]> gcc.gnu.org Git - gcc.git/blame - gcc/global.c
* output.h: Don't unnecessarily conditionalize prototypes on TREE_CODE.
[gcc.git] / gcc / global.c
CommitLineData
38398762 1/* Allocate registers for pseudo-registers that span basic blocks.
a5cad800 2 Copyright (C) 1987, 88, 91, 94, 96-98, 1999 Free Software Foundation, Inc.
38398762
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
a35311b0
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
38398762
RK
20
21
38398762 22#include "config.h"
670ee920 23#include "system.h"
ccd043a9 24
f6781658
L
25#include "machmode.h"
26#include "hard-reg-set.h"
38398762 27#include "rtl.h"
6baf1cc8 28#include "tm_p.h"
38398762
RK
29#include "flags.h"
30#include "basic-block.h"
38398762 31#include "regs.h"
49ad7cfa 32#include "function.h"
38398762 33#include "insn-config.h"
cad6f7d0 34#include "reload.h"
38398762 35#include "output.h"
2e107e9e 36#include "toplev.h"
38398762
RK
37
38/* This pass of the compiler performs global register allocation.
39 It assigns hard register numbers to all the pseudo registers
40 that were not handled in local_alloc. Assignments are recorded
41 in the vector reg_renumber, not by changing the rtl code.
42 (Such changes are made by final). The entry point is
43 the function global_alloc.
44
45 After allocation is complete, the reload pass is run as a subroutine
46 of this pass, so that when a pseudo reg loses its hard reg due to
47 spilling it is possible to make a second attempt to find a hard
48 reg for it. The reload pass is independent in other respects
49 and it is run even when stupid register allocation is in use.
50
a300b8d9
JW
51 1. Assign allocation-numbers (allocnos) to the pseudo-registers
52 still needing allocations and to the pseudo-registers currently
53 allocated by local-alloc which may be spilled by reload.
38398762
RK
54 Set up tables reg_allocno and allocno_reg to map
55 reg numbers to allocnos and vice versa.
56 max_allocno gets the number of allocnos in use.
57
58 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
59 Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
60 for conflicts between allocnos and explicit hard register use
61 (which includes use of pseudo-registers allocated by local_alloc).
62
a300b8d9 63 3. For each basic block
38398762 64 walk forward through the block, recording which
a300b8d9
JW
65 pseudo-registers and which hardware registers are live.
66 Build the conflict matrix between the pseudo-registers
67 and another of pseudo-registers versus hardware registers.
38398762 68 Also record the preferred hardware registers
a300b8d9 69 for each pseudo-register.
38398762
RK
70
71 4. Sort a table of the allocnos into order of
72 desirability of the variables.
73
74 5. Allocate the variables in that order; each if possible into
75 a preferred register, else into another register. */
76\f
a300b8d9 77/* Number of pseudo-registers which are candidates for allocation. */
38398762
RK
78
79static int max_allocno;
80
81/* Indexed by (pseudo) reg number, gives the allocno, or -1
a300b8d9 82 for pseudo registers which are not to be allocated. */
38398762 83
f15ebf65 84static int *reg_allocno;
38398762
RK
85
86/* Indexed by allocno, gives the reg number. */
87
88static int *allocno_reg;
89
90/* A vector of the integers from 0 to max_allocno-1,
91 sorted in the order of first-to-be-allocated first. */
92
93static int *allocno_order;
94
95/* Indexed by an allocno, gives the number of consecutive
96 hard registers needed by that pseudo reg. */
97
98static int *allocno_size;
99
100/* Indexed by (pseudo) reg number, gives the number of another
6dc42e49 101 lower-numbered pseudo reg which can share a hard reg with this pseudo
38398762
RK
102 *even if the two pseudos would otherwise appear to conflict*. */
103
104static int *reg_may_share;
105
b1ec3c92
CH
106/* Define the number of bits in each element of `conflicts' and what
107 type that element has. We use the largest integer format on the
108 host machine. */
109
110#define INT_BITS HOST_BITS_PER_WIDE_INT
111#define INT_TYPE HOST_WIDE_INT
112
38398762
RK
113/* max_allocno by max_allocno array of bits,
114 recording whether two allocno's conflict (can't go in the same
115 hardware register).
116
117 `conflicts' is not symmetric; a conflict between allocno's i and j
118 is recorded either in element i,j or in element j,i. */
119
b1ec3c92 120static INT_TYPE *conflicts;
38398762
RK
121
122/* Number of ints require to hold max_allocno bits.
123 This is the length of a row in `conflicts'. */
124
125static int allocno_row_words;
126
127/* Two macros to test or store 1 in an element of `conflicts'. */
128
129#define CONFLICTP(I, J) \
130 (conflicts[(I) * allocno_row_words + (J) / INT_BITS] \
b1ec3c92 131 & ((INT_TYPE) 1 << ((J) % INT_BITS)))
38398762
RK
132
133#define SET_CONFLICT(I, J) \
134 (conflicts[(I) * allocno_row_words + (J) / INT_BITS] \
b1ec3c92 135 |= ((INT_TYPE) 1 << ((J) % INT_BITS)))
38398762
RK
136
137/* Set of hard regs currently live (during scan of all insns). */
138
139static HARD_REG_SET hard_regs_live;
140
141/* Indexed by N, set of hard regs conflicting with allocno N. */
142
143static HARD_REG_SET *hard_reg_conflicts;
144
145/* Indexed by N, set of hard regs preferred by allocno N.
146 This is used to make allocnos go into regs that are copied to or from them,
147 when possible, to reduce register shuffling. */
148
149static HARD_REG_SET *hard_reg_preferences;
150
151/* Similar, but just counts register preferences made in simple copy
152 operations, rather than arithmetic. These are given priority because
153 we can always eliminate an insn by using these, but using a register
154 in the above list won't always eliminate an insn. */
155
156static HARD_REG_SET *hard_reg_copy_preferences;
157
158/* Similar to hard_reg_preferences, but includes bits for subsequent
159 registers when an allocno is multi-word. The above variable is used for
160 allocation while this is used to build reg_someone_prefers, below. */
161
162static HARD_REG_SET *hard_reg_full_preferences;
163
164/* Indexed by N, set of hard registers that some later allocno has a
165 preference for. */
166
167static HARD_REG_SET *regs_someone_prefers;
168
169/* Set of registers that global-alloc isn't supposed to use. */
170
171static HARD_REG_SET no_global_alloc_regs;
172
173/* Set of registers used so far. */
174
175static HARD_REG_SET regs_used_so_far;
176
177/* Number of calls crossed by each allocno. */
178
179static int *allocno_calls_crossed;
180
181/* Number of refs (weighted) to each allocno. */
182
183static int *allocno_n_refs;
184
185/* Guess at live length of each allocno.
186 This is actually the max of the live lengths of the regs. */
187
188static int *allocno_live_length;
189
1d56e983
RS
190/* Number of refs (weighted) to each hard reg, as used by local alloc.
191 It is zero for a reg that contains global pseudos or is explicitly used. */
192
193static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];
194
195/* Guess at live length of each hard reg, as used by local alloc.
196 This is actually the sum of the live lengths of the specific regs. */
197
198static int local_reg_live_length[FIRST_PSEUDO_REGISTER];
199
38398762
RK
200/* Test a bit in TABLE, a vector of HARD_REG_SETs,
201 for vector element I, and hard register number J. */
202
203#define REGBITP(TABLE, I, J) TEST_HARD_REG_BIT (TABLE[I], J)
204
205/* Set to 1 a bit in a vector of HARD_REG_SETs. Works like REGBITP. */
206
207#define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (TABLE[I], J)
208
209/* Bit mask for allocnos live at current point in the scan. */
210
b1ec3c92 211static INT_TYPE *allocnos_live;
38398762
RK
212
213/* Test, set or clear bit number I in allocnos_live,
214 a bit vector indexed by allocno. */
215
216#define ALLOCNO_LIVE_P(I) \
b1ec3c92 217 (allocnos_live[(I) / INT_BITS] & ((INT_TYPE) 1 << ((I) % INT_BITS)))
38398762
RK
218
219#define SET_ALLOCNO_LIVE(I) \
b1ec3c92 220 (allocnos_live[(I) / INT_BITS] |= ((INT_TYPE) 1 << ((I) % INT_BITS)))
38398762
RK
221
222#define CLEAR_ALLOCNO_LIVE(I) \
b1ec3c92 223 (allocnos_live[(I) / INT_BITS] &= ~((INT_TYPE) 1 << ((I) % INT_BITS)))
38398762
RK
224
225/* This is turned off because it doesn't work right for DImode.
226 (And it is only used for DImode, so the other cases are worthless.)
227 The problem is that it isn't true that there is NO possibility of conflict;
228 only that there is no conflict if the two pseudos get the exact same regs.
229 If they were allocated with a partial overlap, there would be a conflict.
230 We can't safely turn off the conflict unless we have another way to
231 prevent the partial overlap.
232
233 Idea: change hard_reg_conflicts so that instead of recording which
234 hard regs the allocno may not overlap, it records where the allocno
235 may not start. Change both where it is used and where it is updated.
236 Then there is a way to record that (reg:DI 108) may start at 10
237 but not at 9 or 11. There is still the question of how to record
238 this semi-conflict between two pseudos. */
239#if 0
240/* Reg pairs for which conflict after the current insn
241 is inhibited by a REG_NO_CONFLICT note.
242 If the table gets full, we ignore any other notes--that is conservative. */
243#define NUM_NO_CONFLICT_PAIRS 4
244/* Number of pairs in use in this insn. */
245int n_no_conflict_pairs;
246static struct { int allocno1, allocno2;}
247 no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
248#endif /* 0 */
249
250/* Record all regs that are set in any one insn.
251 Communication from mark_reg_{store,clobber} and global_conflicts. */
252
253static rtx *regs_set;
254static int n_regs_set;
255
daf55ac6 256/* All registers that can be eliminated. */
38398762
RK
257
258static HARD_REG_SET eliminable_regset;
259
e1b6684c 260static int allocno_compare PROTO((const PTR, const PTR));
82c68a78
RK
261static void global_conflicts PROTO((void));
262static void expand_preferences PROTO((void));
263static void prune_preferences PROTO((void));
264static void find_reg PROTO((int, HARD_REG_SET, int, int, int));
265static void record_one_conflict PROTO((int));
8d4c79be 266static void record_conflicts PROTO((int *, int));
82c68a78
RK
267static void mark_reg_store PROTO((rtx, rtx));
268static void mark_reg_clobber PROTO((rtx, rtx));
269static void mark_reg_conflicts PROTO((rtx));
270static void mark_reg_death PROTO((rtx));
271static void mark_reg_live_nc PROTO((int, enum machine_mode));
272static void set_preference PROTO((rtx, rtx));
273static void dump_conflicts PROTO((FILE *));
cad6f7d0
BS
274static void reg_becomes_live PROTO((rtx, rtx));
275static void reg_dies PROTO((int, enum machine_mode));
108c535a 276static void build_insn_chain PROTO((rtx));
38398762
RK
277\f
278/* Perform allocation of pseudo-registers not allocated by local_alloc.
279 FILE is a file to output debugging information on,
ab40ad2b 280 or zero if such output is not desired.
38398762 281
ab40ad2b
RS
282 Return value is nonzero if reload failed
283 and we must not do any more for this function. */
284
285int
38398762
RK
286global_alloc (file)
287 FILE *file;
288{
8c316ae2 289 int retval;
38398762
RK
290#ifdef ELIMINABLE_REGS
291 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
292#endif
daf55ac6
RK
293 int need_fp
294 = (! flag_omit_frame_pointer
295#ifdef EXIT_IGNORE_STACK
296 || (current_function_calls_alloca && EXIT_IGNORE_STACK)
297#endif
298 || FRAME_POINTER_REQUIRED);
299
f8344bea 300 register size_t i;
38398762
RK
301 rtx x;
302
303 max_allocno = 0;
304
305 /* A machine may have certain hard registers that
306 are safe to use only within a basic block. */
307
308 CLEAR_HARD_REG_SET (no_global_alloc_regs);
309#ifdef OVERLAPPING_REGNO_P
310 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
311 if (OVERLAPPING_REGNO_P (i))
312 SET_HARD_REG_BIT (no_global_alloc_regs, i);
313#endif
314
315 /* Build the regset of all eliminable registers and show we can't use those
316 that we already know won't be eliminated. */
317#ifdef ELIMINABLE_REGS
318 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
319 {
320 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
321
322 if (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
daf55ac6 323 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp))
38398762
RK
324 SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
325 }
7b0957a7 326#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
daf55ac6
RK
327 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
328 if (need_fp)
7b0957a7
DE
329 SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM);
330#endif
daf55ac6 331
38398762
RK
332#else
333 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
daf55ac6 334 if (need_fp)
38398762
RK
335 SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
336#endif
337
338 /* Track which registers have already been used. Start with registers
339 explicitly in the rtl, then registers allocated by local register
b4b4db94 340 allocation. */
38398762
RK
341
342 CLEAR_HARD_REG_SET (regs_used_so_far);
b4b4db94
RS
343#ifdef LEAF_REGISTERS
344 /* If we are doing the leaf function optimization, and this is a leaf
345 function, it means that the registers that take work to save are those
346 that need a register window. So prefer the ones that can be used in
347 a leaf function. */
348 {
349 char *cheap_regs;
350 static char leaf_regs[] = LEAF_REGISTERS;
351
352 if (only_leaf_regs_used () && leaf_function_p ())
353 cheap_regs = leaf_regs;
354 else
355 cheap_regs = call_used_regs;
356 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
357 if (regs_ever_live[i] || cheap_regs[i])
358 SET_HARD_REG_BIT (regs_used_so_far, i);
359 }
360#else
361 /* We consider registers that do not have to be saved over calls as if
362 they were already used since there is no cost in using them. */
38398762
RK
363 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
364 if (regs_ever_live[i] || call_used_regs[i])
365 SET_HARD_REG_BIT (regs_used_so_far, i);
b4b4db94 366#endif
38398762 367
e51712db 368 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
38398762
RK
369 if (reg_renumber[i] >= 0)
370 SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);
371
372 /* Establish mappings from register number to allocation number
373 and vice versa. In the process, count the allocnos. */
374
375 reg_allocno = (int *) alloca (max_regno * sizeof (int));
376
377 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
378 reg_allocno[i] = -1;
379
380 /* Initialize the shared-hard-reg mapping
381 from the list of pairs that may share. */
382 reg_may_share = (int *) alloca (max_regno * sizeof (int));
4c9a05bc 383 bzero ((char *) reg_may_share, max_regno * sizeof (int));
38398762
RK
384 for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
385 {
386 int r1 = REGNO (XEXP (x, 0));
387 int r2 = REGNO (XEXP (XEXP (x, 1), 0));
388 if (r1 > r2)
389 reg_may_share[r1] = r2;
390 else
391 reg_may_share[r2] = r1;
392 }
393
e51712db 394 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
38398762
RK
395 /* Note that reg_live_length[i] < 0 indicates a "constant" reg
396 that we are supposed to refrain from putting in a hard reg.
397 -2 means do make an allocno but don't allocate it. */
a300b8d9 398 if (REG_N_REFS (i) != 0 && REG_LIVE_LENGTH (i) != -1
38398762
RK
399 /* Don't allocate pseudos that cross calls,
400 if this function receives a nonlocal goto. */
401 && (! current_function_has_nonlocal_label
b1f21e0a 402 || REG_N_CALLS_CROSSED (i) == 0))
38398762 403 {
a300b8d9 404 if (reg_renumber[i] < 0 && reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
38398762
RK
405 reg_allocno[i] = reg_allocno[reg_may_share[i]];
406 else
407 reg_allocno[i] = max_allocno++;
b1f21e0a 408 if (REG_LIVE_LENGTH (i) == 0)
38398762
RK
409 abort ();
410 }
411 else
412 reg_allocno[i] = -1;
413
414 allocno_reg = (int *) alloca (max_allocno * sizeof (int));
415 allocno_size = (int *) alloca (max_allocno * sizeof (int));
416 allocno_calls_crossed = (int *) alloca (max_allocno * sizeof (int));
417 allocno_n_refs = (int *) alloca (max_allocno * sizeof (int));
418 allocno_live_length = (int *) alloca (max_allocno * sizeof (int));
4c9a05bc
RK
419 bzero ((char *) allocno_size, max_allocno * sizeof (int));
420 bzero ((char *) allocno_calls_crossed, max_allocno * sizeof (int));
421 bzero ((char *) allocno_n_refs, max_allocno * sizeof (int));
422 bzero ((char *) allocno_live_length, max_allocno * sizeof (int));
38398762 423
e51712db 424 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
38398762
RK
425 if (reg_allocno[i] >= 0)
426 {
427 int allocno = reg_allocno[i];
428 allocno_reg[allocno] = i;
429 allocno_size[allocno] = PSEUDO_REGNO_SIZE (i);
b1f21e0a
MM
430 allocno_calls_crossed[allocno] += REG_N_CALLS_CROSSED (i);
431 allocno_n_refs[allocno] += REG_N_REFS (i);
432 if (allocno_live_length[allocno] < REG_LIVE_LENGTH (i))
433 allocno_live_length[allocno] = REG_LIVE_LENGTH (i);
38398762
RK
434 }
435
1d56e983
RS
436 /* Calculate amount of usage of each hard reg by pseudos
437 allocated by local-alloc. This is to see if we want to
438 override it. */
4c9a05bc
RK
439 bzero ((char *) local_reg_live_length, sizeof local_reg_live_length);
440 bzero ((char *) local_reg_n_refs, sizeof local_reg_n_refs);
e51712db 441 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
a300b8d9 442 if (reg_renumber[i] >= 0)
1d56e983 443 {
34e56753
RS
444 int regno = reg_renumber[i];
445 int endregno = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
446 int j;
447
448 for (j = regno; j < endregno; j++)
449 {
b1f21e0a
MM
450 local_reg_n_refs[j] += REG_N_REFS (i);
451 local_reg_live_length[j] += REG_LIVE_LENGTH (i);
34e56753 452 }
1d56e983 453 }
34e56753 454
1d56e983
RS
455 /* We can't override local-alloc for a reg used not just by local-alloc. */
456 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
457 if (regs_ever_live[i])
458 local_reg_n_refs[i] = 0;
0dfa4517 459
38398762
RK
460 /* Allocate the space for the conflict and preference tables and
461 initialize them. */
462
463 hard_reg_conflicts
464 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc 465 bzero ((char *) hard_reg_conflicts, max_allocno * sizeof (HARD_REG_SET));
38398762
RK
466
467 hard_reg_preferences
468 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc 469 bzero ((char *) hard_reg_preferences, max_allocno * sizeof (HARD_REG_SET));
38398762
RK
470
471 hard_reg_copy_preferences
472 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc
RK
473 bzero ((char *) hard_reg_copy_preferences,
474 max_allocno * sizeof (HARD_REG_SET));
38398762
RK
475
476 hard_reg_full_preferences
477 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc
RK
478 bzero ((char *) hard_reg_full_preferences,
479 max_allocno * sizeof (HARD_REG_SET));
38398762
RK
480
481 regs_someone_prefers
482 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc 483 bzero ((char *) regs_someone_prefers, max_allocno * sizeof (HARD_REG_SET));
38398762
RK
484
485 allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;
486
ba3b3878
BK
487 /* We used to use alloca here, but the size of what it would try to
488 allocate would occasionally cause it to exceed the stack limit and
489 cause unpredictable core dumps. Some examples were > 2Mb in size. */
3de90026
RH
490 conflicts = (INT_TYPE *) xcalloc (max_allocno * allocno_row_words,
491 sizeof (INT_TYPE));
38398762 492
b1ec3c92 493 allocnos_live = (INT_TYPE *) alloca (allocno_row_words * sizeof (INT_TYPE));
38398762
RK
494
495 /* If there is work to be done (at least one reg to allocate),
496 perform global conflict analysis and allocate the regs. */
497
498 if (max_allocno > 0)
499 {
500 /* Scan all the insns and compute the conflicts among allocnos
501 and between allocnos and hard regs. */
502
503 global_conflicts ();
504
505 /* Eliminate conflicts between pseudos and eliminable registers. If
506 the register is not eliminated, the pseudo won't really be able to
507 live in the eliminable register, so the conflict doesn't matter.
508 If we do eliminate the register, the conflict will no longer exist.
1d56e983
RS
509 So in either case, we can ignore the conflict. Likewise for
510 preferences. */
38398762 511
e51712db 512 for (i = 0; i < (size_t) max_allocno; i++)
1d56e983
RS
513 {
514 AND_COMPL_HARD_REG_SET (hard_reg_conflicts[i], eliminable_regset);
515 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[i],
516 eliminable_regset);
517 AND_COMPL_HARD_REG_SET (hard_reg_preferences[i], eliminable_regset);
518 }
38398762
RK
519
520 /* Try to expand the preferences by merging them between allocnos. */
521
522 expand_preferences ();
523
524 /* Determine the order to allocate the remaining pseudo registers. */
525
526 allocno_order = (int *) alloca (max_allocno * sizeof (int));
e51712db 527 for (i = 0; i < (size_t) max_allocno; i++)
38398762
RK
528 allocno_order[i] = i;
529
530 /* Default the size to 1, since allocno_compare uses it to divide by.
531 Also convert allocno_live_length of zero to -1. A length of zero
532 can occur when all the registers for that allocno have reg_live_length
533 equal to -2. In this case, we want to make an allocno, but not
534 allocate it. So avoid the divide-by-zero and set it to a low
535 priority. */
536
e51712db 537 for (i = 0; i < (size_t) max_allocno; i++)
38398762
RK
538 {
539 if (allocno_size[i] == 0)
540 allocno_size[i] = 1;
541 if (allocno_live_length[i] == 0)
542 allocno_live_length[i] = -1;
543 }
544
545 qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);
546
547 prune_preferences ();
548
549 if (file)
550 dump_conflicts (file);
551
552 /* Try allocating them, one by one, in that order,
553 except for parameters marked with reg_live_length[regno] == -2. */
554
e51712db 555 for (i = 0; i < (size_t) max_allocno; i++)
a300b8d9
JW
556 if (reg_renumber[allocno_reg[allocno_order[i]]] < 0
557 && REG_LIVE_LENGTH (allocno_reg[allocno_order[i]]) >= 0)
38398762
RK
558 {
559 /* If we have more than one register class,
560 first try allocating in the class that is cheapest
561 for this pseudo-reg. If that fails, try any reg. */
562 if (N_REG_CLASSES > 1)
563 {
ea8693a4 564 find_reg (allocno_order[i], 0, 0, 0, 0);
38398762
RK
565 if (reg_renumber[allocno_reg[allocno_order[i]]] >= 0)
566 continue;
567 }
b1ec3c92 568 if (reg_alternate_class (allocno_reg[allocno_order[i]]) != NO_REGS)
ea8693a4 569 find_reg (allocno_order[i], 0, 1, 0, 0);
38398762
RK
570 }
571 }
572
573 /* Do the reloads now while the allocno data still exist, so that we can
574 try to assign new hard regs to any pseudo regs that are spilled. */
575
7e860cf7
RS
576#if 0 /* We need to eliminate regs even if there is no rtl code,
577 for the sake of debugging information. */
38398762 578 if (n_basic_blocks > 0)
7e860cf7 579#endif
cad6f7d0 580 {
108c535a 581 build_insn_chain (get_insns ());
cad6f7d0
BS
582 retval = reload (get_insns (), 1, file);
583 }
8c316ae2
JL
584
585 free (conflicts);
586 return retval;
38398762
RK
587}
588
589/* Sort predicate for ordering the allocnos.
590 Returns -1 (1) if *v1 should be allocated before (after) *v2. */
591
592static int
daa6f17d 593allocno_compare (v1p, v2p)
e1b6684c
KG
594 const PTR v1p;
595 const PTR v2p;
38398762 596{
daa6f17d 597 int v1 = *(int *)v1p, v2 = *(int *)v2p;
38398762
RK
598 /* Note that the quotient will never be bigger than
599 the value of floor_log2 times the maximum number of
600 times a register can occur in one insn (surely less than 100).
601 Multiplying this by 10000 can't overflow. */
602 register int pri1
daa6f17d
RK
603 = (((double) (floor_log2 (allocno_n_refs[v1]) * allocno_n_refs[v1])
604 / allocno_live_length[v1])
605 * 10000 * allocno_size[v1]);
38398762 606 register int pri2
daa6f17d
RK
607 = (((double) (floor_log2 (allocno_n_refs[v2]) * allocno_n_refs[v2])
608 / allocno_live_length[v2])
609 * 10000 * allocno_size[v2]);
38398762
RK
610 if (pri2 - pri1)
611 return pri2 - pri1;
612
613 /* If regs are equally good, sort by allocno,
614 so that the results of qsort leave nothing to chance. */
daa6f17d 615 return v1 - v2;
38398762
RK
616}
617\f
618/* Scan the rtl code and record all conflicts and register preferences in the
619 conflict matrices and preference tables. */
620
621static void
622global_conflicts ()
623{
624 register int b, i;
625 register rtx insn;
8d4c79be 626 int *block_start_allocnos;
38398762
RK
627
628 /* Make a vector that mark_reg_{store,clobber} will store in. */
629 regs_set = (rtx *) alloca (max_parallel * sizeof (rtx) * 2);
630
8d4c79be 631 block_start_allocnos = (int *) alloca (max_allocno * sizeof (int));
38398762
RK
632
633 for (b = 0; b < n_basic_blocks; b++)
634 {
4c9a05bc 635 bzero ((char *) allocnos_live, allocno_row_words * sizeof (INT_TYPE));
38398762
RK
636
637 /* Initialize table of registers currently live
638 to the state at the beginning of this basic block.
639 This also marks the conflicts among them.
640
641 For pseudo-regs, there is only one bit for each one
642 no matter how many hard regs it occupies.
643 This is ok; we know the size from PSEUDO_REGNO_SIZE.
644 For explicit hard regs, we cannot know the size that way
645 since one hard reg can be used with various sizes.
646 Therefore, we must require that all the hard regs
647 implicitly live as part of a multi-word hard reg
648 are explicitly marked in basic_block_live_at_start. */
649
650 {
e881bb1b 651 register regset old = BASIC_BLOCK (b)->global_live_at_start;
38398762
RK
652 int ax = 0;
653
916b1701 654 REG_SET_TO_HARD_REG_SET (hard_regs_live, old);
1313ec9d 655 EXECUTE_IF_SET_IN_REG_SET (old, FIRST_PSEUDO_REGISTER, i,
916b1701
MM
656 {
657 register int a = reg_allocno[i];
658 if (a >= 0)
659 {
660 SET_ALLOCNO_LIVE (a);
661 block_start_allocnos[ax++] = a;
662 }
663 else if ((a = reg_renumber[i]) >= 0)
1313ec9d
RK
664 mark_reg_live_nc
665 (a, PSEUDO_REGNO_MODE (i));
916b1701 666 });
38398762
RK
667
668 /* Record that each allocno now live conflicts with each other
669 allocno now live, and with each hard reg now live. */
670
671 record_conflicts (block_start_allocnos, ax);
4d1d8045
BS
672
673#ifdef STACK_REGS
e881bb1b
RH
674 {
675 /* Pseudos can't go in stack regs at the start of a basic block
676 that can be reached through a computed goto, since reg-stack
677 can't handle computed gotos. */
678 /* ??? Seems more likely that reg-stack can't handle any abnormal
679 edges, critical or not, computed goto or otherwise. */
680
681 edge e;
682 for (e = BASIC_BLOCK (b)->pred; e ; e = e->pred_next)
683 if (e->flags & EDGE_ABNORMAL)
684 break;
685
686 if (e != NULL)
687 for (ax = FIRST_STACK_REG; ax <= LAST_STACK_REG; ax++)
688 record_one_conflict (ax);
689 }
4d1d8045 690#endif
38398762
RK
691 }
692
3b413743 693 insn = BLOCK_HEAD (b);
38398762
RK
694
695 /* Scan the code of this basic block, noting which allocnos
696 and hard regs are born or die. When one is born,
697 record a conflict with all others currently live. */
698
699 while (1)
700 {
701 register RTX_CODE code = GET_CODE (insn);
702 register rtx link;
703
704 /* Make regs_set an empty set. */
705
706 n_regs_set = 0;
707
708 if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
709 {
38398762
RK
710
711#if 0
2049526b 712 int i = 0;
38398762
RK
713 for (link = REG_NOTES (insn);
714 link && i < NUM_NO_CONFLICT_PAIRS;
715 link = XEXP (link, 1))
716 if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
717 {
718 no_conflict_pairs[i].allocno1
719 = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
720 no_conflict_pairs[i].allocno2
721 = reg_allocno[REGNO (XEXP (link, 0))];
722 i++;
723 }
724#endif /* 0 */
725
726 /* Mark any registers clobbered by INSN as live,
727 so they conflict with the inputs. */
728
729 note_stores (PATTERN (insn), mark_reg_clobber);
730
731 /* Mark any registers dead after INSN as dead now. */
732
733 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
734 if (REG_NOTE_KIND (link) == REG_DEAD)
735 mark_reg_death (XEXP (link, 0));
736
737 /* Mark any registers set in INSN as live,
738 and mark them as conflicting with all other live regs.
739 Clobbers are processed again, so they conflict with
740 the registers that are set. */
741
742 note_stores (PATTERN (insn), mark_reg_store);
743
744#ifdef AUTO_INC_DEC
745 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
746 if (REG_NOTE_KIND (link) == REG_INC)
b1ec3c92 747 mark_reg_store (XEXP (link, 0), NULL_RTX);
38398762
RK
748#endif
749
333e0f7d
RS
750 /* If INSN has multiple outputs, then any reg that dies here
751 and is used inside of an output
941c63ac
JL
752 must conflict with the other outputs.
753
754 It is unsafe to use !single_set here since it will ignore an
755 unused output. Just because an output is unused does not mean
756 the compiler can assume the side effect will not occur.
757 Consider if REG appears in the address of an output and we
758 reload the output. If we allocate REG to the same hard
759 register as an unused output we could set the hard register
760 before the output reload insn. */
761 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
333e0f7d
RS
762 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
763 if (REG_NOTE_KIND (link) == REG_DEAD)
764 {
765 int used_in_output = 0;
766 int i;
767 rtx reg = XEXP (link, 0);
768
769 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
770 {
771 rtx set = XVECEXP (PATTERN (insn), 0, i);
772 if (GET_CODE (set) == SET
773 && GET_CODE (SET_DEST (set)) != REG
774 && !rtx_equal_p (reg, SET_DEST (set))
775 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
776 used_in_output = 1;
777 }
778 if (used_in_output)
779 mark_reg_conflicts (reg);
780 }
781
38398762
RK
782 /* Mark any registers set in INSN and then never used. */
783
784 while (n_regs_set > 0)
785 if (find_regno_note (insn, REG_UNUSED,
786 REGNO (regs_set[--n_regs_set])))
787 mark_reg_death (regs_set[n_regs_set]);
788 }
789
3b413743 790 if (insn == BLOCK_END (b))
38398762
RK
791 break;
792 insn = NEXT_INSN (insn);
793 }
794 }
795}
796/* Expand the preference information by looking for cases where one allocno
797 dies in an insn that sets an allocno. If those two allocnos don't conflict,
798 merge any preferences between those allocnos. */
799
800static void
801expand_preferences ()
802{
803 rtx insn;
804 rtx link;
805 rtx set;
806
807 /* We only try to handle the most common cases here. Most of the cases
808 where this wins are reg-reg copies. */
809
810 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
811 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
812 && (set = single_set (insn)) != 0
813 && GET_CODE (SET_DEST (set)) == REG
814 && reg_allocno[REGNO (SET_DEST (set))] >= 0)
815 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
816 if (REG_NOTE_KIND (link) == REG_DEAD
817 && GET_CODE (XEXP (link, 0)) == REG
818 && reg_allocno[REGNO (XEXP (link, 0))] >= 0
819 && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
820 reg_allocno[REGNO (XEXP (link, 0))])
821 && ! CONFLICTP (reg_allocno[REGNO (XEXP (link, 0))],
822 reg_allocno[REGNO (SET_DEST (set))]))
823 {
824 int a1 = reg_allocno[REGNO (SET_DEST (set))];
825 int a2 = reg_allocno[REGNO (XEXP (link, 0))];
826
827 if (XEXP (link, 0) == SET_SRC (set))
828 {
829 IOR_HARD_REG_SET (hard_reg_copy_preferences[a1],
830 hard_reg_copy_preferences[a2]);
831 IOR_HARD_REG_SET (hard_reg_copy_preferences[a2],
832 hard_reg_copy_preferences[a1]);
833 }
834
835 IOR_HARD_REG_SET (hard_reg_preferences[a1],
836 hard_reg_preferences[a2]);
837 IOR_HARD_REG_SET (hard_reg_preferences[a2],
838 hard_reg_preferences[a1]);
839 IOR_HARD_REG_SET (hard_reg_full_preferences[a1],
840 hard_reg_full_preferences[a2]);
841 IOR_HARD_REG_SET (hard_reg_full_preferences[a2],
842 hard_reg_full_preferences[a1]);
843 }
844}
845\f
846/* Prune the preferences for global registers to exclude registers that cannot
847 be used.
848
849 Compute `regs_someone_prefers', which is a bitmask of the hard registers
850 that are preferred by conflicting registers of lower priority. If possible,
851 we will avoid using these registers. */
852
853static void
854prune_preferences ()
855{
856 int i, j;
857 int allocno;
858
859 /* Scan least most important to most important.
860 For each allocno, remove from preferences registers that cannot be used,
861 either because of conflicts or register type. Then compute all registers
d45cf215 862 preferred by each lower-priority register that conflicts. */
38398762
RK
863
864 for (i = max_allocno - 1; i >= 0; i--)
865 {
ea1637e9 866 HARD_REG_SET temp, temp2;
38398762
RK
867
868 allocno = allocno_order[i];
869 COPY_HARD_REG_SET (temp, hard_reg_conflicts[allocno]);
870
871 if (allocno_calls_crossed[allocno] == 0)
872 IOR_HARD_REG_SET (temp, fixed_reg_set);
873 else
874 IOR_HARD_REG_SET (temp, call_used_reg_set);
875
876 IOR_COMPL_HARD_REG_SET
877 (temp,
878 reg_class_contents[(int) reg_preferred_class (allocno_reg[allocno])]);
879
880 AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], temp);
881 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], temp);
882 AND_COMPL_HARD_REG_SET (hard_reg_full_preferences[allocno], temp);
883
38398762
RK
884 /* Merge in the preferences of lower-priority registers (they have
885 already been pruned). If we also prefer some of those registers,
886 don't exclude them unless we are of a smaller size (in which case
887 we want to give the lower-priority allocno the first chance for
888 these registers). */
ea1637e9
R
889 CLEAR_HARD_REG_SET (temp);
890 CLEAR_HARD_REG_SET (temp2);
38398762 891 for (j = i + 1; j < max_allocno; j++)
99fd4012
RK
892 if (CONFLICTP (allocno, allocno_order[j])
893 || CONFLICTP (allocno_order[j], allocno))
38398762 894 {
38398762 895 if (allocno_size[allocno_order[j]] <= allocno_size[allocno])
ea1637e9
R
896 IOR_HARD_REG_SET (temp,
897 hard_reg_full_preferences[allocno_order[j]]);
898 else
899 IOR_HARD_REG_SET (temp2,
900 hard_reg_full_preferences[allocno_order[j]]);
38398762 901 }
ea1637e9
R
902 AND_COMPL_HARD_REG_SET (temp, hard_reg_full_preferences[allocno]);
903 IOR_HARD_REG_SET (temp, temp2);
904 COPY_HARD_REG_SET (regs_someone_prefers[allocno], temp);
38398762
RK
905 }
906}
907\f
908/* Assign a hard register to ALLOCNO; look for one that is the beginning
909 of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
910 The registers marked in PREFREGS are tried first.
911
912 LOSERS, if non-zero, is a HARD_REG_SET indicating registers that cannot
913 be used for this allocation.
914
b1ec3c92
CH
915 If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
916 Otherwise ignore that preferred class and use the alternate class.
38398762
RK
917
918 If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
919 will have to be saved and restored at calls.
920
1d56e983
RS
921 RETRYING is nonzero if this is called from retry_global_alloc.
922
38398762
RK
923 If we find one, record it in reg_renumber.
924 If not, do nothing. */
925
926static void
b1ec3c92 927find_reg (allocno, losers, alt_regs_p, accept_call_clobbered, retrying)
38398762
RK
928 int allocno;
929 HARD_REG_SET losers;
b1ec3c92 930 int alt_regs_p;
38398762 931 int accept_call_clobbered;
1d56e983 932 int retrying;
38398762
RK
933{
934 register int i, best_reg, pass;
935#ifdef HARD_REG_SET
936 register /* Declare it register if it's a scalar. */
937#endif
1d56e983 938 HARD_REG_SET used, used1, used2;
38398762 939
b1ec3c92
CH
940 enum reg_class class = (alt_regs_p
941 ? reg_alternate_class (allocno_reg[allocno])
942 : reg_preferred_class (allocno_reg[allocno]));
38398762
RK
943 enum machine_mode mode = PSEUDO_REGNO_MODE (allocno_reg[allocno]);
944
945 if (accept_call_clobbered)
946 COPY_HARD_REG_SET (used1, call_fixed_reg_set);
947 else if (allocno_calls_crossed[allocno] == 0)
948 COPY_HARD_REG_SET (used1, fixed_reg_set);
949 else
950 COPY_HARD_REG_SET (used1, call_used_reg_set);
951
952 /* Some registers should not be allocated in global-alloc. */
953 IOR_HARD_REG_SET (used1, no_global_alloc_regs);
954 if (losers)
955 IOR_HARD_REG_SET (used1, losers);
956
957 IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
1d56e983
RS
958 COPY_HARD_REG_SET (used2, used1);
959
38398762
RK
960 IOR_HARD_REG_SET (used1, hard_reg_conflicts[allocno]);
961
d546b10a 962#ifdef CLASS_CANNOT_CHANGE_SIZE
b1f21e0a 963 if (REG_CHANGES_SIZE (allocno_reg[allocno]))
d546b10a
RK
964 IOR_HARD_REG_SET (used1,
965 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
966#endif
967
38398762 968 /* Try each hard reg to see if it fits. Do this in two passes.
d45cf215 969 In the first pass, skip registers that are preferred by some other pseudo
38398762
RK
970 to give it a better chance of getting one of those registers. Only if
971 we can't get a register when excluding those do we take one of them.
972 However, we never allocate a register for the first time in pass 0. */
973
974 COPY_HARD_REG_SET (used, used1);
975 IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
976 IOR_HARD_REG_SET (used, regs_someone_prefers[allocno]);
977
978 best_reg = -1;
979 for (i = FIRST_PSEUDO_REGISTER, pass = 0;
980 pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
981 pass++)
982 {
983 if (pass == 1)
984 COPY_HARD_REG_SET (used, used1);
985 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
986 {
987#ifdef REG_ALLOC_ORDER
988 int regno = reg_alloc_order[i];
989#else
990 int regno = i;
991#endif
992 if (! TEST_HARD_REG_BIT (used, regno)
1e326708
MH
993 && HARD_REGNO_MODE_OK (regno, mode)
994 && (allocno_calls_crossed[allocno] == 0
995 || accept_call_clobbered
996 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
38398762
RK
997 {
998 register int j;
999 register int lim = regno + HARD_REGNO_NREGS (regno, mode);
1000 for (j = regno + 1;
1001 (j < lim
1002 && ! TEST_HARD_REG_BIT (used, j));
1003 j++);
1004 if (j == lim)
1005 {
1006 best_reg = regno;
1007 break;
1008 }
1009#ifndef REG_ALLOC_ORDER
1010 i = j; /* Skip starting points we know will lose */
1011#endif
1012 }
1013 }
1014 }
1015
1016 /* See if there is a preferred register with the same class as the register
1017 we allocated above. Making this restriction prevents register
1018 preferencing from creating worse register allocation.
1019
1020 Remove from the preferred registers and conflicting registers. Note that
1021 additional conflicts may have been added after `prune_preferences' was
1022 called.
1023
1024 First do this for those register with copy preferences, then all
1025 preferred registers. */
1026
1027 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], used);
1028 GO_IF_HARD_REG_SUBSET (hard_reg_copy_preferences[allocno],
1029 reg_class_contents[(int) NO_REGS], no_copy_prefs);
1030
1031 if (best_reg >= 0)
1032 {
1033 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1034 if (TEST_HARD_REG_BIT (hard_reg_copy_preferences[allocno], i)
1035 && HARD_REGNO_MODE_OK (i, mode)
1036 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1037 || reg_class_subset_p (REGNO_REG_CLASS (i),
1038 REGNO_REG_CLASS (best_reg))
1039 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1040 REGNO_REG_CLASS (i))))
1041 {
1042 register int j;
1043 register int lim = i + HARD_REGNO_NREGS (i, mode);
1044 for (j = i + 1;
1045 (j < lim
1046 && ! TEST_HARD_REG_BIT (used, j)
1047 && (REGNO_REG_CLASS (j)
1048 == REGNO_REG_CLASS (best_reg + (j - i))
1049 || reg_class_subset_p (REGNO_REG_CLASS (j),
1050 REGNO_REG_CLASS (best_reg + (j - i)))
1051 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1052 REGNO_REG_CLASS (j))));
1053 j++);
1054 if (j == lim)
1055 {
1056 best_reg = i;
1057 goto no_prefs;
1058 }
1059 }
1060 }
1061 no_copy_prefs:
1062
1063 AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], used);
1064 GO_IF_HARD_REG_SUBSET (hard_reg_preferences[allocno],
1065 reg_class_contents[(int) NO_REGS], no_prefs);
1066
1067 if (best_reg >= 0)
1068 {
1069 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1070 if (TEST_HARD_REG_BIT (hard_reg_preferences[allocno], i)
1071 && HARD_REGNO_MODE_OK (i, mode)
1072 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1073 || reg_class_subset_p (REGNO_REG_CLASS (i),
1074 REGNO_REG_CLASS (best_reg))
1075 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1076 REGNO_REG_CLASS (i))))
1077 {
1078 register int j;
1079 register int lim = i + HARD_REGNO_NREGS (i, mode);
1080 for (j = i + 1;
1081 (j < lim
1082 && ! TEST_HARD_REG_BIT (used, j)
1083 && (REGNO_REG_CLASS (j)
1084 == REGNO_REG_CLASS (best_reg + (j - i))
1085 || reg_class_subset_p (REGNO_REG_CLASS (j),
1086 REGNO_REG_CLASS (best_reg + (j - i)))
1087 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1088 REGNO_REG_CLASS (j))));
1089 j++);
1090 if (j == lim)
1091 {
1092 best_reg = i;
1093 break;
1094 }
1095 }
1096 }
1097 no_prefs:
1098
cfcf04a6
RK
1099 /* If we haven't succeeded yet, try with caller-saves.
1100 We need not check to see if the current function has nonlocal
1101 labels because we don't put any pseudos that are live over calls in
1102 registers in that case. */
1103
1d56e983
RS
1104 if (flag_caller_saves && best_reg < 0)
1105 {
1106 /* Did not find a register. If it would be profitable to
1107 allocate a call-clobbered register and save and restore it
1108 around calls, do that. */
1109 if (! accept_call_clobbered
1110 && allocno_calls_crossed[allocno] != 0
1111 && CALLER_SAVE_PROFITABLE (allocno_n_refs[allocno],
1112 allocno_calls_crossed[allocno]))
1113 {
6cad67d2
JL
1114 HARD_REG_SET new_losers;
1115 if (! losers)
1116 CLEAR_HARD_REG_SET (new_losers);
1117 else
1118 COPY_HARD_REG_SET (new_losers, losers);
1119
1120 IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set);
1121 find_reg (allocno, new_losers, alt_regs_p, 1, retrying);
1d56e983
RS
1122 if (reg_renumber[allocno_reg[allocno]] >= 0)
1123 {
1124 caller_save_needed = 1;
1125 return;
1126 }
1127 }
1128 }
1129
1130 /* If we haven't succeeded yet,
1131 see if some hard reg that conflicts with us
1132 was utilized poorly by local-alloc.
1133 If so, kick out the regs that were put there by local-alloc
1134 so we can use it instead. */
1135 if (best_reg < 0 && !retrying
1136 /* Let's not bother with multi-reg allocnos. */
1137 && allocno_size[allocno] == 1)
1138 {
1139 /* Count from the end, to find the least-used ones first. */
1140 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
17a0a76d
RK
1141 {
1142#ifdef REG_ALLOC_ORDER
1143 int regno = reg_alloc_order[i];
1144#else
1145 int regno = i;
1146#endif
34e56753 1147
17a0a76d
RK
1148 if (local_reg_n_refs[regno] != 0
1149 /* Don't use a reg no good for this pseudo. */
1150 && ! TEST_HARD_REG_BIT (used2, regno)
d546b10a
RK
1151 && HARD_REGNO_MODE_OK (regno, mode)
1152#ifdef CLASS_CANNOT_CHANGE_SIZE
b1f21e0a 1153 && ! (REG_CHANGES_SIZE (allocno_reg[allocno])
d546b10a
RK
1154 && (TEST_HARD_REG_BIT
1155 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1156 regno)))
1157#endif
1158 )
17a0a76d 1159 {
7a17c588
JW
1160 /* We explicitly evaluate the divide results into temporary
1161 variables so as to avoid excess precision problems that occur
1162 on a i386-unknown-sysv4.2 (unixware) host. */
1163
1164 double tmp1 = ((double) local_reg_n_refs[regno]
1165 / local_reg_live_length[regno]);
1166 double tmp2 = ((double) allocno_n_refs[allocno]
1167 / allocno_live_length[allocno]);
1168
1169 if (tmp1 < tmp2)
1170 {
1171 /* Hard reg REGNO was used less in total by local regs
1172 than it would be used by this one allocno! */
1173 int k;
1174 for (k = 0; k < max_regno; k++)
1175 if (reg_renumber[k] >= 0)
1176 {
1177 int r = reg_renumber[k];
1178 int endregno
1179 = r + HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (k));
34e56753 1180
7a17c588
JW
1181 if (regno >= r && regno < endregno)
1182 reg_renumber[k] = -1;
1183 }
17a0a76d 1184
7a17c588
JW
1185 best_reg = regno;
1186 break;
1187 }
17a0a76d
RK
1188 }
1189 }
1d56e983
RS
1190 }
1191
38398762
RK
1192 /* Did we find a register? */
1193
1194 if (best_reg >= 0)
1195 {
1196 register int lim, j;
1197 HARD_REG_SET this_reg;
1198
1199 /* Yes. Record it as the hard register of this pseudo-reg. */
1200 reg_renumber[allocno_reg[allocno]] = best_reg;
1201 /* Also of any pseudo-regs that share with it. */
1202 if (reg_may_share[allocno_reg[allocno]])
1203 for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
1204 if (reg_allocno[j] == allocno)
1205 reg_renumber[j] = best_reg;
1206
1207 /* Make a set of the hard regs being allocated. */
1208 CLEAR_HARD_REG_SET (this_reg);
1209 lim = best_reg + HARD_REGNO_NREGS (best_reg, mode);
1210 for (j = best_reg; j < lim; j++)
1211 {
1212 SET_HARD_REG_BIT (this_reg, j);
1213 SET_HARD_REG_BIT (regs_used_so_far, j);
1d56e983
RS
1214 /* This is no longer a reg used just by local regs. */
1215 local_reg_n_refs[j] = 0;
38398762
RK
1216 }
1217 /* For each other pseudo-reg conflicting with this one,
1218 mark it as conflicting with the hard regs this one occupies. */
1219 lim = allocno;
1220 for (j = 0; j < max_allocno; j++)
1221 if (CONFLICTP (lim, j) || CONFLICTP (j, lim))
1222 {
1223 IOR_HARD_REG_SET (hard_reg_conflicts[j], this_reg);
1224 }
1225 }
38398762
RK
1226}
1227\f
1228/* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
1229 Perhaps it had previously seemed not worth a hard reg,
1230 or perhaps its old hard reg has been commandeered for reloads.
1231 FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
1232 they do not appear to be allocated.
1233 If FORBIDDEN_REGS is zero, no regs are forbidden. */
1234
1235void
1236retry_global_alloc (regno, forbidden_regs)
1237 int regno;
1238 HARD_REG_SET forbidden_regs;
1239{
1240 int allocno = reg_allocno[regno];
1241 if (allocno >= 0)
1242 {
1243 /* If we have more than one register class,
1244 first try allocating in the class that is cheapest
1245 for this pseudo-reg. If that fails, try any reg. */
1246 if (N_REG_CLASSES > 1)
1d56e983 1247 find_reg (allocno, forbidden_regs, 0, 0, 1);
38398762 1248 if (reg_renumber[regno] < 0
b1ec3c92 1249 && reg_alternate_class (regno) != NO_REGS)
1d56e983 1250 find_reg (allocno, forbidden_regs, 1, 0, 1);
38398762
RK
1251
1252 /* If we found a register, modify the RTL for the register to
1253 show the hard register, and mark that register live. */
1254 if (reg_renumber[regno] >= 0)
1255 {
1256 REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
1257 mark_home_live (regno);
1258 }
1259 }
1260}
1261\f
1262/* Record a conflict between register REGNO
1263 and everything currently live.
1264 REGNO must not be a pseudo reg that was allocated
1265 by local_alloc; such numbers must be translated through
1266 reg_renumber before calling here. */
1267
1268static void
1269record_one_conflict (regno)
1270 int regno;
1271{
1272 register int j;
1273
1274 if (regno < FIRST_PSEUDO_REGISTER)
1275 /* When a hard register becomes live,
1276 record conflicts with live pseudo regs. */
1277 for (j = 0; j < max_allocno; j++)
1278 {
1279 if (ALLOCNO_LIVE_P (j))
1280 SET_HARD_REG_BIT (hard_reg_conflicts[j], regno);
1281 }
1282 else
1283 /* When a pseudo-register becomes live,
1284 record conflicts first with hard regs,
1285 then with other pseudo regs. */
1286 {
1287 register int ialloc = reg_allocno[regno];
1288 register int ialloc_prod = ialloc * allocno_row_words;
1289 IOR_HARD_REG_SET (hard_reg_conflicts[ialloc], hard_regs_live);
1290 for (j = allocno_row_words - 1; j >= 0; j--)
1291 {
1292#if 0
1293 int k;
1294 for (k = 0; k < n_no_conflict_pairs; k++)
1295 if (! ((j == no_conflict_pairs[k].allocno1
1296 && ialloc == no_conflict_pairs[k].allocno2)
1297 ||
1298 (j == no_conflict_pairs[k].allocno2
1299 && ialloc == no_conflict_pairs[k].allocno1)))
1300#endif /* 0 */
1301 conflicts[ialloc_prod + j] |= allocnos_live[j];
1302 }
1303 }
1304}
1305
1306/* Record all allocnos currently live as conflicting
1307 with each other and with all hard regs currently live.
1308 ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
1309 are currently live. Their bits are also flagged in allocnos_live. */
1310
1311static void
1312record_conflicts (allocno_vec, len)
8d4c79be 1313 register int *allocno_vec;
38398762
RK
1314 register int len;
1315{
1316 register int allocno;
1317 register int j;
1318 register int ialloc_prod;
1319
1320 while (--len >= 0)
1321 {
1322 allocno = allocno_vec[len];
1323 ialloc_prod = allocno * allocno_row_words;
1324 IOR_HARD_REG_SET (hard_reg_conflicts[allocno], hard_regs_live);
1325 for (j = allocno_row_words - 1; j >= 0; j--)
1326 conflicts[ialloc_prod + j] |= allocnos_live[j];
1327 }
1328}
1329\f
1330/* Handle the case where REG is set by the insn being scanned,
1331 during the forward scan to accumulate conflicts.
1332 Store a 1 in regs_live or allocnos_live for this register, record how many
1333 consecutive hardware registers it actually needs,
1334 and record a conflict with all other registers already live.
1335
1336 Note that even if REG does not remain alive after this insn,
1337 we must mark it here as live, to ensure a conflict between
1338 REG and any other regs set in this insn that really do live.
1339 This is because those other regs could be considered after this.
1340
1341 REG might actually be something other than a register;
1342 if so, we do nothing.
1343
1344 SETTER is 0 if this register was modified by an auto-increment (i.e.,
a4c3ddd8 1345 a REG_INC note was found for it). */
38398762
RK
1346
1347static void
a4c3ddd8
BS
1348mark_reg_store (reg, setter)
1349 rtx reg, setter;
38398762
RK
1350{
1351 register int regno;
38398762
RK
1352
1353 /* WORD is which word of a multi-register group is being stored.
1354 For the case where the store is actually into a SUBREG of REG.
1355 Except we don't use it; I believe the entire REG needs to be
1356 made live. */
1357 int word = 0;
1358
1359 if (GET_CODE (reg) == SUBREG)
1360 {
1361 word = SUBREG_WORD (reg);
1362 reg = SUBREG_REG (reg);
1363 }
1364
1365 if (GET_CODE (reg) != REG)
1366 return;
1367
38398762
RK
1368 regs_set[n_regs_set++] = reg;
1369
a4c3ddd8 1370 if (setter && GET_CODE (setter) != CLOBBER)
38398762
RK
1371 set_preference (reg, SET_SRC (setter));
1372
1373 regno = REGNO (reg);
1374
38398762
RK
1375 /* Either this is one of the max_allocno pseudo regs not allocated,
1376 or it is or has a hardware reg. First handle the pseudo-regs. */
1377 if (regno >= FIRST_PSEUDO_REGISTER)
1378 {
1379 if (reg_allocno[regno] >= 0)
1380 {
1381 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1382 record_one_conflict (regno);
1383 }
1384 }
a300b8d9
JW
1385
1386 if (reg_renumber[regno] >= 0)
1387 regno = reg_renumber[regno] /* + word */;
1388
38398762 1389 /* Handle hardware regs (and pseudos allocated to hard regs). */
a300b8d9 1390 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
38398762
RK
1391 {
1392 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1393 while (regno < last)
1394 {
1395 record_one_conflict (regno);
1396 SET_HARD_REG_BIT (hard_regs_live, regno);
1397 regno++;
1398 }
1399 }
1400}
1401\f
1402/* Like mark_reg_set except notice just CLOBBERs; ignore SETs. */
1403
1404static void
1405mark_reg_clobber (reg, setter)
1406 rtx reg, setter;
1407{
a4c3ddd8
BS
1408 if (GET_CODE (setter) == CLOBBER)
1409 mark_reg_store (reg, setter);
333e0f7d
RS
1410}
1411
1412/* Record that REG has conflicts with all the regs currently live.
1413 Do not mark REG itself as live. */
1414
1415static void
1416mark_reg_conflicts (reg)
1417 rtx reg;
1418{
1419 register int regno;
1420
1421 if (GET_CODE (reg) == SUBREG)
1422 reg = SUBREG_REG (reg);
1423
1424 if (GET_CODE (reg) != REG)
1425 return;
1426
1427 regno = REGNO (reg);
1428
333e0f7d
RS
1429 /* Either this is one of the max_allocno pseudo regs not allocated,
1430 or it is or has a hardware reg. First handle the pseudo-regs. */
1431 if (regno >= FIRST_PSEUDO_REGISTER)
1432 {
1433 if (reg_allocno[regno] >= 0)
1434 record_one_conflict (regno);
1435 }
a300b8d9
JW
1436
1437 if (reg_renumber[regno] >= 0)
1438 regno = reg_renumber[regno];
1439
333e0f7d 1440 /* Handle hardware regs (and pseudos allocated to hard regs). */
a300b8d9 1441 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
333e0f7d
RS
1442 {
1443 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1444 while (regno < last)
1445 {
1446 record_one_conflict (regno);
1447 regno++;
1448 }
1449 }
38398762
RK
1450}
1451\f
1452/* Mark REG as being dead (following the insn being scanned now).
1453 Store a 0 in regs_live or allocnos_live for this register. */
1454
1455static void
1456mark_reg_death (reg)
1457 rtx reg;
1458{
1459 register int regno = REGNO (reg);
1460
38398762
RK
1461 /* Either this is one of the max_allocno pseudo regs not allocated,
1462 or it is a hardware reg. First handle the pseudo-regs. */
1463 if (regno >= FIRST_PSEUDO_REGISTER)
1464 {
1465 if (reg_allocno[regno] >= 0)
1466 CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
1467 }
a300b8d9
JW
1468
1469 /* For pseudo reg, see if it has been assigned a hardware reg. */
1470 if (reg_renumber[regno] >= 0)
1471 regno = reg_renumber[regno];
1472
38398762 1473 /* Handle hardware regs (and pseudos allocated to hard regs). */
a300b8d9 1474 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
38398762
RK
1475 {
1476 /* Pseudo regs already assigned hardware regs are treated
1477 almost the same as explicit hardware regs. */
1478 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1479 while (regno < last)
1480 {
1481 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
1482 regno++;
1483 }
1484 }
1485}
1486
1487/* Mark hard reg REGNO as currently live, assuming machine mode MODE
1488 for the value stored in it. MODE determines how many consecutive
1489 registers are actually in use. Do not record conflicts;
1490 it is assumed that the caller will do that. */
1491
1492static void
1493mark_reg_live_nc (regno, mode)
1494 register int regno;
1495 enum machine_mode mode;
1496{
1497 register int last = regno + HARD_REGNO_NREGS (regno, mode);
1498 while (regno < last)
1499 {
1500 SET_HARD_REG_BIT (hard_regs_live, regno);
1501 regno++;
1502 }
1503}
1504\f
1505/* Try to set a preference for an allocno to a hard register.
1506 We are passed DEST and SRC which are the operands of a SET. It is known
1507 that SRC is a register. If SRC or the first operand of SRC is a register,
1508 try to set a preference. If one of the two is a hard register and the other
1509 is a pseudo-register, mark the preference.
1510
6dc42e49 1511 Note that we are not as aggressive as local-alloc in trying to tie a
38398762
RK
1512 pseudo-register to a hard register. */
1513
1514static void
1515set_preference (dest, src)
1516 rtx dest, src;
1517{
1518 int src_regno, dest_regno;
1519 /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
1520 to compensate for subregs in SRC or DEST. */
1521 int offset = 0;
1522 int i;
1523 int copy = 1;
1524
1525 if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
1526 src = XEXP (src, 0), copy = 0;
1527
1528 /* Get the reg number for both SRC and DEST.
1529 If neither is a reg, give up. */
1530
1531 if (GET_CODE (src) == REG)
1532 src_regno = REGNO (src);
1533 else if (GET_CODE (src) == SUBREG && GET_CODE (SUBREG_REG (src)) == REG)
1534 {
1535 src_regno = REGNO (SUBREG_REG (src));
1536 offset += SUBREG_WORD (src);
1537 }
1538 else
1539 return;
1540
1541 if (GET_CODE (dest) == REG)
1542 dest_regno = REGNO (dest);
1543 else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG)
1544 {
1545 dest_regno = REGNO (SUBREG_REG (dest));
1546 offset -= SUBREG_WORD (dest);
1547 }
1548 else
1549 return;
1550
1551 /* Convert either or both to hard reg numbers. */
1552
1553 if (reg_renumber[src_regno] >= 0)
1554 src_regno = reg_renumber[src_regno];
1555
1556 if (reg_renumber[dest_regno] >= 0)
1557 dest_regno = reg_renumber[dest_regno];
1558
1559 /* Now if one is a hard reg and the other is a global pseudo
1560 then give the other a preference. */
1561
1562 if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
1563 && reg_allocno[src_regno] >= 0)
1564 {
1565 dest_regno -= offset;
1566 if (dest_regno >= 0 && dest_regno < FIRST_PSEUDO_REGISTER)
1567 {
1568 if (copy)
1569 SET_REGBIT (hard_reg_copy_preferences,
1570 reg_allocno[src_regno], dest_regno);
1571
1572 SET_REGBIT (hard_reg_preferences,
1573 reg_allocno[src_regno], dest_regno);
1574 for (i = dest_regno;
1575 i < dest_regno + HARD_REGNO_NREGS (dest_regno, GET_MODE (dest));
1576 i++)
1577 SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
1578 }
1579 }
1580
1581 if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
1582 && reg_allocno[dest_regno] >= 0)
1583 {
1584 src_regno += offset;
1585 if (src_regno >= 0 && src_regno < FIRST_PSEUDO_REGISTER)
1586 {
1587 if (copy)
1588 SET_REGBIT (hard_reg_copy_preferences,
1589 reg_allocno[dest_regno], src_regno);
1590
1591 SET_REGBIT (hard_reg_preferences,
1592 reg_allocno[dest_regno], src_regno);
1593 for (i = src_regno;
1594 i < src_regno + HARD_REGNO_NREGS (src_regno, GET_MODE (src));
1595 i++)
1596 SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
1597 }
1598 }
1599}
1600\f
1601/* Indicate that hard register number FROM was eliminated and replaced with
1602 an offset from hard register number TO. The status of hard registers live
1603 at the start of a basic block is updated by replacing a use of FROM with
1604 a use of TO. */
1605
1606void
1607mark_elimination (from, to)
1608 int from, to;
1609{
1610 int i;
1611
1612 for (i = 0; i < n_basic_blocks; i++)
e881bb1b
RH
1613 {
1614 register regset r = BASIC_BLOCK (i)->global_live_at_start;
1615 if (REGNO_REG_SET_P (r, from))
1616 {
1617 CLEAR_REGNO_REG_SET (r, from);
1618 SET_REGNO_REG_SET (r, to);
1619 }
1620 }
38398762
RK
1621}
1622\f
cad6f7d0
BS
1623/* Used for communication between the following functions. Holds the
1624 current life information. */
1625static regset live_relevant_regs;
1626
1627/* Record in live_relevant_regs that register REG became live. This
1628 is called via note_stores. */
1629static void
1630reg_becomes_live (reg, setter)
1631 rtx reg;
1632 rtx setter ATTRIBUTE_UNUSED;
1633{
1634 int regno;
1635
1636 if (GET_CODE (reg) == SUBREG)
1637 reg = SUBREG_REG (reg);
1638
1639 if (GET_CODE (reg) != REG)
1640 return;
1641
1642 regno = REGNO (reg);
1643 if (regno < FIRST_PSEUDO_REGISTER)
1644 {
1645 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
1646 while (nregs-- > 0)
1647 SET_REGNO_REG_SET (live_relevant_regs, regno++);
1648 }
1649 else if (reg_renumber[regno] >= 0)
1650 SET_REGNO_REG_SET (live_relevant_regs, regno);
1651}
1652
1653/* Record in live_relevant_regs that register REGNO died. */
1654static void
1655reg_dies (regno, mode)
1656 int regno;
1657 enum machine_mode mode;
1658{
1659 if (regno < FIRST_PSEUDO_REGISTER)
1660 {
1661 int nregs = HARD_REGNO_NREGS (regno, mode);
1662 while (nregs-- > 0)
1663 CLEAR_REGNO_REG_SET (live_relevant_regs, regno++);
1664 }
1665 else
1666 CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
1667}
1668
1669/* Walk the insns of the current function and build reload_insn_chain,
1670 and record register life information. */
1671static void
108c535a
RH
1672build_insn_chain (first)
1673 rtx first;
cad6f7d0
BS
1674{
1675 struct insn_chain **p = &reload_insn_chain;
1676 struct insn_chain *prev = 0;
108c535a 1677 int b = 0;
cad6f7d0
BS
1678
1679 live_relevant_regs = ALLOCA_REG_SET ();
1680
108c535a 1681 for (; first; first = NEXT_INSN (first))
cad6f7d0 1682 {
108c535a 1683 struct insn_chain *c;
cad6f7d0 1684
108c535a 1685 if (first == BLOCK_HEAD (b))
cad6f7d0 1686 {
108c535a
RH
1687 int i;
1688 CLEAR_REG_SET (live_relevant_regs);
1689 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1690 if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, i)
1691 && ! TEST_HARD_REG_BIT (eliminable_regset, i))
1692 SET_REGNO_REG_SET (live_relevant_regs, i);
1693
1694 for (; i < max_regno; i++)
1695 if (reg_renumber[i] >= 0
1696 && REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, i))
1697 SET_REGNO_REG_SET (live_relevant_regs, i);
1698 }
1699
1700 if (GET_CODE (first) != NOTE && GET_CODE (first) != BARRIER)
021d1677 1701 {
108c535a
RH
1702 c = new_insn_chain ();
1703 c->prev = prev;
1704 prev = c;
1705 *p = c;
1706 p = &c->next;
1707 c->insn = first;
1708 c->block = b;
1709
1710 COPY_REG_SET (c->live_before, live_relevant_regs);
cad6f7d0 1711
108c535a 1712 if (GET_RTX_CLASS (GET_CODE (first)) == 'i')
cad6f7d0 1713 {
108c535a 1714 rtx link;
cad6f7d0 1715
108c535a 1716 /* Mark the death of everything that dies in this instruction. */
cad6f7d0 1717
108c535a
RH
1718 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1719 if (REG_NOTE_KIND (link) == REG_DEAD
1720 && GET_CODE (XEXP (link, 0)) == REG)
1721 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)));
cad6f7d0 1722
108c535a 1723 /* Mark everything born in this instruction as live. */
cad6f7d0 1724
108c535a 1725 note_stores (PATTERN (first), reg_becomes_live);
cad6f7d0 1726 }
3663a304 1727
108c535a
RH
1728 /* Remember which registers are live at the end of the insn, before
1729 killing those with REG_UNUSED notes. */
1730 COPY_REG_SET (c->live_after, live_relevant_regs);
1731
1732 if (GET_RTX_CLASS (GET_CODE (first)) == 'i')
1733 {
1734 rtx link;
1735
1736 /* Mark anything that is set in this insn and then unused as dying. */
1737
1738 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1739 if (REG_NOTE_KIND (link) == REG_UNUSED
1740 && GET_CODE (XEXP (link, 0)) == REG)
1741 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)));
1742 }
3663a304 1743 }
021d1677 1744
108c535a
RH
1745 if (first == BLOCK_END (b))
1746 b++;
1747
1748 /* Stop after we pass the end of the last basic block. Verify that
1749 no real insns are after the end of the last basic block.
1750
1751 We may want to reorganize the loop somewhat since this test should
1752 always be the right exit test. */
1753 if (b == n_basic_blocks)
1754 {
1755 for (first = NEXT_INSN (first) ; first; first = NEXT_INSN (first))
1756 if (GET_RTX_CLASS (GET_CODE (first)) == 'i'
1757 && GET_CODE (PATTERN (first)) != USE)
1758 abort ();
1759 break;
1760 }
1761 }
cad6f7d0
BS
1762 FREE_REG_SET (live_relevant_regs);
1763 *p = 0;
1764}
1765\f
318e4b56 1766/* Print debugging trace information if -dg switch is given,
38398762
RK
1767 showing the information on which the allocation decisions are based. */
1768
1769static void
1770dump_conflicts (file)
1771 FILE *file;
1772{
1773 register int i;
1774 register int has_preferences;
a300b8d9
JW
1775 register int nregs;
1776 nregs = 0;
1777 for (i = 0; i < max_allocno; i++)
1778 {
1779 if (reg_renumber[allocno_reg[allocno_order[i]]] >= 0)
1780 continue;
1781 nregs++;
1782 }
1783 fprintf (file, ";; %d regs to allocate:", nregs);
38398762
RK
1784 for (i = 0; i < max_allocno; i++)
1785 {
1786 int j;
a300b8d9
JW
1787 if (reg_renumber[allocno_reg[allocno_order[i]]] >= 0)
1788 continue;
38398762
RK
1789 fprintf (file, " %d", allocno_reg[allocno_order[i]]);
1790 for (j = 0; j < max_regno; j++)
1791 if (reg_allocno[j] == allocno_order[i]
1792 && j != allocno_reg[allocno_order[i]])
1793 fprintf (file, "+%d", j);
1794 if (allocno_size[allocno_order[i]] != 1)
1795 fprintf (file, " (%d)", allocno_size[allocno_order[i]]);
1796 }
1797 fprintf (file, "\n");
1798
1799 for (i = 0; i < max_allocno; i++)
1800 {
1801 register int j;
1802 fprintf (file, ";; %d conflicts:", allocno_reg[i]);
1803 for (j = 0; j < max_allocno; j++)
1804 if (CONFLICTP (i, j) || CONFLICTP (j, i))
1805 fprintf (file, " %d", allocno_reg[j]);
1806 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1807 if (TEST_HARD_REG_BIT (hard_reg_conflicts[i], j))
1808 fprintf (file, " %d", j);
1809 fprintf (file, "\n");
1810
1811 has_preferences = 0;
1812 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1813 if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1814 has_preferences = 1;
1815
1816 if (! has_preferences)
1817 continue;
1818 fprintf (file, ";; %d preferences:", allocno_reg[i]);
1819 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1820 if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1821 fprintf (file, " %d", j);
1822 fprintf (file, "\n");
1823 }
1824 fprintf (file, "\n");
1825}
1826
1827void
1828dump_global_regs (file)
1829 FILE *file;
1830{
1831 register int i, j;
1832
1833 fprintf (file, ";; Register dispositions:\n");
1834 for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
1835 if (reg_renumber[i] >= 0)
1836 {
1837 fprintf (file, "%d in %d ", i, reg_renumber[i]);
1838 if (++j % 6 == 0)
1839 fprintf (file, "\n");
1840 }
1841
1842 fprintf (file, "\n\n;; Hard regs used: ");
1843 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1844 if (regs_ever_live[i])
1845 fprintf (file, " %d", i);
1846 fprintf (file, "\n\n");
1847}
This page took 0.922358 seconds and 5 git commands to generate.