]> gcc.gnu.org Git - gcc.git/blame - gcc/global.c
Update FSF address.
[gcc.git] / gcc / global.c
CommitLineData
38398762 1/* Allocate registers for pseudo-registers that span basic blocks.
35b2eb05 2 Copyright (C) 1987, 1988, 1991, 1994 Free Software Foundation, Inc.
38398762
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
a35311b0
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
38398762
RK
20
21
22#include <stdio.h>
23#include "config.h"
24#include "rtl.h"
25#include "flags.h"
26#include "basic-block.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "insn-config.h"
30#include "output.h"
31
32/* This pass of the compiler performs global register allocation.
33 It assigns hard register numbers to all the pseudo registers
34 that were not handled in local_alloc. Assignments are recorded
35 in the vector reg_renumber, not by changing the rtl code.
36 (Such changes are made by final). The entry point is
37 the function global_alloc.
38
39 After allocation is complete, the reload pass is run as a subroutine
40 of this pass, so that when a pseudo reg loses its hard reg due to
41 spilling it is possible to make a second attempt to find a hard
42 reg for it. The reload pass is independent in other respects
43 and it is run even when stupid register allocation is in use.
44
45 1. count the pseudo-registers still needing allocation
46 and assign allocation-numbers (allocnos) to them.
47 Set up tables reg_allocno and allocno_reg to map
48 reg numbers to allocnos and vice versa.
49 max_allocno gets the number of allocnos in use.
50
51 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
52 Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
53 for conflicts between allocnos and explicit hard register use
54 (which includes use of pseudo-registers allocated by local_alloc).
55
56 3. for each basic block
57 walk forward through the block, recording which
58 unallocated registers and which hardware registers are live.
59 Build the conflict matrix between the unallocated registers
60 and another of unallocated registers versus hardware registers.
61 Also record the preferred hardware registers
62 for each unallocated one.
63
64 4. Sort a table of the allocnos into order of
65 desirability of the variables.
66
67 5. Allocate the variables in that order; each if possible into
68 a preferred register, else into another register. */
69\f
70/* Number of pseudo-registers still requiring allocation
71 (not allocated by local_allocate). */
72
73static int max_allocno;
74
75/* Indexed by (pseudo) reg number, gives the allocno, or -1
76 for pseudo registers already allocated by local_allocate. */
77
78static int *reg_allocno;
79
80/* Indexed by allocno, gives the reg number. */
81
82static int *allocno_reg;
83
84/* A vector of the integers from 0 to max_allocno-1,
85 sorted in the order of first-to-be-allocated first. */
86
87static int *allocno_order;
88
89/* Indexed by an allocno, gives the number of consecutive
90 hard registers needed by that pseudo reg. */
91
92static int *allocno_size;
93
94/* Indexed by (pseudo) reg number, gives the number of another
6dc42e49 95 lower-numbered pseudo reg which can share a hard reg with this pseudo
38398762
RK
96 *even if the two pseudos would otherwise appear to conflict*. */
97
98static int *reg_may_share;
99
b1ec3c92
CH
100/* Define the number of bits in each element of `conflicts' and what
101 type that element has. We use the largest integer format on the
102 host machine. */
103
104#define INT_BITS HOST_BITS_PER_WIDE_INT
105#define INT_TYPE HOST_WIDE_INT
106
38398762
RK
107/* max_allocno by max_allocno array of bits,
108 recording whether two allocno's conflict (can't go in the same
109 hardware register).
110
111 `conflicts' is not symmetric; a conflict between allocno's i and j
112 is recorded either in element i,j or in element j,i. */
113
b1ec3c92 114static INT_TYPE *conflicts;
38398762
RK
115
116/* Number of ints require to hold max_allocno bits.
117 This is the length of a row in `conflicts'. */
118
119static int allocno_row_words;
120
121/* Two macros to test or store 1 in an element of `conflicts'. */
122
123#define CONFLICTP(I, J) \
124 (conflicts[(I) * allocno_row_words + (J) / INT_BITS] \
b1ec3c92 125 & ((INT_TYPE) 1 << ((J) % INT_BITS)))
38398762
RK
126
127#define SET_CONFLICT(I, J) \
128 (conflicts[(I) * allocno_row_words + (J) / INT_BITS] \
b1ec3c92 129 |= ((INT_TYPE) 1 << ((J) % INT_BITS)))
38398762
RK
130
131/* Set of hard regs currently live (during scan of all insns). */
132
133static HARD_REG_SET hard_regs_live;
134
135/* Indexed by N, set of hard regs conflicting with allocno N. */
136
137static HARD_REG_SET *hard_reg_conflicts;
138
139/* Indexed by N, set of hard regs preferred by allocno N.
140 This is used to make allocnos go into regs that are copied to or from them,
141 when possible, to reduce register shuffling. */
142
143static HARD_REG_SET *hard_reg_preferences;
144
145/* Similar, but just counts register preferences made in simple copy
146 operations, rather than arithmetic. These are given priority because
147 we can always eliminate an insn by using these, but using a register
148 in the above list won't always eliminate an insn. */
149
150static HARD_REG_SET *hard_reg_copy_preferences;
151
152/* Similar to hard_reg_preferences, but includes bits for subsequent
153 registers when an allocno is multi-word. The above variable is used for
154 allocation while this is used to build reg_someone_prefers, below. */
155
156static HARD_REG_SET *hard_reg_full_preferences;
157
158/* Indexed by N, set of hard registers that some later allocno has a
159 preference for. */
160
161static HARD_REG_SET *regs_someone_prefers;
162
163/* Set of registers that global-alloc isn't supposed to use. */
164
165static HARD_REG_SET no_global_alloc_regs;
166
167/* Set of registers used so far. */
168
169static HARD_REG_SET regs_used_so_far;
170
171/* Number of calls crossed by each allocno. */
172
173static int *allocno_calls_crossed;
174
175/* Number of refs (weighted) to each allocno. */
176
177static int *allocno_n_refs;
178
179/* Guess at live length of each allocno.
180 This is actually the max of the live lengths of the regs. */
181
182static int *allocno_live_length;
183
1d56e983
RS
184/* Number of refs (weighted) to each hard reg, as used by local alloc.
185 It is zero for a reg that contains global pseudos or is explicitly used. */
186
187static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];
188
189/* Guess at live length of each hard reg, as used by local alloc.
190 This is actually the sum of the live lengths of the specific regs. */
191
192static int local_reg_live_length[FIRST_PSEUDO_REGISTER];
193
38398762
RK
194/* Test a bit in TABLE, a vector of HARD_REG_SETs,
195 for vector element I, and hard register number J. */
196
197#define REGBITP(TABLE, I, J) TEST_HARD_REG_BIT (TABLE[I], J)
198
199/* Set to 1 a bit in a vector of HARD_REG_SETs. Works like REGBITP. */
200
201#define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (TABLE[I], J)
202
203/* Bit mask for allocnos live at current point in the scan. */
204
b1ec3c92 205static INT_TYPE *allocnos_live;
38398762
RK
206
207/* Test, set or clear bit number I in allocnos_live,
208 a bit vector indexed by allocno. */
209
210#define ALLOCNO_LIVE_P(I) \
b1ec3c92 211 (allocnos_live[(I) / INT_BITS] & ((INT_TYPE) 1 << ((I) % INT_BITS)))
38398762
RK
212
213#define SET_ALLOCNO_LIVE(I) \
b1ec3c92 214 (allocnos_live[(I) / INT_BITS] |= ((INT_TYPE) 1 << ((I) % INT_BITS)))
38398762
RK
215
216#define CLEAR_ALLOCNO_LIVE(I) \
b1ec3c92 217 (allocnos_live[(I) / INT_BITS] &= ~((INT_TYPE) 1 << ((I) % INT_BITS)))
38398762
RK
218
219/* This is turned off because it doesn't work right for DImode.
220 (And it is only used for DImode, so the other cases are worthless.)
221 The problem is that it isn't true that there is NO possibility of conflict;
222 only that there is no conflict if the two pseudos get the exact same regs.
223 If they were allocated with a partial overlap, there would be a conflict.
224 We can't safely turn off the conflict unless we have another way to
225 prevent the partial overlap.
226
227 Idea: change hard_reg_conflicts so that instead of recording which
228 hard regs the allocno may not overlap, it records where the allocno
229 may not start. Change both where it is used and where it is updated.
230 Then there is a way to record that (reg:DI 108) may start at 10
231 but not at 9 or 11. There is still the question of how to record
232 this semi-conflict between two pseudos. */
233#if 0
234/* Reg pairs for which conflict after the current insn
235 is inhibited by a REG_NO_CONFLICT note.
236 If the table gets full, we ignore any other notes--that is conservative. */
237#define NUM_NO_CONFLICT_PAIRS 4
238/* Number of pairs in use in this insn. */
239int n_no_conflict_pairs;
240static struct { int allocno1, allocno2;}
241 no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
242#endif /* 0 */
243
244/* Record all regs that are set in any one insn.
245 Communication from mark_reg_{store,clobber} and global_conflicts. */
246
247static rtx *regs_set;
248static int n_regs_set;
249
daf55ac6 250/* All registers that can be eliminated. */
38398762
RK
251
252static HARD_REG_SET eliminable_regset;
253
82c68a78
RK
254static int allocno_compare PROTO((int *, int *));
255static void global_conflicts PROTO((void));
256static void expand_preferences PROTO((void));
257static void prune_preferences PROTO((void));
258static void find_reg PROTO((int, HARD_REG_SET, int, int, int));
259static void record_one_conflict PROTO((int));
260static void record_conflicts PROTO((short *, int));
261static void mark_reg_store PROTO((rtx, rtx));
262static void mark_reg_clobber PROTO((rtx, rtx));
263static void mark_reg_conflicts PROTO((rtx));
264static void mark_reg_death PROTO((rtx));
265static void mark_reg_live_nc PROTO((int, enum machine_mode));
266static void set_preference PROTO((rtx, rtx));
267static void dump_conflicts PROTO((FILE *));
38398762
RK
268\f
269/* Perform allocation of pseudo-registers not allocated by local_alloc.
270 FILE is a file to output debugging information on,
ab40ad2b 271 or zero if such output is not desired.
38398762 272
ab40ad2b
RS
273 Return value is nonzero if reload failed
274 and we must not do any more for this function. */
275
276int
38398762
RK
277global_alloc (file)
278 FILE *file;
279{
280#ifdef ELIMINABLE_REGS
281 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
282#endif
daf55ac6
RK
283 int need_fp
284 = (! flag_omit_frame_pointer
285#ifdef EXIT_IGNORE_STACK
286 || (current_function_calls_alloca && EXIT_IGNORE_STACK)
287#endif
288 || FRAME_POINTER_REQUIRED);
289
38398762
RK
290 register int i;
291 rtx x;
292
293 max_allocno = 0;
294
295 /* A machine may have certain hard registers that
296 are safe to use only within a basic block. */
297
298 CLEAR_HARD_REG_SET (no_global_alloc_regs);
299#ifdef OVERLAPPING_REGNO_P
300 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
301 if (OVERLAPPING_REGNO_P (i))
302 SET_HARD_REG_BIT (no_global_alloc_regs, i);
303#endif
304
305 /* Build the regset of all eliminable registers and show we can't use those
306 that we already know won't be eliminated. */
307#ifdef ELIMINABLE_REGS
308 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
309 {
310 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
311
312 if (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
daf55ac6 313 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp))
38398762
RK
314 SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
315 }
7b0957a7 316#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
daf55ac6
RK
317 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
318 if (need_fp)
7b0957a7
DE
319 SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM);
320#endif
daf55ac6 321
38398762
RK
322#else
323 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
daf55ac6 324 if (need_fp)
38398762
RK
325 SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
326#endif
327
328 /* Track which registers have already been used. Start with registers
329 explicitly in the rtl, then registers allocated by local register
b4b4db94 330 allocation. */
38398762
RK
331
332 CLEAR_HARD_REG_SET (regs_used_so_far);
b4b4db94
RS
333#ifdef LEAF_REGISTERS
334 /* If we are doing the leaf function optimization, and this is a leaf
335 function, it means that the registers that take work to save are those
336 that need a register window. So prefer the ones that can be used in
337 a leaf function. */
338 {
339 char *cheap_regs;
340 static char leaf_regs[] = LEAF_REGISTERS;
341
342 if (only_leaf_regs_used () && leaf_function_p ())
343 cheap_regs = leaf_regs;
344 else
345 cheap_regs = call_used_regs;
346 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
347 if (regs_ever_live[i] || cheap_regs[i])
348 SET_HARD_REG_BIT (regs_used_so_far, i);
349 }
350#else
351 /* We consider registers that do not have to be saved over calls as if
352 they were already used since there is no cost in using them. */
38398762
RK
353 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
354 if (regs_ever_live[i] || call_used_regs[i])
355 SET_HARD_REG_BIT (regs_used_so_far, i);
b4b4db94 356#endif
38398762
RK
357
358 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
359 if (reg_renumber[i] >= 0)
360 SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);
361
362 /* Establish mappings from register number to allocation number
363 and vice versa. In the process, count the allocnos. */
364
365 reg_allocno = (int *) alloca (max_regno * sizeof (int));
366
367 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
368 reg_allocno[i] = -1;
369
370 /* Initialize the shared-hard-reg mapping
371 from the list of pairs that may share. */
372 reg_may_share = (int *) alloca (max_regno * sizeof (int));
4c9a05bc 373 bzero ((char *) reg_may_share, max_regno * sizeof (int));
38398762
RK
374 for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
375 {
376 int r1 = REGNO (XEXP (x, 0));
377 int r2 = REGNO (XEXP (XEXP (x, 1), 0));
378 if (r1 > r2)
379 reg_may_share[r1] = r2;
380 else
381 reg_may_share[r2] = r1;
382 }
383
384 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
385 /* Note that reg_live_length[i] < 0 indicates a "constant" reg
386 that we are supposed to refrain from putting in a hard reg.
387 -2 means do make an allocno but don't allocate it. */
388 if (reg_n_refs[i] != 0 && reg_renumber[i] < 0 && reg_live_length[i] != -1
389 /* Don't allocate pseudos that cross calls,
390 if this function receives a nonlocal goto. */
391 && (! current_function_has_nonlocal_label
392 || reg_n_calls_crossed[i] == 0))
393 {
394 if (reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
395 reg_allocno[i] = reg_allocno[reg_may_share[i]];
396 else
397 reg_allocno[i] = max_allocno++;
398 if (reg_live_length[i] == 0)
399 abort ();
400 }
401 else
402 reg_allocno[i] = -1;
403
404 allocno_reg = (int *) alloca (max_allocno * sizeof (int));
405 allocno_size = (int *) alloca (max_allocno * sizeof (int));
406 allocno_calls_crossed = (int *) alloca (max_allocno * sizeof (int));
407 allocno_n_refs = (int *) alloca (max_allocno * sizeof (int));
408 allocno_live_length = (int *) alloca (max_allocno * sizeof (int));
4c9a05bc
RK
409 bzero ((char *) allocno_size, max_allocno * sizeof (int));
410 bzero ((char *) allocno_calls_crossed, max_allocno * sizeof (int));
411 bzero ((char *) allocno_n_refs, max_allocno * sizeof (int));
412 bzero ((char *) allocno_live_length, max_allocno * sizeof (int));
38398762
RK
413
414 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
415 if (reg_allocno[i] >= 0)
416 {
417 int allocno = reg_allocno[i];
418 allocno_reg[allocno] = i;
419 allocno_size[allocno] = PSEUDO_REGNO_SIZE (i);
420 allocno_calls_crossed[allocno] += reg_n_calls_crossed[i];
421 allocno_n_refs[allocno] += reg_n_refs[i];
422 if (allocno_live_length[allocno] < reg_live_length[i])
423 allocno_live_length[allocno] = reg_live_length[i];
424 }
425
1d56e983
RS
426 /* Calculate amount of usage of each hard reg by pseudos
427 allocated by local-alloc. This is to see if we want to
428 override it. */
4c9a05bc
RK
429 bzero ((char *) local_reg_live_length, sizeof local_reg_live_length);
430 bzero ((char *) local_reg_n_refs, sizeof local_reg_n_refs);
1d56e983
RS
431 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
432 if (reg_allocno[i] < 0 && reg_renumber[i] >= 0)
433 {
34e56753
RS
434 int regno = reg_renumber[i];
435 int endregno = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
436 int j;
437
438 for (j = regno; j < endregno; j++)
439 {
440 local_reg_n_refs[j] += reg_n_refs[i];
441 local_reg_live_length[j] += reg_live_length[i];
442 }
1d56e983 443 }
34e56753 444
1d56e983
RS
445 /* We can't override local-alloc for a reg used not just by local-alloc. */
446 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
447 if (regs_ever_live[i])
448 local_reg_n_refs[i] = 0;
449
0dfa4517
RK
450 /* Likewise for regs used in a SCRATCH. */
451 for (i = 0; i < scratch_list_length; i++)
452 if (scratch_list[i])
453 {
454 int regno = REGNO (scratch_list[i]);
455 int lim = regno + HARD_REGNO_NREGS (regno, GET_MODE (scratch_list[i]));
456 int j;
457
458 for (j = regno; j < lim; j++)
459 local_reg_n_refs[j] = 0;
460 }
461
38398762
RK
462 /* Allocate the space for the conflict and preference tables and
463 initialize them. */
464
465 hard_reg_conflicts
466 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc 467 bzero ((char *) hard_reg_conflicts, max_allocno * sizeof (HARD_REG_SET));
38398762
RK
468
469 hard_reg_preferences
470 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc 471 bzero ((char *) hard_reg_preferences, max_allocno * sizeof (HARD_REG_SET));
38398762
RK
472
473 hard_reg_copy_preferences
474 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc
RK
475 bzero ((char *) hard_reg_copy_preferences,
476 max_allocno * sizeof (HARD_REG_SET));
38398762
RK
477
478 hard_reg_full_preferences
479 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc
RK
480 bzero ((char *) hard_reg_full_preferences,
481 max_allocno * sizeof (HARD_REG_SET));
38398762
RK
482
483 regs_someone_prefers
484 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
4c9a05bc 485 bzero ((char *) regs_someone_prefers, max_allocno * sizeof (HARD_REG_SET));
38398762
RK
486
487 allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;
488
b1ec3c92
CH
489 conflicts = (INT_TYPE *) alloca (max_allocno * allocno_row_words
490 * sizeof (INT_TYPE));
4c9a05bc
RK
491 bzero ((char *) conflicts,
492 max_allocno * allocno_row_words * sizeof (INT_TYPE));
38398762 493
b1ec3c92 494 allocnos_live = (INT_TYPE *) alloca (allocno_row_words * sizeof (INT_TYPE));
38398762
RK
495
496 /* If there is work to be done (at least one reg to allocate),
497 perform global conflict analysis and allocate the regs. */
498
499 if (max_allocno > 0)
500 {
501 /* Scan all the insns and compute the conflicts among allocnos
502 and between allocnos and hard regs. */
503
504 global_conflicts ();
505
506 /* Eliminate conflicts between pseudos and eliminable registers. If
507 the register is not eliminated, the pseudo won't really be able to
508 live in the eliminable register, so the conflict doesn't matter.
509 If we do eliminate the register, the conflict will no longer exist.
1d56e983
RS
510 So in either case, we can ignore the conflict. Likewise for
511 preferences. */
38398762
RK
512
513 for (i = 0; i < max_allocno; i++)
1d56e983
RS
514 {
515 AND_COMPL_HARD_REG_SET (hard_reg_conflicts[i], eliminable_regset);
516 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[i],
517 eliminable_regset);
518 AND_COMPL_HARD_REG_SET (hard_reg_preferences[i], eliminable_regset);
519 }
38398762
RK
520
521 /* Try to expand the preferences by merging them between allocnos. */
522
523 expand_preferences ();
524
525 /* Determine the order to allocate the remaining pseudo registers. */
526
527 allocno_order = (int *) alloca (max_allocno * sizeof (int));
528 for (i = 0; i < max_allocno; i++)
529 allocno_order[i] = i;
530
531 /* Default the size to 1, since allocno_compare uses it to divide by.
532 Also convert allocno_live_length of zero to -1. A length of zero
533 can occur when all the registers for that allocno have reg_live_length
534 equal to -2. In this case, we want to make an allocno, but not
535 allocate it. So avoid the divide-by-zero and set it to a low
536 priority. */
537
538 for (i = 0; i < max_allocno; i++)
539 {
540 if (allocno_size[i] == 0)
541 allocno_size[i] = 1;
542 if (allocno_live_length[i] == 0)
543 allocno_live_length[i] = -1;
544 }
545
546 qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);
547
548 prune_preferences ();
549
550 if (file)
551 dump_conflicts (file);
552
553 /* Try allocating them, one by one, in that order,
554 except for parameters marked with reg_live_length[regno] == -2. */
555
556 for (i = 0; i < max_allocno; i++)
557 if (reg_live_length[allocno_reg[allocno_order[i]]] >= 0)
558 {
559 /* If we have more than one register class,
560 first try allocating in the class that is cheapest
561 for this pseudo-reg. If that fails, try any reg. */
562 if (N_REG_CLASSES > 1)
563 {
1d56e983 564 find_reg (allocno_order[i], HARD_CONST (0), 0, 0, 0);
38398762
RK
565 if (reg_renumber[allocno_reg[allocno_order[i]]] >= 0)
566 continue;
567 }
b1ec3c92 568 if (reg_alternate_class (allocno_reg[allocno_order[i]]) != NO_REGS)
1d56e983 569 find_reg (allocno_order[i], HARD_CONST (0), 1, 0, 0);
38398762
RK
570 }
571 }
572
573 /* Do the reloads now while the allocno data still exist, so that we can
574 try to assign new hard regs to any pseudo regs that are spilled. */
575
7e860cf7
RS
576#if 0 /* We need to eliminate regs even if there is no rtl code,
577 for the sake of debugging information. */
38398762 578 if (n_basic_blocks > 0)
7e860cf7 579#endif
ab40ad2b 580 return reload (get_insns (), 1, file);
38398762
RK
581}
582
583/* Sort predicate for ordering the allocnos.
584 Returns -1 (1) if *v1 should be allocated before (after) *v2. */
585
586static int
587allocno_compare (v1, v2)
588 int *v1, *v2;
589{
590 /* Note that the quotient will never be bigger than
591 the value of floor_log2 times the maximum number of
592 times a register can occur in one insn (surely less than 100).
593 Multiplying this by 10000 can't overflow. */
594 register int pri1
595 = (((double) (floor_log2 (allocno_n_refs[*v1]) * allocno_n_refs[*v1])
35b2eb05
RK
596 / allocno_live_length[*v1])
597 * 10000 * allocno_size[*v1]);
38398762
RK
598 register int pri2
599 = (((double) (floor_log2 (allocno_n_refs[*v2]) * allocno_n_refs[*v2])
35b2eb05
RK
600 / allocno_live_length[*v2])
601 * 10000 * allocno_size[*v2]);
38398762
RK
602 if (pri2 - pri1)
603 return pri2 - pri1;
604
605 /* If regs are equally good, sort by allocno,
606 so that the results of qsort leave nothing to chance. */
607 return *v1 - *v2;
608}
609\f
610/* Scan the rtl code and record all conflicts and register preferences in the
611 conflict matrices and preference tables. */
612
613static void
614global_conflicts ()
615{
616 register int b, i;
617 register rtx insn;
618 short *block_start_allocnos;
619
620 /* Make a vector that mark_reg_{store,clobber} will store in. */
621 regs_set = (rtx *) alloca (max_parallel * sizeof (rtx) * 2);
622
623 block_start_allocnos = (short *) alloca (max_allocno * sizeof (short));
624
625 for (b = 0; b < n_basic_blocks; b++)
626 {
4c9a05bc 627 bzero ((char *) allocnos_live, allocno_row_words * sizeof (INT_TYPE));
38398762
RK
628
629 /* Initialize table of registers currently live
630 to the state at the beginning of this basic block.
631 This also marks the conflicts among them.
632
633 For pseudo-regs, there is only one bit for each one
634 no matter how many hard regs it occupies.
635 This is ok; we know the size from PSEUDO_REGNO_SIZE.
636 For explicit hard regs, we cannot know the size that way
637 since one hard reg can be used with various sizes.
638 Therefore, we must require that all the hard regs
639 implicitly live as part of a multi-word hard reg
640 are explicitly marked in basic_block_live_at_start. */
641
642 {
b1ec3c92
CH
643 register int offset;
644 REGSET_ELT_TYPE bit;
38398762
RK
645 register regset old = basic_block_live_at_start[b];
646 int ax = 0;
647
69887ad9
RK
648#ifdef HARD_REG_SET
649 hard_regs_live = old[0];
650#else
651 COPY_HARD_REG_SET (hard_regs_live, old);
652#endif
38398762
RK
653 for (offset = 0, i = 0; offset < regset_size; offset++)
654 if (old[offset] == 0)
b1ec3c92 655 i += REGSET_ELT_BITS;
38398762
RK
656 else
657 for (bit = 1; bit; bit <<= 1, i++)
658 {
659 if (i >= max_regno)
660 break;
661 if (old[offset] & bit)
662 {
663 register int a = reg_allocno[i];
664 if (a >= 0)
665 {
666 SET_ALLOCNO_LIVE (a);
667 block_start_allocnos[ax++] = a;
668 }
669 else if ((a = reg_renumber[i]) >= 0)
670 mark_reg_live_nc (a, PSEUDO_REGNO_MODE (i));
671 }
672 }
673
674 /* Record that each allocno now live conflicts with each other
675 allocno now live, and with each hard reg now live. */
676
677 record_conflicts (block_start_allocnos, ax);
678 }
679
680 insn = basic_block_head[b];
681
682 /* Scan the code of this basic block, noting which allocnos
683 and hard regs are born or die. When one is born,
684 record a conflict with all others currently live. */
685
686 while (1)
687 {
688 register RTX_CODE code = GET_CODE (insn);
689 register rtx link;
690
691 /* Make regs_set an empty set. */
692
693 n_regs_set = 0;
694
695 if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
696 {
38398762
RK
697
698#if 0
2049526b 699 int i = 0;
38398762
RK
700 for (link = REG_NOTES (insn);
701 link && i < NUM_NO_CONFLICT_PAIRS;
702 link = XEXP (link, 1))
703 if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
704 {
705 no_conflict_pairs[i].allocno1
706 = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
707 no_conflict_pairs[i].allocno2
708 = reg_allocno[REGNO (XEXP (link, 0))];
709 i++;
710 }
711#endif /* 0 */
712
713 /* Mark any registers clobbered by INSN as live,
714 so they conflict with the inputs. */
715
716 note_stores (PATTERN (insn), mark_reg_clobber);
717
718 /* Mark any registers dead after INSN as dead now. */
719
720 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
721 if (REG_NOTE_KIND (link) == REG_DEAD)
722 mark_reg_death (XEXP (link, 0));
723
724 /* Mark any registers set in INSN as live,
725 and mark them as conflicting with all other live regs.
726 Clobbers are processed again, so they conflict with
727 the registers that are set. */
728
729 note_stores (PATTERN (insn), mark_reg_store);
730
731#ifdef AUTO_INC_DEC
732 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
733 if (REG_NOTE_KIND (link) == REG_INC)
b1ec3c92 734 mark_reg_store (XEXP (link, 0), NULL_RTX);
38398762
RK
735#endif
736
333e0f7d
RS
737 /* If INSN has multiple outputs, then any reg that dies here
738 and is used inside of an output
739 must conflict with the other outputs. */
740
741 if (GET_CODE (PATTERN (insn)) == PARALLEL && !single_set (insn))
742 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
743 if (REG_NOTE_KIND (link) == REG_DEAD)
744 {
745 int used_in_output = 0;
746 int i;
747 rtx reg = XEXP (link, 0);
748
749 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
750 {
751 rtx set = XVECEXP (PATTERN (insn), 0, i);
752 if (GET_CODE (set) == SET
753 && GET_CODE (SET_DEST (set)) != REG
754 && !rtx_equal_p (reg, SET_DEST (set))
755 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
756 used_in_output = 1;
757 }
758 if (used_in_output)
759 mark_reg_conflicts (reg);
760 }
761
38398762
RK
762 /* Mark any registers set in INSN and then never used. */
763
764 while (n_regs_set > 0)
765 if (find_regno_note (insn, REG_UNUSED,
766 REGNO (regs_set[--n_regs_set])))
767 mark_reg_death (regs_set[n_regs_set]);
768 }
769
770 if (insn == basic_block_end[b])
771 break;
772 insn = NEXT_INSN (insn);
773 }
774 }
775}
776/* Expand the preference information by looking for cases where one allocno
777 dies in an insn that sets an allocno. If those two allocnos don't conflict,
778 merge any preferences between those allocnos. */
779
780static void
781expand_preferences ()
782{
783 rtx insn;
784 rtx link;
785 rtx set;
786
787 /* We only try to handle the most common cases here. Most of the cases
788 where this wins are reg-reg copies. */
789
790 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
791 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
792 && (set = single_set (insn)) != 0
793 && GET_CODE (SET_DEST (set)) == REG
794 && reg_allocno[REGNO (SET_DEST (set))] >= 0)
795 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
796 if (REG_NOTE_KIND (link) == REG_DEAD
797 && GET_CODE (XEXP (link, 0)) == REG
798 && reg_allocno[REGNO (XEXP (link, 0))] >= 0
799 && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
800 reg_allocno[REGNO (XEXP (link, 0))])
801 && ! CONFLICTP (reg_allocno[REGNO (XEXP (link, 0))],
802 reg_allocno[REGNO (SET_DEST (set))]))
803 {
804 int a1 = reg_allocno[REGNO (SET_DEST (set))];
805 int a2 = reg_allocno[REGNO (XEXP (link, 0))];
806
807 if (XEXP (link, 0) == SET_SRC (set))
808 {
809 IOR_HARD_REG_SET (hard_reg_copy_preferences[a1],
810 hard_reg_copy_preferences[a2]);
811 IOR_HARD_REG_SET (hard_reg_copy_preferences[a2],
812 hard_reg_copy_preferences[a1]);
813 }
814
815 IOR_HARD_REG_SET (hard_reg_preferences[a1],
816 hard_reg_preferences[a2]);
817 IOR_HARD_REG_SET (hard_reg_preferences[a2],
818 hard_reg_preferences[a1]);
819 IOR_HARD_REG_SET (hard_reg_full_preferences[a1],
820 hard_reg_full_preferences[a2]);
821 IOR_HARD_REG_SET (hard_reg_full_preferences[a2],
822 hard_reg_full_preferences[a1]);
823 }
824}
825\f
826/* Prune the preferences for global registers to exclude registers that cannot
827 be used.
828
829 Compute `regs_someone_prefers', which is a bitmask of the hard registers
830 that are preferred by conflicting registers of lower priority. If possible,
831 we will avoid using these registers. */
832
833static void
834prune_preferences ()
835{
836 int i, j;
837 int allocno;
838
839 /* Scan least most important to most important.
840 For each allocno, remove from preferences registers that cannot be used,
841 either because of conflicts or register type. Then compute all registers
d45cf215 842 preferred by each lower-priority register that conflicts. */
38398762
RK
843
844 for (i = max_allocno - 1; i >= 0; i--)
845 {
846 HARD_REG_SET temp;
847
848 allocno = allocno_order[i];
849 COPY_HARD_REG_SET (temp, hard_reg_conflicts[allocno]);
850
851 if (allocno_calls_crossed[allocno] == 0)
852 IOR_HARD_REG_SET (temp, fixed_reg_set);
853 else
854 IOR_HARD_REG_SET (temp, call_used_reg_set);
855
856 IOR_COMPL_HARD_REG_SET
857 (temp,
858 reg_class_contents[(int) reg_preferred_class (allocno_reg[allocno])]);
859
860 AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], temp);
861 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], temp);
862 AND_COMPL_HARD_REG_SET (hard_reg_full_preferences[allocno], temp);
863
864 CLEAR_HARD_REG_SET (regs_someone_prefers[allocno]);
865
866 /* Merge in the preferences of lower-priority registers (they have
867 already been pruned). If we also prefer some of those registers,
868 don't exclude them unless we are of a smaller size (in which case
869 we want to give the lower-priority allocno the first chance for
870 these registers). */
871 for (j = i + 1; j < max_allocno; j++)
872 if (CONFLICTP (allocno, allocno_order[j]))
873 {
874 COPY_HARD_REG_SET (temp,
875 hard_reg_full_preferences[allocno_order[j]]);
876 if (allocno_size[allocno_order[j]] <= allocno_size[allocno])
877 AND_COMPL_HARD_REG_SET (temp,
878 hard_reg_full_preferences[allocno]);
879
880 IOR_HARD_REG_SET (regs_someone_prefers[allocno], temp);
881 }
882 }
883}
884\f
885/* Assign a hard register to ALLOCNO; look for one that is the beginning
886 of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
887 The registers marked in PREFREGS are tried first.
888
889 LOSERS, if non-zero, is a HARD_REG_SET indicating registers that cannot
890 be used for this allocation.
891
b1ec3c92
CH
892 If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
893 Otherwise ignore that preferred class and use the alternate class.
38398762
RK
894
895 If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
896 will have to be saved and restored at calls.
897
1d56e983
RS
898 RETRYING is nonzero if this is called from retry_global_alloc.
899
38398762
RK
900 If we find one, record it in reg_renumber.
901 If not, do nothing. */
902
903static void
b1ec3c92 904find_reg (allocno, losers, alt_regs_p, accept_call_clobbered, retrying)
38398762
RK
905 int allocno;
906 HARD_REG_SET losers;
b1ec3c92 907 int alt_regs_p;
38398762 908 int accept_call_clobbered;
1d56e983 909 int retrying;
38398762
RK
910{
911 register int i, best_reg, pass;
912#ifdef HARD_REG_SET
913 register /* Declare it register if it's a scalar. */
914#endif
1d56e983 915 HARD_REG_SET used, used1, used2;
38398762 916
b1ec3c92
CH
917 enum reg_class class = (alt_regs_p
918 ? reg_alternate_class (allocno_reg[allocno])
919 : reg_preferred_class (allocno_reg[allocno]));
38398762
RK
920 enum machine_mode mode = PSEUDO_REGNO_MODE (allocno_reg[allocno]);
921
922 if (accept_call_clobbered)
923 COPY_HARD_REG_SET (used1, call_fixed_reg_set);
924 else if (allocno_calls_crossed[allocno] == 0)
925 COPY_HARD_REG_SET (used1, fixed_reg_set);
926 else
927 COPY_HARD_REG_SET (used1, call_used_reg_set);
928
929 /* Some registers should not be allocated in global-alloc. */
930 IOR_HARD_REG_SET (used1, no_global_alloc_regs);
931 if (losers)
932 IOR_HARD_REG_SET (used1, losers);
933
934 IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
1d56e983
RS
935 COPY_HARD_REG_SET (used2, used1);
936
38398762
RK
937 IOR_HARD_REG_SET (used1, hard_reg_conflicts[allocno]);
938
d546b10a
RK
939#ifdef CLASS_CANNOT_CHANGE_SIZE
940 if (reg_changes_size[allocno_reg[allocno]])
941 IOR_HARD_REG_SET (used1,
942 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
943#endif
944
38398762 945 /* Try each hard reg to see if it fits. Do this in two passes.
d45cf215 946 In the first pass, skip registers that are preferred by some other pseudo
38398762
RK
947 to give it a better chance of getting one of those registers. Only if
948 we can't get a register when excluding those do we take one of them.
949 However, we never allocate a register for the first time in pass 0. */
950
951 COPY_HARD_REG_SET (used, used1);
952 IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
953 IOR_HARD_REG_SET (used, regs_someone_prefers[allocno]);
954
955 best_reg = -1;
956 for (i = FIRST_PSEUDO_REGISTER, pass = 0;
957 pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
958 pass++)
959 {
960 if (pass == 1)
961 COPY_HARD_REG_SET (used, used1);
962 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
963 {
964#ifdef REG_ALLOC_ORDER
965 int regno = reg_alloc_order[i];
966#else
967 int regno = i;
968#endif
969 if (! TEST_HARD_REG_BIT (used, regno)
970 && HARD_REGNO_MODE_OK (regno, mode))
971 {
972 register int j;
973 register int lim = regno + HARD_REGNO_NREGS (regno, mode);
974 for (j = regno + 1;
975 (j < lim
976 && ! TEST_HARD_REG_BIT (used, j));
977 j++);
978 if (j == lim)
979 {
980 best_reg = regno;
981 break;
982 }
983#ifndef REG_ALLOC_ORDER
984 i = j; /* Skip starting points we know will lose */
985#endif
986 }
987 }
988 }
989
990 /* See if there is a preferred register with the same class as the register
991 we allocated above. Making this restriction prevents register
992 preferencing from creating worse register allocation.
993
994 Remove from the preferred registers and conflicting registers. Note that
995 additional conflicts may have been added after `prune_preferences' was
996 called.
997
998 First do this for those register with copy preferences, then all
999 preferred registers. */
1000
1001 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], used);
1002 GO_IF_HARD_REG_SUBSET (hard_reg_copy_preferences[allocno],
1003 reg_class_contents[(int) NO_REGS], no_copy_prefs);
1004
1005 if (best_reg >= 0)
1006 {
1007 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1008 if (TEST_HARD_REG_BIT (hard_reg_copy_preferences[allocno], i)
1009 && HARD_REGNO_MODE_OK (i, mode)
1010 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1011 || reg_class_subset_p (REGNO_REG_CLASS (i),
1012 REGNO_REG_CLASS (best_reg))
1013 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1014 REGNO_REG_CLASS (i))))
1015 {
1016 register int j;
1017 register int lim = i + HARD_REGNO_NREGS (i, mode);
1018 for (j = i + 1;
1019 (j < lim
1020 && ! TEST_HARD_REG_BIT (used, j)
1021 && (REGNO_REG_CLASS (j)
1022 == REGNO_REG_CLASS (best_reg + (j - i))
1023 || reg_class_subset_p (REGNO_REG_CLASS (j),
1024 REGNO_REG_CLASS (best_reg + (j - i)))
1025 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1026 REGNO_REG_CLASS (j))));
1027 j++);
1028 if (j == lim)
1029 {
1030 best_reg = i;
1031 goto no_prefs;
1032 }
1033 }
1034 }
1035 no_copy_prefs:
1036
1037 AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], used);
1038 GO_IF_HARD_REG_SUBSET (hard_reg_preferences[allocno],
1039 reg_class_contents[(int) NO_REGS], no_prefs);
1040
1041 if (best_reg >= 0)
1042 {
1043 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1044 if (TEST_HARD_REG_BIT (hard_reg_preferences[allocno], i)
1045 && HARD_REGNO_MODE_OK (i, mode)
1046 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1047 || reg_class_subset_p (REGNO_REG_CLASS (i),
1048 REGNO_REG_CLASS (best_reg))
1049 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1050 REGNO_REG_CLASS (i))))
1051 {
1052 register int j;
1053 register int lim = i + HARD_REGNO_NREGS (i, mode);
1054 for (j = i + 1;
1055 (j < lim
1056 && ! TEST_HARD_REG_BIT (used, j)
1057 && (REGNO_REG_CLASS (j)
1058 == REGNO_REG_CLASS (best_reg + (j - i))
1059 || reg_class_subset_p (REGNO_REG_CLASS (j),
1060 REGNO_REG_CLASS (best_reg + (j - i)))
1061 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1062 REGNO_REG_CLASS (j))));
1063 j++);
1064 if (j == lim)
1065 {
1066 best_reg = i;
1067 break;
1068 }
1069 }
1070 }
1071 no_prefs:
1072
cfcf04a6
RK
1073 /* If we haven't succeeded yet, try with caller-saves.
1074 We need not check to see if the current function has nonlocal
1075 labels because we don't put any pseudos that are live over calls in
1076 registers in that case. */
1077
1d56e983
RS
1078 if (flag_caller_saves && best_reg < 0)
1079 {
1080 /* Did not find a register. If it would be profitable to
1081 allocate a call-clobbered register and save and restore it
1082 around calls, do that. */
1083 if (! accept_call_clobbered
1084 && allocno_calls_crossed[allocno] != 0
1085 && CALLER_SAVE_PROFITABLE (allocno_n_refs[allocno],
1086 allocno_calls_crossed[allocno]))
1087 {
b1ec3c92 1088 find_reg (allocno, losers, alt_regs_p, 1, retrying);
1d56e983
RS
1089 if (reg_renumber[allocno_reg[allocno]] >= 0)
1090 {
1091 caller_save_needed = 1;
1092 return;
1093 }
1094 }
1095 }
1096
1097 /* If we haven't succeeded yet,
1098 see if some hard reg that conflicts with us
1099 was utilized poorly by local-alloc.
1100 If so, kick out the regs that were put there by local-alloc
1101 so we can use it instead. */
1102 if (best_reg < 0 && !retrying
1103 /* Let's not bother with multi-reg allocnos. */
1104 && allocno_size[allocno] == 1)
1105 {
1106 /* Count from the end, to find the least-used ones first. */
1107 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
17a0a76d
RK
1108 {
1109#ifdef REG_ALLOC_ORDER
1110 int regno = reg_alloc_order[i];
1111#else
1112 int regno = i;
1113#endif
34e56753 1114
17a0a76d
RK
1115 if (local_reg_n_refs[regno] != 0
1116 /* Don't use a reg no good for this pseudo. */
1117 && ! TEST_HARD_REG_BIT (used2, regno)
d546b10a
RK
1118 && HARD_REGNO_MODE_OK (regno, mode)
1119#ifdef CLASS_CANNOT_CHANGE_SIZE
1120 && ! (reg_changes_size[allocno_reg[allocno]]
1121 && (TEST_HARD_REG_BIT
1122 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1123 regno)))
1124#endif
1125 )
17a0a76d 1126 {
7a17c588
JW
1127 /* We explicitly evaluate the divide results into temporary
1128 variables so as to avoid excess precision problems that occur
1129 on a i386-unknown-sysv4.2 (unixware) host. */
1130
1131 double tmp1 = ((double) local_reg_n_refs[regno]
1132 / local_reg_live_length[regno]);
1133 double tmp2 = ((double) allocno_n_refs[allocno]
1134 / allocno_live_length[allocno]);
1135
1136 if (tmp1 < tmp2)
1137 {
1138 /* Hard reg REGNO was used less in total by local regs
1139 than it would be used by this one allocno! */
1140 int k;
1141 for (k = 0; k < max_regno; k++)
1142 if (reg_renumber[k] >= 0)
1143 {
1144 int r = reg_renumber[k];
1145 int endregno
1146 = r + HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (k));
34e56753 1147
7a17c588
JW
1148 if (regno >= r && regno < endregno)
1149 reg_renumber[k] = -1;
1150 }
17a0a76d 1151
7a17c588
JW
1152 best_reg = regno;
1153 break;
1154 }
17a0a76d
RK
1155 }
1156 }
1d56e983
RS
1157 }
1158
38398762
RK
1159 /* Did we find a register? */
1160
1161 if (best_reg >= 0)
1162 {
1163 register int lim, j;
1164 HARD_REG_SET this_reg;
1165
1166 /* Yes. Record it as the hard register of this pseudo-reg. */
1167 reg_renumber[allocno_reg[allocno]] = best_reg;
1168 /* Also of any pseudo-regs that share with it. */
1169 if (reg_may_share[allocno_reg[allocno]])
1170 for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
1171 if (reg_allocno[j] == allocno)
1172 reg_renumber[j] = best_reg;
1173
1174 /* Make a set of the hard regs being allocated. */
1175 CLEAR_HARD_REG_SET (this_reg);
1176 lim = best_reg + HARD_REGNO_NREGS (best_reg, mode);
1177 for (j = best_reg; j < lim; j++)
1178 {
1179 SET_HARD_REG_BIT (this_reg, j);
1180 SET_HARD_REG_BIT (regs_used_so_far, j);
1d56e983
RS
1181 /* This is no longer a reg used just by local regs. */
1182 local_reg_n_refs[j] = 0;
38398762
RK
1183 }
1184 /* For each other pseudo-reg conflicting with this one,
1185 mark it as conflicting with the hard regs this one occupies. */
1186 lim = allocno;
1187 for (j = 0; j < max_allocno; j++)
1188 if (CONFLICTP (lim, j) || CONFLICTP (j, lim))
1189 {
1190 IOR_HARD_REG_SET (hard_reg_conflicts[j], this_reg);
1191 }
1192 }
38398762
RK
1193}
1194\f
1195/* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
1196 Perhaps it had previously seemed not worth a hard reg,
1197 or perhaps its old hard reg has been commandeered for reloads.
1198 FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
1199 they do not appear to be allocated.
1200 If FORBIDDEN_REGS is zero, no regs are forbidden. */
1201
1202void
1203retry_global_alloc (regno, forbidden_regs)
1204 int regno;
1205 HARD_REG_SET forbidden_regs;
1206{
1207 int allocno = reg_allocno[regno];
1208 if (allocno >= 0)
1209 {
1210 /* If we have more than one register class,
1211 first try allocating in the class that is cheapest
1212 for this pseudo-reg. If that fails, try any reg. */
1213 if (N_REG_CLASSES > 1)
1d56e983 1214 find_reg (allocno, forbidden_regs, 0, 0, 1);
38398762 1215 if (reg_renumber[regno] < 0
b1ec3c92 1216 && reg_alternate_class (regno) != NO_REGS)
1d56e983 1217 find_reg (allocno, forbidden_regs, 1, 0, 1);
38398762
RK
1218
1219 /* If we found a register, modify the RTL for the register to
1220 show the hard register, and mark that register live. */
1221 if (reg_renumber[regno] >= 0)
1222 {
1223 REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
1224 mark_home_live (regno);
1225 }
1226 }
1227}
1228\f
1229/* Record a conflict between register REGNO
1230 and everything currently live.
1231 REGNO must not be a pseudo reg that was allocated
1232 by local_alloc; such numbers must be translated through
1233 reg_renumber before calling here. */
1234
1235static void
1236record_one_conflict (regno)
1237 int regno;
1238{
1239 register int j;
1240
1241 if (regno < FIRST_PSEUDO_REGISTER)
1242 /* When a hard register becomes live,
1243 record conflicts with live pseudo regs. */
1244 for (j = 0; j < max_allocno; j++)
1245 {
1246 if (ALLOCNO_LIVE_P (j))
1247 SET_HARD_REG_BIT (hard_reg_conflicts[j], regno);
1248 }
1249 else
1250 /* When a pseudo-register becomes live,
1251 record conflicts first with hard regs,
1252 then with other pseudo regs. */
1253 {
1254 register int ialloc = reg_allocno[regno];
1255 register int ialloc_prod = ialloc * allocno_row_words;
1256 IOR_HARD_REG_SET (hard_reg_conflicts[ialloc], hard_regs_live);
1257 for (j = allocno_row_words - 1; j >= 0; j--)
1258 {
1259#if 0
1260 int k;
1261 for (k = 0; k < n_no_conflict_pairs; k++)
1262 if (! ((j == no_conflict_pairs[k].allocno1
1263 && ialloc == no_conflict_pairs[k].allocno2)
1264 ||
1265 (j == no_conflict_pairs[k].allocno2
1266 && ialloc == no_conflict_pairs[k].allocno1)))
1267#endif /* 0 */
1268 conflicts[ialloc_prod + j] |= allocnos_live[j];
1269 }
1270 }
1271}
1272
1273/* Record all allocnos currently live as conflicting
1274 with each other and with all hard regs currently live.
1275 ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
1276 are currently live. Their bits are also flagged in allocnos_live. */
1277
1278static void
1279record_conflicts (allocno_vec, len)
1280 register short *allocno_vec;
1281 register int len;
1282{
1283 register int allocno;
1284 register int j;
1285 register int ialloc_prod;
1286
1287 while (--len >= 0)
1288 {
1289 allocno = allocno_vec[len];
1290 ialloc_prod = allocno * allocno_row_words;
1291 IOR_HARD_REG_SET (hard_reg_conflicts[allocno], hard_regs_live);
1292 for (j = allocno_row_words - 1; j >= 0; j--)
1293 conflicts[ialloc_prod + j] |= allocnos_live[j];
1294 }
1295}
1296\f
1297/* Handle the case where REG is set by the insn being scanned,
1298 during the forward scan to accumulate conflicts.
1299 Store a 1 in regs_live or allocnos_live for this register, record how many
1300 consecutive hardware registers it actually needs,
1301 and record a conflict with all other registers already live.
1302
1303 Note that even if REG does not remain alive after this insn,
1304 we must mark it here as live, to ensure a conflict between
1305 REG and any other regs set in this insn that really do live.
1306 This is because those other regs could be considered after this.
1307
1308 REG might actually be something other than a register;
1309 if so, we do nothing.
1310
1311 SETTER is 0 if this register was modified by an auto-increment (i.e.,
1312 a REG_INC note was found for it).
1313
1314 CLOBBERs are processed here by calling mark_reg_clobber. */
1315
1316static void
1317mark_reg_store (orig_reg, setter)
1318 rtx orig_reg, setter;
1319{
1320 register int regno;
1321 register rtx reg = orig_reg;
1322
1323 /* WORD is which word of a multi-register group is being stored.
1324 For the case where the store is actually into a SUBREG of REG.
1325 Except we don't use it; I believe the entire REG needs to be
1326 made live. */
1327 int word = 0;
1328
1329 if (GET_CODE (reg) == SUBREG)
1330 {
1331 word = SUBREG_WORD (reg);
1332 reg = SUBREG_REG (reg);
1333 }
1334
1335 if (GET_CODE (reg) != REG)
1336 return;
1337
1338 if (setter && GET_CODE (setter) == CLOBBER)
1339 {
1340 /* A clobber of a register should be processed here too. */
1341 mark_reg_clobber (orig_reg, setter);
1342 return;
1343 }
1344
1345 regs_set[n_regs_set++] = reg;
1346
1347 if (setter)
1348 set_preference (reg, SET_SRC (setter));
1349
1350 regno = REGNO (reg);
1351
1352 if (reg_renumber[regno] >= 0)
1353 regno = reg_renumber[regno] /* + word */;
1354
1355 /* Either this is one of the max_allocno pseudo regs not allocated,
1356 or it is or has a hardware reg. First handle the pseudo-regs. */
1357 if (regno >= FIRST_PSEUDO_REGISTER)
1358 {
1359 if (reg_allocno[regno] >= 0)
1360 {
1361 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1362 record_one_conflict (regno);
1363 }
1364 }
1365 /* Handle hardware regs (and pseudos allocated to hard regs). */
1366 else if (! fixed_regs[regno])
1367 {
1368 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1369 while (regno < last)
1370 {
1371 record_one_conflict (regno);
1372 SET_HARD_REG_BIT (hard_regs_live, regno);
1373 regno++;
1374 }
1375 }
1376}
1377\f
1378/* Like mark_reg_set except notice just CLOBBERs; ignore SETs. */
1379
1380static void
1381mark_reg_clobber (reg, setter)
1382 rtx reg, setter;
1383{
1384 register int regno;
1385
1386 /* WORD is which word of a multi-register group is being stored.
1387 For the case where the store is actually into a SUBREG of REG.
1388 Except we don't use it; I believe the entire REG needs to be
1389 made live. */
1390 int word = 0;
1391
1392 if (GET_CODE (setter) != CLOBBER)
1393 return;
1394
1395 if (GET_CODE (reg) == SUBREG)
1396 {
1397 word = SUBREG_WORD (reg);
1398 reg = SUBREG_REG (reg);
1399 }
1400
1401 if (GET_CODE (reg) != REG)
1402 return;
1403
1404 regs_set[n_regs_set++] = reg;
1405
1406 regno = REGNO (reg);
1407
1408 if (reg_renumber[regno] >= 0)
1409 regno = reg_renumber[regno] /* + word */;
1410
1411 /* Either this is one of the max_allocno pseudo regs not allocated,
1412 or it is or has a hardware reg. First handle the pseudo-regs. */
1413 if (regno >= FIRST_PSEUDO_REGISTER)
1414 {
1415 if (reg_allocno[regno] >= 0)
1416 {
1417 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1418 record_one_conflict (regno);
1419 }
1420 }
1421 /* Handle hardware regs (and pseudos allocated to hard regs). */
1422 else if (! fixed_regs[regno])
1423 {
1424 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1425 while (regno < last)
1426 {
1427 record_one_conflict (regno);
1428 SET_HARD_REG_BIT (hard_regs_live, regno);
1429 regno++;
1430 }
1431 }
333e0f7d
RS
1432}
1433
1434/* Record that REG has conflicts with all the regs currently live.
1435 Do not mark REG itself as live. */
1436
1437static void
1438mark_reg_conflicts (reg)
1439 rtx reg;
1440{
1441 register int regno;
1442
1443 if (GET_CODE (reg) == SUBREG)
1444 reg = SUBREG_REG (reg);
1445
1446 if (GET_CODE (reg) != REG)
1447 return;
1448
1449 regno = REGNO (reg);
1450
1451 if (reg_renumber[regno] >= 0)
1452 regno = reg_renumber[regno];
1453
1454 /* Either this is one of the max_allocno pseudo regs not allocated,
1455 or it is or has a hardware reg. First handle the pseudo-regs. */
1456 if (regno >= FIRST_PSEUDO_REGISTER)
1457 {
1458 if (reg_allocno[regno] >= 0)
1459 record_one_conflict (regno);
1460 }
1461 /* Handle hardware regs (and pseudos allocated to hard regs). */
1462 else if (! fixed_regs[regno])
1463 {
1464 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1465 while (regno < last)
1466 {
1467 record_one_conflict (regno);
1468 regno++;
1469 }
1470 }
38398762
RK
1471}
1472\f
1473/* Mark REG as being dead (following the insn being scanned now).
1474 Store a 0 in regs_live or allocnos_live for this register. */
1475
1476static void
1477mark_reg_death (reg)
1478 rtx reg;
1479{
1480 register int regno = REGNO (reg);
1481
1482 /* For pseudo reg, see if it has been assigned a hardware reg. */
1483 if (reg_renumber[regno] >= 0)
1484 regno = reg_renumber[regno];
1485
1486 /* Either this is one of the max_allocno pseudo regs not allocated,
1487 or it is a hardware reg. First handle the pseudo-regs. */
1488 if (regno >= FIRST_PSEUDO_REGISTER)
1489 {
1490 if (reg_allocno[regno] >= 0)
1491 CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
1492 }
1493 /* Handle hardware regs (and pseudos allocated to hard regs). */
1494 else if (! fixed_regs[regno])
1495 {
1496 /* Pseudo regs already assigned hardware regs are treated
1497 almost the same as explicit hardware regs. */
1498 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1499 while (regno < last)
1500 {
1501 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
1502 regno++;
1503 }
1504 }
1505}
1506
1507/* Mark hard reg REGNO as currently live, assuming machine mode MODE
1508 for the value stored in it. MODE determines how many consecutive
1509 registers are actually in use. Do not record conflicts;
1510 it is assumed that the caller will do that. */
1511
1512static void
1513mark_reg_live_nc (regno, mode)
1514 register int regno;
1515 enum machine_mode mode;
1516{
1517 register int last = regno + HARD_REGNO_NREGS (regno, mode);
1518 while (regno < last)
1519 {
1520 SET_HARD_REG_BIT (hard_regs_live, regno);
1521 regno++;
1522 }
1523}
1524\f
1525/* Try to set a preference for an allocno to a hard register.
1526 We are passed DEST and SRC which are the operands of a SET. It is known
1527 that SRC is a register. If SRC or the first operand of SRC is a register,
1528 try to set a preference. If one of the two is a hard register and the other
1529 is a pseudo-register, mark the preference.
1530
6dc42e49 1531 Note that we are not as aggressive as local-alloc in trying to tie a
38398762
RK
1532 pseudo-register to a hard register. */
1533
1534static void
1535set_preference (dest, src)
1536 rtx dest, src;
1537{
1538 int src_regno, dest_regno;
1539 /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
1540 to compensate for subregs in SRC or DEST. */
1541 int offset = 0;
1542 int i;
1543 int copy = 1;
1544
1545 if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
1546 src = XEXP (src, 0), copy = 0;
1547
1548 /* Get the reg number for both SRC and DEST.
1549 If neither is a reg, give up. */
1550
1551 if (GET_CODE (src) == REG)
1552 src_regno = REGNO (src);
1553 else if (GET_CODE (src) == SUBREG && GET_CODE (SUBREG_REG (src)) == REG)
1554 {
1555 src_regno = REGNO (SUBREG_REG (src));
1556 offset += SUBREG_WORD (src);
1557 }
1558 else
1559 return;
1560
1561 if (GET_CODE (dest) == REG)
1562 dest_regno = REGNO (dest);
1563 else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG)
1564 {
1565 dest_regno = REGNO (SUBREG_REG (dest));
1566 offset -= SUBREG_WORD (dest);
1567 }
1568 else
1569 return;
1570
1571 /* Convert either or both to hard reg numbers. */
1572
1573 if (reg_renumber[src_regno] >= 0)
1574 src_regno = reg_renumber[src_regno];
1575
1576 if (reg_renumber[dest_regno] >= 0)
1577 dest_regno = reg_renumber[dest_regno];
1578
1579 /* Now if one is a hard reg and the other is a global pseudo
1580 then give the other a preference. */
1581
1582 if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
1583 && reg_allocno[src_regno] >= 0)
1584 {
1585 dest_regno -= offset;
1586 if (dest_regno >= 0 && dest_regno < FIRST_PSEUDO_REGISTER)
1587 {
1588 if (copy)
1589 SET_REGBIT (hard_reg_copy_preferences,
1590 reg_allocno[src_regno], dest_regno);
1591
1592 SET_REGBIT (hard_reg_preferences,
1593 reg_allocno[src_regno], dest_regno);
1594 for (i = dest_regno;
1595 i < dest_regno + HARD_REGNO_NREGS (dest_regno, GET_MODE (dest));
1596 i++)
1597 SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
1598 }
1599 }
1600
1601 if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
1602 && reg_allocno[dest_regno] >= 0)
1603 {
1604 src_regno += offset;
1605 if (src_regno >= 0 && src_regno < FIRST_PSEUDO_REGISTER)
1606 {
1607 if (copy)
1608 SET_REGBIT (hard_reg_copy_preferences,
1609 reg_allocno[dest_regno], src_regno);
1610
1611 SET_REGBIT (hard_reg_preferences,
1612 reg_allocno[dest_regno], src_regno);
1613 for (i = src_regno;
1614 i < src_regno + HARD_REGNO_NREGS (src_regno, GET_MODE (src));
1615 i++)
1616 SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
1617 }
1618 }
1619}
1620\f
1621/* Indicate that hard register number FROM was eliminated and replaced with
1622 an offset from hard register number TO. The status of hard registers live
1623 at the start of a basic block is updated by replacing a use of FROM with
1624 a use of TO. */
1625
1626void
1627mark_elimination (from, to)
1628 int from, to;
1629{
1630 int i;
1631
1632 for (i = 0; i < n_basic_blocks; i++)
b1ec3c92
CH
1633 if ((basic_block_live_at_start[i][from / REGSET_ELT_BITS]
1634 & ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS))) != 0)
38398762 1635 {
b1ec3c92
CH
1636 basic_block_live_at_start[i][from / REGSET_ELT_BITS]
1637 &= ~ ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS));
1638 basic_block_live_at_start[i][to / REGSET_ELT_BITS]
1639 |= ((REGSET_ELT_TYPE) 1 << (to % REGSET_ELT_BITS));
38398762
RK
1640 }
1641}
1642\f
1643/* Print debugging trace information if -greg switch is given,
1644 showing the information on which the allocation decisions are based. */
1645
1646static void
1647dump_conflicts (file)
1648 FILE *file;
1649{
1650 register int i;
1651 register int has_preferences;
1652 fprintf (file, ";; %d regs to allocate:", max_allocno);
1653 for (i = 0; i < max_allocno; i++)
1654 {
1655 int j;
1656 fprintf (file, " %d", allocno_reg[allocno_order[i]]);
1657 for (j = 0; j < max_regno; j++)
1658 if (reg_allocno[j] == allocno_order[i]
1659 && j != allocno_reg[allocno_order[i]])
1660 fprintf (file, "+%d", j);
1661 if (allocno_size[allocno_order[i]] != 1)
1662 fprintf (file, " (%d)", allocno_size[allocno_order[i]]);
1663 }
1664 fprintf (file, "\n");
1665
1666 for (i = 0; i < max_allocno; i++)
1667 {
1668 register int j;
1669 fprintf (file, ";; %d conflicts:", allocno_reg[i]);
1670 for (j = 0; j < max_allocno; j++)
1671 if (CONFLICTP (i, j) || CONFLICTP (j, i))
1672 fprintf (file, " %d", allocno_reg[j]);
1673 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1674 if (TEST_HARD_REG_BIT (hard_reg_conflicts[i], j))
1675 fprintf (file, " %d", j);
1676 fprintf (file, "\n");
1677
1678 has_preferences = 0;
1679 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1680 if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1681 has_preferences = 1;
1682
1683 if (! has_preferences)
1684 continue;
1685 fprintf (file, ";; %d preferences:", allocno_reg[i]);
1686 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1687 if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1688 fprintf (file, " %d", j);
1689 fprintf (file, "\n");
1690 }
1691 fprintf (file, "\n");
1692}
1693
1694void
1695dump_global_regs (file)
1696 FILE *file;
1697{
1698 register int i, j;
1699
1700 fprintf (file, ";; Register dispositions:\n");
1701 for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
1702 if (reg_renumber[i] >= 0)
1703 {
1704 fprintf (file, "%d in %d ", i, reg_renumber[i]);
1705 if (++j % 6 == 0)
1706 fprintf (file, "\n");
1707 }
1708
1709 fprintf (file, "\n\n;; Hard regs used: ");
1710 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1711 if (regs_ever_live[i])
1712 fprintf (file, " %d", i);
1713 fprintf (file, "\n\n");
1714}
This page took 0.399613 seconds and 5 git commands to generate.