]> gcc.gnu.org Git - gcc.git/blame - gcc/ggc-page.c
bt-load.c, [...]: Remove unnecessary casts.
[gcc.git] / gcc / ggc-page.c
CommitLineData
21341cfd 1/* "Bag-of-pages" garbage collector for the GNU compiler.
283334f0
KH
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
21341cfd 4
1322177d 5This file is part of GCC.
21341cfd 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
21341cfd 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
21341cfd 16
b9bfacf0 17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
21341cfd 21
21341cfd 22#include "config.h"
21341cfd 23#include "system.h"
4977bab6
ZW
24#include "coretypes.h"
25#include "tm.h"
21341cfd 26#include "tree.h"
e5ecd4ea 27#include "rtl.h"
1b42a6a9 28#include "tm_p.h"
b9bfacf0 29#include "toplev.h"
21341cfd 30#include "flags.h"
e5ecd4ea 31#include "ggc.h"
2a9a326b 32#include "timevar.h"
3788cc17 33#include "params.h"
9a0a7d5d 34#ifdef ENABLE_VALGRIND_CHECKING
a207b594
HPN
35# ifdef HAVE_VALGRIND_MEMCHECK_H
36# include <valgrind/memcheck.h>
37# elif defined HAVE_MEMCHECK_H
38# include <memcheck.h>
14011ca4 39# else
a207b594 40# include <valgrind.h>
14011ca4 41# endif
9a0a7d5d
HPN
42#else
43/* Avoid #ifdef:s when we can help it. */
44#define VALGRIND_DISCARD(x)
45#endif
e5ecd4ea 46
825b6926
ZW
47/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
48 file open. Prefer either to valloc. */
49#ifdef HAVE_MMAP_ANON
50# undef HAVE_MMAP_DEV_ZERO
825b6926
ZW
51
52# include <sys/mman.h>
53# ifndef MAP_FAILED
54# define MAP_FAILED -1
55# endif
56# if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
57# define MAP_ANONYMOUS MAP_ANON
58# endif
59# define USING_MMAP
60
005537df 61#endif
21341cfd 62
825b6926 63#ifdef HAVE_MMAP_DEV_ZERO
825b6926
ZW
64
65# include <sys/mman.h>
66# ifndef MAP_FAILED
67# define MAP_FAILED -1
68# endif
69# define USING_MMAP
70
8342b467
RH
71#endif
72
130fadbb
RH
73#ifndef USING_MMAP
74#define USING_MALLOC_PAGE_GROUPS
5b918807 75#endif
21341cfd 76
589005ff 77/* Stategy:
21341cfd
AS
78
79 This garbage-collecting allocator allocates objects on one of a set
80 of pages. Each page can allocate objects of a single size only;
81 available sizes are powers of two starting at four bytes. The size
82 of an allocation request is rounded up to the next power of two
83 (`order'), and satisfied from the appropriate page.
84
85 Each page is recorded in a page-entry, which also maintains an
86 in-use bitmap of object positions on the page. This allows the
87 allocation state of a particular object to be flipped without
88 touching the page itself.
89
90 Each page-entry also has a context depth, which is used to track
91 pushing and popping of allocation contexts. Only objects allocated
589005ff 92 in the current (highest-numbered) context may be collected.
21341cfd
AS
93
94 Page entries are arranged in an array of singly-linked lists. The
95 array is indexed by the allocation size, in bits, of the pages on
96 it; i.e. all pages on a list allocate objects of the same size.
97 Pages are ordered on the list such that all non-full pages precede
98 all full pages, with non-full pages arranged in order of decreasing
99 context depth.
100
101 Empty pages (of all orders) are kept on a single page cache list,
102 and are considered first when new pages are required; they are
103 deallocated at the start of the next collection if they haven't
104 been recycled by then. */
105
21341cfd
AS
106/* Define GGC_DEBUG_LEVEL to print debugging information.
107 0: No debugging output.
108 1: GC statistics only.
109 2: Page-entry allocations/deallocations as well.
110 3: Object allocations as well.
6d2f8887 111 4: Object marks as well. */
21341cfd
AS
112#define GGC_DEBUG_LEVEL (0)
113\f
114#ifndef HOST_BITS_PER_PTR
115#define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
116#endif
117
21341cfd
AS
118\f
119/* A two-level tree is used to look up the page-entry for a given
120 pointer. Two chunks of the pointer's bits are extracted to index
121 the first and second levels of the tree, as follows:
122
123 HOST_PAGE_SIZE_BITS
124 32 | |
125 msb +----------------+----+------+------+ lsb
126 | | |
127 PAGE_L1_BITS |
128 | |
129 PAGE_L2_BITS
130
131 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
132 pages are aligned on system page boundaries. The next most
133 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
589005ff 134 index values in the lookup table, respectively.
21341cfd 135
005537df
RH
136 For 32-bit architectures and the settings below, there are no
137 leftover bits. For architectures with wider pointers, the lookup
138 tree points to a list of pages, which must be scanned to find the
139 correct one. */
21341cfd
AS
140
141#define PAGE_L1_BITS (8)
142#define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
143#define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
144#define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
145
146#define LOOKUP_L1(p) \
147 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
148
149#define LOOKUP_L2(p) \
150 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
151
2be510b8
MM
152/* The number of objects per allocation page, for objects on a page of
153 the indicated ORDER. */
154#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
155
17211ab5
GK
156/* The number of objects in P. */
157#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
158
2be510b8
MM
159/* The size of an object on a page of the indicated ORDER. */
160#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
161
8537ed68
ZW
162/* For speed, we avoid doing a general integer divide to locate the
163 offset in the allocation bitmap, by precalculating numbers M, S
164 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
165 within the page which is evenly divisible by the object size Z. */
166#define DIV_MULT(ORDER) inverse_table[ORDER].mult
167#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
168#define OFFSET_TO_BIT(OFFSET, ORDER) \
169 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
170
2be510b8
MM
171/* The number of extra orders, not corresponding to power-of-two sized
172 objects. */
173
ca7558fc 174#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
2be510b8 175
d1f1cc6a 176#define RTL_SIZE(NSLOTS) \
e1de1560 177 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
d1f1cc6a 178
5e26df64
SB
179#define TREE_EXP_SIZE(OPS) \
180 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
181
2be510b8
MM
182/* The Ith entry is the maximum size of an object to be stored in the
183 Ith extra order. Adding a new entry to this array is the *only*
184 thing you need to do to add a new special allocation size. */
185
186static const size_t extra_order_size_table[] = {
187 sizeof (struct tree_decl),
d1f1cc6a 188 sizeof (struct tree_list),
5e26df64 189 TREE_EXP_SIZE (2),
adc4adcd 190 RTL_SIZE (2), /* MEM, PLUS, etc. */
60c1d0d8 191 RTL_SIZE (9), /* INSN */
2be510b8
MM
192};
193
194/* The total number of orders. */
195
196#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
197
b1095f9c
MM
198/* We use this structure to determine the alignment required for
199 allocations. For power-of-two sized allocations, that's not a
200 problem, but it does matter for odd-sized allocations. */
201
202struct max_alignment {
203 char c;
204 union {
205 HOST_WIDEST_INT i;
b1095f9c 206 long double d;
b1095f9c
MM
207 } u;
208};
209
210/* The biggest alignment required. */
211
212#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
213
17211ab5
GK
214/* Compute the smallest nonnegative number which when added to X gives
215 a multiple of F. */
216
217#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
218
219/* Compute the smallest multiple of F that is >= X. */
220
221#define ROUND_UP(x, f) (CEIL (x, f) * (f))
222
2be510b8
MM
223/* The Ith entry is the number of objects on a page or order I. */
224
225static unsigned objects_per_page_table[NUM_ORDERS];
226
227/* The Ith entry is the size of an object on a page of order I. */
228
229static size_t object_size_table[NUM_ORDERS];
21341cfd 230
8537ed68
ZW
231/* The Ith entry is a pair of numbers (mult, shift) such that
232 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
233 for all k evenly divisible by OBJECT_SIZE(I). */
234
235static struct
236{
75d75435 237 size_t mult;
8537ed68
ZW
238 unsigned int shift;
239}
240inverse_table[NUM_ORDERS];
241
21341cfd
AS
242/* A page_entry records the status of an allocation page. This
243 structure is dynamically sized to fit the bitmap in_use_p. */
589005ff 244typedef struct page_entry
21341cfd
AS
245{
246 /* The next page-entry with objects of the same size, or NULL if
247 this is the last page-entry. */
248 struct page_entry *next;
249
9bf793f9
JL
250 /* The previous page-entry with objects of the same size, or NULL if
251 this is the first page-entry. The PREV pointer exists solely to
71cc389b 252 keep the cost of ggc_free manageable. */
9bf793f9
JL
253 struct page_entry *prev;
254
21341cfd
AS
255 /* The number of bytes allocated. (This will always be a multiple
256 of the host system page size.) */
257 size_t bytes;
258
259 /* The address at which the memory is allocated. */
260 char *page;
261
130fadbb
RH
262#ifdef USING_MALLOC_PAGE_GROUPS
263 /* Back pointer to the page group this page came from. */
264 struct page_group *group;
265#endif
266
c4775f82
MS
267 /* This is the index in the by_depth varray where this page table
268 can be found. */
269 unsigned long index_by_depth;
21341cfd
AS
270
271 /* Context depth of this page. */
ae373eda 272 unsigned short context_depth;
21341cfd
AS
273
274 /* The number of free objects remaining on this page. */
275 unsigned short num_free_objects;
276
277 /* A likely candidate for the bit position of a free object for the
278 next allocation from this page. */
279 unsigned short next_bit_hint;
280
ae373eda
MM
281 /* The lg of size of objects allocated from this page. */
282 unsigned char order;
283
21341cfd
AS
284 /* A bit vector indicating whether or not objects are in use. The
285 Nth bit is one if the Nth object on this page is allocated. This
286 array is dynamically sized. */
287 unsigned long in_use_p[1];
288} page_entry;
289
130fadbb
RH
290#ifdef USING_MALLOC_PAGE_GROUPS
291/* A page_group describes a large allocation from malloc, from which
292 we parcel out aligned pages. */
293typedef struct page_group
294{
295 /* A linked list of all extant page groups. */
296 struct page_group *next;
297
298 /* The address we received from malloc. */
299 char *allocation;
300
301 /* The size of the block. */
302 size_t alloc_size;
303
304 /* A bitmask of pages in use. */
305 unsigned int in_use;
306} page_group;
307#endif
21341cfd
AS
308
309#if HOST_BITS_PER_PTR <= 32
310
311/* On 32-bit hosts, we use a two level page table, as pictured above. */
312typedef page_entry **page_table[PAGE_L1_SIZE];
313
314#else
315
005537df
RH
316/* On 64-bit hosts, we use the same two level page tables plus a linked
317 list that disambiguates the top 32-bits. There will almost always be
21341cfd
AS
318 exactly one entry in the list. */
319typedef struct page_table_chain
320{
321 struct page_table_chain *next;
322 size_t high_bits;
323 page_entry **table[PAGE_L1_SIZE];
324} *page_table;
325
326#endif
327
328/* The rest of the global variables. */
329static struct globals
330{
331 /* The Nth element in this array is a page with objects of size 2^N.
332 If there are any pages with free objects, they will be at the
333 head of the list. NULL if there are no page-entries for this
334 object size. */
2be510b8 335 page_entry *pages[NUM_ORDERS];
21341cfd
AS
336
337 /* The Nth element in this array is the last page with objects of
338 size 2^N. NULL if there are no page-entries for this object
339 size. */
2be510b8 340 page_entry *page_tails[NUM_ORDERS];
21341cfd
AS
341
342 /* Lookup table for associating allocation pages with object addresses. */
343 page_table lookup;
344
345 /* The system's page size. */
346 size_t pagesize;
347 size_t lg_pagesize;
348
349 /* Bytes currently allocated. */
350 size_t allocated;
351
352 /* Bytes currently allocated at the end of the last collection. */
353 size_t allocated_last_gc;
354
3277221c
MM
355 /* Total amount of memory mapped. */
356 size_t bytes_mapped;
357
52895e1a
RH
358 /* Bit N set if any allocations have been done at context depth N. */
359 unsigned long context_depth_allocations;
360
361 /* Bit N set if any collections have been done at context depth N. */
362 unsigned long context_depth_collections;
363
21341cfd 364 /* The current depth in the context stack. */
d416576b 365 unsigned short context_depth;
21341cfd
AS
366
367 /* A file descriptor open to /dev/zero for reading. */
825b6926 368#if defined (HAVE_MMAP_DEV_ZERO)
21341cfd
AS
369 int dev_zero_fd;
370#endif
371
372 /* A cache of free system pages. */
373 page_entry *free_pages;
374
130fadbb
RH
375#ifdef USING_MALLOC_PAGE_GROUPS
376 page_group *page_groups;
377#endif
378
21341cfd
AS
379 /* The file descriptor for debugging output. */
380 FILE *debug_file;
c4775f82
MS
381
382 /* Current number of elements in use in depth below. */
383 unsigned int depth_in_use;
384
385 /* Maximum number of elements that can be used before resizing. */
386 unsigned int depth_max;
387
388 /* Each element of this arry is an index in by_depth where the given
389 depth starts. This structure is indexed by that given depth we
390 are interested in. */
391 unsigned int *depth;
392
393 /* Current number of elements in use in by_depth below. */
394 unsigned int by_depth_in_use;
395
396 /* Maximum number of elements that can be used before resizing. */
397 unsigned int by_depth_max;
398
399 /* Each element of this array is a pointer to a page_entry, all
400 page_entries can be found in here by increasing depth.
401 index_by_depth in the page_entry is the index into this data
402 structure where that page_entry can be found. This is used to
403 speed up finding all page_entries at a particular depth. */
404 page_entry **by_depth;
405
406 /* Each element is a pointer to the saved in_use_p bits, if any,
407 zero otherwise. We allocate them all together, to enable a
408 better runtime data access pattern. */
409 unsigned long **save_in_use;
685fe032
RH
410
411#ifdef ENABLE_GC_ALWAYS_COLLECT
412 /* List of free objects to be verified as actually free on the
413 next collection. */
414 struct free_object
415 {
416 void *object;
417 struct free_object *next;
418 } *free_object_list;
419#endif
420
adc4adcd
GP
421#ifdef GATHER_STATISTICS
422 struct
423 {
439a7e54 424 /* Total memory allocated with ggc_alloc. */
adc4adcd 425 unsigned long long total_allocated;
439a7e54 426 /* Total overhead for memory to be allocated with ggc_alloc. */
adc4adcd
GP
427 unsigned long long total_overhead;
428
429 /* Total allocations and overhead for sizes less than 32, 64 and 128.
430 These sizes are interesting because they are typical cache line
938d968e 431 sizes. */
adc4adcd
GP
432
433 unsigned long long total_allocated_under32;
434 unsigned long long total_overhead_under32;
435
436 unsigned long long total_allocated_under64;
437 unsigned long long total_overhead_under64;
438
439 unsigned long long total_allocated_under128;
440 unsigned long long total_overhead_under128;
441
439a7e54
DN
442 /* The allocations for each of the allocation orders. */
443 unsigned long long total_allocated_per_order[NUM_ORDERS];
444
938d968e 445 /* The overhead for each of the allocation orders. */
adc4adcd
GP
446 unsigned long long total_overhead_per_order[NUM_ORDERS];
447 } stats;
448#endif
21341cfd
AS
449} G;
450
21341cfd
AS
451/* The size in bytes required to maintain a bitmap for the objects
452 on a page-entry. */
453#define BITMAP_SIZE(Num_objects) \
2be510b8 454 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
21341cfd 455
130fadbb
RH
456/* Allocate pages in chunks of this size, to throttle calls to memory
457 allocation routines. The first page is used, the rest go onto the
458 free list. This cannot be larger than HOST_BITS_PER_INT for the
459 in_use bitmask for page_group. */
054f5e69 460#define GGC_QUIRE_SIZE 16
c4775f82
MS
461
462/* Initial guess as to how many page table entries we might need. */
463#define INITIAL_PTE_COUNT 128
21341cfd 464\f
20c1dc5e
AJ
465static int ggc_allocated_p (const void *);
466static page_entry *lookup_page_table_entry (const void *);
467static void set_page_table_entry (void *, page_entry *);
130fadbb 468#ifdef USING_MMAP
20c1dc5e 469static char *alloc_anon (char *, size_t);
130fadbb
RH
470#endif
471#ifdef USING_MALLOC_PAGE_GROUPS
20c1dc5e
AJ
472static size_t page_group_index (char *, char *);
473static void set_page_group_in_use (page_group *, char *);
474static void clear_page_group_in_use (page_group *, char *);
130fadbb 475#endif
20c1dc5e
AJ
476static struct page_entry * alloc_page (unsigned);
477static void free_page (struct page_entry *);
478static void release_pages (void);
479static void clear_marks (void);
480static void sweep_pages (void);
481static void ggc_recalculate_in_use_p (page_entry *);
482static void compute_inverse (unsigned);
483static inline void adjust_depth (void);
484static void move_ptes_to_front (int, int);
21341cfd 485
20c1dc5e
AJ
486void debug_print_page_list (int);
487static void push_depth (unsigned int);
488static void push_by_depth (page_entry *, unsigned long *);
b6f61163
DB
489struct alloc_zone *rtl_zone = NULL;
490struct alloc_zone *tree_zone = NULL;
491struct alloc_zone *garbage_zone = NULL;
492
c4775f82
MS
493/* Push an entry onto G.depth. */
494
495inline static void
20c1dc5e 496push_depth (unsigned int i)
c4775f82
MS
497{
498 if (G.depth_in_use >= G.depth_max)
499 {
500 G.depth_max *= 2;
703ad42b 501 G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
c4775f82
MS
502 }
503 G.depth[G.depth_in_use++] = i;
504}
505
506/* Push an entry onto G.by_depth and G.save_in_use. */
507
508inline static void
20c1dc5e 509push_by_depth (page_entry *p, unsigned long *s)
c4775f82
MS
510{
511 if (G.by_depth_in_use >= G.by_depth_max)
512 {
513 G.by_depth_max *= 2;
703ad42b
KG
514 G.by_depth = xrealloc (G.by_depth,
515 G.by_depth_max * sizeof (page_entry *));
516 G.save_in_use = xrealloc (G.save_in_use,
517 G.by_depth_max * sizeof (unsigned long *));
c4775f82
MS
518 }
519 G.by_depth[G.by_depth_in_use] = p;
520 G.save_in_use[G.by_depth_in_use++] = s;
521}
522
523#if (GCC_VERSION < 3001)
524#define prefetch(X) ((void) X)
525#else
526#define prefetch(X) __builtin_prefetch (X)
527#endif
528
529#define save_in_use_p_i(__i) \
530 (G.save_in_use[__i])
531#define save_in_use_p(__p) \
532 (save_in_use_p_i (__p->index_by_depth))
533
cc2902df 534/* Returns nonzero if P was allocated in GC'able memory. */
21341cfd 535
005537df 536static inline int
20c1dc5e 537ggc_allocated_p (const void *p)
21341cfd
AS
538{
539 page_entry ***base;
005537df 540 size_t L1, L2;
21341cfd
AS
541
542#if HOST_BITS_PER_PTR <= 32
543 base = &G.lookup[0];
544#else
545 page_table table = G.lookup;
546 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
005537df
RH
547 while (1)
548 {
549 if (table == NULL)
550 return 0;
551 if (table->high_bits == high_bits)
552 break;
553 table = table->next;
554 }
21341cfd
AS
555 base = &table->table[0];
556#endif
557
eaec9b3d 558 /* Extract the level 1 and 2 indices. */
74c937ca
MM
559 L1 = LOOKUP_L1 (p);
560 L2 = LOOKUP_L2 (p);
561
562 return base[L1] && base[L1][L2];
563}
564
589005ff 565/* Traverse the page table and find the entry for a page.
74c937ca
MM
566 Die (probably) if the object wasn't allocated via GC. */
567
568static inline page_entry *
20c1dc5e 569lookup_page_table_entry (const void *p)
74c937ca
MM
570{
571 page_entry ***base;
572 size_t L1, L2;
573
005537df
RH
574#if HOST_BITS_PER_PTR <= 32
575 base = &G.lookup[0];
576#else
577 page_table table = G.lookup;
578 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
579 while (table->high_bits != high_bits)
580 table = table->next;
581 base = &table->table[0];
582#endif
74c937ca 583
eaec9b3d 584 /* Extract the level 1 and 2 indices. */
21341cfd
AS
585 L1 = LOOKUP_L1 (p);
586 L2 = LOOKUP_L2 (p);
587
588 return base[L1][L2];
589}
590
21341cfd 591/* Set the page table entry for a page. */
cb2ec151 592
21341cfd 593static void
20c1dc5e 594set_page_table_entry (void *p, page_entry *entry)
21341cfd
AS
595{
596 page_entry ***base;
597 size_t L1, L2;
598
599#if HOST_BITS_PER_PTR <= 32
600 base = &G.lookup[0];
601#else
602 page_table table;
603 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
604 for (table = G.lookup; table; table = table->next)
605 if (table->high_bits == high_bits)
606 goto found;
607
608 /* Not found -- allocate a new table. */
703ad42b 609 table = xcalloc (1, sizeof(*table));
21341cfd
AS
610 table->next = G.lookup;
611 table->high_bits = high_bits;
612 G.lookup = table;
613found:
614 base = &table->table[0];
615#endif
616
eaec9b3d 617 /* Extract the level 1 and 2 indices. */
21341cfd
AS
618 L1 = LOOKUP_L1 (p);
619 L2 = LOOKUP_L2 (p);
620
621 if (base[L1] == NULL)
703ad42b 622 base[L1] = xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
21341cfd
AS
623
624 base[L1][L2] = entry;
625}
626
21341cfd 627/* Prints the page-entry for object size ORDER, for debugging. */
cb2ec151 628
21341cfd 629void
20c1dc5e 630debug_print_page_list (int order)
21341cfd
AS
631{
632 page_entry *p;
20c1dc5e
AJ
633 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
634 (void *) G.page_tails[order]);
21341cfd
AS
635 p = G.pages[order];
636 while (p != NULL)
637 {
20c1dc5e 638 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
683eb0e9 639 p->num_free_objects);
21341cfd
AS
640 p = p->next;
641 }
642 printf ("NULL\n");
643 fflush (stdout);
644}
645
130fadbb 646#ifdef USING_MMAP
21341cfd 647/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
825b6926
ZW
648 (if non-null). The ifdef structure here is intended to cause a
649 compile error unless exactly one of the HAVE_* is defined. */
cb2ec151 650
21341cfd 651static inline char *
20c1dc5e 652alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
21341cfd 653{
825b6926 654#ifdef HAVE_MMAP_ANON
400e39e3
KH
655 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
656 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
825b6926
ZW
657#endif
658#ifdef HAVE_MMAP_DEV_ZERO
400e39e3
KH
659 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
660 MAP_PRIVATE, G.dev_zero_fd, 0);
21341cfd 661#endif
825b6926
ZW
662
663 if (page == (char *) MAP_FAILED)
005537df 664 {
1f978f5f 665 perror ("virtual memory exhausted");
bd0f0717 666 exit (FATAL_EXIT_CODE);
005537df 667 }
21341cfd 668
3277221c
MM
669 /* Remember that we allocated this memory. */
670 G.bytes_mapped += size;
671
9a0a7d5d
HPN
672 /* Pretend we don't have access to the allocated pages. We'll enable
673 access to smaller pieces of the area in ggc_alloc. Discard the
674 handle to avoid handle leak. */
675 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
676
21341cfd
AS
677 return page;
678}
130fadbb
RH
679#endif
680#ifdef USING_MALLOC_PAGE_GROUPS
681/* Compute the index for this page into the page group. */
682
683static inline size_t
20c1dc5e 684page_group_index (char *allocation, char *page)
130fadbb 685{
c4f2c499 686 return (size_t) (page - allocation) >> G.lg_pagesize;
130fadbb
RH
687}
688
689/* Set and clear the in_use bit for this page in the page group. */
690
691static inline void
20c1dc5e 692set_page_group_in_use (page_group *group, char *page)
130fadbb
RH
693{
694 group->in_use |= 1 << page_group_index (group->allocation, page);
695}
696
697static inline void
20c1dc5e 698clear_page_group_in_use (page_group *group, char *page)
130fadbb
RH
699{
700 group->in_use &= ~(1 << page_group_index (group->allocation, page));
701}
702#endif
21341cfd
AS
703
704/* Allocate a new page for allocating objects of size 2^ORDER,
705 and return an entry for it. The entry is not added to the
706 appropriate page_table list. */
cb2ec151 707
21341cfd 708static inline struct page_entry *
20c1dc5e 709alloc_page (unsigned order)
21341cfd
AS
710{
711 struct page_entry *entry, *p, **pp;
712 char *page;
713 size_t num_objects;
714 size_t bitmap_size;
715 size_t page_entry_size;
716 size_t entry_size;
130fadbb
RH
717#ifdef USING_MALLOC_PAGE_GROUPS
718 page_group *group;
719#endif
21341cfd
AS
720
721 num_objects = OBJECTS_PER_PAGE (order);
722 bitmap_size = BITMAP_SIZE (num_objects + 1);
723 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
2be510b8 724 entry_size = num_objects * OBJECT_SIZE (order);
ca79429a
RH
725 if (entry_size < G.pagesize)
726 entry_size = G.pagesize;
21341cfd
AS
727
728 entry = NULL;
729 page = NULL;
730
731 /* Check the list of free pages for one we can use. */
bd0f0717 732 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
21341cfd
AS
733 if (p->bytes == entry_size)
734 break;
735
736 if (p != NULL)
737 {
dc297297 738 /* Recycle the allocated memory from this page ... */
21341cfd
AS
739 *pp = p->next;
740 page = p->page;
bd0f0717 741
130fadbb
RH
742#ifdef USING_MALLOC_PAGE_GROUPS
743 group = p->group;
744#endif
bd0f0717 745
21341cfd
AS
746 /* ... and, if possible, the page entry itself. */
747 if (p->order == order)
748 {
749 entry = p;
750 memset (entry, 0, page_entry_size);
751 }
752 else
753 free (p);
754 }
825b6926 755#ifdef USING_MMAP
054f5e69 756 else if (entry_size == G.pagesize)
21341cfd 757 {
054f5e69
ZW
758 /* We want just one page. Allocate a bunch of them and put the
759 extras on the freelist. (Can only do this optimization with
760 mmap for backing store.) */
761 struct page_entry *e, *f = G.free_pages;
762 int i;
763
ca79429a 764 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
bd0f0717 765
054f5e69
ZW
766 /* This loop counts down so that the chain will be in ascending
767 memory order. */
768 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
769 {
703ad42b 770 e = xcalloc (1, page_entry_size);
ca79429a
RH
771 e->order = order;
772 e->bytes = G.pagesize;
773 e->page = page + (i << G.lg_pagesize);
054f5e69
ZW
774 e->next = f;
775 f = e;
776 }
bd0f0717 777
054f5e69 778 G.free_pages = f;
21341cfd 779 }
054f5e69
ZW
780 else
781 page = alloc_anon (NULL, entry_size);
130fadbb
RH
782#endif
783#ifdef USING_MALLOC_PAGE_GROUPS
784 else
785 {
786 /* Allocate a large block of memory and serve out the aligned
787 pages therein. This results in much less memory wastage
788 than the traditional implementation of valloc. */
789
790 char *allocation, *a, *enda;
791 size_t alloc_size, head_slop, tail_slop;
792 int multiple_pages = (entry_size == G.pagesize);
793
794 if (multiple_pages)
795 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
796 else
797 alloc_size = entry_size + G.pagesize - 1;
798 allocation = xmalloc (alloc_size);
799
c4f2c499 800 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
130fadbb
RH
801 head_slop = page - allocation;
802 if (multiple_pages)
803 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
804 else
805 tail_slop = alloc_size - entry_size - head_slop;
806 enda = allocation + alloc_size - tail_slop;
807
808 /* We allocated N pages, which are likely not aligned, leaving
809 us with N-1 usable pages. We plan to place the page_group
810 structure somewhere in the slop. */
811 if (head_slop >= sizeof (page_group))
812 group = (page_group *)page - 1;
813 else
814 {
815 /* We magically got an aligned allocation. Too bad, we have
816 to waste a page anyway. */
817 if (tail_slop == 0)
818 {
819 enda -= G.pagesize;
820 tail_slop += G.pagesize;
821 }
822 if (tail_slop < sizeof (page_group))
823 abort ();
824 group = (page_group *)enda;
825 tail_slop -= sizeof (page_group);
826 }
827
828 /* Remember that we allocated this memory. */
829 group->next = G.page_groups;
830 group->allocation = allocation;
831 group->alloc_size = alloc_size;
832 group->in_use = 0;
833 G.page_groups = group;
834 G.bytes_mapped += alloc_size;
835
836 /* If we allocated multiple pages, put the rest on the free list. */
837 if (multiple_pages)
838 {
839 struct page_entry *e, *f = G.free_pages;
840 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
841 {
703ad42b 842 e = xcalloc (1, page_entry_size);
130fadbb
RH
843 e->order = order;
844 e->bytes = G.pagesize;
845 e->page = a;
846 e->group = group;
847 e->next = f;
848 f = e;
849 }
850 G.free_pages = f;
851 }
852 }
853#endif
21341cfd
AS
854
855 if (entry == NULL)
703ad42b 856 entry = xcalloc (1, page_entry_size);
21341cfd
AS
857
858 entry->bytes = entry_size;
859 entry->page = page;
860 entry->context_depth = G.context_depth;
861 entry->order = order;
862 entry->num_free_objects = num_objects;
863 entry->next_bit_hint = 1;
864
52895e1a
RH
865 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
866
130fadbb
RH
867#ifdef USING_MALLOC_PAGE_GROUPS
868 entry->group = group;
869 set_page_group_in_use (group, page);
870#endif
871
21341cfd
AS
872 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
873 increment the hint. */
874 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
875 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
876
877 set_page_table_entry (page, entry);
878
879 if (GGC_DEBUG_LEVEL >= 2)
589005ff 880 fprintf (G.debug_file,
8a951190 881 "Allocating page at %p, object size=%lu, data %p-%p\n",
20c1dc5e 882 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
bd0f0717 883 page + entry_size - 1);
21341cfd
AS
884
885 return entry;
886}
887
c4775f82
MS
888/* Adjust the size of G.depth so that no index greater than the one
889 used by the top of the G.by_depth is used. */
890
891static inline void
20c1dc5e 892adjust_depth (void)
c4775f82
MS
893{
894 page_entry *top;
895
896 if (G.by_depth_in_use)
897 {
898 top = G.by_depth[G.by_depth_in_use-1];
899
e0bb17a8
KH
900 /* Peel back indices in depth that index into by_depth, so that
901 as new elements are added to by_depth, we note the indices
c4775f82
MS
902 of those elements, if they are for new context depths. */
903 while (G.depth_in_use > (size_t)top->context_depth+1)
904 --G.depth_in_use;
905 }
906}
907
cb2ec151 908/* For a page that is no longer needed, put it on the free page list. */
21341cfd 909
685fe032 910static void
20c1dc5e 911free_page (page_entry *entry)
21341cfd
AS
912{
913 if (GGC_DEBUG_LEVEL >= 2)
589005ff 914 fprintf (G.debug_file,
20c1dc5e 915 "Deallocating page at %p, data %p-%p\n", (void *) entry,
21341cfd
AS
916 entry->page, entry->page + entry->bytes - 1);
917
9a0a7d5d
HPN
918 /* Mark the page as inaccessible. Discard the handle to avoid handle
919 leak. */
920 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
921
21341cfd
AS
922 set_page_table_entry (entry->page, NULL);
923
130fadbb
RH
924#ifdef USING_MALLOC_PAGE_GROUPS
925 clear_page_group_in_use (entry->group, entry->page);
926#endif
927
c4775f82
MS
928 if (G.by_depth_in_use > 1)
929 {
930 page_entry *top = G.by_depth[G.by_depth_in_use-1];
931
932 /* If they are at the same depth, put top element into freed
933 slot. */
934 if (entry->context_depth == top->context_depth)
935 {
936 int i = entry->index_by_depth;
937 G.by_depth[i] = top;
938 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
939 top->index_by_depth = i;
940 }
941 else
942 {
943 /* We cannot free a page from a context deeper than the
944 current one. */
945 abort ();
946 }
947 }
948 --G.by_depth_in_use;
949
950 adjust_depth ();
951
21341cfd
AS
952 entry->next = G.free_pages;
953 G.free_pages = entry;
954}
955
cb2ec151 956/* Release the free page cache to the system. */
21341cfd 957
4934cc53 958static void
20c1dc5e 959release_pages (void)
21341cfd 960{
825b6926 961#ifdef USING_MMAP
130fadbb 962 page_entry *p, *next;
21341cfd
AS
963 char *start;
964 size_t len;
965
054f5e69 966 /* Gather up adjacent pages so they are unmapped together. */
21341cfd 967 p = G.free_pages;
21341cfd
AS
968
969 while (p)
970 {
054f5e69 971 start = p->page;
21341cfd 972 next = p->next;
054f5e69 973 len = p->bytes;
21341cfd
AS
974 free (p);
975 p = next;
21341cfd 976
054f5e69
ZW
977 while (p && p->page == start + len)
978 {
979 next = p->next;
980 len += p->bytes;
981 free (p);
982 p = next;
983 }
984
985 munmap (start, len);
986 G.bytes_mapped -= len;
987 }
005537df 988
21341cfd 989 G.free_pages = NULL;
130fadbb
RH
990#endif
991#ifdef USING_MALLOC_PAGE_GROUPS
992 page_entry **pp, *p;
993 page_group **gp, *g;
994
995 /* Remove all pages from free page groups from the list. */
996 pp = &G.free_pages;
997 while ((p = *pp) != NULL)
998 if (p->group->in_use == 0)
999 {
1000 *pp = p->next;
1001 free (p);
1002 }
1003 else
1004 pp = &p->next;
1005
1006 /* Remove all free page groups, and release the storage. */
1007 gp = &G.page_groups;
1008 while ((g = *gp) != NULL)
1009 if (g->in_use == 0)
1010 {
1011 *gp = g->next;
589005ff 1012 G.bytes_mapped -= g->alloc_size;
130fadbb
RH
1013 free (g->allocation);
1014 }
1015 else
1016 gp = &g->next;
1017#endif
21341cfd
AS
1018}
1019
21341cfd 1020/* This table provides a fast way to determine ceil(log_2(size)) for
9fd51e67 1021 allocation requests. The minimum allocation size is eight bytes. */
cb2ec151 1022
589005ff 1023static unsigned char size_lookup[257] =
9fd51e67 1024{
589005ff
KH
1025 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1026 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1027 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1028 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1029 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1030 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1031 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
21341cfd 1032 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
21341cfd
AS
1033 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1034 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1035 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1036 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1037 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1038 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1039 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1040 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1041 8
1042};
1043
b6f61163
DB
1044/* Typed allocation function. Does nothing special in this collector. */
1045
1046void *
b9dcdee4
JH
1047ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1048 MEM_STAT_DECL)
b6f61163 1049{
b9dcdee4 1050 return ggc_alloc_stat (size PASS_MEM_STAT);
b6f61163
DB
1051}
1052
1053/* Zone allocation function. Does nothing special in this collector. */
1054
1055void *
b9dcdee4
JH
1056ggc_alloc_zone_stat (size_t size, struct alloc_zone *zone ATTRIBUTE_UNUSED
1057 MEM_STAT_DECL)
b6f61163 1058{
b9dcdee4 1059 return ggc_alloc_stat (size PASS_MEM_STAT);
b6f61163
DB
1060}
1061
aa40083d 1062/* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
cb2ec151 1063
005537df 1064void *
b9dcdee4 1065ggc_alloc_stat (size_t size MEM_STAT_DECL)
21341cfd 1066{
685fe032 1067 size_t order, word, bit, object_offset, object_size;
21341cfd
AS
1068 struct page_entry *entry;
1069 void *result;
1070
1071 if (size <= 256)
685fe032
RH
1072 {
1073 order = size_lookup[size];
1074 object_size = OBJECT_SIZE (order);
1075 }
21341cfd
AS
1076 else
1077 {
1078 order = 9;
685fe032 1079 while (size > (object_size = OBJECT_SIZE (order)))
21341cfd
AS
1080 order++;
1081 }
1082
1083 /* If there are non-full pages for this size allocation, they are at
1084 the head of the list. */
1085 entry = G.pages[order];
1086
1087 /* If there is no page for this object size, or all pages in this
1088 context are full, allocate a new page. */
4934cc53 1089 if (entry == NULL || entry->num_free_objects == 0)
21341cfd
AS
1090 {
1091 struct page_entry *new_entry;
1092 new_entry = alloc_page (order);
589005ff 1093
c4775f82
MS
1094 new_entry->index_by_depth = G.by_depth_in_use;
1095 push_by_depth (new_entry, 0);
1096
1097 /* We can skip context depths, if we do, make sure we go all the
1098 way to the new depth. */
1099 while (new_entry->context_depth >= G.depth_in_use)
1100 push_depth (G.by_depth_in_use-1);
1101
9bf793f9
JL
1102 /* If this is the only entry, it's also the tail. If it is not
1103 the only entry, then we must update the PREV pointer of the
1104 ENTRY (G.pages[order]) to point to our new page entry. */
21341cfd
AS
1105 if (entry == NULL)
1106 G.page_tails[order] = new_entry;
9bf793f9
JL
1107 else
1108 entry->prev = new_entry;
589005ff 1109
9bf793f9
JL
1110 /* Put new pages at the head of the page list. By definition the
1111 entry at the head of the list always has a NULL pointer. */
21341cfd 1112 new_entry->next = entry;
9bf793f9 1113 new_entry->prev = NULL;
21341cfd
AS
1114 entry = new_entry;
1115 G.pages[order] = new_entry;
1116
1117 /* For a new page, we know the word and bit positions (in the
1118 in_use bitmap) of the first available object -- they're zero. */
1119 new_entry->next_bit_hint = 1;
1120 word = 0;
1121 bit = 0;
1122 object_offset = 0;
1123 }
1124 else
1125 {
1126 /* First try to use the hint left from the previous allocation
1127 to locate a clear bit in the in-use bitmap. We've made sure
1128 that the one-past-the-end bit is always set, so if the hint
1129 has run over, this test will fail. */
1130 unsigned hint = entry->next_bit_hint;
1131 word = hint / HOST_BITS_PER_LONG;
1132 bit = hint % HOST_BITS_PER_LONG;
589005ff 1133
21341cfd
AS
1134 /* If the hint didn't work, scan the bitmap from the beginning. */
1135 if ((entry->in_use_p[word] >> bit) & 1)
1136 {
1137 word = bit = 0;
1138 while (~entry->in_use_p[word] == 0)
1139 ++word;
1140 while ((entry->in_use_p[word] >> bit) & 1)
1141 ++bit;
1142 hint = word * HOST_BITS_PER_LONG + bit;
1143 }
1144
1145 /* Next time, try the next bit. */
1146 entry->next_bit_hint = hint + 1;
1147
685fe032 1148 object_offset = hint * object_size;
21341cfd
AS
1149 }
1150
1151 /* Set the in-use bit. */
1152 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1153
1154 /* Keep a running total of the number of free objects. If this page
1155 fills up, we may have to move it to the end of the list if the
1156 next page isn't full. If the next page is full, all subsequent
1157 pages are full, so there's no need to move it. */
1158 if (--entry->num_free_objects == 0
1159 && entry->next != NULL
1160 && entry->next->num_free_objects > 0)
1161 {
9bf793f9 1162 /* We have a new head for the list. */
21341cfd 1163 G.pages[order] = entry->next;
9bf793f9
JL
1164
1165 /* We are moving ENTRY to the end of the page table list.
1166 The new page at the head of the list will have NULL in
1167 its PREV field and ENTRY will have NULL in its NEXT field. */
1168 entry->next->prev = NULL;
21341cfd 1169 entry->next = NULL;
9bf793f9
JL
1170
1171 /* Append ENTRY to the tail of the list. */
1172 entry->prev = G.page_tails[order];
21341cfd
AS
1173 G.page_tails[order]->next = entry;
1174 G.page_tails[order] = entry;
1175 }
b9dcdee4
JH
1176#ifdef GATHER_STATISTICS
1177 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size PASS_MEM_STAT);
1178#endif
21341cfd
AS
1179
1180 /* Calculate the object's address. */
1181 result = entry->page + object_offset;
1182
3788cc17 1183#ifdef ENABLE_GC_CHECKING
9a0a7d5d
HPN
1184 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1185 exact same semantics in presence of memory bugs, regardless of
1186 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1187 handle to avoid handle leak. */
685fe032 1188 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, object_size));
9a0a7d5d 1189
f8a83ee3
ZW
1190 /* `Poison' the entire allocated object, including any padding at
1191 the end. */
685fe032 1192 memset (result, 0xaf, object_size);
9a0a7d5d
HPN
1193
1194 /* Make the bytes after the end of the object unaccessible. Discard the
1195 handle to avoid handle leak. */
1196 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
685fe032 1197 object_size - size));
21341cfd 1198#endif
cb2ec151 1199
9a0a7d5d
HPN
1200 /* Tell Valgrind that the memory is there, but its content isn't
1201 defined. The bytes at the end of the object are still marked
1202 unaccessible. */
1203 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
1204
21341cfd
AS
1205 /* Keep track of how many bytes are being allocated. This
1206 information is used in deciding when to collect. */
685fe032 1207 G.allocated += object_size;
21341cfd 1208
adc4adcd
GP
1209#ifdef GATHER_STATISTICS
1210 {
685fe032 1211 size_t overhead = object_size - size;
adc4adcd 1212
685fe032
RH
1213 G.stats.total_overhead += overhead;
1214 G.stats.total_allocated += object_size;
1215 G.stats.total_overhead_per_order[order] += overhead;
1216 G.stats.total_allocated_per_order[order] += object_size;
adc4adcd 1217
685fe032
RH
1218 if (size <= 32)
1219 {
1220 G.stats.total_overhead_under32 += overhead;
1221 G.stats.total_allocated_under32 += object_size;
1222 }
1223 if (size <= 64)
1224 {
1225 G.stats.total_overhead_under64 += overhead;
1226 G.stats.total_allocated_under64 += object_size;
1227 }
1228 if (size <= 128)
1229 {
1230 G.stats.total_overhead_under128 += overhead;
1231 G.stats.total_allocated_under128 += object_size;
1232 }
adc4adcd
GP
1233 }
1234#endif
685fe032 1235
21341cfd 1236 if (GGC_DEBUG_LEVEL >= 3)
589005ff 1237 fprintf (G.debug_file,
8a951190 1238 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
685fe032 1239 (unsigned long) size, (unsigned long) object_size, result,
20c1dc5e 1240 (void *) entry);
21341cfd
AS
1241
1242 return result;
1243}
1244
cb2ec151 1245/* If P is not marked, marks it and return false. Otherwise return true.
21341cfd
AS
1246 P must have been allocated by the GC allocator; it mustn't point to
1247 static objects, stack variables, or memory allocated with malloc. */
cb2ec151 1248
005537df 1249int
20c1dc5e 1250ggc_set_mark (const void *p)
21341cfd
AS
1251{
1252 page_entry *entry;
1253 unsigned bit, word;
1254 unsigned long mask;
1255
1256 /* Look up the page on which the object is alloced. If the object
1257 wasn't allocated by the collector, we'll probably die. */
74c937ca 1258 entry = lookup_page_table_entry (p);
21341cfd
AS
1259#ifdef ENABLE_CHECKING
1260 if (entry == NULL)
1261 abort ();
1262#endif
1263
1264 /* Calculate the index of the object on the page; this is its bit
1265 position in the in_use_p bitmap. */
8537ed68 1266 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
21341cfd
AS
1267 word = bit / HOST_BITS_PER_LONG;
1268 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
589005ff 1269
dc297297 1270 /* If the bit was previously set, skip it. */
21341cfd
AS
1271 if (entry->in_use_p[word] & mask)
1272 return 1;
1273
1274 /* Otherwise set it, and decrement the free object count. */
1275 entry->in_use_p[word] |= mask;
1276 entry->num_free_objects -= 1;
1277
21341cfd
AS
1278 if (GGC_DEBUG_LEVEL >= 4)
1279 fprintf (G.debug_file, "Marking %p\n", p);
1280
1281 return 0;
1282}
1283
589005ff 1284/* Return 1 if P has been marked, zero otherwise.
4c160717
RK
1285 P must have been allocated by the GC allocator; it mustn't point to
1286 static objects, stack variables, or memory allocated with malloc. */
1287
1288int
20c1dc5e 1289ggc_marked_p (const void *p)
4c160717
RK
1290{
1291 page_entry *entry;
1292 unsigned bit, word;
1293 unsigned long mask;
1294
1295 /* Look up the page on which the object is alloced. If the object
1296 wasn't allocated by the collector, we'll probably die. */
1297 entry = lookup_page_table_entry (p);
1298#ifdef ENABLE_CHECKING
1299 if (entry == NULL)
1300 abort ();
1301#endif
1302
1303 /* Calculate the index of the object on the page; this is its bit
1304 position in the in_use_p bitmap. */
8537ed68 1305 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
4c160717
RK
1306 word = bit / HOST_BITS_PER_LONG;
1307 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
589005ff 1308
a4b5b2ae 1309 return (entry->in_use_p[word] & mask) != 0;
4c160717
RK
1310}
1311
cb2ec151
RH
1312/* Return the size of the gc-able object P. */
1313
3277221c 1314size_t
20c1dc5e 1315ggc_get_size (const void *p)
3277221c
MM
1316{
1317 page_entry *pe = lookup_page_table_entry (p);
2be510b8 1318 return OBJECT_SIZE (pe->order);
3277221c 1319}
685fe032
RH
1320
1321/* Release the memory for object P. */
1322
1323void
1324ggc_free (void *p)
1325{
1326 page_entry *pe = lookup_page_table_entry (p);
1327 size_t order = pe->order;
1328 size_t size = OBJECT_SIZE (order);
1329
1330 if (GGC_DEBUG_LEVEL >= 3)
1331 fprintf (G.debug_file,
1332 "Freeing object, actual size=%lu, at %p on %p\n",
1333 (unsigned long) size, p, (void *) pe);
1334
1335#ifdef ENABLE_GC_CHECKING
1336 /* Poison the data, to indicate the data is garbage. */
1337 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p, size));
1338 memset (p, 0xa5, size);
1339#endif
1340 /* Let valgrind know the object is free. */
1341 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p, size));
1342
1343#ifdef ENABLE_GC_ALWAYS_COLLECT
1344 /* In the completely-anal-checking mode, we do *not* immediately free
1345 the data, but instead verify that the data is *actually* not
1346 reachable the next time we collect. */
1347 {
1348 struct free_object *fo = xmalloc (sizeof (struct free_object));
1349 fo->object = p;
1350 fo->next = G.free_object_list;
1351 G.free_object_list = fo;
1352 }
1353#else
1354 {
1355 unsigned int bit_offset, word, bit;
1356
1357 G.allocated -= size;
1358
1359 /* Mark the object not-in-use. */
1360 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1361 word = bit_offset / HOST_BITS_PER_LONG;
1362 bit = bit_offset % HOST_BITS_PER_LONG;
1363 pe->in_use_p[word] &= ~(1UL << bit);
1364
1365 if (pe->num_free_objects++ == 0)
1366 {
9bf793f9
JL
1367 page_entry *p, *q;
1368
685fe032
RH
1369 /* If the page is completely full, then it's supposed to
1370 be after all pages that aren't. Since we've freed one
1371 object from a page that was full, we need to move the
9bf793f9 1372 page to the head of the list.
685fe032 1373
9bf793f9
JL
1374 PE is the node we want to move. Q is the previous node
1375 and P is the next node in the list. */
1376 q = pe->prev;
685fe032
RH
1377 if (q && q->num_free_objects == 0)
1378 {
1379 p = pe->next;
9bf793f9 1380
685fe032 1381 q->next = p;
9bf793f9
JL
1382
1383 /* If PE was at the end of the list, then Q becomes the
1384 new end of the list. If PE was not the end of the
1385 list, then we need to update the PREV field for P. */
685fe032
RH
1386 if (!p)
1387 G.page_tails[order] = q;
9bf793f9
JL
1388 else
1389 p->prev = q;
1390
1391 /* Move PE to the head of the list. */
685fe032 1392 pe->next = G.pages[order];
9bf793f9
JL
1393 pe->prev = NULL;
1394 G.pages[order]->prev = pe;
685fe032
RH
1395 G.pages[order] = pe;
1396 }
1397
1398 /* Reset the hint bit to point to the only free object. */
1399 pe->next_bit_hint = bit_offset;
1400 }
1401 }
1402#endif
1403}
21341cfd 1404\f
8537ed68
ZW
1405/* Subroutine of init_ggc which computes the pair of numbers used to
1406 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1407
1408 This algorithm is taken from Granlund and Montgomery's paper
1409 "Division by Invariant Integers using Multiplication"
1410 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1411 constants). */
1412
1413static void
20c1dc5e 1414compute_inverse (unsigned order)
8537ed68 1415{
75d75435
UW
1416 size_t size, inv;
1417 unsigned int e;
280cf02a 1418
8537ed68
ZW
1419 size = OBJECT_SIZE (order);
1420 e = 0;
1421 while (size % 2 == 0)
1422 {
1423 e++;
1424 size >>= 1;
1425 }
cb2ec151 1426
8537ed68
ZW
1427 inv = size;
1428 while (inv * size != 1)
1429 inv = inv * (2 - inv*size);
1430
1431 DIV_MULT (order) = inv;
1432 DIV_SHIFT (order) = e;
1433}
1434
1435/* Initialize the ggc-mmap allocator. */
21341cfd 1436void
20c1dc5e 1437init_ggc (void)
21341cfd 1438{
2be510b8
MM
1439 unsigned order;
1440
21341cfd
AS
1441 G.pagesize = getpagesize();
1442 G.lg_pagesize = exact_log2 (G.pagesize);
1443
825b6926 1444#ifdef HAVE_MMAP_DEV_ZERO
21341cfd
AS
1445 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1446 if (G.dev_zero_fd == -1)
c770ac2b 1447 internal_error ("open /dev/zero: %m");
21341cfd
AS
1448#endif
1449
1450#if 0
1451 G.debug_file = fopen ("ggc-mmap.debug", "w");
1452#else
1453 G.debug_file = stdout;
1454#endif
1455
825b6926 1456#ifdef USING_MMAP
1b3e1423
RH
1457 /* StunOS has an amazing off-by-one error for the first mmap allocation
1458 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1459 believe, is an unaligned page allocation, which would cause us to
1460 hork badly if we tried to use it. */
1461 {
1462 char *p = alloc_anon (NULL, G.pagesize);
825b6926 1463 struct page_entry *e;
1b3e1423
RH
1464 if ((size_t)p & (G.pagesize - 1))
1465 {
1466 /* How losing. Discard this one and try another. If we still
1467 can't get something useful, give up. */
1468
1469 p = alloc_anon (NULL, G.pagesize);
1470 if ((size_t)p & (G.pagesize - 1))
1471 abort ();
1472 }
825b6926 1473
dc297297 1474 /* We have a good page, might as well hold onto it... */
703ad42b 1475 e = xcalloc (1, sizeof (struct page_entry));
825b6926
ZW
1476 e->bytes = G.pagesize;
1477 e->page = p;
1478 e->next = G.free_pages;
1479 G.free_pages = e;
1b3e1423
RH
1480 }
1481#endif
2be510b8
MM
1482
1483 /* Initialize the object size table. */
1484 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1485 object_size_table[order] = (size_t) 1 << order;
1486 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
b1095f9c
MM
1487 {
1488 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1489
1490 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1491 so that we're sure of getting aligned memory. */
17211ab5 1492 s = ROUND_UP (s, MAX_ALIGNMENT);
b1095f9c
MM
1493 object_size_table[order] = s;
1494 }
2be510b8 1495
8537ed68 1496 /* Initialize the objects-per-page and inverse tables. */
2be510b8
MM
1497 for (order = 0; order < NUM_ORDERS; ++order)
1498 {
1499 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1500 if (objects_per_page_table[order] == 0)
1501 objects_per_page_table[order] = 1;
8537ed68 1502 compute_inverse (order);
2be510b8
MM
1503 }
1504
1505 /* Reset the size_lookup array to put appropriately sized objects in
1506 the special orders. All objects bigger than the previous power
1507 of two, but no greater than the special size, should go in the
1508 new order. */
1509 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1510 {
1511 int o;
1512 int i;
1513
1514 o = size_lookup[OBJECT_SIZE (order)];
1515 for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
1516 size_lookup[i] = order;
1517 }
c4775f82
MS
1518
1519 G.depth_in_use = 0;
1520 G.depth_max = 10;
703ad42b 1521 G.depth = xmalloc (G.depth_max * sizeof (unsigned int));
c4775f82
MS
1522
1523 G.by_depth_in_use = 0;
1524 G.by_depth_max = INITIAL_PTE_COUNT;
703ad42b
KG
1525 G.by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
1526 G.save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
21341cfd
AS
1527}
1528
47aeffac
SB
1529/* Start a new GGC zone. */
1530
1531struct alloc_zone *
1532new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1533{
1534 return NULL;
1535}
1536
1537/* Destroy a GGC zone. */
1538void
1539destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1540{
1541}
1542
cb2ec151
RH
1543/* Increment the `GC context'. Objects allocated in an outer context
1544 are never freed, eliminating the need to register their roots. */
21341cfd
AS
1545
1546void
20c1dc5e 1547ggc_push_context (void)
21341cfd
AS
1548{
1549 ++G.context_depth;
1550
1551 /* Die on wrap. */
52895e1a 1552 if (G.context_depth >= HOST_BITS_PER_LONG)
21341cfd
AS
1553 abort ();
1554}
1555
4934cc53
MM
1556/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1557 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1558
1559static void
20c1dc5e 1560ggc_recalculate_in_use_p (page_entry *p)
4934cc53
MM
1561{
1562 unsigned int i;
1563 size_t num_objects;
1564
589005ff 1565 /* Because the past-the-end bit in in_use_p is always set, we
4934cc53 1566 pretend there is one additional object. */
17211ab5 1567 num_objects = OBJECTS_IN_PAGE (p) + 1;
4934cc53
MM
1568
1569 /* Reset the free object count. */
1570 p->num_free_objects = num_objects;
1571
1572 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
589005ff 1573 for (i = 0;
2be510b8
MM
1574 i < CEIL (BITMAP_SIZE (num_objects),
1575 sizeof (*p->in_use_p));
4934cc53
MM
1576 ++i)
1577 {
1578 unsigned long j;
1579
1580 /* Something is in use if it is marked, or if it was in use in a
1581 context further down the context stack. */
c4775f82 1582 p->in_use_p[i] |= save_in_use_p (p)[i];
4934cc53
MM
1583
1584 /* Decrement the free object count for every object allocated. */
1585 for (j = p->in_use_p[i]; j; j >>= 1)
1586 p->num_free_objects -= (j & 1);
1587 }
1588
1589 if (p->num_free_objects >= num_objects)
1590 abort ();
1591}
1592
589005ff 1593/* Decrement the `GC context'. All objects allocated since the
cb2ec151 1594 previous ggc_push_context are migrated to the outer context. */
21341cfd
AS
1595
1596void
20c1dc5e 1597ggc_pop_context (void)
21341cfd 1598{
52895e1a 1599 unsigned long omask;
c4775f82
MS
1600 unsigned int depth, i, e;
1601#ifdef ENABLE_CHECKING
1602 unsigned int order;
1603#endif
21341cfd
AS
1604
1605 depth = --G.context_depth;
52895e1a
RH
1606 omask = (unsigned long)1 << (depth + 1);
1607
1608 if (!((G.context_depth_allocations | G.context_depth_collections) & omask))
1609 return;
1610
1611 G.context_depth_allocations |= (G.context_depth_allocations & omask) >> 1;
1612 G.context_depth_allocations &= omask - 1;
1613 G.context_depth_collections &= omask - 1;
21341cfd 1614
a98ebe2e 1615 /* The G.depth array is shortened so that the last index is the
c4775f82
MS
1616 context_depth of the top element of by_depth. */
1617 if (depth+1 < G.depth_in_use)
1618 e = G.depth[depth+1];
1619 else
1620 e = G.by_depth_in_use;
1621
1622 /* We might not have any PTEs of depth depth. */
1623 if (depth < G.depth_in_use)
20c1dc5e 1624 {
c4775f82
MS
1625
1626 /* First we go through all the pages at depth depth to
1627 recalculate the in use bits. */
1628 for (i = G.depth[depth]; i < e; ++i)
1629 {
1630 page_entry *p;
1631
1632#ifdef ENABLE_CHECKING
1633 p = G.by_depth[i];
1634
1635 /* Check that all of the pages really are at the depth that
1636 we expect. */
1637 if (p->context_depth != depth)
1638 abort ();
1639 if (p->index_by_depth != i)
1640 abort ();
1641#endif
1642
1643 prefetch (&save_in_use_p_i (i+8));
1644 prefetch (&save_in_use_p_i (i+16));
1645 if (save_in_use_p_i (i))
1646 {
1647 p = G.by_depth[i];
1648 ggc_recalculate_in_use_p (p);
1649 free (save_in_use_p_i (i));
1650 save_in_use_p_i (i) = 0;
1651 }
1652 }
1653 }
1654
1655 /* Then, we reset all page_entries with a depth greater than depth
1656 to be at depth. */
1657 for (i = e; i < G.by_depth_in_use; ++i)
1658 {
1659 page_entry *p = G.by_depth[i];
1660
1661 /* Check that all of the pages really are at the depth we
1662 expect. */
1663#ifdef ENABLE_CHECKING
1664 if (p->context_depth <= depth)
1665 abort ();
1666 if (p->index_by_depth != i)
1667 abort ();
1668#endif
1669 p->context_depth = depth;
1670 }
1671
1672 adjust_depth ();
1673
1674#ifdef ENABLE_CHECKING
2be510b8 1675 for (order = 2; order < NUM_ORDERS; order++)
21341cfd 1676 {
21341cfd
AS
1677 page_entry *p;
1678
1679 for (p = G.pages[order]; p != NULL; p = p->next)
1680 {
1681 if (p->context_depth > depth)
c4775f82
MS
1682 abort ();
1683 else if (p->context_depth == depth && save_in_use_p (p))
1684 abort ();
21341cfd
AS
1685 }
1686 }
c4775f82 1687#endif
21341cfd 1688}
21341cfd 1689\f
cb2ec151
RH
1690/* Unmark all objects. */
1691
685fe032 1692static void
20c1dc5e 1693clear_marks (void)
21341cfd
AS
1694{
1695 unsigned order;
1696
2be510b8 1697 for (order = 2; order < NUM_ORDERS; order++)
21341cfd 1698 {
21341cfd
AS
1699 page_entry *p;
1700
1701 for (p = G.pages[order]; p != NULL; p = p->next)
1702 {
17211ab5
GK
1703 size_t num_objects = OBJECTS_IN_PAGE (p);
1704 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1705
21341cfd
AS
1706#ifdef ENABLE_CHECKING
1707 /* The data should be page-aligned. */
1708 if ((size_t) p->page & (G.pagesize - 1))
1709 abort ();
1710#endif
1711
1712 /* Pages that aren't in the topmost context are not collected;
1713 nevertheless, we need their in-use bit vectors to store GC
1714 marks. So, back them up first. */
4934cc53 1715 if (p->context_depth < G.context_depth)
21341cfd 1716 {
c4775f82
MS
1717 if (! save_in_use_p (p))
1718 save_in_use_p (p) = xmalloc (bitmap_size);
1719 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
21341cfd
AS
1720 }
1721
1722 /* Reset reset the number of free objects and clear the
1723 in-use bits. These will be adjusted by mark_obj. */
1724 p->num_free_objects = num_objects;
1725 memset (p->in_use_p, 0, bitmap_size);
1726
1727 /* Make sure the one-past-the-end bit is always set. */
589005ff 1728 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
21341cfd
AS
1729 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1730 }
1731 }
1732}
1733
cb2ec151
RH
1734/* Free all empty pages. Partially empty pages need no attention
1735 because the `mark' bit doubles as an `unused' bit. */
1736
685fe032 1737static void
20c1dc5e 1738sweep_pages (void)
21341cfd
AS
1739{
1740 unsigned order;
1741
2be510b8 1742 for (order = 2; order < NUM_ORDERS; order++)
21341cfd
AS
1743 {
1744 /* The last page-entry to consider, regardless of entries
1745 placed at the end of the list. */
1746 page_entry * const last = G.page_tails[order];
1747
17211ab5 1748 size_t num_objects;
054f5e69 1749 size_t live_objects;
21341cfd
AS
1750 page_entry *p, *previous;
1751 int done;
589005ff 1752
21341cfd
AS
1753 p = G.pages[order];
1754 if (p == NULL)
1755 continue;
1756
1757 previous = NULL;
1758 do
1759 {
1760 page_entry *next = p->next;
1761
1762 /* Loop until all entries have been examined. */
1763 done = (p == last);
20c1dc5e 1764
17211ab5 1765 num_objects = OBJECTS_IN_PAGE (p);
21341cfd 1766
054f5e69
ZW
1767 /* Add all live objects on this page to the count of
1768 allocated memory. */
1769 live_objects = num_objects - p->num_free_objects;
1770
2be510b8 1771 G.allocated += OBJECT_SIZE (order) * live_objects;
054f5e69 1772
21341cfd
AS
1773 /* Only objects on pages in the topmost context should get
1774 collected. */
1775 if (p->context_depth < G.context_depth)
1776 ;
1777
1778 /* Remove the page if it's empty. */
054f5e69 1779 else if (live_objects == 0)
21341cfd 1780 {
9bf793f9
JL
1781 /* If P was the first page in the list, then NEXT
1782 becomes the new first page in the list, otherwise
1783 splice P out of the forward pointers. */
21341cfd
AS
1784 if (! previous)
1785 G.pages[order] = next;
1786 else
1787 previous->next = next;
9bf793f9
JL
1788
1789 /* Splice P out of the back pointers too. */
1790 if (next)
1791 next->prev = previous;
21341cfd
AS
1792
1793 /* Are we removing the last element? */
1794 if (p == G.page_tails[order])
1795 G.page_tails[order] = previous;
1796 free_page (p);
1797 p = previous;
1798 }
1799
1800 /* If the page is full, move it to the end. */
1801 else if (p->num_free_objects == 0)
1802 {
1803 /* Don't move it if it's already at the end. */
1804 if (p != G.page_tails[order])
1805 {
1806 /* Move p to the end of the list. */
1807 p->next = NULL;
9bf793f9 1808 p->prev = G.page_tails[order];
21341cfd
AS
1809 G.page_tails[order]->next = p;
1810
1811 /* Update the tail pointer... */
1812 G.page_tails[order] = p;
1813
1814 /* ... and the head pointer, if necessary. */
1815 if (! previous)
1816 G.pages[order] = next;
1817 else
1818 previous->next = next;
9bf793f9
JL
1819
1820 /* And update the backpointer in NEXT if necessary. */
1821 if (next)
1822 next->prev = previous;
1823
21341cfd
AS
1824 p = previous;
1825 }
1826 }
1827
1828 /* If we've fallen through to here, it's a page in the
1829 topmost context that is neither full nor empty. Such a
1830 page must precede pages at lesser context depth in the
1831 list, so move it to the head. */
1832 else if (p != G.pages[order])
1833 {
1834 previous->next = p->next;
9bf793f9
JL
1835
1836 /* Update the backchain in the next node if it exists. */
1837 if (p->next)
1838 p->next->prev = previous;
1839
1840 /* Move P to the head of the list. */
21341cfd 1841 p->next = G.pages[order];
9bf793f9
JL
1842 p->prev = NULL;
1843 G.pages[order]->prev = p;
1844
1845 /* Update the head pointer. */
21341cfd 1846 G.pages[order] = p;
9bf793f9 1847
21341cfd
AS
1848 /* Are we moving the last element? */
1849 if (G.page_tails[order] == p)
1850 G.page_tails[order] = previous;
1851 p = previous;
1852 }
1853
1854 previous = p;
1855 p = next;
589005ff 1856 }
21341cfd 1857 while (! done);
4934cc53
MM
1858
1859 /* Now, restore the in_use_p vectors for any pages from contexts
1860 other than the current one. */
1861 for (p = G.pages[order]; p; p = p->next)
1862 if (p->context_depth != G.context_depth)
1863 ggc_recalculate_in_use_p (p);
21341cfd
AS
1864 }
1865}
1866
3788cc17 1867#ifdef ENABLE_GC_CHECKING
cb2ec151
RH
1868/* Clobber all free objects. */
1869
685fe032 1870static void
20c1dc5e 1871poison_pages (void)
21341cfd
AS
1872{
1873 unsigned order;
1874
2be510b8 1875 for (order = 2; order < NUM_ORDERS; order++)
21341cfd 1876 {
2be510b8 1877 size_t size = OBJECT_SIZE (order);
21341cfd
AS
1878 page_entry *p;
1879
1880 for (p = G.pages[order]; p != NULL; p = p->next)
1881 {
17211ab5 1882 size_t num_objects;
21341cfd 1883 size_t i;
c831fdea
MM
1884
1885 if (p->context_depth != G.context_depth)
1886 /* Since we don't do any collection for pages in pushed
1887 contexts, there's no need to do any poisoning. And
1888 besides, the IN_USE_P array isn't valid until we pop
1889 contexts. */
1890 continue;
1891
17211ab5 1892 num_objects = OBJECTS_IN_PAGE (p);
21341cfd
AS
1893 for (i = 0; i < num_objects; i++)
1894 {
1895 size_t word, bit;
1896 word = i / HOST_BITS_PER_LONG;
1897 bit = i % HOST_BITS_PER_LONG;
1898 if (((p->in_use_p[word] >> bit) & 1) == 0)
9a0a7d5d
HPN
1899 {
1900 char *object = p->page + i * size;
1901
1902 /* Keep poison-by-write when we expect to use Valgrind,
1903 so the exact same memory semantics is kept, in case
1904 there are memory errors. We override this request
1905 below. */
1906 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
1907 memset (object, 0xa5, size);
1908
1909 /* Drop the handle to avoid handle leak. */
1910 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
1911 }
21341cfd
AS
1912 }
1913 }
1914 }
1915}
685fe032
RH
1916#else
1917#define poison_pages()
1918#endif
1919
1920#ifdef ENABLE_GC_ALWAYS_COLLECT
1921/* Validate that the reportedly free objects actually are. */
1922
1923static void
1924validate_free_objects (void)
1925{
1926 struct free_object *f, *next, *still_free = NULL;
1927
1928 for (f = G.free_object_list; f ; f = next)
1929 {
1930 page_entry *pe = lookup_page_table_entry (f->object);
1931 size_t bit, word;
1932
1933 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1934 word = bit / HOST_BITS_PER_LONG;
1935 bit = bit % HOST_BITS_PER_LONG;
1936 next = f->next;
1937
1938 /* Make certain it isn't visible from any root. Notice that we
1939 do this check before sweep_pages merges save_in_use_p. */
1940 if (pe->in_use_p[word] & (1UL << bit))
1941 abort ();
1942
1943 /* If the object comes from an outer context, then retain the
1944 free_object entry, so that we can verify that the address
1945 isn't live on the stack in some outer context. */
1946 if (pe->context_depth != G.context_depth)
1947 {
1948 f->next = still_free;
1949 still_free = f;
1950 }
1951 else
1952 free (f);
1953 }
1954
1955 G.free_object_list = still_free;
1956}
1957#else
1958#define validate_free_objects()
21341cfd
AS
1959#endif
1960
cb2ec151
RH
1961/* Top level mark-and-sweep routine. */
1962
21341cfd 1963void
20c1dc5e 1964ggc_collect (void)
21341cfd 1965{
21341cfd
AS
1966 /* Avoid frequent unnecessary work by skipping collection if the
1967 total allocations haven't expanded much since the last
1968 collection. */
19cc0dd4 1969 float allocated_last_gc =
3788cc17
ZW
1970 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1971
19cc0dd4 1972 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
3788cc17
ZW
1973
1974 if (G.allocated < allocated_last_gc + min_expand)
21341cfd 1975 return;
21341cfd 1976
2a9a326b 1977 timevar_push (TV_GC);
21341cfd 1978 if (!quiet_flag)
b9bfacf0 1979 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
685fe032
RH
1980 if (GGC_DEBUG_LEVEL >= 2)
1981 fprintf (G.debug_file, "BEGIN COLLECTING\n");
21341cfd 1982
054f5e69
ZW
1983 /* Zero the total allocated bytes. This will be recalculated in the
1984 sweep phase. */
21341cfd
AS
1985 G.allocated = 0;
1986
589005ff 1987 /* Release the pages we freed the last time we collected, but didn't
21341cfd
AS
1988 reuse in the interim. */
1989 release_pages ();
1990
52895e1a
RH
1991 /* Indicate that we've seen collections at this context depth. */
1992 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1993
21341cfd
AS
1994 clear_marks ();
1995 ggc_mark_roots ();
21341cfd 1996 poison_pages ();
685fe032 1997 validate_free_objects ();
cb2ec151
RH
1998 sweep_pages ();
1999
21341cfd
AS
2000 G.allocated_last_gc = G.allocated;
2001
2a9a326b 2002 timevar_pop (TV_GC);
21341cfd 2003
21341cfd 2004 if (!quiet_flag)
2a9a326b 2005 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
685fe032
RH
2006 if (GGC_DEBUG_LEVEL >= 2)
2007 fprintf (G.debug_file, "END COLLECTING\n");
21341cfd 2008}
3277221c
MM
2009
2010/* Print allocation statistics. */
fba0bfd4
ZW
2011#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2012 ? (x) \
2013 : ((x) < 1024*1024*10 \
2014 ? (x) / 1024 \
2015 : (x) / (1024*1024))))
2016#define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
3277221c
MM
2017
2018void
20c1dc5e 2019ggc_print_statistics (void)
3277221c
MM
2020{
2021 struct ggc_statistics stats;
4934cc53 2022 unsigned int i;
fba0bfd4 2023 size_t total_overhead = 0;
3277221c
MM
2024
2025 /* Clear the statistics. */
d219c7f1 2026 memset (&stats, 0, sizeof (stats));
589005ff 2027
3277221c
MM
2028 /* Make sure collection will really occur. */
2029 G.allocated_last_gc = 0;
2030
2031 /* Collect and print the statistics common across collectors. */
fba0bfd4 2032 ggc_print_common_statistics (stderr, &stats);
3277221c 2033
4934cc53
MM
2034 /* Release free pages so that we will not count the bytes allocated
2035 there as part of the total allocated memory. */
2036 release_pages ();
2037
589005ff 2038 /* Collect some information about the various sizes of
3277221c 2039 allocation. */
439a7e54
DN
2040 fprintf (stderr,
2041 "Memory still allocated at the end of the compilation process\n");
adc4adcd 2042 fprintf (stderr, "%-5s %10s %10s %10s\n",
9fd51e67 2043 "Size", "Allocated", "Used", "Overhead");
2be510b8 2044 for (i = 0; i < NUM_ORDERS; ++i)
3277221c
MM
2045 {
2046 page_entry *p;
2047 size_t allocated;
2048 size_t in_use;
fba0bfd4 2049 size_t overhead;
3277221c
MM
2050
2051 /* Skip empty entries. */
2052 if (!G.pages[i])
2053 continue;
2054
fba0bfd4 2055 overhead = allocated = in_use = 0;
3277221c
MM
2056
2057 /* Figure out the total number of bytes allocated for objects of
fba0bfd4
ZW
2058 this size, and how many of them are actually in use. Also figure
2059 out how much memory the page table is using. */
3277221c
MM
2060 for (p = G.pages[i]; p; p = p->next)
2061 {
2062 allocated += p->bytes;
20c1dc5e 2063 in_use +=
17211ab5 2064 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
fba0bfd4
ZW
2065
2066 overhead += (sizeof (page_entry) - sizeof (long)
17211ab5 2067 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
3277221c 2068 }
8a951190
AJ
2069 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2070 (unsigned long) OBJECT_SIZE (i),
fba0bfd4
ZW
2071 SCALE (allocated), LABEL (allocated),
2072 SCALE (in_use), LABEL (in_use),
2073 SCALE (overhead), LABEL (overhead));
2074 total_overhead += overhead;
3277221c 2075 }
8a951190 2076 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
fba0bfd4
ZW
2077 SCALE (G.bytes_mapped), LABEL (G.bytes_mapped),
2078 SCALE (G.allocated), LABEL(G.allocated),
2079 SCALE (total_overhead), LABEL (total_overhead));
adc4adcd
GP
2080
2081#ifdef GATHER_STATISTICS
2082 {
439a7e54
DN
2083 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2084
adc4adcd
GP
2085 fprintf (stderr, "Total Overhead: %10lld\n",
2086 G.stats.total_overhead);
2087 fprintf (stderr, "Total Allocated: %10lld\n",
2088 G.stats.total_allocated);
2089
2090 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2091 G.stats.total_overhead_under32);
2092 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2093 G.stats.total_allocated_under32);
2094 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2095 G.stats.total_overhead_under64);
2096 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2097 G.stats.total_allocated_under64);
2098 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2099 G.stats.total_overhead_under128);
2100 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2101 G.stats.total_allocated_under128);
2102
2103 for (i = 0; i < NUM_ORDERS; i++)
439a7e54
DN
2104 if (G.stats.total_allocated_per_order[i])
2105 {
2106 fprintf (stderr, "Total Overhead page size %7d: %10lld\n",
2107 OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
2108 fprintf (stderr, "Total Allocated page size %7d: %10lld\n",
2109 OBJECT_SIZE (i), G.stats.total_allocated_per_order[i]);
2110 }
adc4adcd
GP
2111 }
2112#endif
3277221c 2113}
17211ab5
GK
2114\f
2115struct ggc_pch_data
2116{
20c1dc5e 2117 struct ggc_pch_ondisk
17211ab5
GK
2118 {
2119 unsigned totals[NUM_ORDERS];
2120 } d;
2121 size_t base[NUM_ORDERS];
2122 size_t written[NUM_ORDERS];
2123};
2124
2125struct ggc_pch_data *
20c1dc5e 2126init_ggc_pch (void)
17211ab5
GK
2127{
2128 return xcalloc (sizeof (struct ggc_pch_data), 1);
2129}
2130
20c1dc5e
AJ
2131void
2132ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
b6f61163 2133 size_t size, bool is_string ATTRIBUTE_UNUSED)
17211ab5
GK
2134{
2135 unsigned order;
2136
2137 if (size <= 256)
2138 order = size_lookup[size];
2139 else
2140 {
2141 order = 9;
2142 while (size > OBJECT_SIZE (order))
2143 order++;
2144 }
20c1dc5e 2145
17211ab5
GK
2146 d->d.totals[order]++;
2147}
20c1dc5e 2148
17211ab5 2149size_t
20c1dc5e 2150ggc_pch_total_size (struct ggc_pch_data *d)
17211ab5
GK
2151{
2152 size_t a = 0;
2153 unsigned i;
2154
2155 for (i = 0; i < NUM_ORDERS; i++)
2156 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2157 return a;
2158}
2159
2160void
20c1dc5e 2161ggc_pch_this_base (struct ggc_pch_data *d, void *base)
17211ab5
GK
2162{
2163 size_t a = (size_t) base;
2164 unsigned i;
20c1dc5e 2165
17211ab5
GK
2166 for (i = 0; i < NUM_ORDERS; i++)
2167 {
2168 d->base[i] = a;
2169 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2170 }
2171}
2172
2173
2174char *
20c1dc5e 2175ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
b6f61163 2176 size_t size, bool is_string ATTRIBUTE_UNUSED)
17211ab5
GK
2177{
2178 unsigned order;
2179 char *result;
20c1dc5e 2180
17211ab5
GK
2181 if (size <= 256)
2182 order = size_lookup[size];
2183 else
2184 {
2185 order = 9;
2186 while (size > OBJECT_SIZE (order))
2187 order++;
2188 }
2189
2190 result = (char *) d->base[order];
2191 d->base[order] += OBJECT_SIZE (order);
2192 return result;
2193}
2194
20c1dc5e
AJ
2195void
2196ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2197 FILE *f ATTRIBUTE_UNUSED)
17211ab5
GK
2198{
2199 /* Nothing to do. */
2200}
2201
2202void
20c1dc5e
AJ
2203ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2204 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
b6f61163 2205 size_t size, bool is_string ATTRIBUTE_UNUSED)
17211ab5
GK
2206{
2207 unsigned order;
674c7ef1 2208 static const char emptyBytes[256];
17211ab5
GK
2209
2210 if (size <= 256)
2211 order = size_lookup[size];
2212 else
2213 {
2214 order = 9;
2215 while (size > OBJECT_SIZE (order))
2216 order++;
2217 }
20c1dc5e 2218
17211ab5 2219 if (fwrite (x, size, 1, f) != 1)
fa6ef813 2220 fatal_error ("can't write PCH file: %m");
17211ab5 2221
674c7ef1 2222 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
0ee55ad8 2223 object out to OBJECT_SIZE(order). This happens for strings. */
674c7ef1
RB
2224
2225 if (size != OBJECT_SIZE (order))
2226 {
2227 unsigned padding = OBJECT_SIZE(order) - size;
2228
2229 /* To speed small writes, we use a nulled-out array that's larger
2230 than most padding requests as the source for our null bytes. This
2231 permits us to do the padding with fwrite() rather than fseek(), and
2232 limits the chance the the OS may try to flush any outstanding
0ee55ad8 2233 writes. */
674c7ef1
RB
2234 if (padding <= sizeof(emptyBytes))
2235 {
2236 if (fwrite (emptyBytes, 1, padding, f) != padding)
2237 fatal_error ("can't write PCH file");
2238 }
2239 else
2240 {
0ee55ad8 2241 /* Larger than our buffer? Just default to fseek. */
674c7ef1
RB
2242 if (fseek (f, padding, SEEK_CUR) != 0)
2243 fatal_error ("can't write PCH file");
2244 }
2245 }
17211ab5
GK
2246
2247 d->written[order]++;
2248 if (d->written[order] == d->d.totals[order]
2249 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2250 G.pagesize),
2251 SEEK_CUR) != 0)
fa6ef813 2252 fatal_error ("can't write PCH file: %m");
17211ab5
GK
2253}
2254
2255void
20c1dc5e 2256ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
17211ab5
GK
2257{
2258 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
fa6ef813 2259 fatal_error ("can't write PCH file: %m");
17211ab5
GK
2260 free (d);
2261}
2262
c4775f82
MS
2263/* Move the PCH PTE entries just added to the end of by_depth, to the
2264 front. */
2265
2266static void
20c1dc5e 2267move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
c4775f82
MS
2268{
2269 unsigned i;
2270
2271 /* First, we swap the new entries to the front of the varrays. */
2272 page_entry **new_by_depth;
2273 unsigned long **new_save_in_use;
2274
703ad42b
KG
2275 new_by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
2276 new_save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
c4775f82
MS
2277
2278 memcpy (&new_by_depth[0],
2279 &G.by_depth[count_old_page_tables],
2280 count_new_page_tables * sizeof (void *));
2281 memcpy (&new_by_depth[count_new_page_tables],
2282 &G.by_depth[0],
2283 count_old_page_tables * sizeof (void *));
2284 memcpy (&new_save_in_use[0],
2285 &G.save_in_use[count_old_page_tables],
2286 count_new_page_tables * sizeof (void *));
2287 memcpy (&new_save_in_use[count_new_page_tables],
2288 &G.save_in_use[0],
2289 count_old_page_tables * sizeof (void *));
2290
2291 free (G.by_depth);
2292 free (G.save_in_use);
20c1dc5e 2293
c4775f82
MS
2294 G.by_depth = new_by_depth;
2295 G.save_in_use = new_save_in_use;
2296
2297 /* Now update all the index_by_depth fields. */
2298 for (i = G.by_depth_in_use; i > 0; --i)
2299 {
2300 page_entry *p = G.by_depth[i-1];
2301 p->index_by_depth = i-1;
2302 }
2303
2304 /* And last, we update the depth pointers in G.depth. The first
2305 entry is already 0, and context 0 entries always start at index
2306 0, so there is nothing to update in the first slot. We need a
2307 second slot, only if we have old ptes, and if we do, they start
2308 at index count_new_page_tables. */
2309 if (count_old_page_tables)
2310 push_depth (count_new_page_tables);
2311}
2312
17211ab5 2313void
20c1dc5e 2314ggc_pch_read (FILE *f, void *addr)
17211ab5
GK
2315{
2316 struct ggc_pch_ondisk d;
2317 unsigned i;
2318 char *offs = addr;
c4775f82
MS
2319 unsigned long count_old_page_tables;
2320 unsigned long count_new_page_tables;
2321
2322 count_old_page_tables = G.by_depth_in_use;
2323
2324 /* We've just read in a PCH file. So, every object that used to be
2325 allocated is now free. */
17211ab5 2326 clear_marks ();
c5d6d04a 2327#ifdef ENABLE_GC_CHECKING
17211ab5
GK
2328 poison_pages ();
2329#endif
2330
2331 /* No object read from a PCH file should ever be freed. So, set the
2332 context depth to 1, and set the depth of all the currently-allocated
2333 pages to be 1 too. PCH pages will have depth 0. */
2334 if (G.context_depth != 0)
2335 abort ();
2336 G.context_depth = 1;
2337 for (i = 0; i < NUM_ORDERS; i++)
2338 {
2339 page_entry *p;
2340 for (p = G.pages[i]; p != NULL; p = p->next)
2341 p->context_depth = G.context_depth;
2342 }
2343
2344 /* Allocate the appropriate page-table entries for the pages read from
2345 the PCH file. */
2346 if (fread (&d, sizeof (d), 1, f) != 1)
fa6ef813 2347 fatal_error ("can't read PCH file: %m");
20c1dc5e 2348
17211ab5
GK
2349 for (i = 0; i < NUM_ORDERS; i++)
2350 {
2351 struct page_entry *entry;
2352 char *pte;
2353 size_t bytes;
2354 size_t num_objs;
2355 size_t j;
c4775f82 2356
17211ab5
GK
2357 if (d.totals[i] == 0)
2358 continue;
c4775f82 2359
17211ab5
GK
2360 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2361 num_objs = bytes / OBJECT_SIZE (i);
20c1dc5e 2362 entry = xcalloc (1, (sizeof (struct page_entry)
17211ab5
GK
2363 - sizeof (long)
2364 + BITMAP_SIZE (num_objs + 1)));
2365 entry->bytes = bytes;
2366 entry->page = offs;
2367 entry->context_depth = 0;
2368 offs += bytes;
2369 entry->num_free_objects = 0;
2370 entry->order = i;
2371
20c1dc5e 2372 for (j = 0;
17211ab5
GK
2373 j + HOST_BITS_PER_LONG <= num_objs + 1;
2374 j += HOST_BITS_PER_LONG)
2375 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2376 for (; j < num_objs + 1; j++)
20c1dc5e 2377 entry->in_use_p[j / HOST_BITS_PER_LONG]
17211ab5
GK
2378 |= 1L << (j % HOST_BITS_PER_LONG);
2379
20c1dc5e
AJ
2380 for (pte = entry->page;
2381 pte < entry->page + entry->bytes;
17211ab5
GK
2382 pte += G.pagesize)
2383 set_page_table_entry (pte, entry);
2384
2385 if (G.page_tails[i] != NULL)
2386 G.page_tails[i]->next = entry;
2387 else
2388 G.pages[i] = entry;
2389 G.page_tails[i] = entry;
c4775f82
MS
2390
2391 /* We start off by just adding all the new information to the
2392 end of the varrays, later, we will move the new information
2393 to the front of the varrays, as the PCH page tables are at
2394 context 0. */
2395 push_by_depth (entry, 0);
17211ab5
GK
2396 }
2397
c4775f82
MS
2398 /* Now, we update the various data structures that speed page table
2399 handling. */
2400 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2401
2402 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2403
17211ab5
GK
2404 /* Update the statistics. */
2405 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2406}
This page took 1.401125 seconds and 5 git commands to generate.