]> gcc.gnu.org Git - gcc.git/blame - gcc/gimple.c
locale_facets.tcc (__pad<>::_S_pad): Don't use const by value parameters.
[gcc.git] / gcc / gimple.c
CommitLineData
726a989a
RB
1/* Gimple IR support functions.
2
3 Copyright 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "tree.h"
27#include "ggc.h"
28#include "errors.h"
29#include "hard-reg-set.h"
30#include "basic-block.h"
31#include "gimple.h"
32#include "diagnostic.h"
33#include "tree-flow.h"
34#include "value-prof.h"
35#include "flags.h"
36
37#define DEFGSCODE(SYM, NAME, STRUCT) NAME,
38const char *const gimple_code_name[] = {
39#include "gimple.def"
40};
41#undef DEFGSCODE
42
43/* All the tuples have their operand vector at the very bottom
44 of the structure. Therefore, the offset required to find the
45 operands vector the size of the structure minus the size of the 1
46 element tree array at the end (see gimple_ops). */
47#define DEFGSCODE(SYM, NAME, STRUCT) (sizeof (STRUCT) - sizeof (tree)),
48const size_t gimple_ops_offset_[] = {
49#include "gimple.def"
50};
51#undef DEFGSCODE
52
53#ifdef GATHER_STATISTICS
54/* Gimple stats. */
55
56int gimple_alloc_counts[(int) gimple_alloc_kind_all];
57int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
58
59/* Keep in sync with gimple.h:enum gimple_alloc_kind. */
60static const char * const gimple_alloc_kind_names[] = {
61 "assignments",
62 "phi nodes",
63 "conditionals",
64 "sequences",
65 "everything else"
66};
67
68#endif /* GATHER_STATISTICS */
69
70/* A cache of gimple_seq objects. Sequences are created and destroyed
71 fairly often during gimplification. */
72static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
73
74/* Private API manipulation functions shared only with some
75 other files. */
76extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
77extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
78
79/* Gimple tuple constructors.
80 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
81 be passed a NULL to start with an empty sequence. */
82
83/* Set the code for statement G to CODE. */
84
85static inline void
86gimple_set_code (gimple g, enum gimple_code code)
87{
88 g->gsbase.code = code;
89}
90
91
92/* Return the GSS_* identifier for the given GIMPLE statement CODE. */
93
94static enum gimple_statement_structure_enum
95gss_for_code (enum gimple_code code)
96{
97 switch (code)
98 {
99 case GIMPLE_ASSIGN:
100 case GIMPLE_CALL:
101 case GIMPLE_RETURN: return GSS_WITH_MEM_OPS;
102 case GIMPLE_COND:
103 case GIMPLE_GOTO:
104 case GIMPLE_LABEL:
105 case GIMPLE_CHANGE_DYNAMIC_TYPE:
106 case GIMPLE_SWITCH: return GSS_WITH_OPS;
107 case GIMPLE_ASM: return GSS_ASM;
108 case GIMPLE_BIND: return GSS_BIND;
109 case GIMPLE_CATCH: return GSS_CATCH;
110 case GIMPLE_EH_FILTER: return GSS_EH_FILTER;
111 case GIMPLE_NOP: return GSS_BASE;
112 case GIMPLE_PHI: return GSS_PHI;
113 case GIMPLE_RESX: return GSS_RESX;
114 case GIMPLE_TRY: return GSS_TRY;
115 case GIMPLE_WITH_CLEANUP_EXPR: return GSS_WCE;
116 case GIMPLE_OMP_CRITICAL: return GSS_OMP_CRITICAL;
117 case GIMPLE_OMP_FOR: return GSS_OMP_FOR;
118 case GIMPLE_OMP_MASTER:
119 case GIMPLE_OMP_ORDERED:
120 case GIMPLE_OMP_SECTION: return GSS_OMP;
121 case GIMPLE_OMP_RETURN:
122 case GIMPLE_OMP_SECTIONS_SWITCH: return GSS_BASE;
123 case GIMPLE_OMP_CONTINUE: return GSS_OMP_CONTINUE;
124 case GIMPLE_OMP_PARALLEL: return GSS_OMP_PARALLEL;
125 case GIMPLE_OMP_TASK: return GSS_OMP_TASK;
126 case GIMPLE_OMP_SECTIONS: return GSS_OMP_SECTIONS;
127 case GIMPLE_OMP_SINGLE: return GSS_OMP_SINGLE;
128 case GIMPLE_OMP_ATOMIC_LOAD: return GSS_OMP_ATOMIC_LOAD;
129 case GIMPLE_OMP_ATOMIC_STORE: return GSS_OMP_ATOMIC_STORE;
130 case GIMPLE_PREDICT: return GSS_BASE;
131 default: gcc_unreachable ();
132 }
133}
134
135
136/* Return the number of bytes needed to hold a GIMPLE statement with
137 code CODE. */
138
139static size_t
140gimple_size (enum gimple_code code)
141{
142 enum gimple_statement_structure_enum gss = gss_for_code (code);
143
144 if (gss == GSS_WITH_OPS)
145 return sizeof (struct gimple_statement_with_ops);
146 else if (gss == GSS_WITH_MEM_OPS)
147 return sizeof (struct gimple_statement_with_memory_ops);
148
149 switch (code)
150 {
151 case GIMPLE_ASM:
152 return sizeof (struct gimple_statement_asm);
153 case GIMPLE_NOP:
154 return sizeof (struct gimple_statement_base);
155 case GIMPLE_BIND:
156 return sizeof (struct gimple_statement_bind);
157 case GIMPLE_CATCH:
158 return sizeof (struct gimple_statement_catch);
159 case GIMPLE_EH_FILTER:
160 return sizeof (struct gimple_statement_eh_filter);
161 case GIMPLE_TRY:
162 return sizeof (struct gimple_statement_try);
163 case GIMPLE_RESX:
164 return sizeof (struct gimple_statement_resx);
165 case GIMPLE_OMP_CRITICAL:
166 return sizeof (struct gimple_statement_omp_critical);
167 case GIMPLE_OMP_FOR:
168 return sizeof (struct gimple_statement_omp_for);
169 case GIMPLE_OMP_PARALLEL:
170 return sizeof (struct gimple_statement_omp_parallel);
171 case GIMPLE_OMP_TASK:
172 return sizeof (struct gimple_statement_omp_task);
173 case GIMPLE_OMP_SECTION:
174 case GIMPLE_OMP_MASTER:
175 case GIMPLE_OMP_ORDERED:
176 return sizeof (struct gimple_statement_omp);
177 case GIMPLE_OMP_RETURN:
178 return sizeof (struct gimple_statement_base);
179 case GIMPLE_OMP_CONTINUE:
180 return sizeof (struct gimple_statement_omp_continue);
181 case GIMPLE_OMP_SECTIONS:
182 return sizeof (struct gimple_statement_omp_sections);
183 case GIMPLE_OMP_SECTIONS_SWITCH:
184 return sizeof (struct gimple_statement_base);
185 case GIMPLE_OMP_SINGLE:
186 return sizeof (struct gimple_statement_omp_single);
187 case GIMPLE_OMP_ATOMIC_LOAD:
188 return sizeof (struct gimple_statement_omp_atomic_load);
189 case GIMPLE_OMP_ATOMIC_STORE:
190 return sizeof (struct gimple_statement_omp_atomic_store);
191 case GIMPLE_WITH_CLEANUP_EXPR:
192 return sizeof (struct gimple_statement_wce);
193 case GIMPLE_CHANGE_DYNAMIC_TYPE:
194 return sizeof (struct gimple_statement_with_ops);
195 case GIMPLE_PREDICT:
196 return sizeof (struct gimple_statement_base);
197 default:
198 break;
199 }
200
201 gcc_unreachable ();
202}
203
204
205/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
206 operands. */
207
208#define gimple_alloc(c, n) gimple_alloc_stat (c, n MEM_STAT_INFO)
209static gimple
210gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
211{
212 size_t size;
213 gimple stmt;
214
215 size = gimple_size (code);
216 if (num_ops > 0)
217 size += sizeof (tree) * (num_ops - 1);
218
219#ifdef GATHER_STATISTICS
220 {
221 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
222 gimple_alloc_counts[(int) kind]++;
223 gimple_alloc_sizes[(int) kind] += size;
224 }
225#endif
226
227 stmt = (gimple) ggc_alloc_cleared_stat (size PASS_MEM_STAT);
228 gimple_set_code (stmt, code);
229 gimple_set_num_ops (stmt, num_ops);
230
231 /* Do not call gimple_set_modified here as it has other side
232 effects and this tuple is still not completely built. */
233 stmt->gsbase.modified = 1;
234
235 return stmt;
236}
237
238/* Set SUBCODE to be the code of the expression computed by statement G. */
239
240static inline void
241gimple_set_subcode (gimple g, unsigned subcode)
242{
243 /* We only have 16 bits for the RHS code. Assert that we are not
244 overflowing it. */
245 gcc_assert (subcode < (1 << 16));
246 g->gsbase.subcode = subcode;
247}
248
249
250
251/* Build a tuple with operands. CODE is the statement to build (which
252 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
253 for the new tuple. NUM_OPS is the number of operands to allocate. */
254
255#define gimple_build_with_ops(c, s, n) \
256 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
257
258static gimple
259gimple_build_with_ops_stat (enum gimple_code code, enum tree_code subcode,
260 unsigned num_ops MEM_STAT_DECL)
261{
262 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
263 gimple_set_subcode (s, subcode);
264
265 return s;
266}
267
268
269/* Build a GIMPLE_RETURN statement returning RETVAL. */
270
271gimple
272gimple_build_return (tree retval)
273{
274 gimple s = gimple_build_with_ops (GIMPLE_RETURN, 0, 1);
275 if (retval)
276 gimple_return_set_retval (s, retval);
277 return s;
278}
279
280/* Helper for gimple_build_call, gimple_build_call_vec and
281 gimple_build_call_from_tree. Build the basic components of a
282 GIMPLE_CALL statement to function FN with NARGS arguments. */
283
284static inline gimple
285gimple_build_call_1 (tree fn, unsigned nargs)
286{
287 gimple s = gimple_build_with_ops (GIMPLE_CALL, 0, nargs + 3);
7c9577be
RG
288 if (TREE_CODE (fn) == FUNCTION_DECL)
289 fn = build_fold_addr_expr (fn);
726a989a
RB
290 gimple_set_op (s, 1, fn);
291 return s;
292}
293
294
295/* Build a GIMPLE_CALL statement to function FN with the arguments
296 specified in vector ARGS. */
297
298gimple
299gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
300{
301 unsigned i;
302 unsigned nargs = VEC_length (tree, args);
303 gimple call = gimple_build_call_1 (fn, nargs);
304
305 for (i = 0; i < nargs; i++)
306 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
307
308 return call;
309}
310
311
312/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
313 arguments. The ... are the arguments. */
314
315gimple
316gimple_build_call (tree fn, unsigned nargs, ...)
317{
318 va_list ap;
319 gimple call;
320 unsigned i;
321
322 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
323
324 call = gimple_build_call_1 (fn, nargs);
325
326 va_start (ap, nargs);
327 for (i = 0; i < nargs; i++)
328 gimple_call_set_arg (call, i, va_arg (ap, tree));
329 va_end (ap);
330
331 return call;
332}
333
334
335/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
336 assumed to be in GIMPLE form already. Minimal checking is done of
337 this fact. */
338
339gimple
340gimple_build_call_from_tree (tree t)
341{
342 unsigned i, nargs;
343 gimple call;
344 tree fndecl = get_callee_fndecl (t);
345
346 gcc_assert (TREE_CODE (t) == CALL_EXPR);
347
348 nargs = call_expr_nargs (t);
349 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
350
351 for (i = 0; i < nargs; i++)
352 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
353
354 gimple_set_block (call, TREE_BLOCK (t));
355
356 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
357 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
358 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
359 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
360 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
361 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
362 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
363
364 return call;
365}
366
367
368/* Extract the operands and code for expression EXPR into *SUBCODE_P,
369 *OP1_P and *OP2_P respectively. */
370
371void
372extract_ops_from_tree (tree expr, enum tree_code *subcode_p, tree *op1_p,
373 tree *op2_p)
374{
82d6e6fc 375 enum gimple_rhs_class grhs_class;
726a989a
RB
376
377 *subcode_p = TREE_CODE (expr);
82d6e6fc 378 grhs_class = get_gimple_rhs_class (*subcode_p);
726a989a 379
82d6e6fc 380 if (grhs_class == GIMPLE_BINARY_RHS)
726a989a
RB
381 {
382 *op1_p = TREE_OPERAND (expr, 0);
383 *op2_p = TREE_OPERAND (expr, 1);
384 }
82d6e6fc 385 else if (grhs_class == GIMPLE_UNARY_RHS)
726a989a
RB
386 {
387 *op1_p = TREE_OPERAND (expr, 0);
388 *op2_p = NULL_TREE;
389 }
82d6e6fc 390 else if (grhs_class == GIMPLE_SINGLE_RHS)
726a989a
RB
391 {
392 *op1_p = expr;
393 *op2_p = NULL_TREE;
394 }
395 else
396 gcc_unreachable ();
397}
398
399
400/* Build a GIMPLE_ASSIGN statement.
401
402 LHS of the assignment.
403 RHS of the assignment which can be unary or binary. */
404
405gimple
406gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
407{
408 enum tree_code subcode;
409 tree op1, op2;
410
411 extract_ops_from_tree (rhs, &subcode, &op1, &op2);
412 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2
413 PASS_MEM_STAT);
414}
415
416
417/* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
418 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
419 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
420
421gimple
422gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
423 tree op2 MEM_STAT_DECL)
424{
425 unsigned num_ops;
426 gimple p;
427
428 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
429 code). */
430 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
431
432 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, subcode, num_ops
433 PASS_MEM_STAT);
434 gimple_assign_set_lhs (p, lhs);
435 gimple_assign_set_rhs1 (p, op1);
436 if (op2)
437 {
438 gcc_assert (num_ops > 2);
439 gimple_assign_set_rhs2 (p, op2);
440 }
441
442 return p;
443}
444
445
446/* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
447
448 DST/SRC are the destination and source respectively. You can pass
449 ungimplified trees in DST or SRC, in which case they will be
450 converted to a gimple operand if necessary.
451
452 This function returns the newly created GIMPLE_ASSIGN tuple. */
453
454inline gimple
455gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
456{
457 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
458 gimplify_and_add (t, seq_p);
459 ggc_free (t);
460 return gimple_seq_last_stmt (*seq_p);
461}
462
463
464/* Build a GIMPLE_COND statement.
465
466 PRED is the condition used to compare LHS and the RHS.
467 T_LABEL is the label to jump to if the condition is true.
468 F_LABEL is the label to jump to otherwise. */
469
470gimple
471gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
472 tree t_label, tree f_label)
473{
474 gimple p;
475
476 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
477 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
478 gimple_cond_set_lhs (p, lhs);
479 gimple_cond_set_rhs (p, rhs);
480 gimple_cond_set_true_label (p, t_label);
481 gimple_cond_set_false_label (p, f_label);
482 return p;
483}
484
485
486/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
487
488void
489gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
490 tree *lhs_p, tree *rhs_p)
491{
492 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
493 || TREE_CODE (cond) == TRUTH_NOT_EXPR
494 || is_gimple_min_invariant (cond)
495 || SSA_VAR_P (cond));
496
497 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
498
499 /* Canonicalize conditionals of the form 'if (!VAL)'. */
500 if (*code_p == TRUTH_NOT_EXPR)
501 {
502 *code_p = EQ_EXPR;
503 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
504 *rhs_p = fold_convert (TREE_TYPE (*lhs_p), integer_zero_node);
505 }
506 /* Canonicalize conditionals of the form 'if (VAL)' */
507 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
508 {
509 *code_p = NE_EXPR;
510 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
511 *rhs_p = fold_convert (TREE_TYPE (*lhs_p), integer_zero_node);
512 }
513}
514
515
516/* Build a GIMPLE_COND statement from the conditional expression tree
517 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
518
519gimple
520gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
521{
522 enum tree_code code;
523 tree lhs, rhs;
524
525 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
526 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
527}
528
529/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
530 boolean expression tree COND. */
531
532void
533gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
534{
535 enum tree_code code;
536 tree lhs, rhs;
537
538 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
539 gimple_cond_set_condition (stmt, code, lhs, rhs);
540}
541
542/* Build a GIMPLE_LABEL statement for LABEL. */
543
544gimple
545gimple_build_label (tree label)
546{
547 gimple p = gimple_build_with_ops (GIMPLE_LABEL, 0, 1);
548 gimple_label_set_label (p, label);
549 return p;
550}
551
552/* Build a GIMPLE_GOTO statement to label DEST. */
553
554gimple
555gimple_build_goto (tree dest)
556{
557 gimple p = gimple_build_with_ops (GIMPLE_GOTO, 0, 1);
558 gimple_goto_set_dest (p, dest);
559 return p;
560}
561
562
563/* Build a GIMPLE_NOP statement. */
564
565gimple
566gimple_build_nop (void)
567{
568 return gimple_alloc (GIMPLE_NOP, 0);
569}
570
571
572/* Build a GIMPLE_BIND statement.
573 VARS are the variables in BODY.
574 BLOCK is the containing block. */
575
576gimple
577gimple_build_bind (tree vars, gimple_seq body, tree block)
578{
579 gimple p = gimple_alloc (GIMPLE_BIND, 0);
580 gimple_bind_set_vars (p, vars);
581 if (body)
582 gimple_bind_set_body (p, body);
583 if (block)
584 gimple_bind_set_block (p, block);
585 return p;
586}
587
588/* Helper function to set the simple fields of a asm stmt.
589
590 STRING is a pointer to a string that is the asm blocks assembly code.
591 NINPUT is the number of register inputs.
592 NOUTPUT is the number of register outputs.
593 NCLOBBERS is the number of clobbered registers.
594 */
595
596static inline gimple
597gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
598 unsigned nclobbers)
599{
600 gimple p;
601 int size = strlen (string);
602
603 p = gimple_build_with_ops (GIMPLE_ASM, 0, ninputs + noutputs + nclobbers);
604
605 p->gimple_asm.ni = ninputs;
606 p->gimple_asm.no = noutputs;
607 p->gimple_asm.nc = nclobbers;
608 p->gimple_asm.string = ggc_alloc_string (string, size);
609
610#ifdef GATHER_STATISTICS
611 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
612#endif
613
614 return p;
615}
616
617/* Build a GIMPLE_ASM statement.
618
619 STRING is the assembly code.
620 NINPUT is the number of register inputs.
621 NOUTPUT is the number of register outputs.
622 NCLOBBERS is the number of clobbered registers.
623 INPUTS is a vector of the input register parameters.
624 OUTPUTS is a vector of the output register parameters.
625 CLOBBERS is a vector of the clobbered register parameters. */
626
627gimple
628gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
629 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers)
630{
631 gimple p;
632 unsigned i;
633
634 p = gimple_build_asm_1 (string,
635 VEC_length (tree, inputs),
636 VEC_length (tree, outputs),
637 VEC_length (tree, clobbers));
638
639 for (i = 0; i < VEC_length (tree, inputs); i++)
640 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
641
642 for (i = 0; i < VEC_length (tree, outputs); i++)
643 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
644
645 for (i = 0; i < VEC_length (tree, clobbers); i++)
646 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
647
648 return p;
649}
650
651/* Build a GIMPLE_ASM statement.
652
653 STRING is the assembly code.
654 NINPUT is the number of register inputs.
655 NOUTPUT is the number of register outputs.
656 NCLOBBERS is the number of clobbered registers.
657 ... are trees for each input, output and clobbered register. */
658
659gimple
660gimple_build_asm (const char *string, unsigned ninputs, unsigned noutputs,
661 unsigned nclobbers, ...)
662{
663 gimple p;
664 unsigned i;
665 va_list ap;
666
667 p = gimple_build_asm_1 (string, ninputs, noutputs, nclobbers);
668
669 va_start (ap, nclobbers);
670
671 for (i = 0; i < ninputs; i++)
672 gimple_asm_set_input_op (p, i, va_arg (ap, tree));
673
674 for (i = 0; i < noutputs; i++)
675 gimple_asm_set_output_op (p, i, va_arg (ap, tree));
676
677 for (i = 0; i < nclobbers; i++)
678 gimple_asm_set_clobber_op (p, i, va_arg (ap, tree));
679
680 va_end (ap);
681
682 return p;
683}
684
685/* Build a GIMPLE_CATCH statement.
686
687 TYPES are the catch types.
688 HANDLER is the exception handler. */
689
690gimple
691gimple_build_catch (tree types, gimple_seq handler)
692{
693 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
694 gimple_catch_set_types (p, types);
695 if (handler)
696 gimple_catch_set_handler (p, handler);
697
698 return p;
699}
700
701/* Build a GIMPLE_EH_FILTER statement.
702
703 TYPES are the filter's types.
704 FAILURE is the filter's failure action. */
705
706gimple
707gimple_build_eh_filter (tree types, gimple_seq failure)
708{
709 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
710 gimple_eh_filter_set_types (p, types);
711 if (failure)
712 gimple_eh_filter_set_failure (p, failure);
713
714 return p;
715}
716
717/* Build a GIMPLE_TRY statement.
718
719 EVAL is the expression to evaluate.
720 CLEANUP is the cleanup expression.
721 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
722 whether this is a try/catch or a try/finally respectively. */
723
724gimple
725gimple_build_try (gimple_seq eval, gimple_seq cleanup,
726 enum gimple_try_flags kind)
727{
728 gimple p;
729
730 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
731 p = gimple_alloc (GIMPLE_TRY, 0);
732 gimple_set_subcode (p, kind);
733 if (eval)
734 gimple_try_set_eval (p, eval);
735 if (cleanup)
736 gimple_try_set_cleanup (p, cleanup);
737
738 return p;
739}
740
741/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
742
743 CLEANUP is the cleanup expression. */
744
745gimple
746gimple_build_wce (gimple_seq cleanup)
747{
748 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
749 if (cleanup)
750 gimple_wce_set_cleanup (p, cleanup);
751
752 return p;
753}
754
755
756/* Build a GIMPLE_RESX statement.
757
758 REGION is the region number from which this resx causes control flow to
759 leave. */
760
761gimple
762gimple_build_resx (int region)
763{
764 gimple p = gimple_alloc (GIMPLE_RESX, 0);
765 gimple_resx_set_region (p, region);
766 return p;
767}
768
769
770/* The helper for constructing a gimple switch statement.
771 INDEX is the switch's index.
772 NLABELS is the number of labels in the switch excluding the default.
773 DEFAULT_LABEL is the default label for the switch statement. */
774
775static inline gimple
776gimple_build_switch_1 (unsigned nlabels, tree index, tree default_label)
777{
778 /* nlabels + 1 default label + 1 index. */
779 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, 0, nlabels + 1 + 1);
780 gimple_switch_set_index (p, index);
781 gimple_switch_set_default_label (p, default_label);
782 return p;
783}
784
785
786/* Build a GIMPLE_SWITCH statement.
787
788 INDEX is the switch's index.
789 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
790 ... are the labels excluding the default. */
791
792gimple
793gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
794{
795 va_list al;
796 unsigned i;
797 gimple p;
798
799 p = gimple_build_switch_1 (nlabels, index, default_label);
800
801 /* Store the rest of the labels. */
802 va_start (al, default_label);
803 for (i = 1; i <= nlabels; i++)
804 gimple_switch_set_label (p, i, va_arg (al, tree));
805 va_end (al);
806
807 return p;
808}
809
810
811/* Build a GIMPLE_SWITCH statement.
812
813 INDEX is the switch's index.
814 DEFAULT_LABEL is the default label
815 ARGS is a vector of labels excluding the default. */
816
817gimple
818gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
819{
820 unsigned i;
821 unsigned nlabels = VEC_length (tree, args);
822 gimple p = gimple_build_switch_1 (nlabels, index, default_label);
823
824 /* Put labels in labels[1 - (nlabels + 1)].
825 Default label is in labels[0]. */
826 for (i = 1; i <= nlabels; i++)
827 gimple_switch_set_label (p, i, VEC_index (tree, args, i - 1));
828
829 return p;
830}
831
832
833/* Build a GIMPLE_OMP_CRITICAL statement.
834
835 BODY is the sequence of statements for which only one thread can execute.
836 NAME is optional identifier for this critical block. */
837
838gimple
839gimple_build_omp_critical (gimple_seq body, tree name)
840{
841 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
842 gimple_omp_critical_set_name (p, name);
843 if (body)
844 gimple_omp_set_body (p, body);
845
846 return p;
847}
848
849/* Build a GIMPLE_OMP_FOR statement.
850
851 BODY is sequence of statements inside the for loop.
852 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
853 lastprivate, reductions, ordered, schedule, and nowait.
854 COLLAPSE is the collapse count.
855 PRE_BODY is the sequence of statements that are loop invariant. */
856
857gimple
858gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
859 gimple_seq pre_body)
860{
861 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
862 if (body)
863 gimple_omp_set_body (p, body);
864 gimple_omp_for_set_clauses (p, clauses);
865 p->gimple_omp_for.collapse = collapse;
866 p->gimple_omp_for.iter = GGC_CNEWVEC (struct gimple_omp_for_iter, collapse);
867 if (pre_body)
868 gimple_omp_for_set_pre_body (p, pre_body);
869
870 return p;
871}
872
873
874/* Build a GIMPLE_OMP_PARALLEL statement.
875
876 BODY is sequence of statements which are executed in parallel.
877 CLAUSES, are the OMP parallel construct's clauses.
878 CHILD_FN is the function created for the parallel threads to execute.
879 DATA_ARG are the shared data argument(s). */
880
881gimple
882gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
883 tree data_arg)
884{
885 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
886 if (body)
887 gimple_omp_set_body (p, body);
888 gimple_omp_parallel_set_clauses (p, clauses);
889 gimple_omp_parallel_set_child_fn (p, child_fn);
890 gimple_omp_parallel_set_data_arg (p, data_arg);
891
892 return p;
893}
894
895
896/* Build a GIMPLE_OMP_TASK statement.
897
898 BODY is sequence of statements which are executed by the explicit task.
899 CLAUSES, are the OMP parallel construct's clauses.
900 CHILD_FN is the function created for the parallel threads to execute.
901 DATA_ARG are the shared data argument(s).
902 COPY_FN is the optional function for firstprivate initialization.
903 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
904
905gimple
906gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
907 tree data_arg, tree copy_fn, tree arg_size,
908 tree arg_align)
909{
910 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
911 if (body)
912 gimple_omp_set_body (p, body);
913 gimple_omp_task_set_clauses (p, clauses);
914 gimple_omp_task_set_child_fn (p, child_fn);
915 gimple_omp_task_set_data_arg (p, data_arg);
916 gimple_omp_task_set_copy_fn (p, copy_fn);
917 gimple_omp_task_set_arg_size (p, arg_size);
918 gimple_omp_task_set_arg_align (p, arg_align);
919
920 return p;
921}
922
923
924/* Build a GIMPLE_OMP_SECTION statement for a sections statement.
925
926 BODY is the sequence of statements in the section. */
927
928gimple
929gimple_build_omp_section (gimple_seq body)
930{
931 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
932 if (body)
933 gimple_omp_set_body (p, body);
934
935 return p;
936}
937
938
939/* Build a GIMPLE_OMP_MASTER statement.
940
941 BODY is the sequence of statements to be executed by just the master. */
942
943gimple
944gimple_build_omp_master (gimple_seq body)
945{
946 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
947 if (body)
948 gimple_omp_set_body (p, body);
949
950 return p;
951}
952
953
954/* Build a GIMPLE_OMP_CONTINUE statement.
955
956 CONTROL_DEF is the definition of the control variable.
957 CONTROL_USE is the use of the control variable. */
958
959gimple
960gimple_build_omp_continue (tree control_def, tree control_use)
961{
962 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
963 gimple_omp_continue_set_control_def (p, control_def);
964 gimple_omp_continue_set_control_use (p, control_use);
965 return p;
966}
967
968/* Build a GIMPLE_OMP_ORDERED statement.
969
970 BODY is the sequence of statements inside a loop that will executed in
971 sequence. */
972
973gimple
974gimple_build_omp_ordered (gimple_seq body)
975{
976 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
977 if (body)
978 gimple_omp_set_body (p, body);
979
980 return p;
981}
982
983
984/* Build a GIMPLE_OMP_RETURN statement.
985 WAIT_P is true if this is a non-waiting return. */
986
987gimple
988gimple_build_omp_return (bool wait_p)
989{
990 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
991 if (wait_p)
992 gimple_omp_return_set_nowait (p);
993
994 return p;
995}
996
997
998/* Build a GIMPLE_OMP_SECTIONS statement.
999
1000 BODY is a sequence of section statements.
1001 CLAUSES are any of the OMP sections contsruct's clauses: private,
1002 firstprivate, lastprivate, reduction, and nowait. */
1003
1004gimple
1005gimple_build_omp_sections (gimple_seq body, tree clauses)
1006{
1007 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1008 if (body)
1009 gimple_omp_set_body (p, body);
1010 gimple_omp_sections_set_clauses (p, clauses);
1011
1012 return p;
1013}
1014
1015
1016/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1017
1018gimple
1019gimple_build_omp_sections_switch (void)
1020{
1021 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1022}
1023
1024
1025/* Build a GIMPLE_OMP_SINGLE statement.
1026
1027 BODY is the sequence of statements that will be executed once.
1028 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1029 copyprivate, nowait. */
1030
1031gimple
1032gimple_build_omp_single (gimple_seq body, tree clauses)
1033{
1034 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1035 if (body)
1036 gimple_omp_set_body (p, body);
1037 gimple_omp_single_set_clauses (p, clauses);
1038
1039 return p;
1040}
1041
1042
1043/* Build a GIMPLE_CHANGE_DYNAMIC_TYPE statement. TYPE is the new type
1044 for the location PTR. */
1045
1046gimple
1047gimple_build_cdt (tree type, tree ptr)
1048{
1049 gimple p = gimple_build_with_ops (GIMPLE_CHANGE_DYNAMIC_TYPE, 0, 2);
1050 gimple_cdt_set_new_type (p, type);
1051 gimple_cdt_set_location (p, ptr);
1052
1053 return p;
1054}
1055
1056
1057/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1058
1059gimple
1060gimple_build_omp_atomic_load (tree lhs, tree rhs)
1061{
1062 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1063 gimple_omp_atomic_load_set_lhs (p, lhs);
1064 gimple_omp_atomic_load_set_rhs (p, rhs);
1065 return p;
1066}
1067
1068/* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1069
1070 VAL is the value we are storing. */
1071
1072gimple
1073gimple_build_omp_atomic_store (tree val)
1074{
1075 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1076 gimple_omp_atomic_store_set_val (p, val);
1077 return p;
1078}
1079
1080/* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1081 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1082
1083gimple
1084gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1085{
1086 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1087 /* Ensure all the predictors fit into the lower bits of the subcode. */
e0c68ce9 1088 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
726a989a
RB
1089 gimple_predict_set_predictor (p, predictor);
1090 gimple_predict_set_outcome (p, outcome);
1091 return p;
1092}
1093
1094/* Return which gimple structure is used by T. The enums here are defined
1095 in gsstruct.def. */
1096
1097enum gimple_statement_structure_enum
1098gimple_statement_structure (gimple gs)
1099{
1100 return gss_for_code (gimple_code (gs));
1101}
1102
1103#if defined ENABLE_GIMPLE_CHECKING && (GCC_VERSION >= 2007)
1104/* Complain of a gimple type mismatch and die. */
1105
1106void
1107gimple_check_failed (const_gimple gs, const char *file, int line,
1108 const char *function, enum gimple_code code,
1109 enum tree_code subcode)
1110{
1111 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1112 gimple_code_name[code],
1113 tree_code_name[subcode],
1114 gimple_code_name[gimple_code (gs)],
1115 gs->gsbase.subcode > 0
1116 ? tree_code_name[gs->gsbase.subcode]
1117 : "",
1118 function, trim_filename (file), line);
1119}
1120
1121
1122/* Similar to gimple_check_failed, except that instead of specifying a
1123 dozen codes, use the knowledge that they're all sequential. */
1124
1125void
1126gimple_range_check_failed (const_gimple gs, const char *file, int line,
1127 const char *function, enum gimple_code c1,
1128 enum gimple_code c2)
1129{
1130 char *buffer;
1131 unsigned length = 0;
1132 enum gimple_code c;
1133
1134 for (c = c1; c <= c2; ++c)
1135 length += 4 + strlen (gimple_code_name[c]);
1136
1137 length += strlen ("expected ");
1138 buffer = XALLOCAVAR (char, length);
1139 length = 0;
1140
1141 for (c = c1; c <= c2; ++c)
1142 {
1143 const char *prefix = length ? " or " : "expected ";
1144
1145 strcpy (buffer + length, prefix);
1146 length += strlen (prefix);
1147 strcpy (buffer + length, gimple_code_name[c]);
1148 length += strlen (gimple_code_name[c]);
1149 }
1150
1151 internal_error ("gimple check: %s, have %s in %s, at %s:%d",
1152 buffer, gimple_code_name[gimple_code (gs)],
1153 function, trim_filename (file), line);
1154}
1155#endif /* ENABLE_GIMPLE_CHECKING */
1156
1157
1158/* Allocate a new GIMPLE sequence in GC memory and return it. If
1159 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1160 instead. */
1161
1162gimple_seq
1163gimple_seq_alloc (void)
1164{
1165 gimple_seq seq = gimple_seq_cache;
1166 if (seq)
1167 {
1168 gimple_seq_cache = gimple_seq_cache->next_free;
1169 gcc_assert (gimple_seq_cache != seq);
1170 memset (seq, 0, sizeof (*seq));
1171 }
1172 else
1173 {
1174 seq = (gimple_seq) ggc_alloc_cleared (sizeof (*seq));
1175#ifdef GATHER_STATISTICS
1176 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1177 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1178#endif
1179 }
1180
1181 return seq;
1182}
1183
1184/* Return SEQ to the free pool of GIMPLE sequences. */
1185
1186void
1187gimple_seq_free (gimple_seq seq)
1188{
1189 if (seq == NULL)
1190 return;
1191
1192 gcc_assert (gimple_seq_first (seq) == NULL);
1193 gcc_assert (gimple_seq_last (seq) == NULL);
1194
1195 /* If this triggers, it's a sign that the same list is being freed
1196 twice. */
1197 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1198
1199 /* Add SEQ to the pool of free sequences. */
1200 seq->next_free = gimple_seq_cache;
1201 gimple_seq_cache = seq;
1202}
1203
1204
1205/* Link gimple statement GS to the end of the sequence *SEQ_P. If
1206 *SEQ_P is NULL, a new sequence is allocated. */
1207
1208void
1209gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1210{
1211 gimple_stmt_iterator si;
1212
1213 if (gs == NULL)
1214 return;
1215
1216 if (*seq_p == NULL)
1217 *seq_p = gimple_seq_alloc ();
1218
1219 si = gsi_last (*seq_p);
1220 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1221}
1222
1223
1224/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1225 NULL, a new sequence is allocated. */
1226
1227void
1228gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1229{
1230 gimple_stmt_iterator si;
1231
1232 if (src == NULL)
1233 return;
1234
1235 if (*dst_p == NULL)
1236 *dst_p = gimple_seq_alloc ();
1237
1238 si = gsi_last (*dst_p);
1239 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1240}
1241
1242
1243/* Helper function of empty_body_p. Return true if STMT is an empty
1244 statement. */
1245
1246static bool
1247empty_stmt_p (gimple stmt)
1248{
1249 if (gimple_code (stmt) == GIMPLE_NOP)
1250 return true;
1251 if (gimple_code (stmt) == GIMPLE_BIND)
1252 return empty_body_p (gimple_bind_body (stmt));
1253 return false;
1254}
1255
1256
1257/* Return true if BODY contains nothing but empty statements. */
1258
1259bool
1260empty_body_p (gimple_seq body)
1261{
1262 gimple_stmt_iterator i;
1263
1264
1265 if (gimple_seq_empty_p (body))
1266 return true;
1267 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1268 if (!empty_stmt_p (gsi_stmt (i)))
1269 return false;
1270
1271 return true;
1272}
1273
1274
1275/* Perform a deep copy of sequence SRC and return the result. */
1276
1277gimple_seq
1278gimple_seq_copy (gimple_seq src)
1279{
1280 gimple_stmt_iterator gsi;
82d6e6fc 1281 gimple_seq new_seq = gimple_seq_alloc ();
726a989a
RB
1282 gimple stmt;
1283
1284 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1285 {
1286 stmt = gimple_copy (gsi_stmt (gsi));
82d6e6fc 1287 gimple_seq_add_stmt (&new_seq, stmt);
726a989a
RB
1288 }
1289
82d6e6fc 1290 return new_seq;
726a989a
RB
1291}
1292
1293
1294/* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1295 on each one. WI is as in walk_gimple_stmt.
1296
1297 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1298 value is stored in WI->CALLBACK_RESULT and the statement that
1299 produced the value is returned.
1300
1301 Otherwise, all the statements are walked and NULL returned. */
1302
1303gimple
1304walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1305 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1306{
1307 gimple_stmt_iterator gsi;
1308
1309 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1310 {
1311 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1312 if (ret)
1313 {
1314 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1315 to hold it. */
1316 gcc_assert (wi);
1317 wi->callback_result = ret;
1318 return gsi_stmt (gsi);
1319 }
1320 }
1321
1322 if (wi)
1323 wi->callback_result = NULL_TREE;
1324
1325 return NULL;
1326}
1327
1328
1329/* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1330
1331static tree
1332walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1333 struct walk_stmt_info *wi)
1334{
1335 tree ret;
1336 unsigned noutputs;
1337 const char **oconstraints;
1338 unsigned i;
1339 const char *constraint;
1340 bool allows_mem, allows_reg, is_inout;
1341
1342 noutputs = gimple_asm_noutputs (stmt);
1343 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1344
1345 if (wi)
1346 wi->is_lhs = true;
1347
1348 for (i = 0; i < noutputs; i++)
1349 {
1350 tree op = gimple_asm_output_op (stmt, i);
1351 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1352 oconstraints[i] = constraint;
1353 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1354 &is_inout);
1355 if (wi)
1356 wi->val_only = (allows_reg || !allows_mem);
1357 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1358 if (ret)
1359 return ret;
1360 }
1361
1362 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1363 {
1364 tree op = gimple_asm_input_op (stmt, i);
1365 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1366 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1367 oconstraints, &allows_mem, &allows_reg);
1368 if (wi)
1369 wi->val_only = (allows_reg || !allows_mem);
1370
1371 /* Although input "m" is not really a LHS, we need a lvalue. */
1372 if (wi)
1373 wi->is_lhs = !wi->val_only;
1374 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1375 if (ret)
1376 return ret;
1377 }
1378
1379 if (wi)
1380 {
1381 wi->is_lhs = false;
1382 wi->val_only = true;
1383 }
1384
1385 return NULL_TREE;
1386}
1387
1388
1389/* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1390 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1391
1392 CALLBACK_OP is called on each operand of STMT via walk_tree.
1393 Additional parameters to walk_tree must be stored in WI. For each operand
1394 OP, walk_tree is called as:
1395
1396 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1397
1398 If CALLBACK_OP returns non-NULL for an operand, the remaining
1399 operands are not scanned.
1400
1401 The return value is that returned by the last call to walk_tree, or
1402 NULL_TREE if no CALLBACK_OP is specified. */
1403
1404inline tree
1405walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1406 struct walk_stmt_info *wi)
1407{
1408 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1409 unsigned i;
1410 tree ret = NULL_TREE;
1411
1412 switch (gimple_code (stmt))
1413 {
1414 case GIMPLE_ASSIGN:
1415 /* Walk the RHS operands. A formal temporary LHS may use a
1416 COMPONENT_REF RHS. */
1417 if (wi)
1418 wi->val_only = !is_gimple_formal_tmp_var (gimple_assign_lhs (stmt));
1419
1420 for (i = 1; i < gimple_num_ops (stmt); i++)
1421 {
1422 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1423 pset);
1424 if (ret)
1425 return ret;
1426 }
1427
1428 /* Walk the LHS. If the RHS is appropriate for a memory, we
1429 may use a COMPONENT_REF on the LHS. */
1430 if (wi)
1431 {
1432 /* If the RHS has more than 1 operand, it is not appropriate
1433 for the memory. */
1434 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1435 || !gimple_assign_single_p (stmt);
1436 wi->is_lhs = true;
1437 }
1438
1439 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1440 if (ret)
1441 return ret;
1442
1443 if (wi)
1444 {
1445 wi->val_only = true;
1446 wi->is_lhs = false;
1447 }
1448 break;
1449
1450 case GIMPLE_CALL:
1451 if (wi)
1452 wi->is_lhs = false;
1453
1454 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1455 if (ret)
1456 return ret;
1457
1458 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1459 if (ret)
1460 return ret;
1461
1462 for (i = 0; i < gimple_call_num_args (stmt); i++)
1463 {
1464 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1465 pset);
1466 if (ret)
1467 return ret;
1468 }
1469
1470 if (wi)
1471 wi->is_lhs = true;
1472
1473 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1474 if (ret)
1475 return ret;
1476
1477 if (wi)
1478 wi->is_lhs = false;
1479 break;
1480
1481 case GIMPLE_CATCH:
1482 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1483 pset);
1484 if (ret)
1485 return ret;
1486 break;
1487
1488 case GIMPLE_EH_FILTER:
1489 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1490 pset);
1491 if (ret)
1492 return ret;
1493 break;
1494
1495 case GIMPLE_CHANGE_DYNAMIC_TYPE:
1496 ret = walk_tree (gimple_cdt_location_ptr (stmt), callback_op, wi, pset);
1497 if (ret)
1498 return ret;
1499
1500 ret = walk_tree (gimple_cdt_new_type_ptr (stmt), callback_op, wi, pset);
1501 if (ret)
1502 return ret;
1503 break;
1504
1505 case GIMPLE_ASM:
1506 ret = walk_gimple_asm (stmt, callback_op, wi);
1507 if (ret)
1508 return ret;
1509 break;
1510
1511 case GIMPLE_OMP_CONTINUE:
1512 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1513 callback_op, wi, pset);
1514 if (ret)
1515 return ret;
1516
1517 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1518 callback_op, wi, pset);
1519 if (ret)
1520 return ret;
1521 break;
1522
1523 case GIMPLE_OMP_CRITICAL:
1524 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1525 pset);
1526 if (ret)
1527 return ret;
1528 break;
1529
1530 case GIMPLE_OMP_FOR:
1531 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1532 pset);
1533 if (ret)
1534 return ret;
1535 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1536 {
1537 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1538 wi, pset);
1539 if (ret)
1540 return ret;
1541 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1542 wi, pset);
1543 if (ret)
1544 return ret;
1545 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1546 wi, pset);
1547 if (ret)
1548 return ret;
1549 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1550 wi, pset);
1551 }
1552 if (ret)
1553 return ret;
1554 break;
1555
1556 case GIMPLE_OMP_PARALLEL:
1557 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1558 wi, pset);
1559 if (ret)
1560 return ret;
1561 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1562 wi, pset);
1563 if (ret)
1564 return ret;
1565 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1566 wi, pset);
1567 if (ret)
1568 return ret;
1569 break;
1570
1571 case GIMPLE_OMP_TASK:
1572 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1573 wi, pset);
1574 if (ret)
1575 return ret;
1576 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1577 wi, pset);
1578 if (ret)
1579 return ret;
1580 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1581 wi, pset);
1582 if (ret)
1583 return ret;
1584 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1585 wi, pset);
1586 if (ret)
1587 return ret;
1588 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1589 wi, pset);
1590 if (ret)
1591 return ret;
1592 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1593 wi, pset);
1594 if (ret)
1595 return ret;
1596 break;
1597
1598 case GIMPLE_OMP_SECTIONS:
1599 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1600 wi, pset);
1601 if (ret)
1602 return ret;
1603
1604 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1605 wi, pset);
1606 if (ret)
1607 return ret;
1608
1609 break;
1610
1611 case GIMPLE_OMP_SINGLE:
1612 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1613 pset);
1614 if (ret)
1615 return ret;
1616 break;
1617
1618 case GIMPLE_OMP_ATOMIC_LOAD:
1619 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1620 pset);
1621 if (ret)
1622 return ret;
1623
1624 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1625 pset);
1626 if (ret)
1627 return ret;
1628 break;
1629
1630 case GIMPLE_OMP_ATOMIC_STORE:
1631 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1632 wi, pset);
1633 if (ret)
1634 return ret;
1635 break;
1636
1637 /* Tuples that do not have operands. */
1638 case GIMPLE_NOP:
1639 case GIMPLE_RESX:
1640 case GIMPLE_OMP_RETURN:
1641 case GIMPLE_PREDICT:
1642 break;
1643
1644 default:
1645 {
1646 enum gimple_statement_structure_enum gss;
1647 gss = gimple_statement_structure (stmt);
1648 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1649 for (i = 0; i < gimple_num_ops (stmt); i++)
1650 {
1651 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1652 if (ret)
1653 return ret;
1654 }
1655 }
1656 break;
1657 }
1658
1659 return NULL_TREE;
1660}
1661
1662
1663/* Walk the current statement in GSI (optionally using traversal state
1664 stored in WI). If WI is NULL, no state is kept during traversal.
1665 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1666 that it has handled all the operands of the statement, its return
1667 value is returned. Otherwise, the return value from CALLBACK_STMT
1668 is discarded and its operands are scanned.
1669
1670 If CALLBACK_STMT is NULL or it didn't handle the operands,
1671 CALLBACK_OP is called on each operand of the statement via
1672 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1673 operand, the remaining operands are not scanned. In this case, the
1674 return value from CALLBACK_OP is returned.
1675
1676 In any other case, NULL_TREE is returned. */
1677
1678tree
1679walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1680 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1681{
1682 gimple ret;
1683 tree tree_ret;
1684 gimple stmt = gsi_stmt (*gsi);
1685
1686 if (wi)
1687 wi->gsi = *gsi;
1688
1689 if (wi && wi->want_locations && gimple_has_location (stmt))
1690 input_location = gimple_location (stmt);
1691
1692 ret = NULL;
1693
1694 /* Invoke the statement callback. Return if the callback handled
1695 all of STMT operands by itself. */
1696 if (callback_stmt)
1697 {
1698 bool handled_ops = false;
1699 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1700 if (handled_ops)
1701 return tree_ret;
1702
1703 /* If CALLBACK_STMT did not handle operands, it should not have
1704 a value to return. */
1705 gcc_assert (tree_ret == NULL);
1706
1707 /* Re-read stmt in case the callback changed it. */
1708 stmt = gsi_stmt (*gsi);
1709 }
1710
1711 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1712 if (callback_op)
1713 {
1714 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1715 if (tree_ret)
1716 return tree_ret;
1717 }
1718
1719 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1720 switch (gimple_code (stmt))
1721 {
1722 case GIMPLE_BIND:
1723 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1724 callback_op, wi);
1725 if (ret)
1726 return wi->callback_result;
1727 break;
1728
1729 case GIMPLE_CATCH:
1730 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1731 callback_op, wi);
1732 if (ret)
1733 return wi->callback_result;
1734 break;
1735
1736 case GIMPLE_EH_FILTER:
1737 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1738 callback_op, wi);
1739 if (ret)
1740 return wi->callback_result;
1741 break;
1742
1743 case GIMPLE_TRY:
1744 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1745 wi);
1746 if (ret)
1747 return wi->callback_result;
1748
1749 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1750 callback_op, wi);
1751 if (ret)
1752 return wi->callback_result;
1753 break;
1754
1755 case GIMPLE_OMP_FOR:
1756 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1757 callback_op, wi);
1758 if (ret)
1759 return wi->callback_result;
1760
1761 /* FALL THROUGH. */
1762 case GIMPLE_OMP_CRITICAL:
1763 case GIMPLE_OMP_MASTER:
1764 case GIMPLE_OMP_ORDERED:
1765 case GIMPLE_OMP_SECTION:
1766 case GIMPLE_OMP_PARALLEL:
1767 case GIMPLE_OMP_TASK:
1768 case GIMPLE_OMP_SECTIONS:
1769 case GIMPLE_OMP_SINGLE:
1770 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1771 wi);
1772 if (ret)
1773 return wi->callback_result;
1774 break;
1775
1776 case GIMPLE_WITH_CLEANUP_EXPR:
1777 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1778 callback_op, wi);
1779 if (ret)
1780 return wi->callback_result;
1781 break;
1782
1783 default:
1784 gcc_assert (!gimple_has_substatements (stmt));
1785 break;
1786 }
1787
1788 return NULL;
1789}
1790
1791
1792/* Set sequence SEQ to be the GIMPLE body for function FN. */
1793
1794void
1795gimple_set_body (tree fndecl, gimple_seq seq)
1796{
1797 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1798 if (fn == NULL)
1799 {
1800 /* If FNDECL still does not have a function structure associated
1801 with it, then it does not make sense for it to receive a
1802 GIMPLE body. */
1803 gcc_assert (seq == NULL);
1804 }
1805 else
1806 fn->gimple_body = seq;
1807}
1808
1809
1810/* Return the body of GIMPLE statements for function FN. */
1811
1812gimple_seq
1813gimple_body (tree fndecl)
1814{
1815 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1816 return fn ? fn->gimple_body : NULL;
1817}
1818
39ecc018
JH
1819/* Return true when FNDECL has Gimple body either in unlowered
1820 or CFG form. */
1821bool
1822gimple_has_body_p (tree fndecl)
1823{
1824 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1825 return (gimple_body (fndecl) || (fn && fn->cfg));
1826}
726a989a
RB
1827
1828/* Detect flags from a GIMPLE_CALL. This is just like
1829 call_expr_flags, but for gimple tuples. */
1830
1831int
1832gimple_call_flags (const_gimple stmt)
1833{
1834 int flags;
1835 tree decl = gimple_call_fndecl (stmt);
1836 tree t;
1837
1838 if (decl)
1839 flags = flags_from_decl_or_type (decl);
1840 else
1841 {
1842 t = TREE_TYPE (gimple_call_fn (stmt));
1843 if (t && TREE_CODE (t) == POINTER_TYPE)
1844 flags = flags_from_decl_or_type (TREE_TYPE (t));
1845 else
1846 flags = 0;
1847 }
1848
1849 return flags;
1850}
1851
1852
1853/* Return true if GS is a copy assignment. */
1854
1855bool
1856gimple_assign_copy_p (gimple gs)
1857{
1858 return gimple_code (gs) == GIMPLE_ASSIGN
1859 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1860 == GIMPLE_SINGLE_RHS
1861 && is_gimple_val (gimple_op (gs, 1));
1862}
1863
1864
1865/* Return true if GS is a SSA_NAME copy assignment. */
1866
1867bool
1868gimple_assign_ssa_name_copy_p (gimple gs)
1869{
1870 return (gimple_code (gs) == GIMPLE_ASSIGN
1871 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1872 == GIMPLE_SINGLE_RHS)
1873 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1874 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1875}
1876
1877
1878/* Return true if GS is an assignment with a singleton RHS, i.e.,
1879 there is no operator associated with the assignment itself.
1880 Unlike gimple_assign_copy_p, this predicate returns true for
1881 any RHS operand, including those that perform an operation
1882 and do not have the semantics of a copy, such as COND_EXPR. */
1883
1884bool
1885gimple_assign_single_p (gimple gs)
1886{
1887 return (gimple_code (gs) == GIMPLE_ASSIGN
1888 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1889 == GIMPLE_SINGLE_RHS);
1890}
1891
1892/* Return true if GS is an assignment with a unary RHS, but the
1893 operator has no effect on the assigned value. The logic is adapted
1894 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1895 instances in which STRIP_NOPS was previously applied to the RHS of
1896 an assignment.
1897
1898 NOTE: In the use cases that led to the creation of this function
1899 and of gimple_assign_single_p, it is typical to test for either
1900 condition and to proceed in the same manner. In each case, the
1901 assigned value is represented by the single RHS operand of the
1902 assignment. I suspect there may be cases where gimple_assign_copy_p,
1903 gimple_assign_single_p, or equivalent logic is used where a similar
1904 treatment of unary NOPs is appropriate. */
1905
1906bool
1907gimple_assign_unary_nop_p (gimple gs)
1908{
1909 return (gimple_code (gs) == GIMPLE_ASSIGN
1a87cf0c 1910 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
726a989a
RB
1911 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1912 && gimple_assign_rhs1 (gs) != error_mark_node
1913 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1914 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1915}
1916
1917/* Set BB to be the basic block holding G. */
1918
1919void
1920gimple_set_bb (gimple stmt, basic_block bb)
1921{
1922 stmt->gsbase.bb = bb;
1923
1924 /* If the statement is a label, add the label to block-to-labels map
1925 so that we can speed up edge creation for GIMPLE_GOTOs. */
1926 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1927 {
1928 tree t;
1929 int uid;
1930
1931 t = gimple_label_label (stmt);
1932 uid = LABEL_DECL_UID (t);
1933 if (uid == -1)
1934 {
1935 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1936 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1937 if (old_len <= (unsigned) uid)
1938 {
1939 unsigned new_len = 3 * uid / 2;
1940
1941 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1942 new_len);
1943 }
1944 }
1945
1946 VEC_replace (basic_block, label_to_block_map, uid, bb);
1947 }
1948}
1949
1950
1951/* Fold the expression computed by STMT. If the expression can be
1952 folded, return the folded result, otherwise return NULL. STMT is
1953 not modified. */
1954
1955tree
1956gimple_fold (const_gimple stmt)
1957{
1958 switch (gimple_code (stmt))
1959 {
1960 case GIMPLE_COND:
1961 return fold_binary (gimple_cond_code (stmt),
1962 boolean_type_node,
1963 gimple_cond_lhs (stmt),
1964 gimple_cond_rhs (stmt));
1965
1966 case GIMPLE_ASSIGN:
1967 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
1968 {
1969 case GIMPLE_UNARY_RHS:
1970 return fold_unary (gimple_assign_rhs_code (stmt),
1971 TREE_TYPE (gimple_assign_lhs (stmt)),
1972 gimple_assign_rhs1 (stmt));
1973 case GIMPLE_BINARY_RHS:
1974 return fold_binary (gimple_assign_rhs_code (stmt),
1975 TREE_TYPE (gimple_assign_lhs (stmt)),
1976 gimple_assign_rhs1 (stmt),
1977 gimple_assign_rhs2 (stmt));
1978 case GIMPLE_SINGLE_RHS:
1979 return fold (gimple_assign_rhs1 (stmt));
1980 default:;
1981 }
1982 break;
1983
1984 case GIMPLE_SWITCH:
1985 return gimple_switch_index (stmt);
1986
1987 case GIMPLE_CALL:
1988 return NULL_TREE;
1989
1990 default:
1991 break;
1992 }
1993
1994 gcc_unreachable ();
1995}
1996
1997
1998/* Modify the RHS of the assignment pointed-to by GSI using the
1999 operands in the expression tree EXPR.
2000
2001 NOTE: The statement pointed-to by GSI may be reallocated if it
2002 did not have enough operand slots.
2003
2004 This function is useful to convert an existing tree expression into
2005 the flat representation used for the RHS of a GIMPLE assignment.
2006 It will reallocate memory as needed to expand or shrink the number
2007 of operand slots needed to represent EXPR.
2008
2009 NOTE: If you find yourself building a tree and then calling this
2010 function, you are most certainly doing it the slow way. It is much
2011 better to build a new assignment or to use the function
2012 gimple_assign_set_rhs_with_ops, which does not require an
2013 expression tree to be built. */
2014
2015void
2016gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
2017{
2018 enum tree_code subcode;
2019 tree op1, op2;
2020
2021 extract_ops_from_tree (expr, &subcode, &op1, &op2);
2022 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2);
2023}
2024
2025
2026/* Set the RHS of assignment statement pointed-to by GSI to CODE with
2027 operands OP1 and OP2.
2028
2029 NOTE: The statement pointed-to by GSI may be reallocated if it
2030 did not have enough operand slots. */
2031
2032void
2033gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
2034 tree op1, tree op2)
2035{
2036 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2037 gimple stmt = gsi_stmt (*gsi);
2038
2039 /* If the new CODE needs more operands, allocate a new statement. */
2040 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2041 {
2042 tree lhs = gimple_assign_lhs (stmt);
2043 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2044 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2045 gsi_replace (gsi, new_stmt, true);
2046 stmt = new_stmt;
2047
2048 /* The LHS needs to be reset as this also changes the SSA name
2049 on the LHS. */
2050 gimple_assign_set_lhs (stmt, lhs);
2051 }
2052
2053 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2054 gimple_set_subcode (stmt, code);
2055 gimple_assign_set_rhs1 (stmt, op1);
2056 if (new_rhs_ops > 1)
2057 gimple_assign_set_rhs2 (stmt, op2);
2058}
2059
2060
2061/* Return the LHS of a statement that performs an assignment,
2062 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2063 for a call to a function that returns no value, or for a
2064 statement other than an assignment or a call. */
2065
2066tree
2067gimple_get_lhs (const_gimple stmt)
2068{
e0c68ce9 2069 enum gimple_code code = gimple_code (stmt);
726a989a
RB
2070
2071 if (code == GIMPLE_ASSIGN)
2072 return gimple_assign_lhs (stmt);
2073 else if (code == GIMPLE_CALL)
2074 return gimple_call_lhs (stmt);
2075 else
2076 return NULL_TREE;
2077}
2078
2079
2080/* Set the LHS of a statement that performs an assignment,
2081 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2082
2083void
2084gimple_set_lhs (gimple stmt, tree lhs)
2085{
e0c68ce9 2086 enum gimple_code code = gimple_code (stmt);
726a989a
RB
2087
2088 if (code == GIMPLE_ASSIGN)
2089 gimple_assign_set_lhs (stmt, lhs);
2090 else if (code == GIMPLE_CALL)
2091 gimple_call_set_lhs (stmt, lhs);
2092 else
2093 gcc_unreachable();
2094}
2095
2096
2097/* Return a deep copy of statement STMT. All the operands from STMT
2098 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2099 and VUSE operand arrays are set to empty in the new copy. */
2100
2101gimple
2102gimple_copy (gimple stmt)
2103{
2104 enum gimple_code code = gimple_code (stmt);
2105 unsigned num_ops = gimple_num_ops (stmt);
2106 gimple copy = gimple_alloc (code, num_ops);
2107 unsigned i;
2108
2109 /* Shallow copy all the fields from STMT. */
2110 memcpy (copy, stmt, gimple_size (code));
2111
2112 /* If STMT has sub-statements, deep-copy them as well. */
2113 if (gimple_has_substatements (stmt))
2114 {
2115 gimple_seq new_seq;
2116 tree t;
2117
2118 switch (gimple_code (stmt))
2119 {
2120 case GIMPLE_BIND:
2121 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2122 gimple_bind_set_body (copy, new_seq);
2123 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2124 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2125 break;
2126
2127 case GIMPLE_CATCH:
2128 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2129 gimple_catch_set_handler (copy, new_seq);
2130 t = unshare_expr (gimple_catch_types (stmt));
2131 gimple_catch_set_types (copy, t);
2132 break;
2133
2134 case GIMPLE_EH_FILTER:
2135 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2136 gimple_eh_filter_set_failure (copy, new_seq);
2137 t = unshare_expr (gimple_eh_filter_types (stmt));
2138 gimple_eh_filter_set_types (copy, t);
2139 break;
2140
2141 case GIMPLE_TRY:
2142 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2143 gimple_try_set_eval (copy, new_seq);
2144 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2145 gimple_try_set_cleanup (copy, new_seq);
2146 break;
2147
2148 case GIMPLE_OMP_FOR:
2149 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2150 gimple_omp_for_set_pre_body (copy, new_seq);
2151 t = unshare_expr (gimple_omp_for_clauses (stmt));
2152 gimple_omp_for_set_clauses (copy, t);
2153 copy->gimple_omp_for.iter
2154 = GGC_NEWVEC (struct gimple_omp_for_iter,
2155 gimple_omp_for_collapse (stmt));
2156 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2157 {
2158 gimple_omp_for_set_cond (copy, i,
2159 gimple_omp_for_cond (stmt, i));
2160 gimple_omp_for_set_index (copy, i,
2161 gimple_omp_for_index (stmt, i));
2162 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2163 gimple_omp_for_set_initial (copy, i, t);
2164 t = unshare_expr (gimple_omp_for_final (stmt, i));
2165 gimple_omp_for_set_final (copy, i, t);
2166 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2167 gimple_omp_for_set_incr (copy, i, t);
2168 }
2169 goto copy_omp_body;
2170
2171 case GIMPLE_OMP_PARALLEL:
2172 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2173 gimple_omp_parallel_set_clauses (copy, t);
2174 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2175 gimple_omp_parallel_set_child_fn (copy, t);
2176 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2177 gimple_omp_parallel_set_data_arg (copy, t);
2178 goto copy_omp_body;
2179
2180 case GIMPLE_OMP_TASK:
2181 t = unshare_expr (gimple_omp_task_clauses (stmt));
2182 gimple_omp_task_set_clauses (copy, t);
2183 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2184 gimple_omp_task_set_child_fn (copy, t);
2185 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2186 gimple_omp_task_set_data_arg (copy, t);
2187 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2188 gimple_omp_task_set_copy_fn (copy, t);
2189 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2190 gimple_omp_task_set_arg_size (copy, t);
2191 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2192 gimple_omp_task_set_arg_align (copy, t);
2193 goto copy_omp_body;
2194
2195 case GIMPLE_OMP_CRITICAL:
2196 t = unshare_expr (gimple_omp_critical_name (stmt));
2197 gimple_omp_critical_set_name (copy, t);
2198 goto copy_omp_body;
2199
2200 case GIMPLE_OMP_SECTIONS:
2201 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2202 gimple_omp_sections_set_clauses (copy, t);
2203 t = unshare_expr (gimple_omp_sections_control (stmt));
2204 gimple_omp_sections_set_control (copy, t);
2205 /* FALLTHRU */
2206
2207 case GIMPLE_OMP_SINGLE:
2208 case GIMPLE_OMP_SECTION:
2209 case GIMPLE_OMP_MASTER:
2210 case GIMPLE_OMP_ORDERED:
2211 copy_omp_body:
2212 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2213 gimple_omp_set_body (copy, new_seq);
2214 break;
2215
2216 case GIMPLE_WITH_CLEANUP_EXPR:
2217 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2218 gimple_wce_set_cleanup (copy, new_seq);
2219 break;
2220
2221 default:
2222 gcc_unreachable ();
2223 }
2224 }
2225
2226 /* Make copy of operands. */
2227 if (num_ops > 0)
2228 {
2229 for (i = 0; i < num_ops; i++)
2230 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2231
2232 /* Clear out SSA operand vectors on COPY. Note that we cannot
2233 call the API functions for setting addresses_taken, stores
2234 and loads. These functions free the previous values, and we
2235 cannot do that on COPY as it will affect the original
2236 statement. */
2237 if (gimple_has_ops (stmt))
2238 {
2239 gimple_set_def_ops (copy, NULL);
2240 gimple_set_use_ops (copy, NULL);
2241 copy->gsops.opbase.addresses_taken = NULL;
2242 }
2243
2244 if (gimple_has_mem_ops (stmt))
2245 {
2246 gimple_set_vdef_ops (copy, NULL);
2247 gimple_set_vuse_ops (copy, NULL);
2248 copy->gsmem.membase.stores = NULL;
2249 copy->gsmem.membase.loads = NULL;
2250 }
2251
2252 update_stmt (copy);
2253 }
2254
2255 return copy;
2256}
2257
2258
2259/* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2260 a MODIFIED field. */
2261
2262void
2263gimple_set_modified (gimple s, bool modifiedp)
2264{
2265 if (gimple_has_ops (s))
2266 {
2267 s->gsbase.modified = (unsigned) modifiedp;
2268
2269 if (modifiedp
2270 && cfun->gimple_df
2271 && is_gimple_call (s)
2272 && gimple_call_noreturn_p (s))
2273 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2274 }
2275}
2276
2277
2278/* Return true if statement S has side-effects. We consider a
2279 statement to have side effects if:
2280
2281 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2282 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2283
2284bool
2285gimple_has_side_effects (const_gimple s)
2286{
2287 unsigned i;
2288
2289 /* We don't have to scan the arguments to check for
2290 volatile arguments, though, at present, we still
2291 do a scan to check for TREE_SIDE_EFFECTS. */
2292 if (gimple_has_volatile_ops (s))
2293 return true;
2294
2295 if (is_gimple_call (s))
2296 {
2297 unsigned nargs = gimple_call_num_args (s);
2298
2299 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2300 return true;
2301 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2302 /* An infinite loop is considered a side effect. */
2303 return true;
2304
2305 if (gimple_call_lhs (s)
2306 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2307 {
2308 gcc_assert (gimple_has_volatile_ops (s));
2309 return true;
2310 }
2311
2312 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2313 return true;
2314
2315 for (i = 0; i < nargs; i++)
2316 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2317 {
2318 gcc_assert (gimple_has_volatile_ops (s));
2319 return true;
2320 }
2321
2322 return false;
2323 }
2324 else
2325 {
2326 for (i = 0; i < gimple_num_ops (s); i++)
2327 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2328 {
2329 gcc_assert (gimple_has_volatile_ops (s));
2330 return true;
2331 }
2332 }
2333
2334 return false;
2335}
2336
2337/* Return true if the RHS of statement S has side effects.
2338 We may use it to determine if it is admissable to replace
2339 an assignment or call with a copy of a previously-computed
2340 value. In such cases, side-effects due the the LHS are
2341 preserved. */
2342
2343bool
2344gimple_rhs_has_side_effects (const_gimple s)
2345{
2346 unsigned i;
2347
2348 if (is_gimple_call (s))
2349 {
2350 unsigned nargs = gimple_call_num_args (s);
2351
2352 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2353 return true;
2354
2355 /* We cannot use gimple_has_volatile_ops here,
2356 because we must ignore a volatile LHS. */
2357 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2358 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2359 {
2360 gcc_assert (gimple_has_volatile_ops (s));
2361 return true;
2362 }
2363
2364 for (i = 0; i < nargs; i++)
2365 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2366 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2367 return true;
2368
2369 return false;
2370 }
2371 else if (is_gimple_assign (s))
2372 {
2373 /* Skip the first operand, the LHS. */
2374 for (i = 1; i < gimple_num_ops (s); i++)
2375 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2376 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2377 {
2378 gcc_assert (gimple_has_volatile_ops (s));
2379 return true;
2380 }
2381 }
2382 else
2383 {
2384 /* For statements without an LHS, examine all arguments. */
2385 for (i = 0; i < gimple_num_ops (s); i++)
2386 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2387 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2388 {
2389 gcc_assert (gimple_has_volatile_ops (s));
2390 return true;
2391 }
2392 }
2393
2394 return false;
2395}
2396
2397
2398/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2399 Return true if S can trap. If INCLUDE_LHS is true and S is a
2400 GIMPLE_ASSIGN, the LHS of the assignment is also checked.
2401 Otherwise, only the RHS of the assignment is checked. */
2402
2403static bool
2404gimple_could_trap_p_1 (gimple s, bool include_lhs)
2405{
2406 unsigned i, start;
2407 tree t, div = NULL_TREE;
2408 enum tree_code op;
2409
2410 start = (is_gimple_assign (s) && !include_lhs) ? 1 : 0;
2411
2412 for (i = start; i < gimple_num_ops (s); i++)
2413 if (tree_could_trap_p (gimple_op (s, i)))
2414 return true;
2415
2416 switch (gimple_code (s))
2417 {
2418 case GIMPLE_ASM:
2419 return gimple_asm_volatile_p (s);
2420
2421 case GIMPLE_CALL:
2422 t = gimple_call_fndecl (s);
2423 /* Assume that calls to weak functions may trap. */
2424 if (!t || !DECL_P (t) || DECL_WEAK (t))
2425 return true;
2426 return false;
2427
2428 case GIMPLE_ASSIGN:
2429 t = gimple_expr_type (s);
2430 op = gimple_assign_rhs_code (s);
2431 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2432 div = gimple_assign_rhs2 (s);
2433 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2434 (INTEGRAL_TYPE_P (t)
2435 && TYPE_OVERFLOW_TRAPS (t)),
2436 div));
2437
2438 default:
2439 break;
2440 }
2441
2442 return false;
2443
2444}
2445
2446
2447/* Return true if statement S can trap. */
2448
2449bool
2450gimple_could_trap_p (gimple s)
2451{
2452 return gimple_could_trap_p_1 (s, true);
2453}
2454
2455
2456/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2457
2458bool
2459gimple_assign_rhs_could_trap_p (gimple s)
2460{
2461 gcc_assert (is_gimple_assign (s));
2462 return gimple_could_trap_p_1 (s, false);
2463}
2464
2465
2466/* Print debugging information for gimple stmts generated. */
2467
2468void
2469dump_gimple_statistics (void)
2470{
2471#ifdef GATHER_STATISTICS
2472 int i, total_tuples = 0, total_bytes = 0;
2473
2474 fprintf (stderr, "\nGIMPLE statements\n");
2475 fprintf (stderr, "Kind Stmts Bytes\n");
2476 fprintf (stderr, "---------------------------------------\n");
2477 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2478 {
2479 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2480 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2481 total_tuples += gimple_alloc_counts[i];
2482 total_bytes += gimple_alloc_sizes[i];
2483 }
2484 fprintf (stderr, "---------------------------------------\n");
2485 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2486 fprintf (stderr, "---------------------------------------\n");
2487#else
2488 fprintf (stderr, "No gimple statistics\n");
2489#endif
2490}
2491
2492
2493/* Deep copy SYMS into the set of symbols stored by STMT. If SYMS is
2494 NULL or empty, the storage used is freed up. */
2495
2496void
2497gimple_set_stored_syms (gimple stmt, bitmap syms, bitmap_obstack *obs)
2498{
2499 gcc_assert (gimple_has_mem_ops (stmt));
2500
2501 if (syms == NULL || bitmap_empty_p (syms))
2502 BITMAP_FREE (stmt->gsmem.membase.stores);
2503 else
2504 {
2505 if (stmt->gsmem.membase.stores == NULL)
2506 stmt->gsmem.membase.stores = BITMAP_ALLOC (obs);
2507
2508 bitmap_copy (stmt->gsmem.membase.stores, syms);
2509 }
2510}
2511
2512
2513/* Deep copy SYMS into the set of symbols loaded by STMT. If SYMS is
2514 NULL or empty, the storage used is freed up. */
2515
2516void
2517gimple_set_loaded_syms (gimple stmt, bitmap syms, bitmap_obstack *obs)
2518{
2519 gcc_assert (gimple_has_mem_ops (stmt));
2520
2521 if (syms == NULL || bitmap_empty_p (syms))
2522 BITMAP_FREE (stmt->gsmem.membase.loads);
2523 else
2524 {
2525 if (stmt->gsmem.membase.loads == NULL)
2526 stmt->gsmem.membase.loads = BITMAP_ALLOC (obs);
2527
2528 bitmap_copy (stmt->gsmem.membase.loads, syms);
2529 }
2530}
2531
2532
2533/* Return the number of operands needed on the RHS of a GIMPLE
2534 assignment for an expression with tree code CODE. */
2535
2536unsigned
2537get_gimple_rhs_num_ops (enum tree_code code)
2538{
2539 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2540
2541 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2542 return 1;
2543 else if (rhs_class == GIMPLE_BINARY_RHS)
2544 return 2;
2545 else
2546 gcc_unreachable ();
2547}
2548
2549#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2550 (unsigned char) \
2551 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2552 : ((TYPE) == tcc_binary \
2553 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2554 : ((TYPE) == tcc_constant \
2555 || (TYPE) == tcc_declaration \
2556 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2557 : ((SYM) == TRUTH_AND_EXPR \
2558 || (SYM) == TRUTH_OR_EXPR \
2559 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2560 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2561 : ((SYM) == COND_EXPR \
2562 || (SYM) == CONSTRUCTOR \
2563 || (SYM) == OBJ_TYPE_REF \
2564 || (SYM) == ASSERT_EXPR \
2565 || (SYM) == ADDR_EXPR \
2566 || (SYM) == WITH_SIZE_EXPR \
2567 || (SYM) == EXC_PTR_EXPR \
2568 || (SYM) == SSA_NAME \
2569 || (SYM) == FILTER_EXPR \
2570 || (SYM) == POLYNOMIAL_CHREC \
2571 || (SYM) == DOT_PROD_EXPR \
2572 || (SYM) == VEC_COND_EXPR \
2573 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2574 : GIMPLE_INVALID_RHS),
2575#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2576
2577const unsigned char gimple_rhs_class_table[] = {
2578#include "all-tree.def"
2579};
2580
2581#undef DEFTREECODE
2582#undef END_OF_BASE_TREE_CODES
2583
2584/* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2585
2586/* Validation of GIMPLE expressions. */
2587
2588/* Return true if OP is an acceptable tree node to be used as a GIMPLE
2589 operand. */
2590
2591bool
2592is_gimple_operand (const_tree op)
2593{
2594 return op && get_gimple_rhs_class (TREE_CODE (op)) == GIMPLE_SINGLE_RHS;
2595}
2596
2597
2598/* Return true if T is a GIMPLE RHS for an assignment to a temporary. */
2599
2600bool
2601is_gimple_formal_tmp_rhs (tree t)
2602{
2603 if (is_gimple_lvalue (t) || is_gimple_val (t))
2604 return true;
2605
2606 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2607}
2608
2609/* Returns true iff T is a valid RHS for an assignment to a renamed
2610 user -- or front-end generated artificial -- variable. */
2611
2612bool
2613is_gimple_reg_rhs (tree t)
2614{
2615 /* If the RHS of the MODIFY_EXPR may throw or make a nonlocal goto
2616 and the LHS is a user variable, then we need to introduce a formal
2617 temporary. This way the optimizers can determine that the user
2618 variable is only modified if evaluation of the RHS does not throw.
2619
2620 Don't force a temp of a non-renamable type; the copy could be
2621 arbitrarily expensive. Instead we will generate a VDEF for
2622 the assignment. */
2623
2624 if (is_gimple_reg_type (TREE_TYPE (t)) && tree_could_throw_p (t))
2625 return false;
2626
2627 return is_gimple_formal_tmp_rhs (t);
2628}
2629
2630/* Returns true iff T is a valid RHS for an assignment to an un-renamed
2631 LHS, or for a call argument. */
2632
2633bool
2634is_gimple_mem_rhs (tree t)
2635{
2636 /* If we're dealing with a renamable type, either source or dest must be
2637 a renamed variable. */
2638 if (is_gimple_reg_type (TREE_TYPE (t)))
2639 return is_gimple_val (t);
2640 else
2641 return is_gimple_formal_tmp_rhs (t);
2642}
2643
2644/* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2645
2646bool
2647is_gimple_lvalue (tree t)
2648{
2649 return (is_gimple_addressable (t)
2650 || TREE_CODE (t) == WITH_SIZE_EXPR
2651 /* These are complex lvalues, but don't have addresses, so they
2652 go here. */
2653 || TREE_CODE (t) == BIT_FIELD_REF);
2654}
2655
2656/* Return true if T is a GIMPLE condition. */
2657
2658bool
2659is_gimple_condexpr (tree t)
2660{
2661 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2662 && !tree_could_trap_p (t)
2663 && is_gimple_val (TREE_OPERAND (t, 0))
2664 && is_gimple_val (TREE_OPERAND (t, 1))));
2665}
2666
2667/* Return true if T is something whose address can be taken. */
2668
2669bool
2670is_gimple_addressable (tree t)
2671{
2672 return (is_gimple_id (t) || handled_component_p (t) || INDIRECT_REF_P (t));
2673}
2674
2675/* Return true if T is a valid gimple constant. */
2676
2677bool
2678is_gimple_constant (const_tree t)
2679{
2680 switch (TREE_CODE (t))
2681 {
2682 case INTEGER_CST:
2683 case REAL_CST:
2684 case FIXED_CST:
2685 case STRING_CST:
2686 case COMPLEX_CST:
2687 case VECTOR_CST:
2688 return true;
2689
2690 /* Vector constant constructors are gimple invariant. */
2691 case CONSTRUCTOR:
2692 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2693 return TREE_CONSTANT (t);
2694 else
2695 return false;
2696
2697 default:
2698 return false;
2699 }
2700}
2701
2702/* Return true if T is a gimple address. */
2703
2704bool
2705is_gimple_address (const_tree t)
2706{
2707 tree op;
2708
2709 if (TREE_CODE (t) != ADDR_EXPR)
2710 return false;
2711
2712 op = TREE_OPERAND (t, 0);
2713 while (handled_component_p (op))
2714 {
2715 if ((TREE_CODE (op) == ARRAY_REF
2716 || TREE_CODE (op) == ARRAY_RANGE_REF)
2717 && !is_gimple_val (TREE_OPERAND (op, 1)))
2718 return false;
2719
2720 op = TREE_OPERAND (op, 0);
2721 }
2722
2723 if (CONSTANT_CLASS_P (op) || INDIRECT_REF_P (op))
2724 return true;
2725
2726 switch (TREE_CODE (op))
2727 {
2728 case PARM_DECL:
2729 case RESULT_DECL:
2730 case LABEL_DECL:
2731 case FUNCTION_DECL:
2732 case VAR_DECL:
2733 case CONST_DECL:
2734 return true;
2735
2736 default:
2737 return false;
2738 }
2739}
2740
00fc2333
JH
2741/* Strip out all handled components that produce invariant
2742 offsets. */
726a989a 2743
00fc2333
JH
2744static const_tree
2745strip_invariant_refs (const_tree op)
726a989a 2746{
726a989a
RB
2747 while (handled_component_p (op))
2748 {
2749 switch (TREE_CODE (op))
2750 {
2751 case ARRAY_REF:
2752 case ARRAY_RANGE_REF:
2753 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2754 || TREE_OPERAND (op, 2) != NULL_TREE
2755 || TREE_OPERAND (op, 3) != NULL_TREE)
00fc2333 2756 return NULL;
726a989a
RB
2757 break;
2758
2759 case COMPONENT_REF:
2760 if (TREE_OPERAND (op, 2) != NULL_TREE)
00fc2333 2761 return NULL;
726a989a
RB
2762 break;
2763
2764 default:;
2765 }
2766 op = TREE_OPERAND (op, 0);
2767 }
2768
00fc2333
JH
2769 return op;
2770}
2771
2772/* Return true if T is a gimple invariant address. */
2773
2774bool
2775is_gimple_invariant_address (const_tree t)
2776{
2777 const_tree op;
2778
2779 if (TREE_CODE (t) != ADDR_EXPR)
2780 return false;
2781
2782 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2783
2784 return op && (CONSTANT_CLASS_P (op) || decl_address_invariant_p (op));
2785}
2786
2787/* Return true if T is a gimple invariant address at IPA level
2788 (so addresses of variables on stack are not allowed). */
2789
2790bool
2791is_gimple_ip_invariant_address (const_tree t)
2792{
2793 const_tree op;
2794
2795 if (TREE_CODE (t) != ADDR_EXPR)
2796 return false;
2797
2798 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2799
2800 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
726a989a
RB
2801}
2802
2803/* Return true if T is a GIMPLE minimal invariant. It's a restricted
2804 form of function invariant. */
2805
2806bool
2807is_gimple_min_invariant (const_tree t)
2808{
2809 if (TREE_CODE (t) == ADDR_EXPR)
2810 return is_gimple_invariant_address (t);
2811
2812 return is_gimple_constant (t);
2813}
2814
00fc2333
JH
2815/* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2816 form of gimple minimal invariant. */
2817
2818bool
2819is_gimple_ip_invariant (const_tree t)
2820{
2821 if (TREE_CODE (t) == ADDR_EXPR)
2822 return is_gimple_ip_invariant_address (t);
2823
2824 return is_gimple_constant (t);
2825}
2826
726a989a
RB
2827/* Return true if T looks like a valid GIMPLE statement. */
2828
2829bool
2830is_gimple_stmt (tree t)
2831{
2832 const enum tree_code code = TREE_CODE (t);
2833
2834 switch (code)
2835 {
2836 case NOP_EXPR:
2837 /* The only valid NOP_EXPR is the empty statement. */
2838 return IS_EMPTY_STMT (t);
2839
2840 case BIND_EXPR:
2841 case COND_EXPR:
2842 /* These are only valid if they're void. */
2843 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2844
2845 case SWITCH_EXPR:
2846 case GOTO_EXPR:
2847 case RETURN_EXPR:
2848 case LABEL_EXPR:
2849 case CASE_LABEL_EXPR:
2850 case TRY_CATCH_EXPR:
2851 case TRY_FINALLY_EXPR:
2852 case EH_FILTER_EXPR:
2853 case CATCH_EXPR:
2854 case CHANGE_DYNAMIC_TYPE_EXPR:
2855 case ASM_EXPR:
2856 case RESX_EXPR:
2857 case STATEMENT_LIST:
2858 case OMP_PARALLEL:
2859 case OMP_FOR:
2860 case OMP_SECTIONS:
2861 case OMP_SECTION:
2862 case OMP_SINGLE:
2863 case OMP_MASTER:
2864 case OMP_ORDERED:
2865 case OMP_CRITICAL:
2866 case OMP_TASK:
2867 /* These are always void. */
2868 return true;
2869
2870 case CALL_EXPR:
2871 case MODIFY_EXPR:
2872 case PREDICT_EXPR:
2873 /* These are valid regardless of their type. */
2874 return true;
2875
2876 default:
2877 return false;
2878 }
2879}
2880
2881/* Return true if T is a variable. */
2882
2883bool
2884is_gimple_variable (tree t)
2885{
2886 return (TREE_CODE (t) == VAR_DECL
2887 || TREE_CODE (t) == PARM_DECL
2888 || TREE_CODE (t) == RESULT_DECL
2889 || TREE_CODE (t) == SSA_NAME);
2890}
2891
2892/* Return true if T is a GIMPLE identifier (something with an address). */
2893
2894bool
2895is_gimple_id (tree t)
2896{
2897 return (is_gimple_variable (t)
2898 || TREE_CODE (t) == FUNCTION_DECL
2899 || TREE_CODE (t) == LABEL_DECL
2900 || TREE_CODE (t) == CONST_DECL
2901 /* Allow string constants, since they are addressable. */
2902 || TREE_CODE (t) == STRING_CST);
2903}
2904
2905/* Return true if TYPE is a suitable type for a scalar register variable. */
2906
2907bool
2908is_gimple_reg_type (tree type)
2909{
2910 /* In addition to aggregate types, we also exclude complex types if not
2911 optimizing because they can be subject to partial stores in GNU C by
2912 means of the __real__ and __imag__ operators and we cannot promote
2913 them to total stores (see gimplify_modify_expr_complex_part). */
2914 return !(AGGREGATE_TYPE_P (type)
2915 || (TREE_CODE (type) == COMPLEX_TYPE && !optimize));
2916
2917}
2918
2919/* Return true if T is a non-aggregate register variable. */
2920
2921bool
2922is_gimple_reg (tree t)
2923{
2924 if (TREE_CODE (t) == SSA_NAME)
2925 t = SSA_NAME_VAR (t);
2926
2927 if (MTAG_P (t))
2928 return false;
2929
2930 if (!is_gimple_variable (t))
2931 return false;
2932
2933 if (!is_gimple_reg_type (TREE_TYPE (t)))
2934 return false;
2935
2936 /* A volatile decl is not acceptable because we can't reuse it as
2937 needed. We need to copy it into a temp first. */
2938 if (TREE_THIS_VOLATILE (t))
2939 return false;
2940
2941 /* We define "registers" as things that can be renamed as needed,
2942 which with our infrastructure does not apply to memory. */
2943 if (needs_to_live_in_memory (t))
2944 return false;
2945
2946 /* Hard register variables are an interesting case. For those that
2947 are call-clobbered, we don't know where all the calls are, since
2948 we don't (want to) take into account which operations will turn
2949 into libcalls at the rtl level. For those that are call-saved,
2950 we don't currently model the fact that calls may in fact change
2951 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2952 level, and so miss variable changes that might imply. All around,
2953 it seems safest to not do too much optimization with these at the
2954 tree level at all. We'll have to rely on the rtl optimizers to
2955 clean this up, as there we've got all the appropriate bits exposed. */
2956 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2957 return false;
2958
2959 /* Complex and vector values must have been put into SSA-like form.
2960 That is, no assignments to the individual components. */
2961 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2962 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2963 return DECL_GIMPLE_REG_P (t);
2964
2965 return true;
2966}
2967
2968
2969/* Returns true if T is a GIMPLE formal temporary variable. */
2970
2971bool
2972is_gimple_formal_tmp_var (tree t)
2973{
2974 if (TREE_CODE (t) == SSA_NAME)
2975 return true;
2976
2977 return TREE_CODE (t) == VAR_DECL && DECL_GIMPLE_FORMAL_TEMP_P (t);
2978}
2979
2980/* Returns true if T is a GIMPLE formal temporary register variable. */
2981
2982bool
2983is_gimple_formal_tmp_reg (tree t)
2984{
2985 /* The intent of this is to get hold of a value that won't change.
2986 An SSA_NAME qualifies no matter if its of a user variable or not. */
2987 if (TREE_CODE (t) == SSA_NAME)
2988 return true;
2989
2990 /* We don't know the lifetime characteristics of user variables. */
2991 if (!is_gimple_formal_tmp_var (t))
2992 return false;
2993
2994 /* Finally, it must be capable of being placed in a register. */
2995 return is_gimple_reg (t);
2996}
2997
2998/* Return true if T is a GIMPLE variable whose address is not needed. */
2999
3000bool
3001is_gimple_non_addressable (tree t)
3002{
3003 if (TREE_CODE (t) == SSA_NAME)
3004 t = SSA_NAME_VAR (t);
3005
3006 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
3007}
3008
3009/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
3010
3011bool
3012is_gimple_val (tree t)
3013{
3014 /* Make loads from volatiles and memory vars explicit. */
3015 if (is_gimple_variable (t)
3016 && is_gimple_reg_type (TREE_TYPE (t))
3017 && !is_gimple_reg (t))
3018 return false;
3019
3020 /* FIXME make these decls. That can happen only when we expose the
3021 entire landing-pad construct at the tree level. */
3022 if (TREE_CODE (t) == EXC_PTR_EXPR || TREE_CODE (t) == FILTER_EXPR)
3023 return true;
3024
3025 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
3026}
3027
3028/* Similarly, but accept hard registers as inputs to asm statements. */
3029
3030bool
3031is_gimple_asm_val (tree t)
3032{
3033 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
3034 return true;
3035
3036 return is_gimple_val (t);
3037}
3038
3039/* Return true if T is a GIMPLE minimal lvalue. */
3040
3041bool
3042is_gimple_min_lval (tree t)
3043{
3044 return (is_gimple_id (t) || TREE_CODE (t) == INDIRECT_REF);
3045}
3046
3047/* Return true if T is a typecast operation. */
3048
3049bool
3050is_gimple_cast (tree t)
3051{
3052 return (CONVERT_EXPR_P (t)
3053 || TREE_CODE (t) == FIX_TRUNC_EXPR);
3054}
3055
3056/* Return true if T is a valid function operand of a CALL_EXPR. */
3057
3058bool
3059is_gimple_call_addr (tree t)
3060{
3061 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
3062}
3063
3064/* If T makes a function call, return the corresponding CALL_EXPR operand.
3065 Otherwise, return NULL_TREE. */
3066
3067tree
3068get_call_expr_in (tree t)
3069{
3070 if (TREE_CODE (t) == MODIFY_EXPR)
3071 t = TREE_OPERAND (t, 1);
3072 if (TREE_CODE (t) == WITH_SIZE_EXPR)
3073 t = TREE_OPERAND (t, 0);
3074 if (TREE_CODE (t) == CALL_EXPR)
3075 return t;
3076 return NULL_TREE;
3077}
3078
3079
3080/* Given a memory reference expression T, return its base address.
3081 The base address of a memory reference expression is the main
3082 object being referenced. For instance, the base address for
3083 'array[i].fld[j]' is 'array'. You can think of this as stripping
3084 away the offset part from a memory address.
3085
3086 This function calls handled_component_p to strip away all the inner
3087 parts of the memory reference until it reaches the base object. */
3088
3089tree
3090get_base_address (tree t)
3091{
3092 while (handled_component_p (t))
3093 t = TREE_OPERAND (t, 0);
3094
3095 if (SSA_VAR_P (t)
3096 || TREE_CODE (t) == STRING_CST
3097 || TREE_CODE (t) == CONSTRUCTOR
3098 || INDIRECT_REF_P (t))
3099 return t;
3100 else
3101 return NULL_TREE;
3102}
3103
3104void
3105recalculate_side_effects (tree t)
3106{
3107 enum tree_code code = TREE_CODE (t);
3108 int len = TREE_OPERAND_LENGTH (t);
3109 int i;
3110
3111 switch (TREE_CODE_CLASS (code))
3112 {
3113 case tcc_expression:
3114 switch (code)
3115 {
3116 case INIT_EXPR:
3117 case MODIFY_EXPR:
3118 case VA_ARG_EXPR:
3119 case PREDECREMENT_EXPR:
3120 case PREINCREMENT_EXPR:
3121 case POSTDECREMENT_EXPR:
3122 case POSTINCREMENT_EXPR:
3123 /* All of these have side-effects, no matter what their
3124 operands are. */
3125 return;
3126
3127 default:
3128 break;
3129 }
3130 /* Fall through. */
3131
3132 case tcc_comparison: /* a comparison expression */
3133 case tcc_unary: /* a unary arithmetic expression */
3134 case tcc_binary: /* a binary arithmetic expression */
3135 case tcc_reference: /* a reference */
3136 case tcc_vl_exp: /* a function call */
3137 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3138 for (i = 0; i < len; ++i)
3139 {
3140 tree op = TREE_OPERAND (t, i);
3141 if (op && TREE_SIDE_EFFECTS (op))
3142 TREE_SIDE_EFFECTS (t) = 1;
3143 }
3144 break;
3145
3146 default:
3147 /* Can never be used with non-expressions. */
3148 gcc_unreachable ();
3149 }
3150}
3151
3152/* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3153 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3154 we failed to create one. */
3155
3156tree
3157canonicalize_cond_expr_cond (tree t)
3158{
3159 /* For (bool)x use x != 0. */
3160 if (TREE_CODE (t) == NOP_EXPR
3161 && TREE_TYPE (t) == boolean_type_node)
3162 {
3163 tree top0 = TREE_OPERAND (t, 0);
3164 t = build2 (NE_EXPR, TREE_TYPE (t),
3165 top0, build_int_cst (TREE_TYPE (top0), 0));
3166 }
3167 /* For !x use x == 0. */
3168 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3169 {
3170 tree top0 = TREE_OPERAND (t, 0);
3171 t = build2 (EQ_EXPR, TREE_TYPE (t),
3172 top0, build_int_cst (TREE_TYPE (top0), 0));
3173 }
3174 /* For cmp ? 1 : 0 use cmp. */
3175 else if (TREE_CODE (t) == COND_EXPR
3176 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3177 && integer_onep (TREE_OPERAND (t, 1))
3178 && integer_zerop (TREE_OPERAND (t, 2)))
3179 {
3180 tree top0 = TREE_OPERAND (t, 0);
3181 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3182 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3183 }
3184
3185 if (is_gimple_condexpr (t))
3186 return t;
3187
3188 return NULL_TREE;
3189}
3190
e6c99067
DN
3191/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3192 the positions marked by the set ARGS_TO_SKIP. */
3193
c6f7cfc1 3194gimple
e6c99067 3195gimple_copy_call_skip_args (gimple stmt, bitmap args_to_skip)
c6f7cfc1
JH
3196{
3197 int i;
3198 tree fn = gimple_call_fn (stmt);
3199 int nargs = gimple_call_num_args (stmt);
3200 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3201 gimple new_stmt;
3202
3203 for (i = 0; i < nargs; i++)
3204 if (!bitmap_bit_p (args_to_skip, i))
3205 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3206
3207 new_stmt = gimple_build_call_vec (fn, vargs);
3208 VEC_free (tree, heap, vargs);
3209 if (gimple_call_lhs (stmt))
3210 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3211
3212 gimple_set_block (new_stmt, gimple_block (stmt));
3213 if (gimple_has_location (stmt))
3214 gimple_set_location (new_stmt, gimple_location (stmt));
3215
3216 /* Carry all the flags to the new GIMPLE_CALL. */
3217 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3218 gimple_call_set_tail (new_stmt, gimple_call_tail_p (stmt));
3219 gimple_call_set_cannot_inline (new_stmt, gimple_call_cannot_inline_p (stmt));
3220 gimple_call_set_return_slot_opt (new_stmt, gimple_call_return_slot_opt_p (stmt));
3221 gimple_call_set_from_thunk (new_stmt, gimple_call_from_thunk_p (stmt));
3222 gimple_call_set_va_arg_pack (new_stmt, gimple_call_va_arg_pack_p (stmt));
3223 return new_stmt;
3224}
3225
726a989a 3226#include "gt-gimple.h"
This page took 0.420475 seconds and 5 git commands to generate.