]> gcc.gnu.org Git - gcc.git/blame - gcc/genrecog.c
alias.c [...]: Remove unnecessary casts.
[gcc.git] / gcc / genrecog.c
CommitLineData
ec65fa66 1/* Generate code from machine description to recognize rtl as insns.
d050d723 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3d7aafde 3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
ec65fa66 4
1322177d 5 This file is part of GCC.
09051660 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
09051660
RH
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
09051660
RH
16
17 You should have received a copy of the GNU General Public License
1322177d
LB
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
09051660
RH
21
22
23/* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
ec65fa66
RK
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
09051660
RH
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
ec65fa66 43
09051660
RH
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
2f937369 46 rtl as an INSN list.
09051660
RH
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
2f937369 50 the new rtl is returned in an INSN list, and LAST_INSN will point
09051660 51 to the last recognized insn in the old sequence. */
ec65fa66 52
4977bab6 53#include "bconfig.h"
0b93b64e 54#include "system.h"
4977bab6
ZW
55#include "coretypes.h"
56#include "tm.h"
ec65fa66 57#include "rtl.h"
f8b6598e 58#include "errors.h"
c88c0d42 59#include "gensupport.h"
ec65fa66 60
3916d6d8 61
736b02fd
KG
62#define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64
8aeba909 65/* Holds an array of names indexed by insn_code_number. */
a995e389
RH
66static char **insn_name_ptr = 0;
67static int insn_name_ptr_size = 0;
4db83042 68
09051660 69/* A listhead of decision trees. The alternatives to a node are kept
fbe5a4a6 70 in a doubly-linked list so we can easily add nodes to the proper
09051660
RH
71 place when merging. */
72
73struct decision_head
74{
75 struct decision *first;
76 struct decision *last;
77};
5b7c7046 78
09051660
RH
79/* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
82
83struct decision_test
84{
85 /* A linked list through the tests attached to a node. */
86 struct decision_test *next;
87
88 /* These types are roughly in the order in which we'd like to test them. */
070ef6f4
RK
89 enum decision_type
90 {
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
5b7c7046 93 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
070ef6f4
RK
94 DT_accept_op, DT_accept_insn
95 } type;
09051660
RH
96
97 union
98 {
99 enum machine_mode mode; /* Machine mode of node. */
100 RTX_CODE code; /* Code to test. */
e0689256 101
09051660
RH
102 struct
103 {
104 const char *name; /* Predicate to call. */
105 int index; /* Index into `preds' or -1. */
106 enum machine_mode mode; /* Machine mode for node. */
107 } pred;
108
109 const char *c_test; /* Additional test to perform. */
110 int veclen; /* Length of vector. */
111 int dup; /* Number of operand to compare against. */
112 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
113 int opno; /* Operand number matched. */
114
115 struct {
116 int code_number; /* Insn number matched. */
bcdaba58 117 int lineno; /* Line number of the insn. */
09051660
RH
118 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
119 } insn;
120 } u;
121};
e0689256 122
09051660 123/* Data structure for decision tree for recognizing legitimate insns. */
ec65fa66
RK
124
125struct decision
126{
09051660
RH
127 struct decision_head success; /* Nodes to test on success. */
128 struct decision *next; /* Node to test on failure. */
129 struct decision *prev; /* Node whose failure tests us. */
130 struct decision *afterward; /* Node to test on success,
131 but failure of successor nodes. */
132
133 const char *position; /* String denoting position in pattern. */
134
135 struct decision_test *tests; /* The tests for this node. */
136
e0689256 137 int number; /* Node number, used for labels */
e0689256 138 int subroutine_number; /* Number of subroutine this node starts */
09051660 139 int need_label; /* Label needs to be output. */
ec65fa66
RK
140};
141
09051660 142#define SUBROUTINE_THRESHOLD 100
ec65fa66
RK
143
144static int next_subroutine_number;
145
ede7cd44
RH
146/* We can write three types of subroutines: One for insn recognition,
147 one to split insns, and one for peephole-type optimizations. This
148 defines which type is being written. */
ec65fa66 149
09051660
RH
150enum routine_type {
151 RECOG, SPLIT, PEEPHOLE2
152};
ede7cd44 153
09051660 154#define IS_SPLIT(X) ((X) != RECOG)
ec65fa66 155
e0689256 156/* Next available node number for tree nodes. */
ec65fa66 157
e0689256 158static int next_number;
ec65fa66 159
e0689256 160/* Next number to use as an insn_code. */
ec65fa66 161
e0689256 162static int next_insn_code;
ec65fa66 163
e0689256 164/* Similar, but counts all expressions in the MD file; used for
0f41302f 165 error messages. */
ec65fa66 166
e0689256 167static int next_index;
ec65fa66 168
e0689256
RK
169/* Record the highest depth we ever have so we know how many variables to
170 allocate in each subroutine we make. */
ec65fa66 171
e0689256 172static int max_depth;
bcdaba58
RH
173
174/* The line number of the start of the pattern currently being processed. */
175static int pattern_lineno;
176
177/* Count of errors. */
178static int error_count;
e0689256
RK
179\f
180/* This table contains a list of the rtl codes that can possibly match a
09051660 181 predicate defined in recog.c. The function `maybe_both_true' uses it to
e0689256
RK
182 deduce that there are no expressions that can be matches by certain pairs
183 of tree nodes. Also, if a predicate can match only one code, we can
184 hardwire that code into the node testing the predicate. */
ec65fa66 185
8b60264b 186static const struct pred_table
e0689256 187{
8b60264b
KG
188 const char *const name;
189 const RTX_CODE codes[NUM_RTX_CODE];
09051660
RH
190} preds[] = {
191 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
0b40e88e 192 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}},
e0689256 193#ifdef PREDICATE_CODES
09051660 194 PREDICATE_CODES
e0689256 195#endif
09051660 196 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
0b40e88e
EB
197 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF,
198 PLUS, MINUS, MULT}},
199 {"register_operand", {SUBREG, REG, ADDRESSOF}},
200 {"pmode_register_operand", {SUBREG, REG, ADDRESSOF}},
09051660
RH
201 {"scratch_operand", {SCRATCH, REG}},
202 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
203 LABEL_REF}},
204 {"const_int_operand", {CONST_INT}},
205 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
0b40e88e 206 {"nonimmediate_operand", {SUBREG, REG, MEM, ADDRESSOF}},
09051660 207 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
0b40e88e 208 LABEL_REF, SUBREG, REG, ADDRESSOF}},
09051660
RH
209 {"push_operand", {MEM}},
210 {"pop_operand", {MEM}},
211 {"memory_operand", {SUBREG, MEM}},
212 {"indirect_operand", {SUBREG, MEM}},
3a3677ff
RH
213 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
214 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
8116809c 215 UNLT, LTGT}}
09051660 216};
e0689256 217
b6a1cbae 218#define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
ec65fa66 219
27c38fbe 220static const char *const special_mode_pred_table[] = {
8fe0ca0c
RH
221#ifdef SPECIAL_MODE_PREDICATES
222 SPECIAL_MODE_PREDICATES
223#endif
556ffcc5 224 "pmode_register_operand"
8fe0ca0c
RH
225};
226
b6a1cbae 227#define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
8fe0ca0c 228
09051660 229static struct decision *new_decision
3d7aafde 230 (const char *, struct decision_head *);
09051660 231static struct decision_test *new_decision_test
3d7aafde 232 (enum decision_type, struct decision_test ***);
8fe0ca0c 233static rtx find_operand
3d7aafde 234 (rtx, int);
c0ea284b 235static rtx find_matching_operand
3d7aafde 236 (rtx, int);
8fe0ca0c 237static void validate_pattern
3d7aafde 238 (rtx, rtx, rtx, int);
09051660 239static struct decision *add_to_sequence
3d7aafde 240 (rtx, struct decision_head *, const char *, enum routine_type, int);
09051660
RH
241
242static int maybe_both_true_2
3d7aafde 243 (struct decision_test *, struct decision_test *);
09051660 244static int maybe_both_true_1
3d7aafde 245 (struct decision_test *, struct decision_test *);
09051660 246static int maybe_both_true
3d7aafde 247 (struct decision *, struct decision *, int);
09051660
RH
248
249static int nodes_identical_1
3d7aafde 250 (struct decision_test *, struct decision_test *);
09051660 251static int nodes_identical
3d7aafde 252 (struct decision *, struct decision *);
09051660 253static void merge_accept_insn
3d7aafde 254 (struct decision *, struct decision *);
09051660 255static void merge_trees
3d7aafde 256 (struct decision_head *, struct decision_head *);
09051660
RH
257
258static void factor_tests
3d7aafde 259 (struct decision_head *);
09051660 260static void simplify_tests
3d7aafde 261 (struct decision_head *);
09051660 262static int break_out_subroutines
3d7aafde 263 (struct decision_head *, int);
09051660 264static void find_afterward
3d7aafde 265 (struct decision_head *, struct decision *);
09051660
RH
266
267static void change_state
3d7aafde 268 (const char *, const char *, struct decision *, const char *);
09051660 269static void print_code
3d7aafde 270 (enum rtx_code);
09051660 271static void write_afterward
3d7aafde 272 (struct decision *, struct decision *, const char *);
09051660 273static struct decision *write_switch
3d7aafde 274 (struct decision *, int);
09051660 275static void write_cond
3d7aafde 276 (struct decision_test *, int, enum routine_type);
09051660 277static void write_action
3d7aafde
AJ
278 (struct decision *, struct decision_test *, int, int,
279 struct decision *, enum routine_type);
09051660 280static int is_unconditional
3d7aafde 281 (struct decision_test *, enum routine_type);
09051660 282static int write_node
3d7aafde 283 (struct decision *, int, enum routine_type);
09051660 284static void write_tree_1
3d7aafde 285 (struct decision_head *, int, enum routine_type);
09051660 286static void write_tree
3d7aafde 287 (struct decision_head *, const char *, enum routine_type, int);
09051660 288static void write_subroutine
3d7aafde 289 (struct decision_head *, enum routine_type);
09051660 290static void write_subroutines
3d7aafde 291 (struct decision_head *, enum routine_type);
09051660 292static void write_header
3d7aafde 293 (void);
09051660
RH
294
295static struct decision_head make_insn_sequence
3d7aafde 296 (rtx, enum routine_type);
09051660 297static void process_tree
3d7aafde 298 (struct decision_head *, enum routine_type);
5b7c7046 299
09051660 300static void record_insn_name
3d7aafde 301 (int, const char *);
09051660 302
36f0e0a6 303static void debug_decision_0
3d7aafde 304 (struct decision *, int, int);
09051660 305static void debug_decision_1
3d7aafde 306 (struct decision *, int);
09051660 307static void debug_decision_2
3d7aafde 308 (struct decision_test *);
09051660 309extern void debug_decision
3d7aafde 310 (struct decision *);
36f0e0a6 311extern void debug_decision_list
3d7aafde 312 (struct decision *);
ede7cd44 313\f
09051660 314/* Create a new node in sequence after LAST. */
e0689256 315
09051660 316static struct decision *
3d7aafde 317new_decision (const char *position, struct decision_head *last)
ec65fa66 318{
703ad42b 319 struct decision *new = xmalloc (sizeof (struct decision));
ec65fa66 320
09051660
RH
321 memset (new, 0, sizeof (*new));
322 new->success = *last;
323 new->position = xstrdup (position);
324 new->number = next_number++;
ec65fa66 325
09051660
RH
326 last->first = last->last = new;
327 return new;
328}
e0689256 329
09051660 330/* Create a new test and link it in at PLACE. */
ec65fa66 331
09051660 332static struct decision_test *
3d7aafde 333new_decision_test (enum decision_type type, struct decision_test ***pplace)
09051660
RH
334{
335 struct decision_test **place = *pplace;
336 struct decision_test *test;
ec65fa66 337
703ad42b 338 test = xmalloc (sizeof (*test));
09051660
RH
339 test->next = *place;
340 test->type = type;
341 *place = test;
ede7cd44 342
09051660
RH
343 place = &test->next;
344 *pplace = place;
ec65fa66 345
09051660 346 return test;
e0689256 347}
09051660 348
8fe0ca0c
RH
349/* Search for and return operand N. */
350
351static rtx
3d7aafde 352find_operand (rtx pattern, int n)
8fe0ca0c
RH
353{
354 const char *fmt;
355 RTX_CODE code;
356 int i, j, len;
357 rtx r;
358
359 code = GET_CODE (pattern);
360 if ((code == MATCH_SCRATCH
361 || code == MATCH_INSN
362 || code == MATCH_OPERAND
363 || code == MATCH_OPERATOR
364 || code == MATCH_PARALLEL)
365 && XINT (pattern, 0) == n)
366 return pattern;
367
368 fmt = GET_RTX_FORMAT (code);
369 len = GET_RTX_LENGTH (code);
370 for (i = 0; i < len; i++)
371 {
372 switch (fmt[i])
373 {
374 case 'e': case 'u':
375 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
376 return r;
377 break;
378
c0ea284b
RH
379 case 'V':
380 if (! XVEC (pattern, i))
381 break;
382 /* FALLTHRU */
383
8fe0ca0c
RH
384 case 'E':
385 for (j = 0; j < XVECLEN (pattern, i); j++)
386 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
387 return r;
388 break;
389
390 case 'i': case 'w': case '0': case 's':
391 break;
392
393 default:
394 abort ();
395 }
396 }
397
398 return NULL;
399}
400
c0ea284b
RH
401/* Search for and return operand M, such that it has a matching
402 constraint for operand N. */
403
404static rtx
3d7aafde 405find_matching_operand (rtx pattern, int n)
c0ea284b
RH
406{
407 const char *fmt;
408 RTX_CODE code;
409 int i, j, len;
410 rtx r;
411
412 code = GET_CODE (pattern);
413 if (code == MATCH_OPERAND
414 && (XSTR (pattern, 2)[0] == '0' + n
415 || (XSTR (pattern, 2)[0] == '%'
416 && XSTR (pattern, 2)[1] == '0' + n)))
417 return pattern;
418
419 fmt = GET_RTX_FORMAT (code);
420 len = GET_RTX_LENGTH (code);
421 for (i = 0; i < len; i++)
422 {
423 switch (fmt[i])
424 {
425 case 'e': case 'u':
426 if ((r = find_matching_operand (XEXP (pattern, i), n)))
427 return r;
428 break;
429
430 case 'V':
431 if (! XVEC (pattern, i))
432 break;
433 /* FALLTHRU */
434
435 case 'E':
436 for (j = 0; j < XVECLEN (pattern, i); j++)
437 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
438 return r;
439 break;
440
441 case 'i': case 'w': case '0': case 's':
442 break;
443
444 default:
445 abort ();
446 }
447 }
448
449 return NULL;
450}
451
452
aece2740 453/* Check for various errors in patterns. SET is nonnull for a destination,
7297e9fc
RH
454 and is the complete set pattern. SET_CODE is '=' for normal sets, and
455 '+' within a context that requires in-out constraints. */
bcdaba58
RH
456
457static void
3d7aafde 458validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
bcdaba58
RH
459{
460 const char *fmt;
461 RTX_CODE code;
8fe0ca0c
RH
462 size_t i, len;
463 int j;
bcdaba58
RH
464
465 code = GET_CODE (pattern);
466 switch (code)
467 {
468 case MATCH_SCRATCH:
bcdaba58
RH
469 return;
470
8fe0ca0c 471 case MATCH_INSN:
bcdaba58 472 case MATCH_OPERAND:
8fe0ca0c 473 case MATCH_OPERATOR:
bcdaba58
RH
474 {
475 const char *pred_name = XSTR (pattern, 1);
8fe0ca0c
RH
476 int allows_non_lvalue = 1, allows_non_const = 1;
477 int special_mode_pred = 0;
478 const char *c_test;
479
480 if (GET_CODE (insn) == DEFINE_INSN)
481 c_test = XSTR (insn, 2);
482 else
483 c_test = XSTR (insn, 1);
bcdaba58
RH
484
485 if (pred_name[0] != 0)
486 {
8fe0ca0c 487 for (i = 0; i < NUM_KNOWN_PREDS; i++)
bcdaba58
RH
488 if (! strcmp (preds[i].name, pred_name))
489 break;
490
8fe0ca0c 491 if (i < NUM_KNOWN_PREDS)
bcdaba58 492 {
8fe0ca0c 493 int j;
bcdaba58 494
8fe0ca0c 495 allows_non_lvalue = allows_non_const = 0;
bcdaba58 496 for (j = 0; preds[i].codes[j] != 0; j++)
bcdaba58 497 {
8fe0ca0c
RH
498 RTX_CODE c = preds[i].codes[j];
499 if (c != LABEL_REF
500 && c != SYMBOL_REF
501 && c != CONST_INT
502 && c != CONST_DOUBLE
503 && c != CONST
504 && c != HIGH
505 && c != CONSTANT_P_RTX)
506 allows_non_const = 1;
507
508 if (c != REG
509 && c != SUBREG
510 && c != MEM
0b40e88e 511 && c != ADDRESSOF
8fe0ca0c
RH
512 && c != CONCAT
513 && c != PARALLEL
514 && c != STRICT_LOW_PART)
515 allows_non_lvalue = 1;
bcdaba58
RH
516 }
517 }
518 else
519 {
520#ifdef PREDICATE_CODES
521 /* If the port has a list of the predicates it uses but
522 omits one, warn. */
8fe0ca0c
RH
523 message_with_line (pattern_lineno,
524 "warning: `%s' not in PREDICATE_CODES",
525 pred_name);
bcdaba58
RH
526#endif
527 }
8fe0ca0c
RH
528
529 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
530 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
531 {
532 special_mode_pred = 1;
533 break;
534 }
535 }
536
0dab343a 537 if (code == MATCH_OPERAND)
aece2740 538 {
0dab343a
RH
539 const char constraints0 = XSTR (pattern, 2)[0];
540
3d7aafde 541 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
0dab343a
RH
542 don't use the MATCH_OPERAND constraint, only the predicate.
543 This is confusing to folks doing new ports, so help them
544 not make the mistake. */
545 if (GET_CODE (insn) == DEFINE_EXPAND
546 || GET_CODE (insn) == DEFINE_SPLIT
547 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
7297e9fc 548 {
0dab343a
RH
549 if (constraints0)
550 message_with_line (pattern_lineno,
551 "warning: constraints not supported in %s",
552 rtx_name[GET_CODE (insn)]);
553 }
3d7aafde 554
0dab343a
RH
555 /* A MATCH_OPERAND that is a SET should have an output reload. */
556 else if (set && constraints0)
557 {
558 if (set_code == '+')
559 {
560 if (constraints0 == '+')
561 ;
562 /* If we've only got an output reload for this operand,
563 we'd better have a matching input operand. */
564 else if (constraints0 == '='
565 && find_matching_operand (insn, XINT (pattern, 0)))
566 ;
567 else
568 {
569 message_with_line (pattern_lineno,
570 "operand %d missing in-out reload",
571 XINT (pattern, 0));
572 error_count++;
573 }
574 }
575 else if (constraints0 != '=' && constraints0 != '+')
c0ea284b
RH
576 {
577 message_with_line (pattern_lineno,
3d7aafde 578 "operand %d missing output reload",
c0ea284b
RH
579 XINT (pattern, 0));
580 error_count++;
581 }
7297e9fc 582 }
aece2740
RH
583 }
584
8fe0ca0c
RH
585 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
586 while not likely to occur at runtime, results in less efficient
587 code from insn-recog.c. */
aece2740 588 if (set
8fe0ca0c
RH
589 && pred_name[0] != '\0'
590 && allows_non_lvalue)
591 {
592 message_with_line (pattern_lineno,
aece2740 593 "warning: destination operand %d allows non-lvalue",
476a33f4 594 XINT (pattern, 0));
8fe0ca0c
RH
595 }
596
597 /* A modeless MATCH_OPERAND can be handy when we can
598 check for multiple modes in the c_test. In most other cases,
599 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
5b7c7046 600 and PEEP2 can FAIL within the output pattern. Exclude
556ffcc5 601 address_operand, since its mode is related to the mode of
aece2740
RH
602 the memory not the operand. Exclude the SET_DEST of a call
603 instruction, as that is a common idiom. */
8fe0ca0c
RH
604
605 if (GET_MODE (pattern) == VOIDmode
606 && code == MATCH_OPERAND
556ffcc5 607 && GET_CODE (insn) == DEFINE_INSN
8fe0ca0c
RH
608 && allows_non_const
609 && ! special_mode_pred
556ffcc5
RH
610 && pred_name[0] != '\0'
611 && strcmp (pred_name, "address_operand") != 0
aece2740
RH
612 && strstr (c_test, "operands") == NULL
613 && ! (set
614 && GET_CODE (set) == SET
615 && GET_CODE (SET_SRC (set)) == CALL))
8fe0ca0c
RH
616 {
617 message_with_line (pattern_lineno,
618 "warning: operand %d missing mode?",
619 XINT (pattern, 0));
bcdaba58 620 }
bcdaba58
RH
621 return;
622 }
623
624 case SET:
8fe0ca0c
RH
625 {
626 enum machine_mode dmode, smode;
627 rtx dest, src;
628
629 dest = SET_DEST (pattern);
630 src = SET_SRC (pattern);
631
0dab343a
RH
632 /* STRICT_LOW_PART is a wrapper. Its argument is the real
633 destination, and it's mode should match the source. */
634 if (GET_CODE (dest) == STRICT_LOW_PART)
635 dest = XEXP (dest, 0);
636
8fe0ca0c
RH
637 /* Find the referant for a DUP. */
638
639 if (GET_CODE (dest) == MATCH_DUP
640 || GET_CODE (dest) == MATCH_OP_DUP
641 || GET_CODE (dest) == MATCH_PAR_DUP)
642 dest = find_operand (insn, XINT (dest, 0));
643
644 if (GET_CODE (src) == MATCH_DUP
645 || GET_CODE (src) == MATCH_OP_DUP
646 || GET_CODE (src) == MATCH_PAR_DUP)
647 src = find_operand (insn, XINT (src, 0));
648
8fe0ca0c
RH
649 dmode = GET_MODE (dest);
650 smode = GET_MODE (src);
bcdaba58 651
8fe0ca0c
RH
652 /* The mode of an ADDRESS_OPERAND is the mode of the memory
653 reference, not the mode of the address. */
654 if (GET_CODE (src) == MATCH_OPERAND
655 && ! strcmp (XSTR (src, 1), "address_operand"))
656 ;
657
658 /* The operands of a SET must have the same mode unless one
659 is VOIDmode. */
660 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
661 {
662 message_with_line (pattern_lineno,
663 "mode mismatch in set: %smode vs %smode",
664 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
665 error_count++;
666 }
667
5b7c7046 668 /* If only one of the operands is VOIDmode, and PC or CC0 is
8fe0ca0c
RH
669 not involved, it's probably a mistake. */
670 else if (dmode != smode
671 && GET_CODE (dest) != PC
672 && GET_CODE (dest) != CC0
aece2740
RH
673 && GET_CODE (src) != PC
674 && GET_CODE (src) != CC0
8fe0ca0c
RH
675 && GET_CODE (src) != CONST_INT)
676 {
677 const char *which;
678 which = (dmode == VOIDmode ? "destination" : "source");
679 message_with_line (pattern_lineno,
680 "warning: %s missing a mode?", which);
681 }
682
683 if (dest != SET_DEST (pattern))
7297e9fc
RH
684 validate_pattern (dest, insn, pattern, '=');
685 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
686 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
8fe0ca0c
RH
687 return;
688 }
689
690 case CLOBBER:
7297e9fc
RH
691 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
692 return;
693
694 case ZERO_EXTRACT:
695 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
696 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
697 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
698 return;
699
700 case STRICT_LOW_PART:
701 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
bcdaba58 702 return;
8fe0ca0c 703
bcdaba58
RH
704 case LABEL_REF:
705 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
706 {
707 message_with_line (pattern_lineno,
708 "operand to label_ref %smode not VOIDmode",
709 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
710 error_count++;
711 }
712 break;
713
714 default:
715 break;
716 }
717
718 fmt = GET_RTX_FORMAT (code);
719 len = GET_RTX_LENGTH (code);
720 for (i = 0; i < len; i++)
721 {
722 switch (fmt[i])
723 {
724 case 'e': case 'u':
7297e9fc 725 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
bcdaba58
RH
726 break;
727
728 case 'E':
729 for (j = 0; j < XVECLEN (pattern, i); j++)
7297e9fc 730 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
bcdaba58
RH
731 break;
732
733 case 'i': case 'w': case '0': case 's':
734 break;
735
736 default:
737 abort ();
738 }
739 }
bcdaba58
RH
740}
741
e0689256
RK
742/* Create a chain of nodes to verify that an rtl expression matches
743 PATTERN.
ec65fa66 744
e0689256
RK
745 LAST is a pointer to the listhead in the previous node in the chain (or
746 in the calling function, for the first node).
ec65fa66 747
e0689256 748 POSITION is the string representing the current position in the insn.
ec65fa66 749
ede7cd44
RH
750 INSN_TYPE is the type of insn for which we are emitting code.
751
e0689256 752 A pointer to the final node in the chain is returned. */
ec65fa66
RK
753
754static struct decision *
3d7aafde
AJ
755add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
756 enum routine_type insn_type, int top)
ec65fa66 757{
09051660
RH
758 RTX_CODE code;
759 struct decision *this, *sub;
760 struct decision_test *test;
761 struct decision_test **place;
762 char *subpos;
b3694847
SS
763 size_t i;
764 const char *fmt;
e0689256 765 int depth = strlen (position);
ec65fa66 766 int len;
09051660 767 enum machine_mode mode;
ec65fa66 768
e0689256
RK
769 if (depth > max_depth)
770 max_depth = depth;
771
703ad42b 772 subpos = xmalloc (depth + 2);
09051660
RH
773 strcpy (subpos, position);
774 subpos[depth + 1] = 0;
ec65fa66 775
09051660
RH
776 sub = this = new_decision (position, last);
777 place = &this->tests;
ec65fa66
RK
778
779 restart:
09051660
RH
780 mode = GET_MODE (pattern);
781 code = GET_CODE (pattern);
ec65fa66
RK
782
783 switch (code)
784 {
ede7cd44 785 case PARALLEL:
dc297297 786 /* Toplevel peephole pattern. */
ede7cd44
RH
787 if (insn_type == PEEPHOLE2 && top)
788 {
09051660
RH
789 /* We don't need the node we just created -- unlink it. */
790 last->first = last->last = NULL;
ede7cd44
RH
791
792 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
793 {
794 /* Which insn we're looking at is represented by A-Z. We don't
dc297297 795 ever use 'A', however; it is always implied. */
09051660
RH
796
797 subpos[depth] = (i > 0 ? 'A' + i : 0);
798 sub = add_to_sequence (XVECEXP (pattern, 0, i),
799 last, subpos, insn_type, 0);
800 last = &sub->success;
ede7cd44 801 }
b548dffb 802 goto ret;
ede7cd44 803 }
09051660
RH
804
805 /* Else nothing special. */
ede7cd44 806 break;
09051660 807
521b9224
RH
808 case MATCH_PARALLEL:
809 /* The explicit patterns within a match_parallel enforce a minimum
810 length on the vector. The match_parallel predicate may allow
811 for more elements. We do need to check for this minimum here
812 or the code generated to match the internals may reference data
813 beyond the end of the vector. */
814 test = new_decision_test (DT_veclen_ge, &place);
815 test->u.veclen = XVECLEN (pattern, 2);
816 /* FALLTHRU */
817
ec65fa66 818 case MATCH_OPERAND:
ec65fa66 819 case MATCH_SCRATCH:
ec65fa66 820 case MATCH_OPERATOR:
5126c35a 821 case MATCH_INSN:
09051660
RH
822 {
823 const char *pred_name;
824 RTX_CODE was_code = code;
ec1c89e6 825 int allows_const_int = 1;
09051660
RH
826
827 if (code == MATCH_SCRATCH)
828 {
829 pred_name = "scratch_operand";
830 code = UNKNOWN;
831 }
832 else
833 {
834 pred_name = XSTR (pattern, 1);
835 if (code == MATCH_PARALLEL)
836 code = PARALLEL;
837 else
838 code = UNKNOWN;
839 }
840
29360e56 841 if (pred_name[0] != 0)
09051660
RH
842 {
843 test = new_decision_test (DT_pred, &place);
844 test->u.pred.name = pred_name;
845 test->u.pred.mode = mode;
846
b4fbaca7
RH
847 /* See if we know about this predicate and save its number.
848 If we do, and it only accepts one code, note that fact.
849
850 If we know that the predicate does not allow CONST_INT,
851 we know that the only way the predicate can match is if
852 the modes match (here we use the kludge of relying on the
853 fact that "address_operand" accepts CONST_INT; otherwise,
854 it would have to be a special case), so we can test the
855 mode (but we need not). This fact should considerably
856 simplify the generated code. */
09051660
RH
857
858 for (i = 0; i < NUM_KNOWN_PREDS; i++)
859 if (! strcmp (preds[i].name, pred_name))
860 break;
e0689256 861
09051660 862 if (i < NUM_KNOWN_PREDS)
9edd4689 863 {
c3693cb1 864 int j;
e0689256 865
09051660 866 test->u.pred.index = i;
e0689256 867
09051660
RH
868 if (preds[i].codes[1] == 0 && code == UNKNOWN)
869 code = preds[i].codes[0];
e0689256 870
09051660
RH
871 allows_const_int = 0;
872 for (j = 0; preds[i].codes[j] != 0; j++)
9edd4689 873 if (preds[i].codes[j] == CONST_INT)
09051660
RH
874 {
875 allows_const_int = 1;
876 break;
877 }
9edd4689 878 }
09051660 879 else
bcdaba58 880 test->u.pred.index = -1;
09051660 881 }
ec1c89e6
RH
882
883 /* Can't enforce a mode if we allow const_int. */
884 if (allows_const_int)
885 mode = VOIDmode;
e0689256 886
09051660
RH
887 /* Accept the operand, ie. record it in `operands'. */
888 test = new_decision_test (DT_accept_op, &place);
889 test->u.opno = XINT (pattern, 0);
e0689256 890
09051660
RH
891 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
892 {
893 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
894 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
895 {
896 subpos[depth] = i + base;
897 sub = add_to_sequence (XVECEXP (pattern, 2, i),
898 &sub->success, subpos, insn_type, 0);
899 }
900 }
901 goto fini;
902 }
ec65fa66
RK
903
904 case MATCH_OP_DUP:
09051660
RH
905 code = UNKNOWN;
906
907 test = new_decision_test (DT_dup, &place);
908 test->u.dup = XINT (pattern, 0);
909
910 test = new_decision_test (DT_accept_op, &place);
911 test->u.opno = XINT (pattern, 0);
912
e51712db 913 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
ec65fa66 914 {
09051660
RH
915 subpos[depth] = i + '0';
916 sub = add_to_sequence (XVECEXP (pattern, 1, i),
917 &sub->success, subpos, insn_type, 0);
ec65fa66 918 }
09051660 919 goto fini;
ec65fa66
RK
920
921 case MATCH_DUP:
f582c9d5 922 case MATCH_PAR_DUP:
09051660
RH
923 code = UNKNOWN;
924
925 test = new_decision_test (DT_dup, &place);
926 test->u.dup = XINT (pattern, 0);
927 goto fini;
ec65fa66
RK
928
929 case ADDRESS:
930 pattern = XEXP (pattern, 0);
931 goto restart;
932
76d31c63
JL
933 default:
934 break;
ec65fa66
RK
935 }
936
937 fmt = GET_RTX_FORMAT (code);
938 len = GET_RTX_LENGTH (code);
09051660
RH
939
940 /* Do tests against the current node first. */
e51712db 941 for (i = 0; i < (size_t) len; i++)
ec65fa66 942 {
09051660 943 if (fmt[i] == 'i')
ec65fa66 944 {
09051660
RH
945 if (i == 0)
946 {
947 test = new_decision_test (DT_elt_zero_int, &place);
948 test->u.intval = XINT (pattern, i);
949 }
950 else if (i == 1)
951 {
952 test = new_decision_test (DT_elt_one_int, &place);
953 test->u.intval = XINT (pattern, i);
954 }
955 else
956 abort ();
ec65fa66 957 }
09051660 958 else if (fmt[i] == 'w')
3d678dca 959 {
070ef6f4
RK
960 /* If this value actually fits in an int, we can use a switch
961 statement here, so indicate that. */
962 enum decision_type type
963 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
964 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
965
09051660
RH
966 if (i != 0)
967 abort ();
968
070ef6f4 969 test = new_decision_test (type, &place);
09051660 970 test->u.intval = XWINT (pattern, i);
3d678dca 971 }
ec65fa66
RK
972 else if (fmt[i] == 'E')
973 {
ec65fa66
RK
974 if (i != 0)
975 abort ();
09051660
RH
976
977 test = new_decision_test (DT_veclen, &place);
978 test->u.veclen = XVECLEN (pattern, i);
979 }
980 }
981
982 /* Now test our sub-patterns. */
983 for (i = 0; i < (size_t) len; i++)
984 {
985 switch (fmt[i])
986 {
987 case 'e': case 'u':
988 subpos[depth] = '0' + i;
989 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
990 subpos, insn_type, 0);
991 break;
992
993 case 'E':
994 {
b3694847 995 int j;
09051660
RH
996 for (j = 0; j < XVECLEN (pattern, i); j++)
997 {
998 subpos[depth] = 'a' + j;
999 sub = add_to_sequence (XVECEXP (pattern, i, j),
1000 &sub->success, subpos, insn_type, 0);
1001 }
1002 break;
1003 }
1004
1005 case 'i': case 'w':
1006 /* Handled above. */
1007 break;
1008 case '0':
1009 break;
1010
1011 default:
1012 abort ();
1013 }
1014 }
1015
1016 fini:
1017 /* Insert nodes testing mode and code, if they're still relevant,
1018 before any of the nodes we may have added above. */
1019 if (code != UNKNOWN)
1020 {
1021 place = &this->tests;
1022 test = new_decision_test (DT_code, &place);
1023 test->u.code = code;
1024 }
1025
1026 if (mode != VOIDmode)
1027 {
1028 place = &this->tests;
1029 test = new_decision_test (DT_mode, &place);
1030 test->u.mode = mode;
1031 }
1032
1033 /* If we didn't insert any tests or accept nodes, hork. */
1034 if (this->tests == NULL)
1035 abort ();
1036
b548dffb
ZW
1037 ret:
1038 free (subpos);
09051660
RH
1039 return sub;
1040}
1041\f
1042/* A subroutine of maybe_both_true; examines only one test.
1043 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1044
1045static int
3d7aafde 1046maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
09051660
RH
1047{
1048 if (d1->type == d2->type)
1049 {
1050 switch (d1->type)
1051 {
1052 case DT_mode:
f0e1f482 1053 return d1->u.mode == d2->u.mode;
09051660
RH
1054
1055 case DT_code:
1056 return d1->u.code == d2->u.code;
1057
1058 case DT_veclen:
1059 return d1->u.veclen == d2->u.veclen;
1060
1061 case DT_elt_zero_int:
1062 case DT_elt_one_int:
1063 case DT_elt_zero_wide:
070ef6f4 1064 case DT_elt_zero_wide_safe:
09051660
RH
1065 return d1->u.intval == d2->u.intval;
1066
1067 default:
1068 break;
1069 }
1070 }
1071
1072 /* If either has a predicate that we know something about, set
1073 things up so that D1 is the one that always has a known
1074 predicate. Then see if they have any codes in common. */
1075
1076 if (d1->type == DT_pred || d2->type == DT_pred)
1077 {
1078 if (d2->type == DT_pred)
1079 {
1080 struct decision_test *tmp;
1081 tmp = d1, d1 = d2, d2 = tmp;
1082 }
1083
1084 /* If D2 tests a mode, see if it matches D1. */
1085 if (d1->u.pred.mode != VOIDmode)
1086 {
1087 if (d2->type == DT_mode)
1088 {
f0e1f482 1089 if (d1->u.pred.mode != d2->u.mode
8f496bc2
HPN
1090 /* The mode of an address_operand predicate is the
1091 mode of the memory, not the operand. It can only
1092 be used for testing the predicate, so we must
1093 ignore it here. */
1094 && strcmp (d1->u.pred.name, "address_operand") != 0)
09051660
RH
1095 return 0;
1096 }
4dc320a5
RH
1097 /* Don't check two predicate modes here, because if both predicates
1098 accept CONST_INT, then both can still be true even if the modes
1099 are different. If they don't accept CONST_INT, there will be a
1100 separate DT_mode that will make maybe_both_true_1 return 0. */
09051660
RH
1101 }
1102
1103 if (d1->u.pred.index >= 0)
1104 {
1105 /* If D2 tests a code, see if it is in the list of valid
1106 codes for D1's predicate. */
1107 if (d2->type == DT_code)
1108 {
1109 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1110 while (*c != 0)
1111 {
1112 if (*c == d2->u.code)
1113 break;
1114 ++c;
1115 }
1116 if (*c == 0)
1117 return 0;
1118 }
1119
1120 /* Otherwise see if the predicates have any codes in common. */
1121 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
ec65fa66 1122 {
09051660
RH
1123 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1124 int common = 0;
1125
1126 while (*c1 != 0 && !common)
1127 {
1128 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1129 while (*c2 != 0 && !common)
1130 {
1131 common = (*c1 == *c2);
1132 ++c2;
1133 }
1134 ++c1;
1135 }
1136
1137 if (!common)
1138 return 0;
ec65fa66
RK
1139 }
1140 }
ec65fa66 1141 }
09051660 1142
521b9224
RH
1143 /* Tests vs veclen may be known when strict equality is involved. */
1144 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1145 return d1->u.veclen >= d2->u.veclen;
1146 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1147 return d2->u.veclen >= d1->u.veclen;
1148
09051660 1149 return -1;
ec65fa66 1150}
09051660
RH
1151
1152/* A subroutine of maybe_both_true; examines all the tests for a given node.
1153 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1154
1155static int
3d7aafde 1156maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
09051660
RH
1157{
1158 struct decision_test *t1, *t2;
1159
1160 /* A match_operand with no predicate can match anything. Recognize
ff7cc307 1161 this by the existence of a lone DT_accept_op test. */
09051660
RH
1162 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1163 return 1;
1164
1165 /* Eliminate pairs of tests while they can exactly match. */
1166 while (d1 && d2 && d1->type == d2->type)
1167 {
1168 if (maybe_both_true_2 (d1, d2) == 0)
1169 return 0;
1170 d1 = d1->next, d2 = d2->next;
1171 }
1172
1173 /* After that, consider all pairs. */
1174 for (t1 = d1; t1 ; t1 = t1->next)
1175 for (t2 = d2; t2 ; t2 = t2->next)
1176 if (maybe_both_true_2 (t1, t2) == 0)
1177 return 0;
1178
1179 return -1;
1180}
1181
1182/* Return 0 if we can prove that there is no RTL that can match both
1183 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
e0689256 1184 can match both or just that we couldn't prove there wasn't such an RTL).
ec65fa66 1185
cc2902df 1186 TOPLEVEL is nonzero if we are to only look at the top level and not
e0689256 1187 recursively descend. */
ec65fa66 1188
e0689256 1189static int
3d7aafde
AJ
1190maybe_both_true (struct decision *d1, struct decision *d2,
1191 int toplevel)
ec65fa66 1192{
e0689256 1193 struct decision *p1, *p2;
00ec6daa
JH
1194 int cmp;
1195
1196 /* Don't compare strings on the different positions in insn. Doing so
1197 is incorrect and results in false matches from constructs like
1198
1199 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1200 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1201 vs
1202 [(set (match_operand:HI "register_operand" "r")
1203 (match_operand:HI "register_operand" "r"))]
1204
1205 If we are presented with such, we are recursing through the remainder
1206 of a node's success nodes (from the loop at the end of this function).
1207 Skip forward until we come to a position that matches.
1208
1209 Due to the way position strings are constructed, we know that iterating
1210 forward from the lexically lower position (e.g. "00") will run into
1211 the lexically higher position (e.g. "1") and not the other way around.
1212 This saves a bit of effort. */
1213
1214 cmp = strcmp (d1->position, d2->position);
1215 if (cmp != 0)
1216 {
1217 if (toplevel)
c4f2c499 1218 abort ();
00ec6daa
JH
1219
1220 /* If the d2->position was lexically lower, swap. */
1221 if (cmp > 0)
ace91ff1 1222 p1 = d1, d1 = d2, d2 = p1;
00ec6daa
JH
1223
1224 if (d1->success.first == 0)
29360e56 1225 return 1;
00ec6daa 1226 for (p1 = d1->success.first; p1; p1 = p1->next)
09051660
RH
1227 if (maybe_both_true (p1, d2, 0))
1228 return 1;
00ec6daa 1229
09051660 1230 return 0;
00ec6daa 1231 }
e0689256 1232
09051660
RH
1233 /* Test the current level. */
1234 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1235 if (cmp >= 0)
1236 return cmp;
1237
1238 /* We can't prove that D1 and D2 cannot both be true. If we are only
1239 to check the top level, return 1. Otherwise, see if we can prove
1240 that all choices in both successors are mutually exclusive. If
1241 either does not have any successors, we can't prove they can't both
1242 be true. */
1243
1244 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
e0689256
RK
1245 return 1;
1246
09051660
RH
1247 for (p1 = d1->success.first; p1; p1 = p1->next)
1248 for (p2 = d2->success.first; p2; p2 = p2->next)
1249 if (maybe_both_true (p1, p2, 0))
1250 return 1;
e0689256 1251
09051660
RH
1252 return 0;
1253}
ec65fa66 1254
09051660 1255/* A subroutine of nodes_identical. Examine two tests for equivalence. */
ec65fa66 1256
09051660 1257static int
3d7aafde 1258nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
09051660
RH
1259{
1260 switch (d1->type)
ec65fa66 1261 {
09051660
RH
1262 case DT_mode:
1263 return d1->u.mode == d2->u.mode;
e0689256 1264
09051660
RH
1265 case DT_code:
1266 return d1->u.code == d2->u.code;
e0689256 1267
09051660
RH
1268 case DT_pred:
1269 return (d1->u.pred.mode == d2->u.pred.mode
1270 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
e0689256 1271
09051660
RH
1272 case DT_c_test:
1273 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
e0689256 1274
09051660 1275 case DT_veclen:
521b9224 1276 case DT_veclen_ge:
09051660 1277 return d1->u.veclen == d2->u.veclen;
e0689256 1278
09051660
RH
1279 case DT_dup:
1280 return d1->u.dup == d2->u.dup;
e0689256 1281
09051660
RH
1282 case DT_elt_zero_int:
1283 case DT_elt_one_int:
1284 case DT_elt_zero_wide:
070ef6f4 1285 case DT_elt_zero_wide_safe:
09051660 1286 return d1->u.intval == d2->u.intval;
e0689256 1287
09051660
RH
1288 case DT_accept_op:
1289 return d1->u.opno == d2->u.opno;
1290
1291 case DT_accept_insn:
1292 /* Differences will be handled in merge_accept_insn. */
1293 return 1;
1294
1295 default:
1296 abort ();
ec65fa66 1297 }
09051660 1298}
ec65fa66 1299
09051660 1300/* True iff the two nodes are identical (on one level only). Due
5b7c7046 1301 to the way these lists are constructed, we shouldn't have to
09051660 1302 consider different orderings on the tests. */
ec65fa66 1303
09051660 1304static int
3d7aafde 1305nodes_identical (struct decision *d1, struct decision *d2)
09051660
RH
1306{
1307 struct decision_test *t1, *t2;
e0689256 1308
09051660
RH
1309 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1310 {
1311 if (t1->type != t2->type)
1312 return 0;
1313 if (! nodes_identical_1 (t1, t2))
e0689256 1314 return 0;
09051660 1315 }
e0689256 1316
09051660 1317 /* For success, they should now both be null. */
aece2740
RH
1318 if (t1 != t2)
1319 return 0;
1320
1321 /* Check that their subnodes are at the same position, as any one set
2cec75a1
RH
1322 of sibling decisions must be at the same position. Allowing this
1323 requires complications to find_afterward and when change_state is
1324 invoked. */
aece2740
RH
1325 if (d1->success.first
1326 && d2->success.first
1327 && strcmp (d1->success.first->position, d2->success.first->position))
1328 return 0;
1329
1330 return 1;
e0689256 1331}
e0689256 1332
09051660
RH
1333/* A subroutine of merge_trees; given two nodes that have been declared
1334 identical, cope with two insn accept states. If they differ in the
1335 number of clobbers, then the conflict was created by make_insn_sequence
5b7c7046 1336 and we can drop the with-clobbers version on the floor. If both
09051660
RH
1337 nodes have no additional clobbers, we have found an ambiguity in the
1338 source machine description. */
1339
1340static void
3d7aafde 1341merge_accept_insn (struct decision *oldd, struct decision *addd)
ec65fa66 1342{
09051660
RH
1343 struct decision_test *old, *add;
1344
1345 for (old = oldd->tests; old; old = old->next)
1346 if (old->type == DT_accept_insn)
1347 break;
1348 if (old == NULL)
1349 return;
e0689256 1350
09051660
RH
1351 for (add = addd->tests; add; add = add->next)
1352 if (add->type == DT_accept_insn)
1353 break;
1354 if (add == NULL)
1355 return;
e0689256 1356
09051660
RH
1357 /* If one node is for a normal insn and the second is for the base
1358 insn with clobbers stripped off, the second node should be ignored. */
e0689256 1359
09051660
RH
1360 if (old->u.insn.num_clobbers_to_add == 0
1361 && add->u.insn.num_clobbers_to_add > 0)
1362 {
1363 /* Nothing to do here. */
1364 }
1365 else if (old->u.insn.num_clobbers_to_add > 0
1366 && add->u.insn.num_clobbers_to_add == 0)
1367 {
1368 /* In this case, replace OLD with ADD. */
1369 old->u.insn = add->u.insn;
1370 }
1371 else
1372 {
bcdaba58
RH
1373 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1374 get_insn_name (add->u.insn.code_number),
1375 get_insn_name (old->u.insn.code_number));
1376 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1377 get_insn_name (old->u.insn.code_number));
1378 error_count++;
09051660 1379 }
e0689256 1380}
e0689256 1381
09051660
RH
1382/* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1383
1384static void
3d7aafde 1385merge_trees (struct decision_head *oldh, struct decision_head *addh)
e0689256 1386{
09051660 1387 struct decision *next, *add;
e0689256 1388
09051660
RH
1389 if (addh->first == 0)
1390 return;
1391 if (oldh->first == 0)
1392 {
1393 *oldh = *addh;
1394 return;
1395 }
ec65fa66 1396
09051660
RH
1397 /* Trying to merge bits at different positions isn't possible. */
1398 if (strcmp (oldh->first->position, addh->first->position))
e0689256
RK
1399 abort ();
1400
09051660 1401 for (add = addh->first; add ; add = next)
ec65fa66 1402 {
09051660 1403 struct decision *old, *insert_before = NULL;
e0689256
RK
1404
1405 next = add->next;
1406
09051660
RH
1407 /* The semantics of pattern matching state that the tests are
1408 done in the order given in the MD file so that if an insn
1409 matches two patterns, the first one will be used. However,
1410 in practice, most, if not all, patterns are unambiguous so
1411 that their order is independent. In that case, we can merge
1412 identical tests and group all similar modes and codes together.
e0689256
RK
1413
1414 Scan starting from the end of OLDH until we reach a point
09051660
RH
1415 where we reach the head of the list or where we pass a
1416 pattern that could also be true if NEW is true. If we find
1417 an identical pattern, we can merge them. Also, record the
1418 last node that tests the same code and mode and the last one
1419 that tests just the same mode.
e0689256
RK
1420
1421 If we have no match, place NEW after the closest match we found. */
5b7c7046 1422
09051660 1423 for (old = oldh->last; old; old = old->prev)
ec65fa66 1424 {
09051660 1425 if (nodes_identical (old, add))
e0689256 1426 {
09051660
RH
1427 merge_accept_insn (old, add);
1428 merge_trees (&old->success, &add->success);
1429 goto merged_nodes;
1430 }
e0689256 1431
09051660
RH
1432 if (maybe_both_true (old, add, 0))
1433 break;
e0689256 1434
09051660
RH
1435 /* Insert the nodes in DT test type order, which is roughly
1436 how expensive/important the test is. Given that the tests
1437 are also ordered within the list, examining the first is
1438 sufficient. */
dbbbbf3b 1439 if ((int) add->tests->type < (int) old->tests->type)
09051660
RH
1440 insert_before = old;
1441 }
de6a431b 1442
09051660
RH
1443 if (insert_before == NULL)
1444 {
1445 add->next = NULL;
1446 add->prev = oldh->last;
1447 oldh->last->next = add;
1448 oldh->last = add;
1449 }
1450 else
1451 {
1452 if ((add->prev = insert_before->prev) != NULL)
1453 add->prev->next = add;
1454 else
1455 oldh->first = add;
1456 add->next = insert_before;
1457 insert_before->prev = add;
1458 }
1459
1460 merged_nodes:;
1461 }
1462}
1463\f
5b7c7046 1464/* Walk the tree looking for sub-nodes that perform common tests.
09051660
RH
1465 Factor out the common test into a new node. This enables us
1466 (depending on the test type) to emit switch statements later. */
1467
1468static void
3d7aafde 1469factor_tests (struct decision_head *head)
09051660
RH
1470{
1471 struct decision *first, *next;
e0689256 1472
09051660
RH
1473 for (first = head->first; first && first->next; first = next)
1474 {
1475 enum decision_type type;
1476 struct decision *new, *old_last;
e0689256 1477
09051660
RH
1478 type = first->tests->type;
1479 next = first->next;
e0689256 1480
09051660
RH
1481 /* Want at least two compatible sequential nodes. */
1482 if (next->tests->type != type)
1483 continue;
ec65fa66 1484
5b7c7046 1485 /* Don't want all node types, just those we can turn into
09051660
RH
1486 switch statements. */
1487 if (type != DT_mode
1488 && type != DT_code
1489 && type != DT_veclen
1490 && type != DT_elt_zero_int
1491 && type != DT_elt_one_int
070ef6f4 1492 && type != DT_elt_zero_wide_safe)
e0689256 1493 continue;
ec65fa66 1494
09051660
RH
1495 /* If we'd been performing more than one test, create a new node
1496 below our first test. */
1497 if (first->tests->next != NULL)
1498 {
1499 new = new_decision (first->position, &first->success);
1500 new->tests = first->tests->next;
1501 first->tests->next = NULL;
1502 }
5b7c7046 1503
09051660
RH
1504 /* Crop the node tree off after our first test. */
1505 first->next = NULL;
1506 old_last = head->last;
1507 head->last = first;
1508
1509 /* For each compatible test, adjust to perform only one test in
1510 the top level node, then merge the node back into the tree. */
1511 do
1512 {
1513 struct decision_head h;
1514
1515 if (next->tests->next != NULL)
1516 {
1517 new = new_decision (next->position, &next->success);
1518 new->tests = next->tests->next;
1519 next->tests->next = NULL;
1520 }
1521 new = next;
1522 next = next->next;
1523 new->next = NULL;
1524 h.first = h.last = new;
ec65fa66 1525
09051660
RH
1526 merge_trees (head, &h);
1527 }
1528 while (next && next->tests->type == type);
ec65fa66 1529
09051660
RH
1530 /* After we run out of compatible tests, graft the remaining nodes
1531 back onto the tree. */
1532 if (next)
e0689256 1533 {
09051660
RH
1534 next->prev = head->last;
1535 head->last->next = next;
1536 head->last = old_last;
e0689256 1537 }
09051660 1538 }
ec65fa66 1539
09051660
RH
1540 /* Recurse. */
1541 for (first = head->first; first; first = first->next)
1542 factor_tests (&first->success);
1543}
1544
1545/* After factoring, try to simplify the tests on any one node.
1546 Tests that are useful for switch statements are recognizable
1547 by having only a single test on a node -- we'll be manipulating
1548 nodes with multiple tests:
1549
1550 If we have mode tests or code tests that are redundant with
1551 predicates, remove them. */
1552
1553static void
3d7aafde 1554simplify_tests (struct decision_head *head)
09051660
RH
1555{
1556 struct decision *tree;
1557
1558 for (tree = head->first; tree; tree = tree->next)
1559 {
1560 struct decision_test *a, *b;
1561
1562 a = tree->tests;
1563 b = a->next;
1564 if (b == NULL)
1565 continue;
1566
1567 /* Find a predicate node. */
1568 while (b && b->type != DT_pred)
1569 b = b->next;
1570 if (b)
e0689256 1571 {
09051660
RH
1572 /* Due to how these tests are constructed, we don't even need
1573 to check that the mode and code are compatible -- they were
1574 generated from the predicate in the first place. */
1575 while (a->type == DT_mode || a->type == DT_code)
1576 a = a->next;
1577 tree->tests = a;
e0689256
RK
1578 }
1579 }
ec65fa66 1580
09051660
RH
1581 /* Recurse. */
1582 for (tree = head->first; tree; tree = tree->next)
1583 simplify_tests (&tree->success);
ec65fa66 1584}
09051660 1585
e0689256
RK
1586/* Count the number of subnodes of HEAD. If the number is high enough,
1587 make the first node in HEAD start a separate subroutine in the C code
09051660 1588 that is generated. */
ec65fa66
RK
1589
1590static int
3d7aafde 1591break_out_subroutines (struct decision_head *head, int initial)
ec65fa66
RK
1592{
1593 int size = 0;
87bd0490 1594 struct decision *sub;
e0689256 1595
09051660
RH
1596 for (sub = head->first; sub; sub = sub->next)
1597 size += 1 + break_out_subroutines (&sub->success, 0);
e0689256
RK
1598
1599 if (size > SUBROUTINE_THRESHOLD && ! initial)
ec65fa66 1600 {
09051660 1601 head->first->subroutine_number = ++next_subroutine_number;
ec65fa66
RK
1602 size = 1;
1603 }
1604 return size;
1605}
09051660
RH
1606
1607/* For each node p, find the next alternative that might be true
1608 when p is true. */
ec65fa66
RK
1609
1610static void
3d7aafde 1611find_afterward (struct decision_head *head, struct decision *real_afterward)
ec65fa66 1612{
09051660 1613 struct decision *p, *q, *afterward;
69277eec 1614
a1f300c0 1615 /* We can't propagate alternatives across subroutine boundaries.
09051660 1616 This is not incorrect, merely a minor optimization loss. */
ec65fa66 1617
09051660
RH
1618 p = head->first;
1619 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
e0689256 1620
09051660 1621 for ( ; p ; p = p->next)
e0689256 1622 {
09051660
RH
1623 /* Find the next node that might be true if this one fails. */
1624 for (q = p->next; q ; q = q->next)
1625 if (maybe_both_true (p, q, 1))
1626 break;
e0689256 1627
5b7c7046 1628 /* If we reached the end of the list without finding one,
09051660
RH
1629 use the incoming afterward position. */
1630 if (!q)
1631 q = afterward;
1632 p->afterward = q;
1633 if (q)
1634 q->need_label = 1;
e0689256
RK
1635 }
1636
09051660
RH
1637 /* Recurse. */
1638 for (p = head->first; p ; p = p->next)
1639 if (p->success.first)
1640 find_afterward (&p->success, p->afterward);
1641
1642 /* When we are generating a subroutine, record the real afterward
1643 position in the first node where write_tree can find it, and we
1644 can do the right thing at the subroutine call site. */
1645 p = head->first;
1646 if (p->subroutine_number > 0)
1647 p->afterward = real_afterward;
1648}
1649\f
1650/* Assuming that the state of argument is denoted by OLDPOS, take whatever
1651 actions are necessary to move to NEWPOS. If we fail to move to the
cc2902df 1652 new state, branch to node AFTERWARD if nonzero, otherwise return.
e0689256 1653
09051660 1654 Failure to move to the new state can only occur if we are trying to
dc297297 1655 match multiple insns and we try to step past the end of the stream. */
e0689256 1656
09051660 1657static void
3d7aafde
AJ
1658change_state (const char *oldpos, const char *newpos,
1659 struct decision *afterward, const char *indent)
09051660
RH
1660{
1661 int odepth = strlen (oldpos);
1662 int ndepth = strlen (newpos);
1663 int depth;
1664 int old_has_insn, new_has_insn;
e0689256 1665
09051660
RH
1666 /* Pop up as many levels as necessary. */
1667 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1668 continue;
ec65fa66 1669
09051660
RH
1670 /* Hunt for the last [A-Z] in both strings. */
1671 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
0df6c2c7 1672 if (ISUPPER (oldpos[old_has_insn]))
09051660 1673 break;
0deeec4e 1674 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
0df6c2c7 1675 if (ISUPPER (newpos[new_has_insn]))
09051660 1676 break;
e0689256 1677
09051660
RH
1678 /* Go down to desired level. */
1679 while (depth < ndepth)
1680 {
dc297297 1681 /* It's a different insn from the first one. */
0df6c2c7 1682 if (ISUPPER (newpos[depth]))
ec65fa66 1683 {
09051660
RH
1684 /* We can only fail if we're moving down the tree. */
1685 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
e0689256 1686 {
5b7c7046 1687 printf ("%stem = peep2_next_insn (%d);\n",
09051660 1688 indent, newpos[depth] - 'A');
e0689256
RK
1689 }
1690 else
1691 {
5b7c7046 1692 printf ("%stem = peep2_next_insn (%d);\n",
09051660
RH
1693 indent, newpos[depth] - 'A');
1694 printf ("%sif (tem == NULL_RTX)\n", indent);
1695 if (afterward)
1696 printf ("%s goto L%d;\n", indent, afterward->number);
e0689256 1697 else
09051660 1698 printf ("%s goto ret0;\n", indent);
e0689256 1699 }
23280139 1700 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
ec65fa66 1701 }
0df6c2c7 1702 else if (ISLOWER (newpos[depth]))
09051660
RH
1703 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1704 indent, depth + 1, depth, newpos[depth] - 'a');
1705 else
1706 printf ("%sx%d = XEXP (x%d, %c);\n",
1707 indent, depth + 1, depth, newpos[depth]);
1708 ++depth;
1709 }
1710}
1711\f
1712/* Print the enumerator constant for CODE -- the upcase version of
1713 the name. */
1714
1715static void
3d7aafde 1716print_code (enum rtx_code code)
09051660 1717{
b3694847 1718 const char *p;
09051660
RH
1719 for (p = GET_RTX_NAME (code); *p; p++)
1720 putchar (TOUPPER (*p));
1721}
ec65fa66 1722
09051660 1723/* Emit code to cross an afterward link -- change state and branch. */
ec65fa66 1724
09051660 1725static void
3d7aafde
AJ
1726write_afterward (struct decision *start, struct decision *afterward,
1727 const char *indent)
09051660
RH
1728{
1729 if (!afterward || start->subroutine_number > 0)
1730 printf("%sgoto ret0;\n", indent);
1731 else
1732 {
1733 change_state (start->position, afterward->position, NULL, indent);
1734 printf ("%sgoto L%d;\n", indent, afterward->number);
1735 }
1736}
e0689256 1737
5b7c7046 1738/* Emit a switch statement, if possible, for an initial sequence of
09051660 1739 nodes at START. Return the first node yet untested. */
e0689256 1740
09051660 1741static struct decision *
3d7aafde 1742write_switch (struct decision *start, int depth)
09051660
RH
1743{
1744 struct decision *p = start;
1745 enum decision_type type = p->tests->type;
1651ab85 1746 struct decision *needs_label = NULL;
ec65fa66 1747
09051660
RH
1748 /* If we have two or more nodes in sequence that test the same one
1749 thing, we may be able to use a switch statement. */
e0689256 1750
09051660
RH
1751 if (!p->next
1752 || p->tests->next
1753 || p->next->tests->type != type
2cec75a1
RH
1754 || p->next->tests->next
1755 || nodes_identical_1 (p->tests, p->next->tests))
09051660 1756 return p;
e0689256 1757
09051660
RH
1758 /* DT_code is special in that we can do interesting things with
1759 known predicates at the same time. */
1760 if (type == DT_code)
1761 {
1762 char codemap[NUM_RTX_CODE];
1763 struct decision *ret;
1e193337 1764 RTX_CODE code;
ec65fa66 1765
09051660 1766 memset (codemap, 0, sizeof(codemap));
ec65fa66 1767
09051660 1768 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1e193337 1769 code = p->tests->u.code;
5b7c7046 1770 do
ec65fa66 1771 {
1651ab85
AO
1772 if (p != start && p->need_label && needs_label == NULL)
1773 needs_label = p;
1774
09051660
RH
1775 printf (" case ");
1776 print_code (code);
1777 printf (":\n goto L%d;\n", p->success.first->number);
1778 p->success.first->need_label = 1;
1779
1780 codemap[code] = 1;
1781 p = p->next;
1782 }
1e193337
RH
1783 while (p
1784 && ! p->tests->next
1785 && p->tests->type == DT_code
1786 && ! codemap[code = p->tests->u.code]);
09051660
RH
1787
1788 /* If P is testing a predicate that we know about and we haven't
1789 seen any of the codes that are valid for the predicate, we can
1790 write a series of "case" statement, one for each possible code.
1791 Since we are already in a switch, these redundant tests are very
1792 cheap and will reduce the number of predicates called. */
1793
1794 /* Note that while we write out cases for these predicates here,
1795 we don't actually write the test here, as it gets kinda messy.
1796 It is trivial to leave this to later by telling our caller that
1797 we only processed the CODE tests. */
1651ab85
AO
1798 if (needs_label != NULL)
1799 ret = needs_label;
1800 else
1801 ret = p;
09051660
RH
1802
1803 while (p && p->tests->type == DT_pred
1804 && p->tests->u.pred.index >= 0)
1805 {
1806 const RTX_CODE *c;
ec65fa66 1807
09051660
RH
1808 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1809 if (codemap[(int) *c] != 0)
1810 goto pred_done;
e0689256 1811
09051660 1812 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
ec65fa66 1813 {
09051660
RH
1814 printf (" case ");
1815 print_code (*c);
1816 printf (":\n");
1817 codemap[(int) *c] = 1;
ec65fa66 1818 }
e0689256 1819
09051660
RH
1820 printf (" goto L%d;\n", p->number);
1821 p->need_label = 1;
1822 p = p->next;
ec65fa66
RK
1823 }
1824
09051660
RH
1825 pred_done:
1826 /* Make the default case skip the predicates we managed to match. */
e0689256 1827
09051660
RH
1828 printf (" default:\n");
1829 if (p != ret)
ec65fa66 1830 {
09051660 1831 if (p)
b030d598 1832 {
09051660
RH
1833 printf (" goto L%d;\n", p->number);
1834 p->need_label = 1;
b030d598 1835 }
e0689256 1836 else
09051660 1837 write_afterward (start, start->afterward, " ");
ec65fa66 1838 }
ec65fa66 1839 else
09051660
RH
1840 printf (" break;\n");
1841 printf (" }\n");
1842
1843 return ret;
1844 }
1845 else if (type == DT_mode
1846 || type == DT_veclen
1847 || type == DT_elt_zero_int
1848 || type == DT_elt_one_int
070ef6f4 1849 || type == DT_elt_zero_wide_safe)
09051660 1850 {
9591d210 1851 const char *indent = "";
9e9f3ede 1852
9591d210
JH
1853 /* We cast switch parameter to integer, so we must ensure that the value
1854 fits. */
1855 if (type == DT_elt_zero_wide_safe)
1856 {
1857 indent = " ";
1858 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1859 }
1860 printf ("%s switch (", indent);
09051660
RH
1861 switch (type)
1862 {
1863 case DT_mode:
c8d8ed65 1864 printf ("GET_MODE (x%d)", depth);
09051660
RH
1865 break;
1866 case DT_veclen:
c8d8ed65 1867 printf ("XVECLEN (x%d, 0)", depth);
09051660
RH
1868 break;
1869 case DT_elt_zero_int:
c8d8ed65 1870 printf ("XINT (x%d, 0)", depth);
09051660
RH
1871 break;
1872 case DT_elt_one_int:
c8d8ed65 1873 printf ("XINT (x%d, 1)", depth);
09051660 1874 break;
070ef6f4 1875 case DT_elt_zero_wide_safe:
c8d8ed65
RK
1876 /* Convert result of XWINT to int for portability since some C
1877 compilers won't do it and some will. */
1878 printf ("(int) XWINT (x%d, 0)", depth);
09051660
RH
1879 break;
1880 default:
1881 abort ();
1882 }
9591d210 1883 printf (")\n%s {\n", indent);
cba998bf 1884
09051660 1885 do
e0689256 1886 {
2cec75a1
RH
1887 /* Merge trees will not unify identical nodes if their
1888 sub-nodes are at different levels. Thus we must check
1889 for duplicate cases. */
1890 struct decision *q;
1891 for (q = start; q != p; q = q->next)
1892 if (nodes_identical_1 (p->tests, q->tests))
1893 goto case_done;
1894
1651ab85
AO
1895 if (p != start && p->need_label && needs_label == NULL)
1896 needs_label = p;
1897
9591d210 1898 printf ("%s case ", indent);
09051660 1899 switch (type)
cba998bf 1900 {
09051660
RH
1901 case DT_mode:
1902 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1903 break;
1904 case DT_veclen:
1905 printf ("%d", p->tests->u.veclen);
1906 break;
1907 case DT_elt_zero_int:
1908 case DT_elt_one_int:
1909 case DT_elt_zero_wide:
070ef6f4 1910 case DT_elt_zero_wide_safe:
bb9b3805 1911 printf (HOST_WIDE_INT_PRINT_DEC_C, p->tests->u.intval);
09051660
RH
1912 break;
1913 default:
1914 abort ();
cba998bf 1915 }
9591d210 1916 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
09051660 1917 p->success.first->need_label = 1;
cba998bf 1918
09051660 1919 p = p->next;
e0689256 1920 }
09051660 1921 while (p && p->tests->type == type && !p->tests->next);
2cec75a1
RH
1922
1923 case_done:
9591d210
JH
1924 printf ("%s default:\n%s break;\n%s }\n",
1925 indent, indent, indent);
ec65fa66 1926
1651ab85 1927 return needs_label != NULL ? needs_label : p;
09051660
RH
1928 }
1929 else
1930 {
fbe5a4a6 1931 /* None of the other tests are amenable. */
09051660
RH
1932 return p;
1933 }
1934}
ec65fa66 1935
09051660 1936/* Emit code for one test. */
e0689256 1937
09051660 1938static void
3d7aafde
AJ
1939write_cond (struct decision_test *p, int depth,
1940 enum routine_type subroutine_type)
09051660
RH
1941{
1942 switch (p->type)
1943 {
1944 case DT_mode:
1945 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1946 break;
e0689256 1947
09051660
RH
1948 case DT_code:
1949 printf ("GET_CODE (x%d) == ", depth);
1950 print_code (p->u.code);
1951 break;
1952
1953 case DT_veclen:
1954 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1955 break;
1956
1957 case DT_elt_zero_int:
1958 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1959 break;
1960
1961 case DT_elt_one_int:
1962 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1963 break;
1964
1965 case DT_elt_zero_wide:
070ef6f4 1966 case DT_elt_zero_wide_safe:
09051660 1967 printf ("XWINT (x%d, 0) == ", depth);
bb9b3805 1968 printf (HOST_WIDE_INT_PRINT_DEC_C, p->u.intval);
09051660
RH
1969 break;
1970
521b9224
RH
1971 case DT_veclen_ge:
1972 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
1973 break;
1974
09051660
RH
1975 case DT_dup:
1976 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
1977 break;
1978
1979 case DT_pred:
1980 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
1981 GET_MODE_NAME (p->u.pred.mode));
1982 break;
1983
1984 case DT_c_test:
1985 printf ("(%s)", p->u.c_test);
1986 break;
1987
1988 case DT_accept_insn:
1989 switch (subroutine_type)
1990 {
1991 case RECOG:
1992 if (p->u.insn.num_clobbers_to_add == 0)
1993 abort ();
1994 printf ("pnum_clobbers != NULL");
1995 break;
1996
1997 default:
1998 abort ();
ec65fa66 1999 }
09051660 2000 break;
ec65fa66 2001
09051660
RH
2002 default:
2003 abort ();
e0689256 2004 }
09051660 2005}
ec65fa66 2006
09051660
RH
2007/* Emit code for one action. The previous tests have succeeded;
2008 TEST is the last of the chain. In the normal case we simply
2009 perform a state change. For the `accept' tests we must do more work. */
ec65fa66 2010
09051660 2011static void
3d7aafde
AJ
2012write_action (struct decision *p, struct decision_test *test,
2013 int depth, int uncond, struct decision *success,
2014 enum routine_type subroutine_type)
09051660
RH
2015{
2016 const char *indent;
2017 int want_close = 0;
2018
2019 if (uncond)
2020 indent = " ";
2021 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
e0689256 2022 {
09051660
RH
2023 fputs (" {\n", stdout);
2024 indent = " ";
2025 want_close = 1;
e0689256 2026 }
09051660
RH
2027 else
2028 indent = " ";
ec65fa66 2029
09051660 2030 if (test->type == DT_accept_op)
e0689256 2031 {
09051660
RH
2032 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2033
2034 /* Only allow DT_accept_insn to follow. */
2035 if (test->next)
2036 {
2037 test = test->next;
2038 if (test->type != DT_accept_insn)
2039 abort ();
2040 }
ec65fa66
RK
2041 }
2042
09051660
RH
2043 /* Sanity check that we're now at the end of the list of tests. */
2044 if (test->next)
e0689256 2045 abort ();
ec65fa66 2046
09051660 2047 if (test->type == DT_accept_insn)
ec65fa66 2048 {
09051660
RH
2049 switch (subroutine_type)
2050 {
2051 case RECOG:
2052 if (test->u.insn.num_clobbers_to_add != 0)
2053 printf ("%s*pnum_clobbers = %d;\n",
2054 indent, test->u.insn.num_clobbers_to_add);
2055 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2056 break;
2057
2058 case SPLIT:
2059 printf ("%sreturn gen_split_%d (operands);\n",
2060 indent, test->u.insn.code_number);
2061 break;
2062
2063 case PEEPHOLE2:
23280139
RH
2064 {
2065 int match_len = 0, i;
2066
2067 for (i = strlen (p->position) - 1; i >= 0; --i)
0df6c2c7 2068 if (ISUPPER (p->position[i]))
23280139
RH
2069 {
2070 match_len = p->position[i] - 'A';
2071 break;
2072 }
2073 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2074 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2075 indent, test->u.insn.code_number);
2076 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2077 }
09051660
RH
2078 break;
2079
2080 default:
2081 abort ();
2082 }
ec65fa66
RK
2083 }
2084 else
09051660
RH
2085 {
2086 printf("%sgoto L%d;\n", indent, success->number);
2087 success->need_label = 1;
2088 }
ec65fa66 2089
09051660
RH
2090 if (want_close)
2091 fputs (" }\n", stdout);
ec65fa66
RK
2092}
2093
09051660
RH
2094/* Return 1 if the test is always true and has no fallthru path. Return -1
2095 if the test does have a fallthru path, but requires that the condition be
2096 terminated. Otherwise return 0 for a normal test. */
2097/* ??? is_unconditional is a stupid name for a tri-state function. */
2098
ec65fa66 2099static int
3d7aafde 2100is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
ec65fa66 2101{
09051660
RH
2102 if (t->type == DT_accept_op)
2103 return 1;
ec65fa66 2104
09051660
RH
2105 if (t->type == DT_accept_insn)
2106 {
2107 switch (subroutine_type)
2108 {
2109 case RECOG:
2110 return (t->u.insn.num_clobbers_to_add == 0);
2111 case SPLIT:
2112 return 1;
2113 case PEEPHOLE2:
2114 return -1;
2115 default:
2116 abort ();
2117 }
2118 }
ec65fa66 2119
09051660 2120 return 0;
ec65fa66
RK
2121}
2122
09051660
RH
2123/* Emit code for one node -- the conditional and the accompanying action.
2124 Return true if there is no fallthru path. */
2125
ec65fa66 2126static int
3d7aafde
AJ
2127write_node (struct decision *p, int depth,
2128 enum routine_type subroutine_type)
ec65fa66 2129{
09051660
RH
2130 struct decision_test *test, *last_test;
2131 int uncond;
ec65fa66 2132
09051660
RH
2133 last_test = test = p->tests;
2134 uncond = is_unconditional (test, subroutine_type);
2135 if (uncond == 0)
2136 {
2137 printf (" if (");
2138 write_cond (test, depth, subroutine_type);
2139
2140 while ((test = test->next) != NULL)
2141 {
2142 int uncond2;
2143
2144 last_test = test;
2145 uncond2 = is_unconditional (test, subroutine_type);
2146 if (uncond2 != 0)
2147 break;
2148
2149 printf ("\n && ");
2150 write_cond (test, depth, subroutine_type);
2151 }
2152
2153 printf (")\n");
2154 }
2155
23280139 2156 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
09051660
RH
2157
2158 return uncond > 0;
ec65fa66
RK
2159}
2160
09051660
RH
2161/* Emit code for all of the sibling nodes of HEAD. */
2162
ec65fa66 2163static void
3d7aafde
AJ
2164write_tree_1 (struct decision_head *head, int depth,
2165 enum routine_type subroutine_type)
ec65fa66 2166{
09051660
RH
2167 struct decision *p, *next;
2168 int uncond = 0;
e0689256 2169
09051660
RH
2170 for (p = head->first; p ; p = next)
2171 {
2172 /* The label for the first element was printed in write_tree. */
2173 if (p != head->first && p->need_label)
2174 OUTPUT_LABEL (" ", p->number);
2175
2176 /* Attempt to write a switch statement for a whole sequence. */
2177 next = write_switch (p, depth);
2178 if (p != next)
2179 uncond = 0;
2180 else
2181 {
2182 /* Failed -- fall back and write one node. */
2183 uncond = write_node (p, depth, subroutine_type);
2184 next = p->next;
2185 }
2186 }
e0689256 2187
09051660
RH
2188 /* Finished with this chain. Close a fallthru path by branching
2189 to the afterward node. */
2190 if (! uncond)
2191 write_afterward (head->last, head->last->afterward, " ");
2192}
e0689256 2193
09051660
RH
2194/* Write out the decision tree starting at HEAD. PREVPOS is the
2195 position at the node that branched to this node. */
e0689256
RK
2196
2197static void
3d7aafde
AJ
2198write_tree (struct decision_head *head, const char *prevpos,
2199 enum routine_type type, int initial)
e0689256 2200{
b3694847 2201 struct decision *p = head->first;
e0689256 2202
09051660
RH
2203 putchar ('\n');
2204 if (p->need_label)
2205 OUTPUT_LABEL (" ", p->number);
2206
2207 if (! initial && p->subroutine_number > 0)
e0689256 2208 {
09051660
RH
2209 static const char * const name_prefix[] = {
2210 "recog", "split", "peephole2"
2211 };
2212
2213 static const char * const call_suffix[] = {
23280139 2214 ", pnum_clobbers", "", ", _pmatch_len"
09051660 2215 };
e0689256 2216
09051660
RH
2217 /* This node has been broken out into a separate subroutine.
2218 Call it, test the result, and branch accordingly. */
2219
2220 if (p->afterward)
e0689256
RK
2221 {
2222 printf (" tem = %s_%d (x0, insn%s);\n",
09051660 2223 name_prefix[type], p->subroutine_number, call_suffix[type]);
ede7cd44 2224 if (IS_SPLIT (type))
09051660 2225 printf (" if (tem != 0)\n return tem;\n");
71bde1f3 2226 else
09051660
RH
2227 printf (" if (tem >= 0)\n return tem;\n");
2228
2229 change_state (p->position, p->afterward->position, NULL, " ");
2230 printf (" goto L%d;\n", p->afterward->number);
e0689256
RK
2231 }
2232 else
09051660
RH
2233 {
2234 printf (" return %s_%d (x0, insn%s);\n",
2235 name_prefix[type], p->subroutine_number, call_suffix[type]);
2236 }
e0689256 2237 }
09051660
RH
2238 else
2239 {
2240 int depth = strlen (p->position);
e0689256 2241
09051660
RH
2242 change_state (prevpos, p->position, head->last->afterward, " ");
2243 write_tree_1 (head, depth, type);
e0689256 2244
09051660
RH
2245 for (p = head->first; p; p = p->next)
2246 if (p->success.first)
2247 write_tree (&p->success, p->position, type, 0);
2248 }
e0689256
RK
2249}
2250
09051660
RH
2251/* Write out a subroutine of type TYPE to do comparisons starting at
2252 node TREE. */
ede7cd44 2253
09051660 2254static void
3d7aafde 2255write_subroutine (struct decision_head *head, enum routine_type type)
09051660 2256{
e8f9b13a 2257 int subfunction = head->first ? head->first->subroutine_number : 0;
09051660
RH
2258 const char *s_or_e;
2259 char extension[32];
2260 int i;
5b7c7046 2261
09051660 2262 s_or_e = subfunction ? "static " : "";
e0689256 2263
09051660
RH
2264 if (subfunction)
2265 sprintf (extension, "_%d", subfunction);
2266 else if (type == RECOG)
2267 extension[0] = '\0';
2268 else
2269 strcpy (extension, "_insns");
2270
913d0833
KG
2271 switch (type)
2272 {
2273 case RECOG:
913d0833 2274 printf ("%sint\n\
6906ba40 2275recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
913d0833
KG
2276 break;
2277 case SPLIT:
913d0833 2278 printf ("%srtx\n\
6906ba40
KG
2279split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2280 s_or_e, extension);
913d0833
KG
2281 break;
2282 case PEEPHOLE2:
913d0833 2283 printf ("%srtx\n\
6906ba40
KG
2284peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2285 s_or_e, extension);
913d0833
KG
2286 break;
2287 }
09051660 2288
b3694847 2289 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
09051660 2290 for (i = 1; i <= max_depth; i++)
b3694847 2291 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
09051660 2292
09051660
RH
2293 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2294
d90ffc8d
JH
2295 if (!subfunction)
2296 printf (" recog_data.insn = NULL_RTX;\n");
2297
e8f9b13a
RH
2298 if (head->first)
2299 write_tree (head, "", type, 1);
2300 else
2301 printf (" goto ret0;\n");
09051660 2302
09051660
RH
2303 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2304}
2305
2306/* In break_out_subroutines, we discovered the boundaries for the
2307 subroutines, but did not write them out. Do so now. */
e0689256 2308
ec65fa66 2309static void
3d7aafde 2310write_subroutines (struct decision_head *head, enum routine_type type)
ec65fa66 2311{
09051660 2312 struct decision *p;
ec65fa66 2313
09051660
RH
2314 for (p = head->first; p ; p = p->next)
2315 if (p->success.first)
2316 write_subroutines (&p->success, type);
ec65fa66 2317
09051660
RH
2318 if (head->first->subroutine_number > 0)
2319 write_subroutine (head, type);
2320}
ede7cd44 2321
09051660 2322/* Begin the output file. */
ede7cd44 2323
09051660 2324static void
3d7aafde 2325write_header (void)
09051660
RH
2326{
2327 puts ("\
2328/* Generated automatically by the program `genrecog' from the target\n\
2329 machine description file. */\n\
2330\n\
2331#include \"config.h\"\n\
2332#include \"system.h\"\n\
4977bab6
ZW
2333#include \"coretypes.h\"\n\
2334#include \"tm.h\"\n\
09051660
RH
2335#include \"rtl.h\"\n\
2336#include \"tm_p.h\"\n\
2337#include \"function.h\"\n\
2338#include \"insn-config.h\"\n\
2339#include \"recog.h\"\n\
2340#include \"real.h\"\n\
2341#include \"output.h\"\n\
2342#include \"flags.h\"\n\
b1afd7f4
KG
2343#include \"hard-reg-set.h\"\n\
2344#include \"resource.h\"\n\
04f378ce 2345#include \"toplev.h\"\n\
5b7c7046 2346#include \"reload.h\"\n\
09051660
RH
2347\n");
2348
2349 puts ("\n\
2350/* `recog' contains a decision tree that recognizes whether the rtx\n\
2351 X0 is a valid instruction.\n\
2352\n\
2353 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2354 returns a nonnegative number which is the insn code number for the\n\
2355 pattern that matched. This is the same as the order in the machine\n\
2356 description of the entry that matched. This number can be used as an\n\
3f6790bf
KG
2357 index into `insn_data' and other tables.\n");
2358 puts ("\
09051660
RH
2359 The third argument to recog is an optional pointer to an int. If\n\
2360 present, recog will accept a pattern if it matches except for missing\n\
2361 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2362 the optional pointer will be set to the number of CLOBBERs that need\n\
3f6790bf
KG
2363 to be added (it should be initialized to zero by the caller). If it");
2364 puts ("\
09051660
RH
2365 is set nonzero, the caller should allocate a PARALLEL of the\n\
2366 appropriate size, copy the initial entries, and call add_clobbers\n\
2367 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2368");
2369
2370 puts ("\n\
2371 The function split_insns returns 0 if the rtl could not\n\
2f937369 2372 be split or the split rtl as an INSN list if it can be.\n\
09051660
RH
2373\n\
2374 The function peephole2_insns returns 0 if the rtl could not\n\
2f937369 2375 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
09051660
RH
2376 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2377*/\n\n");
2378}
ec65fa66 2379
09051660
RH
2380\f
2381/* Construct and return a sequence of decisions
2382 that will recognize INSN.
ec65fa66 2383
09051660
RH
2384 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2385
2386static struct decision_head
3d7aafde 2387make_insn_sequence (rtx insn, enum routine_type type)
09051660
RH
2388{
2389 rtx x;
2390 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2199e5fa 2391 int truth = maybe_eval_c_test (c_test);
09051660
RH
2392 struct decision *last;
2393 struct decision_test *test, **place;
2394 struct decision_head head;
3b304f5b 2395 char c_test_pos[2];
09051660 2396
2199e5fa
ZW
2397 /* We should never see an insn whose C test is false at compile time. */
2398 if (truth == 0)
2399 abort ();
2400
09051660
RH
2401 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2402
3b304f5b 2403 c_test_pos[0] = '\0';
09051660 2404 if (type == PEEPHOLE2)
ec65fa66 2405 {
09051660
RH
2406 int i, j;
2407
2408 /* peephole2 gets special treatment:
2409 - X always gets an outer parallel even if it's only one entry
2410 - we remove all traces of outer-level match_scratch and match_dup
2411 expressions here. */
2412 x = rtx_alloc (PARALLEL);
2413 PUT_MODE (x, VOIDmode);
2414 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2415 for (i = j = 0; i < XVECLEN (insn, 0); i++)
ede7cd44 2416 {
09051660
RH
2417 rtx tmp = XVECEXP (insn, 0, i);
2418 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2419 {
2420 XVECEXP (x, 0, j) = tmp;
2421 j++;
2422 }
2423 }
2424 XVECLEN (x, 0) = j;
4e9887c7 2425
4e9887c7
RH
2426 c_test_pos[0] = 'A' + j - 1;
2427 c_test_pos[1] = '\0';
09051660
RH
2428 }
2429 else if (XVECLEN (insn, type == RECOG) == 1)
2430 x = XVECEXP (insn, type == RECOG, 0);
2431 else
2432 {
2433 x = rtx_alloc (PARALLEL);
2434 XVEC (x, 0) = XVEC (insn, type == RECOG);
2435 PUT_MODE (x, VOIDmode);
2436 }
2437
7297e9fc 2438 validate_pattern (x, insn, NULL_RTX, 0);
bcdaba58 2439
09051660
RH
2440 memset(&head, 0, sizeof(head));
2441 last = add_to_sequence (x, &head, "", type, 1);
2442
2443 /* Find the end of the test chain on the last node. */
2444 for (test = last->tests; test->next; test = test->next)
2445 continue;
2446 place = &test->next;
2447
2199e5fa
ZW
2448 /* Skip the C test if it's known to be true at compile time. */
2449 if (truth == -1)
09051660
RH
2450 {
2451 /* Need a new node if we have another test to add. */
2452 if (test->type == DT_accept_op)
2453 {
4e9887c7 2454 last = new_decision (c_test_pos, &last->success);
09051660
RH
2455 place = &last->tests;
2456 }
2457 test = new_decision_test (DT_c_test, &place);
2458 test->u.c_test = c_test;
2459 }
2460
2461 test = new_decision_test (DT_accept_insn, &place);
2462 test->u.insn.code_number = next_insn_code;
bcdaba58 2463 test->u.insn.lineno = pattern_lineno;
09051660
RH
2464 test->u.insn.num_clobbers_to_add = 0;
2465
2466 switch (type)
2467 {
2468 case RECOG:
b20b352b 2469 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
09051660
RH
2470 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2471 If so, set up to recognize the pattern without these CLOBBERs. */
2472
2473 if (GET_CODE (x) == PARALLEL)
2474 {
2475 int i;
2476
2477 /* Find the last non-clobber in the parallel. */
2478 for (i = XVECLEN (x, 0); i > 0; i--)
ede7cd44 2479 {
09051660
RH
2480 rtx y = XVECEXP (x, 0, i - 1);
2481 if (GET_CODE (y) != CLOBBER
2482 || (GET_CODE (XEXP (y, 0)) != REG
2483 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2484 break;
ede7cd44 2485 }
09051660
RH
2486
2487 if (i != XVECLEN (x, 0))
ede7cd44 2488 {
09051660
RH
2489 rtx new;
2490 struct decision_head clobber_head;
ede7cd44 2491
09051660
RH
2492 /* Build a similar insn without the clobbers. */
2493 if (i == 1)
2494 new = XVECEXP (x, 0, 0);
ede7cd44 2495 else
09051660
RH
2496 {
2497 int j;
2498
2499 new = rtx_alloc (PARALLEL);
2500 XVEC (new, 0) = rtvec_alloc (i);
2501 for (j = i - 1; j >= 0; j--)
2502 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2503 }
2504
2505 /* Recognize it. */
2506 memset (&clobber_head, 0, sizeof(clobber_head));
2507 last = add_to_sequence (new, &clobber_head, "", type, 1);
ede7cd44 2508
09051660
RH
2509 /* Find the end of the test chain on the last node. */
2510 for (test = last->tests; test->next; test = test->next)
2511 continue;
2512
2513 /* We definitely have a new test to add -- create a new
2514 node if needed. */
2515 place = &test->next;
2516 if (test->type == DT_accept_op)
2517 {
2518 last = new_decision ("", &last->success);
2519 place = &last->tests;
2520 }
2521
2199e5fa
ZW
2522 /* Skip the C test if it's known to be true at compile
2523 time. */
2524 if (truth == -1)
09051660
RH
2525 {
2526 test = new_decision_test (DT_c_test, &place);
2527 test->u.c_test = c_test;
2528 }
2529
2530 test = new_decision_test (DT_accept_insn, &place);
2531 test->u.insn.code_number = next_insn_code;
bcdaba58 2532 test->u.insn.lineno = pattern_lineno;
09051660
RH
2533 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2534
2535 merge_trees (&head, &clobber_head);
ede7cd44 2536 }
ede7cd44 2537 }
09051660
RH
2538 break;
2539
2540 case SPLIT:
2541 /* Define the subroutine we will call below and emit in genemit. */
3d7aafde 2542 printf ("extern rtx gen_split_%d (rtx *);\n", next_insn_code);
09051660
RH
2543 break;
2544
2545 case PEEPHOLE2:
2546 /* Define the subroutine we will call below and emit in genemit. */
3d7aafde 2547 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
09051660
RH
2548 next_insn_code);
2549 break;
ec65fa66 2550 }
e0689256 2551
09051660 2552 return head;
ec65fa66
RK
2553}
2554
09051660 2555static void
3d7aafde 2556process_tree (struct decision_head *head, enum routine_type subroutine_type)
ec65fa66 2557{
4dc320a5
RH
2558 if (head->first == NULL)
2559 {
2560 /* We can elide peephole2_insns, but not recog or split_insns. */
2561 if (subroutine_type == PEEPHOLE2)
2562 return;
2563 }
2564 else
e8f9b13a
RH
2565 {
2566 factor_tests (head);
ec65fa66 2567
e8f9b13a
RH
2568 next_subroutine_number = 0;
2569 break_out_subroutines (head, 1);
2570 find_afterward (head, NULL);
c1b59dce 2571
4dc320a5
RH
2572 /* We run this after find_afterward, because find_afterward needs
2573 the redundant DT_mode tests on predicates to determine whether
2574 two tests can both be true or not. */
2575 simplify_tests(head);
2576
e8f9b13a
RH
2577 write_subroutines (head, subroutine_type);
2578 }
4dc320a5 2579
09051660
RH
2580 write_subroutine (head, subroutine_type);
2581}
2582\f
3d7aafde 2583extern int main (int, char **);
36f0e0a6 2584
ec65fa66 2585int
3d7aafde 2586main (int argc, char **argv)
ec65fa66
RK
2587{
2588 rtx desc;
09051660 2589 struct decision_head recog_tree, split_tree, peephole2_tree, h;
ec65fa66 2590
f8b6598e 2591 progname = "genrecog";
09051660
RH
2592
2593 memset (&recog_tree, 0, sizeof recog_tree);
2594 memset (&split_tree, 0, sizeof split_tree);
2595 memset (&peephole2_tree, 0, sizeof peephole2_tree);
ec65fa66
RK
2596
2597 if (argc <= 1)
1f978f5f 2598 fatal ("no input file name");
ec65fa66 2599
04d8aa70 2600 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
c88c0d42 2601 return (FATAL_EXIT_CODE);
ec65fa66 2602
ec65fa66
RK
2603 next_insn_code = 0;
2604 next_index = 0;
2605
09051660 2606 write_header ();
ec65fa66
RK
2607
2608 /* Read the machine description. */
2609
2610 while (1)
2611 {
c88c0d42
CP
2612 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2613 if (desc == NULL)
ec65fa66 2614 break;
ec65fa66 2615
ec65fa66 2616 if (GET_CODE (desc) == DEFINE_INSN)
09051660
RH
2617 {
2618 h = make_insn_sequence (desc, RECOG);
2619 merge_trees (&recog_tree, &h);
2620 }
ec65fa66 2621 else if (GET_CODE (desc) == DEFINE_SPLIT)
09051660
RH
2622 {
2623 h = make_insn_sequence (desc, SPLIT);
2624 merge_trees (&split_tree, &h);
2625 }
ede7cd44 2626 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
09051660
RH
2627 {
2628 h = make_insn_sequence (desc, PEEPHOLE2);
2629 merge_trees (&peephole2_tree, &h);
2630 }
5b7c7046 2631
ec65fa66
RK
2632 next_index++;
2633 }
2634
bcdaba58
RH
2635 if (error_count)
2636 return FATAL_EXIT_CODE;
2637
09051660 2638 puts ("\n\n");
ec65fa66 2639
09051660
RH
2640 process_tree (&recog_tree, RECOG);
2641 process_tree (&split_tree, SPLIT);
2642 process_tree (&peephole2_tree, PEEPHOLE2);
ede7cd44 2643
ec65fa66 2644 fflush (stdout);
c1b59dce 2645 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
ec65fa66 2646}
09051660 2647\f
a995e389
RH
2648/* Define this so we can link with print-rtl.o to get debug_rtx function. */
2649const char *
3d7aafde 2650get_insn_name (int code)
a995e389
RH
2651{
2652 if (code < insn_name_ptr_size)
2653 return insn_name_ptr[code];
2654 else
2655 return NULL;
2656}
09051660
RH
2657
2658static void
3d7aafde 2659record_insn_name (int code, const char *name)
09051660
RH
2660{
2661 static const char *last_real_name = "insn";
2662 static int last_real_code = 0;
2663 char *new;
2664
2665 if (insn_name_ptr_size <= code)
2666 {
2667 int new_size;
2668 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
703ad42b 2669 insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
5b7c7046 2670 memset (insn_name_ptr + insn_name_ptr_size, 0,
09051660
RH
2671 sizeof(char *) * (new_size - insn_name_ptr_size));
2672 insn_name_ptr_size = new_size;
2673 }
2674
2675 if (!name || name[0] == '\0')
2676 {
2677 new = xmalloc (strlen (last_real_name) + 10);
2678 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2679 }
2680 else
2681 {
2682 last_real_name = new = xstrdup (name);
2683 last_real_code = code;
2684 }
5b7c7046 2685
09051660 2686 insn_name_ptr[code] = new;
5b7c7046 2687}
09051660 2688\f
09051660 2689static void
3d7aafde 2690debug_decision_2 (struct decision_test *test)
09051660
RH
2691{
2692 switch (test->type)
2693 {
2694 case DT_mode:
2695 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2696 break;
2697 case DT_code:
2698 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2699 break;
2700 case DT_veclen:
2701 fprintf (stderr, "veclen=%d", test->u.veclen);
2702 break;
2703 case DT_elt_zero_int:
2704 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2705 break;
2706 case DT_elt_one_int:
2707 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2708 break;
2709 case DT_elt_zero_wide:
90ff44cf 2710 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
09051660 2711 break;
070ef6f4 2712 case DT_elt_zero_wide_safe:
90ff44cf 2713 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
070ef6f4 2714 break;
521b9224
RH
2715 case DT_veclen_ge:
2716 fprintf (stderr, "veclen>=%d", test->u.veclen);
2717 break;
09051660
RH
2718 case DT_dup:
2719 fprintf (stderr, "dup=%d", test->u.dup);
2720 break;
2721 case DT_pred:
2722 fprintf (stderr, "pred=(%s,%s)",
2723 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2724 break;
2725 case DT_c_test:
2726 {
2727 char sub[16+4];
2728 strncpy (sub, test->u.c_test, sizeof(sub));
2729 memcpy (sub+16, "...", 4);
2730 fprintf (stderr, "c_test=\"%s\"", sub);
2731 }
2732 break;
2733 case DT_accept_op:
2734 fprintf (stderr, "A_op=%d", test->u.opno);
2735 break;
2736 case DT_accept_insn:
5b7c7046 2737 fprintf (stderr, "A_insn=(%d,%d)",
09051660
RH
2738 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2739 break;
2740
2741 default:
2742 abort ();
2743 }
2744}
2745
2746static void
3d7aafde 2747debug_decision_1 (struct decision *d, int indent)
09051660
RH
2748{
2749 int i;
2750 struct decision_test *test;
2751
2752 if (d == NULL)
2753 {
2754 for (i = 0; i < indent; ++i)
2755 putc (' ', stderr);
2756 fputs ("(nil)\n", stderr);
2757 return;
2758 }
2759
2760 for (i = 0; i < indent; ++i)
2761 putc (' ', stderr);
2762
2763 putc ('{', stderr);
2764 test = d->tests;
2765 if (test)
2766 {
2767 debug_decision_2 (test);
2768 while ((test = test->next) != NULL)
2769 {
2770 fputs (" + ", stderr);
2771 debug_decision_2 (test);
2772 }
2773 }
4dc320a5
RH
2774 fprintf (stderr, "} %d n %d a %d\n", d->number,
2775 (d->next ? d->next->number : -1),
2776 (d->afterward ? d->afterward->number : -1));
09051660
RH
2777}
2778
2779static void
3d7aafde 2780debug_decision_0 (struct decision *d, int indent, int maxdepth)
09051660
RH
2781{
2782 struct decision *n;
2783 int i;
2784
2785 if (maxdepth < 0)
2786 return;
2787 if (d == NULL)
2788 {
2789 for (i = 0; i < indent; ++i)
2790 putc (' ', stderr);
2791 fputs ("(nil)\n", stderr);
2792 return;
2793 }
2794
2795 debug_decision_1 (d, indent);
2796 for (n = d->success.first; n ; n = n->next)
2797 debug_decision_0 (n, indent + 2, maxdepth - 1);
2798}
2799
2800void
3d7aafde 2801debug_decision (struct decision *d)
09051660
RH
2802{
2803 debug_decision_0 (d, 0, 1000000);
2804}
ec1c89e6
RH
2805
2806void
3d7aafde 2807debug_decision_list (struct decision *d)
ec1c89e6
RH
2808{
2809 while (d)
2810 {
2811 debug_decision_0 (d, 0, 0);
2812 d = d->next;
2813 }
2814}
This page took 2.101151 seconds and 5 git commands to generate.