
4871static void
4872restore_line_notes (bb)
4873 int bb;
4874{
4875 rtx line, note, prev, new;
4876 int added_notes = 0;
4877 int b;
4878 rtx head, next_tail, insn;
4879
4880 b = BB_TO_BLOCK (bb);
4881
4882 head = basic_block_head[b];
4883 next_tail = NEXT_INSN (basic_block_end[b]);
4884
4885 /* Determine the current line-number. We want to know the current
4886 line number of the first insn of the block here, in case it is
4887 different from the true line number that was saved earlier. If
4888 different, then we need a line number note before the first insn
4889 of this block. If it happens to be the same, then we don't want to
4890 emit another line number note here. */
4891 for (line = head; line; line = PREV_INSN (line))
4892 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
4893 break;
4894
4895 /* Walk the insns keeping track of the current line-number and inserting
4896 the line-number notes as needed. */
4897 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4898 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
4899 line = insn;
4900 /* This used to emit line number notes before every non-deleted note.
4901 However, this confuses a debugger, because line notes not separated
4902 by real instructions all end up at the same address. I can find no
4903 use for line number notes before other notes, so none are emitted. */
4904 else if (GET_CODE (insn) != NOTE
4905 && (note = LINE_NOTE (insn)) != 0
4906 && note != line
4907 && (line == 0
4908 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
4909 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
4910 {
4911 line = note;
4912 prev = PREV_INSN (insn);
4913 if (LINE_NOTE (note))
4914 {
4915 /* Re-use the original line-number note. */
4916 LINE_NOTE (note) = 0;
4917 PREV_INSN (note) = prev;
4918 NEXT_INSN (prev) = note;
4919 PREV_INSN (insn) = note;
4920 NEXT_INSN (note) = insn;
4921 }
4922 else
4923 {
4924 added_notes++;
4925 new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
4926 NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
4927 RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
4928 }
4929 }
4930 if (sched_verbose && added_notes)
4931 fprintf (dump, ";; added %d line-number notes\n", added_notes);
4932}
4933
4934/* After scheduling the function, delete redundant line notes from the
4935 insns list. */
4936
4937static void
4938rm_redundant_line_notes ()
4939{
4940 rtx line = 0;
4941 rtx insn = get_insns ();
4942 int active_insn = 0;
4943 int notes = 0;
4944
4945 /* Walk the insns deleting redundant line-number notes. Many of these
4946 are already present. The remainder tend to occur at basic
4947 block boundaries. */
4948 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
4949 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
4950 {
4951 /* If there are no active insns following, INSN is redundant. */
4952 if (active_insn == 0)
4953 {
4954 notes++;
4955 NOTE_SOURCE_FILE (insn) = 0;
4956 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
4957 }
4958 /* If the line number is unchanged, LINE is redundant. */
4959 else if (line
4960 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
4961 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
4962 {
4963 notes++;
4964 NOTE_SOURCE_FILE (line) = 0;
4965 NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
4966 line = insn;
4967 }
4968 else
4969 line = insn;
4970 active_insn = 0;
4971 }
4972 else if (!((GET_CODE (insn) == NOTE
4973 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
4974 || (GET_CODE (insn) == INSN
4975 && (GET_CODE (PATTERN (insn)) == USE
4976 || GET_CODE (PATTERN (insn)) == CLOBBER))))
4977 active_insn++;
4978
4979 if (sched_verbose && notes)
4980 fprintf (dump, ";; deleted %d line-number notes\n", notes);
4981}
4982
4983/* Delete notes between head and tail and put them in the chain
4984 of notes ended by NOTE_LIST. */
4985
4986static void
4987rm_other_notes (head, tail)
4988 rtx head;
4989 rtx tail;
4990{
4991 rtx next_tail;
4992 rtx insn;
4993
4994 if (head == tail
4995 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
4996 return;
4997
4998 next_tail = NEXT_INSN (tail);
4999 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
5000 {
5001 rtx prev;
5002
5003 /* Farm out notes, and maybe save them in NOTE_LIST.
5004 This is needed to keep the debugger from
5005 getting completely deranged. */
5006 if (GET_CODE (insn) == NOTE)
5007 {
5008 prev = insn;
5009
5010 insn = unlink_other_notes (insn, next_tail);
5011
5012 if (prev == tail)
5013 abort ();
5014 if (prev == head)
5015 abort ();
5016 if (insn == next_tail)
5017 abort ();
5018 }
5019 }
5020}
5021
5022/* Constructor for `sometimes' data structure. */
5023
5024static int
5025new_sometimes_live (regs_sometimes_live, regno, sometimes_max)
5026 struct sometimes *regs_sometimes_live;
5027 int regno;
5028 int sometimes_max;
5029{
5030 register struct sometimes *p;
5031
5032 /* There should never be a register greater than max_regno here. If there
5033 is, it means that a define_split has created a new pseudo reg. This
5034 is not allowed, since there will not be flow info available for any
5035 new register, so catch the error here. */
5036 if (regno >= max_regno)
5037 abort ();
5038
5039 p = &regs_sometimes_live[sometimes_max];
5040 p->regno = regno;
5041 p->live_length = 0;
5042 p->calls_crossed = 0;
5043 sometimes_max++;
5044 return sometimes_max;
5045}
5046
5047/* Count lengths of all regs we are currently tracking,
5048 and find new registers no longer live. */
5049
5050static void
5051finish_sometimes_live (regs_sometimes_live, sometimes_max)
5052 struct sometimes *regs_sometimes_live;
5053 int sometimes_max;
5054{
5055 int i;
5056
5057 for (i = 0; i < sometimes_max; i++)
5058 {
5059 register struct sometimes *p = &regs_sometimes_live[i];
5060 int regno = p->regno;
5061
5062 sched_reg_live_length[regno] += p->live_length;
5063 sched_reg_n_calls_crossed[regno] += p->calls_crossed;
5064 }
5065}
5066
5067/* functions for computation of registers live/usage info */
5068
5069/* It is assumed that prior to scheduling basic_block_live_at_start (b)
5070 contains the registers that are alive at the entry to b.
5071
5072 Two passes follow: The first pass is performed before the scheduling
5073 of a region. It scans each block of the region forward, computing
5074 the set of registers alive at the end of the basic block and
5075 discard REG_DEAD notes (done by find_pre_sched_live ()).
5076
5077 The second path is invoked after scheduling all region blocks.
5078 It scans each block of the region backward, a block being traversed
5079 only after its succesors in the region. When the set of registers
5080 live at the end of a basic block may be changed by the scheduling
5081 (this may happen for multiple blocks region), it is computed as
5082 the union of the registers live at the start of its succesors.
5083 The last-use information is updated by inserting REG_DEAD notes.
5084 (done by find_post_sched_live ()) */
5085
5086/* Scan all the insns to be scheduled, removing register death notes.
5087 Register death notes end up in DEAD_NOTES.
5088 Recreate the register life information for the end of this basic
5089 block. */
5090
5091static void
5092find_pre_sched_live (bb)
5093 int bb;
5094{
5095 rtx insn, next_tail, head, tail;
5096 int b = BB_TO_BLOCK (bb);
5097
5098 get_block_head_tail (bb, &head, &tail);
5099 COPY_REG_SET (bb_live_regs, basic_block_live_at_start[b]);
5100 next_tail = NEXT_INSN (tail);
5101
5102 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
5103 {
5104 rtx prev, next, link;
5105 int reg_weight = 0;
5106
5107 /* Handle register life information. */
5108 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
5109 {
5110 /* See if the register gets born here. */
5111 /* We must check for registers being born before we check for
5112 registers dying. It is possible for a register to be born and
5113 die in the same insn, e.g. reading from a volatile memory
5114 location into an otherwise unused register. Such a register
5115 must be marked as dead after this insn. */
5116 if (GET_CODE (PATTERN (insn)) == SET
5117 || GET_CODE (PATTERN (insn)) == CLOBBER)
5118 {
5835e573 5119 sched_note_set (PATTERN (insn), 0);
8c660648
JL
5120 reg_weight++;
5121 }
5122
5123 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
5124 {
5125 int j;
5126 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
5127 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
5128 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
5129 {
5835e573 5130 sched_note_set (XVECEXP (PATTERN (insn), 0, j), 0);
8c660648
JL
5131 reg_weight++;
5132 }
5133
5134 /* ??? This code is obsolete and should be deleted. It
5135 is harmless though, so we will leave it in for now. */
5136 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
5137 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == USE)
5835e573 5138 sched_note_set (XVECEXP (PATTERN (insn), 0, j), 0);
8c660648
JL
5139 }
5140
5141 /* Each call cobbers (makes live) all call-clobbered regs
5142 that are not global or fixed. Note that the function-value
5143 reg is a call_clobbered reg. */
5144 if (GET_CODE (insn) == CALL_INSN)
5145 {
5146 int j;
5147 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
5148 if (call_used_regs[j] && !global_regs[j]
5149 && ! fixed_regs[j])
5150 {
5151 SET_REGNO_REG_SET (bb_live_regs, j);
8c660648
JL
5152 }
5153 }
5154
5155 /* Need to know what registers this insn kills. */
5156 for (prev = 0, link = REG_NOTES (insn); link; link = next)
5157 {
5158 next = XEXP (link, 1);
5159 if ((REG_NOTE_KIND (link) == REG_DEAD
5160 || REG_NOTE_KIND (link) == REG_UNUSED)
5161 /* Verify that the REG_NOTE has a valid value. */
5162 && GET_CODE (XEXP (link, 0)) == REG)
5163 {
5164 register int regno = REGNO (XEXP (link, 0));
5165
5166 reg_weight--;
5167
5168 /* Only unlink REG_DEAD notes; leave REG_UNUSED notes
5169 alone. */
5170 if (REG_NOTE_KIND (link) == REG_DEAD)
5171 {
5172 if (prev)
5173 XEXP (prev, 1) = next;
5174 else
5175 REG_NOTES (insn) = next;
5176 XEXP (link, 1) = dead_notes;
5177 dead_notes = link;
5178 }
5179 else
5180 prev = link;
5181
5182 if (regno < FIRST_PSEUDO_REGISTER)
5183 {
5184 int j = HARD_REGNO_NREGS (regno,
5185 GET_MODE (XEXP (link, 0)));
5186 while (--j >= 0)
5187 {
5188 CLEAR_REGNO_REG_SET (bb_live_regs, regno+j);
5189 }
5190 }
5191 else
5192 {
5193 CLEAR_REGNO_REG_SET (bb_live_regs, regno);
5194 }
5195 }
5196 else
5197 prev = link;
5198 }
5199 }
5200
5201 INSN_REG_WEIGHT (insn) = reg_weight;
5202 }
5203}
5204
5205/* Update register life and usage information for block bb
5206 after scheduling. Put register dead notes back in the code. */
5207
5208static void
5209find_post_sched_live (bb)
5210 int bb;
5211{
5212 int sometimes_max;
5213 int j, i;
5214 int b;
5215 rtx insn;
5216 rtx head, tail, prev_head, next_tail;
5217
5218 register struct sometimes *regs_sometimes_live;
5219
5220 b = BB_TO_BLOCK (bb);
5221
5222 /* compute live regs at the end of bb as a function of its successors. */
5223 if (current_nr_blocks > 1)
5224 {
5225 int e;
5226 int first_edge;
5227
5228 first_edge = e = OUT_EDGES (b);
5229 CLEAR_REG_SET (bb_live_regs);
5230
5231 if (e)
5232 do
5233 {
5234 int b_succ;
5235
5236 b_succ = TO_BLOCK (e);
5237 IOR_REG_SET (bb_live_regs, basic_block_live_at_start[b_succ]);
5238 e = NEXT_OUT (e);
5239 }
5240 while (e != first_edge);
5241 }
5242
5243 get_block_head_tail (bb, &head, &tail);
5244 next_tail = NEXT_INSN (tail);
5245 prev_head = PREV_INSN (head);
5246
7eea6443
JL
5247 EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, FIRST_PSEUDO_REGISTER, i,
5248 {
5249 sched_reg_basic_block[i] = REG_BLOCK_GLOBAL;
5250 });
8c660648
JL
5251
5252 /* if the block is empty, same regs are alive at its end and its start.
5253 since this is not guaranteed after interblock scheduling, make sure they
5254 are truly identical. */
5255 if (NEXT_INSN (prev_head) == tail
5256 && (GET_RTX_CLASS (GET_CODE (tail)) != 'i'))
5257 {
5258 if (current_nr_blocks > 1)
5259 COPY_REG_SET (basic_block_live_at_start[b], bb_live_regs);
5260
5261 return;
5262 }
5263
5264 b = BB_TO_BLOCK (bb);
5265 current_block_num = b;
5266
5267 /* Keep track of register lives. */
5268 old_live_regs = ALLOCA_REG_SET ();
5269 regs_sometimes_live
5270 = (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
5271 sometimes_max = 0;
5272
5273 /* initiate "sometimes" data, starting with registers live at end */
5274 sometimes_max = 0;
5275 COPY_REG_SET (old_live_regs, bb_live_regs);
5276 EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, 0, j,
5277 {
5278 sometimes_max
5279 = new_sometimes_live (regs_sometimes_live,
5280 j, sometimes_max);
5281 });
5282
5283 /* scan insns back, computing regs live info */
5284 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
5285 {
5286 /* First we kill registers set by this insn, and then we
5287 make registers used by this insn live. This is the opposite
5288 order used above because we are traversing the instructions
5289 backwards. */
5290
5291 /* Strictly speaking, we should scan REG_UNUSED notes and make
5292 every register mentioned there live, however, we will just
5293 kill them again immediately below, so there doesn't seem to
5294 be any reason why we bother to do this. */
5295
5296 /* See if this is the last notice we must take of a register. */
5297 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
5298 continue;
5299
5300 if (GET_CODE (PATTERN (insn)) == SET
5301 || GET_CODE (PATTERN (insn)) == CLOBBER)
5835e573 5302 sched_note_set (PATTERN (insn), 1);
8c660648
JL
5303 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
5304 {
5305 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
5306 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
5307 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
5835e573 5308 sched_note_set (XVECEXP (PATTERN (insn), 0, j), 1);
8c660648
JL
5309 }
5310
5311 /* This code keeps life analysis information up to date. */
5312 if (GET_CODE (insn) == CALL_INSN)
5313 {
5314 register struct sometimes *p;
5315
5316 /* A call kills all call used registers that are not
5317 global or fixed, except for those mentioned in the call
5318 pattern which will be made live again later. */
5319 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5320 if (call_used_regs[i] && ! global_regs[i]
5321 && ! fixed_regs[i])
5322 {
5323 CLEAR_REGNO_REG_SET (bb_live_regs, i);
8c660648
JL
5324 }
5325
5326 /* Regs live at the time of a call instruction must not
5327 go in a register clobbered by calls. Record this for
5328 all regs now live. Note that insns which are born or
5329 die in a call do not cross a call, so this must be done
5330 after the killings (above) and before the births
5331 (below). */
5332 p = regs_sometimes_live;
5333 for (i = 0; i < sometimes_max; i++, p++)
5334 if (REGNO_REG_SET_P (bb_live_regs, p->regno))
5335 p->calls_crossed += 1;
5336 }
5337
5338 /* Make every register used live, and add REG_DEAD notes for
5339 registers which were not live before we started. */
5340 attach_deaths_insn (insn);
5341
5342 /* Find registers now made live by that instruction. */
5343 EXECUTE_IF_AND_COMPL_IN_REG_SET (bb_live_regs, old_live_regs, 0, j,
5344 {
5345 sometimes_max
5346 = new_sometimes_live (regs_sometimes_live,
5347 j, sometimes_max);
5348 });
5349 IOR_REG_SET (old_live_regs, bb_live_regs);
5350
5351 /* Count lengths of all regs we are worrying about now,
5352 and handle registers no longer live. */
5353
5354 for (i = 0; i < sometimes_max; i++)
5355 {
5356 register struct sometimes *p = &regs_sometimes_live[i];
5357 int regno = p->regno;
5358
5359 p->live_length += 1;
5360
5361 if (!REGNO_REG_SET_P (bb_live_regs, regno))
5362 {
5363 /* This is the end of one of this register's lifetime
5364 segments. Save the lifetime info collected so far,
5365 and clear its bit in the old_live_regs entry. */
5366 sched_reg_live_length[regno] += p->live_length;
5367 sched_reg_n_calls_crossed[regno] += p->calls_crossed;
5368 CLEAR_REGNO_REG_SET (old_live_regs, p->regno);
5369
5370 /* Delete the reg_sometimes_live entry for this reg by
5371 copying the last entry over top of it. */
5372 *p = regs_sometimes_live[--sometimes_max];
5373 /* ...and decrement i so that this newly copied entry
5374 will be processed. */
5375 i--;
5376 }
5377 }
5378 }
5379
5380 finish_sometimes_live (regs_sometimes_live, sometimes_max);
5381
5382 /* In interblock scheduling, basic_block_live_at_start may have changed. */
5383 if (current_nr_blocks > 1)
5384 COPY_REG_SET (basic_block_live_at_start[b], bb_live_regs);
5385
f187056f
JL
5386
5387 FREE_REG_SET (old_live_regs);
8c660648
JL
5388} /* find_post_sched_live */
5389
5390/* After scheduling the subroutine, restore information about uses of
5391 registers. */
5392
5393static void
5394update_reg_usage ()
5395{
5396 int regno;
5397
5398 if (n_basic_blocks > 0)
7eea6443
JL
5399 EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, FIRST_PSEUDO_REGISTER, regno,
5400 {
5401 sched_reg_basic_block[regno]
5402 = REG_BLOCK_GLOBAL;
5403 });
8c660648
JL
5404
5405 for (regno = 0; regno < max_regno; regno++)
5406 if (sched_reg_live_length[regno])
5407 {
5408 if (sched_verbose)
5409 {
5410 if (REG_LIVE_LENGTH (regno) > sched_reg_live_length[regno])
5411 fprintf (dump,
5412 ";; register %d life shortened from %d to %d\n",
5413 regno, REG_LIVE_LENGTH (regno),
5414 sched_reg_live_length[regno]);
5415 /* Negative values are special; don't overwrite the current
5416 reg_live_length value if it is negative. */
5417 else if (REG_LIVE_LENGTH (regno) < sched_reg_live_length[regno]
5418 && REG_LIVE_LENGTH (regno) >= 0)
5419 fprintf (dump,
5420 ";; register %d life extended from %d to %d\n",
5421 regno, REG_LIVE_LENGTH (regno),
5422 sched_reg_live_length[regno]);
5423
5424 if (!REG_N_CALLS_CROSSED (regno)
5425 && sched_reg_n_calls_crossed[regno])
5426 fprintf (dump,
5427 ";; register %d now crosses calls\n", regno);
5428 else if (REG_N_CALLS_CROSSED (regno)
5429 && !sched_reg_n_calls_crossed[regno]
5430 && REG_BASIC_BLOCK (regno) != REG_BLOCK_GLOBAL)
5431 fprintf (dump,
5432 ";; register %d no longer crosses calls\n", regno);
5433
5434 if (REG_BASIC_BLOCK (regno) != sched_reg_basic_block[regno]
5435 && sched_reg_basic_block[regno] != REG_BLOCK_UNKNOWN
5436 && REG_BASIC_BLOCK(regno) != REG_BLOCK_UNKNOWN)
5437 fprintf (dump,
5438 ";; register %d changed basic block from %d to %d\n",
5439 regno, REG_BASIC_BLOCK(regno),
5440 sched_reg_basic_block[regno]);
5441
5442 }
5443 /* Negative values are special; don't overwrite the current
5444 reg_live_length value if it is negative. */
5445 if (REG_LIVE_LENGTH (regno) >= 0)
5446 REG_LIVE_LENGTH (regno) = sched_reg_live_length[regno];
5447
5448 if (sched_reg_basic_block[regno] != REG_BLOCK_UNKNOWN
5449 && REG_BASIC_BLOCK(regno) != REG_BLOCK_UNKNOWN)
5450 REG_BASIC_BLOCK(regno) = sched_reg_basic_block[regno];
5451
5452 /* We can't change the value of reg_n_calls_crossed to zero for
5453 pseudos which are live in more than one block.
5454
5455 This is because combine might have made an optimization which
5456 invalidated basic_block_live_at_start and reg_n_calls_crossed,
5457 but it does not update them. If we update reg_n_calls_crossed
5458 here, the two variables are now inconsistent, and this might
5459 confuse the caller-save code into saving a register that doesn't
5460 need to be saved. This is only a problem when we zero calls
5461 crossed for a pseudo live in multiple basic blocks.
5462
5463 Alternatively, we could try to correctly update basic block live
5464 at start here in sched, but that seems complicated.
5465
5466 Note: it is possible that a global register became local, as result
5467 of interblock motion, but will remain marked as a global register. */
5468 if (sched_reg_n_calls_crossed[regno]
5469 || REG_BASIC_BLOCK (regno) != REG_BLOCK_GLOBAL)
5470 REG_N_CALLS_CROSSED (regno) = sched_reg_n_calls_crossed[regno];
5471
5472 }
5473}
5474
5475/* Scheduling clock, modified in schedule_block() and queue_to_ready () */
5476static int clock_var;
5477
5478/* Move insns that became ready to fire from queue to ready list. */
5479
5480static int
5481queue_to_ready (ready, n_ready)
5482 rtx ready[];
5483 int n_ready;
5484{
5485 rtx insn;
5486 rtx link;
5487
5488 q_ptr = NEXT_Q (q_ptr);
5489
5490 /* Add all pending insns that can be scheduled without stalls to the
5491 ready list. */
5492 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
5493 {
5494
5495 insn = XEXP (link, 0);
5496 q_size -= 1;
5497
5498 if (sched_verbose >= 2)
5499 fprintf (dump, ";;\t\tQ-->Ready: insn %d: ", INSN_UID (insn));
5500
5501 if (sched_verbose >= 2 && INSN_BB (insn) != target_bb)
5502 fprintf (dump, "(b%d) ", INSN_BLOCK (insn));
5503
5504 ready[n_ready++] = insn;
5505 if (sched_verbose >= 2)
5506 fprintf (dump, "moving to ready without stalls\n");
5507 }
5508 insn_queue[q_ptr] = 0;
5509
5510 /* If there are no ready insns, stall until one is ready and add all
5511 of the pending insns at that point to the ready list. */
5512 if (n_ready == 0)
5513 {
5514 register int stalls;
5515
5516 for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
5517 {
5518 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5519 {
5520 for (; link; link = XEXP (link, 1))
5521 {
5522 insn = XEXP (link, 0);
5523 q_size -= 1;
5524
5525 if (sched_verbose >= 2)
5526 fprintf (dump, ";;\t\tQ-->Ready: insn %d: ", INSN_UID (insn));
5527
5528 if (sched_verbose >= 2 && INSN_BB (insn) != target_bb)
5529 fprintf (dump, "(b%d) ", INSN_BLOCK (insn));
5530
5531 ready[n_ready++] = insn;
5532 if (sched_verbose >= 2)
5533 fprintf (dump, "moving to ready with %d stalls\n", stalls);
5534 }
5535 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
5536
5537 if (n_ready)
5538 break;
5539 }
5540 }
5541
5542 if (sched_verbose && stalls)
5543 visualize_stall_cycles (BB_TO_BLOCK (target_bb), stalls);
5544 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5545 clock_var += stalls;
5546 }
5547 return n_ready;
5548}
5549
5550/* Print the ready list for debugging purposes. Callable from debugger. */
5551
9a8b0889 5552static void
8c660648
JL
5553debug_ready_list (ready, n_ready)
5554 rtx ready[];
5555 int n_ready;
5556{
5557 int i;
5558
5559 for (i = 0; i < n_ready; i++)
5560 {
5561 fprintf (dump, " %d", INSN_UID (ready[i]));
5562 if (current_nr_blocks > 1 && INSN_BB (ready[i]) != target_bb)
5563 fprintf (dump, "/b%d", INSN_BLOCK (ready[i]));
5564 }
5565 fprintf (dump, "\n");
5566}
5567
5568/* Print names of units on which insn can/should execute, for debugging. */
5569
5570static void
5571insn_print_units (insn)
5572 rtx insn;
5573{
5574 int i;
5575 int unit = insn_unit (insn);
5576
5577 if (unit == -1)
5578 fprintf (dump, "none");
5579 else if (unit >= 0)
5580 fprintf (dump, "%s", function_units[unit].name);
5581 else
5582 {
5583 fprintf (dump, "[");
5584 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
5585 if (unit & 1)
5586 {
5587 fprintf (dump, "%s", function_units[i].name);
5588 if (unit != 1)
5589 fprintf (dump, " ");
5590 }
5591 fprintf (dump, "]");
5592 }
5593}
5594
5595/* MAX_VISUAL_LINES is the maximum number of lines in visualization table
5596 of a basic block. If more lines are needed, table is splitted to two.
5597 n_visual_lines is the number of lines printed so far for a block.
5598 visual_tbl contains the block visualization info.
5599 vis_no_unit holds insns in a cycle that are not mapped to any unit. */
5600#define MAX_VISUAL_LINES 100
5601#define INSN_LEN 30
5602int n_visual_lines;
5603char *visual_tbl;
5604int n_vis_no_unit;
5605rtx vis_no_unit[10];
5606
5607/* Finds units that are in use in this fuction. Required only
5608 for visualization. */
5609
5610static void
5611init_target_units ()
5612{
5613 rtx insn;
5614 int unit;
5615
5616 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5617 {
5618 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
5619 continue;
5620
5621 unit = insn_unit (insn);
5622
5623 if (unit < 0)
5624 target_units |= ~unit;
5625 else
5626 target_units |= (1 << unit);
5627 }
5628}
5629
5630/* Return the length of the visualization table */
5631
5632static int
5633get_visual_tbl_length ()
5634{
5635 int unit, i;
5636 int n, n1;
5637 char *s;
5638
5639 /* compute length of one field in line */
5640 s = (char *) alloca (INSN_LEN + 5);
5641 sprintf (s, " %33s", "uname");
5642 n1 = strlen (s);
5643
5644 /* compute length of one line */
5645 n = strlen (";; ");
5646 n += n1;
5647 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
5648 if (function_units[unit].bitmask & target_units)
5649 for (i = 0; i < function_units[unit].multiplicity; i++)
5650 n += n1;
5651 n += n1;
5652 n += strlen ("\n") + 2;
5653
5654 /* compute length of visualization string */
5655 return (MAX_VISUAL_LINES * n);
5656}
5657
5658/* Init block visualization debugging info */
5659
5660static void
5661init_block_visualization ()
5662{
5663 strcpy (visual_tbl, "");
5664 n_visual_lines = 0;
5665 n_vis_no_unit = 0;
5666}
5667
5668#define BUF_LEN 256
5669
459b3825
MM
5670static char *
5671safe_concat (buf, cur, str)
5672 char *buf;
5673 char *cur;
5674 char *str;
5675{
5676 char *end = buf + BUF_LEN - 2; /* leave room for null */
5677 int c;
5678
5679 if (cur > end)
5680 {
5681 *end = '\0';
5682 return end;
5683 }
5684
5685 while (cur < end && (c = *str++) != '\0')
5686 *cur++ = c;
5687
5688 *cur = '\0';
5689 return cur;
5690}
5691
8c660648
JL
5692/* This recognizes rtx, I classified as expressions. These are always */
5693/* represent some action on values or results of other expression, */
5694/* that may be stored in objects representing values. */
5695
5696static void
5697print_exp (buf, x, verbose)
5698 char *buf;
5699 rtx x;
5700 int verbose;
5701{
459b3825
MM
5702 char tmp[BUF_LEN];
5703 char *st[4];
5704 char *cur = buf;
5705 char *fun = (char *)0;
5706 char *sep;
5707 rtx op[4];
5708 int i;
5709
5710 for (i = 0; i < 4; i++)
5711 {
5712 st[i] = (char *)0;
5713 op[i] = NULL_RTX;
5714 }
8c660648
JL
5715
5716 switch (GET_CODE (x))
5717 {
5718 case PLUS:
459b3825
MM
5719 op[0] = XEXP (x, 0);
5720 st[1] = "+";
5721 op[1] = XEXP (x, 1);
8c660648
JL
5722 break;
5723 case LO_SUM:
459b3825
MM
5724 op[0] = XEXP (x, 0);
5725 st[1] = "+low(";
5726 op[1] = XEXP (x, 1);
5727 st[2] = ")";
8c660648
JL
5728 break;
5729 case MINUS:
459b3825
MM
5730 op[0] = XEXP (x, 0);
5731 st[1] = "-";
5732 op[1] = XEXP (x, 1);
8c660648
JL
5733 break;
5734 case COMPARE:
459b3825
MM
5735 fun = "cmp";
5736 op[0] = XEXP (x, 0);
5737 op[1] = XEXP (x, 1);
8c660648
JL
5738 break;
5739 case NEG:
459b3825
MM
5740 st[0] = "-";
5741 op[0] = XEXP (x, 0);
8c660648
JL
5742 break;
5743 case MULT:
459b3825
MM
5744 op[0] = XEXP (x, 0);
5745 st[1] = "*";
5746 op[1] = XEXP (x, 1);
8c660648
JL
5747 break;
5748 case DIV:
459b3825
MM
5749 op[0] = XEXP (x, 0);
5750 st[1] = "/";
5751 op[1] = XEXP (x, 1);
8c660648
JL
5752 break;
5753 case UDIV:
459b3825
MM
5754 fun = "udiv";
5755 op[0] = XEXP (x, 0);
5756 op[1] = XEXP (x, 1);
8c660648
JL
5757 break;
5758 case MOD:
459b3825
MM
5759 op[0] = XEXP (x, 0);
5760 st[1] = "%";
5761 op[1] = XEXP (x, 1);
8c660648
JL
5762 break;
5763 case UMOD:
459b3825
MM
5764 fun = "umod";
5765 op[0] = XEXP (x, 0);
5766 op[1] = XEXP (x, 1);
8c660648
JL
5767 break;
5768 case SMIN:
459b3825
MM
5769 fun = "smin";
5770 op[0] = XEXP (x, 0);
5771 op[1] = XEXP (x, 1);
8c660648
JL
5772 break;
5773 case SMAX:
459b3825
MM
5774 fun = "smax";
5775 op[0] = XEXP (x, 0);
5776 op[1] = XEXP (x, 1);
8c660648
JL
5777 break;
5778 case UMIN:
459b3825
MM
5779 fun = "umin";
5780 op[0] = XEXP (x, 0);
5781 op[1] = XEXP (x, 1);
8c660648
JL
5782 break;
5783 case UMAX:
459b3825
MM
5784 fun = "umax";
5785 op[0] = XEXP (x, 0);
5786 op[1] = XEXP (x, 1);
8c660648
JL
5787 break;
5788 case NOT:
459b3825
MM
5789 st[0] = "!";
5790 op[0] = XEXP (x, 0);
8c660648
JL
5791 break;
5792 case AND:
459b3825
MM
5793 op[0] = XEXP (x, 0);
5794 st[1] = "&";
5795 op[1] = XEXP (x, 1);
8c660648
JL
5796 break;
5797 case IOR:
459b3825
MM
5798 op[0] = XEXP (x, 0);
5799 st[1] = "|";
5800 op[1] = XEXP (x, 1);
8c660648
JL
5801 break;
5802 case XOR:
459b3825
MM
5803 op[0] = XEXP (x, 0);
5804 st[1] = "^";
5805 op[1] = XEXP (x, 1);
8c660648
JL
5806 break;
5807 case ASHIFT:
459b3825
MM
5808 op[0] = XEXP (x, 0);
5809 st[1] = "<<";
5810 op[1] = XEXP (x, 1);
8c660648
JL
5811 break;
5812 case LSHIFTRT:
459b3825
MM
5813 op[0] = XEXP (x, 0);
5814 st[1] = " 0>>";
5815 op[1] = XEXP (x, 1);
8c660648
JL
5816 break;
5817 case ASHIFTRT:
459b3825
MM
5818 op[0] = XEXP (x, 0);
5819 st[1] = ">>";
5820 op[1] = XEXP (x, 1);
8c660648
JL
5821 break;
5822 case ROTATE:
459b3825
MM
5823 op[0] = XEXP (x, 0);
5824 st[1] = "<-<";
5825 op[1] = XEXP (x, 1);
8c660648
JL
5826 break;
5827 case ROTATERT:
459b3825
MM
5828 op[0] = XEXP (x, 0);
5829 st[1] = ">->";
5830 op[1] = XEXP (x, 1);
8c660648
JL
5831 break;
5832 case ABS:
459b3825
MM
5833 fun = "abs";
5834 op[0] = XEXP (x, 0);
8c660648
JL
5835 break;
5836 case SQRT:
459b3825
MM
5837 fun = "sqrt";
5838 op[0] = XEXP (x, 0);
8c660648
JL
5839 break;
5840 case FFS:
459b3825
MM
5841 fun = "ffs";
5842 op[0] = XEXP (x, 0);
8c660648
JL
5843 break;
5844 case EQ:
459b3825
MM
5845 op[0] = XEXP (x, 0);
5846 st[1] = "==";
5847 op[1] = XEXP (x, 1);
8c660648
JL
5848 break;
5849 case NE:
459b3825
MM
5850 op[0] = XEXP (x, 0);
5851 st[1] = "!=";
5852 op[1] = XEXP (x, 1);
8c660648
JL
5853 break;
5854 case GT:
459b3825
MM
5855 op[0] = XEXP (x, 0);
5856 st[1] = ">";
5857 op[1] = XEXP (x, 1);
8c660648
JL
5858 break;
5859 case GTU:
459b3825
MM
5860 fun = "gtu";
5861 op[0] = XEXP (x, 0);
5862 op[1] = XEXP (x, 1);
8c660648
JL
5863 break;
5864 case LT:
459b3825
MM
5865 op[0] = XEXP (x, 0);
5866 st[1] = "<";
5867 op[1] = XEXP (x, 1);
8c660648
JL
5868 break;
5869 case LTU:
459b3825
MM
5870 fun = "ltu";
5871 op[0] = XEXP (x, 0);
5872 op[1] = XEXP (x, 1);
8c660648
JL
5873 break;
5874 case GE:
459b3825
MM
5875 op[0] = XEXP (x, 0);
5876 st[1] = ">=";
5877 op[1] = XEXP (x, 1);
8c660648
JL
5878 break;
5879 case GEU:
459b3825
MM
5880 fun = "geu";
5881 op[0] = XEXP (x, 0);
5882 op[1] = XEXP (x, 1);
8c660648
JL
5883 break;
5884 case LE:
459b3825
MM
5885 op[0] = XEXP (x, 0);
5886 st[1] = "<=";
5887 op[1] = XEXP (x, 1);
8c660648
JL
5888 break;
5889 case LEU:
459b3825
MM
5890 fun = "leu";
5891 op[0] = XEXP (x, 0);
5892 op[1] = XEXP (x, 1);
8c660648
JL
5893 break;
5894 case SIGN_EXTRACT:
459b3825
MM
5895 fun = (verbose) ? "sign_extract" : "sxt";
5896 op[0] = XEXP (x, 0);
5897 op[1] = XEXP (x, 1);
5898 op[2] = XEXP (x, 2);
8c660648
JL
5899 break;
5900 case ZERO_EXTRACT:
459b3825
MM
5901 fun = (verbose) ? "zero_extract" : "zxt";
5902 op[0] = XEXP (x, 0);
5903 op[1] = XEXP (x, 1);
5904 op[2] = XEXP (x, 2);
8c660648
JL
5905 break;
5906 case SIGN_EXTEND:
459b3825
MM
5907 fun = (verbose) ? "sign_extend" : "sxn";
5908 op[0] = XEXP (x, 0);
8c660648
JL
5909 break;
5910 case ZERO_EXTEND:
459b3825
MM
5911 fun = (verbose) ? "zero_extend" : "zxn";
5912 op[0] = XEXP (x, 0);
8c660648
JL
5913 break;
5914 case FLOAT_EXTEND:
459b3825
MM
5915 fun = (verbose) ? "float_extend" : "fxn";
5916 op[0] = XEXP (x, 0);
8c660648
JL
5917 break;
5918 case TRUNCATE:
459b3825
MM
5919 fun = (verbose) ? "trunc" : "trn";
5920 op[0] = XEXP (x, 0);
8c660648
JL
5921 break;
5922 case FLOAT_TRUNCATE:
459b3825
MM
5923 fun = (verbose) ? "float_trunc" : "ftr";
5924 op[0] = XEXP (x, 0);
8c660648
JL
5925 break;
5926 case FLOAT:
459b3825
MM
5927 fun = (verbose) ? "float" : "flt";
5928 op[0] = XEXP (x, 0);
8c660648
JL
5929 break;
5930 case UNSIGNED_FLOAT:
459b3825
MM
5931 fun = (verbose) ? "uns_float" : "ufl";
5932 op[0] = XEXP (x, 0);
8c660648
JL
5933 break;
5934 case FIX:
459b3825
MM
5935 fun = "fix";
5936 op[0] = XEXP (x, 0);
8c660648
JL
5937 break;
5938 case UNSIGNED_FIX:
459b3825
MM
5939 fun = (verbose) ? "uns_fix" : "ufx";
5940 op[0] = XEXP (x, 0);
8c660648
JL
5941 break;
5942 case PRE_DEC:
459b3825
MM
5943 st[0] = "--";
5944 op[0] = XEXP (x, 0);
8c660648
JL
5945 break;
5946 case PRE_INC:
459b3825
MM
5947 st[0] = "++";
5948 op[0] = XEXP (x, 0);
8c660648
JL
5949 break;
5950 case POST_DEC:
459b3825
MM
5951 op[0] = XEXP (x, 0);
5952 st[1] = "--";
8c660648
JL
5953 break;
5954 case POST_INC:
459b3825
MM
5955 op[0] = XEXP (x, 0);
5956 st[1] = "++";
8c660648
JL
5957 break;
5958 case CALL:
459b3825
MM
5959 st[0] = "call ";
5960 op[0] = XEXP (x, 0);
8c660648
JL
5961 if (verbose)
5962 {
459b3825
MM
5963 st[1] = " argc:";
5964 op[1] = XEXP (x, 1);
8c660648 5965 }
8c660648
JL
5966 break;
5967 case IF_THEN_ELSE:
459b3825
MM
5968 st[0] = "{(";
5969 op[0] = XEXP (x, 0);
5970 st[1] = ")?";
5971 op[1] = XEXP (x, 1);
5972 st[2] = ":";
5973 op[2] = XEXP (x, 2);
5974 st[3] = "}";
8c660648
JL
5975 break;
5976 case TRAP_IF:
459b3825
MM
5977 fun = "trap_if";
5978 op[0] = TRAP_CONDITION (x);
8c660648
JL
5979 break;
5980 case UNSPEC:
8c660648
JL
5981 case UNSPEC_VOLATILE:
5982 {
459b3825
MM
5983 cur = safe_concat (buf, cur, "unspec");
5984 if (GET_CODE (x) == UNSPEC_VOLATILE)
5985 cur = safe_concat (buf, cur, "/v");
5986 cur = safe_concat (buf, cur, "[");
5987 sep = "";
8c660648
JL
5988 for (i = 0; i < XVECLEN (x, 0); i++)
5989 {
459b3825
MM
5990 print_pattern (tmp, XVECEXP (x, 0, i), verbose);
5991 cur = safe_concat (buf, cur, sep);
5992 cur = safe_concat (buf, cur, tmp);
5993 sep = ",";
8c660648 5994 }
459b3825
MM
5995 cur = safe_concat (buf, cur, "] ");
5996 sprintf (tmp, "%d", XINT (x, 1));
5997 cur = safe_concat (buf, cur, tmp);
8c660648
JL
5998 }
5999 break;
6000 default:
53c0919d
RH
6001 /* if (verbose) debug_rtx (x); */
6002 st[0] = GET_RTX_NAME (GET_CODE (x));
459b3825
MM
6003 break;
6004 }
6005
6006 /* Print this as a function? */
6007 if (fun)
6008 {
6009 cur = safe_concat (buf, cur, fun);
6010 cur = safe_concat (buf, cur, "(");
6011 }
6012
6013 for (i = 0; i < 4; i++)
6014 {
6015 if (st[i])
6016 cur = safe_concat (buf, cur, st[i]);
6017
6018 if (op[i])
6019 {
6020 if (fun && i != 0)
6021 cur = safe_concat (buf, cur, ",");
6022
6023 print_value (tmp, op[i], verbose);
6024 cur = safe_concat (buf, cur, tmp);
6025 }
8c660648 6026 }
459b3825
MM
6027
6028 if (fun)
6029 cur = safe_concat (buf, cur, ")");
6030} /* print_exp */
8c660648
JL
6031
6032/* Prints rtxes, i customly classified as values. They're constants, */
6033/* registers, labels, symbols and memory accesses. */
6034
6035static void
6036print_value (buf, x, verbose)
6037 char *buf;
6038 rtx x;
6039 int verbose;
6040{
6041 char t[BUF_LEN];
459b3825 6042 char *cur = buf;
8c660648
JL
6043
6044 switch (GET_CODE (x))
6045 {
6046 case CONST_INT:
459b3825
MM
6047 sprintf (t, "0x%lx", (long)INTVAL (x));
6048 cur = safe_concat (buf, cur, t);
8c660648
JL
6049 break;
6050 case CONST_DOUBLE:
459b3825
MM
6051 sprintf (t, "<0x%lx,0x%lx>", (long)XWINT (x, 2), (long)XWINT (x, 3));
6052 cur = safe_concat (buf, cur, t);
8c660648
JL
6053 break;
6054 case CONST_STRING:
459b3825
MM
6055 cur = safe_concat (buf, cur, "\"");
6056 cur = safe_concat (buf, cur, XSTR (x, 0));
6057 cur = safe_concat (buf, cur, "\"");
8c660648
JL
6058 break;
6059 case SYMBOL_REF:
459b3825
MM
6060 cur = safe_concat (buf, cur, "`");
6061 cur = safe_concat (buf, cur, XSTR (x, 0));
6062 cur = safe_concat (buf, cur, "'");
8c660648
JL
6063 break;
6064 case LABEL_REF:
459b3825
MM
6065 sprintf (t, "L%d", INSN_UID (XEXP (x, 0)));
6066 cur = safe_concat (buf, cur, t);
8c660648
JL
6067 break;
6068 case CONST:
459b3825
MM
6069 print_value (t, XEXP (x, 0), verbose);
6070 cur = safe_concat (buf, cur, "const(");
6071 cur = safe_concat (buf, cur, t);
6072 cur = safe_concat (buf, cur, ")");
8c660648
JL
6073 break;
6074 case HIGH:
459b3825
MM
6075 print_value (t, XEXP (x, 0), verbose);
6076 cur = safe_concat (buf, cur, "high(");
6077 cur = safe_concat (buf, cur, t);
6078 cur = safe_concat (buf, cur, ")");
8c660648
JL
6079 break;
6080 case REG:
459b3825
MM
6081 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
6082 {
6083 int c = reg_names[ REGNO (x) ][0];
6084 if (c >= '0' && c <= '9')
6085 cur = safe_concat (buf, cur, "%");
6086
6087 cur = safe_concat (buf, cur, reg_names[ REGNO (x) ]);
6088 }
8c660648 6089 else
459b3825
MM
6090 {
6091 sprintf (t, "r%d", REGNO (x));
6092 cur = safe_concat (buf, cur, t);
6093 }
8c660648
JL
6094 break;
6095 case SUBREG:
459b3825
MM
6096 print_value (t, SUBREG_REG (x), verbose);
6097 cur = safe_concat (buf, cur, t);
6b879bcc 6098 sprintf (t, "#%d", SUBREG_WORD (x));
459b3825 6099 cur = safe_concat (buf, cur, t);
8c660648
JL
6100 break;
6101 case SCRATCH:
459b3825 6102 cur = safe_concat (buf, cur, "scratch");
8c660648
JL
6103 break;
6104 case CC0:
459b3825 6105 cur = safe_concat (buf, cur, "cc0");
8c660648
JL
6106 break;
6107 case PC:
459b3825 6108 cur = safe_concat (buf, cur, "pc");
8c660648
JL
6109 break;
6110 case MEM:
6111 print_value (t, XEXP (x, 0), verbose);
459b3825
MM
6112 cur = safe_concat (buf, cur, "[");
6113 cur = safe_concat (buf, cur, t);
6114 cur = safe_concat (buf, cur, "]");
8c660648
JL
6115 break;
6116 default:
459b3825
MM
6117 print_exp (t, x, verbose);
6118 cur = safe_concat (buf, cur, t);
6119 break;
8c660648
JL
6120 }
6121} /* print_value */
6122
6123/* The next step in insn detalization, its pattern recognition */
6124
6125static void
6126print_pattern (buf, x, verbose)
6127 char *buf;
6128 rtx x;
6129 int verbose;
6130{
6131 char t1[BUF_LEN], t2[BUF_LEN], t3[BUF_LEN];
6132
6133 switch (GET_CODE (x))
6134 {
6135 case SET:
6136 print_value (t1, SET_DEST (x), verbose);
6137 print_value (t2, SET_SRC (x), verbose);
6138 sprintf (buf, "%s=%s", t1, t2);
6139 break;
6140 case RETURN:
6141 sprintf (buf, "return");
6142 break;
6143 case CALL:
6144 print_exp (buf, x, verbose);
6145 break;
6146 case CLOBBER:
6147 print_value (t1, XEXP (x, 0), verbose);
6148 sprintf (buf, "clobber %s", t1);
6149 break;
6150 case USE:
6151 print_value (t1, XEXP (x, 0), verbose);
6152 sprintf (buf, "use %s", t1);
6153 break;
6154 case PARALLEL:
6155 {
6156 int i;
6157
6158 sprintf (t1, "{");
6159 for (i = 0; i < XVECLEN (x, 0); i++)
6160 {
6161 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6162 sprintf (t3, "%s%s;", t1, t2);
6163 strcpy (t1, t3);
6164 }
6165 sprintf (buf, "%s}", t1);
6166 }
6167 break;
6168 case SEQUENCE:
6169 {
6170 int i;
6171
6172 sprintf (t1, "%%{");
6173 for (i = 0; i < XVECLEN (x, 0); i++)
6174 {
6175 print_insn (t2, XVECEXP (x, 0, i), verbose);
6176 sprintf (t3, "%s%s;", t1, t2);
6177 strcpy (t1, t3);
6178 }
6179 sprintf (buf, "%s%%}", t1);
6180 }
6181 break;
6182 case ASM_INPUT:
c4fa3460 6183 sprintf (buf, "asm {%s}", XSTR (x, 0));
8c660648
JL
6184 break;
6185 case ADDR_VEC:
6186 break;
6187 case ADDR_DIFF_VEC:
6188 print_value (buf, XEXP (x, 0), verbose);
6189 break;
6190 case TRAP_IF:
6191 print_value (t1, TRAP_CONDITION (x), verbose);
6192 sprintf (buf, "trap_if %s", t1);
6193 break;
6194 case UNSPEC:
6195 {
6196 int i;
6197
6198 sprintf (t1, "unspec{");
6199 for (i = 0; i < XVECLEN (x, 0); i++)
6200 {
6201 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6202 sprintf (t3, "%s%s;", t1, t2);
6203 strcpy (t1, t3);
6204 }
6205 sprintf (buf, "%s}", t1);
6206 }
6207 break;
6208 case UNSPEC_VOLATILE:
6209 {
6210 int i;
6211
6212 sprintf (t1, "unspec/v{");
6213 for (i = 0; i < XVECLEN (x, 0); i++)
6214 {
6215 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6216 sprintf (t3, "%s%s;", t1, t2);
6217 strcpy (t1, t3);
6218 }
6219 sprintf (buf, "%s}", t1);
6220 }
6221 break;
6222 default:
6223 print_value (buf, x, verbose);
6224 }
6225} /* print_pattern */
6226
6227/* This is the main function in rtl visualization mechanism. It
6228 accepts an rtx and tries to recognize it as an insn, then prints it
6229 properly in human readable form, resembling assembler mnemonics. */
6230/* For every insn it prints its UID and BB the insn belongs */
6231/* too. (probably the last "option" should be extended somehow, since */
6232/* it depends now on sched.c inner variables ...) */
6233
6234static void
6235print_insn (buf, x, verbose)
6236 char *buf;
6237 rtx x;
6238 int verbose;
6239{
6240 char t[BUF_LEN];
6241 rtx insn = x;
6242
6243 switch (GET_CODE (x))
6244 {
6245 case INSN:
6246 print_pattern (t, PATTERN (x), verbose);
6247 if (verbose)
6248 sprintf (buf, "b%d: i% 4d: %s", INSN_BB (x),
6249 INSN_UID (x), t);
6250 else
6251 sprintf (buf, "%-4d %s", INSN_UID (x), t);
6252 break;
6253 case JUMP_INSN:
6254 print_pattern (t, PATTERN (x), verbose);
6255 if (verbose)
6256 sprintf (buf, "b%d: i% 4d: jump %s", INSN_BB (x),
6257 INSN_UID (x), t);
6258 else
6259 sprintf (buf, "%-4d %s", INSN_UID (x), t);
6260 break;
6261 case CALL_INSN:
6262 x = PATTERN (insn);
6263 if (GET_CODE (x) == PARALLEL)
6264 {
6265 x = XVECEXP (x, 0, 0);
6266 print_pattern (t, x, verbose);
6267 }
6268 else
6269 strcpy (t, "call <...>");
6270 if (verbose)
6271 sprintf (buf, "b%d: i% 4d: %s", INSN_BB (insn),
6272 INSN_UID (insn), t);
6273 else
6274 sprintf (buf, "%-4d %s", INSN_UID (insn), t);
6275 break;
6276 case CODE_LABEL:
6277 sprintf (buf, "L%d:", INSN_UID (x));
6278 break;
6279 case BARRIER:
6280 sprintf (buf, "i% 4d: barrier", INSN_UID (x));
6281 break;
6282 case NOTE:
6283 if (NOTE_LINE_NUMBER (x) > 0)
6284 sprintf (buf, "%4d note \"%s\" %d", INSN_UID (x),
6285 NOTE_SOURCE_FILE (x), NOTE_LINE_NUMBER (x));
6286 else
6287 sprintf (buf, "%4d %s", INSN_UID (x),
6288 GET_NOTE_INSN_NAME (NOTE_LINE_NUMBER (x)));
6289 break;
6290 default:
6291 if (verbose)
6292 {
6293 sprintf (buf, "Not an INSN at all\n");
6294 debug_rtx (x);
6295 }
6296 else
6297 sprintf (buf, "i%-4d <What?>", INSN_UID (x));
6298 }
6299} /* print_insn */
6300
8c660648
JL
6301/* Print visualization debugging info */
6302
6303static void
6304print_block_visualization (b, s)
6305 int b;
6306 char *s;
6307{
6308 int unit, i;
8c660648
JL
6309
6310 /* print header */
6311 fprintf (dump, "\n;; ==================== scheduling visualization for block %d %s \n", b, s);
6312
6313 /* Print names of units */
2f308fec 6314 fprintf (dump, ";; %-8s", "clock");
8c660648
JL
6315 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
6316 if (function_units[unit].bitmask & target_units)
6317 for (i = 0; i < function_units[unit].multiplicity; i++)
2f308fec
RH
6318 fprintf (dump, " %-33s", function_units[unit].name);
6319 fprintf (dump, " %-8s\n", "no-unit");
6320
6321 fprintf (dump, ";; %-8s", "=====");
6322 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
6323 if (function_units[unit].bitmask & target_units)
6324 for (i = 0; i < function_units[unit].multiplicity; i++)
6325 fprintf (dump, " %-33s", "==============================");
6326 fprintf (dump, " %-8s\n", "=======");
8c660648
JL
6327
6328 /* Print insns in each cycle */
6329 fprintf (dump, "%s\n", visual_tbl);
6330}
6331
6332/* Print insns in the 'no_unit' column of visualization */
6333
6334static void
6335visualize_no_unit (insn)
6336 rtx insn;
6337{
6338 vis_no_unit[n_vis_no_unit] = insn;
6339 n_vis_no_unit++;
6340}
6341
6342/* Print insns scheduled in clock, for visualization. */
6343
6344static void
6345visualize_scheduled_insns (b, clock)
6346 int b, clock;
6347{
6348 int i, unit;
6349
6350 /* if no more room, split table into two */
6351 if (n_visual_lines >= MAX_VISUAL_LINES)
6352 {
6353 print_block_visualization (b, "(incomplete)");
6354 init_block_visualization ();
6355 }
6356
6357 n_visual_lines++;
6358
6359 sprintf (visual_tbl + strlen (visual_tbl), ";; %-8d", clock);
6360 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
6361 if (function_units[unit].bitmask & target_units)
6362 for (i = 0; i < function_units[unit].multiplicity; i++)
6363 {
6364 int instance = unit + i * FUNCTION_UNITS_SIZE;
6365 rtx insn = unit_last_insn[instance];
6366
6367 /* print insns that still keep the unit busy */
6368 if (insn &&
6369 actual_hazard_this_instance (unit, instance, insn, clock, 0))
6370 {
6371 char str[BUF_LEN];
6372 print_insn (str, insn, 0);
6373 str[INSN_LEN] = '\0';
6374 sprintf (visual_tbl + strlen (visual_tbl), " %-33s", str);
6375 }
6376 else
6377 sprintf (visual_tbl + strlen (visual_tbl), " %-33s", "------------------------------");
6378 }
6379
6380 /* print insns that are not assigned to any unit */
6381 for (i = 0; i < n_vis_no_unit; i++)
6382 sprintf (visual_tbl + strlen (visual_tbl), " %-8d",
6383 INSN_UID (vis_no_unit[i]));
6384 n_vis_no_unit = 0;
6385
6386 sprintf (visual_tbl + strlen (visual_tbl), "\n");
6387}
6388
6389/* Print stalled cycles */
6390
6391static void
6392visualize_stall_cycles (b, stalls)
6393 int b, stalls;
6394{
6395 int i;
6396
6397 /* if no more room, split table into two */
6398 if (n_visual_lines >= MAX_VISUAL_LINES)
6399 {
6400 print_block_visualization (b, "(incomplete)");
6401 init_block_visualization ();
6402 }
6403
6404 n_visual_lines++;
6405
6406 sprintf (visual_tbl + strlen (visual_tbl), ";; ");
6407 for (i = 0; i < stalls; i++)
6408 sprintf (visual_tbl + strlen (visual_tbl), ".");
6409 sprintf (visual_tbl + strlen (visual_tbl), "\n");
6410}
6411
6412/* move_insn1: Remove INSN from insn chain, and link it after LAST insn */
6413
6414static rtx
6415move_insn1 (insn, last)
6416 rtx insn, last;
6417{
6418 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
6419 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
6420
6421 NEXT_INSN (insn) = NEXT_INSN (last);
6422 PREV_INSN (NEXT_INSN (last)) = insn;
6423
6424 NEXT_INSN (last) = insn;
6425 PREV_INSN (insn) = last;
6426
6427 return insn;
6428}
6429
6430/* Search INSN for fake REG_DEAD note pairs for NOTE_INSN_SETJMP,
6431 NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
6432 NOTEs. The REG_DEAD note following first one is contains the saved
6433 value for NOTE_BLOCK_NUMBER which is useful for
6434 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. LAST is the last instruction
6435 output by the instruction scheduler. Return the new value of LAST. */
6436
6437static rtx
6438reemit_notes (insn, last)
6439 rtx insn;
6440 rtx last;
6441{
6442 rtx note, retval;
6443
6444 retval = last;
6445 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
6446 {
6447 if (REG_NOTE_KIND (note) == REG_DEAD
6448 && GET_CODE (XEXP (note, 0)) == CONST_INT)
6449 {
6450 if (INTVAL (XEXP (note, 0)) == NOTE_INSN_SETJMP)
6451 {
6452 retval = emit_note_after (INTVAL (XEXP (note, 0)), insn);
6453 CONST_CALL_P (retval) = CONST_CALL_P (note);
6454 remove_note (insn, note);
6455 note = XEXP (note, 1);
6456 }
6457 else
6458 {
6459 last = emit_note_before (INTVAL (XEXP (note, 0)), last);
6460 remove_note (insn, note);
6461 note = XEXP (note, 1);
6462 NOTE_BLOCK_NUMBER (last) = INTVAL (XEXP (note, 0));
6463 }
6464 remove_note (insn, note);
6465 }
6466 }
6467 return retval;
6468}
6469
6470/* Move INSN, and all insns which should be issued before it,
c9e03727
JL
6471 due to SCHED_GROUP_P flag. Reemit notes if needed.
6472
6473 Return the last insn emitted by the scheduler, which is the
6474 return value from the first call to reemit_notes. */
8c660648
JL
6475
6476static rtx
6477move_insn (insn, last)
6478 rtx insn, last;
6479{
c9e03727 6480 rtx retval = NULL;
8c660648 6481
c9e03727
JL
6482 /* If INSN has SCHED_GROUP_P set, then issue it and any other
6483 insns with SCHED_GROUP_P set first. */
8c660648
JL
6484 while (SCHED_GROUP_P (insn))
6485 {
6486 rtx prev = PREV_INSN (insn);
c9e03727
JL
6487
6488 /* Move a SCHED_GROUP_P insn. */
8c660648 6489 move_insn1 (insn, last);
c9e03727
JL
6490 /* If this is the first call to reemit_notes, then record
6491 its return value. */
6492 if (retval == NULL_RTX)
6493 retval = reemit_notes (insn, insn);
6494 else
6495 reemit_notes (insn, insn);
8c660648
JL
6496 insn = prev;
6497 }
6498
c9e03727 6499 /* Now move the first non SCHED_GROUP_P insn. */
8c660648 6500 move_insn1 (insn, last);
c9e03727
JL
6501
6502 /* If this is the first call to reemit_notes, then record
6503 its return value. */
6504 if (retval == NULL_RTX)
6505 retval = reemit_notes (insn, insn);
6506 else
6507 reemit_notes (insn, insn);
6508
6509 return retval;
8c660648
JL
6510}
6511
6512/* Return an insn which represents a SCHED_GROUP, which is
6513 the last insn in the group. */
6514
6515static rtx
6516group_leader (insn)
6517 rtx insn;
6518{
6519 rtx prev;
6520
6521 do
6522 {
6523 prev = insn;
6524 insn = next_nonnote_insn (insn);
6525 }
6526 while (insn && SCHED_GROUP_P (insn) && (GET_CODE (insn) != CODE_LABEL));
6527
6528 return prev;
6529}
6530
6531/* Use forward list scheduling to rearrange insns of block BB in region RGN,
6532 possibly bringing insns from subsequent blocks in the same region.
6533 Return number of insns scheduled. */
6534
6535static int
5835e573 6536schedule_block (bb, rgn_n_insns)
8c660648 6537 int bb;
8c660648
JL
6538 int rgn_n_insns;
6539{
6540 /* Local variables. */
6541 rtx insn, last;
6542 rtx *ready;
6543 int i;
6544 int n_ready = 0;
6545 int can_issue_more;
6546
6547 /* flow block of this bb */
6548 int b = BB_TO_BLOCK (bb);
6549
6550 /* target_n_insns == number of insns in b before scheduling starts.
6551 sched_target_n_insns == how many of b's insns were scheduled.
6552 sched_n_insns == how many insns were scheduled in b */
6553 int target_n_insns = 0;
6554 int sched_target_n_insns = 0;
6555 int sched_n_insns = 0;
6556
6557#define NEED_NOTHING 0
6558#define NEED_HEAD 1
6559#define NEED_TAIL 2
6560 int new_needs;
6561
6562 /* head/tail info for this block */
6563 rtx prev_head;
6564 rtx next_tail;
6565 rtx head;
6566 rtx tail;
6567 int bb_src;
6568
484df988
JL
6569 /* We used to have code to avoid getting parameters moved from hard
6570 argument registers into pseudos.
8c660648 6571
484df988
JL
6572 However, it was removed when it proved to be of marginal benefit
6573 and caused problems because schedule_block and compute_forward_dependences
6574 had different notions of what the "head" insn was. */
6575 get_block_head_tail (bb, &head, &tail);
8c660648 6576
1447b516
JL
6577 /* Interblock scheduling could have moved the original head insn from this
6578 block into a proceeding block. This may also cause schedule_block and
6579 compute_forward_dependences to have different notions of what the
6580 "head" insn was.
6581
6582 If the interblock movement happened to make this block start with
6583 some notes (LOOP, EH or SETJMP) before the first real insn, then
6584 HEAD will have various special notes attached to it which must be
6585 removed so that we don't end up with extra copies of the notes. */
6586 if (GET_RTX_CLASS (GET_CODE (head)) == 'i')
6587 {
6588 rtx note;
6589
6590 for (note = REG_NOTES (head); note; note = XEXP (note, 1))
6591 if (REG_NOTE_KIND (note) == REG_DEAD
6592 && GET_CODE (XEXP (note, 0)) == CONST_INT)
6593 remove_note (head, note);
6594 }
6595
8c660648
JL
6596 next_tail = NEXT_INSN (tail);
6597 prev_head = PREV_INSN (head);
6598
6599 /* If the only insn left is a NOTE or a CODE_LABEL, then there is no need
6600 to schedule this block. */
6601 if (head == tail
6602 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
6603 return (sched_n_insns);
6604
6605 /* debug info */
6606 if (sched_verbose)
6607 {
6608 fprintf (dump, ";; ======================================================\n");
6609 fprintf (dump,
6610 ";; -- basic block %d from %d to %d -- %s reload\n",
6611 b, INSN_UID (basic_block_head[b]),
6612 INSN_UID (basic_block_end[b]),
6613 (reload_completed ? "after" : "before"));
6614 fprintf (dump, ";; ======================================================\n");
8c660648
JL
6615 fprintf (dump, "\n");
6616
6617 visual_tbl = (char *) alloca (get_visual_tbl_length ());
6618 init_block_visualization ();
6619 }
6620
6621 /* remove remaining note insns from the block, save them in
6622 note_list. These notes are restored at the end of
6623 schedule_block (). */
6624 note_list = 0;
6625 rm_other_notes (head, tail);
6626
6627 target_bb = bb;
6628
6629 /* prepare current target block info */
6630 if (current_nr_blocks > 1)
6631 {
6632 candidate_table = (candidate *) alloca (current_nr_blocks * sizeof (candidate));
6633
6634 bblst_last = 0;
6635 /* ??? It is not clear why bblst_size is computed this way. The original
6636 number was clearly too small as it resulted in compiler failures.
6637 Multiplying by the original number by 2 (to account for update_bbs
6638 members) seems to be a reasonable solution. */
6639 /* ??? Or perhaps there is a bug somewhere else in this file? */
6640 bblst_size = (current_nr_blocks - bb) * rgn_nr_edges * 2;
6641 bblst_table = (int *) alloca (bblst_size * sizeof (int));
6642
6643 bitlst_table_last = 0;
6644 bitlst_table_size = rgn_nr_edges;
6645 bitlst_table = (int *) alloca (rgn_nr_edges * sizeof (int));
6646
6647 compute_trg_info (bb);
6648 }
6649
6650 clear_units ();
6651
6652 /* Allocate the ready list */
6653 ready = (rtx *) alloca ((rgn_n_insns + 1) * sizeof (rtx));
6654
6655 /* Print debugging information. */
6656 if (sched_verbose >= 5)
6657 debug_dependencies ();
6658
6659
6660 /* Initialize ready list with all 'ready' insns in target block.
6661 Count number of insns in the target block being scheduled. */
6662 n_ready = 0;
6663 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6664 {
6665 rtx next;
6666
6667 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6668 continue;
6669 next = NEXT_INSN (insn);
6670
6671 if (INSN_DEP_COUNT (insn) == 0
6672 && (SCHED_GROUP_P (next) == 0 || GET_RTX_CLASS (GET_CODE (next)) != 'i'))
6673 ready[n_ready++] = insn;
6674 if (!(SCHED_GROUP_P (insn)))
6675 target_n_insns++;
6676 }
6677
6678 /* Add to ready list all 'ready' insns in valid source blocks.
6679 For speculative insns, check-live, exception-free, and
6680 issue-delay. */
6681 for (bb_src = bb + 1; bb_src < current_nr_blocks; bb_src++)
6682 if (IS_VALID (bb_src))
6683 {
6684 rtx src_head;
6685 rtx src_next_tail;
6686 rtx tail, head;
6687
6688 get_block_head_tail (bb_src, &head, &tail);
6689 src_next_tail = NEXT_INSN (tail);
6690 src_head = head;
6691
6692 if (head == tail
6693 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
6694 continue;
6695
6696 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
6697 {
6698 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6699 continue;
6700
6701 if (!CANT_MOVE (insn)
6702 && (!IS_SPECULATIVE_INSN (insn)
6703 || (insn_issue_delay (insn) <= 3
5835e573 6704 && check_live (insn, bb_src)
8c660648
JL
6705 && is_exception_free (insn, bb_src, target_bb))))
6706
6707 {
6708 rtx next;
6709
6710 next = NEXT_INSN (insn);
6711 if (INSN_DEP_COUNT (insn) == 0
6712 && (SCHED_GROUP_P (next) == 0
6713 || GET_RTX_CLASS (GET_CODE (next)) != 'i'))
6714 ready[n_ready++] = insn;
6715 }
6716 }
6717 }
6718
e4da5f6d
MM
6719#ifdef MD_SCHED_INIT
6720 MD_SCHED_INIT (dump, sched_verbose);
6721#endif
6722
8c660648
JL
6723 /* no insns scheduled in this block yet */
6724 last_scheduled_insn = 0;
6725
6726 /* Sort the ready list */
6727 SCHED_SORT (ready, n_ready);
e4da5f6d
MM
6728#ifdef MD_SCHED_REORDER
6729 MD_SCHED_REORDER (dump, sched_verbose, ready, n_ready);
6730#endif
8c660648
JL
6731
6732 if (sched_verbose >= 2)
6733 {
6d3352d9 6734 fprintf (dump, ";;\t\tReady list initially: ");
8c660648
JL
6735 debug_ready_list (ready, n_ready);
6736 }
6737
6738 /* Q_SIZE is the total number of insns in the queue. */
6739 q_ptr = 0;
6740 q_size = 0;
6741 clock_var = 0;
6742 bzero ((char *) insn_queue, sizeof (insn_queue));
6743
6744 /* We start inserting insns after PREV_HEAD. */
6745 last = prev_head;
6746
6747 /* Initialize INSN_QUEUE, LIST and NEW_NEEDS. */
6748 new_needs = (NEXT_INSN (prev_head) == basic_block_head[b]
6749 ? NEED_HEAD : NEED_NOTHING);
6750 if (PREV_INSN (next_tail) == basic_block_end[b])
6751 new_needs |= NEED_TAIL;
6752
6753 /* loop until all the insns in BB are scheduled. */
6754 while (sched_target_n_insns < target_n_insns)
6755 {
6756 int b1;
6757
8c660648
JL
6758 clock_var++;
6759
6760 /* Add to the ready list all pending insns that can be issued now.
6761 If there are no ready insns, increment clock until one
6762 is ready and add all pending insns at that point to the ready
6763 list. */
6764 n_ready = queue_to_ready (ready, n_ready);
6765
6766 if (n_ready == 0)
6767 abort ();
6768
6769 if (sched_verbose >= 2)
6770 {
6771 fprintf (dump, ";;\t\tReady list after queue_to_ready: ");
6772 debug_ready_list (ready, n_ready);
6773 }
6774
6775 /* Sort the ready list. */
6776 SCHED_SORT (ready, n_ready);
e4da5f6d
MM
6777#ifdef MD_SCHED_REORDER
6778 MD_SCHED_REORDER (dump, sched_verbose, ready, n_ready);
6779#endif
8c660648
JL
6780
6781 if (sched_verbose)
6782 {
47312d84 6783 fprintf (dump, "\n;;\tReady list (t =%3d): ", clock_var);
8c660648
JL
6784 debug_ready_list (ready, n_ready);
6785 }
6786
6787 /* Issue insns from ready list.
6788 It is important to count down from n_ready, because n_ready may change
6789 as insns are issued. */
6790 can_issue_more = issue_rate;
6791 for (i = n_ready - 1; i >= 0 && can_issue_more; i--)
6792 {
6793 rtx insn = ready[i];
6794 int cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
6795
6796 if (cost > 1)
6797 {
6798 queue_insn (insn, cost);
6799 ready[i] = ready[--n_ready]; /* remove insn from ready list */
6800 }
6801 else if (cost == 0)
6802 {
8c660648
JL
6803 /* an interblock motion? */
6804 if (INSN_BB (insn) != target_bb)
6805 {
4f64eaca
JL
6806 rtx temp;
6807
8c660648
JL
6808 if (IS_SPECULATIVE_INSN (insn))
6809 {
6810
5835e573 6811 if (!check_live (insn, INSN_BB (insn)))
8c660648
JL
6812 {
6813 /* speculative motion, live check failed, remove
6814 insn from ready list */
6815 ready[i] = ready[--n_ready];
6816 continue;
6817 }
5835e573 6818 update_live (insn, INSN_BB (insn));
8c660648
JL
6819
6820 /* for speculative load, mark insns fed by it. */
6821 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
6822 set_spec_fed (insn);
6823
6824 nr_spec++;
6825 }
6826 nr_inter++;
6827
4f64eaca
JL
6828 temp = insn;
6829 while (SCHED_GROUP_P (temp))
6830 temp = PREV_INSN (temp);
6831
6832 /* Update source block boundaries. */
6833 b1 = INSN_BLOCK (temp);
6834 if (temp == basic_block_head[b1]
8c660648
JL
6835 && insn == basic_block_end[b1])
6836 {
4f64eaca
JL
6837 /* We moved all the insns in the basic block.
6838 Emit a note after the last insn and update the
6839 begin/end boundaries to point to the note. */
6840 emit_note_after (NOTE_INSN_DELETED, insn);
6841 basic_block_end[b1] = NEXT_INSN (insn);
6842 basic_block_head[b1] = NEXT_INSN (insn);
8c660648
JL
6843 }
6844 else if (insn == basic_block_end[b1])
6845 {
4f64eaca
JL
6846 /* We took insns from the end of the basic block,
6847 so update the end of block boundary so that it
6848 points to the first insn we did not move. */
6849 basic_block_end[b1] = PREV_INSN (temp);
8c660648 6850 }
4f64eaca 6851 else if (temp == basic_block_head[b1])
8c660648 6852 {
4f64eaca
JL
6853 /* We took insns from the start of the basic block,
6854 so update the start of block boundary so that
6855 it points to the first insn we did not move. */
8c660648
JL
6856 basic_block_head[b1] = NEXT_INSN (insn);
6857 }
6858 }
6859 else
6860 {
6861 /* in block motion */
6862 sched_target_n_insns++;
6863 }
6864
6865 last_scheduled_insn = insn;
6866 last = move_insn (insn, last);
6867 sched_n_insns++;
6868
e4da5f6d
MM
6869#ifdef MD_SCHED_VARIABLE_ISSUE
6870 MD_SCHED_VARIABLE_ISSUE (dump, sched_verbose, insn, can_issue_more);
6871#else
8c660648 6872 can_issue_more--;
e4da5f6d 6873#endif
8c660648 6874
8c660648
JL
6875 n_ready = schedule_insn (insn, ready, n_ready, clock_var);
6876
6877 /* remove insn from ready list */
6878 ready[i] = ready[--n_ready];
6879
6880 /* close this block after scheduling its jump */
6881 if (GET_CODE (last_scheduled_insn) == JUMP_INSN)
6882 break;
6883 }
6884 }
6885
6886 /* debug info */
6887 if (sched_verbose)
6888 {
6889 visualize_scheduled_insns (b, clock_var);
8c660648
JL
6890 }
6891 }
6892
6893 /* debug info */
6894 if (sched_verbose)
6895 {
6896 fprintf (dump, ";;\tReady list (final): ");
6897 debug_ready_list (ready, n_ready);
6898 print_block_visualization (b, "");
6899 }
6900
6901 /* Sanity check -- queue must be empty now. Meaningless if region has
cc132865 6902 multiple bbs. */
8c660648 6903 if (current_nr_blocks > 1)
cc132865
JL
6904 if (!flag_schedule_interblock && q_size != 0)
6905 abort ();
8c660648
JL
6906
6907 /* update head/tail boundaries. */
6908 head = NEXT_INSN (prev_head);
6909 tail = last;
6910
8c660648
JL
6911 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
6912 previously found among the insns. Insert them at the beginning
6913 of the insns. */
6914 if (note_list != 0)
6915 {
6916 rtx note_head = note_list;
6917
6918 while (PREV_INSN (note_head))
6919 {
6920 note_head = PREV_INSN (note_head);
6921 }
6922
6923 PREV_INSN (note_head) = PREV_INSN (head);
6924 NEXT_INSN (PREV_INSN (head)) = note_head;
6925 PREV_INSN (head) = note_list;
6926 NEXT_INSN (note_list) = head;
6927 head = note_head;
6928 }
6929
6930 /* update target block boundaries. */
6931 if (new_needs & NEED_HEAD)
6932 basic_block_head[b] = head;
6933
6934 if (new_needs & NEED_TAIL)
6935 basic_block_end[b] = tail;
6936
6937 /* debugging */
6938 if (sched_verbose)
6939 {
6940 fprintf (dump, ";; total time = %d\n;; new basic block head = %d\n",
6941 clock_var, INSN_UID (basic_block_head[b]));
6942 fprintf (dump, ";; new basic block end = %d\n\n",
6943 INSN_UID (basic_block_end[b]));
6944 }
6945
6946 return (sched_n_insns);
6947} /* schedule_block () */
6948\f
6949
6950/* print the bit-set of registers, S. callable from debugger */
6951
6952extern void
6953debug_reg_vector (s)
6954 regset s;
6955{
6956 int regno;
6957
6958 EXECUTE_IF_SET_IN_REG_SET (s, 0, regno,
6959 {
6960 fprintf (dump, " %d", regno);
6961 });
6962
6963 fprintf (dump, "\n");
6964}
6965
6966/* Use the backward dependences from LOG_LINKS to build
6967 forward dependences in INSN_DEPEND. */
6968
6969static void
6970compute_block_forward_dependences (bb)
6971 int bb;
6972{
6973 rtx insn, link;
6974 rtx tail, head;
6975 rtx next_tail;
6976 enum reg_note dep_type;
6977
6978 get_block_head_tail (bb, &head, &tail);
6979 next_tail = NEXT_INSN (tail);
6980 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6981 {
6982 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6983 continue;
6984
6985 insn = group_leader (insn);
6986
6987 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
6988 {
6989 rtx x = group_leader (XEXP (link, 0));
6990 rtx new_link;
6991
6992 if (x != XEXP (link, 0))
6993 continue;
6994
6995 /* Ignore dependences upon deleted insn */
6996 if (GET_CODE (x) == NOTE || INSN_DELETED_P (x))
6997 continue;
6998 if (find_insn_list (insn, INSN_DEPEND (x)))
6999 continue;
7000
ebb7b10b 7001 new_link = alloc_INSN_LIST (insn, INSN_DEPEND (x));
8c660648
JL
7002
7003 dep_type = REG_NOTE_KIND (link);
7004 PUT_REG_NOTE_KIND (new_link, dep_type);
7005
8c660648
JL
7006 INSN_DEPEND (x) = new_link;
7007 INSN_DEP_COUNT (insn) += 1;
7008 }
7009 }
7010}
7011
7012/* Initialize variables for region data dependence analysis.
7013 n_bbs is the number of region blocks */
7014
6d3352d9 7015__inline static void
8c660648
JL
7016init_rgn_data_dependences (n_bbs)
7017 int n_bbs;
7018{
7019 int bb;
7020
7021 /* variables for which one copy exists for each block */
7022 bzero ((char *) bb_pending_read_insns, n_bbs * sizeof (rtx));
7023 bzero ((char *) bb_pending_read_mems, n_bbs * sizeof (rtx));
7024 bzero ((char *) bb_pending_write_insns, n_bbs * sizeof (rtx));
7025 bzero ((char *) bb_pending_write_mems, n_bbs * sizeof (rtx));
7026 bzero ((char *) bb_pending_lists_length, n_bbs * sizeof (rtx));
7027 bzero ((char *) bb_last_pending_memory_flush, n_bbs * sizeof (rtx));
7028 bzero ((char *) bb_last_function_call, n_bbs * sizeof (rtx));
7029 bzero ((char *) bb_sched_before_next_call, n_bbs * sizeof (rtx));
7030
7031 /* Create an insn here so that we can hang dependencies off of it later. */
7032 for (bb = 0; bb < n_bbs; bb++)
7033 {
7034 bb_sched_before_next_call[bb] =
38a448ca
RH
7035 gen_rtx_INSN (VOIDmode, 0, NULL_RTX, NULL_RTX,
7036 NULL_RTX, 0, NULL_RTX, NULL_RTX);
8c660648
JL
7037 LOG_LINKS (bb_sched_before_next_call[bb]) = 0;
7038 }
7039}
7040
7041/* Add dependences so that branches are scheduled to run last in their block */
7042
7043static void
7044add_branch_dependences (head, tail)
7045 rtx head, tail;
7046{
7047
7048 rtx insn, last;
7049
7050 /* For all branches, calls, uses, and cc0 setters, force them to remain
7051 in order at the end of the block by adding dependencies and giving
7052 the last a high priority. There may be notes present, and prev_head
7053 may also be a note.
7054
7055 Branches must obviously remain at the end. Calls should remain at the
7056 end since moving them results in worse register allocation. Uses remain
7057 at the end to ensure proper register allocation. cc0 setters remaim
7058 at the end because they can't be moved away from their cc0 user. */
7059 insn = tail;
7060 last = 0;
7061 while (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
7062 || (GET_CODE (insn) == INSN
7063 && (GET_CODE (PATTERN (insn)) == USE
7064#ifdef HAVE_cc0
7065 || sets_cc0_p (PATTERN (insn))
7066#endif
7067 ))
7068 || GET_CODE (insn) == NOTE)
7069 {
7070 if (GET_CODE (insn) != NOTE)
7071 {
7072 if (last != 0
7073 && !find_insn_list (insn, LOG_LINKS (last)))
7074 {
7075 add_dependence (last, insn, REG_DEP_ANTI);
7076 INSN_REF_COUNT (insn)++;
7077 }
7078
7079 CANT_MOVE (insn) = 1;
7080
7081 last = insn;
326ee7a3
JL
7082 /* Skip over insns that are part of a group.
7083 Make each insn explicitly depend on the previous insn.
7084 This ensures that only the group header will ever enter
7085 the ready queue (and, when scheduled, will automatically
7086 schedule the SCHED_GROUP_P block). */
8c660648 7087 while (SCHED_GROUP_P (insn))
326ee7a3
JL
7088 {
7089 rtx temp = prev_nonnote_insn (insn);
7090 add_dependence (insn, temp, REG_DEP_ANTI);
7091 insn = temp;
7092 }
8c660648
JL
7093 }
7094
7095 /* Don't overrun the bounds of the basic block. */
7096 if (insn == head)
7097 break;
7098
7099 insn = PREV_INSN (insn);
7100 }
7101
7102 /* make sure these insns are scheduled last in their block */
7103 insn = last;
7104 if (insn != 0)
7105 while (insn != head)
7106 {
7107 insn = prev_nonnote_insn (insn);
7108
7109 if (INSN_REF_COUNT (insn) != 0)
7110 continue;
7111
7112 if (!find_insn_list (last, LOG_LINKS (insn)))
7113 add_dependence (last, insn, REG_DEP_ANTI);
7114 INSN_REF_COUNT (insn) = 1;
7115
7116 /* Skip over insns that are part of a group. */
7117 while (SCHED_GROUP_P (insn))
7118 insn = prev_nonnote_insn (insn);
7119 }
7120}
7121
7122/* Compute bacward dependences inside BB. In a multiple blocks region:
7123 (1) a bb is analyzed after its predecessors, and (2) the lists in
7124 effect at the end of bb (after analyzing for bb) are inherited by
7125 bb's successrs.
7126
7127 Specifically for reg-reg data dependences, the block insns are
7128 scanned by sched_analyze () top-to-bottom. Two lists are
7129 naintained by sched_analyze (): reg_last_defs[] for register DEFs,
7130 and reg_last_uses[] for register USEs.
7131
7132 When analysis is completed for bb, we update for its successors:
7133 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
7134 ; - USES[succ] = Union (USES [succ], DEFS [bb])
7135
7136 The mechanism for computing mem-mem data dependence is very
7137 similar, and the result is interblock dependences in the region. */
7138
7139static void
7140compute_block_backward_dependences (bb)
7141 int bb;
7142{
7143 int b;
7144 rtx x;
7145 rtx head, tail;
7146 int max_reg = max_reg_num ();
7147
7148 b = BB_TO_BLOCK (bb);
7149
7150 if (current_nr_blocks == 1)
7151 {
7152 reg_last_uses = (rtx *) alloca (max_reg * sizeof (rtx));
7153 reg_last_sets = (rtx *) alloca (max_reg * sizeof (rtx));
7154
7155 bzero ((char *) reg_last_uses, max_reg * sizeof (rtx));
7156 bzero ((char *) reg_last_sets, max_reg * sizeof (rtx));
7157
7158 pending_read_insns = 0;
7159 pending_read_mems = 0;
7160 pending_write_insns = 0;
7161 pending_write_mems = 0;
7162 pending_lists_length = 0;
7163 last_function_call = 0;
7164 last_pending_memory_flush = 0;
7165 sched_before_next_call
38a448ca
RH
7166 = gen_rtx_INSN (VOIDmode, 0, NULL_RTX, NULL_RTX,
7167 NULL_RTX, 0, NULL_RTX, NULL_RTX);
8c660648
JL
7168 LOG_LINKS (sched_before_next_call) = 0;
7169 }
7170 else
7171 {
7172 reg_last_uses = bb_reg_last_uses[bb];
7173 reg_last_sets = bb_reg_last_sets[bb];
7174
7175 pending_read_insns = bb_pending_read_insns[bb];
7176 pending_read_mems = bb_pending_read_mems[bb];
7177 pending_write_insns = bb_pending_write_insns[bb];
7178 pending_write_mems = bb_pending_write_mems[bb];
7179 pending_lists_length = bb_pending_lists_length[bb];
7180 last_function_call = bb_last_function_call[bb];
7181 last_pending_memory_flush = bb_last_pending_memory_flush[bb];
7182
7183 sched_before_next_call = bb_sched_before_next_call[bb];
7184 }
7185
7186 /* do the analysis for this block */
7187 get_block_head_tail (bb, &head, &tail);
7188 sched_analyze (head, tail);
7189 add_branch_dependences (head, tail);
7190
7191 if (current_nr_blocks > 1)
7192 {
7193 int e, first_edge;
7194 int b_succ, bb_succ;
7195 int reg;
7196 rtx link_insn, link_mem;
7197 rtx u;
7198
7199 /* these lists should point to the right place, for correct freeing later. */
7200 bb_pending_read_insns[bb] = pending_read_insns;
7201 bb_pending_read_mems[bb] = pending_read_mems;
7202 bb_pending_write_insns[bb] = pending_write_insns;
7203 bb_pending_write_mems[bb] = pending_write_mems;
7204
7205 /* bb's structures are inherited by it's successors */
7206 first_edge = e = OUT_EDGES (b);
7207 if (e > 0)
7208 do
7209 {
7210 b_succ = TO_BLOCK (e);
7211 bb_succ = BLOCK_TO_BB (b_succ);
7212
7213 /* only bbs "below" bb, in the same region, are interesting */
7214 if (CONTAINING_RGN (b) != CONTAINING_RGN (b_succ)
7215 || bb_succ <= bb)
7216 {
7217 e = NEXT_OUT (e);
7218 continue;
7219 }
7220
7221 for (reg = 0; reg < max_reg; reg++)
7222 {
7223
7224 /* reg-last-uses lists are inherited by bb_succ */
7225 for (u = reg_last_uses[reg]; u; u = XEXP (u, 1))
7226 {
7227 if (find_insn_list (XEXP (u, 0), (bb_reg_last_uses[bb_succ])[reg]))
7228 continue;
7229
7230 (bb_reg_last_uses[bb_succ])[reg]
ebb7b10b
RH
7231 = alloc_INSN_LIST (XEXP (u, 0),
7232 (bb_reg_last_uses[bb_succ])[reg]);
8c660648
JL
7233 }
7234
7235 /* reg-last-defs lists are inherited by bb_succ */
7236 for (u = reg_last_sets[reg]; u; u = XEXP (u, 1))
7237 {
7238 if (find_insn_list (XEXP (u, 0), (bb_reg_last_sets[bb_succ])[reg]))
7239 continue;
7240
7241 (bb_reg_last_sets[bb_succ])[reg]
ebb7b10b
RH
7242 = alloc_INSN_LIST (XEXP (u, 0),
7243 (bb_reg_last_sets[bb_succ])[reg]);
8c660648
JL
7244 }
7245 }
7246
7247 /* mem read/write lists are inherited by bb_succ */
7248 link_insn = pending_read_insns;
7249 link_mem = pending_read_mems;
7250 while (link_insn)
7251 {
7252 if (!(find_insn_mem_list (XEXP (link_insn, 0), XEXP (link_mem, 0),
7253 bb_pending_read_insns[bb_succ],
7254 bb_pending_read_mems[bb_succ])))
7255 add_insn_mem_dependence (&bb_pending_read_insns[bb_succ],
7256 &bb_pending_read_mems[bb_succ],
7257 XEXP (link_insn, 0), XEXP (link_mem, 0));
7258 link_insn = XEXP (link_insn, 1);
7259 link_mem = XEXP (link_mem, 1);
7260 }
7261
7262 link_insn = pending_write_insns;
7263 link_mem = pending_write_mems;
7264 while (link_insn)
7265 {
7266 if (!(find_insn_mem_list (XEXP (link_insn, 0), XEXP (link_mem, 0),
7267 bb_pending_write_insns[bb_succ],
7268 bb_pending_write_mems[bb_succ])))
7269 add_insn_mem_dependence (&bb_pending_write_insns[bb_succ],
7270 &bb_pending_write_mems[bb_succ],
7271 XEXP (link_insn, 0), XEXP (link_mem, 0));
7272
7273 link_insn = XEXP (link_insn, 1);
7274 link_mem = XEXP (link_mem, 1);
7275 }
7276
7277 /* last_function_call is inherited by bb_succ */
7278 for (u = last_function_call; u; u = XEXP (u, 1))
7279 {
7280 if (find_insn_list (XEXP (u, 0), bb_last_function_call[bb_succ]))
7281 continue;
7282
7283 bb_last_function_call[bb_succ]
ebb7b10b
RH
7284 = alloc_INSN_LIST (XEXP (u, 0),
7285 bb_last_function_call[bb_succ]);
8c660648
JL
7286 }
7287
7288 /* last_pending_memory_flush is inherited by bb_succ */
7289 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
7290 {
7291 if (find_insn_list (XEXP (u, 0), bb_last_pending_memory_flush[bb_succ]))
7292 continue;
7293
7294 bb_last_pending_memory_flush[bb_succ]
ebb7b10b
RH
7295 = alloc_INSN_LIST (XEXP (u, 0),
7296 bb_last_pending_memory_flush[bb_succ]);
8c660648
JL
7297 }
7298
7299 /* sched_before_next_call is inherited by bb_succ */
7300 x = LOG_LINKS (sched_before_next_call);
7301 for (; x; x = XEXP (x, 1))
7302 add_dependence (bb_sched_before_next_call[bb_succ],
7303 XEXP (x, 0), REG_DEP_ANTI);
7304
7305 e = NEXT_OUT (e);
7306 }
7307 while (e != first_edge);
7308 }
ebb7b10b 7309
7eea6443
JL
7310 /* Free up the INSN_LISTs
7311
7312 Note this loop is executed max_reg * nr_regions times. It's first
7313 implementation accounted for over 90% of the calls to free_list.
7314 The list was empty for the vast majority of those calls. On the PA,
7315 not calling free_list in those cases improves -O2 compile times by
7316 3-5% on average. */
ebb7b10b
RH
7317 for (b = 0; b < max_reg; ++b)
7318 {
7eea6443
JL
7319 if (reg_last_sets[b])
7320 free_list (&reg_last_sets[b], &unused_insn_list);
7321 if (reg_last_uses[b])
7322 free_list (&reg_last_uses[b], &unused_insn_list);
ebb7b10b
RH
7323 }
7324
7325 /* Assert that we won't need bb_reg_last_* for this block anymore. */
7326 if (current_nr_blocks > 1)
7327 {
7328 bb_reg_last_uses[bb] = (rtx *) NULL_RTX;
7329 bb_reg_last_sets[bb] = (rtx *) NULL_RTX;
7330 }
8c660648
JL
7331}
7332
7333/* Print dependences for debugging, callable from debugger */
7334
7335void
7336debug_dependencies ()
7337{
7338 int bb;
7339
7340 fprintf (dump, ";; --------------- forward dependences: ------------ \n");
7341 for (bb = 0; bb < current_nr_blocks; bb++)
7342 {
7343 if (1)
7344 {
7345 rtx head, tail;
7346 rtx next_tail;
7347 rtx insn;
7348
7349 get_block_head_tail (bb, &head, &tail);
7350 next_tail = NEXT_INSN (tail);
7351 fprintf (dump, "\n;; --- Region Dependences --- b %d bb %d \n",
7352 BB_TO_BLOCK (bb), bb);
7353
7354 fprintf (dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
7355 "insn", "code", "bb", "dep", "prio", "cost", "blockage", "units");
7356 fprintf (dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
7357 "----", "----", "--", "---", "----", "----", "--------", "-----");
7358 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
7359 {
7360 rtx link;
7361 int unit, range;
7362
7363 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7364 {
7365 int n;
7366 fprintf (dump, ";; %6d ", INSN_UID (insn));
7367 if (GET_CODE (insn) == NOTE)
ebc25a17
MM
7368 {
7369 n = NOTE_LINE_NUMBER (insn);
7370 if (n < 0)
7371 fprintf (dump, "%s\n", GET_NOTE_INSN_NAME (n));
7372 else
7373 fprintf (dump, "line %d, file %s\n", n,
7374 NOTE_SOURCE_FILE (insn));
7375 }
7376 else
4f64eaca 7377 fprintf (dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
8c660648
JL
7378 continue;
7379 }
7380
7381 unit = insn_unit (insn);
7382 range = (unit < 0
7383 || function_units[unit].blockage_range_function == 0) ? 0 :
7384 function_units[unit].blockage_range_function (insn);
7385 fprintf (dump,
7386 ";; %s%5d%6d%6d%6d%6d%6d %3d -%3d ",
7387 (SCHED_GROUP_P (insn) ? "+" : " "),
7388 INSN_UID (insn),
7389 INSN_CODE (insn),
7390 INSN_BB (insn),
7391 INSN_DEP_COUNT (insn),
7392 INSN_PRIORITY (insn),
7393 insn_cost (insn, 0, 0),
7394 (int) MIN_BLOCKAGE_COST (range),
7395 (int) MAX_BLOCKAGE_COST (range));
7396 insn_print_units (insn);
7397 fprintf (dump, "\t: ");
7398 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
7399 fprintf (dump, "%d ", INSN_UID (XEXP (link, 0)));
7400 fprintf (dump, "\n");
7401 }
7402 }
7403 }
7404 fprintf (dump, "\n");
7405}
7406
7407/* Set_priorities: compute priority of each insn in the block */
7408
7409static int
7410set_priorities (bb)
7411 int bb;
7412{
7413 rtx insn;
7414 int n_insn;
7415
7416 rtx tail;
7417 rtx prev_head;
7418 rtx head;
7419
7420 get_block_head_tail (bb, &head, &tail);
7421 prev_head = PREV_INSN (head);
7422
7423 if (head == tail
7424 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
7425 return 0;
7426
7427 n_insn = 0;
7428 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7429 {
7430
7431 if (GET_CODE (insn) == NOTE)
7432 continue;
7433
7434 if (!(SCHED_GROUP_P (insn)))
7435 n_insn++;
7436 (void) priority (insn);
7437 }
7438
7439 return n_insn;
7440}
7441
7442/* Make each element of VECTOR point at an rtx-vector,
7443 taking the space for all those rtx-vectors from SPACE.
7444 SPACE is of type (rtx *), but it is really as long as NELTS rtx-vectors.
7445 BYTES_PER_ELT is the number of bytes in one rtx-vector.
7446 (this is the same as init_regset_vector () in flow.c) */
7447
7448static void
7449init_rtx_vector (vector, space, nelts, bytes_per_elt)
7450 rtx **vector;
7451 rtx *space;
7452 int nelts;
7453 int bytes_per_elt;
7454{
7455 register int i;
7456 register rtx *p = space;
7457
7458 for (i = 0; i < nelts; i++)
7459 {
7460 vector[i] = p;
7461 p += bytes_per_elt / sizeof (*p);
7462 }
7463}
7464
7465/* Schedule a region. A region is either an inner loop, a loop-free
7466 subroutine, or a single basic block. Each bb in the region is
7467 scheduled after its flow predecessors. */
7468
7469static void
7470schedule_region (rgn)
7471 int rgn;
7472{
7473 int bb;
7474 int rgn_n_insns = 0;
7475 int sched_rgn_n_insns = 0;
7476
7477 /* set variables for the current region */
7478 current_nr_blocks = RGN_NR_BLOCKS (rgn);
7479 current_blocks = RGN_BLOCKS (rgn);
7480
7481 reg_pending_sets = ALLOCA_REG_SET ();
7482 reg_pending_sets_all = 0;
7483
7484 /* initializations for region data dependence analyisis */
7485 if (current_nr_blocks > 1)
7486 {
7487 rtx *space;
7488 int maxreg = max_reg_num ();
7489
7490 bb_reg_last_uses = (rtx **) alloca (current_nr_blocks * sizeof (rtx *));
7491 space = (rtx *) alloca (current_nr_blocks * maxreg * sizeof (rtx));
7492 bzero ((char *) space, current_nr_blocks * maxreg * sizeof (rtx));
7493 init_rtx_vector (bb_reg_last_uses, space, current_nr_blocks, maxreg * sizeof (rtx *));
7494
7495 bb_reg_last_sets = (rtx **) alloca (current_nr_blocks * sizeof (rtx *));
7496 space = (rtx *) alloca (current_nr_blocks * maxreg * sizeof (rtx));
7497 bzero ((char *) space, current_nr_blocks * maxreg * sizeof (rtx));
7498 init_rtx_vector (bb_reg_last_sets, space, current_nr_blocks, maxreg * sizeof (rtx *));
7499
7500 bb_pending_read_insns = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7501 bb_pending_read_mems = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7502 bb_pending_write_insns = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7503 bb_pending_write_mems = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7504 bb_pending_lists_length = (int *) alloca (current_nr_blocks * sizeof (int));
7505 bb_last_pending_memory_flush = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7506 bb_last_function_call = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7507 bb_sched_before_next_call = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7508
7509 init_rgn_data_dependences (current_nr_blocks);
7510 }
7511
7512 /* compute LOG_LINKS */
7513 for (bb = 0; bb < current_nr_blocks; bb++)
7514 compute_block_backward_dependences (bb);
7515
7516 /* compute INSN_DEPEND */
7517 for (bb = current_nr_blocks - 1; bb >= 0; bb--)
7518 compute_block_forward_dependences (bb);
7519
7520 /* Delete line notes, compute live-regs at block end, and set priorities. */
7521 dead_notes = 0;
7522 for (bb = 0; bb < current_nr_blocks; bb++)
7523 {
7524 if (reload_completed == 0)
7525 find_pre_sched_live (bb);
7526
7527 if (write_symbols != NO_DEBUG)
7528 {
7529 save_line_notes (bb);
7530 rm_line_notes (bb);
7531 }
7532
7533 rgn_n_insns += set_priorities (bb);
7534 }
7535
7536 /* compute interblock info: probabilities, split-edges, dominators, etc. */
7537 if (current_nr_blocks > 1)
7538 {
7539 int i;
7540
7541 prob = (float *) alloca ((current_nr_blocks) * sizeof (float));
7542
7543 bbset_size = current_nr_blocks / HOST_BITS_PER_WIDE_INT + 1;
7544 dom = (bbset *) alloca (current_nr_blocks * sizeof (bbset));
7545 for (i = 0; i < current_nr_blocks; i++)
7546 {
7547 dom[i] = (bbset) alloca (bbset_size * sizeof (HOST_WIDE_INT));
7548 bzero ((char *) dom[i], bbset_size * sizeof (HOST_WIDE_INT));
7549 }
7550
7551 /* edge to bit */
7552 rgn_nr_edges = 0;
7553 edge_to_bit = (int *) alloca (nr_edges * sizeof (int));
7554 for (i = 1; i < nr_edges; i++)
7555 if (CONTAINING_RGN (FROM_BLOCK (i)) == rgn)
7556 EDGE_TO_BIT (i) = rgn_nr_edges++;
7557 rgn_edges = (int *) alloca (rgn_nr_edges * sizeof (int));
7558
7559 rgn_nr_edges = 0;
7560 for (i = 1; i < nr_edges; i++)
7561 if (CONTAINING_RGN (FROM_BLOCK (i)) == (rgn))
7562 rgn_edges[rgn_nr_edges++] = i;
7563
7564 /* split edges */
7565 edgeset_size = rgn_nr_edges / HOST_BITS_PER_WIDE_INT + 1;
7566 pot_split = (edgeset *) alloca (current_nr_blocks * sizeof (edgeset));
7567 ancestor_edges = (edgeset *) alloca (current_nr_blocks * sizeof (edgeset));
7568 for (i = 0; i < current_nr_blocks; i++)
7569 {
7570 pot_split[i] =
7571 (edgeset) alloca (edgeset_size * sizeof (HOST_WIDE_INT));
7572 bzero ((char *) pot_split[i],
7573 edgeset_size * sizeof (HOST_WIDE_INT));
7574 ancestor_edges[i] =
7575 (edgeset) alloca (edgeset_size * sizeof (HOST_WIDE_INT));
7576 bzero ((char *) ancestor_edges[i],
7577 edgeset_size * sizeof (HOST_WIDE_INT));
7578 }
7579
7580 /* compute probabilities, dominators, split_edges */
7581 for (bb = 0; bb < current_nr_blocks; bb++)
7582 compute_dom_prob_ps (bb);
7583 }
7584
7585 /* now we can schedule all blocks */
7586 for (bb = 0; bb < current_nr_blocks; bb++)
7587 {
5835e573 7588 sched_rgn_n_insns += schedule_block (bb, rgn_n_insns);
8c660648
JL
7589
7590#ifdef USE_C_ALLOCA
7591 alloca (0);
7592#endif
7593 }
7594
cc132865
JL
7595 /* sanity check: verify that all region insns were scheduled */
7596 if (sched_rgn_n_insns != rgn_n_insns)
7597 abort ();
8c660648
JL
7598
7599 /* update register life and usage information */
7600 if (reload_completed == 0)
7601 {
7602 for (bb = current_nr_blocks - 1; bb >= 0; bb--)
7603 find_post_sched_live (bb);
7604
7605 if (current_nr_blocks <= 1)
7606 /* Sanity check. There should be no REG_DEAD notes leftover at the end.
7607 In practice, this can occur as the result of bugs in flow, combine.c,
7608 and/or sched.c. The values of the REG_DEAD notes remaining are
7609 meaningless, because dead_notes is just used as a free list. */
7610 if (dead_notes != 0)
7611 abort ();
7612 }
7613
7614 /* restore line notes. */
7615 if (write_symbols != NO_DEBUG)
7616 {
7617 for (bb = 0; bb < current_nr_blocks; bb++)
7618 restore_line_notes (bb);
7619 }
7620
7621 /* Done with this region */
7622 free_pending_lists ();
f187056f
JL
7623
7624 FREE_REG_SET (reg_pending_sets);
8c660648
JL
7625}
7626
7627/* Subroutine of split_hard_reg_notes. Searches X for any reference to
7628 REGNO, returning the rtx of the reference found if any. Otherwise,
7629 returns 0. */
7630
7631static rtx
7632regno_use_in (regno, x)
7633 int regno;
7634 rtx x;
7635{
7636 register char *fmt;
7637 int i, j;
7638 rtx tem;
7639
7640 if (GET_CODE (x) == REG && REGNO (x) == regno)
7641 return x;
7642
7643 fmt = GET_RTX_FORMAT (GET_CODE (x));
7644 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
7645 {
7646 if (fmt[i] == 'e')
7647 {
7648 if ((tem = regno_use_in (regno, XEXP (x, i))))
7649 return tem;
7650 }
7651 else if (fmt[i] == 'E')
7652 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7653 if ((tem = regno_use_in (regno, XVECEXP (x, i, j))))
7654 return tem;
7655 }
7656
7657 return 0;
7658}
7659
7660/* Subroutine of update_flow_info. Determines whether any new REG_NOTEs are
7661 needed for the hard register mentioned in the note. This can happen
7662 if the reference to the hard register in the original insn was split into
7663 several smaller hard register references in the split insns. */
7664
7665static void
5835e573
KG
7666split_hard_reg_notes (note, first, last)
7667 rtx note, first, last;
8c660648
JL
7668{
7669 rtx reg, temp, link;
7670 int n_regs, i, new_reg;
7671 rtx insn;
7672
7673 /* Assume that this is a REG_DEAD note. */
7674 if (REG_NOTE_KIND (note) != REG_DEAD)
7675 abort ();
7676
7677 reg = XEXP (note, 0);
7678
7679 n_regs = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
7680
7681 for (i = 0; i < n_regs; i++)
7682 {
7683 new_reg = REGNO (reg) + i;
7684
7685 /* Check for references to new_reg in the split insns. */
7686 for (insn = last;; insn = PREV_INSN (insn))
7687 {
7688 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7689 && (temp = regno_use_in (new_reg, PATTERN (insn))))
7690 {
7691 /* Create a new reg dead note ere. */
ebb7b10b 7692 link = alloc_EXPR_LIST (REG_DEAD, temp, REG_NOTES (insn));
8c660648
JL
7693 REG_NOTES (insn) = link;
7694
7695 /* If killed multiple registers here, then add in the excess. */
7696 i += HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)) - 1;
7697
7698 break;
7699 }
7700 /* It isn't mentioned anywhere, so no new reg note is needed for
7701 this register. */
7702 if (insn == first)
7703 break;
7704 }
7705 }
7706}
7707
7708/* Subroutine of update_flow_info. Determines whether a SET or CLOBBER in an
7709 insn created by splitting needs a REG_DEAD or REG_UNUSED note added. */
7710
7711static void
7712new_insn_dead_notes (pat, insn, last, orig_insn)
7713 rtx pat, insn, last, orig_insn;
7714{
7715 rtx dest, tem, set;
7716
7717 /* PAT is either a CLOBBER or a SET here. */
7718 dest = XEXP (pat, 0);
7719
7720 while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
7721 || GET_CODE (dest) == STRICT_LOW_PART
7722 || GET_CODE (dest) == SIGN_EXTRACT)
7723 dest = XEXP (dest, 0);
7724
7725 if (GET_CODE (dest) == REG)
7726 {
93da030f
R
7727 /* If the original insn already used this register, we may not add new
7728 notes for it. One example for a split that needs this test is
7729 when a multi-word memory access with register-indirect addressing
7730 is split into multiple memory accesses with auto-increment and
7731 one adjusting add instruction for the address register. */
7732 if (reg_referenced_p (dest, PATTERN (orig_insn)))
7733 return;
8c660648
JL
7734 for (tem = last; tem != insn; tem = PREV_INSN (tem))
7735 {
7736 if (GET_RTX_CLASS (GET_CODE (tem)) == 'i'
7737 && reg_overlap_mentioned_p (dest, PATTERN (tem))
7738 && (set = single_set (tem)))
7739 {
7740 rtx tem_dest = SET_DEST (set);
7741
7742 while (GET_CODE (tem_dest) == ZERO_EXTRACT
7743 || GET_CODE (tem_dest) == SUBREG
7744 || GET_CODE (tem_dest) == STRICT_LOW_PART
7745 || GET_CODE (tem_dest) == SIGN_EXTRACT)
7746 tem_dest = XEXP (tem_dest, 0);
7747
7748 if (!rtx_equal_p (tem_dest, dest))
7749 {
7750 /* Use the same scheme as combine.c, don't put both REG_DEAD
7751 and REG_UNUSED notes on the same insn. */
7752 if (!find_regno_note (tem, REG_UNUSED, REGNO (dest))
7753 && !find_regno_note (tem, REG_DEAD, REGNO (dest)))
7754 {
ebb7b10b
RH
7755 rtx note = alloc_EXPR_LIST (REG_DEAD, dest,
7756 REG_NOTES (tem));
8c660648
JL
7757 REG_NOTES (tem) = note;
7758 }
7759 /* The reg only dies in one insn, the last one that uses
7760 it. */
7761 break;
7762 }
7763 else if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
7764 /* We found an instruction that both uses the register,
7765 and sets it, so no new REG_NOTE is needed for this set. */
7766 break;
7767 }
7768 }
7769 /* If this is a set, it must die somewhere, unless it is the dest of
7770 the original insn, and hence is live after the original insn. Abort
7771 if it isn't supposed to be live after the original insn.
7772
7773 If this is a clobber, then just add a REG_UNUSED note. */
7774 if (tem == insn)
7775 {
7776 int live_after_orig_insn = 0;
7777 rtx pattern = PATTERN (orig_insn);
7778 int i;
7779
7780 if (GET_CODE (pat) == CLOBBER)
7781 {
ebb7b10b 7782 rtx note = alloc_EXPR_LIST (REG_UNUSED, dest, REG_NOTES (insn));
8c660648
JL
7783 REG_NOTES (insn) = note;
7784 return;
7785 }
7786
7787 /* The original insn could have multiple sets, so search the
7788 insn for all sets. */
7789 if (GET_CODE (pattern) == SET)
7790 {
7791 if (reg_overlap_mentioned_p (dest, SET_DEST (pattern)))
7792 live_after_orig_insn = 1;
7793 }
7794 else if (GET_CODE (pattern) == PARALLEL)
7795 {
7796 for (i = 0; i < XVECLEN (pattern, 0); i++)
7797 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET
7798 && reg_overlap_mentioned_p (dest,
7799 SET_DEST (XVECEXP (pattern,
7800 0, i))))
7801 live_after_orig_insn = 1;
7802 }
7803
7804 if (!live_after_orig_insn)
7805 abort ();
7806 }
7807 }
7808}
7809
7810/* Subroutine of update_flow_info. Update the value of reg_n_sets for all
7811 registers modified by X. INC is -1 if the containing insn is being deleted,
7812 and is 1 if the containing insn is a newly generated insn. */
7813
7814static void
7815update_n_sets (x, inc)
7816 rtx x;
7817 int inc;
7818{
7819 rtx dest = SET_DEST (x);
7820
7821 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
7822 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
7823 dest = SUBREG_REG (dest);
7824
7825 if (GET_CODE (dest) == REG)
7826 {
7827 int regno = REGNO (dest);
7828
7829 if (regno < FIRST_PSEUDO_REGISTER)
7830 {
7831 register int i;
7832 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (dest));
7833
7834 for (i = regno; i < endregno; i++)
7835 REG_N_SETS (i) += inc;
7836 }
7837 else
7838 REG_N_SETS (regno) += inc;
7839 }
7840}
7841
7842/* Updates all flow-analysis related quantities (including REG_NOTES) for
7843 the insns from FIRST to LAST inclusive that were created by splitting
7844 ORIG_INSN. NOTES are the original REG_NOTES. */
7845
7846static void
7847update_flow_info (notes, first, last, orig_insn)
7848 rtx notes;
7849 rtx first, last;
7850 rtx orig_insn;
7851{
7852 rtx insn, note;
7853 rtx next;
7854 rtx orig_dest, temp;
7855 rtx set;
7856
7857 /* Get and save the destination set by the original insn. */
7858
7859 orig_dest = single_set (orig_insn);
7860 if (orig_dest)
7861 orig_dest = SET_DEST (orig_dest);
7862
7863 /* Move REG_NOTES from the original insn to where they now belong. */
7864
7865 for (note = notes; note; note = next)
7866 {
7867 next = XEXP (note, 1);
7868 switch (REG_NOTE_KIND (note))
7869 {
7870 case REG_DEAD:
7871 case REG_UNUSED:
7872 /* Move these notes from the original insn to the last new insn where
7873 the register is now set. */
7874
7875 for (insn = last;; insn = PREV_INSN (insn))
7876 {
7877 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7878 && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
7879 {
7880 /* If this note refers to a multiple word hard register, it
7881 may have been split into several smaller hard register
7882 references, so handle it specially. */
7883 temp = XEXP (note, 0);
7884 if (REG_NOTE_KIND (note) == REG_DEAD
7885 && GET_CODE (temp) == REG
7886 && REGNO (temp) < FIRST_PSEUDO_REGISTER
7887 && HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)) > 1)
5835e573 7888 split_hard_reg_notes (note, first, last);
8c660648
JL
7889 else
7890 {
7891 XEXP (note, 1) = REG_NOTES (insn);
7892 REG_NOTES (insn) = note;
7893 }
7894
7895 /* Sometimes need to convert REG_UNUSED notes to REG_DEAD
7896 notes. */
7897 /* ??? This won't handle multiple word registers correctly,
7898 but should be good enough for now. */
7899 if (REG_NOTE_KIND (note) == REG_UNUSED
272299b9 7900 && GET_CODE (XEXP (note, 0)) != SCRATCH
8c660648
JL
7901 && !dead_or_set_p (insn, XEXP (note, 0)))
7902 PUT_REG_NOTE_KIND (note, REG_DEAD);
7903
7904 /* The reg only dies in one insn, the last one that uses
7905 it. */
7906 break;
7907 }
7908 /* It must die somewhere, fail it we couldn't find where it died.
7909
7910 If this is a REG_UNUSED note, then it must be a temporary
7911 register that was not needed by this instantiation of the
7912 pattern, so we can safely ignore it. */
7913 if (insn == first)
7914 {
7915 /* After reload, REG_DEAD notes come sometimes an
7916 instruction after the register actually dies. */
7917 if (reload_completed && REG_NOTE_KIND (note) == REG_DEAD)
7918 {
7919 XEXP (note, 1) = REG_NOTES (insn);
7920 REG_NOTES (insn) = note;
7921 break;
7922 }
7923
7924 if (REG_NOTE_KIND (note) != REG_UNUSED)
7925 abort ();
7926
7927 break;
7928 }
7929 }
7930 break;
7931
7932 case REG_WAS_0:
fcdc0d6e
R
7933 /* If the insn that set the register to 0 was deleted, this
7934 note cannot be relied on any longer. The destination might
7935 even have been moved to memory.
7936 This was observed for SH4 with execute/920501-6.c compilation,
7937 -O2 -fomit-frame-pointer -finline-functions . */
7938 if (GET_CODE (XEXP (note, 0)) == NOTE
7939 || INSN_DELETED_P (XEXP (note, 0)))
7940 break;
8c660648
JL
7941 /* This note applies to the dest of the original insn. Find the
7942 first new insn that now has the same dest, and move the note
7943 there. */
7944
7945 if (!orig_dest)
7946 abort ();
7947
7948 for (insn = first;; insn = NEXT_INSN (insn))
7949 {
7950 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7951 && (temp = single_set (insn))
7952 && rtx_equal_p (SET_DEST (temp), orig_dest))
7953 {
7954 XEXP (note, 1) = REG_NOTES (insn);
7955 REG_NOTES (insn) = note;
7956 /* The reg is only zero before one insn, the first that
7957 uses it. */
7958 break;
7959 }
7960 /* If this note refers to a multiple word hard
7961 register, it may have been split into several smaller
7962 hard register references. We could split the notes,
7963 but simply dropping them is good enough. */
7964 if (GET_CODE (orig_dest) == REG
7965 && REGNO (orig_dest) < FIRST_PSEUDO_REGISTER
7966 && HARD_REGNO_NREGS (REGNO (orig_dest),
7967 GET_MODE (orig_dest)) > 1)
7968 break;
7969 /* It must be set somewhere, fail if we couldn't find where it
7970 was set. */
7971 if (insn == last)
7972 abort ();
7973 }
7974 break;
7975
7976 case REG_EQUAL:
7977 case REG_EQUIV:
7978 /* A REG_EQUIV or REG_EQUAL note on an insn with more than one
7979 set is meaningless. Just drop the note. */
7980 if (!orig_dest)
7981 break;
7982
7983 case REG_NO_CONFLICT:
7984 /* These notes apply to the dest of the original insn. Find the last
7985 new insn that now has the same dest, and move the note there. */
7986
7987 if (!orig_dest)
7988 abort ();
7989
7990 for (insn = last;; insn = PREV_INSN (insn))
7991 {
7992 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7993 && (temp = single_set (insn))
7994 && rtx_equal_p (SET_DEST (temp), orig_dest))
7995 {
7996 XEXP (note, 1) = REG_NOTES (insn);
7997 REG_NOTES (insn) = note;
7998 /* Only put this note on one of the new insns. */
7999 break;
8000 }
8001
8002 /* The original dest must still be set someplace. Abort if we
8003 couldn't find it. */
8004 if (insn == first)
8005 {
8006 /* However, if this note refers to a multiple word hard
8007 register, it may have been split into several smaller
8008 hard register references. We could split the notes,
8009 but simply dropping them is good enough. */
8010 if (GET_CODE (orig_dest) == REG
8011 && REGNO (orig_dest) < FIRST_PSEUDO_REGISTER
8012 && HARD_REGNO_NREGS (REGNO (orig_dest),
8013 GET_MODE (orig_dest)) > 1)
8014 break;
8015 /* Likewise for multi-word memory references. */
8016 if (GET_CODE (orig_dest) == MEM
9ae4ec46 8017 && SIZE_FOR_MODE (orig_dest) > UNITS_PER_WORD)
8c660648
JL
8018 break;
8019 abort ();
8020 }
8021 }
8022 break;
8023
8024 case REG_LIBCALL:
8025 /* Move a REG_LIBCALL note to the first insn created, and update
8026 the corresponding REG_RETVAL note. */
8027 XEXP (note, 1) = REG_NOTES (first);
8028 REG_NOTES (first) = note;
8029
8030 insn = XEXP (note, 0);
8031 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
8032 if (note)
8033 XEXP (note, 0) = first;
8034 break;
8035
8036 case REG_EXEC_COUNT:
8037 /* Move a REG_EXEC_COUNT note to the first insn created. */
8038 XEXP (note, 1) = REG_NOTES (first);
8039 REG_NOTES (first) = note;
8040 break;
8041
8042 case REG_RETVAL:
8043 /* Move a REG_RETVAL note to the last insn created, and update
8044 the corresponding REG_LIBCALL note. */
8045 XEXP (note, 1) = REG_NOTES (last);
8046 REG_NOTES (last) = note;
8047
8048 insn = XEXP (note, 0);
8049 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
8050 if (note)
8051 XEXP (note, 0) = last;
8052 break;
8053
8054 case REG_NONNEG:
8055 case REG_BR_PROB:
8056 /* This should be moved to whichever instruction is a JUMP_INSN. */
8057
8058 for (insn = last;; insn = PREV_INSN (insn))
8059 {
8060 if (GET_CODE (insn) == JUMP_INSN)
8061 {
8062 XEXP (note, 1) = REG_NOTES (insn);
8063 REG_NOTES (insn) = note;
8064 /* Only put this note on one of the new insns. */
8065 break;
8066 }
8067 /* Fail if we couldn't find a JUMP_INSN. */
8068 if (insn == first)
8069 abort ();
8070 }
8071 break;
8072
8073 case REG_INC:
8074 /* reload sometimes leaves obsolete REG_INC notes around. */
8075 if (reload_completed)
8076 break;
8077 /* This should be moved to whichever instruction now has the
8078 increment operation. */
8079 abort ();
8080
8081 case REG_LABEL:
8082 /* Should be moved to the new insn(s) which use the label. */
8083 for (insn = first; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
8084 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8085 && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
ebb7b10b
RH
8086 {
8087 REG_NOTES (insn) = alloc_EXPR_LIST (REG_LABEL,
38a448ca
RH
8088 XEXP (note, 0),
8089 REG_NOTES (insn));
ebb7b10b 8090 }
8c660648
JL
8091 break;
8092
8093 case REG_CC_SETTER:
8094 case REG_CC_USER:
8095 /* These two notes will never appear until after reorg, so we don't
8096 have to handle them here. */
8097 default:
8098 abort ();
8099 }
8100 }
8101
8102 /* Each new insn created, except the last, has a new set. If the destination
8103 is a register, then this reg is now live across several insns, whereas
8104 previously the dest reg was born and died within the same insn. To
8105 reflect this, we now need a REG_DEAD note on the insn where this
8106 dest reg dies.
8107
8108 Similarly, the new insns may have clobbers that need REG_UNUSED notes. */
8109
8110 for (insn = first; insn != last; insn = NEXT_INSN (insn))
8111 {
8112 rtx pat;
8113 int i;
8114
8115 pat = PATTERN (insn);
8116 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
8117 new_insn_dead_notes (pat, insn, last, orig_insn);
8118 else if (GET_CODE (pat) == PARALLEL)
8119 {
8120 for (i = 0; i < XVECLEN (pat, 0); i++)
8121 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
8122 || GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER)
8123 new_insn_dead_notes (XVECEXP (pat, 0, i), insn, last, orig_insn);
8124 }
8125 }
8126
8127 /* If any insn, except the last, uses the register set by the last insn,
8128 then we need a new REG_DEAD note on that insn. In this case, there
8129 would not have been a REG_DEAD note for this register in the original
8130 insn because it was used and set within one insn. */
8131
8132 set = single_set (last);
8133 if (set)
8134 {
8135 rtx dest = SET_DEST (set);
8136
8137 while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
8138 || GET_CODE (dest) == STRICT_LOW_PART
8139 || GET_CODE (dest) == SIGN_EXTRACT)
8140 dest = XEXP (dest, 0);
8141
8142 if (GET_CODE (dest) == REG
8143 /* Global registers are always live, so the code below does not
8144 apply to them. */
8145 && (REGNO (dest) >= FIRST_PSEUDO_REGISTER
8146 || ! global_regs[REGNO (dest)]))
8147 {
8148 rtx stop_insn = PREV_INSN (first);
8149
8150 /* If the last insn uses the register that it is setting, then
8151 we don't want to put a REG_DEAD note there. Search backwards
8152 to find the first insn that sets but does not use DEST. */
8153
8154 insn = last;
8155 if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
8156 {
8157 for (insn = PREV_INSN (insn); insn != first;
8158 insn = PREV_INSN (insn))
8159 {
8160 if ((set = single_set (insn))
8161 && reg_mentioned_p (dest, SET_DEST (set))
8162 && ! reg_overlap_mentioned_p (dest, SET_SRC (set)))
8163 break;
8164 }
8165 }
8166
8167 /* Now find the first insn that uses but does not set DEST. */
8168
8169 for (insn = PREV_INSN (insn); insn != stop_insn;
8170 insn = PREV_INSN (insn))
8171 {
8172 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8173 && reg_mentioned_p (dest, PATTERN (insn))
8174 && (set = single_set (insn)))
8175 {
8176 rtx insn_dest = SET_DEST (set);
8177
8178 while (GET_CODE (insn_dest) == ZERO_EXTRACT
8179 || GET_CODE (insn_dest) == SUBREG
8180 || GET_CODE (insn_dest) == STRICT_LOW_PART
8181 || GET_CODE (insn_dest) == SIGN_EXTRACT)
8182 insn_dest = XEXP (insn_dest, 0);
8183
8184 if (insn_dest != dest)
8185 {
ebb7b10b 8186 note = alloc_EXPR_LIST (REG_DEAD, dest, REG_NOTES (insn));
8c660648
JL
8187 REG_NOTES (insn) = note;
8188 /* The reg only dies in one insn, the last one
8189 that uses it. */
8190 break;
8191 }
8192 }
8193 }
8194 }
8195 }
8196
8197 /* If the original dest is modifying a multiple register target, and the
8198 original instruction was split such that the original dest is now set
8199 by two or more SUBREG sets, then the split insns no longer kill the
8200 destination of the original insn.
8201
8202 In this case, if there exists an instruction in the same basic block,
8203 before the split insn, which uses the original dest, and this use is
8204 killed by the original insn, then we must remove the REG_DEAD note on
8205 this insn, because it is now superfluous.
8206
8207 This does not apply when a hard register gets split, because the code
8208 knows how to handle overlapping hard registers properly. */
8209 if (orig_dest && GET_CODE (orig_dest) == REG)
8210 {
8211 int found_orig_dest = 0;
8212 int found_split_dest = 0;
8213
8214 for (insn = first;; insn = NEXT_INSN (insn))
8215 {
acceac1a
R
8216 rtx pat;
8217 int i;
8218
8219 /* I'm not sure if this can happen, but let's be safe. */
8220 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
8221 continue;
8222
8223 pat = PATTERN (insn);
8224 i = GET_CODE (pat) == PARALLEL ? XVECLEN (pat, 0) : 0;
8225 set = pat;
8226
8227 for (;;)
8c660648 8228 {
acceac1a 8229 if (GET_CODE (set) == SET)
8c660648 8230 {
acceac1a
R
8231 if (GET_CODE (SET_DEST (set)) == REG
8232 && REGNO (SET_DEST (set)) == REGNO (orig_dest))
8233 {
8234 found_orig_dest = 1;
8235 break;
8236 }
8237 else if (GET_CODE (SET_DEST (set)) == SUBREG
8238 && SUBREG_REG (SET_DEST (set)) == orig_dest)
8239 {
8240 found_split_dest = 1;
8241 break;
8242 }
8c660648 8243 }
acceac1a
R
8244 if (--i < 0)
8245 break;
8246 set = XVECEXP (pat, 0, i);
8c660648
JL
8247 }
8248
8249 if (insn == last)
8250 break;
8251 }
8252
8253 if (found_split_dest)
8254 {
8255 /* Search backwards from FIRST, looking for the first insn that uses
8256 the original dest. Stop if we pass a CODE_LABEL or a JUMP_INSN.
8257 If we find an insn, and it has a REG_DEAD note, then delete the
8258 note. */
8259
8260 for (insn = first; insn; insn = PREV_INSN (insn))
8261 {
8262 if (GET_CODE (insn) == CODE_LABEL
8263 || GET_CODE (insn) == JUMP_INSN)
8264 break;
8265 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8266 && reg_mentioned_p (orig_dest, insn))
8267 {
8268 note = find_regno_note (insn, REG_DEAD, REGNO (orig_dest));
8269 if (note)
8270 remove_note (insn, note);
8271 }
8272 }
8273 }
8274 else if (!found_orig_dest)
8275 {
8276 /* This should never happen. */
8277 abort ();
8278 }
8279 }
8280
8281 /* Update reg_n_sets. This is necessary to prevent local alloc from
8282 converting REG_EQUAL notes to REG_EQUIV when splitting has modified
8283 a reg from set once to set multiple times. */
8284
8285 {
8286 rtx x = PATTERN (orig_insn);
8287 RTX_CODE code = GET_CODE (x);
8288
8289 if (code == SET || code == CLOBBER)
8290 update_n_sets (x, -1);
8291 else if (code == PARALLEL)
8292 {
8293 int i;
8294 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
8295 {
8296 code = GET_CODE (XVECEXP (x, 0, i));
8297 if (code == SET || code == CLOBBER)
8298 update_n_sets (XVECEXP (x, 0, i), -1);
8299 }
8300 }
8301
8302 for (insn = first;; insn = NEXT_INSN (insn))
8303 {
8304 x = PATTERN (insn);
8305 code = GET_CODE (x);
8306
8307 if (code == SET || code == CLOBBER)
8308 update_n_sets (x, 1);
8309 else if (code == PARALLEL)
8310 {
8311 int i;
8312 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
8313 {
8314 code = GET_CODE (XVECEXP (x, 0, i));
8315 if (code == SET || code == CLOBBER)
8316 update_n_sets (XVECEXP (x, 0, i), 1);
8317 }
8318 }
8319
8320 if (insn == last)
8321 break;
8322 }
8323 }
8324}
8325
8326/* Do the splitting of insns in the block b. */
8327
8328static void
8329split_block_insns (b)
8330 int b;
8331{
8332 rtx insn, next;
8333
8334 for (insn = basic_block_head[b];; insn = next)
8335 {
4ed43ff8 8336 rtx set, last, first, notes;
8c660648
JL
8337
8338 /* Can't use `next_real_insn' because that
8339 might go across CODE_LABELS and short-out basic blocks. */
8340 next = NEXT_INSN (insn);
8341 if (GET_CODE (insn) != INSN)
8342 {
8343 if (insn == basic_block_end[b])
8344 break;
8345
8346 continue;
8347 }
8348
8349 /* Don't split no-op move insns. These should silently disappear
8350 later in final. Splitting such insns would break the code
8351 that handles REG_NO_CONFLICT blocks. */
8352 set = single_set (insn);
8353 if (set && rtx_equal_p (SET_SRC (set), SET_DEST (set)))
8354 {
8355 if (insn == basic_block_end[b])
8356 break;
8357
8358 /* Nops get in the way while scheduling, so delete them now if
8359 register allocation has already been done. It is too risky
8360 to try to do this before register allocation, and there are
8361 unlikely to be very many nops then anyways. */
8362 if (reload_completed)
8363 {
8364 PUT_CODE (insn, NOTE);
8365 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8366 NOTE_SOURCE_FILE (insn) = 0;
8367 }
8368
8369 continue;
8370 }
8371
8372 /* Split insns here to get max fine-grain parallelism. */
4ed43ff8
RH
8373 first = PREV_INSN (insn);
8374 notes = REG_NOTES (insn);
8375 last = try_split (PATTERN (insn), insn, 1);
8376 if (last != insn)
8c660648 8377 {
4ed43ff8
RH
8378 /* try_split returns the NOTE that INSN became. */
8379 first = NEXT_INSN (first);
8380 update_flow_info (notes, first, last, insn);
8381
8382 PUT_CODE (insn, NOTE);
8383 NOTE_SOURCE_FILE (insn) = 0;
8384 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8385 if (insn == basic_block_head[b])
8386 basic_block_head[b] = first;
8387 if (insn == basic_block_end[b])
8c660648 8388 {
4ed43ff8
RH
8389 basic_block_end[b] = last;
8390 break;
8c660648
JL
8391 }
8392 }
8393
8394 if (insn == basic_block_end[b])
8395 break;
8396 }
8397}
8398
8399/* The one entry point in this file. DUMP_FILE is the dump file for
8400 this pass. */
8401
8402void
8403schedule_insns (dump_file)
8404 FILE *dump_file;
8405{
8406
8407 int max_uid;
8408 int b;
8c660648
JL
8409 rtx insn;
8410 int rgn;
8411
8412 int luid;
8413
8414 /* disable speculative loads in their presence if cc0 defined */
8415#ifdef HAVE_cc0
8416 flag_schedule_speculative_load = 0;
8417#endif
8418
8419 /* Taking care of this degenerate case makes the rest of
8420 this code simpler. */
8421 if (n_basic_blocks == 0)
8422 return;
8423
8424 /* set dump and sched_verbose for the desired debugging output. If no
8425 dump-file was specified, but -fsched-verbose-N (any N), print to stderr.
8426 For -fsched-verbose-N, N>=10, print everything to stderr. */
8427 sched_verbose = sched_verbose_param;
8428 if (sched_verbose_param == 0 && dump_file)
8429 sched_verbose = 1;
8430 dump = ((sched_verbose_param >= 10 || !dump_file) ? stderr : dump_file);
8431
8432 nr_inter = 0;
8433 nr_spec = 0;
8434
8435 /* Initialize the unused_*_lists. We can't use the ones left over from
8436 the previous function, because gcc has freed that memory. We can use
8437 the ones left over from the first sched pass in the second pass however,
8438 so only clear them on the first sched pass. The first pass is before
8439 reload if flag_schedule_insns is set, otherwise it is afterwards. */
8440
8441 if (reload_completed == 0 || !flag_schedule_insns)
8442 {
8443 unused_insn_list = 0;
8444 unused_expr_list = 0;
8445 }
8446
8447 /* initialize issue_rate */
62d65906 8448 issue_rate = ISSUE_RATE;
8c660648
JL
8449
8450 /* do the splitting first for all blocks */
8451 for (b = 0; b < n_basic_blocks; b++)
8452 split_block_insns (b);
8453
8454 max_uid = (get_max_uid () + 1);
8455
7c74b010 8456 cant_move = (char *) xmalloc (max_uid * sizeof (char));
8c660648
JL
8457 bzero ((char *) cant_move, max_uid * sizeof (char));
8458
7c74b010 8459 fed_by_spec_load = (char *) xmalloc (max_uid * sizeof (char));
8c660648
JL
8460 bzero ((char *) fed_by_spec_load, max_uid * sizeof (char));
8461
7c74b010 8462 is_load_insn = (char *) xmalloc (max_uid * sizeof (char));
8c660648
JL
8463 bzero ((char *) is_load_insn, max_uid * sizeof (char));
8464
7c74b010
JW
8465 insn_orig_block = (int *) xmalloc (max_uid * sizeof (int));
8466 insn_luid = (int *) xmalloc (max_uid * sizeof (int));
8c660648
JL
8467
8468 luid = 0;
8469 for (b = 0; b < n_basic_blocks; b++)
8470 for (insn = basic_block_head[b];; insn = NEXT_INSN (insn))
8471 {
8472 INSN_BLOCK (insn) = b;
8473 INSN_LUID (insn) = luid++;
8474
8475 if (insn == basic_block_end[b])
8476 break;
8477 }
8478
8479 /* after reload, remove inter-blocks dependences computed before reload. */
8480 if (reload_completed)
8481 {
8482 int b;
8483 rtx insn;
8484
8485 for (b = 0; b < n_basic_blocks; b++)
8486 for (insn = basic_block_head[b];; insn = NEXT_INSN (insn))
8487 {
c995fea1 8488 rtx link, prev;
8c660648
JL
8489
8490 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
8491 {
c995fea1
RH
8492 prev = NULL_RTX;
8493 link = LOG_LINKS (insn);
8494 while (link)
8c660648
JL
8495 {
8496 rtx x = XEXP (link, 0);
8497
8498 if (INSN_BLOCK (x) != b)
c995fea1
RH
8499 {
8500 remove_dependence (insn, x);
8501 link = prev ? XEXP (prev, 1) : LOG_LINKS (insn);
8502 }
8503 else
8504 prev = link, link = XEXP (prev, 1);
8c660648
JL
8505 }
8506 }
8507
8508 if (insn == basic_block_end[b])
8509 break;
8510 }
8511 }
8512
8513 nr_regions = 0;
8514 rgn_table = (region *) alloca ((n_basic_blocks) * sizeof (region));
8515 rgn_bb_table = (int *) alloca ((n_basic_blocks) * sizeof (int));
8516 block_to_bb = (int *) alloca ((n_basic_blocks) * sizeof (int));
8517 containing_rgn = (int *) alloca ((n_basic_blocks) * sizeof (int));
8518
8519 /* compute regions for scheduling */
8520 if (reload_completed
8521 || n_basic_blocks == 1
8522 || !flag_schedule_interblock)
8523 {
8524 find_single_block_region ();
8525 }
8526 else
8527 {
8c660648 8528 /* verify that a 'good' control flow graph can be built */
168cbdf9 8529 if (is_cfg_nonregular ())
8c660648
JL
8530 {
8531 find_single_block_region ();
8532 }
8533 else
8534 {
a2e68776
JL
8535 int_list_ptr *s_preds, *s_succs;
8536 int *num_preds, *num_succs;
8537 sbitmap *dom, *pdom;
8538
8539 s_preds = (int_list_ptr *) alloca (n_basic_blocks
8540 * sizeof (int_list_ptr));
8541 s_succs = (int_list_ptr *) alloca (n_basic_blocks
8542 * sizeof (int_list_ptr));
8543 num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
8544 num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
8545 dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
8546 pdom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
8547
8548 /* The scheduler runs after flow; therefore, we can't blindly call
8549 back into find_basic_blocks since doing so could invalidate the
8550 info in basic_block_live_at_start.
8551
8552 Consider a block consisting entirely of dead stores; after life
8553 analysis it would be a block of NOTE_INSN_DELETED notes. If
8554 we call find_basic_blocks again, then the block would be removed
8555 entirely and invalidate our the register live information.
8556
8557 We could (should?) recompute register live information. Doing
8558 so may even be beneficial. */
8559
5d27de7d 8560 compute_preds_succs (s_preds, s_succs, num_preds, num_succs);
a2e68776
JL
8561
8562 /* Compute the dominators and post dominators. We don't currently use
8563 post dominators, but we should for speculative motion analysis. */
8564 compute_dominators (dom, pdom, s_preds, s_succs);
8565
168cbdf9
JL
8566 /* build_control_flow will return nonzero if it detects unreachable
8567 blocks or any other irregularity with the cfg which prevents
8568 cross block scheduling. */
a2e68776 8569 if (build_control_flow (s_preds, s_succs, num_preds, num_succs) != 0)
168cbdf9
JL
8570 find_single_block_region ();
8571 else
a2e68776 8572 find_rgns (s_preds, s_succs, num_preds, num_succs, dom);
8c660648
JL
8573
8574 if (sched_verbose >= 3)
a2e68776 8575 debug_regions ();
8c660648 8576
a2e68776
JL
8577 /* For now. This will move as more and more of haifa is converted
8578 to using the cfg code in flow.c */
8579 free_bb_mem ();
8580 free (dom);
8581 free (pdom);
8c660648
JL
8582 }
8583 }
8584
8585 /* Allocate data for this pass. See comments, above,
7c74b010
JW
8586 for what these vectors do.
8587
8588 We use xmalloc instead of alloca, because max_uid can be very large
8589 when there is a lot of function inlining. If we used alloca, we could
8590 exceed stack limits on some hosts for some inputs. */
8591 insn_priority = (int *) xmalloc (max_uid * sizeof (int));
8592 insn_reg_weight = (int *) xmalloc (max_uid * sizeof (int));
8593 insn_tick = (int *) xmalloc (max_uid * sizeof (int));
8594 insn_costs = (short *) xmalloc (max_uid * sizeof (short));
8595 insn_units = (short *) xmalloc (max_uid * sizeof (short));
8596 insn_blockage = (unsigned int *) xmalloc (max_uid * sizeof (unsigned int));
8597 insn_ref_count = (int *) xmalloc (max_uid * sizeof (int));
8c660648
JL
8598
8599 /* Allocate for forward dependencies */
7c74b010
JW
8600 insn_dep_count = (int *) xmalloc (max_uid * sizeof (int));
8601 insn_depend = (rtx *) xmalloc (max_uid * sizeof (rtx));
8c660648
JL
8602
8603 if (reload_completed == 0)
8604 {
8605 int i;
8606
8607 sched_reg_n_calls_crossed = (int *) alloca (max_regno * sizeof (int));
8608 sched_reg_live_length = (int *) alloca (max_regno * sizeof (int));
8609 sched_reg_basic_block = (int *) alloca (max_regno * sizeof (int));
8610 bb_live_regs = ALLOCA_REG_SET ();
8611 bzero ((char *) sched_reg_n_calls_crossed, max_regno * sizeof (int));
8612 bzero ((char *) sched_reg_live_length, max_regno * sizeof (int));
8613
8614 for (i = 0; i < max_regno; i++)
8615 sched_reg_basic_block[i] = REG_BLOCK_UNKNOWN;
8616 }
8617 else
8618 {
8619 sched_reg_n_calls_crossed = 0;
8620 sched_reg_live_length = 0;
8621 bb_live_regs = 0;
8622 }
8623 init_alias_analysis ();
8624
8625 if (write_symbols != NO_DEBUG)
8626 {
8627 rtx line;
8628
7c74b010 8629 line_note = (rtx *) xmalloc (max_uid * sizeof (rtx));
8c660648
JL
8630 bzero ((char *) line_note, max_uid * sizeof (rtx));
8631 line_note_head = (rtx *) alloca (n_basic_blocks * sizeof (rtx));
8632 bzero ((char *) line_note_head, n_basic_blocks * sizeof (rtx));
8633
8634 /* Save-line-note-head:
8635 Determine the line-number at the start of each basic block.
8636 This must be computed and saved now, because after a basic block's
8637 predecessor has been scheduled, it is impossible to accurately
8638 determine the correct line number for the first insn of the block. */
8639
8640 for (b = 0; b < n_basic_blocks; b++)
8641 for (line = basic_block_head[b]; line; line = PREV_INSN (line))
8642 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
8643 {
8644 line_note_head[b] = line;
8645 break;
8646 }
8647 }
8648
8649 bzero ((char *) insn_priority, max_uid * sizeof (int));
8650 bzero ((char *) insn_reg_weight, max_uid * sizeof (int));
8651 bzero ((char *) insn_tick, max_uid * sizeof (int));
8652 bzero ((char *) insn_costs, max_uid * sizeof (short));
8653 bzero ((char *) insn_units, max_uid * sizeof (short));
8654 bzero ((char *) insn_blockage, max_uid * sizeof (unsigned int));
8655 bzero ((char *) insn_ref_count, max_uid * sizeof (int));
8656
8657 /* Initialize for forward dependencies */
8658 bzero ((char *) insn_depend, max_uid * sizeof (rtx));
8659 bzero ((char *) insn_dep_count, max_uid * sizeof (int));
8660
8661 /* Find units used in this fuction, for visualization */
8662 if (sched_verbose)
8663 init_target_units ();
8664
8665 /* ??? Add a NOTE after the last insn of the last basic block. It is not
8666 known why this is done. */
8667
8668 insn = basic_block_end[n_basic_blocks - 1];
8669 if (NEXT_INSN (insn) == 0
8670 || (GET_CODE (insn) != NOTE
8671 && GET_CODE (insn) != CODE_LABEL
8672 /* Don't emit a NOTE if it would end up between an unconditional
8673 jump and a BARRIER. */
8674 && !(GET_CODE (insn) == JUMP_INSN
8675 && GET_CODE (NEXT_INSN (insn)) == BARRIER)))
8676 emit_note_after (NOTE_INSN_DELETED, basic_block_end[n_basic_blocks - 1]);
8677
8678 /* Schedule every region in the subroutine */
8679 for (rgn = 0; rgn < nr_regions; rgn++)
8680 {
8681 schedule_region (rgn);
8682
8683#ifdef USE_C_ALLOCA
8684 alloca (0);
8685#endif
8686 }
8687
8688 /* Reposition the prologue and epilogue notes in case we moved the
8689 prologue/epilogue insns. */
8690 if (reload_completed)
8691 reposition_prologue_and_epilogue_notes (get_insns ());
8692
8693 /* delete redundant line notes. */
8694 if (write_symbols != NO_DEBUG)
8695 rm_redundant_line_notes ();
8696
8697 /* Update information about uses of registers in the subroutine. */
8698 if (reload_completed == 0)
8699 update_reg_usage ();
8700
8701 if (sched_verbose)
8702 {
8703 if (reload_completed == 0 && flag_schedule_interblock)
8704 {
8705 fprintf (dump, "\n;; Procedure interblock/speculative motions == %d/%d \n",
8706 nr_inter, nr_spec);
8707 }
8708 else
8709 {
8710 if (nr_inter > 0)
8711 abort ();
8712 }
8713 fprintf (dump, "\n\n");
8714 }
f187056f 8715
7c74b010
JW
8716 free (cant_move);
8717 free (fed_by_spec_load);
8718 free (is_load_insn);
8719 free (insn_orig_block);
8720 free (insn_luid);
8721
8722 free (insn_priority);
8723 free (insn_reg_weight);
8724 free (insn_tick);
8725 free (insn_costs);
8726 free (insn_units);
8727 free (insn_blockage);
8728 free (insn_ref_count);
8729
8730 free (insn_dep_count);
8731 free (insn_depend);
8732
8733 if (write_symbols != NO_DEBUG)
8734 free (line_note);
8735
f187056f
JL
8736 if (bb_live_regs)
8737 FREE_REG_SET (bb_live_regs);
168cbdf9
JL
8738
8739 if (edge_table)
8740 {
8741 free (edge_table);
8742 edge_table = NULL;
8743 }
8744
8745 if (in_edges)
8746 {
8747 free (in_edges);
8748 in_edges = NULL;
8749 }
8750 if (out_edges)
8751 {
8752 free (out_edges);
8753 out_edges = NULL;
8754 }
8c660648
JL
8755}
8756#endif /* INSN_SCHEDULING */
This page took 1.100196 seconds and 5 git commands to generate.