]> gcc.gnu.org Git - gcc.git/blame - gcc/global.c
*** empty log message ***
[gcc.git] / gcc / global.c
CommitLineData
38398762 1/* Allocate registers for pseudo-registers that span basic blocks.
1313ec9d 2 Copyright (C) 1987, 88, 91, 94, 96, 1997 Free Software Foundation, Inc.
38398762
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
a35311b0
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
38398762
RK
20
21
38398762 22#include "config.h"
670ee920 23#include "system.h"
ccd043a9 24
f6781658
L
25#include "machmode.h"
26#include "hard-reg-set.h"
38398762
RK
27#include "rtl.h"
28#include "flags.h"
29#include "basic-block.h"
38398762
RK
30#include "regs.h"
31#include "insn-config.h"
cad6f7d0 32#include "reload.h"
38398762 33#include "output.h"
2e107e9e 34#include "toplev.h"
38398762
RK
35
36/* This pass of the compiler performs global register allocation.
37 It assigns hard register numbers to all the pseudo registers
38 that were not handled in local_alloc. Assignments are recorded
39 in the vector reg_renumber, not by changing the rtl code.
40 (Such changes are made by final). The entry point is
41 the function global_alloc.
42
43 After allocation is complete, the reload pass is run as a subroutine
44 of this pass, so that when a pseudo reg loses its hard reg due to
45 spilling it is possible to make a second attempt to find a hard
46 reg for it. The reload pass is independent in other respects
47 and it is run even when stupid register allocation is in use.
48
a300b8d9
JW
49 1. Assign allocation-numbers (allocnos) to the pseudo-registers
50 still needing allocations and to the pseudo-registers currently
51 allocated by local-alloc which may be spilled by reload.
38398762
RK
52 Set up tables reg_allocno and allocno_reg to map
53 reg numbers to allocnos and vice versa.
54 max_allocno gets the number of allocnos in use.
55
56 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
57 Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
58 for conflicts between allocnos and explicit hard register use
59 (which includes use of pseudo-registers allocated by local_alloc).
60
a300b8d9 61 3. For each basic block
38398762 62 walk forward through the block, recording which
a300b8d9
JW
63 pseudo-registers and which hardware registers are live.
64 Build the conflict matrix between the pseudo-registers
65 and another of pseudo-registers versus hardware registers.
38398762 66 Also record the preferred hardware registers
a300b8d9 67 for each pseudo-register.
38398762
RK
68
69 4. Sort a table of the allocnos into order of
70 desirability of the variables.
71
72 5. Allocate the variables in that order; each if possible into
73 a preferred register, else into another register. */
74\f
a300b8d9 75/* Number of pseudo-registers which are candidates for allocation. */
38398762
RK
76
77static int max_allocno;
78
79/* Indexed by (pseudo) reg number, gives the allocno, or -1
a300b8d9 80 for pseudo registers which are not to be allocated. */
38398762 81
f15ebf65 82static int *reg_allocno;
38398762
RK
83
84/* Indexed by allocno, gives the reg number. */
85
86static int *allocno_reg;
87
88/* A vector of the integers from 0 to max_allocno-1,
89 sorted in the order of first-to-be-allocated first. */
90
91static int *allocno_order;
92
93/* Indexed by an allocno, gives the number of consecutive
94 hard registers needed by that pseudo reg. */
95
96static int *allocno_size;
97
98/* Indexed by (pseudo) reg number, gives the number of another
6dc42e49 99 lower-numbered pseudo reg which can share a hard reg with this pseudo
38398762
RK
100 *even if the two pseudos would otherwise appear to conflict*. */
101
102static int *reg_may_share;
103
b1ec3c92
CH
104/* Define the number of bits in each element of `conflicts' and what
105 type that element has. We use the largest integer format on the
106 host machine. */
107
108#define INT_BITS HOST_BITS_PER_WIDE_INT
109#define INT_TYPE HOST_WIDE_INT
110
38398762
RK
111/* max_allocno by max_allocno array of bits,
112 recording whether two allocno's conflict (can't go in the same
113 hardware register).
114
115 `conflicts' is not symmetric; a conflict between allocno's i and j
116 is recorded either in element i,j or in element j,i. */
117
b1ec3c92 118static INT_TYPE *conflicts;
38398762
RK
119
120/* Number of ints require to hold max_allocno bits.
121 This is the length of a row in `conflicts'. */
122
123static int allocno_row_words;
124
125/* Two macros to test or store 1 in an element of `conflicts'. */
126
127#define CONFLICTP(I, J) \
128 (conflicts[(I) * allocno_row_words + (J) / INT_BITS] \
b1ec3c92 129 & ((INT_TYPE) 1 << ((J) % INT_BITS)))
38398762
RK
130
131#define SET_CONFLICT(I, J) \
132 (conflicts[(I) * allocno_row_words + (J) / INT_BITS] \
b1ec3c92 133 |= ((INT_TYPE) 1 << ((J) % INT_BITS)))
38398762
RK
134
135/* Set of hard regs currently live (during scan of all insns). */
136
137static HARD_REG_SET hard_regs_live;
138
139/* Indexed by N, set of hard regs conflicting with allocno N. */
140
141static HARD_REG_SET *hard_reg_conflicts;
142
143/* Indexed by N, set of hard regs preferred by allocno N.
144 This is used to make allocnos go into regs that are copied to or from them,
145 when possible, to reduce register shuffling. */
146
147static HARD_REG_SET *hard_reg_preferences;
148
149/* Similar, but just counts register preferences made in simple copy
150 operations, rather than arithmetic. These are given priority because
151 we can always eliminate an insn by using these, but using a register
152 in the above list won't always eliminate an insn. */
153
154static HARD_REG_SET *hard_reg_copy_preferences;
155
156/* Similar to hard_reg_preferences, but includes bits for subsequent
157 registers when an allocno is multi-word. The above variable is used for
158 allocation while this is used to build reg_someone_prefers, below. */
159
160static HARD_REG_SET *hard_reg_full_preferences;
161
162/* Indexed by N, set of hard registers that some later allocno has a
163 preference for. */
164
165static HARD_REG_SET *regs_someone_prefers;
166
167/* Set of registers that global-alloc isn't supposed to use. */
168
169static HARD_REG_SET no_global_alloc_regs;
170
171/* Set of registers used so far. */
172
173static HARD_REG_SET regs_used_so_far;
174
175/* Number of calls crossed by each allocno. */
176
177static int *allocno_calls_crossed;
178
179/* Number of refs (weighted) to each allocno. */
180
181static int *allocno_n_refs;
182
183/* Guess at live length of each allocno.
184 This is actually the max of the live lengths of the regs. */
185
186static int *allocno_live_length;
187
1d56e983
RS
188/* Number of refs (weighted) to each hard reg, as used by local alloc.
189 It is zero for a reg that contains global pseudos or is explicitly used. */
190
191static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];
192
193/* Guess at live length of each hard reg, as used by local alloc.
194 This is actually the sum of the live lengths of the specific regs. */
195
196static int local_reg_live_length[FIRST_PSEUDO_REGISTER];
197
38398762
RK
198/* Test a bit in TABLE, a vector of HARD_REG_SETs,
199 for vector element I, and hard register number J. */
200
201#define REGBITP(TABLE, I, J) TEST_HARD_REG_BIT (TABLE[I], J)
202
203/* Set to 1 a bit in a vector of HARD_REG_SETs. Works like REGBITP. */
204
205#define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (TABLE[I], J)
206
207/* Bit mask for allocnos live at current point in the scan. */
208
b1ec3c92 209static INT_TYPE *allocnos_live;
38398762
RK
210
211/* Test, set or clear bit number I in allocnos_live,
212 a bit vector indexed by allocno. */
213
214#define ALLOCNO_LIVE_P(I) \
b1ec3c92 215 (allocnos_live[(I) / INT_BITS] & ((INT_TYPE) 1 << ((I) % INT_BITS)))
38398762
RK
216
217#define SET_ALLOCNO_LIVE(I) \
b1ec3c92 218 (allocnos_live[(I) / INT_BITS] |= ((INT_TYPE) 1 << ((I) % INT_BITS)))
38398762
RK
219
220#define CLEAR_ALLOCNO_LIVE(I) \
b1ec3c92 221 (allocnos_live[(I) / INT_BITS] &= ~((INT_TYPE) 1 << ((I) % INT_BITS)))
38398762
RK
222
223/* This is turned off because it doesn't work right for DImode.
224 (And it is only used for DImode, so the other cases are worthless.)
225 The problem is that it isn't true that there is NO possibility of conflict;
226 only that there is no conflict if the two pseudos get the exact same regs.
227 If they were allocated with a partial overlap, there would be a conflict.
228 We can't safely turn off the conflict unless we have another way to
229 prevent the partial overlap.
230
231 Idea: change hard_reg_conflicts so that instead of recording which
232 hard regs the allocno may not overlap, it records where the allocno
233 may not start. Change both where it is used and where it is updated.
234 Then there is a way to record that (reg:DI 108) may start at 10
235 but not at 9 or 11. There is still the question of how to record
236 this semi-conflict between two pseudos. */
237#if 0
238/* Reg pairs for which conflict after the current insn
239 is inhibited by a REG_NO_CONFLICT note.
240 If the table gets full, we ignore any other notes--that is conservative. */
241#define NUM_NO_CONFLICT_PAIRS 4
242/* Number of pairs in use in this insn. */
243int n_no_conflict_pairs;
244static struct { int allocno1, allocno2;}
245 no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
246#endif /* 0 */
247
248/* Record all regs that are set in any one insn.
249 Communication from mark_reg_{store,clobber} and global_conflicts. */
250
251static rtx *regs_set;
252static int n_regs_set;
253
daf55ac6 254/* All registers that can be eliminated. */
38398762
RK
255
256static HARD_REG_SET eliminable_regset;
257
daa6f17d 258static int allocno_compare PROTO((const GENERIC_PTR, const GENERIC_PTR));
82c68a78
RK
259static void global_conflicts PROTO((void));
260static void expand_preferences PROTO((void));
261static void prune_preferences PROTO((void));
262static void find_reg PROTO((int, HARD_REG_SET, int, int, int));
263static void record_one_conflict PROTO((int));
264static void record_conflicts PROTO((short *, int));
265static void mark_reg_store PROTO((rtx, rtx));
266static void mark_reg_clobber PROTO((rtx, rtx));
267static void mark_reg_conflicts PROTO((rtx));
268static void mark_reg_death PROTO((rtx));
269static void mark_reg_live_nc PROTO((int, enum machine_mode));
270static void set_preference PROTO((rtx, rtx));
271static void dump_conflicts PROTO((FILE *));
cad6f7d0
BS
272static void reg_becomes_live PROTO((rtx, rtx));
273static void reg_dies PROTO((int, enum machine_mode));
274static void build_insn_chain PROTO((rtx));
38398762
RK
275\f
276/* Perform allocation of pseudo-registers not allocated by local_alloc.
277 FILE is a file to output debugging information on,
ab40ad2b 278 or zero if such output is not desired.
38398762 279
ab40ad2b
RS
280 Return value is nonzero if reload failed
281 and we must not do any more for this function. */
282
283int
38398762
RK
284global_alloc (file)
285 FILE *file;
286{
8c316ae2 287 int retval;
38398762
RK
288#ifdef ELIMINABLE_REGS
289 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
290#endif
daf55ac6
RK
291 int need_fp
292 = (! flag_omit_frame_pointer
293#ifdef EXIT_IGNORE_STACK
294 || (current_function_calls_alloca && EXIT_IGNORE_STACK)
295#endif
296 || FRAME_POINTER_REQUIRED);
297
f8344bea 298 register size_t i;
38398762
RK
299 rtx x;
300
301 max_allocno = 0;
302
303 /* A machine may have certain hard registers that
304 are safe to use only within a basic block. */
305
306 CLEAR_HARD_REG_SET (no_global_alloc_regs);
307#ifdef OVERLAPPING_REGNO_P
308 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
309 if (OVERLAPPING_REGNO_P (i))
310 SET_HARD_REG_BIT (no_global_alloc_regs, i);
311#endif
312
313 /* Build the regset of all eliminable registers and show we can't use those
314 that we already know won't be eliminated. */
315#ifdef ELIMINABLE_REGS
316 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
317 {
318 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
319
320 if (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
daf55ac6 321 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp))
38398762
RK
322 SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
323 }
7b0957a7 324#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
daf55ac6
RK
325 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
326 if (need_fp)
7b0957a7
DE
327 SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM);
328#endif
daf55ac6 329
38398762
RK
330#else
331 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
daf55ac6 332 if (need_fp)
38398762
RK
333 SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
334#endif
335
336 /* Track which registers have already been used. Start with registers
337 explicitly in the rtl, then registers allocated by local register
b4b4db94 338 allocation. */
38398762
RK
339
340 CLEAR_HARD_REG_SET (regs_used_so_far);
b4b4db94
RS
341#ifdef LEAF_REGISTERS
342 /* If we are doing the leaf function optimization, and this is a leaf
343 function, it means that the registers that take work to save are those
344 that need a register window. So prefer the ones that can be used in
345 a leaf function. */
346 {
347 char *cheap_regs;
348 static char leaf_regs[] = LEAF_REGISTERS;
349
350 if (only_leaf_regs_used () && leaf_function_p ())
351 cheap_regs = leaf_regs;
352 else
353 cheap_regs = call_used_regs;
354 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
355 if (regs_ever_live[i] || cheap_regs[i])
356 SET_HARD_REG_BIT (regs_used_so_far, i);
357 }
358#else
359 /* We consider registers that do not have to be saved over calls as if
360 they were already used since there is no cost in using them. */
38398762
RK
361 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
362 if (regs_ever_live[i] || call_used_regs[i])
363 SET_HARD_REG_BIT (regs_used_so_far, i);
b4b4db94 364#endif
38398762 365
e51712db 366 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
38398762
RK
367 if (reg_renumber[i] >= 0)
368 SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);
369
370 /* Establish mappings from register number to allocation number
371 and vice versa. In the process, count the allocnos. */
372
373 reg_allocno = (int *) alloca (max_regno * sizeof (int));
374
375 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
376 reg_allocno[i] = -1;
377
378 /* Initialize the shared-hard-reg mapping
379 from the list of pairs that may share. */
380 reg_may_share = (int *) alloca (max_regno * sizeof (int));
4c9a05bc 381 bzero ((char *) reg_may_share, max_regno * sizeof (int));
38398762
RK
382 for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
383 {
384 int r1 = REGNO (XEXP (x, 0));
385 int r2 = REGNO (XEXP (XEXP (x, 1), 0));
386 if (r1 > r2)
387 reg_may_share[r1] = r2;
388 else
389 reg_may_share[r2] = r1;
390 }
391
e51712db 392 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
38398762
RK
393 /* Note that reg_live_length[i] < 0 indicates a "constant" reg
394 that we are supposed to refrain from putting in a hard reg.
395 -2 means do make an allocno but don't allocate it. */
a300b8d9 396 if (REG_N_REFS (i) != 0 && REG_LIVE_LENGTH (i) != -1
38398762
RK
397 /* Don't allocate pseudos that cross calls,
398 if this function receives a nonlocal goto. */
399 && (! current_function_has_nonlocal_label
b1f21e0a 400 || REG_N_CALLS_CROSSED (i) == 0))
38398762 401 {
a300b8d9 402 if (reg_renumber[i] < 0 && reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
38398762
RK
403 reg_allocno[i] = reg_allocno[reg_may_share[i]];
404 else
405 reg_allocno[i] = max_allocno++;
b1f21e0a 406 if (REG_LIVE_LENGTH (i) == 0)
38398762
RK
407 abort ();
408 }
409 else
410 reg_allocno[i] = -1;
411
412 allocno_reg = (int *) alloca (max_allocno * sizeof (int));
413 allocno_size = (int *) alloca (max_allocno * sizeof (int));
414 allocno_calls_crossed = (int *) alloca (max_allocno * sizeof (int));
415 allocno_n_refs = (int *) alloca (max_allocno * sizeof (int));
416 allocno_live_length = (int *) alloca (max_allocno * sizeof (int));
4c9a05bc
RK
417 bzero ((char *) allocno_size, max_allocno * sizeof (int));
418 bzero ((char *) allocno_calls_crossed, max_allocno * sizeof (int));
419 bzero ((char *) allocno_n_refs, max_allocno * sizeof (int));
420 bzero ((char *) allocno_live_length, max_allocno * sizeof (int));
38398762 421
e51712db 422 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
38398762
RK
423 if (reg_allocno[i] >= 0)
424 {
425 int allocno = reg_allocno[i];
426 allocno_reg[allocno] = i;
427 allocno_size[allocno] = PSEUDO_REGNO_SIZE (i);
b1f21e0a
MM
428 allocno_calls_crossed[allocno] += REG_N_CALLS_CROSSED (i);
429 allocno_n_refs[allocno] += REG_N_REFS (i);
430 if (allocno_live_length[allocno] < REG_LIVE_LENGTH (i))
431 allocno_live_length[allocno] = REG_LIVE_LENGTH (i);
38398762
RK
432 }
433
1d56e983
RS
434 /* Calculate amount of usage of each hard reg by pseudos
435 allocated by local-alloc. This is to see if we want to
436 override it. */
4c9a05bc
RK
437 bzero ((char *) local_reg_live_length, sizeof local_reg_live_length);
438 bzero ((char *) local_reg_n_refs, sizeof local_reg_n_refs);
e51712db 439 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
a300b8d9 440 if (reg_renumber[i] >= 0)
1d56e983 441 {
34e56753
RS
442 int regno = reg_renumber[i];
443 int endregno = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
444 int j;
445
446 for (j = regno; j < endregno; j++)
447 {
b1f21e0a
MM
448 local_reg_n_refs[j] += REG_N_REFS (i);
449 local_reg_live_length[j] += REG_LIVE_LENGTH (i);
34e56753 450 }
1d56e983 451 }
34e56753 452
1d56e983
RS
453 /* We can't override local-alloc for a reg used not just by local-alloc. */
454 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
455 if (regs_ever_live[i])
456 local_reg_n_refs[i] = 0;
0dfa4517 457
38398762
RK
458 /* Allocate the space for the conflict and preference tables and
459 initialize them. */
460
461 hard_reg_conflicts
462 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc 463 bzero ((char *) hard_reg_conflicts, max_allocno * sizeof (HARD_REG_SET));
38398762
RK
464
465 hard_reg_preferences
466 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc 467 bzero ((char *) hard_reg_preferences, max_allocno * sizeof (HARD_REG_SET));
38398762
RK
468
469 hard_reg_copy_preferences
470 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc
RK
471 bzero ((char *) hard_reg_copy_preferences,
472 max_allocno * sizeof (HARD_REG_SET));
38398762
RK
473
474 hard_reg_full_preferences
475 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc
RK
476 bzero ((char *) hard_reg_full_preferences,
477 max_allocno * sizeof (HARD_REG_SET));
38398762
RK
478
479 regs_someone_prefers
480 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc 481 bzero ((char *) regs_someone_prefers, max_allocno * sizeof (HARD_REG_SET));
38398762
RK
482
483 allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;
484
ba3b3878
BK
485 /* We used to use alloca here, but the size of what it would try to
486 allocate would occasionally cause it to exceed the stack limit and
487 cause unpredictable core dumps. Some examples were > 2Mb in size. */
488 conflicts = (INT_TYPE *) xmalloc (max_allocno * allocno_row_words
489 * sizeof (INT_TYPE));
4c9a05bc
RK
490 bzero ((char *) conflicts,
491 max_allocno * allocno_row_words * sizeof (INT_TYPE));
38398762 492
b1ec3c92 493 allocnos_live = (INT_TYPE *) alloca (allocno_row_words * sizeof (INT_TYPE));
38398762
RK
494
495 /* If there is work to be done (at least one reg to allocate),
496 perform global conflict analysis and allocate the regs. */
497
498 if (max_allocno > 0)
499 {
500 /* Scan all the insns and compute the conflicts among allocnos
501 and between allocnos and hard regs. */
502
503 global_conflicts ();
504
505 /* Eliminate conflicts between pseudos and eliminable registers. If
506 the register is not eliminated, the pseudo won't really be able to
507 live in the eliminable register, so the conflict doesn't matter.
508 If we do eliminate the register, the conflict will no longer exist.
1d56e983
RS
509 So in either case, we can ignore the conflict. Likewise for
510 preferences. */
38398762 511
e51712db 512 for (i = 0; i < (size_t) max_allocno; i++)
1d56e983
RS
513 {
514 AND_COMPL_HARD_REG_SET (hard_reg_conflicts[i], eliminable_regset);
515 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[i],
516 eliminable_regset);
517 AND_COMPL_HARD_REG_SET (hard_reg_preferences[i], eliminable_regset);
518 }
38398762
RK
519
520 /* Try to expand the preferences by merging them between allocnos. */
521
522 expand_preferences ();
523
524 /* Determine the order to allocate the remaining pseudo registers. */
525
526 allocno_order = (int *) alloca (max_allocno * sizeof (int));
e51712db 527 for (i = 0; i < (size_t) max_allocno; i++)
38398762
RK
528 allocno_order[i] = i;
529
530 /* Default the size to 1, since allocno_compare uses it to divide by.
531 Also convert allocno_live_length of zero to -1. A length of zero
532 can occur when all the registers for that allocno have reg_live_length
533 equal to -2. In this case, we want to make an allocno, but not
534 allocate it. So avoid the divide-by-zero and set it to a low
535 priority. */
536
e51712db 537 for (i = 0; i < (size_t) max_allocno; i++)
38398762
RK
538 {
539 if (allocno_size[i] == 0)
540 allocno_size[i] = 1;
541 if (allocno_live_length[i] == 0)
542 allocno_live_length[i] = -1;
543 }
544
545 qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);
546
547 prune_preferences ();
548
549 if (file)
550 dump_conflicts (file);
551
552 /* Try allocating them, one by one, in that order,
553 except for parameters marked with reg_live_length[regno] == -2. */
554
e51712db 555 for (i = 0; i < (size_t) max_allocno; i++)
a300b8d9
JW
556 if (reg_renumber[allocno_reg[allocno_order[i]]] < 0
557 && REG_LIVE_LENGTH (allocno_reg[allocno_order[i]]) >= 0)
38398762
RK
558 {
559 /* If we have more than one register class,
560 first try allocating in the class that is cheapest
561 for this pseudo-reg. If that fails, try any reg. */
562 if (N_REG_CLASSES > 1)
563 {
ea8693a4 564 find_reg (allocno_order[i], 0, 0, 0, 0);
38398762
RK
565 if (reg_renumber[allocno_reg[allocno_order[i]]] >= 0)
566 continue;
567 }
b1ec3c92 568 if (reg_alternate_class (allocno_reg[allocno_order[i]]) != NO_REGS)
ea8693a4 569 find_reg (allocno_order[i], 0, 1, 0, 0);
38398762
RK
570 }
571 }
572
573 /* Do the reloads now while the allocno data still exist, so that we can
574 try to assign new hard regs to any pseudo regs that are spilled. */
575
7e860cf7
RS
576#if 0 /* We need to eliminate regs even if there is no rtl code,
577 for the sake of debugging information. */
38398762 578 if (n_basic_blocks > 0)
7e860cf7 579#endif
cad6f7d0
BS
580 {
581 build_insn_chain (get_insns ());
582 retval = reload (get_insns (), 1, file);
583 }
8c316ae2
JL
584
585 free (conflicts);
586 return retval;
38398762
RK
587}
588
589/* Sort predicate for ordering the allocnos.
590 Returns -1 (1) if *v1 should be allocated before (after) *v2. */
591
592static int
daa6f17d
RK
593allocno_compare (v1p, v2p)
594 const GENERIC_PTR v1p;
595 const GENERIC_PTR v2p;
38398762 596{
daa6f17d 597 int v1 = *(int *)v1p, v2 = *(int *)v2p;
38398762
RK
598 /* Note that the quotient will never be bigger than
599 the value of floor_log2 times the maximum number of
600 times a register can occur in one insn (surely less than 100).
601 Multiplying this by 10000 can't overflow. */
602 register int pri1
daa6f17d
RK
603 = (((double) (floor_log2 (allocno_n_refs[v1]) * allocno_n_refs[v1])
604 / allocno_live_length[v1])
605 * 10000 * allocno_size[v1]);
38398762 606 register int pri2
daa6f17d
RK
607 = (((double) (floor_log2 (allocno_n_refs[v2]) * allocno_n_refs[v2])
608 / allocno_live_length[v2])
609 * 10000 * allocno_size[v2]);
38398762
RK
610 if (pri2 - pri1)
611 return pri2 - pri1;
612
613 /* If regs are equally good, sort by allocno,
614 so that the results of qsort leave nothing to chance. */
daa6f17d 615 return v1 - v2;
38398762
RK
616}
617\f
618/* Scan the rtl code and record all conflicts and register preferences in the
619 conflict matrices and preference tables. */
620
621static void
622global_conflicts ()
623{
624 register int b, i;
625 register rtx insn;
626 short *block_start_allocnos;
627
628 /* Make a vector that mark_reg_{store,clobber} will store in. */
629 regs_set = (rtx *) alloca (max_parallel * sizeof (rtx) * 2);
630
631 block_start_allocnos = (short *) alloca (max_allocno * sizeof (short));
632
633 for (b = 0; b < n_basic_blocks; b++)
634 {
4c9a05bc 635 bzero ((char *) allocnos_live, allocno_row_words * sizeof (INT_TYPE));
38398762
RK
636
637 /* Initialize table of registers currently live
638 to the state at the beginning of this basic block.
639 This also marks the conflicts among them.
640
641 For pseudo-regs, there is only one bit for each one
642 no matter how many hard regs it occupies.
643 This is ok; we know the size from PSEUDO_REGNO_SIZE.
644 For explicit hard regs, we cannot know the size that way
645 since one hard reg can be used with various sizes.
646 Therefore, we must require that all the hard regs
647 implicitly live as part of a multi-word hard reg
648 are explicitly marked in basic_block_live_at_start. */
649
650 {
38398762
RK
651 register regset old = basic_block_live_at_start[b];
652 int ax = 0;
653
916b1701 654 REG_SET_TO_HARD_REG_SET (hard_regs_live, old);
1313ec9d 655 EXECUTE_IF_SET_IN_REG_SET (old, FIRST_PSEUDO_REGISTER, i,
916b1701
MM
656 {
657 register int a = reg_allocno[i];
658 if (a >= 0)
659 {
660 SET_ALLOCNO_LIVE (a);
661 block_start_allocnos[ax++] = a;
662 }
663 else if ((a = reg_renumber[i]) >= 0)
1313ec9d
RK
664 mark_reg_live_nc
665 (a, PSEUDO_REGNO_MODE (i));
916b1701 666 });
38398762
RK
667
668 /* Record that each allocno now live conflicts with each other
669 allocno now live, and with each hard reg now live. */
670
671 record_conflicts (block_start_allocnos, ax);
4d1d8045
BS
672
673#ifdef STACK_REGS
674 /* Pseudos can't go in stack regs at the start of a basic block
675 that can be reached through a computed goto, since reg-stack
676 can't handle computed gotos. */
677 if (basic_block_computed_jump_target[b])
678 for (ax = FIRST_STACK_REG; ax <= LAST_STACK_REG; ax++)
679 record_one_conflict (ax);
680#endif
38398762
RK
681 }
682
683 insn = basic_block_head[b];
684
685 /* Scan the code of this basic block, noting which allocnos
686 and hard regs are born or die. When one is born,
687 record a conflict with all others currently live. */
688
689 while (1)
690 {
691 register RTX_CODE code = GET_CODE (insn);
692 register rtx link;
693
694 /* Make regs_set an empty set. */
695
696 n_regs_set = 0;
697
698 if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
699 {
38398762
RK
700
701#if 0
2049526b 702 int i = 0;
38398762
RK
703 for (link = REG_NOTES (insn);
704 link && i < NUM_NO_CONFLICT_PAIRS;
705 link = XEXP (link, 1))
706 if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
707 {
708 no_conflict_pairs[i].allocno1
709 = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
710 no_conflict_pairs[i].allocno2
711 = reg_allocno[REGNO (XEXP (link, 0))];
712 i++;
713 }
714#endif /* 0 */
715
716 /* Mark any registers clobbered by INSN as live,
717 so they conflict with the inputs. */
718
719 note_stores (PATTERN (insn), mark_reg_clobber);
720
721 /* Mark any registers dead after INSN as dead now. */
722
723 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
724 if (REG_NOTE_KIND (link) == REG_DEAD)
725 mark_reg_death (XEXP (link, 0));
726
727 /* Mark any registers set in INSN as live,
728 and mark them as conflicting with all other live regs.
729 Clobbers are processed again, so they conflict with
730 the registers that are set. */
731
732 note_stores (PATTERN (insn), mark_reg_store);
733
734#ifdef AUTO_INC_DEC
735 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
736 if (REG_NOTE_KIND (link) == REG_INC)
b1ec3c92 737 mark_reg_store (XEXP (link, 0), NULL_RTX);
38398762
RK
738#endif
739
333e0f7d
RS
740 /* If INSN has multiple outputs, then any reg that dies here
741 and is used inside of an output
742 must conflict with the other outputs. */
743
744 if (GET_CODE (PATTERN (insn)) == PARALLEL && !single_set (insn))
745 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
746 if (REG_NOTE_KIND (link) == REG_DEAD)
747 {
748 int used_in_output = 0;
749 int i;
750 rtx reg = XEXP (link, 0);
751
752 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
753 {
754 rtx set = XVECEXP (PATTERN (insn), 0, i);
755 if (GET_CODE (set) == SET
756 && GET_CODE (SET_DEST (set)) != REG
757 && !rtx_equal_p (reg, SET_DEST (set))
758 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
759 used_in_output = 1;
760 }
761 if (used_in_output)
762 mark_reg_conflicts (reg);
763 }
764
38398762
RK
765 /* Mark any registers set in INSN and then never used. */
766
767 while (n_regs_set > 0)
768 if (find_regno_note (insn, REG_UNUSED,
769 REGNO (regs_set[--n_regs_set])))
770 mark_reg_death (regs_set[n_regs_set]);
771 }
772
773 if (insn == basic_block_end[b])
774 break;
775 insn = NEXT_INSN (insn);
776 }
777 }
778}
779/* Expand the preference information by looking for cases where one allocno
780 dies in an insn that sets an allocno. If those two allocnos don't conflict,
781 merge any preferences between those allocnos. */
782
783static void
784expand_preferences ()
785{
786 rtx insn;
787 rtx link;
788 rtx set;
789
790 /* We only try to handle the most common cases here. Most of the cases
791 where this wins are reg-reg copies. */
792
793 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
794 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
795 && (set = single_set (insn)) != 0
796 && GET_CODE (SET_DEST (set)) == REG
797 && reg_allocno[REGNO (SET_DEST (set))] >= 0)
798 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
799 if (REG_NOTE_KIND (link) == REG_DEAD
800 && GET_CODE (XEXP (link, 0)) == REG
801 && reg_allocno[REGNO (XEXP (link, 0))] >= 0
802 && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
803 reg_allocno[REGNO (XEXP (link, 0))])
804 && ! CONFLICTP (reg_allocno[REGNO (XEXP (link, 0))],
805 reg_allocno[REGNO (SET_DEST (set))]))
806 {
807 int a1 = reg_allocno[REGNO (SET_DEST (set))];
808 int a2 = reg_allocno[REGNO (XEXP (link, 0))];
809
810 if (XEXP (link, 0) == SET_SRC (set))
811 {
812 IOR_HARD_REG_SET (hard_reg_copy_preferences[a1],
813 hard_reg_copy_preferences[a2]);
814 IOR_HARD_REG_SET (hard_reg_copy_preferences[a2],
815 hard_reg_copy_preferences[a1]);
816 }
817
818 IOR_HARD_REG_SET (hard_reg_preferences[a1],
819 hard_reg_preferences[a2]);
820 IOR_HARD_REG_SET (hard_reg_preferences[a2],
821 hard_reg_preferences[a1]);
822 IOR_HARD_REG_SET (hard_reg_full_preferences[a1],
823 hard_reg_full_preferences[a2]);
824 IOR_HARD_REG_SET (hard_reg_full_preferences[a2],
825 hard_reg_full_preferences[a1]);
826 }
827}
828\f
829/* Prune the preferences for global registers to exclude registers that cannot
830 be used.
831
832 Compute `regs_someone_prefers', which is a bitmask of the hard registers
833 that are preferred by conflicting registers of lower priority. If possible,
834 we will avoid using these registers. */
835
836static void
837prune_preferences ()
838{
839 int i, j;
840 int allocno;
841
842 /* Scan least most important to most important.
843 For each allocno, remove from preferences registers that cannot be used,
844 either because of conflicts or register type. Then compute all registers
d45cf215 845 preferred by each lower-priority register that conflicts. */
38398762
RK
846
847 for (i = max_allocno - 1; i >= 0; i--)
848 {
849 HARD_REG_SET temp;
850
851 allocno = allocno_order[i];
852 COPY_HARD_REG_SET (temp, hard_reg_conflicts[allocno]);
853
854 if (allocno_calls_crossed[allocno] == 0)
855 IOR_HARD_REG_SET (temp, fixed_reg_set);
856 else
857 IOR_HARD_REG_SET (temp, call_used_reg_set);
858
859 IOR_COMPL_HARD_REG_SET
860 (temp,
861 reg_class_contents[(int) reg_preferred_class (allocno_reg[allocno])]);
862
863 AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], temp);
864 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], temp);
865 AND_COMPL_HARD_REG_SET (hard_reg_full_preferences[allocno], temp);
866
867 CLEAR_HARD_REG_SET (regs_someone_prefers[allocno]);
868
869 /* Merge in the preferences of lower-priority registers (they have
870 already been pruned). If we also prefer some of those registers,
871 don't exclude them unless we are of a smaller size (in which case
872 we want to give the lower-priority allocno the first chance for
873 these registers). */
874 for (j = i + 1; j < max_allocno; j++)
99fd4012
RK
875 if (CONFLICTP (allocno, allocno_order[j])
876 || CONFLICTP (allocno_order[j], allocno))
38398762
RK
877 {
878 COPY_HARD_REG_SET (temp,
879 hard_reg_full_preferences[allocno_order[j]]);
880 if (allocno_size[allocno_order[j]] <= allocno_size[allocno])
881 AND_COMPL_HARD_REG_SET (temp,
882 hard_reg_full_preferences[allocno]);
883
884 IOR_HARD_REG_SET (regs_someone_prefers[allocno], temp);
885 }
886 }
887}
888\f
889/* Assign a hard register to ALLOCNO; look for one that is the beginning
890 of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
891 The registers marked in PREFREGS are tried first.
892
893 LOSERS, if non-zero, is a HARD_REG_SET indicating registers that cannot
894 be used for this allocation.
895
b1ec3c92
CH
896 If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
897 Otherwise ignore that preferred class and use the alternate class.
38398762
RK
898
899 If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
900 will have to be saved and restored at calls.
901
1d56e983
RS
902 RETRYING is nonzero if this is called from retry_global_alloc.
903
38398762
RK
904 If we find one, record it in reg_renumber.
905 If not, do nothing. */
906
907static void
b1ec3c92 908find_reg (allocno, losers, alt_regs_p, accept_call_clobbered, retrying)
38398762
RK
909 int allocno;
910 HARD_REG_SET losers;
b1ec3c92 911 int alt_regs_p;
38398762 912 int accept_call_clobbered;
1d56e983 913 int retrying;
38398762
RK
914{
915 register int i, best_reg, pass;
916#ifdef HARD_REG_SET
917 register /* Declare it register if it's a scalar. */
918#endif
1d56e983 919 HARD_REG_SET used, used1, used2;
38398762 920
b1ec3c92
CH
921 enum reg_class class = (alt_regs_p
922 ? reg_alternate_class (allocno_reg[allocno])
923 : reg_preferred_class (allocno_reg[allocno]));
38398762
RK
924 enum machine_mode mode = PSEUDO_REGNO_MODE (allocno_reg[allocno]);
925
926 if (accept_call_clobbered)
927 COPY_HARD_REG_SET (used1, call_fixed_reg_set);
928 else if (allocno_calls_crossed[allocno] == 0)
929 COPY_HARD_REG_SET (used1, fixed_reg_set);
930 else
931 COPY_HARD_REG_SET (used1, call_used_reg_set);
932
933 /* Some registers should not be allocated in global-alloc. */
934 IOR_HARD_REG_SET (used1, no_global_alloc_regs);
935 if (losers)
936 IOR_HARD_REG_SET (used1, losers);
937
938 IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
1d56e983
RS
939 COPY_HARD_REG_SET (used2, used1);
940
38398762
RK
941 IOR_HARD_REG_SET (used1, hard_reg_conflicts[allocno]);
942
d546b10a 943#ifdef CLASS_CANNOT_CHANGE_SIZE
b1f21e0a 944 if (REG_CHANGES_SIZE (allocno_reg[allocno]))
d546b10a
RK
945 IOR_HARD_REG_SET (used1,
946 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
947#endif
948
38398762 949 /* Try each hard reg to see if it fits. Do this in two passes.
d45cf215 950 In the first pass, skip registers that are preferred by some other pseudo
38398762
RK
951 to give it a better chance of getting one of those registers. Only if
952 we can't get a register when excluding those do we take one of them.
953 However, we never allocate a register for the first time in pass 0. */
954
955 COPY_HARD_REG_SET (used, used1);
956 IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
957 IOR_HARD_REG_SET (used, regs_someone_prefers[allocno]);
958
959 best_reg = -1;
960 for (i = FIRST_PSEUDO_REGISTER, pass = 0;
961 pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
962 pass++)
963 {
964 if (pass == 1)
965 COPY_HARD_REG_SET (used, used1);
966 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
967 {
968#ifdef REG_ALLOC_ORDER
969 int regno = reg_alloc_order[i];
970#else
971 int regno = i;
972#endif
973 if (! TEST_HARD_REG_BIT (used, regno)
1e326708
MH
974 && HARD_REGNO_MODE_OK (regno, mode)
975 && (allocno_calls_crossed[allocno] == 0
976 || accept_call_clobbered
977 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
38398762
RK
978 {
979 register int j;
980 register int lim = regno + HARD_REGNO_NREGS (regno, mode);
981 for (j = regno + 1;
982 (j < lim
983 && ! TEST_HARD_REG_BIT (used, j));
984 j++);
985 if (j == lim)
986 {
987 best_reg = regno;
988 break;
989 }
990#ifndef REG_ALLOC_ORDER
991 i = j; /* Skip starting points we know will lose */
992#endif
993 }
994 }
995 }
996
997 /* See if there is a preferred register with the same class as the register
998 we allocated above. Making this restriction prevents register
999 preferencing from creating worse register allocation.
1000
1001 Remove from the preferred registers and conflicting registers. Note that
1002 additional conflicts may have been added after `prune_preferences' was
1003 called.
1004
1005 First do this for those register with copy preferences, then all
1006 preferred registers. */
1007
1008 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], used);
1009 GO_IF_HARD_REG_SUBSET (hard_reg_copy_preferences[allocno],
1010 reg_class_contents[(int) NO_REGS], no_copy_prefs);
1011
1012 if (best_reg >= 0)
1013 {
1014 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1015 if (TEST_HARD_REG_BIT (hard_reg_copy_preferences[allocno], i)
1016 && HARD_REGNO_MODE_OK (i, mode)
1017 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1018 || reg_class_subset_p (REGNO_REG_CLASS (i),
1019 REGNO_REG_CLASS (best_reg))
1020 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1021 REGNO_REG_CLASS (i))))
1022 {
1023 register int j;
1024 register int lim = i + HARD_REGNO_NREGS (i, mode);
1025 for (j = i + 1;
1026 (j < lim
1027 && ! TEST_HARD_REG_BIT (used, j)
1028 && (REGNO_REG_CLASS (j)
1029 == REGNO_REG_CLASS (best_reg + (j - i))
1030 || reg_class_subset_p (REGNO_REG_CLASS (j),
1031 REGNO_REG_CLASS (best_reg + (j - i)))
1032 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1033 REGNO_REG_CLASS (j))));
1034 j++);
1035 if (j == lim)
1036 {
1037 best_reg = i;
1038 goto no_prefs;
1039 }
1040 }
1041 }
1042 no_copy_prefs:
1043
1044 AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], used);
1045 GO_IF_HARD_REG_SUBSET (hard_reg_preferences[allocno],
1046 reg_class_contents[(int) NO_REGS], no_prefs);
1047
1048 if (best_reg >= 0)
1049 {
1050 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1051 if (TEST_HARD_REG_BIT (hard_reg_preferences[allocno], i)
1052 && HARD_REGNO_MODE_OK (i, mode)
1053 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1054 || reg_class_subset_p (REGNO_REG_CLASS (i),
1055 REGNO_REG_CLASS (best_reg))
1056 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1057 REGNO_REG_CLASS (i))))
1058 {
1059 register int j;
1060 register int lim = i + HARD_REGNO_NREGS (i, mode);
1061 for (j = i + 1;
1062 (j < lim
1063 && ! TEST_HARD_REG_BIT (used, j)
1064 && (REGNO_REG_CLASS (j)
1065 == REGNO_REG_CLASS (best_reg + (j - i))
1066 || reg_class_subset_p (REGNO_REG_CLASS (j),
1067 REGNO_REG_CLASS (best_reg + (j - i)))
1068 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1069 REGNO_REG_CLASS (j))));
1070 j++);
1071 if (j == lim)
1072 {
1073 best_reg = i;
1074 break;
1075 }
1076 }
1077 }
1078 no_prefs:
1079
cfcf04a6
RK
1080 /* If we haven't succeeded yet, try with caller-saves.
1081 We need not check to see if the current function has nonlocal
1082 labels because we don't put any pseudos that are live over calls in
1083 registers in that case. */
1084
1d56e983
RS
1085 if (flag_caller_saves && best_reg < 0)
1086 {
1087 /* Did not find a register. If it would be profitable to
1088 allocate a call-clobbered register and save and restore it
1089 around calls, do that. */
1090 if (! accept_call_clobbered
1091 && allocno_calls_crossed[allocno] != 0
1092 && CALLER_SAVE_PROFITABLE (allocno_n_refs[allocno],
1093 allocno_calls_crossed[allocno]))
1094 {
6cad67d2
JL
1095 HARD_REG_SET new_losers;
1096 if (! losers)
1097 CLEAR_HARD_REG_SET (new_losers);
1098 else
1099 COPY_HARD_REG_SET (new_losers, losers);
1100
1101 IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set);
1102 find_reg (allocno, new_losers, alt_regs_p, 1, retrying);
1d56e983
RS
1103 if (reg_renumber[allocno_reg[allocno]] >= 0)
1104 {
1105 caller_save_needed = 1;
1106 return;
1107 }
1108 }
1109 }
1110
1111 /* If we haven't succeeded yet,
1112 see if some hard reg that conflicts with us
1113 was utilized poorly by local-alloc.
1114 If so, kick out the regs that were put there by local-alloc
1115 so we can use it instead. */
1116 if (best_reg < 0 && !retrying
1117 /* Let's not bother with multi-reg allocnos. */
1118 && allocno_size[allocno] == 1)
1119 {
1120 /* Count from the end, to find the least-used ones first. */
1121 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
17a0a76d
RK
1122 {
1123#ifdef REG_ALLOC_ORDER
1124 int regno = reg_alloc_order[i];
1125#else
1126 int regno = i;
1127#endif
34e56753 1128
17a0a76d
RK
1129 if (local_reg_n_refs[regno] != 0
1130 /* Don't use a reg no good for this pseudo. */
1131 && ! TEST_HARD_REG_BIT (used2, regno)
d546b10a
RK
1132 && HARD_REGNO_MODE_OK (regno, mode)
1133#ifdef CLASS_CANNOT_CHANGE_SIZE
b1f21e0a 1134 && ! (REG_CHANGES_SIZE (allocno_reg[allocno])
d546b10a
RK
1135 && (TEST_HARD_REG_BIT
1136 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1137 regno)))
1138#endif
1139 )
17a0a76d 1140 {
7a17c588
JW
1141 /* We explicitly evaluate the divide results into temporary
1142 variables so as to avoid excess precision problems that occur
1143 on a i386-unknown-sysv4.2 (unixware) host. */
1144
1145 double tmp1 = ((double) local_reg_n_refs[regno]
1146 / local_reg_live_length[regno]);
1147 double tmp2 = ((double) allocno_n_refs[allocno]
1148 / allocno_live_length[allocno]);
1149
1150 if (tmp1 < tmp2)
1151 {
1152 /* Hard reg REGNO was used less in total by local regs
1153 than it would be used by this one allocno! */
1154 int k;
1155 for (k = 0; k < max_regno; k++)
1156 if (reg_renumber[k] >= 0)
1157 {
1158 int r = reg_renumber[k];
1159 int endregno
1160 = r + HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (k));
34e56753 1161
7a17c588
JW
1162 if (regno >= r && regno < endregno)
1163 reg_renumber[k] = -1;
1164 }
17a0a76d 1165
7a17c588
JW
1166 best_reg = regno;
1167 break;
1168 }
17a0a76d
RK
1169 }
1170 }
1d56e983
RS
1171 }
1172
38398762
RK
1173 /* Did we find a register? */
1174
1175 if (best_reg >= 0)
1176 {
1177 register int lim, j;
1178 HARD_REG_SET this_reg;
1179
1180 /* Yes. Record it as the hard register of this pseudo-reg. */
1181 reg_renumber[allocno_reg[allocno]] = best_reg;
1182 /* Also of any pseudo-regs that share with it. */
1183 if (reg_may_share[allocno_reg[allocno]])
1184 for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
1185 if (reg_allocno[j] == allocno)
1186 reg_renumber[j] = best_reg;
1187
1188 /* Make a set of the hard regs being allocated. */
1189 CLEAR_HARD_REG_SET (this_reg);
1190 lim = best_reg + HARD_REGNO_NREGS (best_reg, mode);
1191 for (j = best_reg; j < lim; j++)
1192 {
1193 SET_HARD_REG_BIT (this_reg, j);
1194 SET_HARD_REG_BIT (regs_used_so_far, j);
1d56e983
RS
1195 /* This is no longer a reg used just by local regs. */
1196 local_reg_n_refs[j] = 0;
38398762
RK
1197 }
1198 /* For each other pseudo-reg conflicting with this one,
1199 mark it as conflicting with the hard regs this one occupies. */
1200 lim = allocno;
1201 for (j = 0; j < max_allocno; j++)
1202 if (CONFLICTP (lim, j) || CONFLICTP (j, lim))
1203 {
1204 IOR_HARD_REG_SET (hard_reg_conflicts[j], this_reg);
1205 }
1206 }
38398762
RK
1207}
1208\f
1209/* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
1210 Perhaps it had previously seemed not worth a hard reg,
1211 or perhaps its old hard reg has been commandeered for reloads.
1212 FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
1213 they do not appear to be allocated.
1214 If FORBIDDEN_REGS is zero, no regs are forbidden. */
1215
1216void
1217retry_global_alloc (regno, forbidden_regs)
1218 int regno;
1219 HARD_REG_SET forbidden_regs;
1220{
1221 int allocno = reg_allocno[regno];
1222 if (allocno >= 0)
1223 {
1224 /* If we have more than one register class,
1225 first try allocating in the class that is cheapest
1226 for this pseudo-reg. If that fails, try any reg. */
1227 if (N_REG_CLASSES > 1)
1d56e983 1228 find_reg (allocno, forbidden_regs, 0, 0, 1);
38398762 1229 if (reg_renumber[regno] < 0
b1ec3c92 1230 && reg_alternate_class (regno) != NO_REGS)
1d56e983 1231 find_reg (allocno, forbidden_regs, 1, 0, 1);
38398762
RK
1232
1233 /* If we found a register, modify the RTL for the register to
1234 show the hard register, and mark that register live. */
1235 if (reg_renumber[regno] >= 0)
1236 {
1237 REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
1238 mark_home_live (regno);
1239 }
1240 }
1241}
1242\f
1243/* Record a conflict between register REGNO
1244 and everything currently live.
1245 REGNO must not be a pseudo reg that was allocated
1246 by local_alloc; such numbers must be translated through
1247 reg_renumber before calling here. */
1248
1249static void
1250record_one_conflict (regno)
1251 int regno;
1252{
1253 register int j;
1254
1255 if (regno < FIRST_PSEUDO_REGISTER)
1256 /* When a hard register becomes live,
1257 record conflicts with live pseudo regs. */
1258 for (j = 0; j < max_allocno; j++)
1259 {
1260 if (ALLOCNO_LIVE_P (j))
1261 SET_HARD_REG_BIT (hard_reg_conflicts[j], regno);
1262 }
1263 else
1264 /* When a pseudo-register becomes live,
1265 record conflicts first with hard regs,
1266 then with other pseudo regs. */
1267 {
1268 register int ialloc = reg_allocno[regno];
1269 register int ialloc_prod = ialloc * allocno_row_words;
1270 IOR_HARD_REG_SET (hard_reg_conflicts[ialloc], hard_regs_live);
1271 for (j = allocno_row_words - 1; j >= 0; j--)
1272 {
1273#if 0
1274 int k;
1275 for (k = 0; k < n_no_conflict_pairs; k++)
1276 if (! ((j == no_conflict_pairs[k].allocno1
1277 && ialloc == no_conflict_pairs[k].allocno2)
1278 ||
1279 (j == no_conflict_pairs[k].allocno2
1280 && ialloc == no_conflict_pairs[k].allocno1)))
1281#endif /* 0 */
1282 conflicts[ialloc_prod + j] |= allocnos_live[j];
1283 }
1284 }
1285}
1286
1287/* Record all allocnos currently live as conflicting
1288 with each other and with all hard regs currently live.
1289 ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
1290 are currently live. Their bits are also flagged in allocnos_live. */
1291
1292static void
1293record_conflicts (allocno_vec, len)
1294 register short *allocno_vec;
1295 register int len;
1296{
1297 register int allocno;
1298 register int j;
1299 register int ialloc_prod;
1300
1301 while (--len >= 0)
1302 {
1303 allocno = allocno_vec[len];
1304 ialloc_prod = allocno * allocno_row_words;
1305 IOR_HARD_REG_SET (hard_reg_conflicts[allocno], hard_regs_live);
1306 for (j = allocno_row_words - 1; j >= 0; j--)
1307 conflicts[ialloc_prod + j] |= allocnos_live[j];
1308 }
1309}
1310\f
1311/* Handle the case where REG is set by the insn being scanned,
1312 during the forward scan to accumulate conflicts.
1313 Store a 1 in regs_live or allocnos_live for this register, record how many
1314 consecutive hardware registers it actually needs,
1315 and record a conflict with all other registers already live.
1316
1317 Note that even if REG does not remain alive after this insn,
1318 we must mark it here as live, to ensure a conflict between
1319 REG and any other regs set in this insn that really do live.
1320 This is because those other regs could be considered after this.
1321
1322 REG might actually be something other than a register;
1323 if so, we do nothing.
1324
1325 SETTER is 0 if this register was modified by an auto-increment (i.e.,
a4c3ddd8 1326 a REG_INC note was found for it). */
38398762
RK
1327
1328static void
a4c3ddd8
BS
1329mark_reg_store (reg, setter)
1330 rtx reg, setter;
38398762
RK
1331{
1332 register int regno;
38398762
RK
1333
1334 /* WORD is which word of a multi-register group is being stored.
1335 For the case where the store is actually into a SUBREG of REG.
1336 Except we don't use it; I believe the entire REG needs to be
1337 made live. */
1338 int word = 0;
1339
1340 if (GET_CODE (reg) == SUBREG)
1341 {
1342 word = SUBREG_WORD (reg);
1343 reg = SUBREG_REG (reg);
1344 }
1345
1346 if (GET_CODE (reg) != REG)
1347 return;
1348
38398762
RK
1349 regs_set[n_regs_set++] = reg;
1350
a4c3ddd8 1351 if (setter && GET_CODE (setter) != CLOBBER)
38398762
RK
1352 set_preference (reg, SET_SRC (setter));
1353
1354 regno = REGNO (reg);
1355
38398762
RK
1356 /* Either this is one of the max_allocno pseudo regs not allocated,
1357 or it is or has a hardware reg. First handle the pseudo-regs. */
1358 if (regno >= FIRST_PSEUDO_REGISTER)
1359 {
1360 if (reg_allocno[regno] >= 0)
1361 {
1362 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1363 record_one_conflict (regno);
1364 }
1365 }
a300b8d9
JW
1366
1367 if (reg_renumber[regno] >= 0)
1368 regno = reg_renumber[regno] /* + word */;
1369
38398762 1370 /* Handle hardware regs (and pseudos allocated to hard regs). */
a300b8d9 1371 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
38398762
RK
1372 {
1373 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1374 while (regno < last)
1375 {
1376 record_one_conflict (regno);
1377 SET_HARD_REG_BIT (hard_regs_live, regno);
1378 regno++;
1379 }
1380 }
1381}
1382\f
1383/* Like mark_reg_set except notice just CLOBBERs; ignore SETs. */
1384
1385static void
1386mark_reg_clobber (reg, setter)
1387 rtx reg, setter;
1388{
a4c3ddd8
BS
1389 if (GET_CODE (setter) == CLOBBER)
1390 mark_reg_store (reg, setter);
333e0f7d
RS
1391}
1392
1393/* Record that REG has conflicts with all the regs currently live.
1394 Do not mark REG itself as live. */
1395
1396static void
1397mark_reg_conflicts (reg)
1398 rtx reg;
1399{
1400 register int regno;
1401
1402 if (GET_CODE (reg) == SUBREG)
1403 reg = SUBREG_REG (reg);
1404
1405 if (GET_CODE (reg) != REG)
1406 return;
1407
1408 regno = REGNO (reg);
1409
333e0f7d
RS
1410 /* Either this is one of the max_allocno pseudo regs not allocated,
1411 or it is or has a hardware reg. First handle the pseudo-regs. */
1412 if (regno >= FIRST_PSEUDO_REGISTER)
1413 {
1414 if (reg_allocno[regno] >= 0)
1415 record_one_conflict (regno);
1416 }
a300b8d9
JW
1417
1418 if (reg_renumber[regno] >= 0)
1419 regno = reg_renumber[regno];
1420
333e0f7d 1421 /* Handle hardware regs (and pseudos allocated to hard regs). */
a300b8d9 1422 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
333e0f7d
RS
1423 {
1424 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1425 while (regno < last)
1426 {
1427 record_one_conflict (regno);
1428 regno++;
1429 }
1430 }
38398762
RK
1431}
1432\f
1433/* Mark REG as being dead (following the insn being scanned now).
1434 Store a 0 in regs_live or allocnos_live for this register. */
1435
1436static void
1437mark_reg_death (reg)
1438 rtx reg;
1439{
1440 register int regno = REGNO (reg);
1441
38398762
RK
1442 /* Either this is one of the max_allocno pseudo regs not allocated,
1443 or it is a hardware reg. First handle the pseudo-regs. */
1444 if (regno >= FIRST_PSEUDO_REGISTER)
1445 {
1446 if (reg_allocno[regno] >= 0)
1447 CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
1448 }
a300b8d9
JW
1449
1450 /* For pseudo reg, see if it has been assigned a hardware reg. */
1451 if (reg_renumber[regno] >= 0)
1452 regno = reg_renumber[regno];
1453
38398762 1454 /* Handle hardware regs (and pseudos allocated to hard regs). */
a300b8d9 1455 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
38398762
RK
1456 {
1457 /* Pseudo regs already assigned hardware regs are treated
1458 almost the same as explicit hardware regs. */
1459 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1460 while (regno < last)
1461 {
1462 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
1463 regno++;
1464 }
1465 }
1466}
1467
1468/* Mark hard reg REGNO as currently live, assuming machine mode MODE
1469 for the value stored in it. MODE determines how many consecutive
1470 registers are actually in use. Do not record conflicts;
1471 it is assumed that the caller will do that. */
1472
1473static void
1474mark_reg_live_nc (regno, mode)
1475 register int regno;
1476 enum machine_mode mode;
1477{
1478 register int last = regno + HARD_REGNO_NREGS (regno, mode);
1479 while (regno < last)
1480 {
1481 SET_HARD_REG_BIT (hard_regs_live, regno);
1482 regno++;
1483 }
1484}
1485\f
1486/* Try to set a preference for an allocno to a hard register.
1487 We are passed DEST and SRC which are the operands of a SET. It is known
1488 that SRC is a register. If SRC or the first operand of SRC is a register,
1489 try to set a preference. If one of the two is a hard register and the other
1490 is a pseudo-register, mark the preference.
1491
6dc42e49 1492 Note that we are not as aggressive as local-alloc in trying to tie a
38398762
RK
1493 pseudo-register to a hard register. */
1494
1495static void
1496set_preference (dest, src)
1497 rtx dest, src;
1498{
1499 int src_regno, dest_regno;
1500 /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
1501 to compensate for subregs in SRC or DEST. */
1502 int offset = 0;
1503 int i;
1504 int copy = 1;
1505
1506 if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
1507 src = XEXP (src, 0), copy = 0;
1508
1509 /* Get the reg number for both SRC and DEST.
1510 If neither is a reg, give up. */
1511
1512 if (GET_CODE (src) == REG)
1513 src_regno = REGNO (src);
1514 else if (GET_CODE (src) == SUBREG && GET_CODE (SUBREG_REG (src)) == REG)
1515 {
1516 src_regno = REGNO (SUBREG_REG (src));
1517 offset += SUBREG_WORD (src);
1518 }
1519 else
1520 return;
1521
1522 if (GET_CODE (dest) == REG)
1523 dest_regno = REGNO (dest);
1524 else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG)
1525 {
1526 dest_regno = REGNO (SUBREG_REG (dest));
1527 offset -= SUBREG_WORD (dest);
1528 }
1529 else
1530 return;
1531
1532 /* Convert either or both to hard reg numbers. */
1533
1534 if (reg_renumber[src_regno] >= 0)
1535 src_regno = reg_renumber[src_regno];
1536
1537 if (reg_renumber[dest_regno] >= 0)
1538 dest_regno = reg_renumber[dest_regno];
1539
1540 /* Now if one is a hard reg and the other is a global pseudo
1541 then give the other a preference. */
1542
1543 if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
1544 && reg_allocno[src_regno] >= 0)
1545 {
1546 dest_regno -= offset;
1547 if (dest_regno >= 0 && dest_regno < FIRST_PSEUDO_REGISTER)
1548 {
1549 if (copy)
1550 SET_REGBIT (hard_reg_copy_preferences,
1551 reg_allocno[src_regno], dest_regno);
1552
1553 SET_REGBIT (hard_reg_preferences,
1554 reg_allocno[src_regno], dest_regno);
1555 for (i = dest_regno;
1556 i < dest_regno + HARD_REGNO_NREGS (dest_regno, GET_MODE (dest));
1557 i++)
1558 SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
1559 }
1560 }
1561
1562 if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
1563 && reg_allocno[dest_regno] >= 0)
1564 {
1565 src_regno += offset;
1566 if (src_regno >= 0 && src_regno < FIRST_PSEUDO_REGISTER)
1567 {
1568 if (copy)
1569 SET_REGBIT (hard_reg_copy_preferences,
1570 reg_allocno[dest_regno], src_regno);
1571
1572 SET_REGBIT (hard_reg_preferences,
1573 reg_allocno[dest_regno], src_regno);
1574 for (i = src_regno;
1575 i < src_regno + HARD_REGNO_NREGS (src_regno, GET_MODE (src));
1576 i++)
1577 SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
1578 }
1579 }
1580}
1581\f
1582/* Indicate that hard register number FROM was eliminated and replaced with
1583 an offset from hard register number TO. The status of hard registers live
1584 at the start of a basic block is updated by replacing a use of FROM with
1585 a use of TO. */
1586
1587void
1588mark_elimination (from, to)
1589 int from, to;
1590{
1591 int i;
1592
1593 for (i = 0; i < n_basic_blocks; i++)
916b1701 1594 if (REGNO_REG_SET_P (basic_block_live_at_start[i], from))
38398762 1595 {
916b1701
MM
1596 CLEAR_REGNO_REG_SET (basic_block_live_at_start[i], from);
1597 SET_REGNO_REG_SET (basic_block_live_at_start[i], to);
38398762
RK
1598 }
1599}
1600\f
cad6f7d0
BS
1601/* Used for communication between the following functions. Holds the
1602 current life information. */
1603static regset live_relevant_regs;
1604
1605/* Record in live_relevant_regs that register REG became live. This
1606 is called via note_stores. */
1607static void
1608reg_becomes_live (reg, setter)
1609 rtx reg;
1610 rtx setter ATTRIBUTE_UNUSED;
1611{
1612 int regno;
1613
1614 if (GET_CODE (reg) == SUBREG)
1615 reg = SUBREG_REG (reg);
1616
1617 if (GET_CODE (reg) != REG)
1618 return;
1619
1620 regno = REGNO (reg);
1621 if (regno < FIRST_PSEUDO_REGISTER)
1622 {
1623 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
1624 while (nregs-- > 0)
1625 SET_REGNO_REG_SET (live_relevant_regs, regno++);
1626 }
1627 else if (reg_renumber[regno] >= 0)
1628 SET_REGNO_REG_SET (live_relevant_regs, regno);
1629}
1630
1631/* Record in live_relevant_regs that register REGNO died. */
1632static void
1633reg_dies (regno, mode)
1634 int regno;
1635 enum machine_mode mode;
1636{
1637 if (regno < FIRST_PSEUDO_REGISTER)
1638 {
1639 int nregs = HARD_REGNO_NREGS (regno, mode);
1640 while (nregs-- > 0)
1641 CLEAR_REGNO_REG_SET (live_relevant_regs, regno++);
1642 }
1643 else
1644 CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
1645}
1646
1647/* Walk the insns of the current function and build reload_insn_chain,
1648 and record register life information. */
1649static void
1650build_insn_chain (first)
1651 rtx first;
1652{
1653 struct insn_chain **p = &reload_insn_chain;
1654 struct insn_chain *prev = 0;
1655 int b = 0;
1656
1657 live_relevant_regs = ALLOCA_REG_SET ();
1658
1659 for (; first; first = NEXT_INSN (first))
1660 {
1661 struct insn_chain *c;
1662
1663 if (first == basic_block_head[b])
1664 {
1665 int i;
1666 CLEAR_REG_SET (live_relevant_regs);
1667 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1668 if (REGNO_REG_SET_P (basic_block_live_at_start[b], i)
1669 && ! TEST_HARD_REG_BIT (eliminable_regset, i))
1670 SET_REGNO_REG_SET (live_relevant_regs, i);
1671
1672 for (; i < max_regno; i++)
1673 if (reg_renumber[i] >= 0
1674 && REGNO_REG_SET_P (basic_block_live_at_start[b], i))
1675 SET_REGNO_REG_SET (live_relevant_regs, i);
1676 }
1677
1678 if (GET_CODE (first) != NOTE && GET_CODE (first) != BARRIER)
1679 {
1680 c = new_insn_chain ();
1681 c->prev = prev;
1682 prev = c;
1683 *p = c;
1684 p = &c->next;
1685 c->insn = first;
1686 c->block = b;
1687
1688 COPY_REG_SET (c->live_before, live_relevant_regs);
1689
1690 if (GET_RTX_CLASS (GET_CODE (first)) == 'i')
1691 {
1692 rtx link;
1693
1694 /* Mark the death of everything that dies in this instruction. */
1695
1696 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1697 if (REG_NOTE_KIND (link) == REG_DEAD
1698 && GET_CODE (XEXP (link, 0)) == REG)
1699 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)));
1700
1701 /* Mark everything born in this instruction as live. */
1702
1703 note_stores (PATTERN (first), reg_becomes_live);
1704 }
1705
1706 /* Remember which registers are live at the end of the insn, before
1707 killing those with REG_UNUSED notes. */
1708 COPY_REG_SET (c->live_after, live_relevant_regs);
1709
1710 if (GET_RTX_CLASS (GET_CODE (first)) == 'i')
1711 {
1712 rtx link;
1713
1714 /* Mark anything that is set in this insn and then unused as dying. */
1715
1716 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1717 if (REG_NOTE_KIND (link) == REG_UNUSED
1718 && GET_CODE (XEXP (link, 0)) == REG)
1719 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)));
1720 }
1721 }
1722
1723 if (first == basic_block_end[b])
1724 b++;
3663a304
JL
1725
1726 /* Stop after we pass the end of the last basic block. Verify that
1727 no real insns are after the end of the last basic block.
1728
1729 We may want to reorganize the loop somewhat since this test should
1730 always be the right exit test. */
1731 if (b == n_basic_blocks)
1732 {
1733 for (first = NEXT_INSN (first) ; first; first = NEXT_INSN (first))
1734 if (GET_RTX_CLASS (GET_CODE (first)) == 'i'
1735 && GET_CODE (PATTERN (first)) != USE)
1736 abort ();
1737 break;
1738 }
cad6f7d0
BS
1739 }
1740 FREE_REG_SET (live_relevant_regs);
1741 *p = 0;
1742}
1743\f
38398762
RK
1744/* Print debugging trace information if -greg switch is given,
1745 showing the information on which the allocation decisions are based. */
1746
1747static void
1748dump_conflicts (file)
1749 FILE *file;
1750{
1751 register int i;
1752 register int has_preferences;
a300b8d9
JW
1753 register int nregs;
1754 nregs = 0;
1755 for (i = 0; i < max_allocno; i++)
1756 {
1757 if (reg_renumber[allocno_reg[allocno_order[i]]] >= 0)
1758 continue;
1759 nregs++;
1760 }
1761 fprintf (file, ";; %d regs to allocate:", nregs);
38398762
RK
1762 for (i = 0; i < max_allocno; i++)
1763 {
1764 int j;
a300b8d9
JW
1765 if (reg_renumber[allocno_reg[allocno_order[i]]] >= 0)
1766 continue;
38398762
RK
1767 fprintf (file, " %d", allocno_reg[allocno_order[i]]);
1768 for (j = 0; j < max_regno; j++)
1769 if (reg_allocno[j] == allocno_order[i]
1770 && j != allocno_reg[allocno_order[i]])
1771 fprintf (file, "+%d", j);
1772 if (allocno_size[allocno_order[i]] != 1)
1773 fprintf (file, " (%d)", allocno_size[allocno_order[i]]);
1774 }
1775 fprintf (file, "\n");
1776
1777 for (i = 0; i < max_allocno; i++)
1778 {
1779 register int j;
1780 fprintf (file, ";; %d conflicts:", allocno_reg[i]);
1781 for (j = 0; j < max_allocno; j++)
1782 if (CONFLICTP (i, j) || CONFLICTP (j, i))
1783 fprintf (file, " %d", allocno_reg[j]);
1784 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1785 if (TEST_HARD_REG_BIT (hard_reg_conflicts[i], j))
1786 fprintf (file, " %d", j);
1787 fprintf (file, "\n");
1788
1789 has_preferences = 0;
1790 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1791 if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1792 has_preferences = 1;
1793
1794 if (! has_preferences)
1795 continue;
1796 fprintf (file, ";; %d preferences:", allocno_reg[i]);
1797 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1798 if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1799 fprintf (file, " %d", j);
1800 fprintf (file, "\n");
1801 }
1802 fprintf (file, "\n");
1803}
1804
1805void
1806dump_global_regs (file)
1807 FILE *file;
1808{
1809 register int i, j;
1810
1811 fprintf (file, ";; Register dispositions:\n");
1812 for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
1813 if (reg_renumber[i] >= 0)
1814 {
1815 fprintf (file, "%d in %d ", i, reg_renumber[i]);
1816 if (++j % 6 == 0)
1817 fprintf (file, "\n");
1818 }
1819
1820 fprintf (file, "\n\n;; Hard regs used: ");
1821 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1822 if (regs_ever_live[i])
1823 fprintf (file, " %d", i);
1824 fprintf (file, "\n\n");
1825}
This page took 0.798152 seconds and 5 git commands to generate.