]> gcc.gnu.org Git - gcc.git/blame - gcc/global.c
(reg_equiv_replacement): New variable.
[gcc.git] / gcc / global.c
CommitLineData
38398762 1/* Allocate registers for pseudo-registers that span basic blocks.
35b2eb05 2 Copyright (C) 1987, 1988, 1991, 1994 Free Software Foundation, Inc.
38398762
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
a35311b0
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
38398762
RK
20
21
22#include <stdio.h>
23#include "config.h"
24#include "rtl.h"
25#include "flags.h"
26#include "basic-block.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "insn-config.h"
30#include "output.h"
31
32/* This pass of the compiler performs global register allocation.
33 It assigns hard register numbers to all the pseudo registers
34 that were not handled in local_alloc. Assignments are recorded
35 in the vector reg_renumber, not by changing the rtl code.
36 (Such changes are made by final). The entry point is
37 the function global_alloc.
38
39 After allocation is complete, the reload pass is run as a subroutine
40 of this pass, so that when a pseudo reg loses its hard reg due to
41 spilling it is possible to make a second attempt to find a hard
42 reg for it. The reload pass is independent in other respects
43 and it is run even when stupid register allocation is in use.
44
45 1. count the pseudo-registers still needing allocation
46 and assign allocation-numbers (allocnos) to them.
47 Set up tables reg_allocno and allocno_reg to map
48 reg numbers to allocnos and vice versa.
49 max_allocno gets the number of allocnos in use.
50
51 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
52 Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
53 for conflicts between allocnos and explicit hard register use
54 (which includes use of pseudo-registers allocated by local_alloc).
55
56 3. for each basic block
57 walk forward through the block, recording which
58 unallocated registers and which hardware registers are live.
59 Build the conflict matrix between the unallocated registers
60 and another of unallocated registers versus hardware registers.
61 Also record the preferred hardware registers
62 for each unallocated one.
63
64 4. Sort a table of the allocnos into order of
65 desirability of the variables.
66
67 5. Allocate the variables in that order; each if possible into
68 a preferred register, else into another register. */
69\f
70/* Number of pseudo-registers still requiring allocation
71 (not allocated by local_allocate). */
72
73static int max_allocno;
74
75/* Indexed by (pseudo) reg number, gives the allocno, or -1
76 for pseudo registers already allocated by local_allocate. */
77
78static int *reg_allocno;
79
80/* Indexed by allocno, gives the reg number. */
81
82static int *allocno_reg;
83
84/* A vector of the integers from 0 to max_allocno-1,
85 sorted in the order of first-to-be-allocated first. */
86
87static int *allocno_order;
88
89/* Indexed by an allocno, gives the number of consecutive
90 hard registers needed by that pseudo reg. */
91
92static int *allocno_size;
93
94/* Indexed by (pseudo) reg number, gives the number of another
6dc42e49 95 lower-numbered pseudo reg which can share a hard reg with this pseudo
38398762
RK
96 *even if the two pseudos would otherwise appear to conflict*. */
97
98static int *reg_may_share;
99
b1ec3c92
CH
100/* Define the number of bits in each element of `conflicts' and what
101 type that element has. We use the largest integer format on the
102 host machine. */
103
104#define INT_BITS HOST_BITS_PER_WIDE_INT
105#define INT_TYPE HOST_WIDE_INT
106
38398762
RK
107/* max_allocno by max_allocno array of bits,
108 recording whether two allocno's conflict (can't go in the same
109 hardware register).
110
111 `conflicts' is not symmetric; a conflict between allocno's i and j
112 is recorded either in element i,j or in element j,i. */
113
b1ec3c92 114static INT_TYPE *conflicts;
38398762
RK
115
116/* Number of ints require to hold max_allocno bits.
117 This is the length of a row in `conflicts'. */
118
119static int allocno_row_words;
120
121/* Two macros to test or store 1 in an element of `conflicts'. */
122
123#define CONFLICTP(I, J) \
124 (conflicts[(I) * allocno_row_words + (J) / INT_BITS] \
b1ec3c92 125 & ((INT_TYPE) 1 << ((J) % INT_BITS)))
38398762
RK
126
127#define SET_CONFLICT(I, J) \
128 (conflicts[(I) * allocno_row_words + (J) / INT_BITS] \
b1ec3c92 129 |= ((INT_TYPE) 1 << ((J) % INT_BITS)))
38398762
RK
130
131/* Set of hard regs currently live (during scan of all insns). */
132
133static HARD_REG_SET hard_regs_live;
134
135/* Indexed by N, set of hard regs conflicting with allocno N. */
136
137static HARD_REG_SET *hard_reg_conflicts;
138
139/* Indexed by N, set of hard regs preferred by allocno N.
140 This is used to make allocnos go into regs that are copied to or from them,
141 when possible, to reduce register shuffling. */
142
143static HARD_REG_SET *hard_reg_preferences;
144
145/* Similar, but just counts register preferences made in simple copy
146 operations, rather than arithmetic. These are given priority because
147 we can always eliminate an insn by using these, but using a register
148 in the above list won't always eliminate an insn. */
149
150static HARD_REG_SET *hard_reg_copy_preferences;
151
152/* Similar to hard_reg_preferences, but includes bits for subsequent
153 registers when an allocno is multi-word. The above variable is used for
154 allocation while this is used to build reg_someone_prefers, below. */
155
156static HARD_REG_SET *hard_reg_full_preferences;
157
158/* Indexed by N, set of hard registers that some later allocno has a
159 preference for. */
160
161static HARD_REG_SET *regs_someone_prefers;
162
163/* Set of registers that global-alloc isn't supposed to use. */
164
165static HARD_REG_SET no_global_alloc_regs;
166
167/* Set of registers used so far. */
168
169static HARD_REG_SET regs_used_so_far;
170
171/* Number of calls crossed by each allocno. */
172
173static int *allocno_calls_crossed;
174
175/* Number of refs (weighted) to each allocno. */
176
177static int *allocno_n_refs;
178
179/* Guess at live length of each allocno.
180 This is actually the max of the live lengths of the regs. */
181
182static int *allocno_live_length;
183
1d56e983
RS
184/* Number of refs (weighted) to each hard reg, as used by local alloc.
185 It is zero for a reg that contains global pseudos or is explicitly used. */
186
187static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];
188
189/* Guess at live length of each hard reg, as used by local alloc.
190 This is actually the sum of the live lengths of the specific regs. */
191
192static int local_reg_live_length[FIRST_PSEUDO_REGISTER];
193
38398762
RK
194/* Test a bit in TABLE, a vector of HARD_REG_SETs,
195 for vector element I, and hard register number J. */
196
197#define REGBITP(TABLE, I, J) TEST_HARD_REG_BIT (TABLE[I], J)
198
199/* Set to 1 a bit in a vector of HARD_REG_SETs. Works like REGBITP. */
200
201#define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (TABLE[I], J)
202
203/* Bit mask for allocnos live at current point in the scan. */
204
b1ec3c92 205static INT_TYPE *allocnos_live;
38398762
RK
206
207/* Test, set or clear bit number I in allocnos_live,
208 a bit vector indexed by allocno. */
209
210#define ALLOCNO_LIVE_P(I) \
b1ec3c92 211 (allocnos_live[(I) / INT_BITS] & ((INT_TYPE) 1 << ((I) % INT_BITS)))
38398762
RK
212
213#define SET_ALLOCNO_LIVE(I) \
b1ec3c92 214 (allocnos_live[(I) / INT_BITS] |= ((INT_TYPE) 1 << ((I) % INT_BITS)))
38398762
RK
215
216#define CLEAR_ALLOCNO_LIVE(I) \
b1ec3c92 217 (allocnos_live[(I) / INT_BITS] &= ~((INT_TYPE) 1 << ((I) % INT_BITS)))
38398762
RK
218
219/* This is turned off because it doesn't work right for DImode.
220 (And it is only used for DImode, so the other cases are worthless.)
221 The problem is that it isn't true that there is NO possibility of conflict;
222 only that there is no conflict if the two pseudos get the exact same regs.
223 If they were allocated with a partial overlap, there would be a conflict.
224 We can't safely turn off the conflict unless we have another way to
225 prevent the partial overlap.
226
227 Idea: change hard_reg_conflicts so that instead of recording which
228 hard regs the allocno may not overlap, it records where the allocno
229 may not start. Change both where it is used and where it is updated.
230 Then there is a way to record that (reg:DI 108) may start at 10
231 but not at 9 or 11. There is still the question of how to record
232 this semi-conflict between two pseudos. */
233#if 0
234/* Reg pairs for which conflict after the current insn
235 is inhibited by a REG_NO_CONFLICT note.
236 If the table gets full, we ignore any other notes--that is conservative. */
237#define NUM_NO_CONFLICT_PAIRS 4
238/* Number of pairs in use in this insn. */
239int n_no_conflict_pairs;
240static struct { int allocno1, allocno2;}
241 no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
242#endif /* 0 */
243
244/* Record all regs that are set in any one insn.
245 Communication from mark_reg_{store,clobber} and global_conflicts. */
246
247static rtx *regs_set;
248static int n_regs_set;
249
daf55ac6 250/* All registers that can be eliminated. */
38398762
RK
251
252static HARD_REG_SET eliminable_regset;
253
82c68a78
RK
254static int allocno_compare PROTO((int *, int *));
255static void global_conflicts PROTO((void));
256static void expand_preferences PROTO((void));
257static void prune_preferences PROTO((void));
258static void find_reg PROTO((int, HARD_REG_SET, int, int, int));
259static void record_one_conflict PROTO((int));
260static void record_conflicts PROTO((short *, int));
261static void mark_reg_store PROTO((rtx, rtx));
262static void mark_reg_clobber PROTO((rtx, rtx));
263static void mark_reg_conflicts PROTO((rtx));
264static void mark_reg_death PROTO((rtx));
265static void mark_reg_live_nc PROTO((int, enum machine_mode));
266static void set_preference PROTO((rtx, rtx));
267static void dump_conflicts PROTO((FILE *));
38398762
RK
268\f
269/* Perform allocation of pseudo-registers not allocated by local_alloc.
270 FILE is a file to output debugging information on,
ab40ad2b 271 or zero if such output is not desired.
38398762 272
ab40ad2b
RS
273 Return value is nonzero if reload failed
274 and we must not do any more for this function. */
275
276int
38398762
RK
277global_alloc (file)
278 FILE *file;
279{
280#ifdef ELIMINABLE_REGS
281 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
282#endif
daf55ac6
RK
283 int need_fp
284 = (! flag_omit_frame_pointer
285#ifdef EXIT_IGNORE_STACK
286 || (current_function_calls_alloca && EXIT_IGNORE_STACK)
287#endif
288 || FRAME_POINTER_REQUIRED);
289
38398762
RK
290 register int i;
291 rtx x;
292
293 max_allocno = 0;
294
295 /* A machine may have certain hard registers that
296 are safe to use only within a basic block. */
297
298 CLEAR_HARD_REG_SET (no_global_alloc_regs);
299#ifdef OVERLAPPING_REGNO_P
300 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
301 if (OVERLAPPING_REGNO_P (i))
302 SET_HARD_REG_BIT (no_global_alloc_regs, i);
303#endif
304
305 /* Build the regset of all eliminable registers and show we can't use those
306 that we already know won't be eliminated. */
307#ifdef ELIMINABLE_REGS
308 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
309 {
310 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
311
312 if (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
daf55ac6 313 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp))
38398762
RK
314 SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
315 }
7b0957a7 316#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
daf55ac6
RK
317 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
318 if (need_fp)
7b0957a7
DE
319 SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM);
320#endif
daf55ac6 321
38398762
RK
322#else
323 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
daf55ac6 324 if (need_fp)
38398762
RK
325 SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
326#endif
327
328 /* Track which registers have already been used. Start with registers
329 explicitly in the rtl, then registers allocated by local register
b4b4db94 330 allocation. */
38398762
RK
331
332 CLEAR_HARD_REG_SET (regs_used_so_far);
b4b4db94
RS
333#ifdef LEAF_REGISTERS
334 /* If we are doing the leaf function optimization, and this is a leaf
335 function, it means that the registers that take work to save are those
336 that need a register window. So prefer the ones that can be used in
337 a leaf function. */
338 {
339 char *cheap_regs;
340 static char leaf_regs[] = LEAF_REGISTERS;
341
342 if (only_leaf_regs_used () && leaf_function_p ())
343 cheap_regs = leaf_regs;
344 else
345 cheap_regs = call_used_regs;
346 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
347 if (regs_ever_live[i] || cheap_regs[i])
348 SET_HARD_REG_BIT (regs_used_so_far, i);
349 }
350#else
351 /* We consider registers that do not have to be saved over calls as if
352 they were already used since there is no cost in using them. */
38398762
RK
353 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
354 if (regs_ever_live[i] || call_used_regs[i])
355 SET_HARD_REG_BIT (regs_used_so_far, i);
b4b4db94 356#endif
38398762
RK
357
358 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
359 if (reg_renumber[i] >= 0)
360 SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);
361
362 /* Establish mappings from register number to allocation number
363 and vice versa. In the process, count the allocnos. */
364
365 reg_allocno = (int *) alloca (max_regno * sizeof (int));
366
367 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
368 reg_allocno[i] = -1;
369
370 /* Initialize the shared-hard-reg mapping
371 from the list of pairs that may share. */
372 reg_may_share = (int *) alloca (max_regno * sizeof (int));
4c9a05bc 373 bzero ((char *) reg_may_share, max_regno * sizeof (int));
38398762
RK
374 for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
375 {
376 int r1 = REGNO (XEXP (x, 0));
377 int r2 = REGNO (XEXP (XEXP (x, 1), 0));
378 if (r1 > r2)
379 reg_may_share[r1] = r2;
380 else
381 reg_may_share[r2] = r1;
382 }
383
384 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
385 /* Note that reg_live_length[i] < 0 indicates a "constant" reg
386 that we are supposed to refrain from putting in a hard reg.
387 -2 means do make an allocno but don't allocate it. */
388 if (reg_n_refs[i] != 0 && reg_renumber[i] < 0 && reg_live_length[i] != -1
389 /* Don't allocate pseudos that cross calls,
390 if this function receives a nonlocal goto. */
391 && (! current_function_has_nonlocal_label
392 || reg_n_calls_crossed[i] == 0))
393 {
394 if (reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
395 reg_allocno[i] = reg_allocno[reg_may_share[i]];
396 else
397 reg_allocno[i] = max_allocno++;
398 if (reg_live_length[i] == 0)
399 abort ();
400 }
401 else
402 reg_allocno[i] = -1;
403
404 allocno_reg = (int *) alloca (max_allocno * sizeof (int));
405 allocno_size = (int *) alloca (max_allocno * sizeof (int));
406 allocno_calls_crossed = (int *) alloca (max_allocno * sizeof (int));
407 allocno_n_refs = (int *) alloca (max_allocno * sizeof (int));
408 allocno_live_length = (int *) alloca (max_allocno * sizeof (int));
4c9a05bc
RK
409 bzero ((char *) allocno_size, max_allocno * sizeof (int));
410 bzero ((char *) allocno_calls_crossed, max_allocno * sizeof (int));
411 bzero ((char *) allocno_n_refs, max_allocno * sizeof (int));
412 bzero ((char *) allocno_live_length, max_allocno * sizeof (int));
38398762
RK
413
414 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
415 if (reg_allocno[i] >= 0)
416 {
417 int allocno = reg_allocno[i];
418 allocno_reg[allocno] = i;
419 allocno_size[allocno] = PSEUDO_REGNO_SIZE (i);
420 allocno_calls_crossed[allocno] += reg_n_calls_crossed[i];
421 allocno_n_refs[allocno] += reg_n_refs[i];
422 if (allocno_live_length[allocno] < reg_live_length[i])
423 allocno_live_length[allocno] = reg_live_length[i];
424 }
425
1d56e983
RS
426 /* Calculate amount of usage of each hard reg by pseudos
427 allocated by local-alloc. This is to see if we want to
428 override it. */
4c9a05bc
RK
429 bzero ((char *) local_reg_live_length, sizeof local_reg_live_length);
430 bzero ((char *) local_reg_n_refs, sizeof local_reg_n_refs);
1d56e983
RS
431 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
432 if (reg_allocno[i] < 0 && reg_renumber[i] >= 0)
433 {
34e56753
RS
434 int regno = reg_renumber[i];
435 int endregno = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
436 int j;
437
438 for (j = regno; j < endregno; j++)
439 {
440 local_reg_n_refs[j] += reg_n_refs[i];
441 local_reg_live_length[j] += reg_live_length[i];
442 }
1d56e983 443 }
34e56753 444
1d56e983
RS
445 /* We can't override local-alloc for a reg used not just by local-alloc. */
446 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
447 if (regs_ever_live[i])
448 local_reg_n_refs[i] = 0;
449
0dfa4517
RK
450 /* Likewise for regs used in a SCRATCH. */
451 for (i = 0; i < scratch_list_length; i++)
452 if (scratch_list[i])
453 {
454 int regno = REGNO (scratch_list[i]);
455 int lim = regno + HARD_REGNO_NREGS (regno, GET_MODE (scratch_list[i]));
456 int j;
457
458 for (j = regno; j < lim; j++)
459 local_reg_n_refs[j] = 0;
460 }
461
38398762
RK
462 /* Allocate the space for the conflict and preference tables and
463 initialize them. */
464
465 hard_reg_conflicts
466 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc 467 bzero ((char *) hard_reg_conflicts, max_allocno * sizeof (HARD_REG_SET));
38398762
RK
468
469 hard_reg_preferences
470 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc 471 bzero ((char *) hard_reg_preferences, max_allocno * sizeof (HARD_REG_SET));
38398762
RK
472
473 hard_reg_copy_preferences
474 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc
RK
475 bzero ((char *) hard_reg_copy_preferences,
476 max_allocno * sizeof (HARD_REG_SET));
38398762
RK
477
478 hard_reg_full_preferences
479 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc
RK
480 bzero ((char *) hard_reg_full_preferences,
481 max_allocno * sizeof (HARD_REG_SET));
38398762
RK
482
483 regs_someone_prefers
484 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc 485 bzero ((char *) regs_someone_prefers, max_allocno * sizeof (HARD_REG_SET));
38398762
RK
486
487 allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;
488
b1ec3c92
CH
489 conflicts = (INT_TYPE *) alloca (max_allocno * allocno_row_words
490 * sizeof (INT_TYPE));
4c9a05bc
RK
491 bzero ((char *) conflicts,
492 max_allocno * allocno_row_words * sizeof (INT_TYPE));
38398762 493
b1ec3c92 494 allocnos_live = (INT_TYPE *) alloca (allocno_row_words * sizeof (INT_TYPE));
38398762
RK
495
496 /* If there is work to be done (at least one reg to allocate),
497 perform global conflict analysis and allocate the regs. */
498
499 if (max_allocno > 0)
500 {
501 /* Scan all the insns and compute the conflicts among allocnos
502 and between allocnos and hard regs. */
503
504 global_conflicts ();
505
506 /* Eliminate conflicts between pseudos and eliminable registers. If
507 the register is not eliminated, the pseudo won't really be able to
508 live in the eliminable register, so the conflict doesn't matter.
509 If we do eliminate the register, the conflict will no longer exist.
1d56e983
RS
510 So in either case, we can ignore the conflict. Likewise for
511 preferences. */
38398762
RK
512
513 for (i = 0; i < max_allocno; i++)
1d56e983
RS
514 {
515 AND_COMPL_HARD_REG_SET (hard_reg_conflicts[i], eliminable_regset);
516 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[i],
517 eliminable_regset);
518 AND_COMPL_HARD_REG_SET (hard_reg_preferences[i], eliminable_regset);
519 }
38398762
RK
520
521 /* Try to expand the preferences by merging them between allocnos. */
522
523 expand_preferences ();
524
525 /* Determine the order to allocate the remaining pseudo registers. */
526
527 allocno_order = (int *) alloca (max_allocno * sizeof (int));
528 for (i = 0; i < max_allocno; i++)
529 allocno_order[i] = i;
530
531 /* Default the size to 1, since allocno_compare uses it to divide by.
532 Also convert allocno_live_length of zero to -1. A length of zero
533 can occur when all the registers for that allocno have reg_live_length
534 equal to -2. In this case, we want to make an allocno, but not
535 allocate it. So avoid the divide-by-zero and set it to a low
536 priority. */
537
538 for (i = 0; i < max_allocno; i++)
539 {
540 if (allocno_size[i] == 0)
541 allocno_size[i] = 1;
542 if (allocno_live_length[i] == 0)
543 allocno_live_length[i] = -1;
544 }
545
546 qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);
547
548 prune_preferences ();
549
550 if (file)
551 dump_conflicts (file);
552
553 /* Try allocating them, one by one, in that order,
554 except for parameters marked with reg_live_length[regno] == -2. */
555
556 for (i = 0; i < max_allocno; i++)
557 if (reg_live_length[allocno_reg[allocno_order[i]]] >= 0)
558 {
559 /* If we have more than one register class,
560 first try allocating in the class that is cheapest
561 for this pseudo-reg. If that fails, try any reg. */
562 if (N_REG_CLASSES > 1)
563 {
1d56e983 564 find_reg (allocno_order[i], HARD_CONST (0), 0, 0, 0);
38398762
RK
565 if (reg_renumber[allocno_reg[allocno_order[i]]] >= 0)
566 continue;
567 }
b1ec3c92 568 if (reg_alternate_class (allocno_reg[allocno_order[i]]) != NO_REGS)
1d56e983 569 find_reg (allocno_order[i], HARD_CONST (0), 1, 0, 0);
38398762
RK
570 }
571 }
572
573 /* Do the reloads now while the allocno data still exist, so that we can
574 try to assign new hard regs to any pseudo regs that are spilled. */
575
7e860cf7
RS
576#if 0 /* We need to eliminate regs even if there is no rtl code,
577 for the sake of debugging information. */
38398762 578 if (n_basic_blocks > 0)
7e860cf7 579#endif
ab40ad2b 580 return reload (get_insns (), 1, file);
38398762
RK
581}
582
583/* Sort predicate for ordering the allocnos.
584 Returns -1 (1) if *v1 should be allocated before (after) *v2. */
585
586static int
587allocno_compare (v1, v2)
588 int *v1, *v2;
589{
590 /* Note that the quotient will never be bigger than
591 the value of floor_log2 times the maximum number of
592 times a register can occur in one insn (surely less than 100).
593 Multiplying this by 10000 can't overflow. */
594 register int pri1
595 = (((double) (floor_log2 (allocno_n_refs[*v1]) * allocno_n_refs[*v1])
35b2eb05
RK
596 / allocno_live_length[*v1])
597 * 10000 * allocno_size[*v1]);
38398762
RK
598 register int pri2
599 = (((double) (floor_log2 (allocno_n_refs[*v2]) * allocno_n_refs[*v2])
35b2eb05
RK
600 / allocno_live_length[*v2])
601 * 10000 * allocno_size[*v2]);
38398762
RK
602 if (pri2 - pri1)
603 return pri2 - pri1;
604
605 /* If regs are equally good, sort by allocno,
606 so that the results of qsort leave nothing to chance. */
607 return *v1 - *v2;
608}
609\f
610/* Scan the rtl code and record all conflicts and register preferences in the
611 conflict matrices and preference tables. */
612
613static void
614global_conflicts ()
615{
616 register int b, i;
617 register rtx insn;
618 short *block_start_allocnos;
619
620 /* Make a vector that mark_reg_{store,clobber} will store in. */
621 regs_set = (rtx *) alloca (max_parallel * sizeof (rtx) * 2);
622
623 block_start_allocnos = (short *) alloca (max_allocno * sizeof (short));
624
625 for (b = 0; b < n_basic_blocks; b++)
626 {
4c9a05bc 627 bzero ((char *) allocnos_live, allocno_row_words * sizeof (INT_TYPE));
38398762
RK
628
629 /* Initialize table of registers currently live
630 to the state at the beginning of this basic block.
631 This also marks the conflicts among them.
632
633 For pseudo-regs, there is only one bit for each one
634 no matter how many hard regs it occupies.
635 This is ok; we know the size from PSEUDO_REGNO_SIZE.
636 For explicit hard regs, we cannot know the size that way
637 since one hard reg can be used with various sizes.
638 Therefore, we must require that all the hard regs
639 implicitly live as part of a multi-word hard reg
640 are explicitly marked in basic_block_live_at_start. */
641
642 {
b1ec3c92
CH
643 register int offset;
644 REGSET_ELT_TYPE bit;
38398762
RK
645 register regset old = basic_block_live_at_start[b];
646 int ax = 0;
647
69887ad9
RK
648#ifdef HARD_REG_SET
649 hard_regs_live = old[0];
650#else
651 COPY_HARD_REG_SET (hard_regs_live, old);
652#endif
38398762
RK
653 for (offset = 0, i = 0; offset < regset_size; offset++)
654 if (old[offset] == 0)
b1ec3c92 655 i += REGSET_ELT_BITS;
38398762
RK
656 else
657 for (bit = 1; bit; bit <<= 1, i++)
658 {
659 if (i >= max_regno)
660 break;
661 if (old[offset] & bit)
662 {
663 register int a = reg_allocno[i];
664 if (a >= 0)
665 {
666 SET_ALLOCNO_LIVE (a);
667 block_start_allocnos[ax++] = a;
668 }
669 else if ((a = reg_renumber[i]) >= 0)
670 mark_reg_live_nc (a, PSEUDO_REGNO_MODE (i));
671 }
672 }
673
674 /* Record that each allocno now live conflicts with each other
675 allocno now live, and with each hard reg now live. */
676
677 record_conflicts (block_start_allocnos, ax);
678 }
679
680 insn = basic_block_head[b];
681
682 /* Scan the code of this basic block, noting which allocnos
683 and hard regs are born or die. When one is born,
684 record a conflict with all others currently live. */
685
686 while (1)
687 {
688 register RTX_CODE code = GET_CODE (insn);
689 register rtx link;
690
691 /* Make regs_set an empty set. */
692
693 n_regs_set = 0;
694
695 if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
696 {
38398762
RK
697
698#if 0
2049526b 699 int i = 0;
38398762
RK
700 for (link = REG_NOTES (insn);
701 link && i < NUM_NO_CONFLICT_PAIRS;
702 link = XEXP (link, 1))
703 if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
704 {
705 no_conflict_pairs[i].allocno1
706 = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
707 no_conflict_pairs[i].allocno2
708 = reg_allocno[REGNO (XEXP (link, 0))];
709 i++;
710 }
711#endif /* 0 */
712
713 /* Mark any registers clobbered by INSN as live,
714 so they conflict with the inputs. */
715
716 note_stores (PATTERN (insn), mark_reg_clobber);
717
718 /* Mark any registers dead after INSN as dead now. */
719
720 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
721 if (REG_NOTE_KIND (link) == REG_DEAD)
722 mark_reg_death (XEXP (link, 0));
723
724 /* Mark any registers set in INSN as live,
725 and mark them as conflicting with all other live regs.
726 Clobbers are processed again, so they conflict with
727 the registers that are set. */
728
729 note_stores (PATTERN (insn), mark_reg_store);
730
731#ifdef AUTO_INC_DEC
732 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
733 if (REG_NOTE_KIND (link) == REG_INC)
b1ec3c92 734 mark_reg_store (XEXP (link, 0), NULL_RTX);
38398762
RK
735#endif
736
333e0f7d
RS
737 /* If INSN has multiple outputs, then any reg that dies here
738 and is used inside of an output
739 must conflict with the other outputs. */
740
741 if (GET_CODE (PATTERN (insn)) == PARALLEL && !single_set (insn))
742 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
743 if (REG_NOTE_KIND (link) == REG_DEAD)
744 {
745 int used_in_output = 0;
746 int i;
747 rtx reg = XEXP (link, 0);
748
749 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
750 {
751 rtx set = XVECEXP (PATTERN (insn), 0, i);
752 if (GET_CODE (set) == SET
753 && GET_CODE (SET_DEST (set)) != REG
754 && !rtx_equal_p (reg, SET_DEST (set))
755 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
756 used_in_output = 1;
757 }
758 if (used_in_output)
759 mark_reg_conflicts (reg);
760 }
761
38398762
RK
762 /* Mark any registers set in INSN and then never used. */
763
764 while (n_regs_set > 0)
765 if (find_regno_note (insn, REG_UNUSED,
766 REGNO (regs_set[--n_regs_set])))
767 mark_reg_death (regs_set[n_regs_set]);
768 }
769
770 if (insn == basic_block_end[b])
771 break;
772 insn = NEXT_INSN (insn);
773 }
774 }
775}
776/* Expand the preference information by looking for cases where one allocno
777 dies in an insn that sets an allocno. If those two allocnos don't conflict,
778 merge any preferences between those allocnos. */
779
780static void
781expand_preferences ()
782{
783 rtx insn;
784 rtx link;
785 rtx set;
786
787 /* We only try to handle the most common cases here. Most of the cases
788 where this wins are reg-reg copies. */
789
790 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
791 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
792 && (set = single_set (insn)) != 0
793 && GET_CODE (SET_DEST (set)) == REG
794 && reg_allocno[REGNO (SET_DEST (set))] >= 0)
795 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
796 if (REG_NOTE_KIND (link) == REG_DEAD
797 && GET_CODE (XEXP (link, 0)) == REG
798 && reg_allocno[REGNO (XEXP (link, 0))] >= 0
799 && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
800 reg_allocno[REGNO (XEXP (link, 0))])
801 && ! CONFLICTP (reg_allocno[REGNO (XEXP (link, 0))],
802 reg_allocno[REGNO (SET_DEST (set))]))
803 {
804 int a1 = reg_allocno[REGNO (SET_DEST (set))];
805 int a2 = reg_allocno[REGNO (XEXP (link, 0))];
806
807 if (XEXP (link, 0) == SET_SRC (set))
808 {
809 IOR_HARD_REG_SET (hard_reg_copy_preferences[a1],
810 hard_reg_copy_preferences[a2]);
811 IOR_HARD_REG_SET (hard_reg_copy_preferences[a2],
812 hard_reg_copy_preferences[a1]);
813 }
814
815 IOR_HARD_REG_SET (hard_reg_preferences[a1],
816 hard_reg_preferences[a2]);
817 IOR_HARD_REG_SET (hard_reg_preferences[a2],
818 hard_reg_preferences[a1]);
819 IOR_HARD_REG_SET (hard_reg_full_preferences[a1],
820 hard_reg_full_preferences[a2]);
821 IOR_HARD_REG_SET (hard_reg_full_preferences[a2],
822 hard_reg_full_preferences[a1]);
823 }
824}
825\f
826/* Prune the preferences for global registers to exclude registers that cannot
827 be used.
828
829 Compute `regs_someone_prefers', which is a bitmask of the hard registers
830 that are preferred by conflicting registers of lower priority. If possible,
831 we will avoid using these registers. */
832
833static void
834prune_preferences ()
835{
836 int i, j;
837 int allocno;
838
839 /* Scan least most important to most important.
840 For each allocno, remove from preferences registers that cannot be used,
841 either because of conflicts or register type. Then compute all registers
d45cf215 842 preferred by each lower-priority register that conflicts. */
38398762
RK
843
844 for (i = max_allocno - 1; i >= 0; i--)
845 {
846 HARD_REG_SET temp;
847
848 allocno = allocno_order[i];
849 COPY_HARD_REG_SET (temp, hard_reg_conflicts[allocno]);
850
851 if (allocno_calls_crossed[allocno] == 0)
852 IOR_HARD_REG_SET (temp, fixed_reg_set);
853 else
854 IOR_HARD_REG_SET (temp, call_used_reg_set);
855
856 IOR_COMPL_HARD_REG_SET
857 (temp,
858 reg_class_contents[(int) reg_preferred_class (allocno_reg[allocno])]);
859
860 AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], temp);
861 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], temp);
862 AND_COMPL_HARD_REG_SET (hard_reg_full_preferences[allocno], temp);
863
864 CLEAR_HARD_REG_SET (regs_someone_prefers[allocno]);
865
866 /* Merge in the preferences of lower-priority registers (they have
867 already been pruned). If we also prefer some of those registers,
868 don't exclude them unless we are of a smaller size (in which case
869 we want to give the lower-priority allocno the first chance for
870 these registers). */
871 for (j = i + 1; j < max_allocno; j++)
872 if (CONFLICTP (allocno, allocno_order[j]))
873 {
874 COPY_HARD_REG_SET (temp,
875 hard_reg_full_preferences[allocno_order[j]]);
876 if (allocno_size[allocno_order[j]] <= allocno_size[allocno])
877 AND_COMPL_HARD_REG_SET (temp,
878 hard_reg_full_preferences[allocno]);
879
880 IOR_HARD_REG_SET (regs_someone_prefers[allocno], temp);
881 }
882 }
883}
884\f
885/* Assign a hard register to ALLOCNO; look for one that is the beginning
886 of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
887 The registers marked in PREFREGS are tried first.
888
889 LOSERS, if non-zero, is a HARD_REG_SET indicating registers that cannot
890 be used for this allocation.
891
b1ec3c92
CH
892 If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
893 Otherwise ignore that preferred class and use the alternate class.
38398762
RK
894
895 If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
896 will have to be saved and restored at calls.
897
1d56e983
RS
898 RETRYING is nonzero if this is called from retry_global_alloc.
899
38398762
RK
900 If we find one, record it in reg_renumber.
901 If not, do nothing. */
902
903static void
b1ec3c92 904find_reg (allocno, losers, alt_regs_p, accept_call_clobbered, retrying)
38398762
RK
905 int allocno;
906 HARD_REG_SET losers;
b1ec3c92 907 int alt_regs_p;
38398762 908 int accept_call_clobbered;
1d56e983 909 int retrying;
38398762
RK
910{
911 register int i, best_reg, pass;
912#ifdef HARD_REG_SET
913 register /* Declare it register if it's a scalar. */
914#endif
1d56e983 915 HARD_REG_SET used, used1, used2;
38398762 916
b1ec3c92
CH
917 enum reg_class class = (alt_regs_p
918 ? reg_alternate_class (allocno_reg[allocno])
919 : reg_preferred_class (allocno_reg[allocno]));
38398762
RK
920 enum machine_mode mode = PSEUDO_REGNO_MODE (allocno_reg[allocno]);
921
922 if (accept_call_clobbered)
923 COPY_HARD_REG_SET (used1, call_fixed_reg_set);
924 else if (allocno_calls_crossed[allocno] == 0)
925 COPY_HARD_REG_SET (used1, fixed_reg_set);
926 else
927 COPY_HARD_REG_SET (used1, call_used_reg_set);
928
929 /* Some registers should not be allocated in global-alloc. */
930 IOR_HARD_REG_SET (used1, no_global_alloc_regs);
931 if (losers)
932 IOR_HARD_REG_SET (used1, losers);
933
934 IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
1d56e983
RS
935 COPY_HARD_REG_SET (used2, used1);
936
38398762
RK
937 IOR_HARD_REG_SET (used1, hard_reg_conflicts[allocno]);
938
d546b10a
RK
939#ifdef CLASS_CANNOT_CHANGE_SIZE
940 if (reg_changes_size[allocno_reg[allocno]])
941 IOR_HARD_REG_SET (used1,
942 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
943#endif
944
38398762 945 /* Try each hard reg to see if it fits. Do this in two passes.
d45cf215 946 In the first pass, skip registers that are preferred by some other pseudo
38398762
RK
947 to give it a better chance of getting one of those registers. Only if
948 we can't get a register when excluding those do we take one of them.
949 However, we never allocate a register for the first time in pass 0. */
950
951 COPY_HARD_REG_SET (used, used1);
952 IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
953 IOR_HARD_REG_SET (used, regs_someone_prefers[allocno]);
954
955 best_reg = -1;
956 for (i = FIRST_PSEUDO_REGISTER, pass = 0;
957 pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
958 pass++)
959 {
960 if (pass == 1)
961 COPY_HARD_REG_SET (used, used1);
962 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
963 {
964#ifdef REG_ALLOC_ORDER
965 int regno = reg_alloc_order[i];
966#else
967 int regno = i;
968#endif
969 if (! TEST_HARD_REG_BIT (used, regno)
970 && HARD_REGNO_MODE_OK (regno, mode))
971 {
972 register int j;
973 register int lim = regno + HARD_REGNO_NREGS (regno, mode);
974 for (j = regno + 1;
975 (j < lim
976 && ! TEST_HARD_REG_BIT (used, j));
977 j++);
978 if (j == lim)
979 {
980 best_reg = regno;
981 break;
982 }
983#ifndef REG_ALLOC_ORDER
984 i = j; /* Skip starting points we know will lose */
985#endif
986 }
987 }
988 }
989
990 /* See if there is a preferred register with the same class as the register
991 we allocated above. Making this restriction prevents register
992 preferencing from creating worse register allocation.
993
994 Remove from the preferred registers and conflicting registers. Note that
995 additional conflicts may have been added after `prune_preferences' was
996 called.
997
998 First do this for those register with copy preferences, then all
999 preferred registers. */
1000
1001 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], used);
1002 GO_IF_HARD_REG_SUBSET (hard_reg_copy_preferences[allocno],
1003 reg_class_contents[(int) NO_REGS], no_copy_prefs);
1004
1005 if (best_reg >= 0)
1006 {
1007 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1008 if (TEST_HARD_REG_BIT (hard_reg_copy_preferences[allocno], i)
1009 && HARD_REGNO_MODE_OK (i, mode)
1010 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1011 || reg_class_subset_p (REGNO_REG_CLASS (i),
1012 REGNO_REG_CLASS (best_reg))
1013 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1014 REGNO_REG_CLASS (i))))
1015 {
1016 register int j;
1017 register int lim = i + HARD_REGNO_NREGS (i, mode);
1018 for (j = i + 1;
1019 (j < lim
1020 && ! TEST_HARD_REG_BIT (used, j)
1021 && (REGNO_REG_CLASS (j)
1022 == REGNO_REG_CLASS (best_reg + (j - i))
1023 || reg_class_subset_p (REGNO_REG_CLASS (j),
1024 REGNO_REG_CLASS (best_reg + (j - i)))
1025 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1026 REGNO_REG_CLASS (j))));
1027 j++);
1028 if (j == lim)
1029 {
1030 best_reg = i;
1031 goto no_prefs;
1032 }
1033 }
1034 }
1035 no_copy_prefs:
1036
1037 AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], used);
1038 GO_IF_HARD_REG_SUBSET (hard_reg_preferences[allocno],
1039 reg_class_contents[(int) NO_REGS], no_prefs);
1040
1041 if (best_reg >= 0)
1042 {
1043 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1044 if (TEST_HARD_REG_BIT (hard_reg_preferences[allocno], i)
1045 && HARD_REGNO_MODE_OK (i, mode)
1046 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1047 || reg_class_subset_p (REGNO_REG_CLASS (i),
1048 REGNO_REG_CLASS (best_reg))
1049 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1050 REGNO_REG_CLASS (i))))
1051 {
1052 register int j;
1053 register int lim = i + HARD_REGNO_NREGS (i, mode);
1054 for (j = i + 1;
1055 (j < lim
1056 && ! TEST_HARD_REG_BIT (used, j)
1057 && (REGNO_REG_CLASS (j)
1058 == REGNO_REG_CLASS (best_reg + (j - i))
1059 || reg_class_subset_p (REGNO_REG_CLASS (j),
1060 REGNO_REG_CLASS (best_reg + (j - i)))
1061 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1062 REGNO_REG_CLASS (j))));
1063 j++);
1064 if (j == lim)
1065 {
1066 best_reg = i;
1067 break;
1068 }
1069 }
1070 }
1071 no_prefs:
1072
cfcf04a6
RK
1073 /* If we haven't succeeded yet, try with caller-saves.
1074 We need not check to see if the current function has nonlocal
1075 labels because we don't put any pseudos that are live over calls in
1076 registers in that case. */
1077
1d56e983
RS
1078 if (flag_caller_saves && best_reg < 0)
1079 {
1080 /* Did not find a register. If it would be profitable to
1081 allocate a call-clobbered register and save and restore it
1082 around calls, do that. */
1083 if (! accept_call_clobbered
1084 && allocno_calls_crossed[allocno] != 0
1085 && CALLER_SAVE_PROFITABLE (allocno_n_refs[allocno],
1086 allocno_calls_crossed[allocno]))
1087 {
6cad67d2
JL
1088 HARD_REG_SET new_losers;
1089 if (! losers)
1090 CLEAR_HARD_REG_SET (new_losers);
1091 else
1092 COPY_HARD_REG_SET (new_losers, losers);
1093
1094 IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set);
1095 find_reg (allocno, new_losers, alt_regs_p, 1, retrying);
1d56e983
RS
1096 if (reg_renumber[allocno_reg[allocno]] >= 0)
1097 {
1098 caller_save_needed = 1;
1099 return;
1100 }
1101 }
1102 }
1103
1104 /* If we haven't succeeded yet,
1105 see if some hard reg that conflicts with us
1106 was utilized poorly by local-alloc.
1107 If so, kick out the regs that were put there by local-alloc
1108 so we can use it instead. */
1109 if (best_reg < 0 && !retrying
1110 /* Let's not bother with multi-reg allocnos. */
1111 && allocno_size[allocno] == 1)
1112 {
1113 /* Count from the end, to find the least-used ones first. */
1114 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
17a0a76d
RK
1115 {
1116#ifdef REG_ALLOC_ORDER
1117 int regno = reg_alloc_order[i];
1118#else
1119 int regno = i;
1120#endif
34e56753 1121
17a0a76d
RK
1122 if (local_reg_n_refs[regno] != 0
1123 /* Don't use a reg no good for this pseudo. */
1124 && ! TEST_HARD_REG_BIT (used2, regno)
d546b10a
RK
1125 && HARD_REGNO_MODE_OK (regno, mode)
1126#ifdef CLASS_CANNOT_CHANGE_SIZE
1127 && ! (reg_changes_size[allocno_reg[allocno]]
1128 && (TEST_HARD_REG_BIT
1129 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1130 regno)))
1131#endif
1132 )
17a0a76d 1133 {
7a17c588
JW
1134 /* We explicitly evaluate the divide results into temporary
1135 variables so as to avoid excess precision problems that occur
1136 on a i386-unknown-sysv4.2 (unixware) host. */
1137
1138 double tmp1 = ((double) local_reg_n_refs[regno]
1139 / local_reg_live_length[regno]);
1140 double tmp2 = ((double) allocno_n_refs[allocno]
1141 / allocno_live_length[allocno]);
1142
1143 if (tmp1 < tmp2)
1144 {
1145 /* Hard reg REGNO was used less in total by local regs
1146 than it would be used by this one allocno! */
1147 int k;
1148 for (k = 0; k < max_regno; k++)
1149 if (reg_renumber[k] >= 0)
1150 {
1151 int r = reg_renumber[k];
1152 int endregno
1153 = r + HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (k));
34e56753 1154
7a17c588
JW
1155 if (regno >= r && regno < endregno)
1156 reg_renumber[k] = -1;
1157 }
17a0a76d 1158
7a17c588
JW
1159 best_reg = regno;
1160 break;
1161 }
17a0a76d
RK
1162 }
1163 }
1d56e983
RS
1164 }
1165
38398762
RK
1166 /* Did we find a register? */
1167
1168 if (best_reg >= 0)
1169 {
1170 register int lim, j;
1171 HARD_REG_SET this_reg;
1172
1173 /* Yes. Record it as the hard register of this pseudo-reg. */
1174 reg_renumber[allocno_reg[allocno]] = best_reg;
1175 /* Also of any pseudo-regs that share with it. */
1176 if (reg_may_share[allocno_reg[allocno]])
1177 for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
1178 if (reg_allocno[j] == allocno)
1179 reg_renumber[j] = best_reg;
1180
1181 /* Make a set of the hard regs being allocated. */
1182 CLEAR_HARD_REG_SET (this_reg);
1183 lim = best_reg + HARD_REGNO_NREGS (best_reg, mode);
1184 for (j = best_reg; j < lim; j++)
1185 {
1186 SET_HARD_REG_BIT (this_reg, j);
1187 SET_HARD_REG_BIT (regs_used_so_far, j);
1d56e983
RS
1188 /* This is no longer a reg used just by local regs. */
1189 local_reg_n_refs[j] = 0;
38398762
RK
1190 }
1191 /* For each other pseudo-reg conflicting with this one,
1192 mark it as conflicting with the hard regs this one occupies. */
1193 lim = allocno;
1194 for (j = 0; j < max_allocno; j++)
1195 if (CONFLICTP (lim, j) || CONFLICTP (j, lim))
1196 {
1197 IOR_HARD_REG_SET (hard_reg_conflicts[j], this_reg);
1198 }
1199 }
38398762
RK
1200}
1201\f
1202/* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
1203 Perhaps it had previously seemed not worth a hard reg,
1204 or perhaps its old hard reg has been commandeered for reloads.
1205 FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
1206 they do not appear to be allocated.
1207 If FORBIDDEN_REGS is zero, no regs are forbidden. */
1208
1209void
1210retry_global_alloc (regno, forbidden_regs)
1211 int regno;
1212 HARD_REG_SET forbidden_regs;
1213{
1214 int allocno = reg_allocno[regno];
1215 if (allocno >= 0)
1216 {
1217 /* If we have more than one register class,
1218 first try allocating in the class that is cheapest
1219 for this pseudo-reg. If that fails, try any reg. */
1220 if (N_REG_CLASSES > 1)
1d56e983 1221 find_reg (allocno, forbidden_regs, 0, 0, 1);
38398762 1222 if (reg_renumber[regno] < 0
b1ec3c92 1223 && reg_alternate_class (regno) != NO_REGS)
1d56e983 1224 find_reg (allocno, forbidden_regs, 1, 0, 1);
38398762
RK
1225
1226 /* If we found a register, modify the RTL for the register to
1227 show the hard register, and mark that register live. */
1228 if (reg_renumber[regno] >= 0)
1229 {
1230 REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
1231 mark_home_live (regno);
1232 }
1233 }
1234}
1235\f
1236/* Record a conflict between register REGNO
1237 and everything currently live.
1238 REGNO must not be a pseudo reg that was allocated
1239 by local_alloc; such numbers must be translated through
1240 reg_renumber before calling here. */
1241
1242static void
1243record_one_conflict (regno)
1244 int regno;
1245{
1246 register int j;
1247
1248 if (regno < FIRST_PSEUDO_REGISTER)
1249 /* When a hard register becomes live,
1250 record conflicts with live pseudo regs. */
1251 for (j = 0; j < max_allocno; j++)
1252 {
1253 if (ALLOCNO_LIVE_P (j))
1254 SET_HARD_REG_BIT (hard_reg_conflicts[j], regno);
1255 }
1256 else
1257 /* When a pseudo-register becomes live,
1258 record conflicts first with hard regs,
1259 then with other pseudo regs. */
1260 {
1261 register int ialloc = reg_allocno[regno];
1262 register int ialloc_prod = ialloc * allocno_row_words;
1263 IOR_HARD_REG_SET (hard_reg_conflicts[ialloc], hard_regs_live);
1264 for (j = allocno_row_words - 1; j >= 0; j--)
1265 {
1266#if 0
1267 int k;
1268 for (k = 0; k < n_no_conflict_pairs; k++)
1269 if (! ((j == no_conflict_pairs[k].allocno1
1270 && ialloc == no_conflict_pairs[k].allocno2)
1271 ||
1272 (j == no_conflict_pairs[k].allocno2
1273 && ialloc == no_conflict_pairs[k].allocno1)))
1274#endif /* 0 */
1275 conflicts[ialloc_prod + j] |= allocnos_live[j];
1276 }
1277 }
1278}
1279
1280/* Record all allocnos currently live as conflicting
1281 with each other and with all hard regs currently live.
1282 ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
1283 are currently live. Their bits are also flagged in allocnos_live. */
1284
1285static void
1286record_conflicts (allocno_vec, len)
1287 register short *allocno_vec;
1288 register int len;
1289{
1290 register int allocno;
1291 register int j;
1292 register int ialloc_prod;
1293
1294 while (--len >= 0)
1295 {
1296 allocno = allocno_vec[len];
1297 ialloc_prod = allocno * allocno_row_words;
1298 IOR_HARD_REG_SET (hard_reg_conflicts[allocno], hard_regs_live);
1299 for (j = allocno_row_words - 1; j >= 0; j--)
1300 conflicts[ialloc_prod + j] |= allocnos_live[j];
1301 }
1302}
1303\f
1304/* Handle the case where REG is set by the insn being scanned,
1305 during the forward scan to accumulate conflicts.
1306 Store a 1 in regs_live or allocnos_live for this register, record how many
1307 consecutive hardware registers it actually needs,
1308 and record a conflict with all other registers already live.
1309
1310 Note that even if REG does not remain alive after this insn,
1311 we must mark it here as live, to ensure a conflict between
1312 REG and any other regs set in this insn that really do live.
1313 This is because those other regs could be considered after this.
1314
1315 REG might actually be something other than a register;
1316 if so, we do nothing.
1317
1318 SETTER is 0 if this register was modified by an auto-increment (i.e.,
1319 a REG_INC note was found for it).
1320
1321 CLOBBERs are processed here by calling mark_reg_clobber. */
1322
1323static void
1324mark_reg_store (orig_reg, setter)
1325 rtx orig_reg, setter;
1326{
1327 register int regno;
1328 register rtx reg = orig_reg;
1329
1330 /* WORD is which word of a multi-register group is being stored.
1331 For the case where the store is actually into a SUBREG of REG.
1332 Except we don't use it; I believe the entire REG needs to be
1333 made live. */
1334 int word = 0;
1335
1336 if (GET_CODE (reg) == SUBREG)
1337 {
1338 word = SUBREG_WORD (reg);
1339 reg = SUBREG_REG (reg);
1340 }
1341
1342 if (GET_CODE (reg) != REG)
1343 return;
1344
1345 if (setter && GET_CODE (setter) == CLOBBER)
1346 {
1347 /* A clobber of a register should be processed here too. */
1348 mark_reg_clobber (orig_reg, setter);
1349 return;
1350 }
1351
1352 regs_set[n_regs_set++] = reg;
1353
1354 if (setter)
1355 set_preference (reg, SET_SRC (setter));
1356
1357 regno = REGNO (reg);
1358
1359 if (reg_renumber[regno] >= 0)
1360 regno = reg_renumber[regno] /* + word */;
1361
1362 /* Either this is one of the max_allocno pseudo regs not allocated,
1363 or it is or has a hardware reg. First handle the pseudo-regs. */
1364 if (regno >= FIRST_PSEUDO_REGISTER)
1365 {
1366 if (reg_allocno[regno] >= 0)
1367 {
1368 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1369 record_one_conflict (regno);
1370 }
1371 }
1372 /* Handle hardware regs (and pseudos allocated to hard regs). */
1373 else if (! fixed_regs[regno])
1374 {
1375 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1376 while (regno < last)
1377 {
1378 record_one_conflict (regno);
1379 SET_HARD_REG_BIT (hard_regs_live, regno);
1380 regno++;
1381 }
1382 }
1383}
1384\f
1385/* Like mark_reg_set except notice just CLOBBERs; ignore SETs. */
1386
1387static void
1388mark_reg_clobber (reg, setter)
1389 rtx reg, setter;
1390{
1391 register int regno;
1392
1393 /* WORD is which word of a multi-register group is being stored.
1394 For the case where the store is actually into a SUBREG of REG.
1395 Except we don't use it; I believe the entire REG needs to be
1396 made live. */
1397 int word = 0;
1398
1399 if (GET_CODE (setter) != CLOBBER)
1400 return;
1401
1402 if (GET_CODE (reg) == SUBREG)
1403 {
1404 word = SUBREG_WORD (reg);
1405 reg = SUBREG_REG (reg);
1406 }
1407
1408 if (GET_CODE (reg) != REG)
1409 return;
1410
1411 regs_set[n_regs_set++] = reg;
1412
1413 regno = REGNO (reg);
1414
1415 if (reg_renumber[regno] >= 0)
1416 regno = reg_renumber[regno] /* + word */;
1417
1418 /* Either this is one of the max_allocno pseudo regs not allocated,
1419 or it is or has a hardware reg. First handle the pseudo-regs. */
1420 if (regno >= FIRST_PSEUDO_REGISTER)
1421 {
1422 if (reg_allocno[regno] >= 0)
1423 {
1424 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1425 record_one_conflict (regno);
1426 }
1427 }
1428 /* Handle hardware regs (and pseudos allocated to hard regs). */
1429 else if (! fixed_regs[regno])
1430 {
1431 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1432 while (regno < last)
1433 {
1434 record_one_conflict (regno);
1435 SET_HARD_REG_BIT (hard_regs_live, regno);
1436 regno++;
1437 }
1438 }
333e0f7d
RS
1439}
1440
1441/* Record that REG has conflicts with all the regs currently live.
1442 Do not mark REG itself as live. */
1443
1444static void
1445mark_reg_conflicts (reg)
1446 rtx reg;
1447{
1448 register int regno;
1449
1450 if (GET_CODE (reg) == SUBREG)
1451 reg = SUBREG_REG (reg);
1452
1453 if (GET_CODE (reg) != REG)
1454 return;
1455
1456 regno = REGNO (reg);
1457
1458 if (reg_renumber[regno] >= 0)
1459 regno = reg_renumber[regno];
1460
1461 /* Either this is one of the max_allocno pseudo regs not allocated,
1462 or it is or has a hardware reg. First handle the pseudo-regs. */
1463 if (regno >= FIRST_PSEUDO_REGISTER)
1464 {
1465 if (reg_allocno[regno] >= 0)
1466 record_one_conflict (regno);
1467 }
1468 /* Handle hardware regs (and pseudos allocated to hard regs). */
1469 else if (! fixed_regs[regno])
1470 {
1471 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1472 while (regno < last)
1473 {
1474 record_one_conflict (regno);
1475 regno++;
1476 }
1477 }
38398762
RK
1478}
1479\f
1480/* Mark REG as being dead (following the insn being scanned now).
1481 Store a 0 in regs_live or allocnos_live for this register. */
1482
1483static void
1484mark_reg_death (reg)
1485 rtx reg;
1486{
1487 register int regno = REGNO (reg);
1488
1489 /* For pseudo reg, see if it has been assigned a hardware reg. */
1490 if (reg_renumber[regno] >= 0)
1491 regno = reg_renumber[regno];
1492
1493 /* Either this is one of the max_allocno pseudo regs not allocated,
1494 or it is a hardware reg. First handle the pseudo-regs. */
1495 if (regno >= FIRST_PSEUDO_REGISTER)
1496 {
1497 if (reg_allocno[regno] >= 0)
1498 CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
1499 }
1500 /* Handle hardware regs (and pseudos allocated to hard regs). */
1501 else if (! fixed_regs[regno])
1502 {
1503 /* Pseudo regs already assigned hardware regs are treated
1504 almost the same as explicit hardware regs. */
1505 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1506 while (regno < last)
1507 {
1508 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
1509 regno++;
1510 }
1511 }
1512}
1513
1514/* Mark hard reg REGNO as currently live, assuming machine mode MODE
1515 for the value stored in it. MODE determines how many consecutive
1516 registers are actually in use. Do not record conflicts;
1517 it is assumed that the caller will do that. */
1518
1519static void
1520mark_reg_live_nc (regno, mode)
1521 register int regno;
1522 enum machine_mode mode;
1523{
1524 register int last = regno + HARD_REGNO_NREGS (regno, mode);
1525 while (regno < last)
1526 {
1527 SET_HARD_REG_BIT (hard_regs_live, regno);
1528 regno++;
1529 }
1530}
1531\f
1532/* Try to set a preference for an allocno to a hard register.
1533 We are passed DEST and SRC which are the operands of a SET. It is known
1534 that SRC is a register. If SRC or the first operand of SRC is a register,
1535 try to set a preference. If one of the two is a hard register and the other
1536 is a pseudo-register, mark the preference.
1537
6dc42e49 1538 Note that we are not as aggressive as local-alloc in trying to tie a
38398762
RK
1539 pseudo-register to a hard register. */
1540
1541static void
1542set_preference (dest, src)
1543 rtx dest, src;
1544{
1545 int src_regno, dest_regno;
1546 /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
1547 to compensate for subregs in SRC or DEST. */
1548 int offset = 0;
1549 int i;
1550 int copy = 1;
1551
1552 if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
1553 src = XEXP (src, 0), copy = 0;
1554
1555 /* Get the reg number for both SRC and DEST.
1556 If neither is a reg, give up. */
1557
1558 if (GET_CODE (src) == REG)
1559 src_regno = REGNO (src);
1560 else if (GET_CODE (src) == SUBREG && GET_CODE (SUBREG_REG (src)) == REG)
1561 {
1562 src_regno = REGNO (SUBREG_REG (src));
1563 offset += SUBREG_WORD (src);
1564 }
1565 else
1566 return;
1567
1568 if (GET_CODE (dest) == REG)
1569 dest_regno = REGNO (dest);
1570 else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG)
1571 {
1572 dest_regno = REGNO (SUBREG_REG (dest));
1573 offset -= SUBREG_WORD (dest);
1574 }
1575 else
1576 return;
1577
1578 /* Convert either or both to hard reg numbers. */
1579
1580 if (reg_renumber[src_regno] >= 0)
1581 src_regno = reg_renumber[src_regno];
1582
1583 if (reg_renumber[dest_regno] >= 0)
1584 dest_regno = reg_renumber[dest_regno];
1585
1586 /* Now if one is a hard reg and the other is a global pseudo
1587 then give the other a preference. */
1588
1589 if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
1590 && reg_allocno[src_regno] >= 0)
1591 {
1592 dest_regno -= offset;
1593 if (dest_regno >= 0 && dest_regno < FIRST_PSEUDO_REGISTER)
1594 {
1595 if (copy)
1596 SET_REGBIT (hard_reg_copy_preferences,
1597 reg_allocno[src_regno], dest_regno);
1598
1599 SET_REGBIT (hard_reg_preferences,
1600 reg_allocno[src_regno], dest_regno);
1601 for (i = dest_regno;
1602 i < dest_regno + HARD_REGNO_NREGS (dest_regno, GET_MODE (dest));
1603 i++)
1604 SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
1605 }
1606 }
1607
1608 if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
1609 && reg_allocno[dest_regno] >= 0)
1610 {
1611 src_regno += offset;
1612 if (src_regno >= 0 && src_regno < FIRST_PSEUDO_REGISTER)
1613 {
1614 if (copy)
1615 SET_REGBIT (hard_reg_copy_preferences,
1616 reg_allocno[dest_regno], src_regno);
1617
1618 SET_REGBIT (hard_reg_preferences,
1619 reg_allocno[dest_regno], src_regno);
1620 for (i = src_regno;
1621 i < src_regno + HARD_REGNO_NREGS (src_regno, GET_MODE (src));
1622 i++)
1623 SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
1624 }
1625 }
1626}
1627\f
1628/* Indicate that hard register number FROM was eliminated and replaced with
1629 an offset from hard register number TO. The status of hard registers live
1630 at the start of a basic block is updated by replacing a use of FROM with
1631 a use of TO. */
1632
1633void
1634mark_elimination (from, to)
1635 int from, to;
1636{
1637 int i;
1638
1639 for (i = 0; i < n_basic_blocks; i++)
b1ec3c92
CH
1640 if ((basic_block_live_at_start[i][from / REGSET_ELT_BITS]
1641 & ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS))) != 0)
38398762 1642 {
b1ec3c92
CH
1643 basic_block_live_at_start[i][from / REGSET_ELT_BITS]
1644 &= ~ ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS));
1645 basic_block_live_at_start[i][to / REGSET_ELT_BITS]
1646 |= ((REGSET_ELT_TYPE) 1 << (to % REGSET_ELT_BITS));
38398762
RK
1647 }
1648}
1649\f
1650/* Print debugging trace information if -greg switch is given,
1651 showing the information on which the allocation decisions are based. */
1652
1653static void
1654dump_conflicts (file)
1655 FILE *file;
1656{
1657 register int i;
1658 register int has_preferences;
1659 fprintf (file, ";; %d regs to allocate:", max_allocno);
1660 for (i = 0; i < max_allocno; i++)
1661 {
1662 int j;
1663 fprintf (file, " %d", allocno_reg[allocno_order[i]]);
1664 for (j = 0; j < max_regno; j++)
1665 if (reg_allocno[j] == allocno_order[i]
1666 && j != allocno_reg[allocno_order[i]])
1667 fprintf (file, "+%d", j);
1668 if (allocno_size[allocno_order[i]] != 1)
1669 fprintf (file, " (%d)", allocno_size[allocno_order[i]]);
1670 }
1671 fprintf (file, "\n");
1672
1673 for (i = 0; i < max_allocno; i++)
1674 {
1675 register int j;
1676 fprintf (file, ";; %d conflicts:", allocno_reg[i]);
1677 for (j = 0; j < max_allocno; j++)
1678 if (CONFLICTP (i, j) || CONFLICTP (j, i))
1679 fprintf (file, " %d", allocno_reg[j]);
1680 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1681 if (TEST_HARD_REG_BIT (hard_reg_conflicts[i], j))
1682 fprintf (file, " %d", j);
1683 fprintf (file, "\n");
1684
1685 has_preferences = 0;
1686 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1687 if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1688 has_preferences = 1;
1689
1690 if (! has_preferences)
1691 continue;
1692 fprintf (file, ";; %d preferences:", allocno_reg[i]);
1693 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1694 if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1695 fprintf (file, " %d", j);
1696 fprintf (file, "\n");
1697 }
1698 fprintf (file, "\n");
1699}
1700
1701void
1702dump_global_regs (file)
1703 FILE *file;
1704{
1705 register int i, j;
1706
1707 fprintf (file, ";; Register dispositions:\n");
1708 for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
1709 if (reg_renumber[i] >= 0)
1710 {
1711 fprintf (file, "%d in %d ", i, reg_renumber[i]);
1712 if (++j % 6 == 0)
1713 fprintf (file, "\n");
1714 }
1715
1716 fprintf (file, "\n\n;; Hard regs used: ");
1717 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1718 if (regs_ever_live[i])
1719 fprintf (file, " %d", i);
1720 fprintf (file, "\n\n");
1721}
This page took 0.462444 seconds and 5 git commands to generate.