]>
Commit | Line | Data |
---|---|---|
ec65fa66 | 1 | /* Generate code from machine description to recognize rtl as insns. |
efd59a33 | 2 | Copyright (C) 1987, 88, 92-95, 97-98, 1999 Free Software Foundation, Inc. |
ec65fa66 | 3 | |
09051660 RH |
4 | This file is part of GNU CC. |
5 | ||
6 | GNU CC is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GNU CC is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GNU CC; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, 59 Temple Place - Suite 330, | |
19 | Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | ||
22 | /* This program is used to produce insn-recog.c, which contains a | |
23 | function called `recog' plus its subroutines. These functions | |
24 | contain a decision tree that recognizes whether an rtx, the | |
25 | argument given to recog, is a valid instruction. | |
26 | ||
27 | recog returns -1 if the rtx is not valid. If the rtx is valid, | |
28 | recog returns a nonnegative number which is the insn code number | |
29 | for the pattern that matched. This is the same as the order in the | |
30 | machine description of the entry that matched. This number can be | |
31 | used as an index into various insn_* tables, such as insn_template, | |
32 | insn_outfun, and insn_n_operands (found in insn-output.c). | |
33 | ||
34 | The third argument to recog is an optional pointer to an int. If | |
35 | present, recog will accept a pattern if it matches except for | |
ec65fa66 RK |
36 | missing CLOBBER expressions at the end. In that case, the value |
37 | pointed to by the optional pointer will be set to the number of | |
38 | CLOBBERs that need to be added (it should be initialized to zero by | |
39 | the caller). If it is set nonzero, the caller should allocate a | |
09051660 RH |
40 | PARALLEL of the appropriate size, copy the initial entries, and |
41 | call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs. | |
ec65fa66 | 42 | |
09051660 RH |
43 | This program also generates the function `split_insns', which |
44 | returns 0 if the rtl could not be split, or it returns the split | |
45 | rtl in a SEQUENCE. | |
46 | ||
47 | This program also generates the function `peephole2_insns', which | |
48 | returns 0 if the rtl could not be matched. If there was a match, | |
49 | the new rtl is returned in a SEQUENCE, and LAST_INSN will point | |
50 | to the last recognized insn in the old sequence. */ | |
ec65fa66 | 51 | |
20f92396 | 52 | #include "hconfig.h" |
0b93b64e | 53 | #include "system.h" |
ec65fa66 RK |
54 | #include "rtl.h" |
55 | #include "obstack.h" | |
f8b6598e | 56 | #include "errors.h" |
ec65fa66 | 57 | |
736b02fd KG |
58 | #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \ |
59 | printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER)) | |
60 | ||
ec65fa66 RK |
61 | static struct obstack obstack; |
62 | struct obstack *rtl_obstack = &obstack; | |
63 | ||
64 | #define obstack_chunk_alloc xmalloc | |
65 | #define obstack_chunk_free free | |
66 | ||
8aeba909 | 67 | /* Holds an array of names indexed by insn_code_number. */ |
a995e389 RH |
68 | static char **insn_name_ptr = 0; |
69 | static int insn_name_ptr_size = 0; | |
4db83042 | 70 | |
09051660 RH |
71 | /* A listhead of decision trees. The alternatives to a node are kept |
72 | in a doublely-linked list so we can easily add nodes to the proper | |
73 | place when merging. */ | |
74 | ||
75 | struct decision_head | |
76 | { | |
77 | struct decision *first; | |
78 | struct decision *last; | |
79 | }; | |
80 | ||
81 | /* A single test. The two accept types aren't tests per-se, but | |
82 | their equality (or lack thereof) does affect tree merging so | |
83 | it is convenient to keep them here. */ | |
84 | ||
85 | struct decision_test | |
86 | { | |
87 | /* A linked list through the tests attached to a node. */ | |
88 | struct decision_test *next; | |
89 | ||
90 | /* These types are roughly in the order in which we'd like to test them. */ | |
91 | enum decision_type { | |
92 | DT_mode, DT_code, DT_veclen, | |
93 | DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, | |
94 | DT_dup, DT_pred, DT_c_test, | |
95 | DT_accept_op, DT_accept_insn | |
96 | } type; | |
97 | ||
98 | union | |
99 | { | |
100 | enum machine_mode mode; /* Machine mode of node. */ | |
101 | RTX_CODE code; /* Code to test. */ | |
e0689256 | 102 | |
09051660 RH |
103 | struct |
104 | { | |
105 | const char *name; /* Predicate to call. */ | |
106 | int index; /* Index into `preds' or -1. */ | |
107 | enum machine_mode mode; /* Machine mode for node. */ | |
108 | } pred; | |
109 | ||
110 | const char *c_test; /* Additional test to perform. */ | |
111 | int veclen; /* Length of vector. */ | |
112 | int dup; /* Number of operand to compare against. */ | |
113 | HOST_WIDE_INT intval; /* Value for XINT for XWINT. */ | |
114 | int opno; /* Operand number matched. */ | |
115 | ||
116 | struct { | |
117 | int code_number; /* Insn number matched. */ | |
bcdaba58 | 118 | int lineno; /* Line number of the insn. */ |
09051660 RH |
119 | int num_clobbers_to_add; /* Number of CLOBBERs to be added. */ |
120 | } insn; | |
121 | } u; | |
122 | }; | |
e0689256 | 123 | |
09051660 | 124 | /* Data structure for decision tree for recognizing legitimate insns. */ |
ec65fa66 RK |
125 | |
126 | struct decision | |
127 | { | |
09051660 RH |
128 | struct decision_head success; /* Nodes to test on success. */ |
129 | struct decision *next; /* Node to test on failure. */ | |
130 | struct decision *prev; /* Node whose failure tests us. */ | |
131 | struct decision *afterward; /* Node to test on success, | |
132 | but failure of successor nodes. */ | |
133 | ||
134 | const char *position; /* String denoting position in pattern. */ | |
135 | ||
136 | struct decision_test *tests; /* The tests for this node. */ | |
137 | ||
e0689256 | 138 | int number; /* Node number, used for labels */ |
e0689256 | 139 | int subroutine_number; /* Number of subroutine this node starts */ |
09051660 | 140 | int need_label; /* Label needs to be output. */ |
ec65fa66 RK |
141 | }; |
142 | ||
09051660 | 143 | #define SUBROUTINE_THRESHOLD 100 |
ec65fa66 RK |
144 | |
145 | static int next_subroutine_number; | |
146 | ||
ede7cd44 RH |
147 | /* We can write three types of subroutines: One for insn recognition, |
148 | one to split insns, and one for peephole-type optimizations. This | |
149 | defines which type is being written. */ | |
ec65fa66 | 150 | |
09051660 RH |
151 | enum routine_type { |
152 | RECOG, SPLIT, PEEPHOLE2 | |
153 | }; | |
ede7cd44 | 154 | |
09051660 | 155 | #define IS_SPLIT(X) ((X) != RECOG) |
ec65fa66 | 156 | |
e0689256 | 157 | /* Next available node number for tree nodes. */ |
ec65fa66 | 158 | |
e0689256 | 159 | static int next_number; |
ec65fa66 | 160 | |
e0689256 | 161 | /* Next number to use as an insn_code. */ |
ec65fa66 | 162 | |
e0689256 | 163 | static int next_insn_code; |
ec65fa66 | 164 | |
e0689256 | 165 | /* Similar, but counts all expressions in the MD file; used for |
0f41302f | 166 | error messages. */ |
ec65fa66 | 167 | |
e0689256 | 168 | static int next_index; |
ec65fa66 | 169 | |
e0689256 RK |
170 | /* Record the highest depth we ever have so we know how many variables to |
171 | allocate in each subroutine we make. */ | |
ec65fa66 | 172 | |
e0689256 | 173 | static int max_depth; |
bcdaba58 RH |
174 | |
175 | /* The line number of the start of the pattern currently being processed. */ | |
176 | static int pattern_lineno; | |
177 | ||
178 | /* Count of errors. */ | |
179 | static int error_count; | |
e0689256 RK |
180 | \f |
181 | /* This table contains a list of the rtl codes that can possibly match a | |
09051660 | 182 | predicate defined in recog.c. The function `maybe_both_true' uses it to |
e0689256 RK |
183 | deduce that there are no expressions that can be matches by certain pairs |
184 | of tree nodes. Also, if a predicate can match only one code, we can | |
185 | hardwire that code into the node testing the predicate. */ | |
ec65fa66 | 186 | |
e0689256 RK |
187 | static struct pred_table |
188 | { | |
85fda1eb | 189 | const char *name; |
e0689256 | 190 | RTX_CODE codes[NUM_RTX_CODE]; |
09051660 RH |
191 | } preds[] = { |
192 | {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, | |
193 | LABEL_REF, SUBREG, REG, MEM}}, | |
e0689256 | 194 | #ifdef PREDICATE_CODES |
09051660 | 195 | PREDICATE_CODES |
e0689256 | 196 | #endif |
09051660 RH |
197 | {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, |
198 | LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}}, | |
199 | {"register_operand", {SUBREG, REG}}, | |
200 | {"scratch_operand", {SCRATCH, REG}}, | |
201 | {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, | |
202 | LABEL_REF}}, | |
203 | {"const_int_operand", {CONST_INT}}, | |
204 | {"const_double_operand", {CONST_INT, CONST_DOUBLE}}, | |
205 | {"nonimmediate_operand", {SUBREG, REG, MEM}}, | |
206 | {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, | |
207 | LABEL_REF, SUBREG, REG}}, | |
208 | {"push_operand", {MEM}}, | |
209 | {"pop_operand", {MEM}}, | |
210 | {"memory_operand", {SUBREG, MEM}}, | |
211 | {"indirect_operand", {SUBREG, MEM}}, | |
212 | {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU}}, | |
213 | {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, | |
214 | LABEL_REF, SUBREG, REG, MEM}} | |
215 | }; | |
e0689256 RK |
216 | |
217 | #define NUM_KNOWN_PREDS (sizeof preds / sizeof preds[0]) | |
ec65fa66 | 218 | |
09051660 RH |
219 | static struct decision *new_decision |
220 | PROTO((const char *, struct decision_head *)); | |
221 | static struct decision_test *new_decision_test | |
222 | PROTO((enum decision_type, struct decision_test ***)); | |
bcdaba58 RH |
223 | static void validate_pattern |
224 | PROTO((rtx, int)); | |
09051660 RH |
225 | static struct decision *add_to_sequence |
226 | PROTO((rtx, struct decision_head *, const char *, enum routine_type, int)); | |
227 | ||
228 | static int maybe_both_true_2 | |
229 | PROTO((struct decision_test *, struct decision_test *)); | |
230 | static int maybe_both_true_1 | |
231 | PROTO((struct decision_test *, struct decision_test *)); | |
232 | static int maybe_both_true | |
233 | PROTO((struct decision *, struct decision *, int)); | |
234 | ||
235 | static int nodes_identical_1 | |
236 | PROTO((struct decision_test *, struct decision_test *)); | |
237 | static int nodes_identical | |
238 | PROTO((struct decision *, struct decision *)); | |
239 | static void merge_accept_insn | |
240 | PROTO((struct decision *, struct decision *)); | |
241 | static void merge_trees | |
242 | PROTO((struct decision_head *, struct decision_head *)); | |
243 | ||
244 | static void factor_tests | |
245 | PROTO((struct decision_head *)); | |
246 | static void simplify_tests | |
247 | PROTO((struct decision_head *)); | |
248 | static int break_out_subroutines | |
249 | PROTO((struct decision_head *, int)); | |
250 | static void find_afterward | |
251 | PROTO((struct decision_head *, struct decision *)); | |
252 | ||
253 | static void change_state | |
254 | PROTO((const char *, const char *, struct decision *, const char *)); | |
255 | static void print_code | |
256 | PROTO((enum rtx_code)); | |
257 | static void write_afterward | |
258 | PROTO((struct decision *, struct decision *, const char *)); | |
259 | static struct decision *write_switch | |
260 | PROTO((struct decision *, int)); | |
261 | static void write_cond | |
262 | PROTO((struct decision_test *, int, enum routine_type)); | |
263 | static void write_action | |
264 | PROTO((struct decision_test *, int, int, struct decision *, | |
265 | enum routine_type)); | |
266 | static int is_unconditional | |
267 | PROTO((struct decision_test *, enum routine_type)); | |
268 | static int write_node | |
269 | PROTO((struct decision *, int, enum routine_type)); | |
270 | static void write_tree_1 | |
271 | PROTO((struct decision_head *, int, enum routine_type)); | |
272 | static void write_tree | |
273 | PROTO((struct decision_head *, const char *, enum routine_type, int)); | |
274 | static void write_subroutine | |
275 | PROTO((struct decision_head *, enum routine_type)); | |
276 | static void write_subroutines | |
277 | PROTO((struct decision_head *, enum routine_type)); | |
278 | static void write_header | |
279 | PROTO((void)); | |
280 | ||
281 | static struct decision_head make_insn_sequence | |
282 | PROTO((rtx, enum routine_type)); | |
283 | static void process_tree | |
284 | PROTO((struct decision_head *, enum routine_type)); | |
285 | ||
286 | static void record_insn_name | |
287 | PROTO((int, const char *)); | |
288 | ||
289 | static void debug_decision_1 | |
290 | PROTO((struct decision *, int)); | |
291 | static void debug_decision_2 | |
292 | PROTO((struct decision_test *)); | |
293 | extern void debug_decision | |
294 | PROTO((struct decision *)); | |
ede7cd44 | 295 | \f |
bcdaba58 RH |
296 | static void |
297 | message_with_line VPROTO ((int lineno, const char *msg, ...)) | |
298 | { | |
299 | #ifndef ANSI_PROTOTYPES | |
300 | int lineno; | |
301 | const char *msg; | |
302 | #endif | |
303 | va_list ap; | |
304 | ||
305 | VA_START (ap, msg); | |
306 | ||
307 | #ifndef ANSI_PROTOTYPES | |
308 | lineno = va_arg (ap, int); | |
309 | msg = va_arg (ap, const char *); | |
310 | #endif | |
311 | ||
312 | fprintf (stderr, "%s:%d: ", read_rtx_filename, lineno); | |
313 | vfprintf (stderr, msg, ap); | |
314 | fputc ('\n', stderr); | |
315 | ||
316 | va_end (ap); | |
317 | } | |
318 | \f | |
09051660 | 319 | /* Create a new node in sequence after LAST. */ |
e0689256 | 320 | |
09051660 RH |
321 | static struct decision * |
322 | new_decision (position, last) | |
323 | const char *position; | |
324 | struct decision_head *last; | |
ec65fa66 | 325 | { |
09051660 RH |
326 | register struct decision *new |
327 | = (struct decision *) xmalloc (sizeof (struct decision)); | |
ec65fa66 | 328 | |
09051660 RH |
329 | memset (new, 0, sizeof (*new)); |
330 | new->success = *last; | |
331 | new->position = xstrdup (position); | |
332 | new->number = next_number++; | |
ec65fa66 | 333 | |
09051660 RH |
334 | last->first = last->last = new; |
335 | return new; | |
336 | } | |
e0689256 | 337 | |
09051660 | 338 | /* Create a new test and link it in at PLACE. */ |
ec65fa66 | 339 | |
09051660 RH |
340 | static struct decision_test * |
341 | new_decision_test (type, pplace) | |
342 | enum decision_type type; | |
343 | struct decision_test ***pplace; | |
344 | { | |
345 | struct decision_test **place = *pplace; | |
346 | struct decision_test *test; | |
ec65fa66 | 347 | |
09051660 RH |
348 | test = (struct decision_test *) xmalloc (sizeof (*test)); |
349 | test->next = *place; | |
350 | test->type = type; | |
351 | *place = test; | |
ede7cd44 | 352 | |
09051660 RH |
353 | place = &test->next; |
354 | *pplace = place; | |
ec65fa66 | 355 | |
09051660 | 356 | return test; |
e0689256 | 357 | } |
09051660 | 358 | |
bcdaba58 RH |
359 | /* Check for various errors in patterns. */ |
360 | ||
361 | static void | |
362 | validate_pattern (pattern, set_dest) | |
363 | rtx pattern; | |
364 | int set_dest; | |
365 | { | |
366 | const char *fmt; | |
367 | RTX_CODE code; | |
368 | int i, j, len; | |
369 | ||
370 | code = GET_CODE (pattern); | |
371 | switch (code) | |
372 | { | |
373 | case MATCH_SCRATCH: | |
374 | case MATCH_INSN: | |
375 | return; | |
376 | ||
377 | case MATCH_OPERAND: | |
378 | { | |
379 | const char *pred_name = XSTR (pattern, 1); | |
380 | ||
381 | if (pred_name[0] != 0) | |
382 | { | |
383 | /* See if we know about this predicate and save its number. If | |
384 | we do, and it only accepts one code, note that fact. The | |
385 | predicate `const_int_operand' only tests for a CONST_INT, so | |
386 | if we do so we can avoid calling it at all. | |
387 | ||
388 | Finally, if we know that the predicate does not allow | |
389 | CONST_INT, we know that the only way the predicate can match | |
390 | is if the modes match (here we use the kludge of relying on | |
391 | the fact that "address_operand" accepts CONST_INT; otherwise, | |
392 | it would have to be a special case), so we can test the mode | |
393 | (but we need not). This fact should considerably simplify the | |
394 | generated code. */ | |
395 | ||
396 | for (i = 0; i < (int) NUM_KNOWN_PREDS; i++) | |
397 | if (! strcmp (preds[i].name, pred_name)) | |
398 | break; | |
399 | ||
400 | if (i < (int) NUM_KNOWN_PREDS) | |
401 | { | |
402 | int j, allows_const_int; | |
403 | ||
404 | allows_const_int = 0; | |
405 | for (j = 0; preds[i].codes[j] != 0; j++) | |
406 | if (preds[i].codes[j] == CONST_INT) | |
407 | { | |
408 | allows_const_int = 1; | |
409 | break; | |
410 | } | |
411 | ||
412 | if (allows_const_int && set_dest) | |
413 | { | |
414 | message_with_line (pattern_lineno, | |
415 | "warning: `%s' accepts const_int,", | |
416 | pred_name); | |
417 | message_with_line (pattern_lineno, | |
418 | " and used as destination of a set"); | |
419 | } | |
420 | } | |
421 | else | |
422 | { | |
423 | #ifdef PREDICATE_CODES | |
424 | /* If the port has a list of the predicates it uses but | |
425 | omits one, warn. */ | |
426 | message_with_line (pattern_lineno, "warning: `%s' not in PREDICATE_CODES", pred_name); | |
427 | #endif | |
428 | } | |
429 | } | |
430 | ||
431 | return; | |
432 | } | |
433 | ||
434 | case SET: | |
435 | /* The operands of a SET must have the same mode unless one | |
436 | is VOIDmode. */ | |
437 | if (GET_MODE (SET_SRC (pattern)) != VOIDmode | |
438 | && GET_MODE (SET_DEST (pattern)) != VOIDmode | |
439 | && GET_MODE (SET_SRC (pattern)) != GET_MODE (SET_DEST (pattern)) | |
440 | /* The mode of an ADDRESS_OPERAND is the mode of the memory | |
441 | reference, not the mode of the address. */ | |
442 | && ! (GET_CODE (SET_SRC (pattern)) == MATCH_OPERAND | |
443 | && ! strcmp (XSTR (SET_SRC (pattern), 1), "address_operand"))) | |
444 | { | |
445 | message_with_line (pattern_lineno, | |
446 | "mode mismatch in set: %smode vs %smode", | |
447 | GET_MODE_NAME (GET_MODE (SET_DEST (pattern))), | |
448 | GET_MODE_NAME (GET_MODE (SET_SRC (pattern)))); | |
449 | error_count++; | |
450 | } | |
451 | ||
452 | validate_pattern (SET_DEST (pattern), 1); | |
453 | validate_pattern (SET_SRC (pattern), 0); | |
454 | return; | |
455 | ||
456 | case LABEL_REF: | |
457 | if (GET_MODE (XEXP (pattern, 0)) != VOIDmode) | |
458 | { | |
459 | message_with_line (pattern_lineno, | |
460 | "operand to label_ref %smode not VOIDmode", | |
461 | GET_MODE_NAME (GET_MODE (XEXP (pattern, 0)))); | |
462 | error_count++; | |
463 | } | |
464 | break; | |
465 | ||
466 | default: | |
467 | break; | |
468 | } | |
469 | ||
470 | fmt = GET_RTX_FORMAT (code); | |
471 | len = GET_RTX_LENGTH (code); | |
472 | for (i = 0; i < len; i++) | |
473 | { | |
474 | switch (fmt[i]) | |
475 | { | |
476 | case 'e': case 'u': | |
477 | validate_pattern (XEXP (pattern, i), 0); | |
478 | break; | |
479 | ||
480 | case 'E': | |
481 | for (j = 0; j < XVECLEN (pattern, i); j++) | |
482 | validate_pattern (XVECEXP (pattern, i, j), 0); | |
483 | break; | |
484 | ||
485 | case 'i': case 'w': case '0': case 's': | |
486 | break; | |
487 | ||
488 | default: | |
489 | abort (); | |
490 | } | |
491 | } | |
492 | ||
493 | } | |
494 | ||
e0689256 RK |
495 | /* Create a chain of nodes to verify that an rtl expression matches |
496 | PATTERN. | |
ec65fa66 | 497 | |
e0689256 RK |
498 | LAST is a pointer to the listhead in the previous node in the chain (or |
499 | in the calling function, for the first node). | |
ec65fa66 | 500 | |
e0689256 | 501 | POSITION is the string representing the current position in the insn. |
ec65fa66 | 502 | |
ede7cd44 RH |
503 | INSN_TYPE is the type of insn for which we are emitting code. |
504 | ||
e0689256 | 505 | A pointer to the final node in the chain is returned. */ |
ec65fa66 RK |
506 | |
507 | static struct decision * | |
ede7cd44 | 508 | add_to_sequence (pattern, last, position, insn_type, top) |
ec65fa66 | 509 | rtx pattern; |
e0689256 | 510 | struct decision_head *last; |
85fda1eb | 511 | const char *position; |
ede7cd44 RH |
512 | enum routine_type insn_type; |
513 | int top; | |
ec65fa66 | 514 | { |
09051660 RH |
515 | RTX_CODE code; |
516 | struct decision *this, *sub; | |
517 | struct decision_test *test; | |
518 | struct decision_test **place; | |
519 | char *subpos; | |
85066503 | 520 | register size_t i; |
09051660 | 521 | register const char *fmt; |
e0689256 | 522 | int depth = strlen (position); |
ec65fa66 | 523 | int len; |
09051660 | 524 | enum machine_mode mode; |
ec65fa66 | 525 | |
e0689256 RK |
526 | if (depth > max_depth) |
527 | max_depth = depth; | |
528 | ||
09051660 RH |
529 | subpos = (char *) alloca (depth + 2); |
530 | strcpy (subpos, position); | |
531 | subpos[depth + 1] = 0; | |
ec65fa66 | 532 | |
09051660 RH |
533 | sub = this = new_decision (position, last); |
534 | place = &this->tests; | |
ec65fa66 RK |
535 | |
536 | restart: | |
09051660 RH |
537 | mode = GET_MODE (pattern); |
538 | code = GET_CODE (pattern); | |
ec65fa66 RK |
539 | |
540 | switch (code) | |
541 | { | |
ede7cd44 RH |
542 | case PARALLEL: |
543 | /* Toplevel peephole pattern. */ | |
544 | if (insn_type == PEEPHOLE2 && top) | |
545 | { | |
09051660 RH |
546 | /* We don't need the node we just created -- unlink it. */ |
547 | last->first = last->last = NULL; | |
ede7cd44 RH |
548 | |
549 | for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++) | |
550 | { | |
551 | /* Which insn we're looking at is represented by A-Z. We don't | |
552 | ever use 'A', however; it is always implied. */ | |
09051660 RH |
553 | |
554 | subpos[depth] = (i > 0 ? 'A' + i : 0); | |
555 | sub = add_to_sequence (XVECEXP (pattern, 0, i), | |
556 | last, subpos, insn_type, 0); | |
557 | last = &sub->success; | |
ede7cd44 | 558 | } |
09051660 | 559 | return sub; |
ede7cd44 | 560 | } |
09051660 RH |
561 | |
562 | /* Else nothing special. */ | |
ede7cd44 | 563 | break; |
09051660 | 564 | |
ec65fa66 | 565 | case MATCH_OPERAND: |
ec65fa66 | 566 | case MATCH_SCRATCH: |
ec65fa66 | 567 | case MATCH_OPERATOR: |
ec65fa66 | 568 | case MATCH_PARALLEL: |
5126c35a | 569 | case MATCH_INSN: |
09051660 RH |
570 | { |
571 | const char *pred_name; | |
572 | RTX_CODE was_code = code; | |
ec1c89e6 | 573 | int allows_const_int = 1; |
09051660 RH |
574 | |
575 | if (code == MATCH_SCRATCH) | |
576 | { | |
577 | pred_name = "scratch_operand"; | |
578 | code = UNKNOWN; | |
579 | } | |
580 | else | |
581 | { | |
582 | pred_name = XSTR (pattern, 1); | |
583 | if (code == MATCH_PARALLEL) | |
584 | code = PARALLEL; | |
585 | else | |
586 | code = UNKNOWN; | |
587 | } | |
588 | ||
589 | /* We know exactly what const_int_operand matches -- any CONST_INT. */ | |
590 | if (strcmp ("const_int_operand", pred_name) == 0) | |
591 | { | |
592 | code = CONST_INT; | |
593 | mode = VOIDmode; | |
594 | } | |
595 | else if (pred_name[0] != 0) | |
596 | { | |
597 | test = new_decision_test (DT_pred, &place); | |
598 | test->u.pred.name = pred_name; | |
599 | test->u.pred.mode = mode; | |
600 | ||
601 | /* See if we know about this predicate and save its number. If | |
602 | we do, and it only accepts one code, note that fact. The | |
603 | predicate `const_int_operand' only tests for a CONST_INT, so | |
604 | if we do so we can avoid calling it at all. | |
605 | ||
606 | Finally, if we know that the predicate does not allow | |
607 | CONST_INT, we know that the only way the predicate can match | |
608 | is if the modes match (here we use the kludge of relying on | |
609 | the fact that "address_operand" accepts CONST_INT; otherwise, | |
610 | it would have to be a special case), so we can test the mode | |
611 | (but we need not). This fact should considerably simplify the | |
612 | generated code. */ | |
613 | ||
614 | for (i = 0; i < NUM_KNOWN_PREDS; i++) | |
615 | if (! strcmp (preds[i].name, pred_name)) | |
616 | break; | |
e0689256 | 617 | |
09051660 | 618 | if (i < NUM_KNOWN_PREDS) |
9edd4689 | 619 | { |
c3693cb1 | 620 | int j; |
e0689256 | 621 | |
09051660 | 622 | test->u.pred.index = i; |
e0689256 | 623 | |
09051660 RH |
624 | if (preds[i].codes[1] == 0 && code == UNKNOWN) |
625 | code = preds[i].codes[0]; | |
e0689256 | 626 | |
09051660 RH |
627 | allows_const_int = 0; |
628 | for (j = 0; preds[i].codes[j] != 0; j++) | |
9edd4689 | 629 | if (preds[i].codes[j] == CONST_INT) |
09051660 RH |
630 | { |
631 | allows_const_int = 1; | |
632 | break; | |
633 | } | |
9edd4689 | 634 | } |
09051660 | 635 | else |
bcdaba58 | 636 | test->u.pred.index = -1; |
09051660 | 637 | } |
ec1c89e6 RH |
638 | |
639 | /* Can't enforce a mode if we allow const_int. */ | |
640 | if (allows_const_int) | |
641 | mode = VOIDmode; | |
e0689256 | 642 | |
09051660 RH |
643 | /* Accept the operand, ie. record it in `operands'. */ |
644 | test = new_decision_test (DT_accept_op, &place); | |
645 | test->u.opno = XINT (pattern, 0); | |
e0689256 | 646 | |
09051660 RH |
647 | if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL) |
648 | { | |
649 | char base = (was_code == MATCH_OPERATOR ? '0' : 'a'); | |
650 | for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++) | |
651 | { | |
652 | subpos[depth] = i + base; | |
653 | sub = add_to_sequence (XVECEXP (pattern, 2, i), | |
654 | &sub->success, subpos, insn_type, 0); | |
655 | } | |
656 | } | |
657 | goto fini; | |
658 | } | |
ec65fa66 RK |
659 | |
660 | case MATCH_OP_DUP: | |
09051660 RH |
661 | code = UNKNOWN; |
662 | ||
663 | test = new_decision_test (DT_dup, &place); | |
664 | test->u.dup = XINT (pattern, 0); | |
665 | ||
666 | test = new_decision_test (DT_accept_op, &place); | |
667 | test->u.opno = XINT (pattern, 0); | |
668 | ||
e51712db | 669 | for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++) |
ec65fa66 | 670 | { |
09051660 RH |
671 | subpos[depth] = i + '0'; |
672 | sub = add_to_sequence (XVECEXP (pattern, 1, i), | |
673 | &sub->success, subpos, insn_type, 0); | |
ec65fa66 | 674 | } |
09051660 | 675 | goto fini; |
ec65fa66 RK |
676 | |
677 | case MATCH_DUP: | |
f582c9d5 | 678 | case MATCH_PAR_DUP: |
09051660 RH |
679 | code = UNKNOWN; |
680 | ||
681 | test = new_decision_test (DT_dup, &place); | |
682 | test->u.dup = XINT (pattern, 0); | |
683 | goto fini; | |
ec65fa66 RK |
684 | |
685 | case ADDRESS: | |
686 | pattern = XEXP (pattern, 0); | |
687 | goto restart; | |
688 | ||
76d31c63 JL |
689 | default: |
690 | break; | |
ec65fa66 RK |
691 | } |
692 | ||
693 | fmt = GET_RTX_FORMAT (code); | |
694 | len = GET_RTX_LENGTH (code); | |
09051660 RH |
695 | |
696 | /* Do tests against the current node first. */ | |
e51712db | 697 | for (i = 0; i < (size_t) len; i++) |
ec65fa66 | 698 | { |
09051660 | 699 | if (fmt[i] == 'i') |
ec65fa66 | 700 | { |
09051660 RH |
701 | if (i == 0) |
702 | { | |
703 | test = new_decision_test (DT_elt_zero_int, &place); | |
704 | test->u.intval = XINT (pattern, i); | |
705 | } | |
706 | else if (i == 1) | |
707 | { | |
708 | test = new_decision_test (DT_elt_one_int, &place); | |
709 | test->u.intval = XINT (pattern, i); | |
710 | } | |
711 | else | |
712 | abort (); | |
ec65fa66 | 713 | } |
09051660 | 714 | else if (fmt[i] == 'w') |
3d678dca | 715 | { |
09051660 RH |
716 | if (i != 0) |
717 | abort (); | |
718 | ||
719 | test = new_decision_test (DT_elt_zero_wide, &place); | |
720 | test->u.intval = XWINT (pattern, i); | |
3d678dca | 721 | } |
ec65fa66 RK |
722 | else if (fmt[i] == 'E') |
723 | { | |
ec65fa66 RK |
724 | if (i != 0) |
725 | abort (); | |
09051660 RH |
726 | |
727 | test = new_decision_test (DT_veclen, &place); | |
728 | test->u.veclen = XVECLEN (pattern, i); | |
729 | } | |
730 | } | |
731 | ||
732 | /* Now test our sub-patterns. */ | |
733 | for (i = 0; i < (size_t) len; i++) | |
734 | { | |
735 | switch (fmt[i]) | |
736 | { | |
737 | case 'e': case 'u': | |
738 | subpos[depth] = '0' + i; | |
739 | sub = add_to_sequence (XEXP (pattern, i), &sub->success, | |
740 | subpos, insn_type, 0); | |
741 | break; | |
742 | ||
743 | case 'E': | |
744 | { | |
745 | register int j; | |
746 | for (j = 0; j < XVECLEN (pattern, i); j++) | |
747 | { | |
748 | subpos[depth] = 'a' + j; | |
749 | sub = add_to_sequence (XVECEXP (pattern, i, j), | |
750 | &sub->success, subpos, insn_type, 0); | |
751 | } | |
752 | break; | |
753 | } | |
754 | ||
755 | case 'i': case 'w': | |
756 | /* Handled above. */ | |
757 | break; | |
758 | case '0': | |
759 | break; | |
760 | ||
761 | default: | |
762 | abort (); | |
763 | } | |
764 | } | |
765 | ||
766 | fini: | |
767 | /* Insert nodes testing mode and code, if they're still relevant, | |
768 | before any of the nodes we may have added above. */ | |
769 | if (code != UNKNOWN) | |
770 | { | |
771 | place = &this->tests; | |
772 | test = new_decision_test (DT_code, &place); | |
773 | test->u.code = code; | |
774 | } | |
775 | ||
776 | if (mode != VOIDmode) | |
777 | { | |
778 | place = &this->tests; | |
779 | test = new_decision_test (DT_mode, &place); | |
780 | test->u.mode = mode; | |
781 | } | |
782 | ||
783 | /* If we didn't insert any tests or accept nodes, hork. */ | |
784 | if (this->tests == NULL) | |
785 | abort (); | |
786 | ||
787 | return sub; | |
788 | } | |
789 | \f | |
790 | /* A subroutine of maybe_both_true; examines only one test. | |
791 | Returns > 0 for "definitely both true" and < 0 for "maybe both true". */ | |
792 | ||
793 | static int | |
794 | maybe_both_true_2 (d1, d2) | |
795 | struct decision_test *d1, *d2; | |
796 | { | |
797 | if (d1->type == d2->type) | |
798 | { | |
799 | switch (d1->type) | |
800 | { | |
801 | case DT_mode: | |
802 | return d1->u.mode == d2->u.mode; | |
803 | ||
804 | case DT_code: | |
805 | return d1->u.code == d2->u.code; | |
806 | ||
807 | case DT_veclen: | |
808 | return d1->u.veclen == d2->u.veclen; | |
809 | ||
810 | case DT_elt_zero_int: | |
811 | case DT_elt_one_int: | |
812 | case DT_elt_zero_wide: | |
813 | return d1->u.intval == d2->u.intval; | |
814 | ||
815 | default: | |
816 | break; | |
817 | } | |
818 | } | |
819 | ||
820 | /* If either has a predicate that we know something about, set | |
821 | things up so that D1 is the one that always has a known | |
822 | predicate. Then see if they have any codes in common. */ | |
823 | ||
824 | if (d1->type == DT_pred || d2->type == DT_pred) | |
825 | { | |
826 | if (d2->type == DT_pred) | |
827 | { | |
828 | struct decision_test *tmp; | |
829 | tmp = d1, d1 = d2, d2 = tmp; | |
830 | } | |
831 | ||
832 | /* If D2 tests a mode, see if it matches D1. */ | |
833 | if (d1->u.pred.mode != VOIDmode) | |
834 | { | |
835 | if (d2->type == DT_mode) | |
836 | { | |
837 | if (d1->u.pred.mode != d2->u.mode) | |
838 | return 0; | |
839 | } | |
840 | else if (d2->type == DT_pred) | |
841 | { | |
842 | if (d2->u.pred.mode != VOIDmode | |
843 | && d1->u.pred.mode != d2->u.pred.mode) | |
844 | return 0; | |
845 | } | |
846 | } | |
847 | ||
848 | if (d1->u.pred.index >= 0) | |
849 | { | |
850 | /* If D2 tests a code, see if it is in the list of valid | |
851 | codes for D1's predicate. */ | |
852 | if (d2->type == DT_code) | |
853 | { | |
854 | const RTX_CODE *c = &preds[d1->u.pred.index].codes[0]; | |
855 | while (*c != 0) | |
856 | { | |
857 | if (*c == d2->u.code) | |
858 | break; | |
859 | ++c; | |
860 | } | |
861 | if (*c == 0) | |
862 | return 0; | |
863 | } | |
864 | ||
865 | /* Otherwise see if the predicates have any codes in common. */ | |
866 | else if (d2->type == DT_pred && d2->u.pred.index >= 0) | |
ec65fa66 | 867 | { |
09051660 RH |
868 | const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0]; |
869 | int common = 0; | |
870 | ||
871 | while (*c1 != 0 && !common) | |
872 | { | |
873 | const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0]; | |
874 | while (*c2 != 0 && !common) | |
875 | { | |
876 | common = (*c1 == *c2); | |
877 | ++c2; | |
878 | } | |
879 | ++c1; | |
880 | } | |
881 | ||
882 | if (!common) | |
883 | return 0; | |
ec65fa66 RK |
884 | } |
885 | } | |
ec65fa66 | 886 | } |
09051660 RH |
887 | |
888 | return -1; | |
ec65fa66 | 889 | } |
09051660 RH |
890 | |
891 | /* A subroutine of maybe_both_true; examines all the tests for a given node. | |
892 | Returns > 0 for "definitely both true" and < 0 for "maybe both true". */ | |
893 | ||
894 | static int | |
895 | maybe_both_true_1 (d1, d2) | |
896 | struct decision_test *d1, *d2; | |
897 | { | |
898 | struct decision_test *t1, *t2; | |
899 | ||
900 | /* A match_operand with no predicate can match anything. Recognize | |
901 | this by the existance of a lone DT_accept_op test. */ | |
902 | if (d1->type == DT_accept_op || d2->type == DT_accept_op) | |
903 | return 1; | |
904 | ||
905 | /* Eliminate pairs of tests while they can exactly match. */ | |
906 | while (d1 && d2 && d1->type == d2->type) | |
907 | { | |
908 | if (maybe_both_true_2 (d1, d2) == 0) | |
909 | return 0; | |
910 | d1 = d1->next, d2 = d2->next; | |
911 | } | |
912 | ||
913 | /* After that, consider all pairs. */ | |
914 | for (t1 = d1; t1 ; t1 = t1->next) | |
915 | for (t2 = d2; t2 ; t2 = t2->next) | |
916 | if (maybe_both_true_2 (t1, t2) == 0) | |
917 | return 0; | |
918 | ||
919 | return -1; | |
920 | } | |
921 | ||
922 | /* Return 0 if we can prove that there is no RTL that can match both | |
923 | D1 and D2. Otherwise, return 1 (it may be that there is an RTL that | |
e0689256 | 924 | can match both or just that we couldn't prove there wasn't such an RTL). |
ec65fa66 | 925 | |
e0689256 RK |
926 | TOPLEVEL is non-zero if we are to only look at the top level and not |
927 | recursively descend. */ | |
ec65fa66 | 928 | |
e0689256 | 929 | static int |
09051660 | 930 | maybe_both_true (d1, d2, toplevel) |
e0689256 RK |
931 | struct decision *d1, *d2; |
932 | int toplevel; | |
ec65fa66 | 933 | { |
e0689256 | 934 | struct decision *p1, *p2; |
00ec6daa JH |
935 | int cmp; |
936 | ||
937 | /* Don't compare strings on the different positions in insn. Doing so | |
938 | is incorrect and results in false matches from constructs like | |
939 | ||
940 | [(set (subreg:HI (match_operand:SI "register_operand" "r") 0) | |
941 | (subreg:HI (match_operand:SI "register_operand" "r") 0))] | |
942 | vs | |
943 | [(set (match_operand:HI "register_operand" "r") | |
944 | (match_operand:HI "register_operand" "r"))] | |
945 | ||
946 | If we are presented with such, we are recursing through the remainder | |
947 | of a node's success nodes (from the loop at the end of this function). | |
948 | Skip forward until we come to a position that matches. | |
949 | ||
950 | Due to the way position strings are constructed, we know that iterating | |
951 | forward from the lexically lower position (e.g. "00") will run into | |
952 | the lexically higher position (e.g. "1") and not the other way around. | |
953 | This saves a bit of effort. */ | |
954 | ||
955 | cmp = strcmp (d1->position, d2->position); | |
956 | if (cmp != 0) | |
957 | { | |
958 | if (toplevel) | |
959 | abort(); | |
960 | ||
961 | /* If the d2->position was lexically lower, swap. */ | |
962 | if (cmp > 0) | |
ace91ff1 | 963 | p1 = d1, d1 = d2, d2 = p1; |
00ec6daa JH |
964 | |
965 | if (d1->success.first == 0) | |
966 | return 0; | |
967 | for (p1 = d1->success.first; p1; p1 = p1->next) | |
09051660 RH |
968 | if (maybe_both_true (p1, d2, 0)) |
969 | return 1; | |
00ec6daa | 970 | |
09051660 | 971 | return 0; |
00ec6daa | 972 | } |
e0689256 | 973 | |
09051660 RH |
974 | /* Test the current level. */ |
975 | cmp = maybe_both_true_1 (d1->tests, d2->tests); | |
976 | if (cmp >= 0) | |
977 | return cmp; | |
978 | ||
979 | /* We can't prove that D1 and D2 cannot both be true. If we are only | |
980 | to check the top level, return 1. Otherwise, see if we can prove | |
981 | that all choices in both successors are mutually exclusive. If | |
982 | either does not have any successors, we can't prove they can't both | |
983 | be true. */ | |
984 | ||
985 | if (toplevel || d1->success.first == 0 || d2->success.first == 0) | |
e0689256 RK |
986 | return 1; |
987 | ||
09051660 RH |
988 | for (p1 = d1->success.first; p1; p1 = p1->next) |
989 | for (p2 = d2->success.first; p2; p2 = p2->next) | |
990 | if (maybe_both_true (p1, p2, 0)) | |
991 | return 1; | |
e0689256 | 992 | |
09051660 RH |
993 | return 0; |
994 | } | |
ec65fa66 | 995 | |
09051660 | 996 | /* A subroutine of nodes_identical. Examine two tests for equivalence. */ |
ec65fa66 | 997 | |
09051660 RH |
998 | static int |
999 | nodes_identical_1 (d1, d2) | |
1000 | struct decision_test *d1, *d2; | |
1001 | { | |
1002 | switch (d1->type) | |
ec65fa66 | 1003 | { |
09051660 RH |
1004 | case DT_mode: |
1005 | return d1->u.mode == d2->u.mode; | |
e0689256 | 1006 | |
09051660 RH |
1007 | case DT_code: |
1008 | return d1->u.code == d2->u.code; | |
e0689256 | 1009 | |
09051660 RH |
1010 | case DT_pred: |
1011 | return (d1->u.pred.mode == d2->u.pred.mode | |
1012 | && strcmp (d1->u.pred.name, d2->u.pred.name) == 0); | |
e0689256 | 1013 | |
09051660 RH |
1014 | case DT_c_test: |
1015 | return strcmp (d1->u.c_test, d2->u.c_test) == 0; | |
e0689256 | 1016 | |
09051660 RH |
1017 | case DT_veclen: |
1018 | return d1->u.veclen == d2->u.veclen; | |
e0689256 | 1019 | |
09051660 RH |
1020 | case DT_dup: |
1021 | return d1->u.dup == d2->u.dup; | |
e0689256 | 1022 | |
09051660 RH |
1023 | case DT_elt_zero_int: |
1024 | case DT_elt_one_int: | |
1025 | case DT_elt_zero_wide: | |
1026 | return d1->u.intval == d2->u.intval; | |
e0689256 | 1027 | |
09051660 RH |
1028 | case DT_accept_op: |
1029 | return d1->u.opno == d2->u.opno; | |
1030 | ||
1031 | case DT_accept_insn: | |
1032 | /* Differences will be handled in merge_accept_insn. */ | |
1033 | return 1; | |
1034 | ||
1035 | default: | |
1036 | abort (); | |
ec65fa66 | 1037 | } |
09051660 | 1038 | } |
ec65fa66 | 1039 | |
09051660 RH |
1040 | /* True iff the two nodes are identical (on one level only). Due |
1041 | to the way these lists are constructed, we shouldn't have to | |
1042 | consider different orderings on the tests. */ | |
ec65fa66 | 1043 | |
09051660 RH |
1044 | static int |
1045 | nodes_identical (d1, d2) | |
1046 | struct decision *d1, *d2; | |
1047 | { | |
1048 | struct decision_test *t1, *t2; | |
e0689256 | 1049 | |
09051660 RH |
1050 | for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next) |
1051 | { | |
1052 | if (t1->type != t2->type) | |
1053 | return 0; | |
1054 | if (! nodes_identical_1 (t1, t2)) | |
e0689256 | 1055 | return 0; |
09051660 | 1056 | } |
e0689256 | 1057 | |
09051660 RH |
1058 | /* For success, they should now both be null. */ |
1059 | return t1 == t2; | |
e0689256 | 1060 | } |
e0689256 | 1061 | |
09051660 RH |
1062 | /* A subroutine of merge_trees; given two nodes that have been declared |
1063 | identical, cope with two insn accept states. If they differ in the | |
1064 | number of clobbers, then the conflict was created by make_insn_sequence | |
1065 | and we can drop the with-clobbers version on the floor. If both | |
1066 | nodes have no additional clobbers, we have found an ambiguity in the | |
1067 | source machine description. */ | |
1068 | ||
1069 | static void | |
1070 | merge_accept_insn (oldd, addd) | |
1071 | struct decision *oldd, *addd; | |
ec65fa66 | 1072 | { |
09051660 RH |
1073 | struct decision_test *old, *add; |
1074 | ||
1075 | for (old = oldd->tests; old; old = old->next) | |
1076 | if (old->type == DT_accept_insn) | |
1077 | break; | |
1078 | if (old == NULL) | |
1079 | return; | |
e0689256 | 1080 | |
09051660 RH |
1081 | for (add = addd->tests; add; add = add->next) |
1082 | if (add->type == DT_accept_insn) | |
1083 | break; | |
1084 | if (add == NULL) | |
1085 | return; | |
e0689256 | 1086 | |
09051660 RH |
1087 | /* If one node is for a normal insn and the second is for the base |
1088 | insn with clobbers stripped off, the second node should be ignored. */ | |
e0689256 | 1089 | |
09051660 RH |
1090 | if (old->u.insn.num_clobbers_to_add == 0 |
1091 | && add->u.insn.num_clobbers_to_add > 0) | |
1092 | { | |
1093 | /* Nothing to do here. */ | |
1094 | } | |
1095 | else if (old->u.insn.num_clobbers_to_add > 0 | |
1096 | && add->u.insn.num_clobbers_to_add == 0) | |
1097 | { | |
1098 | /* In this case, replace OLD with ADD. */ | |
1099 | old->u.insn = add->u.insn; | |
1100 | } | |
1101 | else | |
1102 | { | |
bcdaba58 RH |
1103 | message_with_line (add->u.insn.lineno, "`%s' matches `%s'", |
1104 | get_insn_name (add->u.insn.code_number), | |
1105 | get_insn_name (old->u.insn.code_number)); | |
1106 | message_with_line (old->u.insn.lineno, "previous definition of `%s'", | |
1107 | get_insn_name (old->u.insn.code_number)); | |
1108 | error_count++; | |
09051660 | 1109 | } |
e0689256 | 1110 | } |
e0689256 | 1111 | |
09051660 RH |
1112 | /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */ |
1113 | ||
1114 | static void | |
e0689256 | 1115 | merge_trees (oldh, addh) |
09051660 | 1116 | struct decision_head *oldh, *addh; |
e0689256 | 1117 | { |
09051660 | 1118 | struct decision *next, *add; |
e0689256 | 1119 | |
09051660 RH |
1120 | if (addh->first == 0) |
1121 | return; | |
1122 | if (oldh->first == 0) | |
1123 | { | |
1124 | *oldh = *addh; | |
1125 | return; | |
1126 | } | |
ec65fa66 | 1127 | |
09051660 RH |
1128 | /* Trying to merge bits at different positions isn't possible. */ |
1129 | if (strcmp (oldh->first->position, addh->first->position)) | |
e0689256 RK |
1130 | abort (); |
1131 | ||
09051660 | 1132 | for (add = addh->first; add ; add = next) |
ec65fa66 | 1133 | { |
09051660 | 1134 | struct decision *old, *insert_before = NULL; |
e0689256 RK |
1135 | |
1136 | next = add->next; | |
1137 | ||
09051660 RH |
1138 | /* The semantics of pattern matching state that the tests are |
1139 | done in the order given in the MD file so that if an insn | |
1140 | matches two patterns, the first one will be used. However, | |
1141 | in practice, most, if not all, patterns are unambiguous so | |
1142 | that their order is independent. In that case, we can merge | |
1143 | identical tests and group all similar modes and codes together. | |
e0689256 RK |
1144 | |
1145 | Scan starting from the end of OLDH until we reach a point | |
09051660 RH |
1146 | where we reach the head of the list or where we pass a |
1147 | pattern that could also be true if NEW is true. If we find | |
1148 | an identical pattern, we can merge them. Also, record the | |
1149 | last node that tests the same code and mode and the last one | |
1150 | that tests just the same mode. | |
e0689256 RK |
1151 | |
1152 | If we have no match, place NEW after the closest match we found. */ | |
09051660 RH |
1153 | |
1154 | for (old = oldh->last; old; old = old->prev) | |
ec65fa66 | 1155 | { |
09051660 | 1156 | if (nodes_identical (old, add)) |
e0689256 | 1157 | { |
09051660 RH |
1158 | merge_accept_insn (old, add); |
1159 | merge_trees (&old->success, &add->success); | |
1160 | goto merged_nodes; | |
1161 | } | |
e0689256 | 1162 | |
09051660 RH |
1163 | if (maybe_both_true (old, add, 0)) |
1164 | break; | |
e0689256 | 1165 | |
09051660 RH |
1166 | /* Insert the nodes in DT test type order, which is roughly |
1167 | how expensive/important the test is. Given that the tests | |
1168 | are also ordered within the list, examining the first is | |
1169 | sufficient. */ | |
1170 | if (add->tests->type < old->tests->type) | |
1171 | insert_before = old; | |
1172 | } | |
de6a431b | 1173 | |
09051660 RH |
1174 | if (insert_before == NULL) |
1175 | { | |
1176 | add->next = NULL; | |
1177 | add->prev = oldh->last; | |
1178 | oldh->last->next = add; | |
1179 | oldh->last = add; | |
1180 | } | |
1181 | else | |
1182 | { | |
1183 | if ((add->prev = insert_before->prev) != NULL) | |
1184 | add->prev->next = add; | |
1185 | else | |
1186 | oldh->first = add; | |
1187 | add->next = insert_before; | |
1188 | insert_before->prev = add; | |
1189 | } | |
1190 | ||
1191 | merged_nodes:; | |
1192 | } | |
1193 | } | |
1194 | \f | |
1195 | /* Walk the tree looking for sub-nodes that perform common tests. | |
1196 | Factor out the common test into a new node. This enables us | |
1197 | (depending on the test type) to emit switch statements later. */ | |
1198 | ||
1199 | static void | |
1200 | factor_tests (head) | |
1201 | struct decision_head *head; | |
1202 | { | |
1203 | struct decision *first, *next; | |
e0689256 | 1204 | |
09051660 RH |
1205 | for (first = head->first; first && first->next; first = next) |
1206 | { | |
1207 | enum decision_type type; | |
1208 | struct decision *new, *old_last; | |
e0689256 | 1209 | |
09051660 RH |
1210 | type = first->tests->type; |
1211 | next = first->next; | |
e0689256 | 1212 | |
09051660 RH |
1213 | /* Want at least two compatible sequential nodes. */ |
1214 | if (next->tests->type != type) | |
1215 | continue; | |
ec65fa66 | 1216 | |
09051660 RH |
1217 | /* Don't want all node types, just those we can turn into |
1218 | switch statements. */ | |
1219 | if (type != DT_mode | |
1220 | && type != DT_code | |
1221 | && type != DT_veclen | |
1222 | && type != DT_elt_zero_int | |
1223 | && type != DT_elt_one_int | |
1224 | && type != DT_elt_zero_wide) | |
e0689256 | 1225 | continue; |
ec65fa66 | 1226 | |
09051660 RH |
1227 | /* If we'd been performing more than one test, create a new node |
1228 | below our first test. */ | |
1229 | if (first->tests->next != NULL) | |
1230 | { | |
1231 | new = new_decision (first->position, &first->success); | |
1232 | new->tests = first->tests->next; | |
1233 | first->tests->next = NULL; | |
1234 | } | |
1235 | ||
1236 | /* Crop the node tree off after our first test. */ | |
1237 | first->next = NULL; | |
1238 | old_last = head->last; | |
1239 | head->last = first; | |
1240 | ||
1241 | /* For each compatible test, adjust to perform only one test in | |
1242 | the top level node, then merge the node back into the tree. */ | |
1243 | do | |
1244 | { | |
1245 | struct decision_head h; | |
1246 | ||
1247 | if (next->tests->next != NULL) | |
1248 | { | |
1249 | new = new_decision (next->position, &next->success); | |
1250 | new->tests = next->tests->next; | |
1251 | next->tests->next = NULL; | |
1252 | } | |
1253 | new = next; | |
1254 | next = next->next; | |
1255 | new->next = NULL; | |
1256 | h.first = h.last = new; | |
ec65fa66 | 1257 | |
09051660 RH |
1258 | merge_trees (head, &h); |
1259 | } | |
1260 | while (next && next->tests->type == type); | |
ec65fa66 | 1261 | |
09051660 RH |
1262 | /* After we run out of compatible tests, graft the remaining nodes |
1263 | back onto the tree. */ | |
1264 | if (next) | |
e0689256 | 1265 | { |
09051660 RH |
1266 | next->prev = head->last; |
1267 | head->last->next = next; | |
1268 | head->last = old_last; | |
e0689256 | 1269 | } |
09051660 | 1270 | } |
ec65fa66 | 1271 | |
09051660 RH |
1272 | /* Recurse. */ |
1273 | for (first = head->first; first; first = first->next) | |
1274 | factor_tests (&first->success); | |
1275 | } | |
1276 | ||
1277 | /* After factoring, try to simplify the tests on any one node. | |
1278 | Tests that are useful for switch statements are recognizable | |
1279 | by having only a single test on a node -- we'll be manipulating | |
1280 | nodes with multiple tests: | |
1281 | ||
1282 | If we have mode tests or code tests that are redundant with | |
1283 | predicates, remove them. */ | |
1284 | ||
1285 | static void | |
1286 | simplify_tests (head) | |
1287 | struct decision_head *head; | |
1288 | { | |
1289 | struct decision *tree; | |
1290 | ||
1291 | for (tree = head->first; tree; tree = tree->next) | |
1292 | { | |
1293 | struct decision_test *a, *b; | |
1294 | ||
1295 | a = tree->tests; | |
1296 | b = a->next; | |
1297 | if (b == NULL) | |
1298 | continue; | |
1299 | ||
1300 | /* Find a predicate node. */ | |
1301 | while (b && b->type != DT_pred) | |
1302 | b = b->next; | |
1303 | if (b) | |
e0689256 | 1304 | { |
09051660 RH |
1305 | /* Due to how these tests are constructed, we don't even need |
1306 | to check that the mode and code are compatible -- they were | |
1307 | generated from the predicate in the first place. */ | |
1308 | while (a->type == DT_mode || a->type == DT_code) | |
1309 | a = a->next; | |
1310 | tree->tests = a; | |
e0689256 RK |
1311 | } |
1312 | } | |
ec65fa66 | 1313 | |
09051660 RH |
1314 | /* Recurse. */ |
1315 | for (tree = head->first; tree; tree = tree->next) | |
1316 | simplify_tests (&tree->success); | |
ec65fa66 | 1317 | } |
09051660 | 1318 | |
e0689256 RK |
1319 | /* Count the number of subnodes of HEAD. If the number is high enough, |
1320 | make the first node in HEAD start a separate subroutine in the C code | |
09051660 | 1321 | that is generated. */ |
ec65fa66 RK |
1322 | |
1323 | static int | |
09051660 RH |
1324 | break_out_subroutines (head, initial) |
1325 | struct decision_head *head; | |
e0689256 | 1326 | int initial; |
ec65fa66 RK |
1327 | { |
1328 | int size = 0; | |
87bd0490 | 1329 | struct decision *sub; |
e0689256 | 1330 | |
09051660 RH |
1331 | for (sub = head->first; sub; sub = sub->next) |
1332 | size += 1 + break_out_subroutines (&sub->success, 0); | |
e0689256 RK |
1333 | |
1334 | if (size > SUBROUTINE_THRESHOLD && ! initial) | |
ec65fa66 | 1335 | { |
09051660 | 1336 | head->first->subroutine_number = ++next_subroutine_number; |
ec65fa66 RK |
1337 | size = 1; |
1338 | } | |
1339 | return size; | |
1340 | } | |
09051660 RH |
1341 | |
1342 | /* For each node p, find the next alternative that might be true | |
1343 | when p is true. */ | |
ec65fa66 RK |
1344 | |
1345 | static void | |
09051660 RH |
1346 | find_afterward (head, real_afterward) |
1347 | struct decision_head *head; | |
1348 | struct decision *real_afterward; | |
ec65fa66 | 1349 | { |
09051660 | 1350 | struct decision *p, *q, *afterward; |
69277eec | 1351 | |
09051660 RH |
1352 | /* We can't propogate alternatives across subroutine boundaries. |
1353 | This is not incorrect, merely a minor optimization loss. */ | |
ec65fa66 | 1354 | |
09051660 RH |
1355 | p = head->first; |
1356 | afterward = (p->subroutine_number > 0 ? NULL : real_afterward); | |
e0689256 | 1357 | |
09051660 | 1358 | for ( ; p ; p = p->next) |
e0689256 | 1359 | { |
09051660 RH |
1360 | /* Find the next node that might be true if this one fails. */ |
1361 | for (q = p->next; q ; q = q->next) | |
1362 | if (maybe_both_true (p, q, 1)) | |
1363 | break; | |
e0689256 | 1364 | |
09051660 RH |
1365 | /* If we reached the end of the list without finding one, |
1366 | use the incoming afterward position. */ | |
1367 | if (!q) | |
1368 | q = afterward; | |
1369 | p->afterward = q; | |
1370 | if (q) | |
1371 | q->need_label = 1; | |
e0689256 RK |
1372 | } |
1373 | ||
09051660 RH |
1374 | /* Recurse. */ |
1375 | for (p = head->first; p ; p = p->next) | |
1376 | if (p->success.first) | |
1377 | find_afterward (&p->success, p->afterward); | |
1378 | ||
1379 | /* When we are generating a subroutine, record the real afterward | |
1380 | position in the first node where write_tree can find it, and we | |
1381 | can do the right thing at the subroutine call site. */ | |
1382 | p = head->first; | |
1383 | if (p->subroutine_number > 0) | |
1384 | p->afterward = real_afterward; | |
1385 | } | |
1386 | \f | |
1387 | /* Assuming that the state of argument is denoted by OLDPOS, take whatever | |
1388 | actions are necessary to move to NEWPOS. If we fail to move to the | |
1389 | new state, branch to node AFTERWARD if non-zero, otherwise return. | |
e0689256 | 1390 | |
09051660 RH |
1391 | Failure to move to the new state can only occur if we are trying to |
1392 | match multiple insns and we try to step past the end of the stream. */ | |
e0689256 | 1393 | |
09051660 RH |
1394 | static void |
1395 | change_state (oldpos, newpos, afterward, indent) | |
1396 | const char *oldpos; | |
1397 | const char *newpos; | |
1398 | struct decision *afterward; | |
1399 | const char *indent; | |
1400 | { | |
1401 | int odepth = strlen (oldpos); | |
1402 | int ndepth = strlen (newpos); | |
1403 | int depth; | |
1404 | int old_has_insn, new_has_insn; | |
e0689256 | 1405 | |
09051660 RH |
1406 | /* Pop up as many levels as necessary. */ |
1407 | for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth) | |
1408 | continue; | |
ec65fa66 | 1409 | |
09051660 RH |
1410 | /* Hunt for the last [A-Z] in both strings. */ |
1411 | for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn) | |
1412 | if (oldpos[old_has_insn] >= 'A' && oldpos[old_has_insn] <= 'Z') | |
1413 | break; | |
1414 | for (new_has_insn = odepth - 1; new_has_insn >= 0; --new_has_insn) | |
1415 | if (newpos[new_has_insn] >= 'A' && newpos[new_has_insn] <= 'Z') | |
1416 | break; | |
e0689256 | 1417 | |
09051660 RH |
1418 | /* Make sure to reset the _last_insn pointer when popping back up. */ |
1419 | if (old_has_insn >= 0 && new_has_insn < 0) | |
1420 | printf ("%s_last_insn = insn;\n", indent); | |
e0689256 | 1421 | |
09051660 RH |
1422 | /* Go down to desired level. */ |
1423 | while (depth < ndepth) | |
1424 | { | |
1425 | /* It's a different insn from the first one. */ | |
1426 | if (newpos[depth] >= 'A' && newpos[depth] <= 'Z') | |
ec65fa66 | 1427 | { |
09051660 RH |
1428 | /* We can only fail if we're moving down the tree. */ |
1429 | if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth]) | |
e0689256 | 1430 | { |
09051660 RH |
1431 | printf ("%s_last_insn = recog_next_insn (insn, %d);\n", |
1432 | indent, newpos[depth] - 'A'); | |
e0689256 RK |
1433 | } |
1434 | else | |
1435 | { | |
09051660 RH |
1436 | printf ("%stem = recog_next_insn (insn, %d);\n", |
1437 | indent, newpos[depth] - 'A'); | |
1438 | printf ("%sif (tem == NULL_RTX)\n", indent); | |
1439 | if (afterward) | |
1440 | printf ("%s goto L%d;\n", indent, afterward->number); | |
e0689256 | 1441 | else |
09051660 RH |
1442 | printf ("%s goto ret0;\n", indent); |
1443 | printf ("%s_last_insn = tem;\n", indent); | |
e0689256 | 1444 | } |
09051660 | 1445 | printf ("%sx%d = PATTERN (_last_insn);\n", indent, depth + 1); |
ec65fa66 | 1446 | } |
09051660 RH |
1447 | else if (newpos[depth] >= 'a' && newpos[depth] <= 'z') |
1448 | printf ("%sx%d = XVECEXP (x%d, 0, %d);\n", | |
1449 | indent, depth + 1, depth, newpos[depth] - 'a'); | |
1450 | else | |
1451 | printf ("%sx%d = XEXP (x%d, %c);\n", | |
1452 | indent, depth + 1, depth, newpos[depth]); | |
1453 | ++depth; | |
1454 | } | |
1455 | } | |
1456 | \f | |
1457 | /* Print the enumerator constant for CODE -- the upcase version of | |
1458 | the name. */ | |
1459 | ||
1460 | static void | |
1461 | print_code (code) | |
1462 | enum rtx_code code; | |
1463 | { | |
1464 | register const char *p; | |
1465 | for (p = GET_RTX_NAME (code); *p; p++) | |
1466 | putchar (TOUPPER (*p)); | |
1467 | } | |
ec65fa66 | 1468 | |
09051660 | 1469 | /* Emit code to cross an afterward link -- change state and branch. */ |
ec65fa66 | 1470 | |
09051660 RH |
1471 | static void |
1472 | write_afterward (start, afterward, indent) | |
1473 | struct decision *start; | |
1474 | struct decision *afterward; | |
1475 | const char *indent; | |
1476 | { | |
1477 | if (!afterward || start->subroutine_number > 0) | |
1478 | printf("%sgoto ret0;\n", indent); | |
1479 | else | |
1480 | { | |
1481 | change_state (start->position, afterward->position, NULL, indent); | |
1482 | printf ("%sgoto L%d;\n", indent, afterward->number); | |
1483 | } | |
1484 | } | |
e0689256 | 1485 | |
09051660 RH |
1486 | /* Emit a switch statement, if possible, for an initial sequence of |
1487 | nodes at START. Return the first node yet untested. */ | |
e0689256 | 1488 | |
09051660 RH |
1489 | static struct decision * |
1490 | write_switch (start, depth) | |
1491 | struct decision *start; | |
1492 | int depth; | |
1493 | { | |
1494 | struct decision *p = start; | |
1495 | enum decision_type type = p->tests->type; | |
ec65fa66 | 1496 | |
09051660 RH |
1497 | /* If we have two or more nodes in sequence that test the same one |
1498 | thing, we may be able to use a switch statement. */ | |
e0689256 | 1499 | |
09051660 RH |
1500 | if (!p->next |
1501 | || p->tests->next | |
1502 | || p->next->tests->type != type | |
1503 | || p->next->tests->next) | |
1504 | return p; | |
e0689256 | 1505 | |
09051660 RH |
1506 | /* DT_code is special in that we can do interesting things with |
1507 | known predicates at the same time. */ | |
1508 | if (type == DT_code) | |
1509 | { | |
1510 | char codemap[NUM_RTX_CODE]; | |
1511 | struct decision *ret; | |
ec65fa66 | 1512 | |
09051660 | 1513 | memset (codemap, 0, sizeof(codemap)); |
ec65fa66 | 1514 | |
09051660 RH |
1515 | printf (" switch (GET_CODE (x%d))\n {\n", depth); |
1516 | do | |
ec65fa66 | 1517 | { |
09051660 RH |
1518 | RTX_CODE code = p->tests->u.code; |
1519 | printf (" case "); | |
1520 | print_code (code); | |
1521 | printf (":\n goto L%d;\n", p->success.first->number); | |
1522 | p->success.first->need_label = 1; | |
1523 | ||
1524 | codemap[code] = 1; | |
1525 | p = p->next; | |
1526 | } | |
1527 | while (p && p->tests->type == DT_code && !p->tests->next); | |
1528 | ||
1529 | /* If P is testing a predicate that we know about and we haven't | |
1530 | seen any of the codes that are valid for the predicate, we can | |
1531 | write a series of "case" statement, one for each possible code. | |
1532 | Since we are already in a switch, these redundant tests are very | |
1533 | cheap and will reduce the number of predicates called. */ | |
1534 | ||
1535 | /* Note that while we write out cases for these predicates here, | |
1536 | we don't actually write the test here, as it gets kinda messy. | |
1537 | It is trivial to leave this to later by telling our caller that | |
1538 | we only processed the CODE tests. */ | |
1539 | ret = p; | |
1540 | ||
1541 | while (p && p->tests->type == DT_pred | |
1542 | && p->tests->u.pred.index >= 0) | |
1543 | { | |
1544 | const RTX_CODE *c; | |
ec65fa66 | 1545 | |
09051660 RH |
1546 | for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c) |
1547 | if (codemap[(int) *c] != 0) | |
1548 | goto pred_done; | |
e0689256 | 1549 | |
09051660 | 1550 | for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c) |
ec65fa66 | 1551 | { |
09051660 RH |
1552 | printf (" case "); |
1553 | print_code (*c); | |
1554 | printf (":\n"); | |
1555 | codemap[(int) *c] = 1; | |
ec65fa66 | 1556 | } |
e0689256 | 1557 | |
09051660 RH |
1558 | printf (" goto L%d;\n", p->number); |
1559 | p->need_label = 1; | |
1560 | p = p->next; | |
ec65fa66 RK |
1561 | } |
1562 | ||
09051660 RH |
1563 | pred_done: |
1564 | /* Make the default case skip the predicates we managed to match. */ | |
e0689256 | 1565 | |
09051660 RH |
1566 | printf (" default:\n"); |
1567 | if (p != ret) | |
ec65fa66 | 1568 | { |
09051660 | 1569 | if (p) |
b030d598 | 1570 | { |
09051660 RH |
1571 | printf (" goto L%d;\n", p->number); |
1572 | p->need_label = 1; | |
b030d598 | 1573 | } |
e0689256 | 1574 | else |
09051660 | 1575 | write_afterward (start, start->afterward, " "); |
ec65fa66 | 1576 | } |
ec65fa66 | 1577 | else |
09051660 RH |
1578 | printf (" break;\n"); |
1579 | printf (" }\n"); | |
1580 | ||
1581 | return ret; | |
1582 | } | |
1583 | else if (type == DT_mode | |
1584 | || type == DT_veclen | |
1585 | || type == DT_elt_zero_int | |
1586 | || type == DT_elt_one_int | |
1587 | || type == DT_elt_zero_wide) | |
1588 | { | |
1589 | const char *str; | |
ec65fa66 | 1590 | |
09051660 RH |
1591 | printf (" switch ("); |
1592 | switch (type) | |
1593 | { | |
1594 | case DT_mode: | |
1595 | str = "GET_MODE (x%d)"; | |
1596 | break; | |
1597 | case DT_veclen: | |
1598 | str = "XVECLEN (x%d, 0)"; | |
1599 | break; | |
1600 | case DT_elt_zero_int: | |
1601 | str = "XINT (x%d, 0)"; | |
1602 | break; | |
1603 | case DT_elt_one_int: | |
1604 | str = "XINT (x%d, 1)"; | |
1605 | break; | |
1606 | case DT_elt_zero_wide: | |
1607 | str = "XWINT (x%d, 0)"; | |
1608 | break; | |
1609 | default: | |
1610 | abort (); | |
1611 | } | |
1612 | printf (str, depth); | |
1613 | printf (")\n {\n"); | |
cba998bf | 1614 | |
09051660 | 1615 | do |
e0689256 | 1616 | { |
09051660 RH |
1617 | printf (" case "); |
1618 | switch (type) | |
cba998bf | 1619 | { |
09051660 RH |
1620 | case DT_mode: |
1621 | printf ("%smode", GET_MODE_NAME (p->tests->u.mode)); | |
1622 | break; | |
1623 | case DT_veclen: | |
1624 | printf ("%d", p->tests->u.veclen); | |
1625 | break; | |
1626 | case DT_elt_zero_int: | |
1627 | case DT_elt_one_int: | |
1628 | case DT_elt_zero_wide: | |
1629 | printf (HOST_WIDE_INT_PRINT_DEC, p->tests->u.intval); | |
1630 | break; | |
1631 | default: | |
1632 | abort (); | |
cba998bf | 1633 | } |
09051660 RH |
1634 | printf (":\n goto L%d;\n", p->success.first->number); |
1635 | p->success.first->need_label = 1; | |
cba998bf | 1636 | |
09051660 | 1637 | p = p->next; |
e0689256 | 1638 | } |
09051660 RH |
1639 | while (p && p->tests->type == type && !p->tests->next); |
1640 | ||
1641 | printf (" default:\n break;\n }\n"); | |
ec65fa66 | 1642 | |
09051660 RH |
1643 | return p; |
1644 | } | |
1645 | else | |
1646 | { | |
1647 | /* None of the other tests are ameanable. */ | |
1648 | return p; | |
1649 | } | |
1650 | } | |
ec65fa66 | 1651 | |
09051660 | 1652 | /* Emit code for one test. */ |
e0689256 | 1653 | |
09051660 RH |
1654 | static void |
1655 | write_cond (p, depth, subroutine_type) | |
1656 | struct decision_test *p; | |
1657 | int depth; | |
1658 | enum routine_type subroutine_type; | |
1659 | { | |
1660 | switch (p->type) | |
1661 | { | |
1662 | case DT_mode: | |
1663 | printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode)); | |
1664 | break; | |
e0689256 | 1665 | |
09051660 RH |
1666 | case DT_code: |
1667 | printf ("GET_CODE (x%d) == ", depth); | |
1668 | print_code (p->u.code); | |
1669 | break; | |
1670 | ||
1671 | case DT_veclen: | |
1672 | printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen); | |
1673 | break; | |
1674 | ||
1675 | case DT_elt_zero_int: | |
1676 | printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval); | |
1677 | break; | |
1678 | ||
1679 | case DT_elt_one_int: | |
1680 | printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval); | |
1681 | break; | |
1682 | ||
1683 | case DT_elt_zero_wide: | |
1684 | printf ("XWINT (x%d, 0) == ", depth); | |
1685 | printf (HOST_WIDE_INT_PRINT_DEC, p->u.intval); | |
1686 | break; | |
1687 | ||
1688 | case DT_dup: | |
1689 | printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup); | |
1690 | break; | |
1691 | ||
1692 | case DT_pred: | |
1693 | printf ("%s (x%d, %smode)", p->u.pred.name, depth, | |
1694 | GET_MODE_NAME (p->u.pred.mode)); | |
1695 | break; | |
1696 | ||
1697 | case DT_c_test: | |
1698 | printf ("(%s)", p->u.c_test); | |
1699 | break; | |
1700 | ||
1701 | case DT_accept_insn: | |
1702 | switch (subroutine_type) | |
1703 | { | |
1704 | case RECOG: | |
1705 | if (p->u.insn.num_clobbers_to_add == 0) | |
1706 | abort (); | |
1707 | printf ("pnum_clobbers != NULL"); | |
1708 | break; | |
1709 | ||
1710 | default: | |
1711 | abort (); | |
ec65fa66 | 1712 | } |
09051660 | 1713 | break; |
ec65fa66 | 1714 | |
09051660 RH |
1715 | default: |
1716 | abort (); | |
e0689256 | 1717 | } |
09051660 | 1718 | } |
ec65fa66 | 1719 | |
09051660 RH |
1720 | /* Emit code for one action. The previous tests have succeeded; |
1721 | TEST is the last of the chain. In the normal case we simply | |
1722 | perform a state change. For the `accept' tests we must do more work. */ | |
ec65fa66 | 1723 | |
09051660 RH |
1724 | static void |
1725 | write_action (test, depth, uncond, success, subroutine_type) | |
1726 | struct decision_test *test; | |
1727 | int depth, uncond; | |
1728 | struct decision *success; | |
1729 | enum routine_type subroutine_type; | |
1730 | { | |
1731 | const char *indent; | |
1732 | int want_close = 0; | |
1733 | ||
1734 | if (uncond) | |
1735 | indent = " "; | |
1736 | else if (test->type == DT_accept_op || test->type == DT_accept_insn) | |
e0689256 | 1737 | { |
09051660 RH |
1738 | fputs (" {\n", stdout); |
1739 | indent = " "; | |
1740 | want_close = 1; | |
e0689256 | 1741 | } |
09051660 RH |
1742 | else |
1743 | indent = " "; | |
ec65fa66 | 1744 | |
09051660 | 1745 | if (test->type == DT_accept_op) |
e0689256 | 1746 | { |
09051660 RH |
1747 | printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth); |
1748 | ||
1749 | /* Only allow DT_accept_insn to follow. */ | |
1750 | if (test->next) | |
1751 | { | |
1752 | test = test->next; | |
1753 | if (test->type != DT_accept_insn) | |
1754 | abort (); | |
1755 | } | |
ec65fa66 RK |
1756 | } |
1757 | ||
09051660 RH |
1758 | /* Sanity check that we're now at the end of the list of tests. */ |
1759 | if (test->next) | |
e0689256 | 1760 | abort (); |
ec65fa66 | 1761 | |
09051660 | 1762 | if (test->type == DT_accept_insn) |
ec65fa66 | 1763 | { |
09051660 RH |
1764 | switch (subroutine_type) |
1765 | { | |
1766 | case RECOG: | |
1767 | if (test->u.insn.num_clobbers_to_add != 0) | |
1768 | printf ("%s*pnum_clobbers = %d;\n", | |
1769 | indent, test->u.insn.num_clobbers_to_add); | |
1770 | printf ("%sreturn %d;\n", indent, test->u.insn.code_number); | |
1771 | break; | |
1772 | ||
1773 | case SPLIT: | |
1774 | printf ("%sreturn gen_split_%d (operands);\n", | |
1775 | indent, test->u.insn.code_number); | |
1776 | break; | |
1777 | ||
1778 | case PEEPHOLE2: | |
1779 | printf ("%stem = gen_peephole2_%d (insn, operands);\n", | |
1780 | indent, test->u.insn.code_number); | |
1781 | printf ("%sif (tem != 0)\n%s goto ret1;\n", indent, indent); | |
1782 | break; | |
1783 | ||
1784 | default: | |
1785 | abort (); | |
1786 | } | |
ec65fa66 RK |
1787 | } |
1788 | else | |
09051660 RH |
1789 | { |
1790 | printf("%sgoto L%d;\n", indent, success->number); | |
1791 | success->need_label = 1; | |
1792 | } | |
ec65fa66 | 1793 | |
09051660 RH |
1794 | if (want_close) |
1795 | fputs (" }\n", stdout); | |
ec65fa66 RK |
1796 | } |
1797 | ||
09051660 RH |
1798 | /* Return 1 if the test is always true and has no fallthru path. Return -1 |
1799 | if the test does have a fallthru path, but requires that the condition be | |
1800 | terminated. Otherwise return 0 for a normal test. */ | |
1801 | /* ??? is_unconditional is a stupid name for a tri-state function. */ | |
1802 | ||
ec65fa66 | 1803 | static int |
09051660 RH |
1804 | is_unconditional (t, subroutine_type) |
1805 | struct decision_test *t; | |
1806 | enum routine_type subroutine_type; | |
ec65fa66 | 1807 | { |
09051660 RH |
1808 | if (t->type == DT_accept_op) |
1809 | return 1; | |
ec65fa66 | 1810 | |
09051660 RH |
1811 | if (t->type == DT_accept_insn) |
1812 | { | |
1813 | switch (subroutine_type) | |
1814 | { | |
1815 | case RECOG: | |
1816 | return (t->u.insn.num_clobbers_to_add == 0); | |
1817 | case SPLIT: | |
1818 | return 1; | |
1819 | case PEEPHOLE2: | |
1820 | return -1; | |
1821 | default: | |
1822 | abort (); | |
1823 | } | |
1824 | } | |
ec65fa66 | 1825 | |
09051660 | 1826 | return 0; |
ec65fa66 RK |
1827 | } |
1828 | ||
09051660 RH |
1829 | /* Emit code for one node -- the conditional and the accompanying action. |
1830 | Return true if there is no fallthru path. */ | |
1831 | ||
ec65fa66 | 1832 | static int |
09051660 RH |
1833 | write_node (p, depth, subroutine_type) |
1834 | struct decision *p; | |
1835 | int depth; | |
1836 | enum routine_type subroutine_type; | |
ec65fa66 | 1837 | { |
09051660 RH |
1838 | struct decision_test *test, *last_test; |
1839 | int uncond; | |
ec65fa66 | 1840 | |
09051660 RH |
1841 | last_test = test = p->tests; |
1842 | uncond = is_unconditional (test, subroutine_type); | |
1843 | if (uncond == 0) | |
1844 | { | |
1845 | printf (" if ("); | |
1846 | write_cond (test, depth, subroutine_type); | |
1847 | ||
1848 | while ((test = test->next) != NULL) | |
1849 | { | |
1850 | int uncond2; | |
1851 | ||
1852 | last_test = test; | |
1853 | uncond2 = is_unconditional (test, subroutine_type); | |
1854 | if (uncond2 != 0) | |
1855 | break; | |
1856 | ||
1857 | printf ("\n && "); | |
1858 | write_cond (test, depth, subroutine_type); | |
1859 | } | |
1860 | ||
1861 | printf (")\n"); | |
1862 | } | |
1863 | ||
1864 | write_action (last_test, depth, uncond, p->success.first, subroutine_type); | |
1865 | ||
1866 | return uncond > 0; | |
ec65fa66 RK |
1867 | } |
1868 | ||
09051660 RH |
1869 | /* Emit code for all of the sibling nodes of HEAD. */ |
1870 | ||
ec65fa66 | 1871 | static void |
09051660 RH |
1872 | write_tree_1 (head, depth, subroutine_type) |
1873 | struct decision_head *head; | |
1874 | int depth; | |
1875 | enum routine_type subroutine_type; | |
ec65fa66 | 1876 | { |
09051660 RH |
1877 | struct decision *p, *next; |
1878 | int uncond = 0; | |
e0689256 | 1879 | |
09051660 RH |
1880 | for (p = head->first; p ; p = next) |
1881 | { | |
1882 | /* The label for the first element was printed in write_tree. */ | |
1883 | if (p != head->first && p->need_label) | |
1884 | OUTPUT_LABEL (" ", p->number); | |
1885 | ||
1886 | /* Attempt to write a switch statement for a whole sequence. */ | |
1887 | next = write_switch (p, depth); | |
1888 | if (p != next) | |
1889 | uncond = 0; | |
1890 | else | |
1891 | { | |
1892 | /* Failed -- fall back and write one node. */ | |
1893 | uncond = write_node (p, depth, subroutine_type); | |
1894 | next = p->next; | |
1895 | } | |
1896 | } | |
e0689256 | 1897 | |
09051660 RH |
1898 | /* Finished with this chain. Close a fallthru path by branching |
1899 | to the afterward node. */ | |
1900 | if (! uncond) | |
1901 | write_afterward (head->last, head->last->afterward, " "); | |
1902 | } | |
e0689256 | 1903 | |
09051660 RH |
1904 | /* Write out the decision tree starting at HEAD. PREVPOS is the |
1905 | position at the node that branched to this node. */ | |
e0689256 RK |
1906 | |
1907 | static void | |
09051660 RH |
1908 | write_tree (head, prevpos, type, initial) |
1909 | struct decision_head *head; | |
85fda1eb | 1910 | const char *prevpos; |
e0689256 | 1911 | enum routine_type type; |
09051660 | 1912 | int initial; |
e0689256 | 1913 | { |
09051660 | 1914 | register struct decision *p = head->first; |
e0689256 | 1915 | |
09051660 RH |
1916 | putchar ('\n'); |
1917 | if (p->need_label) | |
1918 | OUTPUT_LABEL (" ", p->number); | |
1919 | ||
1920 | if (! initial && p->subroutine_number > 0) | |
e0689256 | 1921 | { |
09051660 RH |
1922 | static const char * const name_prefix[] = { |
1923 | "recog", "split", "peephole2" | |
1924 | }; | |
1925 | ||
1926 | static const char * const call_suffix[] = { | |
1927 | ", pnum_clobbers", "", ", _plast_insn" | |
1928 | }; | |
e0689256 | 1929 | |
09051660 RH |
1930 | /* This node has been broken out into a separate subroutine. |
1931 | Call it, test the result, and branch accordingly. */ | |
1932 | ||
1933 | if (p->afterward) | |
e0689256 RK |
1934 | { |
1935 | printf (" tem = %s_%d (x0, insn%s);\n", | |
09051660 | 1936 | name_prefix[type], p->subroutine_number, call_suffix[type]); |
ede7cd44 | 1937 | if (IS_SPLIT (type)) |
09051660 | 1938 | printf (" if (tem != 0)\n return tem;\n"); |
71bde1f3 | 1939 | else |
09051660 RH |
1940 | printf (" if (tem >= 0)\n return tem;\n"); |
1941 | ||
1942 | change_state (p->position, p->afterward->position, NULL, " "); | |
1943 | printf (" goto L%d;\n", p->afterward->number); | |
e0689256 RK |
1944 | } |
1945 | else | |
09051660 RH |
1946 | { |
1947 | printf (" return %s_%d (x0, insn%s);\n", | |
1948 | name_prefix[type], p->subroutine_number, call_suffix[type]); | |
1949 | } | |
e0689256 | 1950 | } |
09051660 RH |
1951 | else |
1952 | { | |
1953 | int depth = strlen (p->position); | |
e0689256 | 1954 | |
09051660 RH |
1955 | change_state (prevpos, p->position, head->last->afterward, " "); |
1956 | write_tree_1 (head, depth, type); | |
e0689256 | 1957 | |
09051660 RH |
1958 | for (p = head->first; p; p = p->next) |
1959 | if (p->success.first) | |
1960 | write_tree (&p->success, p->position, type, 0); | |
1961 | } | |
e0689256 RK |
1962 | } |
1963 | ||
09051660 RH |
1964 | /* Write out a subroutine of type TYPE to do comparisons starting at |
1965 | node TREE. */ | |
ede7cd44 | 1966 | |
09051660 RH |
1967 | static void |
1968 | write_subroutine (head, type) | |
1969 | struct decision_head *head; | |
1970 | enum routine_type type; | |
1971 | { | |
1972 | static const char * const proto_pattern[] = { | |
1973 | "%sint recog%s PROTO ((rtx, rtx, int *));\n", | |
1974 | "%srtx split%s PROTO ((rtx, rtx));\n", | |
1975 | "%srtx peephole2%s PROTO ((rtx, rtx, rtx *));\n" | |
1976 | }; | |
1977 | ||
1978 | static const char * const decl_pattern[] = { | |
1979 | "%sint\n\ | |
1980 | recog%s (x0, insn, pnum_clobbers)\n\ | |
1981 | register rtx x0;\n\ | |
1982 | rtx insn ATTRIBUTE_UNUSED;\n\ | |
1983 | int *pnum_clobbers ATTRIBUTE_UNUSED;\n", | |
1984 | ||
1985 | "%srtx\n\ | |
1986 | split%s (x0, insn)\n\ | |
1987 | register rtx x0;\n\ | |
1988 | rtx insn ATTRIBUTE_UNUSED;\n", | |
1989 | ||
1990 | "%srtx\n\ | |
1991 | peephole2%s (x0, insn, _plast_insn)\n\ | |
1992 | register rtx x0;\n\ | |
1993 | rtx insn ATTRIBUTE_UNUSED;\n\ | |
1994 | rtx *_plast_insn ATTRIBUTE_UNUSED;\n" | |
1995 | }; | |
1996 | ||
e8f9b13a | 1997 | int subfunction = head->first ? head->first->subroutine_number : 0; |
09051660 RH |
1998 | const char *s_or_e; |
1999 | char extension[32]; | |
2000 | int i; | |
2001 | ||
2002 | s_or_e = subfunction ? "static " : ""; | |
e0689256 | 2003 | |
09051660 RH |
2004 | if (subfunction) |
2005 | sprintf (extension, "_%d", subfunction); | |
2006 | else if (type == RECOG) | |
2007 | extension[0] = '\0'; | |
2008 | else | |
2009 | strcpy (extension, "_insns"); | |
2010 | ||
2011 | printf (proto_pattern[type], s_or_e, extension); | |
2012 | printf (decl_pattern[type], s_or_e, extension); | |
2013 | ||
2014 | printf ("{\n register rtx * const operands = &recog_data.operand[0];\n"); | |
2015 | for (i = 1; i <= max_depth; i++) | |
2016 | printf (" register rtx x%d ATTRIBUTE_UNUSED;\n", i); | |
2017 | ||
2018 | if (type == PEEPHOLE2) | |
2019 | printf (" register rtx _last_insn = insn;\n"); | |
2020 | printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int"); | |
2021 | ||
e8f9b13a RH |
2022 | if (head->first) |
2023 | write_tree (head, "", type, 1); | |
2024 | else | |
2025 | printf (" goto ret0;\n"); | |
09051660 RH |
2026 | |
2027 | if (type == PEEPHOLE2) | |
2028 | printf (" ret1:\n *_plast_insn = _last_insn;\n return tem;\n"); | |
2029 | printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1); | |
2030 | } | |
2031 | ||
2032 | /* In break_out_subroutines, we discovered the boundaries for the | |
2033 | subroutines, but did not write them out. Do so now. */ | |
e0689256 | 2034 | |
ec65fa66 | 2035 | static void |
09051660 RH |
2036 | write_subroutines (head, type) |
2037 | struct decision_head *head; | |
2038 | enum routine_type type; | |
ec65fa66 | 2039 | { |
09051660 | 2040 | struct decision *p; |
ec65fa66 | 2041 | |
09051660 RH |
2042 | for (p = head->first; p ; p = p->next) |
2043 | if (p->success.first) | |
2044 | write_subroutines (&p->success, type); | |
ec65fa66 | 2045 | |
09051660 RH |
2046 | if (head->first->subroutine_number > 0) |
2047 | write_subroutine (head, type); | |
2048 | } | |
ede7cd44 | 2049 | |
09051660 | 2050 | /* Begin the output file. */ |
ede7cd44 | 2051 | |
09051660 RH |
2052 | static void |
2053 | write_header () | |
2054 | { | |
2055 | puts ("\ | |
2056 | /* Generated automatically by the program `genrecog' from the target\n\ | |
2057 | machine description file. */\n\ | |
2058 | \n\ | |
2059 | #include \"config.h\"\n\ | |
2060 | #include \"system.h\"\n\ | |
2061 | #include \"rtl.h\"\n\ | |
2062 | #include \"tm_p.h\"\n\ | |
2063 | #include \"function.h\"\n\ | |
2064 | #include \"insn-config.h\"\n\ | |
2065 | #include \"recog.h\"\n\ | |
2066 | #include \"real.h\"\n\ | |
2067 | #include \"output.h\"\n\ | |
2068 | #include \"flags.h\"\n\ | |
b1afd7f4 KG |
2069 | #include \"hard-reg-set.h\"\n\ |
2070 | #include \"resource.h\"\n\ | |
09051660 RH |
2071 | \n"); |
2072 | ||
2073 | puts ("\n\ | |
2074 | /* `recog' contains a decision tree that recognizes whether the rtx\n\ | |
2075 | X0 is a valid instruction.\n\ | |
2076 | \n\ | |
2077 | recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\ | |
2078 | returns a nonnegative number which is the insn code number for the\n\ | |
2079 | pattern that matched. This is the same as the order in the machine\n\ | |
2080 | description of the entry that matched. This number can be used as an\n\ | |
2081 | index into `insn_data' and other tables.\n\ | |
2082 | \n\ | |
2083 | The third argument to recog is an optional pointer to an int. If\n\ | |
2084 | present, recog will accept a pattern if it matches except for missing\n\ | |
2085 | CLOBBER expressions at the end. In that case, the value pointed to by\n\ | |
2086 | the optional pointer will be set to the number of CLOBBERs that need\n\ | |
2087 | to be added (it should be initialized to zero by the caller). If it\n\ | |
2088 | is set nonzero, the caller should allocate a PARALLEL of the\n\ | |
2089 | appropriate size, copy the initial entries, and call add_clobbers\n\ | |
2090 | (found in insn-emit.c) to fill in the CLOBBERs.\n\ | |
2091 | "); | |
2092 | ||
2093 | puts ("\n\ | |
2094 | The function split_insns returns 0 if the rtl could not\n\ | |
2095 | be split or the split rtl in a SEQUENCE if it can be.\n\ | |
2096 | \n\ | |
2097 | The function peephole2_insns returns 0 if the rtl could not\n\ | |
2098 | be matched. If there was a match, the new rtl is returned in a SEQUENCE,\n\ | |
2099 | and LAST_INSN will point to the last recognized insn in the old sequence.\n\ | |
2100 | */\n\n"); | |
2101 | } | |
ec65fa66 | 2102 | |
09051660 RH |
2103 | \f |
2104 | /* Construct and return a sequence of decisions | |
2105 | that will recognize INSN. | |
ec65fa66 | 2106 | |
09051660 RH |
2107 | TYPE says what type of routine we are recognizing (RECOG or SPLIT). */ |
2108 | ||
2109 | static struct decision_head | |
2110 | make_insn_sequence (insn, type) | |
2111 | rtx insn; | |
2112 | enum routine_type type; | |
2113 | { | |
2114 | rtx x; | |
2115 | const char *c_test = XSTR (insn, type == RECOG ? 2 : 1); | |
2116 | struct decision *last; | |
2117 | struct decision_test *test, **place; | |
2118 | struct decision_head head; | |
2119 | ||
2120 | record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL)); | |
2121 | ||
2122 | if (type == PEEPHOLE2) | |
ec65fa66 | 2123 | { |
09051660 RH |
2124 | int i, j; |
2125 | ||
2126 | /* peephole2 gets special treatment: | |
2127 | - X always gets an outer parallel even if it's only one entry | |
2128 | - we remove all traces of outer-level match_scratch and match_dup | |
2129 | expressions here. */ | |
2130 | x = rtx_alloc (PARALLEL); | |
2131 | PUT_MODE (x, VOIDmode); | |
2132 | XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0)); | |
2133 | for (i = j = 0; i < XVECLEN (insn, 0); i++) | |
ede7cd44 | 2134 | { |
09051660 RH |
2135 | rtx tmp = XVECEXP (insn, 0, i); |
2136 | if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP) | |
2137 | { | |
2138 | XVECEXP (x, 0, j) = tmp; | |
2139 | j++; | |
2140 | } | |
2141 | } | |
2142 | XVECLEN (x, 0) = j; | |
2143 | } | |
2144 | else if (XVECLEN (insn, type == RECOG) == 1) | |
2145 | x = XVECEXP (insn, type == RECOG, 0); | |
2146 | else | |
2147 | { | |
2148 | x = rtx_alloc (PARALLEL); | |
2149 | XVEC (x, 0) = XVEC (insn, type == RECOG); | |
2150 | PUT_MODE (x, VOIDmode); | |
2151 | } | |
2152 | ||
bcdaba58 RH |
2153 | validate_pattern (x, 0); |
2154 | ||
09051660 RH |
2155 | memset(&head, 0, sizeof(head)); |
2156 | last = add_to_sequence (x, &head, "", type, 1); | |
2157 | ||
2158 | /* Find the end of the test chain on the last node. */ | |
2159 | for (test = last->tests; test->next; test = test->next) | |
2160 | continue; | |
2161 | place = &test->next; | |
2162 | ||
2163 | if (c_test[0]) | |
2164 | { | |
2165 | /* Need a new node if we have another test to add. */ | |
2166 | if (test->type == DT_accept_op) | |
2167 | { | |
2168 | last = new_decision ("", &last->success); | |
2169 | place = &last->tests; | |
2170 | } | |
2171 | test = new_decision_test (DT_c_test, &place); | |
2172 | test->u.c_test = c_test; | |
2173 | } | |
2174 | ||
2175 | test = new_decision_test (DT_accept_insn, &place); | |
2176 | test->u.insn.code_number = next_insn_code; | |
bcdaba58 | 2177 | test->u.insn.lineno = pattern_lineno; |
09051660 RH |
2178 | test->u.insn.num_clobbers_to_add = 0; |
2179 | ||
2180 | switch (type) | |
2181 | { | |
2182 | case RECOG: | |
2183 | /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends | |
2184 | with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes. | |
2185 | If so, set up to recognize the pattern without these CLOBBERs. */ | |
2186 | ||
2187 | if (GET_CODE (x) == PARALLEL) | |
2188 | { | |
2189 | int i; | |
2190 | ||
2191 | /* Find the last non-clobber in the parallel. */ | |
2192 | for (i = XVECLEN (x, 0); i > 0; i--) | |
ede7cd44 | 2193 | { |
09051660 RH |
2194 | rtx y = XVECEXP (x, 0, i - 1); |
2195 | if (GET_CODE (y) != CLOBBER | |
2196 | || (GET_CODE (XEXP (y, 0)) != REG | |
2197 | && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH)) | |
2198 | break; | |
ede7cd44 | 2199 | } |
09051660 RH |
2200 | |
2201 | if (i != XVECLEN (x, 0)) | |
ede7cd44 | 2202 | { |
09051660 RH |
2203 | rtx new; |
2204 | struct decision_head clobber_head; | |
ede7cd44 | 2205 | |
09051660 RH |
2206 | /* Build a similar insn without the clobbers. */ |
2207 | if (i == 1) | |
2208 | new = XVECEXP (x, 0, 0); | |
ede7cd44 | 2209 | else |
09051660 RH |
2210 | { |
2211 | int j; | |
2212 | ||
2213 | new = rtx_alloc (PARALLEL); | |
2214 | XVEC (new, 0) = rtvec_alloc (i); | |
2215 | for (j = i - 1; j >= 0; j--) | |
2216 | XVECEXP (new, 0, j) = XVECEXP (x, 0, j); | |
2217 | } | |
2218 | ||
2219 | /* Recognize it. */ | |
2220 | memset (&clobber_head, 0, sizeof(clobber_head)); | |
2221 | last = add_to_sequence (new, &clobber_head, "", type, 1); | |
ede7cd44 | 2222 | |
09051660 RH |
2223 | /* Find the end of the test chain on the last node. */ |
2224 | for (test = last->tests; test->next; test = test->next) | |
2225 | continue; | |
2226 | ||
2227 | /* We definitely have a new test to add -- create a new | |
2228 | node if needed. */ | |
2229 | place = &test->next; | |
2230 | if (test->type == DT_accept_op) | |
2231 | { | |
2232 | last = new_decision ("", &last->success); | |
2233 | place = &last->tests; | |
2234 | } | |
2235 | ||
2236 | if (c_test[0]) | |
2237 | { | |
2238 | test = new_decision_test (DT_c_test, &place); | |
2239 | test->u.c_test = c_test; | |
2240 | } | |
2241 | ||
2242 | test = new_decision_test (DT_accept_insn, &place); | |
2243 | test->u.insn.code_number = next_insn_code; | |
bcdaba58 | 2244 | test->u.insn.lineno = pattern_lineno; |
09051660 RH |
2245 | test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i; |
2246 | ||
2247 | merge_trees (&head, &clobber_head); | |
ede7cd44 | 2248 | } |
ede7cd44 | 2249 | } |
09051660 RH |
2250 | break; |
2251 | ||
2252 | case SPLIT: | |
2253 | /* Define the subroutine we will call below and emit in genemit. */ | |
2254 | printf ("extern rtx gen_split_%d PROTO ((rtx *));\n", next_insn_code); | |
2255 | break; | |
2256 | ||
2257 | case PEEPHOLE2: | |
2258 | /* Define the subroutine we will call below and emit in genemit. */ | |
2259 | printf ("extern rtx gen_peephole2_%d PROTO ((rtx, rtx *));\n", | |
2260 | next_insn_code); | |
2261 | break; | |
ec65fa66 | 2262 | } |
09051660 | 2263 | next_insn_code++; |
e0689256 | 2264 | |
09051660 | 2265 | return head; |
ec65fa66 RK |
2266 | } |
2267 | ||
09051660 RH |
2268 | static void |
2269 | process_tree (head, subroutine_type) | |
2270 | struct decision_head *head; | |
2271 | enum routine_type subroutine_type; | |
ec65fa66 | 2272 | { |
e8f9b13a RH |
2273 | if (head->first != NULL) |
2274 | { | |
2275 | factor_tests (head); | |
2276 | simplify_tests (head); | |
ec65fa66 | 2277 | |
e8f9b13a RH |
2278 | next_subroutine_number = 0; |
2279 | break_out_subroutines (head, 1); | |
2280 | find_afterward (head, NULL); | |
c1b59dce | 2281 | |
e8f9b13a RH |
2282 | write_subroutines (head, subroutine_type); |
2283 | } | |
09051660 RH |
2284 | write_subroutine (head, subroutine_type); |
2285 | } | |
2286 | \f | |
ec65fa66 RK |
2287 | int |
2288 | main (argc, argv) | |
2289 | int argc; | |
2290 | char **argv; | |
2291 | { | |
2292 | rtx desc; | |
09051660 | 2293 | struct decision_head recog_tree, split_tree, peephole2_tree, h; |
ec65fa66 | 2294 | FILE *infile; |
ec65fa66 RK |
2295 | register int c; |
2296 | ||
f8b6598e | 2297 | progname = "genrecog"; |
ec65fa66 | 2298 | obstack_init (rtl_obstack); |
09051660 RH |
2299 | |
2300 | memset (&recog_tree, 0, sizeof recog_tree); | |
2301 | memset (&split_tree, 0, sizeof split_tree); | |
2302 | memset (&peephole2_tree, 0, sizeof peephole2_tree); | |
ec65fa66 RK |
2303 | |
2304 | if (argc <= 1) | |
2305 | fatal ("No input file name."); | |
2306 | ||
2307 | infile = fopen (argv[1], "r"); | |
2308 | if (infile == 0) | |
2309 | { | |
2310 | perror (argv[1]); | |
09051660 | 2311 | return FATAL_EXIT_CODE; |
ec65fa66 | 2312 | } |
bcdaba58 | 2313 | read_rtx_filename = argv[1]; |
ec65fa66 | 2314 | |
ec65fa66 RK |
2315 | next_insn_code = 0; |
2316 | next_index = 0; | |
2317 | ||
09051660 | 2318 | write_header (); |
ec65fa66 RK |
2319 | |
2320 | /* Read the machine description. */ | |
2321 | ||
2322 | while (1) | |
2323 | { | |
2324 | c = read_skip_spaces (infile); | |
2325 | if (c == EOF) | |
2326 | break; | |
2327 | ungetc (c, infile); | |
bcdaba58 | 2328 | pattern_lineno = read_rtx_lineno; |
ec65fa66 RK |
2329 | |
2330 | desc = read_rtx (infile); | |
2331 | if (GET_CODE (desc) == DEFINE_INSN) | |
09051660 RH |
2332 | { |
2333 | h = make_insn_sequence (desc, RECOG); | |
2334 | merge_trees (&recog_tree, &h); | |
2335 | } | |
ec65fa66 | 2336 | else if (GET_CODE (desc) == DEFINE_SPLIT) |
09051660 RH |
2337 | { |
2338 | h = make_insn_sequence (desc, SPLIT); | |
2339 | merge_trees (&split_tree, &h); | |
2340 | } | |
ede7cd44 | 2341 | else if (GET_CODE (desc) == DEFINE_PEEPHOLE2) |
09051660 RH |
2342 | { |
2343 | h = make_insn_sequence (desc, PEEPHOLE2); | |
2344 | merge_trees (&peephole2_tree, &h); | |
2345 | } | |
2346 | ||
ec65fa66 RK |
2347 | if (GET_CODE (desc) == DEFINE_PEEPHOLE |
2348 | || GET_CODE (desc) == DEFINE_EXPAND) | |
2349 | next_insn_code++; | |
2350 | next_index++; | |
2351 | } | |
2352 | ||
bcdaba58 RH |
2353 | if (error_count) |
2354 | return FATAL_EXIT_CODE; | |
2355 | ||
09051660 | 2356 | puts ("\n\n"); |
ec65fa66 | 2357 | |
09051660 RH |
2358 | process_tree (&recog_tree, RECOG); |
2359 | process_tree (&split_tree, SPLIT); | |
2360 | process_tree (&peephole2_tree, PEEPHOLE2); | |
ede7cd44 | 2361 | |
ec65fa66 | 2362 | fflush (stdout); |
c1b59dce | 2363 | return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE); |
ec65fa66 | 2364 | } |
09051660 | 2365 | \f |
a995e389 RH |
2366 | /* Define this so we can link with print-rtl.o to get debug_rtx function. */ |
2367 | const char * | |
2368 | get_insn_name (code) | |
2369 | int code; | |
2370 | { | |
2371 | if (code < insn_name_ptr_size) | |
2372 | return insn_name_ptr[code]; | |
2373 | else | |
2374 | return NULL; | |
2375 | } | |
09051660 RH |
2376 | |
2377 | static void | |
2378 | record_insn_name (code, name) | |
2379 | int code; | |
2380 | const char *name; | |
2381 | { | |
2382 | static const char *last_real_name = "insn"; | |
2383 | static int last_real_code = 0; | |
2384 | char *new; | |
2385 | ||
2386 | if (insn_name_ptr_size <= code) | |
2387 | { | |
2388 | int new_size; | |
2389 | new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512); | |
2390 | insn_name_ptr = | |
2391 | (char **) xrealloc (insn_name_ptr, sizeof(char *) * new_size); | |
2392 | memset (insn_name_ptr + insn_name_ptr_size, 0, | |
2393 | sizeof(char *) * (new_size - insn_name_ptr_size)); | |
2394 | insn_name_ptr_size = new_size; | |
2395 | } | |
2396 | ||
2397 | if (!name || name[0] == '\0') | |
2398 | { | |
2399 | new = xmalloc (strlen (last_real_name) + 10); | |
2400 | sprintf (new, "%s+%d", last_real_name, code - last_real_code); | |
2401 | } | |
2402 | else | |
2403 | { | |
2404 | last_real_name = new = xstrdup (name); | |
2405 | last_real_code = code; | |
2406 | } | |
2407 | ||
2408 | insn_name_ptr[code] = new; | |
2409 | } | |
2410 | \f | |
2411 | char * | |
2412 | xstrdup (input) | |
2413 | const char *input; | |
2414 | { | |
2415 | register size_t len = strlen (input) + 1; | |
2416 | register char *output = xmalloc (len); | |
2417 | memcpy (output, input, len); | |
2418 | return output; | |
2419 | } | |
2420 | ||
2421 | PTR | |
2422 | xrealloc (old, size) | |
2423 | PTR old; | |
2424 | size_t size; | |
2425 | { | |
2426 | register PTR ptr; | |
2427 | if (old) | |
2428 | ptr = (PTR) realloc (old, size); | |
2429 | else | |
2430 | ptr = (PTR) malloc (size); | |
2431 | if (!ptr) | |
2432 | fatal ("virtual memory exhausted"); | |
2433 | return ptr; | |
2434 | } | |
2435 | ||
2436 | PTR | |
2437 | xmalloc (size) | |
2438 | size_t size; | |
2439 | { | |
2440 | register PTR val = (PTR) malloc (size); | |
2441 | ||
2442 | if (val == 0) | |
2443 | fatal ("virtual memory exhausted"); | |
2444 | return val; | |
2445 | } | |
2446 | \f | |
2447 | static void | |
2448 | debug_decision_2 (test) | |
2449 | struct decision_test *test; | |
2450 | { | |
2451 | switch (test->type) | |
2452 | { | |
2453 | case DT_mode: | |
2454 | fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode)); | |
2455 | break; | |
2456 | case DT_code: | |
2457 | fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code)); | |
2458 | break; | |
2459 | case DT_veclen: | |
2460 | fprintf (stderr, "veclen=%d", test->u.veclen); | |
2461 | break; | |
2462 | case DT_elt_zero_int: | |
2463 | fprintf (stderr, "elt0_i=%d", (int) test->u.intval); | |
2464 | break; | |
2465 | case DT_elt_one_int: | |
2466 | fprintf (stderr, "elt1_i=%d", (int) test->u.intval); | |
2467 | break; | |
2468 | case DT_elt_zero_wide: | |
2469 | fprintf (stderr, "elt0_w="); | |
2470 | fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval); | |
2471 | break; | |
2472 | case DT_dup: | |
2473 | fprintf (stderr, "dup=%d", test->u.dup); | |
2474 | break; | |
2475 | case DT_pred: | |
2476 | fprintf (stderr, "pred=(%s,%s)", | |
2477 | test->u.pred.name, GET_MODE_NAME(test->u.pred.mode)); | |
2478 | break; | |
2479 | case DT_c_test: | |
2480 | { | |
2481 | char sub[16+4]; | |
2482 | strncpy (sub, test->u.c_test, sizeof(sub)); | |
2483 | memcpy (sub+16, "...", 4); | |
2484 | fprintf (stderr, "c_test=\"%s\"", sub); | |
2485 | } | |
2486 | break; | |
2487 | case DT_accept_op: | |
2488 | fprintf (stderr, "A_op=%d", test->u.opno); | |
2489 | break; | |
2490 | case DT_accept_insn: | |
2491 | fprintf (stderr, "A_insn=(%d,%d)", | |
2492 | test->u.insn.code_number, test->u.insn.num_clobbers_to_add); | |
2493 | break; | |
2494 | ||
2495 | default: | |
2496 | abort (); | |
2497 | } | |
2498 | } | |
2499 | ||
2500 | static void | |
2501 | debug_decision_1 (d, indent) | |
2502 | struct decision *d; | |
2503 | int indent; | |
2504 | { | |
2505 | int i; | |
2506 | struct decision_test *test; | |
2507 | ||
2508 | if (d == NULL) | |
2509 | { | |
2510 | for (i = 0; i < indent; ++i) | |
2511 | putc (' ', stderr); | |
2512 | fputs ("(nil)\n", stderr); | |
2513 | return; | |
2514 | } | |
2515 | ||
2516 | for (i = 0; i < indent; ++i) | |
2517 | putc (' ', stderr); | |
2518 | ||
2519 | putc ('{', stderr); | |
2520 | test = d->tests; | |
2521 | if (test) | |
2522 | { | |
2523 | debug_decision_2 (test); | |
2524 | while ((test = test->next) != NULL) | |
2525 | { | |
2526 | fputs (" + ", stderr); | |
2527 | debug_decision_2 (test); | |
2528 | } | |
2529 | } | |
2530 | fprintf (stderr, "} %d\n", d->number); | |
2531 | } | |
2532 | ||
2533 | static void | |
2534 | debug_decision_0 (d, indent, maxdepth) | |
2535 | struct decision *d; | |
2536 | int indent, maxdepth; | |
2537 | { | |
2538 | struct decision *n; | |
2539 | int i; | |
2540 | ||
2541 | if (maxdepth < 0) | |
2542 | return; | |
2543 | if (d == NULL) | |
2544 | { | |
2545 | for (i = 0; i < indent; ++i) | |
2546 | putc (' ', stderr); | |
2547 | fputs ("(nil)\n", stderr); | |
2548 | return; | |
2549 | } | |
2550 | ||
2551 | debug_decision_1 (d, indent); | |
2552 | for (n = d->success.first; n ; n = n->next) | |
2553 | debug_decision_0 (n, indent + 2, maxdepth - 1); | |
2554 | } | |
2555 | ||
2556 | void | |
2557 | debug_decision (d) | |
2558 | struct decision *d; | |
2559 | { | |
2560 | debug_decision_0 (d, 0, 1000000); | |
2561 | } | |
ec1c89e6 RH |
2562 | |
2563 | void | |
2564 | debug_decision_list (d) | |
2565 | struct decision *d; | |
2566 | { | |
2567 | while (d) | |
2568 | { | |
2569 | debug_decision_0 (d, 0, 0); | |
2570 | d = d->next; | |
2571 | } | |
2572 | } |