]> gcc.gnu.org Git - gcc.git/blame - gcc/genrecog.c
Makefile.in (gcse.o): Depend on params.h.
[gcc.git] / gcc / genrecog.c
CommitLineData
ec65fa66 1/* Generate code from machine description to recognize rtl as insns.
d050d723
JL
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
ec65fa66 4
09051660
RH
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23/* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
ec65fa66
RK
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
09051660
RH
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
ec65fa66 43
09051660
RH
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl in a SEQUENCE.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in a SEQUENCE, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
ec65fa66 52
20f92396 53#include "hconfig.h"
0b93b64e 54#include "system.h"
ec65fa66 55#include "rtl.h"
f8b6598e 56#include "errors.h"
c88c0d42 57#include "gensupport.h"
ec65fa66 58
3916d6d8 59
736b02fd
KG
60#define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
61 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
62
8aeba909 63/* Holds an array of names indexed by insn_code_number. */
a995e389
RH
64static char **insn_name_ptr = 0;
65static int insn_name_ptr_size = 0;
4db83042 66
09051660
RH
67/* A listhead of decision trees. The alternatives to a node are kept
68 in a doublely-linked list so we can easily add nodes to the proper
69 place when merging. */
70
71struct decision_head
72{
73 struct decision *first;
74 struct decision *last;
75};
76
77/* A single test. The two accept types aren't tests per-se, but
78 their equality (or lack thereof) does affect tree merging so
79 it is convenient to keep them here. */
80
81struct decision_test
82{
83 /* A linked list through the tests attached to a node. */
84 struct decision_test *next;
85
86 /* These types are roughly in the order in which we'd like to test them. */
87 enum decision_type {
88 DT_mode, DT_code, DT_veclen,
89 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide,
521b9224 90 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
09051660
RH
91 DT_accept_op, DT_accept_insn
92 } type;
93
94 union
95 {
96 enum machine_mode mode; /* Machine mode of node. */
97 RTX_CODE code; /* Code to test. */
e0689256 98
09051660
RH
99 struct
100 {
101 const char *name; /* Predicate to call. */
102 int index; /* Index into `preds' or -1. */
103 enum machine_mode mode; /* Machine mode for node. */
104 } pred;
105
106 const char *c_test; /* Additional test to perform. */
107 int veclen; /* Length of vector. */
108 int dup; /* Number of operand to compare against. */
109 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
110 int opno; /* Operand number matched. */
111
112 struct {
113 int code_number; /* Insn number matched. */
bcdaba58 114 int lineno; /* Line number of the insn. */
09051660
RH
115 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
116 } insn;
117 } u;
118};
e0689256 119
09051660 120/* Data structure for decision tree for recognizing legitimate insns. */
ec65fa66
RK
121
122struct decision
123{
09051660
RH
124 struct decision_head success; /* Nodes to test on success. */
125 struct decision *next; /* Node to test on failure. */
126 struct decision *prev; /* Node whose failure tests us. */
127 struct decision *afterward; /* Node to test on success,
128 but failure of successor nodes. */
129
130 const char *position; /* String denoting position in pattern. */
131
132 struct decision_test *tests; /* The tests for this node. */
133
e0689256 134 int number; /* Node number, used for labels */
e0689256 135 int subroutine_number; /* Number of subroutine this node starts */
09051660 136 int need_label; /* Label needs to be output. */
ec65fa66
RK
137};
138
09051660 139#define SUBROUTINE_THRESHOLD 100
ec65fa66
RK
140
141static int next_subroutine_number;
142
ede7cd44
RH
143/* We can write three types of subroutines: One for insn recognition,
144 one to split insns, and one for peephole-type optimizations. This
145 defines which type is being written. */
ec65fa66 146
09051660
RH
147enum routine_type {
148 RECOG, SPLIT, PEEPHOLE2
149};
ede7cd44 150
09051660 151#define IS_SPLIT(X) ((X) != RECOG)
ec65fa66 152
e0689256 153/* Next available node number for tree nodes. */
ec65fa66 154
e0689256 155static int next_number;
ec65fa66 156
e0689256 157/* Next number to use as an insn_code. */
ec65fa66 158
e0689256 159static int next_insn_code;
ec65fa66 160
e0689256 161/* Similar, but counts all expressions in the MD file; used for
0f41302f 162 error messages. */
ec65fa66 163
e0689256 164static int next_index;
ec65fa66 165
e0689256
RK
166/* Record the highest depth we ever have so we know how many variables to
167 allocate in each subroutine we make. */
ec65fa66 168
e0689256 169static int max_depth;
bcdaba58
RH
170
171/* The line number of the start of the pattern currently being processed. */
172static int pattern_lineno;
173
174/* Count of errors. */
175static int error_count;
e0689256
RK
176\f
177/* This table contains a list of the rtl codes that can possibly match a
09051660 178 predicate defined in recog.c. The function `maybe_both_true' uses it to
e0689256
RK
179 deduce that there are no expressions that can be matches by certain pairs
180 of tree nodes. Also, if a predicate can match only one code, we can
181 hardwire that code into the node testing the predicate. */
ec65fa66 182
e0689256
RK
183static struct pred_table
184{
85fda1eb 185 const char *name;
e0689256 186 RTX_CODE codes[NUM_RTX_CODE];
09051660
RH
187} preds[] = {
188 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
189 LABEL_REF, SUBREG, REG, MEM}},
e0689256 190#ifdef PREDICATE_CODES
09051660 191 PREDICATE_CODES
e0689256 192#endif
09051660
RH
193 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
194 LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
195 {"register_operand", {SUBREG, REG}},
556ffcc5 196 {"pmode_register_operand", {SUBREG, REG}},
09051660
RH
197 {"scratch_operand", {SCRATCH, REG}},
198 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
199 LABEL_REF}},
200 {"const_int_operand", {CONST_INT}},
201 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
202 {"nonimmediate_operand", {SUBREG, REG, MEM}},
203 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
204 LABEL_REF, SUBREG, REG}},
205 {"push_operand", {MEM}},
206 {"pop_operand", {MEM}},
207 {"memory_operand", {SUBREG, MEM}},
208 {"indirect_operand", {SUBREG, MEM}},
3a3677ff
RH
209 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
210 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
211 UNLT, LTGT}},
09051660
RH
212 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
213 LABEL_REF, SUBREG, REG, MEM}}
214};
e0689256 215
b6a1cbae 216#define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
ec65fa66 217
8fe0ca0c
RH
218static const char * special_mode_pred_table[] = {
219#ifdef SPECIAL_MODE_PREDICATES
220 SPECIAL_MODE_PREDICATES
221#endif
556ffcc5 222 "pmode_register_operand"
8fe0ca0c
RH
223};
224
b6a1cbae 225#define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
8fe0ca0c 226
09051660 227static struct decision *new_decision
a94ae8f5 228 PARAMS ((const char *, struct decision_head *));
09051660 229static struct decision_test *new_decision_test
a94ae8f5 230 PARAMS ((enum decision_type, struct decision_test ***));
8fe0ca0c 231static rtx find_operand
a94ae8f5 232 PARAMS ((rtx, int));
c0ea284b
RH
233static rtx find_matching_operand
234 PARAMS ((rtx, int));
8fe0ca0c 235static void validate_pattern
7297e9fc 236 PARAMS ((rtx, rtx, rtx, int));
09051660 237static struct decision *add_to_sequence
a94ae8f5 238 PARAMS ((rtx, struct decision_head *, const char *, enum routine_type, int));
09051660
RH
239
240static int maybe_both_true_2
a94ae8f5 241 PARAMS ((struct decision_test *, struct decision_test *));
09051660 242static int maybe_both_true_1
a94ae8f5 243 PARAMS ((struct decision_test *, struct decision_test *));
09051660 244static int maybe_both_true
a94ae8f5 245 PARAMS ((struct decision *, struct decision *, int));
09051660
RH
246
247static int nodes_identical_1
a94ae8f5 248 PARAMS ((struct decision_test *, struct decision_test *));
09051660 249static int nodes_identical
a94ae8f5 250 PARAMS ((struct decision *, struct decision *));
09051660 251static void merge_accept_insn
a94ae8f5 252 PARAMS ((struct decision *, struct decision *));
09051660 253static void merge_trees
a94ae8f5 254 PARAMS ((struct decision_head *, struct decision_head *));
09051660
RH
255
256static void factor_tests
a94ae8f5 257 PARAMS ((struct decision_head *));
09051660 258static void simplify_tests
a94ae8f5 259 PARAMS ((struct decision_head *));
09051660 260static int break_out_subroutines
a94ae8f5 261 PARAMS ((struct decision_head *, int));
09051660 262static void find_afterward
a94ae8f5 263 PARAMS ((struct decision_head *, struct decision *));
09051660
RH
264
265static void change_state
a94ae8f5 266 PARAMS ((const char *, const char *, struct decision *, const char *));
09051660 267static void print_code
a94ae8f5 268 PARAMS ((enum rtx_code));
09051660 269static void write_afterward
a94ae8f5 270 PARAMS ((struct decision *, struct decision *, const char *));
09051660 271static struct decision *write_switch
a94ae8f5 272 PARAMS ((struct decision *, int));
09051660 273static void write_cond
a94ae8f5 274 PARAMS ((struct decision_test *, int, enum routine_type));
09051660 275static void write_action
23280139
RH
276 PARAMS ((struct decision *, struct decision_test *, int, int,
277 struct decision *, enum routine_type));
09051660 278static int is_unconditional
a94ae8f5 279 PARAMS ((struct decision_test *, enum routine_type));
09051660 280static int write_node
a94ae8f5 281 PARAMS ((struct decision *, int, enum routine_type));
09051660 282static void write_tree_1
a94ae8f5 283 PARAMS ((struct decision_head *, int, enum routine_type));
09051660 284static void write_tree
a94ae8f5 285 PARAMS ((struct decision_head *, const char *, enum routine_type, int));
09051660 286static void write_subroutine
a94ae8f5 287 PARAMS ((struct decision_head *, enum routine_type));
09051660 288static void write_subroutines
a94ae8f5 289 PARAMS ((struct decision_head *, enum routine_type));
09051660 290static void write_header
a94ae8f5 291 PARAMS ((void));
09051660
RH
292
293static struct decision_head make_insn_sequence
a94ae8f5 294 PARAMS ((rtx, enum routine_type));
09051660 295static void process_tree
a94ae8f5 296 PARAMS ((struct decision_head *, enum routine_type));
09051660
RH
297
298static void record_insn_name
a94ae8f5 299 PARAMS ((int, const char *));
09051660 300
36f0e0a6 301static void debug_decision_0
a94ae8f5 302 PARAMS ((struct decision *, int, int));
09051660 303static void debug_decision_1
a94ae8f5 304 PARAMS ((struct decision *, int));
09051660 305static void debug_decision_2
a94ae8f5 306 PARAMS ((struct decision_test *));
09051660 307extern void debug_decision
a94ae8f5 308 PARAMS ((struct decision *));
36f0e0a6 309extern void debug_decision_list
a94ae8f5 310 PARAMS ((struct decision *));
ede7cd44 311\f
09051660 312/* Create a new node in sequence after LAST. */
e0689256 313
09051660
RH
314static struct decision *
315new_decision (position, last)
316 const char *position;
317 struct decision_head *last;
ec65fa66 318{
09051660
RH
319 register struct decision *new
320 = (struct decision *) xmalloc (sizeof (struct decision));
ec65fa66 321
09051660
RH
322 memset (new, 0, sizeof (*new));
323 new->success = *last;
324 new->position = xstrdup (position);
325 new->number = next_number++;
ec65fa66 326
09051660
RH
327 last->first = last->last = new;
328 return new;
329}
e0689256 330
09051660 331/* Create a new test and link it in at PLACE. */
ec65fa66 332
09051660
RH
333static struct decision_test *
334new_decision_test (type, pplace)
335 enum decision_type type;
336 struct decision_test ***pplace;
337{
338 struct decision_test **place = *pplace;
339 struct decision_test *test;
ec65fa66 340
09051660
RH
341 test = (struct decision_test *) xmalloc (sizeof (*test));
342 test->next = *place;
343 test->type = type;
344 *place = test;
ede7cd44 345
09051660
RH
346 place = &test->next;
347 *pplace = place;
ec65fa66 348
09051660 349 return test;
e0689256 350}
09051660 351
8fe0ca0c
RH
352/* Search for and return operand N. */
353
354static rtx
355find_operand (pattern, n)
356 rtx pattern;
357 int n;
358{
359 const char *fmt;
360 RTX_CODE code;
361 int i, j, len;
362 rtx r;
363
364 code = GET_CODE (pattern);
365 if ((code == MATCH_SCRATCH
366 || code == MATCH_INSN
367 || code == MATCH_OPERAND
368 || code == MATCH_OPERATOR
369 || code == MATCH_PARALLEL)
370 && XINT (pattern, 0) == n)
371 return pattern;
372
373 fmt = GET_RTX_FORMAT (code);
374 len = GET_RTX_LENGTH (code);
375 for (i = 0; i < len; i++)
376 {
377 switch (fmt[i])
378 {
379 case 'e': case 'u':
380 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
381 return r;
382 break;
383
c0ea284b
RH
384 case 'V':
385 if (! XVEC (pattern, i))
386 break;
387 /* FALLTHRU */
388
8fe0ca0c
RH
389 case 'E':
390 for (j = 0; j < XVECLEN (pattern, i); j++)
391 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
392 return r;
393 break;
394
395 case 'i': case 'w': case '0': case 's':
396 break;
397
398 default:
399 abort ();
400 }
401 }
402
403 return NULL;
404}
405
c0ea284b
RH
406/* Search for and return operand M, such that it has a matching
407 constraint for operand N. */
408
409static rtx
410find_matching_operand (pattern, n)
411 rtx pattern;
412 int n;
413{
414 const char *fmt;
415 RTX_CODE code;
416 int i, j, len;
417 rtx r;
418
419 code = GET_CODE (pattern);
420 if (code == MATCH_OPERAND
421 && (XSTR (pattern, 2)[0] == '0' + n
422 || (XSTR (pattern, 2)[0] == '%'
423 && XSTR (pattern, 2)[1] == '0' + n)))
424 return pattern;
425
426 fmt = GET_RTX_FORMAT (code);
427 len = GET_RTX_LENGTH (code);
428 for (i = 0; i < len; i++)
429 {
430 switch (fmt[i])
431 {
432 case 'e': case 'u':
433 if ((r = find_matching_operand (XEXP (pattern, i), n)))
434 return r;
435 break;
436
437 case 'V':
438 if (! XVEC (pattern, i))
439 break;
440 /* FALLTHRU */
441
442 case 'E':
443 for (j = 0; j < XVECLEN (pattern, i); j++)
444 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
445 return r;
446 break;
447
448 case 'i': case 'w': case '0': case 's':
449 break;
450
451 default:
452 abort ();
453 }
454 }
455
456 return NULL;
457}
458
459
aece2740 460/* Check for various errors in patterns. SET is nonnull for a destination,
7297e9fc
RH
461 and is the complete set pattern. SET_CODE is '=' for normal sets, and
462 '+' within a context that requires in-out constraints. */
bcdaba58
RH
463
464static void
7297e9fc 465validate_pattern (pattern, insn, set, set_code)
bcdaba58 466 rtx pattern;
8fe0ca0c 467 rtx insn;
aece2740 468 rtx set;
7297e9fc 469 int set_code;
bcdaba58
RH
470{
471 const char *fmt;
472 RTX_CODE code;
8fe0ca0c
RH
473 size_t i, len;
474 int j;
bcdaba58
RH
475
476 code = GET_CODE (pattern);
477 switch (code)
478 {
479 case MATCH_SCRATCH:
bcdaba58
RH
480 return;
481
8fe0ca0c 482 case MATCH_INSN:
bcdaba58 483 case MATCH_OPERAND:
8fe0ca0c 484 case MATCH_OPERATOR:
bcdaba58
RH
485 {
486 const char *pred_name = XSTR (pattern, 1);
8fe0ca0c
RH
487 int allows_non_lvalue = 1, allows_non_const = 1;
488 int special_mode_pred = 0;
489 const char *c_test;
490
491 if (GET_CODE (insn) == DEFINE_INSN)
492 c_test = XSTR (insn, 2);
493 else
494 c_test = XSTR (insn, 1);
bcdaba58
RH
495
496 if (pred_name[0] != 0)
497 {
8fe0ca0c 498 for (i = 0; i < NUM_KNOWN_PREDS; i++)
bcdaba58
RH
499 if (! strcmp (preds[i].name, pred_name))
500 break;
501
8fe0ca0c 502 if (i < NUM_KNOWN_PREDS)
bcdaba58 503 {
8fe0ca0c 504 int j;
bcdaba58 505
8fe0ca0c 506 allows_non_lvalue = allows_non_const = 0;
bcdaba58 507 for (j = 0; preds[i].codes[j] != 0; j++)
bcdaba58 508 {
8fe0ca0c
RH
509 RTX_CODE c = preds[i].codes[j];
510 if (c != LABEL_REF
511 && c != SYMBOL_REF
512 && c != CONST_INT
513 && c != CONST_DOUBLE
514 && c != CONST
515 && c != HIGH
516 && c != CONSTANT_P_RTX)
517 allows_non_const = 1;
518
519 if (c != REG
520 && c != SUBREG
521 && c != MEM
522 && c != CONCAT
523 && c != PARALLEL
524 && c != STRICT_LOW_PART)
525 allows_non_lvalue = 1;
bcdaba58
RH
526 }
527 }
528 else
529 {
530#ifdef PREDICATE_CODES
531 /* If the port has a list of the predicates it uses but
532 omits one, warn. */
8fe0ca0c
RH
533 message_with_line (pattern_lineno,
534 "warning: `%s' not in PREDICATE_CODES",
535 pred_name);
bcdaba58
RH
536#endif
537 }
8fe0ca0c
RH
538
539 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
540 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
541 {
542 special_mode_pred = 1;
543 break;
544 }
545 }
546
aece2740 547 /* A MATCH_OPERAND that is a SET should have an output reload. */
c0ea284b
RH
548 if (set && code == MATCH_OPERAND
549 && XSTR (pattern, 2)[0] != '\0')
aece2740 550 {
c0ea284b 551 if (set_code == '+')
7297e9fc 552 {
c0ea284b
RH
553 if (XSTR (pattern, 2)[0] == '+')
554 ;
555 /* If we've only got an output reload for this operand,
556 we'd better have a matching input operand. */
557 else if (XSTR (pattern, 2)[0] == '='
558 && find_matching_operand (insn, XINT (pattern, 0)))
559 ;
560 else
561 {
562 message_with_line (pattern_lineno,
563 "operand %d missing in-out reload",
564 XINT (pattern, 0));
565 error_count++;
566 }
7297e9fc 567 }
c0ea284b 568 else if (XSTR (pattern, 2)[0] != '='
7297e9fc
RH
569 && XSTR (pattern, 2)[0] != '+')
570 {
571 message_with_line (pattern_lineno,
572 "operand %d missing output reload",
573 XINT (pattern, 0));
574 error_count++;
575 }
aece2740
RH
576 }
577
8fe0ca0c
RH
578 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
579 while not likely to occur at runtime, results in less efficient
580 code from insn-recog.c. */
aece2740 581 if (set
8fe0ca0c
RH
582 && pred_name[0] != '\0'
583 && allows_non_lvalue)
584 {
585 message_with_line (pattern_lineno,
aece2740 586 "warning: destination operand %d allows non-lvalue",
476a33f4 587 XINT (pattern, 0));
8fe0ca0c
RH
588 }
589
590 /* A modeless MATCH_OPERAND can be handy when we can
591 check for multiple modes in the c_test. In most other cases,
592 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
556ffcc5
RH
593 and PEEP2 can FAIL within the output pattern. Exclude
594 address_operand, since its mode is related to the mode of
aece2740
RH
595 the memory not the operand. Exclude the SET_DEST of a call
596 instruction, as that is a common idiom. */
8fe0ca0c
RH
597
598 if (GET_MODE (pattern) == VOIDmode
599 && code == MATCH_OPERAND
556ffcc5 600 && GET_CODE (insn) == DEFINE_INSN
8fe0ca0c
RH
601 && allows_non_const
602 && ! special_mode_pred
556ffcc5
RH
603 && pred_name[0] != '\0'
604 && strcmp (pred_name, "address_operand") != 0
aece2740
RH
605 && strstr (c_test, "operands") == NULL
606 && ! (set
607 && GET_CODE (set) == SET
608 && GET_CODE (SET_SRC (set)) == CALL))
8fe0ca0c
RH
609 {
610 message_with_line (pattern_lineno,
611 "warning: operand %d missing mode?",
612 XINT (pattern, 0));
bcdaba58 613 }
bcdaba58
RH
614 return;
615 }
616
617 case SET:
8fe0ca0c
RH
618 {
619 enum machine_mode dmode, smode;
620 rtx dest, src;
621
622 dest = SET_DEST (pattern);
623 src = SET_SRC (pattern);
624
625 /* Find the referant for a DUP. */
626
627 if (GET_CODE (dest) == MATCH_DUP
628 || GET_CODE (dest) == MATCH_OP_DUP
629 || GET_CODE (dest) == MATCH_PAR_DUP)
630 dest = find_operand (insn, XINT (dest, 0));
631
632 if (GET_CODE (src) == MATCH_DUP
633 || GET_CODE (src) == MATCH_OP_DUP
634 || GET_CODE (src) == MATCH_PAR_DUP)
635 src = find_operand (insn, XINT (src, 0));
636
637 /* STRICT_LOW_PART is a wrapper. Its argument is the real
638 destination, and it's mode should match the source. */
639 if (GET_CODE (dest) == STRICT_LOW_PART)
640 dest = XEXP (dest, 0);
641
642 dmode = GET_MODE (dest);
643 smode = GET_MODE (src);
bcdaba58 644
8fe0ca0c
RH
645 /* The mode of an ADDRESS_OPERAND is the mode of the memory
646 reference, not the mode of the address. */
647 if (GET_CODE (src) == MATCH_OPERAND
648 && ! strcmp (XSTR (src, 1), "address_operand"))
649 ;
650
651 /* The operands of a SET must have the same mode unless one
652 is VOIDmode. */
653 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
654 {
655 message_with_line (pattern_lineno,
656 "mode mismatch in set: %smode vs %smode",
657 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
658 error_count++;
659 }
660
661 /* If only one of the operands is VOIDmode, and PC or CC0 is
662 not involved, it's probably a mistake. */
663 else if (dmode != smode
664 && GET_CODE (dest) != PC
665 && GET_CODE (dest) != CC0
aece2740
RH
666 && GET_CODE (src) != PC
667 && GET_CODE (src) != CC0
8fe0ca0c
RH
668 && GET_CODE (src) != CONST_INT)
669 {
670 const char *which;
671 which = (dmode == VOIDmode ? "destination" : "source");
672 message_with_line (pattern_lineno,
673 "warning: %s missing a mode?", which);
674 }
675
676 if (dest != SET_DEST (pattern))
7297e9fc
RH
677 validate_pattern (dest, insn, pattern, '=');
678 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
679 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
8fe0ca0c
RH
680 return;
681 }
682
683 case CLOBBER:
7297e9fc
RH
684 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
685 return;
686
687 case ZERO_EXTRACT:
688 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
689 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
690 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
691 return;
692
693 case STRICT_LOW_PART:
694 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
bcdaba58 695 return;
8fe0ca0c 696
bcdaba58
RH
697 case LABEL_REF:
698 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
699 {
700 message_with_line (pattern_lineno,
701 "operand to label_ref %smode not VOIDmode",
702 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
703 error_count++;
704 }
705 break;
706
707 default:
708 break;
709 }
710
711 fmt = GET_RTX_FORMAT (code);
712 len = GET_RTX_LENGTH (code);
713 for (i = 0; i < len; i++)
714 {
715 switch (fmt[i])
716 {
717 case 'e': case 'u':
7297e9fc 718 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
bcdaba58
RH
719 break;
720
721 case 'E':
722 for (j = 0; j < XVECLEN (pattern, i); j++)
7297e9fc 723 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
bcdaba58
RH
724 break;
725
726 case 'i': case 'w': case '0': case 's':
727 break;
728
729 default:
730 abort ();
731 }
732 }
bcdaba58
RH
733}
734
e0689256
RK
735/* Create a chain of nodes to verify that an rtl expression matches
736 PATTERN.
ec65fa66 737
e0689256
RK
738 LAST is a pointer to the listhead in the previous node in the chain (or
739 in the calling function, for the first node).
ec65fa66 740
e0689256 741 POSITION is the string representing the current position in the insn.
ec65fa66 742
ede7cd44
RH
743 INSN_TYPE is the type of insn for which we are emitting code.
744
e0689256 745 A pointer to the final node in the chain is returned. */
ec65fa66
RK
746
747static struct decision *
ede7cd44 748add_to_sequence (pattern, last, position, insn_type, top)
ec65fa66 749 rtx pattern;
e0689256 750 struct decision_head *last;
85fda1eb 751 const char *position;
ede7cd44
RH
752 enum routine_type insn_type;
753 int top;
ec65fa66 754{
09051660
RH
755 RTX_CODE code;
756 struct decision *this, *sub;
757 struct decision_test *test;
758 struct decision_test **place;
759 char *subpos;
85066503 760 register size_t i;
09051660 761 register const char *fmt;
e0689256 762 int depth = strlen (position);
ec65fa66 763 int len;
09051660 764 enum machine_mode mode;
ec65fa66 765
e0689256
RK
766 if (depth > max_depth)
767 max_depth = depth;
768
b548dffb 769 subpos = (char *) xmalloc (depth + 2);
09051660
RH
770 strcpy (subpos, position);
771 subpos[depth + 1] = 0;
ec65fa66 772
09051660
RH
773 sub = this = new_decision (position, last);
774 place = &this->tests;
ec65fa66
RK
775
776 restart:
09051660
RH
777 mode = GET_MODE (pattern);
778 code = GET_CODE (pattern);
ec65fa66
RK
779
780 switch (code)
781 {
ede7cd44
RH
782 case PARALLEL:
783 /* Toplevel peephole pattern. */
784 if (insn_type == PEEPHOLE2 && top)
785 {
09051660
RH
786 /* We don't need the node we just created -- unlink it. */
787 last->first = last->last = NULL;
ede7cd44
RH
788
789 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
790 {
791 /* Which insn we're looking at is represented by A-Z. We don't
792 ever use 'A', however; it is always implied. */
09051660
RH
793
794 subpos[depth] = (i > 0 ? 'A' + i : 0);
795 sub = add_to_sequence (XVECEXP (pattern, 0, i),
796 last, subpos, insn_type, 0);
797 last = &sub->success;
ede7cd44 798 }
b548dffb 799 goto ret;
ede7cd44 800 }
09051660
RH
801
802 /* Else nothing special. */
ede7cd44 803 break;
09051660 804
521b9224
RH
805 case MATCH_PARALLEL:
806 /* The explicit patterns within a match_parallel enforce a minimum
807 length on the vector. The match_parallel predicate may allow
808 for more elements. We do need to check for this minimum here
809 or the code generated to match the internals may reference data
810 beyond the end of the vector. */
811 test = new_decision_test (DT_veclen_ge, &place);
812 test->u.veclen = XVECLEN (pattern, 2);
813 /* FALLTHRU */
814
ec65fa66 815 case MATCH_OPERAND:
ec65fa66 816 case MATCH_SCRATCH:
ec65fa66 817 case MATCH_OPERATOR:
5126c35a 818 case MATCH_INSN:
09051660
RH
819 {
820 const char *pred_name;
821 RTX_CODE was_code = code;
ec1c89e6 822 int allows_const_int = 1;
09051660
RH
823
824 if (code == MATCH_SCRATCH)
825 {
826 pred_name = "scratch_operand";
827 code = UNKNOWN;
828 }
829 else
830 {
831 pred_name = XSTR (pattern, 1);
832 if (code == MATCH_PARALLEL)
833 code = PARALLEL;
834 else
835 code = UNKNOWN;
836 }
837
29360e56 838 if (pred_name[0] != 0)
09051660
RH
839 {
840 test = new_decision_test (DT_pred, &place);
841 test->u.pred.name = pred_name;
842 test->u.pred.mode = mode;
843
844 /* See if we know about this predicate and save its number. If
845 we do, and it only accepts one code, note that fact. The
846 predicate `const_int_operand' only tests for a CONST_INT, so
847 if we do so we can avoid calling it at all.
848
849 Finally, if we know that the predicate does not allow
850 CONST_INT, we know that the only way the predicate can match
851 is if the modes match (here we use the kludge of relying on
852 the fact that "address_operand" accepts CONST_INT; otherwise,
853 it would have to be a special case), so we can test the mode
854 (but we need not). This fact should considerably simplify the
855 generated code. */
856
857 for (i = 0; i < NUM_KNOWN_PREDS; i++)
858 if (! strcmp (preds[i].name, pred_name))
859 break;
e0689256 860
09051660 861 if (i < NUM_KNOWN_PREDS)
9edd4689 862 {
c3693cb1 863 int j;
e0689256 864
09051660 865 test->u.pred.index = i;
e0689256 866
09051660
RH
867 if (preds[i].codes[1] == 0 && code == UNKNOWN)
868 code = preds[i].codes[0];
e0689256 869
09051660
RH
870 allows_const_int = 0;
871 for (j = 0; preds[i].codes[j] != 0; j++)
9edd4689 872 if (preds[i].codes[j] == CONST_INT)
09051660
RH
873 {
874 allows_const_int = 1;
875 break;
876 }
9edd4689 877 }
09051660 878 else
bcdaba58 879 test->u.pred.index = -1;
09051660 880 }
ec1c89e6
RH
881
882 /* Can't enforce a mode if we allow const_int. */
883 if (allows_const_int)
884 mode = VOIDmode;
e0689256 885
09051660
RH
886 /* Accept the operand, ie. record it in `operands'. */
887 test = new_decision_test (DT_accept_op, &place);
888 test->u.opno = XINT (pattern, 0);
e0689256 889
09051660
RH
890 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
891 {
892 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
893 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
894 {
895 subpos[depth] = i + base;
896 sub = add_to_sequence (XVECEXP (pattern, 2, i),
897 &sub->success, subpos, insn_type, 0);
898 }
899 }
900 goto fini;
901 }
ec65fa66
RK
902
903 case MATCH_OP_DUP:
09051660
RH
904 code = UNKNOWN;
905
906 test = new_decision_test (DT_dup, &place);
907 test->u.dup = XINT (pattern, 0);
908
909 test = new_decision_test (DT_accept_op, &place);
910 test->u.opno = XINT (pattern, 0);
911
e51712db 912 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
ec65fa66 913 {
09051660
RH
914 subpos[depth] = i + '0';
915 sub = add_to_sequence (XVECEXP (pattern, 1, i),
916 &sub->success, subpos, insn_type, 0);
ec65fa66 917 }
09051660 918 goto fini;
ec65fa66
RK
919
920 case MATCH_DUP:
f582c9d5 921 case MATCH_PAR_DUP:
09051660
RH
922 code = UNKNOWN;
923
924 test = new_decision_test (DT_dup, &place);
925 test->u.dup = XINT (pattern, 0);
926 goto fini;
ec65fa66
RK
927
928 case ADDRESS:
929 pattern = XEXP (pattern, 0);
930 goto restart;
931
76d31c63
JL
932 default:
933 break;
ec65fa66
RK
934 }
935
936 fmt = GET_RTX_FORMAT (code);
937 len = GET_RTX_LENGTH (code);
09051660
RH
938
939 /* Do tests against the current node first. */
e51712db 940 for (i = 0; i < (size_t) len; i++)
ec65fa66 941 {
09051660 942 if (fmt[i] == 'i')
ec65fa66 943 {
09051660
RH
944 if (i == 0)
945 {
946 test = new_decision_test (DT_elt_zero_int, &place);
947 test->u.intval = XINT (pattern, i);
948 }
949 else if (i == 1)
950 {
951 test = new_decision_test (DT_elt_one_int, &place);
952 test->u.intval = XINT (pattern, i);
953 }
954 else
955 abort ();
ec65fa66 956 }
09051660 957 else if (fmt[i] == 'w')
3d678dca 958 {
09051660
RH
959 if (i != 0)
960 abort ();
961
962 test = new_decision_test (DT_elt_zero_wide, &place);
963 test->u.intval = XWINT (pattern, i);
3d678dca 964 }
ec65fa66
RK
965 else if (fmt[i] == 'E')
966 {
ec65fa66
RK
967 if (i != 0)
968 abort ();
09051660
RH
969
970 test = new_decision_test (DT_veclen, &place);
971 test->u.veclen = XVECLEN (pattern, i);
972 }
973 }
974
975 /* Now test our sub-patterns. */
976 for (i = 0; i < (size_t) len; i++)
977 {
978 switch (fmt[i])
979 {
980 case 'e': case 'u':
981 subpos[depth] = '0' + i;
982 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
983 subpos, insn_type, 0);
984 break;
985
986 case 'E':
987 {
988 register int j;
989 for (j = 0; j < XVECLEN (pattern, i); j++)
990 {
991 subpos[depth] = 'a' + j;
992 sub = add_to_sequence (XVECEXP (pattern, i, j),
993 &sub->success, subpos, insn_type, 0);
994 }
995 break;
996 }
997
998 case 'i': case 'w':
999 /* Handled above. */
1000 break;
1001 case '0':
1002 break;
1003
1004 default:
1005 abort ();
1006 }
1007 }
1008
1009 fini:
1010 /* Insert nodes testing mode and code, if they're still relevant,
1011 before any of the nodes we may have added above. */
1012 if (code != UNKNOWN)
1013 {
1014 place = &this->tests;
1015 test = new_decision_test (DT_code, &place);
1016 test->u.code = code;
1017 }
1018
1019 if (mode != VOIDmode)
1020 {
1021 place = &this->tests;
1022 test = new_decision_test (DT_mode, &place);
1023 test->u.mode = mode;
1024 }
1025
1026 /* If we didn't insert any tests or accept nodes, hork. */
1027 if (this->tests == NULL)
1028 abort ();
1029
b548dffb
ZW
1030 ret:
1031 free (subpos);
09051660
RH
1032 return sub;
1033}
1034\f
1035/* A subroutine of maybe_both_true; examines only one test.
1036 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1037
1038static int
1039maybe_both_true_2 (d1, d2)
1040 struct decision_test *d1, *d2;
1041{
1042 if (d1->type == d2->type)
1043 {
1044 switch (d1->type)
1045 {
1046 case DT_mode:
1047 return d1->u.mode == d2->u.mode;
1048
1049 case DT_code:
1050 return d1->u.code == d2->u.code;
1051
1052 case DT_veclen:
1053 return d1->u.veclen == d2->u.veclen;
1054
1055 case DT_elt_zero_int:
1056 case DT_elt_one_int:
1057 case DT_elt_zero_wide:
1058 return d1->u.intval == d2->u.intval;
1059
1060 default:
1061 break;
1062 }
1063 }
1064
1065 /* If either has a predicate that we know something about, set
1066 things up so that D1 is the one that always has a known
1067 predicate. Then see if they have any codes in common. */
1068
1069 if (d1->type == DT_pred || d2->type == DT_pred)
1070 {
1071 if (d2->type == DT_pred)
1072 {
1073 struct decision_test *tmp;
1074 tmp = d1, d1 = d2, d2 = tmp;
1075 }
1076
1077 /* If D2 tests a mode, see if it matches D1. */
1078 if (d1->u.pred.mode != VOIDmode)
1079 {
1080 if (d2->type == DT_mode)
1081 {
8f496bc2
HPN
1082 if (d1->u.pred.mode != d2->u.mode
1083 /* The mode of an address_operand predicate is the
1084 mode of the memory, not the operand. It can only
1085 be used for testing the predicate, so we must
1086 ignore it here. */
1087 && strcmp (d1->u.pred.name, "address_operand") != 0)
09051660
RH
1088 return 0;
1089 }
4dc320a5
RH
1090 /* Don't check two predicate modes here, because if both predicates
1091 accept CONST_INT, then both can still be true even if the modes
1092 are different. If they don't accept CONST_INT, there will be a
1093 separate DT_mode that will make maybe_both_true_1 return 0. */
09051660
RH
1094 }
1095
1096 if (d1->u.pred.index >= 0)
1097 {
1098 /* If D2 tests a code, see if it is in the list of valid
1099 codes for D1's predicate. */
1100 if (d2->type == DT_code)
1101 {
1102 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1103 while (*c != 0)
1104 {
1105 if (*c == d2->u.code)
1106 break;
1107 ++c;
1108 }
1109 if (*c == 0)
1110 return 0;
1111 }
1112
1113 /* Otherwise see if the predicates have any codes in common. */
1114 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
ec65fa66 1115 {
09051660
RH
1116 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1117 int common = 0;
1118
1119 while (*c1 != 0 && !common)
1120 {
1121 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1122 while (*c2 != 0 && !common)
1123 {
1124 common = (*c1 == *c2);
1125 ++c2;
1126 }
1127 ++c1;
1128 }
1129
1130 if (!common)
1131 return 0;
ec65fa66
RK
1132 }
1133 }
ec65fa66 1134 }
09051660 1135
521b9224
RH
1136 /* Tests vs veclen may be known when strict equality is involved. */
1137 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1138 return d1->u.veclen >= d2->u.veclen;
1139 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1140 return d2->u.veclen >= d1->u.veclen;
1141
09051660 1142 return -1;
ec65fa66 1143}
09051660
RH
1144
1145/* A subroutine of maybe_both_true; examines all the tests for a given node.
1146 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1147
1148static int
1149maybe_both_true_1 (d1, d2)
1150 struct decision_test *d1, *d2;
1151{
1152 struct decision_test *t1, *t2;
1153
1154 /* A match_operand with no predicate can match anything. Recognize
1155 this by the existance of a lone DT_accept_op test. */
1156 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1157 return 1;
1158
1159 /* Eliminate pairs of tests while they can exactly match. */
1160 while (d1 && d2 && d1->type == d2->type)
1161 {
1162 if (maybe_both_true_2 (d1, d2) == 0)
1163 return 0;
1164 d1 = d1->next, d2 = d2->next;
1165 }
1166
1167 /* After that, consider all pairs. */
1168 for (t1 = d1; t1 ; t1 = t1->next)
1169 for (t2 = d2; t2 ; t2 = t2->next)
1170 if (maybe_both_true_2 (t1, t2) == 0)
1171 return 0;
1172
1173 return -1;
1174}
1175
1176/* Return 0 if we can prove that there is no RTL that can match both
1177 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
e0689256 1178 can match both or just that we couldn't prove there wasn't such an RTL).
ec65fa66 1179
e0689256
RK
1180 TOPLEVEL is non-zero if we are to only look at the top level and not
1181 recursively descend. */
ec65fa66 1182
e0689256 1183static int
09051660 1184maybe_both_true (d1, d2, toplevel)
e0689256
RK
1185 struct decision *d1, *d2;
1186 int toplevel;
ec65fa66 1187{
e0689256 1188 struct decision *p1, *p2;
00ec6daa
JH
1189 int cmp;
1190
1191 /* Don't compare strings on the different positions in insn. Doing so
1192 is incorrect and results in false matches from constructs like
1193
1194 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1195 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1196 vs
1197 [(set (match_operand:HI "register_operand" "r")
1198 (match_operand:HI "register_operand" "r"))]
1199
1200 If we are presented with such, we are recursing through the remainder
1201 of a node's success nodes (from the loop at the end of this function).
1202 Skip forward until we come to a position that matches.
1203
1204 Due to the way position strings are constructed, we know that iterating
1205 forward from the lexically lower position (e.g. "00") will run into
1206 the lexically higher position (e.g. "1") and not the other way around.
1207 This saves a bit of effort. */
1208
1209 cmp = strcmp (d1->position, d2->position);
1210 if (cmp != 0)
1211 {
1212 if (toplevel)
1213 abort();
1214
1215 /* If the d2->position was lexically lower, swap. */
1216 if (cmp > 0)
ace91ff1 1217 p1 = d1, d1 = d2, d2 = p1;
00ec6daa
JH
1218
1219 if (d1->success.first == 0)
29360e56 1220 return 1;
00ec6daa 1221 for (p1 = d1->success.first; p1; p1 = p1->next)
09051660
RH
1222 if (maybe_both_true (p1, d2, 0))
1223 return 1;
00ec6daa 1224
09051660 1225 return 0;
00ec6daa 1226 }
e0689256 1227
09051660
RH
1228 /* Test the current level. */
1229 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1230 if (cmp >= 0)
1231 return cmp;
1232
1233 /* We can't prove that D1 and D2 cannot both be true. If we are only
1234 to check the top level, return 1. Otherwise, see if we can prove
1235 that all choices in both successors are mutually exclusive. If
1236 either does not have any successors, we can't prove they can't both
1237 be true. */
1238
1239 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
e0689256
RK
1240 return 1;
1241
09051660
RH
1242 for (p1 = d1->success.first; p1; p1 = p1->next)
1243 for (p2 = d2->success.first; p2; p2 = p2->next)
1244 if (maybe_both_true (p1, p2, 0))
1245 return 1;
e0689256 1246
09051660
RH
1247 return 0;
1248}
ec65fa66 1249
09051660 1250/* A subroutine of nodes_identical. Examine two tests for equivalence. */
ec65fa66 1251
09051660
RH
1252static int
1253nodes_identical_1 (d1, d2)
1254 struct decision_test *d1, *d2;
1255{
1256 switch (d1->type)
ec65fa66 1257 {
09051660
RH
1258 case DT_mode:
1259 return d1->u.mode == d2->u.mode;
e0689256 1260
09051660
RH
1261 case DT_code:
1262 return d1->u.code == d2->u.code;
e0689256 1263
09051660
RH
1264 case DT_pred:
1265 return (d1->u.pred.mode == d2->u.pred.mode
1266 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
e0689256 1267
09051660
RH
1268 case DT_c_test:
1269 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
e0689256 1270
09051660 1271 case DT_veclen:
521b9224 1272 case DT_veclen_ge:
09051660 1273 return d1->u.veclen == d2->u.veclen;
e0689256 1274
09051660
RH
1275 case DT_dup:
1276 return d1->u.dup == d2->u.dup;
e0689256 1277
09051660
RH
1278 case DT_elt_zero_int:
1279 case DT_elt_one_int:
1280 case DT_elt_zero_wide:
1281 return d1->u.intval == d2->u.intval;
e0689256 1282
09051660
RH
1283 case DT_accept_op:
1284 return d1->u.opno == d2->u.opno;
1285
1286 case DT_accept_insn:
1287 /* Differences will be handled in merge_accept_insn. */
1288 return 1;
1289
1290 default:
1291 abort ();
ec65fa66 1292 }
09051660 1293}
ec65fa66 1294
09051660
RH
1295/* True iff the two nodes are identical (on one level only). Due
1296 to the way these lists are constructed, we shouldn't have to
1297 consider different orderings on the tests. */
ec65fa66 1298
09051660
RH
1299static int
1300nodes_identical (d1, d2)
1301 struct decision *d1, *d2;
1302{
1303 struct decision_test *t1, *t2;
e0689256 1304
09051660
RH
1305 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1306 {
1307 if (t1->type != t2->type)
1308 return 0;
1309 if (! nodes_identical_1 (t1, t2))
e0689256 1310 return 0;
09051660 1311 }
e0689256 1312
09051660 1313 /* For success, they should now both be null. */
aece2740
RH
1314 if (t1 != t2)
1315 return 0;
1316
1317 /* Check that their subnodes are at the same position, as any one set
2cec75a1
RH
1318 of sibling decisions must be at the same position. Allowing this
1319 requires complications to find_afterward and when change_state is
1320 invoked. */
aece2740
RH
1321 if (d1->success.first
1322 && d2->success.first
1323 && strcmp (d1->success.first->position, d2->success.first->position))
1324 return 0;
1325
1326 return 1;
e0689256 1327}
e0689256 1328
09051660
RH
1329/* A subroutine of merge_trees; given two nodes that have been declared
1330 identical, cope with two insn accept states. If they differ in the
1331 number of clobbers, then the conflict was created by make_insn_sequence
1332 and we can drop the with-clobbers version on the floor. If both
1333 nodes have no additional clobbers, we have found an ambiguity in the
1334 source machine description. */
1335
1336static void
1337merge_accept_insn (oldd, addd)
1338 struct decision *oldd, *addd;
ec65fa66 1339{
09051660
RH
1340 struct decision_test *old, *add;
1341
1342 for (old = oldd->tests; old; old = old->next)
1343 if (old->type == DT_accept_insn)
1344 break;
1345 if (old == NULL)
1346 return;
e0689256 1347
09051660
RH
1348 for (add = addd->tests; add; add = add->next)
1349 if (add->type == DT_accept_insn)
1350 break;
1351 if (add == NULL)
1352 return;
e0689256 1353
09051660
RH
1354 /* If one node is for a normal insn and the second is for the base
1355 insn with clobbers stripped off, the second node should be ignored. */
e0689256 1356
09051660
RH
1357 if (old->u.insn.num_clobbers_to_add == 0
1358 && add->u.insn.num_clobbers_to_add > 0)
1359 {
1360 /* Nothing to do here. */
1361 }
1362 else if (old->u.insn.num_clobbers_to_add > 0
1363 && add->u.insn.num_clobbers_to_add == 0)
1364 {
1365 /* In this case, replace OLD with ADD. */
1366 old->u.insn = add->u.insn;
1367 }
1368 else
1369 {
bcdaba58
RH
1370 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1371 get_insn_name (add->u.insn.code_number),
1372 get_insn_name (old->u.insn.code_number));
1373 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1374 get_insn_name (old->u.insn.code_number));
1375 error_count++;
09051660 1376 }
e0689256 1377}
e0689256 1378
09051660
RH
1379/* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1380
1381static void
e0689256 1382merge_trees (oldh, addh)
09051660 1383 struct decision_head *oldh, *addh;
e0689256 1384{
09051660 1385 struct decision *next, *add;
e0689256 1386
09051660
RH
1387 if (addh->first == 0)
1388 return;
1389 if (oldh->first == 0)
1390 {
1391 *oldh = *addh;
1392 return;
1393 }
ec65fa66 1394
09051660
RH
1395 /* Trying to merge bits at different positions isn't possible. */
1396 if (strcmp (oldh->first->position, addh->first->position))
e0689256
RK
1397 abort ();
1398
09051660 1399 for (add = addh->first; add ; add = next)
ec65fa66 1400 {
09051660 1401 struct decision *old, *insert_before = NULL;
e0689256
RK
1402
1403 next = add->next;
1404
09051660
RH
1405 /* The semantics of pattern matching state that the tests are
1406 done in the order given in the MD file so that if an insn
1407 matches two patterns, the first one will be used. However,
1408 in practice, most, if not all, patterns are unambiguous so
1409 that their order is independent. In that case, we can merge
1410 identical tests and group all similar modes and codes together.
e0689256
RK
1411
1412 Scan starting from the end of OLDH until we reach a point
09051660
RH
1413 where we reach the head of the list or where we pass a
1414 pattern that could also be true if NEW is true. If we find
1415 an identical pattern, we can merge them. Also, record the
1416 last node that tests the same code and mode and the last one
1417 that tests just the same mode.
e0689256
RK
1418
1419 If we have no match, place NEW after the closest match we found. */
09051660
RH
1420
1421 for (old = oldh->last; old; old = old->prev)
ec65fa66 1422 {
09051660 1423 if (nodes_identical (old, add))
e0689256 1424 {
09051660
RH
1425 merge_accept_insn (old, add);
1426 merge_trees (&old->success, &add->success);
1427 goto merged_nodes;
1428 }
e0689256 1429
09051660
RH
1430 if (maybe_both_true (old, add, 0))
1431 break;
e0689256 1432
09051660
RH
1433 /* Insert the nodes in DT test type order, which is roughly
1434 how expensive/important the test is. Given that the tests
1435 are also ordered within the list, examining the first is
1436 sufficient. */
dbbbbf3b 1437 if ((int) add->tests->type < (int) old->tests->type)
09051660
RH
1438 insert_before = old;
1439 }
de6a431b 1440
09051660
RH
1441 if (insert_before == NULL)
1442 {
1443 add->next = NULL;
1444 add->prev = oldh->last;
1445 oldh->last->next = add;
1446 oldh->last = add;
1447 }
1448 else
1449 {
1450 if ((add->prev = insert_before->prev) != NULL)
1451 add->prev->next = add;
1452 else
1453 oldh->first = add;
1454 add->next = insert_before;
1455 insert_before->prev = add;
1456 }
1457
1458 merged_nodes:;
1459 }
1460}
1461\f
1462/* Walk the tree looking for sub-nodes that perform common tests.
1463 Factor out the common test into a new node. This enables us
1464 (depending on the test type) to emit switch statements later. */
1465
1466static void
1467factor_tests (head)
1468 struct decision_head *head;
1469{
1470 struct decision *first, *next;
e0689256 1471
09051660
RH
1472 for (first = head->first; first && first->next; first = next)
1473 {
1474 enum decision_type type;
1475 struct decision *new, *old_last;
e0689256 1476
09051660
RH
1477 type = first->tests->type;
1478 next = first->next;
e0689256 1479
09051660
RH
1480 /* Want at least two compatible sequential nodes. */
1481 if (next->tests->type != type)
1482 continue;
ec65fa66 1483
09051660
RH
1484 /* Don't want all node types, just those we can turn into
1485 switch statements. */
1486 if (type != DT_mode
1487 && type != DT_code
1488 && type != DT_veclen
1489 && type != DT_elt_zero_int
1490 && type != DT_elt_one_int
1491 && type != DT_elt_zero_wide)
e0689256 1492 continue;
ec65fa66 1493
09051660
RH
1494 /* If we'd been performing more than one test, create a new node
1495 below our first test. */
1496 if (first->tests->next != NULL)
1497 {
1498 new = new_decision (first->position, &first->success);
1499 new->tests = first->tests->next;
1500 first->tests->next = NULL;
1501 }
1502
1503 /* Crop the node tree off after our first test. */
1504 first->next = NULL;
1505 old_last = head->last;
1506 head->last = first;
1507
1508 /* For each compatible test, adjust to perform only one test in
1509 the top level node, then merge the node back into the tree. */
1510 do
1511 {
1512 struct decision_head h;
1513
1514 if (next->tests->next != NULL)
1515 {
1516 new = new_decision (next->position, &next->success);
1517 new->tests = next->tests->next;
1518 next->tests->next = NULL;
1519 }
1520 new = next;
1521 next = next->next;
1522 new->next = NULL;
1523 h.first = h.last = new;
ec65fa66 1524
09051660
RH
1525 merge_trees (head, &h);
1526 }
1527 while (next && next->tests->type == type);
ec65fa66 1528
09051660
RH
1529 /* After we run out of compatible tests, graft the remaining nodes
1530 back onto the tree. */
1531 if (next)
e0689256 1532 {
09051660
RH
1533 next->prev = head->last;
1534 head->last->next = next;
1535 head->last = old_last;
e0689256 1536 }
09051660 1537 }
ec65fa66 1538
09051660
RH
1539 /* Recurse. */
1540 for (first = head->first; first; first = first->next)
1541 factor_tests (&first->success);
1542}
1543
1544/* After factoring, try to simplify the tests on any one node.
1545 Tests that are useful for switch statements are recognizable
1546 by having only a single test on a node -- we'll be manipulating
1547 nodes with multiple tests:
1548
1549 If we have mode tests or code tests that are redundant with
1550 predicates, remove them. */
1551
1552static void
1553simplify_tests (head)
1554 struct decision_head *head;
1555{
1556 struct decision *tree;
1557
1558 for (tree = head->first; tree; tree = tree->next)
1559 {
1560 struct decision_test *a, *b;
1561
1562 a = tree->tests;
1563 b = a->next;
1564 if (b == NULL)
1565 continue;
1566
1567 /* Find a predicate node. */
1568 while (b && b->type != DT_pred)
1569 b = b->next;
1570 if (b)
e0689256 1571 {
09051660
RH
1572 /* Due to how these tests are constructed, we don't even need
1573 to check that the mode and code are compatible -- they were
1574 generated from the predicate in the first place. */
1575 while (a->type == DT_mode || a->type == DT_code)
1576 a = a->next;
1577 tree->tests = a;
e0689256
RK
1578 }
1579 }
ec65fa66 1580
09051660
RH
1581 /* Recurse. */
1582 for (tree = head->first; tree; tree = tree->next)
1583 simplify_tests (&tree->success);
ec65fa66 1584}
09051660 1585
e0689256
RK
1586/* Count the number of subnodes of HEAD. If the number is high enough,
1587 make the first node in HEAD start a separate subroutine in the C code
09051660 1588 that is generated. */
ec65fa66
RK
1589
1590static int
09051660
RH
1591break_out_subroutines (head, initial)
1592 struct decision_head *head;
e0689256 1593 int initial;
ec65fa66
RK
1594{
1595 int size = 0;
87bd0490 1596 struct decision *sub;
e0689256 1597
09051660
RH
1598 for (sub = head->first; sub; sub = sub->next)
1599 size += 1 + break_out_subroutines (&sub->success, 0);
e0689256
RK
1600
1601 if (size > SUBROUTINE_THRESHOLD && ! initial)
ec65fa66 1602 {
09051660 1603 head->first->subroutine_number = ++next_subroutine_number;
ec65fa66
RK
1604 size = 1;
1605 }
1606 return size;
1607}
09051660
RH
1608
1609/* For each node p, find the next alternative that might be true
1610 when p is true. */
ec65fa66
RK
1611
1612static void
09051660
RH
1613find_afterward (head, real_afterward)
1614 struct decision_head *head;
1615 struct decision *real_afterward;
ec65fa66 1616{
09051660 1617 struct decision *p, *q, *afterward;
69277eec 1618
09051660
RH
1619 /* We can't propogate alternatives across subroutine boundaries.
1620 This is not incorrect, merely a minor optimization loss. */
ec65fa66 1621
09051660
RH
1622 p = head->first;
1623 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
e0689256 1624
09051660 1625 for ( ; p ; p = p->next)
e0689256 1626 {
09051660
RH
1627 /* Find the next node that might be true if this one fails. */
1628 for (q = p->next; q ; q = q->next)
1629 if (maybe_both_true (p, q, 1))
1630 break;
e0689256 1631
09051660
RH
1632 /* If we reached the end of the list without finding one,
1633 use the incoming afterward position. */
1634 if (!q)
1635 q = afterward;
1636 p->afterward = q;
1637 if (q)
1638 q->need_label = 1;
e0689256
RK
1639 }
1640
09051660
RH
1641 /* Recurse. */
1642 for (p = head->first; p ; p = p->next)
1643 if (p->success.first)
1644 find_afterward (&p->success, p->afterward);
1645
1646 /* When we are generating a subroutine, record the real afterward
1647 position in the first node where write_tree can find it, and we
1648 can do the right thing at the subroutine call site. */
1649 p = head->first;
1650 if (p->subroutine_number > 0)
1651 p->afterward = real_afterward;
1652}
1653\f
1654/* Assuming that the state of argument is denoted by OLDPOS, take whatever
1655 actions are necessary to move to NEWPOS. If we fail to move to the
1656 new state, branch to node AFTERWARD if non-zero, otherwise return.
e0689256 1657
09051660
RH
1658 Failure to move to the new state can only occur if we are trying to
1659 match multiple insns and we try to step past the end of the stream. */
e0689256 1660
09051660
RH
1661static void
1662change_state (oldpos, newpos, afterward, indent)
1663 const char *oldpos;
1664 const char *newpos;
1665 struct decision *afterward;
1666 const char *indent;
1667{
1668 int odepth = strlen (oldpos);
1669 int ndepth = strlen (newpos);
1670 int depth;
1671 int old_has_insn, new_has_insn;
e0689256 1672
09051660
RH
1673 /* Pop up as many levels as necessary. */
1674 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1675 continue;
ec65fa66 1676
09051660
RH
1677 /* Hunt for the last [A-Z] in both strings. */
1678 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1679 if (oldpos[old_has_insn] >= 'A' && oldpos[old_has_insn] <= 'Z')
1680 break;
0deeec4e 1681 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
09051660
RH
1682 if (newpos[new_has_insn] >= 'A' && newpos[new_has_insn] <= 'Z')
1683 break;
e0689256 1684
09051660
RH
1685 /* Go down to desired level. */
1686 while (depth < ndepth)
1687 {
1688 /* It's a different insn from the first one. */
1689 if (newpos[depth] >= 'A' && newpos[depth] <= 'Z')
ec65fa66 1690 {
09051660
RH
1691 /* We can only fail if we're moving down the tree. */
1692 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
e0689256 1693 {
23280139 1694 printf ("%stem = peep2_next_insn (%d);\n",
09051660 1695 indent, newpos[depth] - 'A');
e0689256
RK
1696 }
1697 else
1698 {
23280139 1699 printf ("%stem = peep2_next_insn (%d);\n",
09051660
RH
1700 indent, newpos[depth] - 'A');
1701 printf ("%sif (tem == NULL_RTX)\n", indent);
1702 if (afterward)
1703 printf ("%s goto L%d;\n", indent, afterward->number);
e0689256 1704 else
09051660 1705 printf ("%s goto ret0;\n", indent);
e0689256 1706 }
23280139 1707 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
ec65fa66 1708 }
09051660
RH
1709 else if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
1710 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1711 indent, depth + 1, depth, newpos[depth] - 'a');
1712 else
1713 printf ("%sx%d = XEXP (x%d, %c);\n",
1714 indent, depth + 1, depth, newpos[depth]);
1715 ++depth;
1716 }
1717}
1718\f
1719/* Print the enumerator constant for CODE -- the upcase version of
1720 the name. */
1721
1722static void
1723print_code (code)
1724 enum rtx_code code;
1725{
1726 register const char *p;
1727 for (p = GET_RTX_NAME (code); *p; p++)
1728 putchar (TOUPPER (*p));
1729}
ec65fa66 1730
09051660 1731/* Emit code to cross an afterward link -- change state and branch. */
ec65fa66 1732
09051660
RH
1733static void
1734write_afterward (start, afterward, indent)
1735 struct decision *start;
1736 struct decision *afterward;
1737 const char *indent;
1738{
1739 if (!afterward || start->subroutine_number > 0)
1740 printf("%sgoto ret0;\n", indent);
1741 else
1742 {
1743 change_state (start->position, afterward->position, NULL, indent);
1744 printf ("%sgoto L%d;\n", indent, afterward->number);
1745 }
1746}
e0689256 1747
09051660
RH
1748/* Emit a switch statement, if possible, for an initial sequence of
1749 nodes at START. Return the first node yet untested. */
e0689256 1750
09051660
RH
1751static struct decision *
1752write_switch (start, depth)
1753 struct decision *start;
1754 int depth;
1755{
1756 struct decision *p = start;
1757 enum decision_type type = p->tests->type;
1651ab85 1758 struct decision *needs_label = NULL;
ec65fa66 1759
09051660
RH
1760 /* If we have two or more nodes in sequence that test the same one
1761 thing, we may be able to use a switch statement. */
e0689256 1762
09051660
RH
1763 if (!p->next
1764 || p->tests->next
1765 || p->next->tests->type != type
2cec75a1
RH
1766 || p->next->tests->next
1767 || nodes_identical_1 (p->tests, p->next->tests))
09051660 1768 return p;
e0689256 1769
09051660
RH
1770 /* DT_code is special in that we can do interesting things with
1771 known predicates at the same time. */
1772 if (type == DT_code)
1773 {
1774 char codemap[NUM_RTX_CODE];
1775 struct decision *ret;
1e193337 1776 RTX_CODE code;
ec65fa66 1777
09051660 1778 memset (codemap, 0, sizeof(codemap));
ec65fa66 1779
09051660 1780 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1e193337 1781 code = p->tests->u.code;
09051660 1782 do
ec65fa66 1783 {
1651ab85
AO
1784 if (p != start && p->need_label && needs_label == NULL)
1785 needs_label = p;
1786
09051660
RH
1787 printf (" case ");
1788 print_code (code);
1789 printf (":\n goto L%d;\n", p->success.first->number);
1790 p->success.first->need_label = 1;
1791
1792 codemap[code] = 1;
1793 p = p->next;
1794 }
1e193337
RH
1795 while (p
1796 && ! p->tests->next
1797 && p->tests->type == DT_code
1798 && ! codemap[code = p->tests->u.code]);
09051660
RH
1799
1800 /* If P is testing a predicate that we know about and we haven't
1801 seen any of the codes that are valid for the predicate, we can
1802 write a series of "case" statement, one for each possible code.
1803 Since we are already in a switch, these redundant tests are very
1804 cheap and will reduce the number of predicates called. */
1805
1806 /* Note that while we write out cases for these predicates here,
1807 we don't actually write the test here, as it gets kinda messy.
1808 It is trivial to leave this to later by telling our caller that
1809 we only processed the CODE tests. */
1651ab85
AO
1810 if (needs_label != NULL)
1811 ret = needs_label;
1812 else
1813 ret = p;
09051660
RH
1814
1815 while (p && p->tests->type == DT_pred
1816 && p->tests->u.pred.index >= 0)
1817 {
1818 const RTX_CODE *c;
ec65fa66 1819
09051660
RH
1820 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1821 if (codemap[(int) *c] != 0)
1822 goto pred_done;
e0689256 1823
09051660 1824 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
ec65fa66 1825 {
09051660
RH
1826 printf (" case ");
1827 print_code (*c);
1828 printf (":\n");
1829 codemap[(int) *c] = 1;
ec65fa66 1830 }
e0689256 1831
09051660
RH
1832 printf (" goto L%d;\n", p->number);
1833 p->need_label = 1;
1834 p = p->next;
ec65fa66
RK
1835 }
1836
09051660
RH
1837 pred_done:
1838 /* Make the default case skip the predicates we managed to match. */
e0689256 1839
09051660
RH
1840 printf (" default:\n");
1841 if (p != ret)
ec65fa66 1842 {
09051660 1843 if (p)
b030d598 1844 {
09051660
RH
1845 printf (" goto L%d;\n", p->number);
1846 p->need_label = 1;
b030d598 1847 }
e0689256 1848 else
09051660 1849 write_afterward (start, start->afterward, " ");
ec65fa66 1850 }
ec65fa66 1851 else
09051660
RH
1852 printf (" break;\n");
1853 printf (" }\n");
1854
1855 return ret;
1856 }
1857 else if (type == DT_mode
1858 || type == DT_veclen
1859 || type == DT_elt_zero_int
1860 || type == DT_elt_one_int
1861 || type == DT_elt_zero_wide)
1862 {
09051660
RH
1863 printf (" switch (");
1864 switch (type)
1865 {
1866 case DT_mode:
c8d8ed65 1867 printf ("GET_MODE (x%d)", depth);
09051660
RH
1868 break;
1869 case DT_veclen:
c8d8ed65 1870 printf ("XVECLEN (x%d, 0)", depth);
09051660
RH
1871 break;
1872 case DT_elt_zero_int:
c8d8ed65 1873 printf ("XINT (x%d, 0)", depth);
09051660
RH
1874 break;
1875 case DT_elt_one_int:
c8d8ed65 1876 printf ("XINT (x%d, 1)", depth);
09051660
RH
1877 break;
1878 case DT_elt_zero_wide:
c8d8ed65
RK
1879 /* Convert result of XWINT to int for portability since some C
1880 compilers won't do it and some will. */
1881 printf ("(int) XWINT (x%d, 0)", depth);
09051660
RH
1882 break;
1883 default:
1884 abort ();
1885 }
09051660 1886 printf (")\n {\n");
cba998bf 1887
09051660 1888 do
e0689256 1889 {
2cec75a1
RH
1890 /* Merge trees will not unify identical nodes if their
1891 sub-nodes are at different levels. Thus we must check
1892 for duplicate cases. */
1893 struct decision *q;
1894 for (q = start; q != p; q = q->next)
1895 if (nodes_identical_1 (p->tests, q->tests))
1896 goto case_done;
1897
1651ab85
AO
1898 if (p != start && p->need_label && needs_label == NULL)
1899 needs_label = p;
1900
09051660
RH
1901 printf (" case ");
1902 switch (type)
cba998bf 1903 {
09051660
RH
1904 case DT_mode:
1905 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1906 break;
1907 case DT_veclen:
1908 printf ("%d", p->tests->u.veclen);
1909 break;
1910 case DT_elt_zero_int:
1911 case DT_elt_one_int:
1912 case DT_elt_zero_wide:
1913 printf (HOST_WIDE_INT_PRINT_DEC, p->tests->u.intval);
1914 break;
1915 default:
1916 abort ();
cba998bf 1917 }
09051660
RH
1918 printf (":\n goto L%d;\n", p->success.first->number);
1919 p->success.first->need_label = 1;
cba998bf 1920
09051660 1921 p = p->next;
e0689256 1922 }
09051660 1923 while (p && p->tests->type == type && !p->tests->next);
2cec75a1
RH
1924
1925 case_done:
09051660 1926 printf (" default:\n break;\n }\n");
ec65fa66 1927
1651ab85 1928 return needs_label != NULL ? needs_label : p;
09051660
RH
1929 }
1930 else
1931 {
1932 /* None of the other tests are ameanable. */
1933 return p;
1934 }
1935}
ec65fa66 1936
09051660 1937/* Emit code for one test. */
e0689256 1938
09051660
RH
1939static void
1940write_cond (p, depth, subroutine_type)
1941 struct decision_test *p;
1942 int depth;
1943 enum routine_type subroutine_type;
1944{
1945 switch (p->type)
1946 {
1947 case DT_mode:
1948 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1949 break;
e0689256 1950
09051660
RH
1951 case DT_code:
1952 printf ("GET_CODE (x%d) == ", depth);
1953 print_code (p->u.code);
1954 break;
1955
1956 case DT_veclen:
1957 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1958 break;
1959
1960 case DT_elt_zero_int:
1961 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1962 break;
1963
1964 case DT_elt_one_int:
1965 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1966 break;
1967
1968 case DT_elt_zero_wide:
1969 printf ("XWINT (x%d, 0) == ", depth);
1970 printf (HOST_WIDE_INT_PRINT_DEC, p->u.intval);
1971 break;
1972
521b9224
RH
1973 case DT_veclen_ge:
1974 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
1975 break;
1976
09051660
RH
1977 case DT_dup:
1978 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
1979 break;
1980
1981 case DT_pred:
1982 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
1983 GET_MODE_NAME (p->u.pred.mode));
1984 break;
1985
1986 case DT_c_test:
1987 printf ("(%s)", p->u.c_test);
1988 break;
1989
1990 case DT_accept_insn:
1991 switch (subroutine_type)
1992 {
1993 case RECOG:
1994 if (p->u.insn.num_clobbers_to_add == 0)
1995 abort ();
1996 printf ("pnum_clobbers != NULL");
1997 break;
1998
1999 default:
2000 abort ();
ec65fa66 2001 }
09051660 2002 break;
ec65fa66 2003
09051660
RH
2004 default:
2005 abort ();
e0689256 2006 }
09051660 2007}
ec65fa66 2008
09051660
RH
2009/* Emit code for one action. The previous tests have succeeded;
2010 TEST is the last of the chain. In the normal case we simply
2011 perform a state change. For the `accept' tests we must do more work. */
ec65fa66 2012
09051660 2013static void
23280139
RH
2014write_action (p, test, depth, uncond, success, subroutine_type)
2015 struct decision *p;
09051660
RH
2016 struct decision_test *test;
2017 int depth, uncond;
2018 struct decision *success;
2019 enum routine_type subroutine_type;
2020{
2021 const char *indent;
2022 int want_close = 0;
2023
2024 if (uncond)
2025 indent = " ";
2026 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
e0689256 2027 {
09051660
RH
2028 fputs (" {\n", stdout);
2029 indent = " ";
2030 want_close = 1;
e0689256 2031 }
09051660
RH
2032 else
2033 indent = " ";
ec65fa66 2034
09051660 2035 if (test->type == DT_accept_op)
e0689256 2036 {
09051660
RH
2037 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2038
2039 /* Only allow DT_accept_insn to follow. */
2040 if (test->next)
2041 {
2042 test = test->next;
2043 if (test->type != DT_accept_insn)
2044 abort ();
2045 }
ec65fa66
RK
2046 }
2047
09051660
RH
2048 /* Sanity check that we're now at the end of the list of tests. */
2049 if (test->next)
e0689256 2050 abort ();
ec65fa66 2051
09051660 2052 if (test->type == DT_accept_insn)
ec65fa66 2053 {
09051660
RH
2054 switch (subroutine_type)
2055 {
2056 case RECOG:
2057 if (test->u.insn.num_clobbers_to_add != 0)
2058 printf ("%s*pnum_clobbers = %d;\n",
2059 indent, test->u.insn.num_clobbers_to_add);
2060 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2061 break;
2062
2063 case SPLIT:
2064 printf ("%sreturn gen_split_%d (operands);\n",
2065 indent, test->u.insn.code_number);
2066 break;
2067
2068 case PEEPHOLE2:
23280139
RH
2069 {
2070 int match_len = 0, i;
2071
2072 for (i = strlen (p->position) - 1; i >= 0; --i)
2073 if (p->position[i] >= 'A' && p->position[i] <= 'Z')
2074 {
2075 match_len = p->position[i] - 'A';
2076 break;
2077 }
2078 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2079 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2080 indent, test->u.insn.code_number);
2081 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2082 }
09051660
RH
2083 break;
2084
2085 default:
2086 abort ();
2087 }
ec65fa66
RK
2088 }
2089 else
09051660
RH
2090 {
2091 printf("%sgoto L%d;\n", indent, success->number);
2092 success->need_label = 1;
2093 }
ec65fa66 2094
09051660
RH
2095 if (want_close)
2096 fputs (" }\n", stdout);
ec65fa66
RK
2097}
2098
09051660
RH
2099/* Return 1 if the test is always true and has no fallthru path. Return -1
2100 if the test does have a fallthru path, but requires that the condition be
2101 terminated. Otherwise return 0 for a normal test. */
2102/* ??? is_unconditional is a stupid name for a tri-state function. */
2103
ec65fa66 2104static int
09051660
RH
2105is_unconditional (t, subroutine_type)
2106 struct decision_test *t;
2107 enum routine_type subroutine_type;
ec65fa66 2108{
09051660
RH
2109 if (t->type == DT_accept_op)
2110 return 1;
ec65fa66 2111
09051660
RH
2112 if (t->type == DT_accept_insn)
2113 {
2114 switch (subroutine_type)
2115 {
2116 case RECOG:
2117 return (t->u.insn.num_clobbers_to_add == 0);
2118 case SPLIT:
2119 return 1;
2120 case PEEPHOLE2:
2121 return -1;
2122 default:
2123 abort ();
2124 }
2125 }
ec65fa66 2126
09051660 2127 return 0;
ec65fa66
RK
2128}
2129
09051660
RH
2130/* Emit code for one node -- the conditional and the accompanying action.
2131 Return true if there is no fallthru path. */
2132
ec65fa66 2133static int
09051660
RH
2134write_node (p, depth, subroutine_type)
2135 struct decision *p;
2136 int depth;
2137 enum routine_type subroutine_type;
ec65fa66 2138{
09051660
RH
2139 struct decision_test *test, *last_test;
2140 int uncond;
ec65fa66 2141
09051660
RH
2142 last_test = test = p->tests;
2143 uncond = is_unconditional (test, subroutine_type);
2144 if (uncond == 0)
2145 {
2146 printf (" if (");
2147 write_cond (test, depth, subroutine_type);
2148
2149 while ((test = test->next) != NULL)
2150 {
2151 int uncond2;
2152
2153 last_test = test;
2154 uncond2 = is_unconditional (test, subroutine_type);
2155 if (uncond2 != 0)
2156 break;
2157
2158 printf ("\n && ");
2159 write_cond (test, depth, subroutine_type);
2160 }
2161
2162 printf (")\n");
2163 }
2164
23280139 2165 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
09051660
RH
2166
2167 return uncond > 0;
ec65fa66
RK
2168}
2169
09051660
RH
2170/* Emit code for all of the sibling nodes of HEAD. */
2171
ec65fa66 2172static void
09051660
RH
2173write_tree_1 (head, depth, subroutine_type)
2174 struct decision_head *head;
2175 int depth;
2176 enum routine_type subroutine_type;
ec65fa66 2177{
09051660
RH
2178 struct decision *p, *next;
2179 int uncond = 0;
e0689256 2180
09051660
RH
2181 for (p = head->first; p ; p = next)
2182 {
2183 /* The label for the first element was printed in write_tree. */
2184 if (p != head->first && p->need_label)
2185 OUTPUT_LABEL (" ", p->number);
2186
2187 /* Attempt to write a switch statement for a whole sequence. */
2188 next = write_switch (p, depth);
2189 if (p != next)
2190 uncond = 0;
2191 else
2192 {
2193 /* Failed -- fall back and write one node. */
2194 uncond = write_node (p, depth, subroutine_type);
2195 next = p->next;
2196 }
2197 }
e0689256 2198
09051660
RH
2199 /* Finished with this chain. Close a fallthru path by branching
2200 to the afterward node. */
2201 if (! uncond)
2202 write_afterward (head->last, head->last->afterward, " ");
2203}
e0689256 2204
09051660
RH
2205/* Write out the decision tree starting at HEAD. PREVPOS is the
2206 position at the node that branched to this node. */
e0689256
RK
2207
2208static void
09051660
RH
2209write_tree (head, prevpos, type, initial)
2210 struct decision_head *head;
85fda1eb 2211 const char *prevpos;
e0689256 2212 enum routine_type type;
09051660 2213 int initial;
e0689256 2214{
09051660 2215 register struct decision *p = head->first;
e0689256 2216
09051660
RH
2217 putchar ('\n');
2218 if (p->need_label)
2219 OUTPUT_LABEL (" ", p->number);
2220
2221 if (! initial && p->subroutine_number > 0)
e0689256 2222 {
09051660
RH
2223 static const char * const name_prefix[] = {
2224 "recog", "split", "peephole2"
2225 };
2226
2227 static const char * const call_suffix[] = {
23280139 2228 ", pnum_clobbers", "", ", _pmatch_len"
09051660 2229 };
e0689256 2230
09051660
RH
2231 /* This node has been broken out into a separate subroutine.
2232 Call it, test the result, and branch accordingly. */
2233
2234 if (p->afterward)
e0689256
RK
2235 {
2236 printf (" tem = %s_%d (x0, insn%s);\n",
09051660 2237 name_prefix[type], p->subroutine_number, call_suffix[type]);
ede7cd44 2238 if (IS_SPLIT (type))
09051660 2239 printf (" if (tem != 0)\n return tem;\n");
71bde1f3 2240 else
09051660
RH
2241 printf (" if (tem >= 0)\n return tem;\n");
2242
2243 change_state (p->position, p->afterward->position, NULL, " ");
2244 printf (" goto L%d;\n", p->afterward->number);
e0689256
RK
2245 }
2246 else
09051660
RH
2247 {
2248 printf (" return %s_%d (x0, insn%s);\n",
2249 name_prefix[type], p->subroutine_number, call_suffix[type]);
2250 }
e0689256 2251 }
09051660
RH
2252 else
2253 {
2254 int depth = strlen (p->position);
e0689256 2255
09051660
RH
2256 change_state (prevpos, p->position, head->last->afterward, " ");
2257 write_tree_1 (head, depth, type);
e0689256 2258
09051660
RH
2259 for (p = head->first; p; p = p->next)
2260 if (p->success.first)
2261 write_tree (&p->success, p->position, type, 0);
2262 }
e0689256
RK
2263}
2264
09051660
RH
2265/* Write out a subroutine of type TYPE to do comparisons starting at
2266 node TREE. */
ede7cd44 2267
09051660
RH
2268static void
2269write_subroutine (head, type)
2270 struct decision_head *head;
2271 enum routine_type type;
2272{
e8f9b13a 2273 int subfunction = head->first ? head->first->subroutine_number : 0;
09051660
RH
2274 const char *s_or_e;
2275 char extension[32];
2276 int i;
2277
2278 s_or_e = subfunction ? "static " : "";
e0689256 2279
09051660
RH
2280 if (subfunction)
2281 sprintf (extension, "_%d", subfunction);
2282 else if (type == RECOG)
2283 extension[0] = '\0';
2284 else
2285 strcpy (extension, "_insns");
2286
913d0833
KG
2287 switch (type)
2288 {
2289 case RECOG:
a94ae8f5 2290 printf ("%sint recog%s PARAMS ((rtx, rtx, int *));\n", s_or_e, extension);
913d0833
KG
2291 printf ("%sint\n\
2292recog%s (x0, insn, pnum_clobbers)\n\
2293 register rtx x0;\n\
2294 rtx insn ATTRIBUTE_UNUSED;\n\
2295 int *pnum_clobbers ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2296 break;
2297 case SPLIT:
a94ae8f5 2298 printf ("%srtx split%s PARAMS ((rtx, rtx));\n", s_or_e, extension);
913d0833
KG
2299 printf ("%srtx\n\
2300split%s (x0, insn)\n\
2301 register rtx x0;\n\
2302 rtx insn ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2303 break;
2304 case PEEPHOLE2:
23280139
RH
2305 printf ("%srtx peephole2%s PARAMS ((rtx, rtx, int *));\n",
2306 s_or_e, extension);
913d0833 2307 printf ("%srtx\n\
23280139 2308peephole2%s (x0, insn, _pmatch_len)\n\
913d0833
KG
2309 register rtx x0;\n\
2310 rtx insn ATTRIBUTE_UNUSED;\n\
23280139 2311 int *_pmatch_len ATTRIBUTE_UNUSED;\n", s_or_e, extension);
913d0833
KG
2312 break;
2313 }
09051660 2314
0ce8a59c 2315 printf ("{\n register rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
09051660
RH
2316 for (i = 1; i <= max_depth; i++)
2317 printf (" register rtx x%d ATTRIBUTE_UNUSED;\n", i);
2318
09051660
RH
2319 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2320
d90ffc8d
JH
2321 if (!subfunction)
2322 printf (" recog_data.insn = NULL_RTX;\n");
2323
e8f9b13a
RH
2324 if (head->first)
2325 write_tree (head, "", type, 1);
2326 else
2327 printf (" goto ret0;\n");
09051660 2328
09051660
RH
2329 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2330}
2331
2332/* In break_out_subroutines, we discovered the boundaries for the
2333 subroutines, but did not write them out. Do so now. */
e0689256 2334
ec65fa66 2335static void
09051660
RH
2336write_subroutines (head, type)
2337 struct decision_head *head;
2338 enum routine_type type;
ec65fa66 2339{
09051660 2340 struct decision *p;
ec65fa66 2341
09051660
RH
2342 for (p = head->first; p ; p = p->next)
2343 if (p->success.first)
2344 write_subroutines (&p->success, type);
ec65fa66 2345
09051660
RH
2346 if (head->first->subroutine_number > 0)
2347 write_subroutine (head, type);
2348}
ede7cd44 2349
09051660 2350/* Begin the output file. */
ede7cd44 2351
09051660
RH
2352static void
2353write_header ()
2354{
2355 puts ("\
2356/* Generated automatically by the program `genrecog' from the target\n\
2357 machine description file. */\n\
2358\n\
2359#include \"config.h\"\n\
2360#include \"system.h\"\n\
2361#include \"rtl.h\"\n\
2362#include \"tm_p.h\"\n\
2363#include \"function.h\"\n\
2364#include \"insn-config.h\"\n\
2365#include \"recog.h\"\n\
2366#include \"real.h\"\n\
2367#include \"output.h\"\n\
2368#include \"flags.h\"\n\
b1afd7f4
KG
2369#include \"hard-reg-set.h\"\n\
2370#include \"resource.h\"\n\
09051660
RH
2371\n");
2372
2373 puts ("\n\
2374/* `recog' contains a decision tree that recognizes whether the rtx\n\
2375 X0 is a valid instruction.\n\
2376\n\
2377 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2378 returns a nonnegative number which is the insn code number for the\n\
2379 pattern that matched. This is the same as the order in the machine\n\
2380 description of the entry that matched. This number can be used as an\n\
3f6790bf
KG
2381 index into `insn_data' and other tables.\n");
2382 puts ("\
09051660
RH
2383 The third argument to recog is an optional pointer to an int. If\n\
2384 present, recog will accept a pattern if it matches except for missing\n\
2385 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2386 the optional pointer will be set to the number of CLOBBERs that need\n\
3f6790bf
KG
2387 to be added (it should be initialized to zero by the caller). If it");
2388 puts ("\
09051660
RH
2389 is set nonzero, the caller should allocate a PARALLEL of the\n\
2390 appropriate size, copy the initial entries, and call add_clobbers\n\
2391 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2392");
2393
2394 puts ("\n\
2395 The function split_insns returns 0 if the rtl could not\n\
2396 be split or the split rtl in a SEQUENCE if it can be.\n\
2397\n\
2398 The function peephole2_insns returns 0 if the rtl could not\n\
2399 be matched. If there was a match, the new rtl is returned in a SEQUENCE,\n\
2400 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2401*/\n\n");
2402}
ec65fa66 2403
09051660
RH
2404\f
2405/* Construct and return a sequence of decisions
2406 that will recognize INSN.
ec65fa66 2407
09051660
RH
2408 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2409
2410static struct decision_head
2411make_insn_sequence (insn, type)
2412 rtx insn;
2413 enum routine_type type;
2414{
2415 rtx x;
2416 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2417 struct decision *last;
2418 struct decision_test *test, **place;
2419 struct decision_head head;
3b304f5b 2420 char c_test_pos[2];
09051660
RH
2421
2422 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2423
3b304f5b 2424 c_test_pos[0] = '\0';
09051660 2425 if (type == PEEPHOLE2)
ec65fa66 2426 {
09051660
RH
2427 int i, j;
2428
2429 /* peephole2 gets special treatment:
2430 - X always gets an outer parallel even if it's only one entry
2431 - we remove all traces of outer-level match_scratch and match_dup
2432 expressions here. */
2433 x = rtx_alloc (PARALLEL);
2434 PUT_MODE (x, VOIDmode);
2435 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2436 for (i = j = 0; i < XVECLEN (insn, 0); i++)
ede7cd44 2437 {
09051660
RH
2438 rtx tmp = XVECEXP (insn, 0, i);
2439 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2440 {
2441 XVECEXP (x, 0, j) = tmp;
2442 j++;
2443 }
2444 }
2445 XVECLEN (x, 0) = j;
4e9887c7 2446
4e9887c7
RH
2447 c_test_pos[0] = 'A' + j - 1;
2448 c_test_pos[1] = '\0';
09051660
RH
2449 }
2450 else if (XVECLEN (insn, type == RECOG) == 1)
2451 x = XVECEXP (insn, type == RECOG, 0);
2452 else
2453 {
2454 x = rtx_alloc (PARALLEL);
2455 XVEC (x, 0) = XVEC (insn, type == RECOG);
2456 PUT_MODE (x, VOIDmode);
2457 }
2458
7297e9fc 2459 validate_pattern (x, insn, NULL_RTX, 0);
bcdaba58 2460
09051660
RH
2461 memset(&head, 0, sizeof(head));
2462 last = add_to_sequence (x, &head, "", type, 1);
2463
2464 /* Find the end of the test chain on the last node. */
2465 for (test = last->tests; test->next; test = test->next)
2466 continue;
2467 place = &test->next;
2468
2469 if (c_test[0])
2470 {
2471 /* Need a new node if we have another test to add. */
2472 if (test->type == DT_accept_op)
2473 {
4e9887c7 2474 last = new_decision (c_test_pos, &last->success);
09051660
RH
2475 place = &last->tests;
2476 }
2477 test = new_decision_test (DT_c_test, &place);
2478 test->u.c_test = c_test;
2479 }
2480
2481 test = new_decision_test (DT_accept_insn, &place);
2482 test->u.insn.code_number = next_insn_code;
bcdaba58 2483 test->u.insn.lineno = pattern_lineno;
09051660
RH
2484 test->u.insn.num_clobbers_to_add = 0;
2485
2486 switch (type)
2487 {
2488 case RECOG:
2489 /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends
2490 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2491 If so, set up to recognize the pattern without these CLOBBERs. */
2492
2493 if (GET_CODE (x) == PARALLEL)
2494 {
2495 int i;
2496
2497 /* Find the last non-clobber in the parallel. */
2498 for (i = XVECLEN (x, 0); i > 0; i--)
ede7cd44 2499 {
09051660
RH
2500 rtx y = XVECEXP (x, 0, i - 1);
2501 if (GET_CODE (y) != CLOBBER
2502 || (GET_CODE (XEXP (y, 0)) != REG
2503 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2504 break;
ede7cd44 2505 }
09051660
RH
2506
2507 if (i != XVECLEN (x, 0))
ede7cd44 2508 {
09051660
RH
2509 rtx new;
2510 struct decision_head clobber_head;
ede7cd44 2511
09051660
RH
2512 /* Build a similar insn without the clobbers. */
2513 if (i == 1)
2514 new = XVECEXP (x, 0, 0);
ede7cd44 2515 else
09051660
RH
2516 {
2517 int j;
2518
2519 new = rtx_alloc (PARALLEL);
2520 XVEC (new, 0) = rtvec_alloc (i);
2521 for (j = i - 1; j >= 0; j--)
2522 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2523 }
2524
2525 /* Recognize it. */
2526 memset (&clobber_head, 0, sizeof(clobber_head));
2527 last = add_to_sequence (new, &clobber_head, "", type, 1);
ede7cd44 2528
09051660
RH
2529 /* Find the end of the test chain on the last node. */
2530 for (test = last->tests; test->next; test = test->next)
2531 continue;
2532
2533 /* We definitely have a new test to add -- create a new
2534 node if needed. */
2535 place = &test->next;
2536 if (test->type == DT_accept_op)
2537 {
2538 last = new_decision ("", &last->success);
2539 place = &last->tests;
2540 }
2541
2542 if (c_test[0])
2543 {
2544 test = new_decision_test (DT_c_test, &place);
2545 test->u.c_test = c_test;
2546 }
2547
2548 test = new_decision_test (DT_accept_insn, &place);
2549 test->u.insn.code_number = next_insn_code;
bcdaba58 2550 test->u.insn.lineno = pattern_lineno;
09051660
RH
2551 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2552
2553 merge_trees (&head, &clobber_head);
ede7cd44 2554 }
ede7cd44 2555 }
09051660
RH
2556 break;
2557
2558 case SPLIT:
2559 /* Define the subroutine we will call below and emit in genemit. */
a94ae8f5 2560 printf ("extern rtx gen_split_%d PARAMS ((rtx *));\n", next_insn_code);
09051660
RH
2561 break;
2562
2563 case PEEPHOLE2:
2564 /* Define the subroutine we will call below and emit in genemit. */
a94ae8f5 2565 printf ("extern rtx gen_peephole2_%d PARAMS ((rtx, rtx *));\n",
09051660
RH
2566 next_insn_code);
2567 break;
ec65fa66 2568 }
e0689256 2569
09051660 2570 return head;
ec65fa66
RK
2571}
2572
09051660
RH
2573static void
2574process_tree (head, subroutine_type)
2575 struct decision_head *head;
2576 enum routine_type subroutine_type;
ec65fa66 2577{
4dc320a5
RH
2578 if (head->first == NULL)
2579 {
2580 /* We can elide peephole2_insns, but not recog or split_insns. */
2581 if (subroutine_type == PEEPHOLE2)
2582 return;
2583 }
2584 else
e8f9b13a
RH
2585 {
2586 factor_tests (head);
ec65fa66 2587
e8f9b13a
RH
2588 next_subroutine_number = 0;
2589 break_out_subroutines (head, 1);
2590 find_afterward (head, NULL);
c1b59dce 2591
4dc320a5
RH
2592 /* We run this after find_afterward, because find_afterward needs
2593 the redundant DT_mode tests on predicates to determine whether
2594 two tests can both be true or not. */
2595 simplify_tests(head);
2596
e8f9b13a
RH
2597 write_subroutines (head, subroutine_type);
2598 }
4dc320a5 2599
09051660
RH
2600 write_subroutine (head, subroutine_type);
2601}
2602\f
a94ae8f5 2603extern int main PARAMS ((int, char **));
36f0e0a6 2604
ec65fa66
RK
2605int
2606main (argc, argv)
2607 int argc;
2608 char **argv;
2609{
2610 rtx desc;
09051660 2611 struct decision_head recog_tree, split_tree, peephole2_tree, h;
ec65fa66 2612
f8b6598e 2613 progname = "genrecog";
09051660
RH
2614
2615 memset (&recog_tree, 0, sizeof recog_tree);
2616 memset (&split_tree, 0, sizeof split_tree);
2617 memset (&peephole2_tree, 0, sizeof peephole2_tree);
ec65fa66
RK
2618
2619 if (argc <= 1)
2620 fatal ("No input file name.");
2621
c88c0d42
CP
2622 if (init_md_reader (argv[1]) != SUCCESS_EXIT_CODE)
2623 return (FATAL_EXIT_CODE);
ec65fa66 2624
ec65fa66
RK
2625 next_insn_code = 0;
2626 next_index = 0;
2627
09051660 2628 write_header ();
ec65fa66
RK
2629
2630 /* Read the machine description. */
2631
2632 while (1)
2633 {
c88c0d42
CP
2634 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2635 if (desc == NULL)
ec65fa66 2636 break;
ec65fa66 2637
ec65fa66 2638 if (GET_CODE (desc) == DEFINE_INSN)
09051660
RH
2639 {
2640 h = make_insn_sequence (desc, RECOG);
2641 merge_trees (&recog_tree, &h);
2642 }
ec65fa66 2643 else if (GET_CODE (desc) == DEFINE_SPLIT)
09051660
RH
2644 {
2645 h = make_insn_sequence (desc, SPLIT);
2646 merge_trees (&split_tree, &h);
2647 }
ede7cd44 2648 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
09051660
RH
2649 {
2650 h = make_insn_sequence (desc, PEEPHOLE2);
2651 merge_trees (&peephole2_tree, &h);
2652 }
2653
ec65fa66
RK
2654 next_index++;
2655 }
2656
bcdaba58
RH
2657 if (error_count)
2658 return FATAL_EXIT_CODE;
2659
09051660 2660 puts ("\n\n");
ec65fa66 2661
09051660
RH
2662 process_tree (&recog_tree, RECOG);
2663 process_tree (&split_tree, SPLIT);
2664 process_tree (&peephole2_tree, PEEPHOLE2);
ede7cd44 2665
ec65fa66 2666 fflush (stdout);
c1b59dce 2667 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
ec65fa66 2668}
09051660 2669\f
a995e389
RH
2670/* Define this so we can link with print-rtl.o to get debug_rtx function. */
2671const char *
2672get_insn_name (code)
2673 int code;
2674{
2675 if (code < insn_name_ptr_size)
2676 return insn_name_ptr[code];
2677 else
2678 return NULL;
2679}
09051660
RH
2680
2681static void
2682record_insn_name (code, name)
2683 int code;
2684 const char *name;
2685{
2686 static const char *last_real_name = "insn";
2687 static int last_real_code = 0;
2688 char *new;
2689
2690 if (insn_name_ptr_size <= code)
2691 {
2692 int new_size;
2693 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2694 insn_name_ptr =
2695 (char **) xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2696 memset (insn_name_ptr + insn_name_ptr_size, 0,
2697 sizeof(char *) * (new_size - insn_name_ptr_size));
2698 insn_name_ptr_size = new_size;
2699 }
2700
2701 if (!name || name[0] == '\0')
2702 {
2703 new = xmalloc (strlen (last_real_name) + 10);
2704 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2705 }
2706 else
2707 {
2708 last_real_name = new = xstrdup (name);
2709 last_real_code = code;
2710 }
2711
2712 insn_name_ptr[code] = new;
2713}
2714\f
09051660
RH
2715static void
2716debug_decision_2 (test)
2717 struct decision_test *test;
2718{
2719 switch (test->type)
2720 {
2721 case DT_mode:
2722 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2723 break;
2724 case DT_code:
2725 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2726 break;
2727 case DT_veclen:
2728 fprintf (stderr, "veclen=%d", test->u.veclen);
2729 break;
2730 case DT_elt_zero_int:
2731 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2732 break;
2733 case DT_elt_one_int:
2734 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2735 break;
2736 case DT_elt_zero_wide:
2737 fprintf (stderr, "elt0_w=");
2738 fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2739 break;
521b9224
RH
2740 case DT_veclen_ge:
2741 fprintf (stderr, "veclen>=%d", test->u.veclen);
2742 break;
09051660
RH
2743 case DT_dup:
2744 fprintf (stderr, "dup=%d", test->u.dup);
2745 break;
2746 case DT_pred:
2747 fprintf (stderr, "pred=(%s,%s)",
2748 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2749 break;
2750 case DT_c_test:
2751 {
2752 char sub[16+4];
2753 strncpy (sub, test->u.c_test, sizeof(sub));
2754 memcpy (sub+16, "...", 4);
2755 fprintf (stderr, "c_test=\"%s\"", sub);
2756 }
2757 break;
2758 case DT_accept_op:
2759 fprintf (stderr, "A_op=%d", test->u.opno);
2760 break;
2761 case DT_accept_insn:
2762 fprintf (stderr, "A_insn=(%d,%d)",
2763 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2764 break;
2765
2766 default:
2767 abort ();
2768 }
2769}
2770
2771static void
2772debug_decision_1 (d, indent)
2773 struct decision *d;
2774 int indent;
2775{
2776 int i;
2777 struct decision_test *test;
2778
2779 if (d == NULL)
2780 {
2781 for (i = 0; i < indent; ++i)
2782 putc (' ', stderr);
2783 fputs ("(nil)\n", stderr);
2784 return;
2785 }
2786
2787 for (i = 0; i < indent; ++i)
2788 putc (' ', stderr);
2789
2790 putc ('{', stderr);
2791 test = d->tests;
2792 if (test)
2793 {
2794 debug_decision_2 (test);
2795 while ((test = test->next) != NULL)
2796 {
2797 fputs (" + ", stderr);
2798 debug_decision_2 (test);
2799 }
2800 }
4dc320a5
RH
2801 fprintf (stderr, "} %d n %d a %d\n", d->number,
2802 (d->next ? d->next->number : -1),
2803 (d->afterward ? d->afterward->number : -1));
09051660
RH
2804}
2805
2806static void
2807debug_decision_0 (d, indent, maxdepth)
2808 struct decision *d;
2809 int indent, maxdepth;
2810{
2811 struct decision *n;
2812 int i;
2813
2814 if (maxdepth < 0)
2815 return;
2816 if (d == NULL)
2817 {
2818 for (i = 0; i < indent; ++i)
2819 putc (' ', stderr);
2820 fputs ("(nil)\n", stderr);
2821 return;
2822 }
2823
2824 debug_decision_1 (d, indent);
2825 for (n = d->success.first; n ; n = n->next)
2826 debug_decision_0 (n, indent + 2, maxdepth - 1);
2827}
2828
2829void
2830debug_decision (d)
2831 struct decision *d;
2832{
2833 debug_decision_0 (d, 0, 1000000);
2834}
ec1c89e6
RH
2835
2836void
2837debug_decision_list (d)
2838 struct decision *d;
2839{
2840 while (d)
2841 {
2842 debug_decision_0 (d, 0, 0);
2843 d = d->next;
2844 }
2845}
This page took 1.599592 seconds and 5 git commands to generate.