]>
Commit | Line | Data |
---|---|---|
ec65fa66 | 1 | /* Generate code from machine description to recognize rtl as insns. |
d050d723 | 2 | Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998, |
c4f2c499 | 3 | 1999, 2000, 2001, 2002 Free Software Foundation, Inc. |
ec65fa66 | 4 | |
1322177d | 5 | This file is part of GCC. |
09051660 | 6 | |
1322177d LB |
7 | GCC is free software; you can redistribute it and/or modify it |
8 | under the terms of the GNU General Public License as published by | |
09051660 RH |
9 | the Free Software Foundation; either version 2, or (at your option) |
10 | any later version. | |
11 | ||
1322177d LB |
12 | GCC is distributed in the hope that it will be useful, but WITHOUT |
13 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
14 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public | |
15 | License for more details. | |
09051660 RH |
16 | |
17 | You should have received a copy of the GNU General Public License | |
1322177d LB |
18 | along with GCC; see the file COPYING. If not, write to the Free |
19 | Software Foundation, 59 Temple Place - Suite 330, Boston, MA | |
20 | 02111-1307, USA. */ | |
09051660 RH |
21 | |
22 | ||
23 | /* This program is used to produce insn-recog.c, which contains a | |
24 | function called `recog' plus its subroutines. These functions | |
25 | contain a decision tree that recognizes whether an rtx, the | |
26 | argument given to recog, is a valid instruction. | |
27 | ||
28 | recog returns -1 if the rtx is not valid. If the rtx is valid, | |
29 | recog returns a nonnegative number which is the insn code number | |
30 | for the pattern that matched. This is the same as the order in the | |
31 | machine description of the entry that matched. This number can be | |
32 | used as an index into various insn_* tables, such as insn_template, | |
33 | insn_outfun, and insn_n_operands (found in insn-output.c). | |
34 | ||
35 | The third argument to recog is an optional pointer to an int. If | |
36 | present, recog will accept a pattern if it matches except for | |
ec65fa66 RK |
37 | missing CLOBBER expressions at the end. In that case, the value |
38 | pointed to by the optional pointer will be set to the number of | |
39 | CLOBBERs that need to be added (it should be initialized to zero by | |
40 | the caller). If it is set nonzero, the caller should allocate a | |
09051660 RH |
41 | PARALLEL of the appropriate size, copy the initial entries, and |
42 | call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs. | |
ec65fa66 | 43 | |
09051660 RH |
44 | This program also generates the function `split_insns', which |
45 | returns 0 if the rtl could not be split, or it returns the split | |
2f937369 | 46 | rtl as an INSN list. |
09051660 RH |
47 | |
48 | This program also generates the function `peephole2_insns', which | |
49 | returns 0 if the rtl could not be matched. If there was a match, | |
2f937369 | 50 | the new rtl is returned in an INSN list, and LAST_INSN will point |
09051660 | 51 | to the last recognized insn in the old sequence. */ |
ec65fa66 | 52 | |
4977bab6 | 53 | #include "bconfig.h" |
0b93b64e | 54 | #include "system.h" |
4977bab6 ZW |
55 | #include "coretypes.h" |
56 | #include "tm.h" | |
ec65fa66 | 57 | #include "rtl.h" |
f8b6598e | 58 | #include "errors.h" |
c88c0d42 | 59 | #include "gensupport.h" |
ec65fa66 | 60 | |
3916d6d8 | 61 | |
736b02fd KG |
62 | #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \ |
63 | printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER)) | |
64 | ||
8aeba909 | 65 | /* Holds an array of names indexed by insn_code_number. */ |
a995e389 RH |
66 | static char **insn_name_ptr = 0; |
67 | static int insn_name_ptr_size = 0; | |
4db83042 | 68 | |
09051660 RH |
69 | /* A listhead of decision trees. The alternatives to a node are kept |
70 | in a doublely-linked list so we can easily add nodes to the proper | |
71 | place when merging. */ | |
72 | ||
73 | struct decision_head | |
74 | { | |
75 | struct decision *first; | |
76 | struct decision *last; | |
77 | }; | |
5b7c7046 | 78 | |
09051660 RH |
79 | /* A single test. The two accept types aren't tests per-se, but |
80 | their equality (or lack thereof) does affect tree merging so | |
81 | it is convenient to keep them here. */ | |
82 | ||
83 | struct decision_test | |
84 | { | |
85 | /* A linked list through the tests attached to a node. */ | |
86 | struct decision_test *next; | |
87 | ||
88 | /* These types are roughly in the order in which we'd like to test them. */ | |
070ef6f4 RK |
89 | enum decision_type |
90 | { | |
91 | DT_mode, DT_code, DT_veclen, | |
92 | DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe, | |
5b7c7046 | 93 | DT_veclen_ge, DT_dup, DT_pred, DT_c_test, |
070ef6f4 RK |
94 | DT_accept_op, DT_accept_insn |
95 | } type; | |
09051660 RH |
96 | |
97 | union | |
98 | { | |
99 | enum machine_mode mode; /* Machine mode of node. */ | |
100 | RTX_CODE code; /* Code to test. */ | |
e0689256 | 101 | |
09051660 RH |
102 | struct |
103 | { | |
104 | const char *name; /* Predicate to call. */ | |
105 | int index; /* Index into `preds' or -1. */ | |
106 | enum machine_mode mode; /* Machine mode for node. */ | |
107 | } pred; | |
108 | ||
109 | const char *c_test; /* Additional test to perform. */ | |
110 | int veclen; /* Length of vector. */ | |
111 | int dup; /* Number of operand to compare against. */ | |
112 | HOST_WIDE_INT intval; /* Value for XINT for XWINT. */ | |
113 | int opno; /* Operand number matched. */ | |
114 | ||
115 | struct { | |
116 | int code_number; /* Insn number matched. */ | |
bcdaba58 | 117 | int lineno; /* Line number of the insn. */ |
09051660 RH |
118 | int num_clobbers_to_add; /* Number of CLOBBERs to be added. */ |
119 | } insn; | |
120 | } u; | |
121 | }; | |
e0689256 | 122 | |
09051660 | 123 | /* Data structure for decision tree for recognizing legitimate insns. */ |
ec65fa66 RK |
124 | |
125 | struct decision | |
126 | { | |
09051660 RH |
127 | struct decision_head success; /* Nodes to test on success. */ |
128 | struct decision *next; /* Node to test on failure. */ | |
129 | struct decision *prev; /* Node whose failure tests us. */ | |
130 | struct decision *afterward; /* Node to test on success, | |
131 | but failure of successor nodes. */ | |
132 | ||
133 | const char *position; /* String denoting position in pattern. */ | |
134 | ||
135 | struct decision_test *tests; /* The tests for this node. */ | |
136 | ||
e0689256 | 137 | int number; /* Node number, used for labels */ |
e0689256 | 138 | int subroutine_number; /* Number of subroutine this node starts */ |
09051660 | 139 | int need_label; /* Label needs to be output. */ |
ec65fa66 RK |
140 | }; |
141 | ||
09051660 | 142 | #define SUBROUTINE_THRESHOLD 100 |
ec65fa66 RK |
143 | |
144 | static int next_subroutine_number; | |
145 | ||
ede7cd44 RH |
146 | /* We can write three types of subroutines: One for insn recognition, |
147 | one to split insns, and one for peephole-type optimizations. This | |
148 | defines which type is being written. */ | |
ec65fa66 | 149 | |
09051660 RH |
150 | enum routine_type { |
151 | RECOG, SPLIT, PEEPHOLE2 | |
152 | }; | |
ede7cd44 | 153 | |
09051660 | 154 | #define IS_SPLIT(X) ((X) != RECOG) |
ec65fa66 | 155 | |
e0689256 | 156 | /* Next available node number for tree nodes. */ |
ec65fa66 | 157 | |
e0689256 | 158 | static int next_number; |
ec65fa66 | 159 | |
e0689256 | 160 | /* Next number to use as an insn_code. */ |
ec65fa66 | 161 | |
e0689256 | 162 | static int next_insn_code; |
ec65fa66 | 163 | |
e0689256 | 164 | /* Similar, but counts all expressions in the MD file; used for |
0f41302f | 165 | error messages. */ |
ec65fa66 | 166 | |
e0689256 | 167 | static int next_index; |
ec65fa66 | 168 | |
e0689256 RK |
169 | /* Record the highest depth we ever have so we know how many variables to |
170 | allocate in each subroutine we make. */ | |
ec65fa66 | 171 | |
e0689256 | 172 | static int max_depth; |
bcdaba58 RH |
173 | |
174 | /* The line number of the start of the pattern currently being processed. */ | |
175 | static int pattern_lineno; | |
176 | ||
177 | /* Count of errors. */ | |
178 | static int error_count; | |
e0689256 RK |
179 | \f |
180 | /* This table contains a list of the rtl codes that can possibly match a | |
09051660 | 181 | predicate defined in recog.c. The function `maybe_both_true' uses it to |
e0689256 RK |
182 | deduce that there are no expressions that can be matches by certain pairs |
183 | of tree nodes. Also, if a predicate can match only one code, we can | |
184 | hardwire that code into the node testing the predicate. */ | |
ec65fa66 | 185 | |
8b60264b | 186 | static const struct pred_table |
e0689256 | 187 | { |
8b60264b KG |
188 | const char *const name; |
189 | const RTX_CODE codes[NUM_RTX_CODE]; | |
09051660 RH |
190 | } preds[] = { |
191 | {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, | |
0b40e88e | 192 | LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}}, |
e0689256 | 193 | #ifdef PREDICATE_CODES |
09051660 | 194 | PREDICATE_CODES |
e0689256 | 195 | #endif |
09051660 | 196 | {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, |
0b40e88e EB |
197 | LABEL_REF, SUBREG, REG, MEM, ADDRESSOF, |
198 | PLUS, MINUS, MULT}}, | |
199 | {"register_operand", {SUBREG, REG, ADDRESSOF}}, | |
200 | {"pmode_register_operand", {SUBREG, REG, ADDRESSOF}}, | |
09051660 RH |
201 | {"scratch_operand", {SCRATCH, REG}}, |
202 | {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, | |
203 | LABEL_REF}}, | |
204 | {"const_int_operand", {CONST_INT}}, | |
205 | {"const_double_operand", {CONST_INT, CONST_DOUBLE}}, | |
0b40e88e | 206 | {"nonimmediate_operand", {SUBREG, REG, MEM, ADDRESSOF}}, |
09051660 | 207 | {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, |
0b40e88e | 208 | LABEL_REF, SUBREG, REG, ADDRESSOF}}, |
09051660 RH |
209 | {"push_operand", {MEM}}, |
210 | {"pop_operand", {MEM}}, | |
211 | {"memory_operand", {SUBREG, MEM}}, | |
212 | {"indirect_operand", {SUBREG, MEM}}, | |
3a3677ff RH |
213 | {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU, |
214 | UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE, | |
215 | UNLT, LTGT}}, | |
09051660 | 216 | {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, |
0b40e88e | 217 | LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}} |
09051660 | 218 | }; |
e0689256 | 219 | |
b6a1cbae | 220 | #define NUM_KNOWN_PREDS ARRAY_SIZE (preds) |
ec65fa66 | 221 | |
27c38fbe | 222 | static const char *const special_mode_pred_table[] = { |
8fe0ca0c RH |
223 | #ifdef SPECIAL_MODE_PREDICATES |
224 | SPECIAL_MODE_PREDICATES | |
225 | #endif | |
556ffcc5 | 226 | "pmode_register_operand" |
8fe0ca0c RH |
227 | }; |
228 | ||
b6a1cbae | 229 | #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table) |
8fe0ca0c | 230 | |
09051660 | 231 | static struct decision *new_decision |
a94ae8f5 | 232 | PARAMS ((const char *, struct decision_head *)); |
09051660 | 233 | static struct decision_test *new_decision_test |
a94ae8f5 | 234 | PARAMS ((enum decision_type, struct decision_test ***)); |
8fe0ca0c | 235 | static rtx find_operand |
a94ae8f5 | 236 | PARAMS ((rtx, int)); |
c0ea284b RH |
237 | static rtx find_matching_operand |
238 | PARAMS ((rtx, int)); | |
8fe0ca0c | 239 | static void validate_pattern |
7297e9fc | 240 | PARAMS ((rtx, rtx, rtx, int)); |
09051660 | 241 | static struct decision *add_to_sequence |
a94ae8f5 | 242 | PARAMS ((rtx, struct decision_head *, const char *, enum routine_type, int)); |
09051660 RH |
243 | |
244 | static int maybe_both_true_2 | |
a94ae8f5 | 245 | PARAMS ((struct decision_test *, struct decision_test *)); |
09051660 | 246 | static int maybe_both_true_1 |
a94ae8f5 | 247 | PARAMS ((struct decision_test *, struct decision_test *)); |
09051660 | 248 | static int maybe_both_true |
a94ae8f5 | 249 | PARAMS ((struct decision *, struct decision *, int)); |
09051660 RH |
250 | |
251 | static int nodes_identical_1 | |
a94ae8f5 | 252 | PARAMS ((struct decision_test *, struct decision_test *)); |
09051660 | 253 | static int nodes_identical |
a94ae8f5 | 254 | PARAMS ((struct decision *, struct decision *)); |
09051660 | 255 | static void merge_accept_insn |
a94ae8f5 | 256 | PARAMS ((struct decision *, struct decision *)); |
09051660 | 257 | static void merge_trees |
a94ae8f5 | 258 | PARAMS ((struct decision_head *, struct decision_head *)); |
09051660 RH |
259 | |
260 | static void factor_tests | |
a94ae8f5 | 261 | PARAMS ((struct decision_head *)); |
09051660 | 262 | static void simplify_tests |
a94ae8f5 | 263 | PARAMS ((struct decision_head *)); |
09051660 | 264 | static int break_out_subroutines |
a94ae8f5 | 265 | PARAMS ((struct decision_head *, int)); |
09051660 | 266 | static void find_afterward |
a94ae8f5 | 267 | PARAMS ((struct decision_head *, struct decision *)); |
09051660 RH |
268 | |
269 | static void change_state | |
a94ae8f5 | 270 | PARAMS ((const char *, const char *, struct decision *, const char *)); |
09051660 | 271 | static void print_code |
a94ae8f5 | 272 | PARAMS ((enum rtx_code)); |
09051660 | 273 | static void write_afterward |
a94ae8f5 | 274 | PARAMS ((struct decision *, struct decision *, const char *)); |
09051660 | 275 | static struct decision *write_switch |
a94ae8f5 | 276 | PARAMS ((struct decision *, int)); |
09051660 | 277 | static void write_cond |
a94ae8f5 | 278 | PARAMS ((struct decision_test *, int, enum routine_type)); |
09051660 | 279 | static void write_action |
23280139 RH |
280 | PARAMS ((struct decision *, struct decision_test *, int, int, |
281 | struct decision *, enum routine_type)); | |
09051660 | 282 | static int is_unconditional |
a94ae8f5 | 283 | PARAMS ((struct decision_test *, enum routine_type)); |
09051660 | 284 | static int write_node |
a94ae8f5 | 285 | PARAMS ((struct decision *, int, enum routine_type)); |
09051660 | 286 | static void write_tree_1 |
a94ae8f5 | 287 | PARAMS ((struct decision_head *, int, enum routine_type)); |
09051660 | 288 | static void write_tree |
a94ae8f5 | 289 | PARAMS ((struct decision_head *, const char *, enum routine_type, int)); |
09051660 | 290 | static void write_subroutine |
a94ae8f5 | 291 | PARAMS ((struct decision_head *, enum routine_type)); |
09051660 | 292 | static void write_subroutines |
a94ae8f5 | 293 | PARAMS ((struct decision_head *, enum routine_type)); |
09051660 | 294 | static void write_header |
a94ae8f5 | 295 | PARAMS ((void)); |
09051660 RH |
296 | |
297 | static struct decision_head make_insn_sequence | |
a94ae8f5 | 298 | PARAMS ((rtx, enum routine_type)); |
09051660 | 299 | static void process_tree |
a94ae8f5 | 300 | PARAMS ((struct decision_head *, enum routine_type)); |
5b7c7046 | 301 | |
09051660 | 302 | static void record_insn_name |
a94ae8f5 | 303 | PARAMS ((int, const char *)); |
09051660 | 304 | |
36f0e0a6 | 305 | static void debug_decision_0 |
a94ae8f5 | 306 | PARAMS ((struct decision *, int, int)); |
09051660 | 307 | static void debug_decision_1 |
a94ae8f5 | 308 | PARAMS ((struct decision *, int)); |
09051660 | 309 | static void debug_decision_2 |
a94ae8f5 | 310 | PARAMS ((struct decision_test *)); |
09051660 | 311 | extern void debug_decision |
a94ae8f5 | 312 | PARAMS ((struct decision *)); |
36f0e0a6 | 313 | extern void debug_decision_list |
a94ae8f5 | 314 | PARAMS ((struct decision *)); |
ede7cd44 | 315 | \f |
09051660 | 316 | /* Create a new node in sequence after LAST. */ |
e0689256 | 317 | |
09051660 RH |
318 | static struct decision * |
319 | new_decision (position, last) | |
320 | const char *position; | |
321 | struct decision_head *last; | |
ec65fa66 | 322 | { |
b3694847 | 323 | struct decision *new |
09051660 | 324 | = (struct decision *) xmalloc (sizeof (struct decision)); |
ec65fa66 | 325 | |
09051660 RH |
326 | memset (new, 0, sizeof (*new)); |
327 | new->success = *last; | |
328 | new->position = xstrdup (position); | |
329 | new->number = next_number++; | |
ec65fa66 | 330 | |
09051660 RH |
331 | last->first = last->last = new; |
332 | return new; | |
333 | } | |
e0689256 | 334 | |
09051660 | 335 | /* Create a new test and link it in at PLACE. */ |
ec65fa66 | 336 | |
09051660 RH |
337 | static struct decision_test * |
338 | new_decision_test (type, pplace) | |
339 | enum decision_type type; | |
340 | struct decision_test ***pplace; | |
341 | { | |
342 | struct decision_test **place = *pplace; | |
343 | struct decision_test *test; | |
ec65fa66 | 344 | |
09051660 RH |
345 | test = (struct decision_test *) xmalloc (sizeof (*test)); |
346 | test->next = *place; | |
347 | test->type = type; | |
348 | *place = test; | |
ede7cd44 | 349 | |
09051660 RH |
350 | place = &test->next; |
351 | *pplace = place; | |
ec65fa66 | 352 | |
09051660 | 353 | return test; |
e0689256 | 354 | } |
09051660 | 355 | |
8fe0ca0c RH |
356 | /* Search for and return operand N. */ |
357 | ||
358 | static rtx | |
359 | find_operand (pattern, n) | |
360 | rtx pattern; | |
361 | int n; | |
362 | { | |
363 | const char *fmt; | |
364 | RTX_CODE code; | |
365 | int i, j, len; | |
366 | rtx r; | |
367 | ||
368 | code = GET_CODE (pattern); | |
369 | if ((code == MATCH_SCRATCH | |
370 | || code == MATCH_INSN | |
371 | || code == MATCH_OPERAND | |
372 | || code == MATCH_OPERATOR | |
373 | || code == MATCH_PARALLEL) | |
374 | && XINT (pattern, 0) == n) | |
375 | return pattern; | |
376 | ||
377 | fmt = GET_RTX_FORMAT (code); | |
378 | len = GET_RTX_LENGTH (code); | |
379 | for (i = 0; i < len; i++) | |
380 | { | |
381 | switch (fmt[i]) | |
382 | { | |
383 | case 'e': case 'u': | |
384 | if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX) | |
385 | return r; | |
386 | break; | |
387 | ||
c0ea284b RH |
388 | case 'V': |
389 | if (! XVEC (pattern, i)) | |
390 | break; | |
391 | /* FALLTHRU */ | |
392 | ||
8fe0ca0c RH |
393 | case 'E': |
394 | for (j = 0; j < XVECLEN (pattern, i); j++) | |
395 | if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX) | |
396 | return r; | |
397 | break; | |
398 | ||
399 | case 'i': case 'w': case '0': case 's': | |
400 | break; | |
401 | ||
402 | default: | |
403 | abort (); | |
404 | } | |
405 | } | |
406 | ||
407 | return NULL; | |
408 | } | |
409 | ||
c0ea284b RH |
410 | /* Search for and return operand M, such that it has a matching |
411 | constraint for operand N. */ | |
412 | ||
413 | static rtx | |
414 | find_matching_operand (pattern, n) | |
415 | rtx pattern; | |
416 | int n; | |
417 | { | |
418 | const char *fmt; | |
419 | RTX_CODE code; | |
420 | int i, j, len; | |
421 | rtx r; | |
422 | ||
423 | code = GET_CODE (pattern); | |
424 | if (code == MATCH_OPERAND | |
425 | && (XSTR (pattern, 2)[0] == '0' + n | |
426 | || (XSTR (pattern, 2)[0] == '%' | |
427 | && XSTR (pattern, 2)[1] == '0' + n))) | |
428 | return pattern; | |
429 | ||
430 | fmt = GET_RTX_FORMAT (code); | |
431 | len = GET_RTX_LENGTH (code); | |
432 | for (i = 0; i < len; i++) | |
433 | { | |
434 | switch (fmt[i]) | |
435 | { | |
436 | case 'e': case 'u': | |
437 | if ((r = find_matching_operand (XEXP (pattern, i), n))) | |
438 | return r; | |
439 | break; | |
440 | ||
441 | case 'V': | |
442 | if (! XVEC (pattern, i)) | |
443 | break; | |
444 | /* FALLTHRU */ | |
445 | ||
446 | case 'E': | |
447 | for (j = 0; j < XVECLEN (pattern, i); j++) | |
448 | if ((r = find_matching_operand (XVECEXP (pattern, i, j), n))) | |
449 | return r; | |
450 | break; | |
451 | ||
452 | case 'i': case 'w': case '0': case 's': | |
453 | break; | |
454 | ||
455 | default: | |
456 | abort (); | |
457 | } | |
458 | } | |
459 | ||
460 | return NULL; | |
461 | } | |
462 | ||
463 | ||
aece2740 | 464 | /* Check for various errors in patterns. SET is nonnull for a destination, |
7297e9fc RH |
465 | and is the complete set pattern. SET_CODE is '=' for normal sets, and |
466 | '+' within a context that requires in-out constraints. */ | |
bcdaba58 RH |
467 | |
468 | static void | |
7297e9fc | 469 | validate_pattern (pattern, insn, set, set_code) |
bcdaba58 | 470 | rtx pattern; |
8fe0ca0c | 471 | rtx insn; |
aece2740 | 472 | rtx set; |
7297e9fc | 473 | int set_code; |
bcdaba58 RH |
474 | { |
475 | const char *fmt; | |
476 | RTX_CODE code; | |
8fe0ca0c RH |
477 | size_t i, len; |
478 | int j; | |
bcdaba58 RH |
479 | |
480 | code = GET_CODE (pattern); | |
481 | switch (code) | |
482 | { | |
483 | case MATCH_SCRATCH: | |
bcdaba58 RH |
484 | return; |
485 | ||
8fe0ca0c | 486 | case MATCH_INSN: |
bcdaba58 | 487 | case MATCH_OPERAND: |
8fe0ca0c | 488 | case MATCH_OPERATOR: |
bcdaba58 RH |
489 | { |
490 | const char *pred_name = XSTR (pattern, 1); | |
8fe0ca0c RH |
491 | int allows_non_lvalue = 1, allows_non_const = 1; |
492 | int special_mode_pred = 0; | |
493 | const char *c_test; | |
494 | ||
495 | if (GET_CODE (insn) == DEFINE_INSN) | |
496 | c_test = XSTR (insn, 2); | |
497 | else | |
498 | c_test = XSTR (insn, 1); | |
bcdaba58 RH |
499 | |
500 | if (pred_name[0] != 0) | |
501 | { | |
8fe0ca0c | 502 | for (i = 0; i < NUM_KNOWN_PREDS; i++) |
bcdaba58 RH |
503 | if (! strcmp (preds[i].name, pred_name)) |
504 | break; | |
505 | ||
8fe0ca0c | 506 | if (i < NUM_KNOWN_PREDS) |
bcdaba58 | 507 | { |
8fe0ca0c | 508 | int j; |
bcdaba58 | 509 | |
8fe0ca0c | 510 | allows_non_lvalue = allows_non_const = 0; |
bcdaba58 | 511 | for (j = 0; preds[i].codes[j] != 0; j++) |
bcdaba58 | 512 | { |
8fe0ca0c RH |
513 | RTX_CODE c = preds[i].codes[j]; |
514 | if (c != LABEL_REF | |
515 | && c != SYMBOL_REF | |
516 | && c != CONST_INT | |
517 | && c != CONST_DOUBLE | |
518 | && c != CONST | |
519 | && c != HIGH | |
520 | && c != CONSTANT_P_RTX) | |
521 | allows_non_const = 1; | |
522 | ||
523 | if (c != REG | |
524 | && c != SUBREG | |
525 | && c != MEM | |
0b40e88e | 526 | && c != ADDRESSOF |
8fe0ca0c RH |
527 | && c != CONCAT |
528 | && c != PARALLEL | |
529 | && c != STRICT_LOW_PART) | |
530 | allows_non_lvalue = 1; | |
bcdaba58 RH |
531 | } |
532 | } | |
533 | else | |
534 | { | |
535 | #ifdef PREDICATE_CODES | |
536 | /* If the port has a list of the predicates it uses but | |
537 | omits one, warn. */ | |
8fe0ca0c RH |
538 | message_with_line (pattern_lineno, |
539 | "warning: `%s' not in PREDICATE_CODES", | |
540 | pred_name); | |
bcdaba58 RH |
541 | #endif |
542 | } | |
8fe0ca0c RH |
543 | |
544 | for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i) | |
545 | if (strcmp (pred_name, special_mode_pred_table[i]) == 0) | |
546 | { | |
547 | special_mode_pred = 1; | |
548 | break; | |
549 | } | |
550 | } | |
551 | ||
0dab343a | 552 | if (code == MATCH_OPERAND) |
aece2740 | 553 | { |
0dab343a RH |
554 | const char constraints0 = XSTR (pattern, 2)[0]; |
555 | ||
556 | /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we | |
557 | don't use the MATCH_OPERAND constraint, only the predicate. | |
558 | This is confusing to folks doing new ports, so help them | |
559 | not make the mistake. */ | |
560 | if (GET_CODE (insn) == DEFINE_EXPAND | |
561 | || GET_CODE (insn) == DEFINE_SPLIT | |
562 | || GET_CODE (insn) == DEFINE_PEEPHOLE2) | |
7297e9fc | 563 | { |
0dab343a RH |
564 | if (constraints0) |
565 | message_with_line (pattern_lineno, | |
566 | "warning: constraints not supported in %s", | |
567 | rtx_name[GET_CODE (insn)]); | |
568 | } | |
569 | ||
570 | /* A MATCH_OPERAND that is a SET should have an output reload. */ | |
571 | else if (set && constraints0) | |
572 | { | |
573 | if (set_code == '+') | |
574 | { | |
575 | if (constraints0 == '+') | |
576 | ; | |
577 | /* If we've only got an output reload for this operand, | |
578 | we'd better have a matching input operand. */ | |
579 | else if (constraints0 == '=' | |
580 | && find_matching_operand (insn, XINT (pattern, 0))) | |
581 | ; | |
582 | else | |
583 | { | |
584 | message_with_line (pattern_lineno, | |
585 | "operand %d missing in-out reload", | |
586 | XINT (pattern, 0)); | |
587 | error_count++; | |
588 | } | |
589 | } | |
590 | else if (constraints0 != '=' && constraints0 != '+') | |
c0ea284b RH |
591 | { |
592 | message_with_line (pattern_lineno, | |
0dab343a | 593 | "operand %d missing output reload", |
c0ea284b RH |
594 | XINT (pattern, 0)); |
595 | error_count++; | |
596 | } | |
7297e9fc | 597 | } |
aece2740 RH |
598 | } |
599 | ||
8fe0ca0c RH |
600 | /* Allowing non-lvalues in destinations -- particularly CONST_INT -- |
601 | while not likely to occur at runtime, results in less efficient | |
602 | code from insn-recog.c. */ | |
aece2740 | 603 | if (set |
8fe0ca0c RH |
604 | && pred_name[0] != '\0' |
605 | && allows_non_lvalue) | |
606 | { | |
607 | message_with_line (pattern_lineno, | |
aece2740 | 608 | "warning: destination operand %d allows non-lvalue", |
476a33f4 | 609 | XINT (pattern, 0)); |
8fe0ca0c RH |
610 | } |
611 | ||
612 | /* A modeless MATCH_OPERAND can be handy when we can | |
613 | check for multiple modes in the c_test. In most other cases, | |
614 | it is a mistake. Only DEFINE_INSN is eligible, since SPLIT | |
5b7c7046 | 615 | and PEEP2 can FAIL within the output pattern. Exclude |
556ffcc5 | 616 | address_operand, since its mode is related to the mode of |
aece2740 RH |
617 | the memory not the operand. Exclude the SET_DEST of a call |
618 | instruction, as that is a common idiom. */ | |
8fe0ca0c RH |
619 | |
620 | if (GET_MODE (pattern) == VOIDmode | |
621 | && code == MATCH_OPERAND | |
556ffcc5 | 622 | && GET_CODE (insn) == DEFINE_INSN |
8fe0ca0c RH |
623 | && allows_non_const |
624 | && ! special_mode_pred | |
556ffcc5 RH |
625 | && pred_name[0] != '\0' |
626 | && strcmp (pred_name, "address_operand") != 0 | |
aece2740 RH |
627 | && strstr (c_test, "operands") == NULL |
628 | && ! (set | |
629 | && GET_CODE (set) == SET | |
630 | && GET_CODE (SET_SRC (set)) == CALL)) | |
8fe0ca0c RH |
631 | { |
632 | message_with_line (pattern_lineno, | |
633 | "warning: operand %d missing mode?", | |
634 | XINT (pattern, 0)); | |
bcdaba58 | 635 | } |
bcdaba58 RH |
636 | return; |
637 | } | |
638 | ||
639 | case SET: | |
8fe0ca0c RH |
640 | { |
641 | enum machine_mode dmode, smode; | |
642 | rtx dest, src; | |
643 | ||
644 | dest = SET_DEST (pattern); | |
645 | src = SET_SRC (pattern); | |
646 | ||
0dab343a RH |
647 | /* STRICT_LOW_PART is a wrapper. Its argument is the real |
648 | destination, and it's mode should match the source. */ | |
649 | if (GET_CODE (dest) == STRICT_LOW_PART) | |
650 | dest = XEXP (dest, 0); | |
651 | ||
8fe0ca0c RH |
652 | /* Find the referant for a DUP. */ |
653 | ||
654 | if (GET_CODE (dest) == MATCH_DUP | |
655 | || GET_CODE (dest) == MATCH_OP_DUP | |
656 | || GET_CODE (dest) == MATCH_PAR_DUP) | |
657 | dest = find_operand (insn, XINT (dest, 0)); | |
658 | ||
659 | if (GET_CODE (src) == MATCH_DUP | |
660 | || GET_CODE (src) == MATCH_OP_DUP | |
661 | || GET_CODE (src) == MATCH_PAR_DUP) | |
662 | src = find_operand (insn, XINT (src, 0)); | |
663 | ||
8fe0ca0c RH |
664 | dmode = GET_MODE (dest); |
665 | smode = GET_MODE (src); | |
bcdaba58 | 666 | |
8fe0ca0c RH |
667 | /* The mode of an ADDRESS_OPERAND is the mode of the memory |
668 | reference, not the mode of the address. */ | |
669 | if (GET_CODE (src) == MATCH_OPERAND | |
670 | && ! strcmp (XSTR (src, 1), "address_operand")) | |
671 | ; | |
672 | ||
673 | /* The operands of a SET must have the same mode unless one | |
674 | is VOIDmode. */ | |
675 | else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode) | |
676 | { | |
677 | message_with_line (pattern_lineno, | |
678 | "mode mismatch in set: %smode vs %smode", | |
679 | GET_MODE_NAME (dmode), GET_MODE_NAME (smode)); | |
680 | error_count++; | |
681 | } | |
682 | ||
5b7c7046 | 683 | /* If only one of the operands is VOIDmode, and PC or CC0 is |
8fe0ca0c RH |
684 | not involved, it's probably a mistake. */ |
685 | else if (dmode != smode | |
686 | && GET_CODE (dest) != PC | |
687 | && GET_CODE (dest) != CC0 | |
aece2740 RH |
688 | && GET_CODE (src) != PC |
689 | && GET_CODE (src) != CC0 | |
8fe0ca0c RH |
690 | && GET_CODE (src) != CONST_INT) |
691 | { | |
692 | const char *which; | |
693 | which = (dmode == VOIDmode ? "destination" : "source"); | |
694 | message_with_line (pattern_lineno, | |
695 | "warning: %s missing a mode?", which); | |
696 | } | |
697 | ||
698 | if (dest != SET_DEST (pattern)) | |
7297e9fc RH |
699 | validate_pattern (dest, insn, pattern, '='); |
700 | validate_pattern (SET_DEST (pattern), insn, pattern, '='); | |
701 | validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0); | |
8fe0ca0c RH |
702 | return; |
703 | } | |
704 | ||
705 | case CLOBBER: | |
7297e9fc RH |
706 | validate_pattern (SET_DEST (pattern), insn, pattern, '='); |
707 | return; | |
708 | ||
709 | case ZERO_EXTRACT: | |
710 | validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0); | |
711 | validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0); | |
712 | validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0); | |
713 | return; | |
714 | ||
715 | case STRICT_LOW_PART: | |
716 | validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0); | |
bcdaba58 | 717 | return; |
8fe0ca0c | 718 | |
bcdaba58 RH |
719 | case LABEL_REF: |
720 | if (GET_MODE (XEXP (pattern, 0)) != VOIDmode) | |
721 | { | |
722 | message_with_line (pattern_lineno, | |
723 | "operand to label_ref %smode not VOIDmode", | |
724 | GET_MODE_NAME (GET_MODE (XEXP (pattern, 0)))); | |
725 | error_count++; | |
726 | } | |
727 | break; | |
728 | ||
729 | default: | |
730 | break; | |
731 | } | |
732 | ||
733 | fmt = GET_RTX_FORMAT (code); | |
734 | len = GET_RTX_LENGTH (code); | |
735 | for (i = 0; i < len; i++) | |
736 | { | |
737 | switch (fmt[i]) | |
738 | { | |
739 | case 'e': case 'u': | |
7297e9fc | 740 | validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0); |
bcdaba58 RH |
741 | break; |
742 | ||
743 | case 'E': | |
744 | for (j = 0; j < XVECLEN (pattern, i); j++) | |
7297e9fc | 745 | validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0); |
bcdaba58 RH |
746 | break; |
747 | ||
748 | case 'i': case 'w': case '0': case 's': | |
749 | break; | |
750 | ||
751 | default: | |
752 | abort (); | |
753 | } | |
754 | } | |
bcdaba58 RH |
755 | } |
756 | ||
e0689256 RK |
757 | /* Create a chain of nodes to verify that an rtl expression matches |
758 | PATTERN. | |
ec65fa66 | 759 | |
e0689256 RK |
760 | LAST is a pointer to the listhead in the previous node in the chain (or |
761 | in the calling function, for the first node). | |
ec65fa66 | 762 | |
e0689256 | 763 | POSITION is the string representing the current position in the insn. |
ec65fa66 | 764 | |
ede7cd44 RH |
765 | INSN_TYPE is the type of insn for which we are emitting code. |
766 | ||
e0689256 | 767 | A pointer to the final node in the chain is returned. */ |
ec65fa66 RK |
768 | |
769 | static struct decision * | |
ede7cd44 | 770 | add_to_sequence (pattern, last, position, insn_type, top) |
ec65fa66 | 771 | rtx pattern; |
e0689256 | 772 | struct decision_head *last; |
85fda1eb | 773 | const char *position; |
ede7cd44 RH |
774 | enum routine_type insn_type; |
775 | int top; | |
ec65fa66 | 776 | { |
09051660 RH |
777 | RTX_CODE code; |
778 | struct decision *this, *sub; | |
779 | struct decision_test *test; | |
780 | struct decision_test **place; | |
781 | char *subpos; | |
b3694847 SS |
782 | size_t i; |
783 | const char *fmt; | |
e0689256 | 784 | int depth = strlen (position); |
ec65fa66 | 785 | int len; |
09051660 | 786 | enum machine_mode mode; |
ec65fa66 | 787 | |
e0689256 RK |
788 | if (depth > max_depth) |
789 | max_depth = depth; | |
790 | ||
b548dffb | 791 | subpos = (char *) xmalloc (depth + 2); |
09051660 RH |
792 | strcpy (subpos, position); |
793 | subpos[depth + 1] = 0; | |
ec65fa66 | 794 | |
09051660 RH |
795 | sub = this = new_decision (position, last); |
796 | place = &this->tests; | |
ec65fa66 RK |
797 | |
798 | restart: | |
09051660 RH |
799 | mode = GET_MODE (pattern); |
800 | code = GET_CODE (pattern); | |
ec65fa66 RK |
801 | |
802 | switch (code) | |
803 | { | |
ede7cd44 | 804 | case PARALLEL: |
dc297297 | 805 | /* Toplevel peephole pattern. */ |
ede7cd44 RH |
806 | if (insn_type == PEEPHOLE2 && top) |
807 | { | |
09051660 RH |
808 | /* We don't need the node we just created -- unlink it. */ |
809 | last->first = last->last = NULL; | |
ede7cd44 RH |
810 | |
811 | for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++) | |
812 | { | |
813 | /* Which insn we're looking at is represented by A-Z. We don't | |
dc297297 | 814 | ever use 'A', however; it is always implied. */ |
09051660 RH |
815 | |
816 | subpos[depth] = (i > 0 ? 'A' + i : 0); | |
817 | sub = add_to_sequence (XVECEXP (pattern, 0, i), | |
818 | last, subpos, insn_type, 0); | |
819 | last = &sub->success; | |
ede7cd44 | 820 | } |
b548dffb | 821 | goto ret; |
ede7cd44 | 822 | } |
09051660 RH |
823 | |
824 | /* Else nothing special. */ | |
ede7cd44 | 825 | break; |
09051660 | 826 | |
521b9224 RH |
827 | case MATCH_PARALLEL: |
828 | /* The explicit patterns within a match_parallel enforce a minimum | |
829 | length on the vector. The match_parallel predicate may allow | |
830 | for more elements. We do need to check for this minimum here | |
831 | or the code generated to match the internals may reference data | |
832 | beyond the end of the vector. */ | |
833 | test = new_decision_test (DT_veclen_ge, &place); | |
834 | test->u.veclen = XVECLEN (pattern, 2); | |
835 | /* FALLTHRU */ | |
836 | ||
ec65fa66 | 837 | case MATCH_OPERAND: |
ec65fa66 | 838 | case MATCH_SCRATCH: |
ec65fa66 | 839 | case MATCH_OPERATOR: |
5126c35a | 840 | case MATCH_INSN: |
09051660 RH |
841 | { |
842 | const char *pred_name; | |
843 | RTX_CODE was_code = code; | |
ec1c89e6 | 844 | int allows_const_int = 1; |
09051660 RH |
845 | |
846 | if (code == MATCH_SCRATCH) | |
847 | { | |
848 | pred_name = "scratch_operand"; | |
849 | code = UNKNOWN; | |
850 | } | |
851 | else | |
852 | { | |
853 | pred_name = XSTR (pattern, 1); | |
854 | if (code == MATCH_PARALLEL) | |
855 | code = PARALLEL; | |
856 | else | |
857 | code = UNKNOWN; | |
858 | } | |
859 | ||
29360e56 | 860 | if (pred_name[0] != 0) |
09051660 RH |
861 | { |
862 | test = new_decision_test (DT_pred, &place); | |
863 | test->u.pred.name = pred_name; | |
864 | test->u.pred.mode = mode; | |
865 | ||
b4fbaca7 RH |
866 | /* See if we know about this predicate and save its number. |
867 | If we do, and it only accepts one code, note that fact. | |
868 | ||
869 | If we know that the predicate does not allow CONST_INT, | |
870 | we know that the only way the predicate can match is if | |
871 | the modes match (here we use the kludge of relying on the | |
872 | fact that "address_operand" accepts CONST_INT; otherwise, | |
873 | it would have to be a special case), so we can test the | |
874 | mode (but we need not). This fact should considerably | |
875 | simplify the generated code. */ | |
09051660 RH |
876 | |
877 | for (i = 0; i < NUM_KNOWN_PREDS; i++) | |
878 | if (! strcmp (preds[i].name, pred_name)) | |
879 | break; | |
e0689256 | 880 | |
09051660 | 881 | if (i < NUM_KNOWN_PREDS) |
9edd4689 | 882 | { |
c3693cb1 | 883 | int j; |
e0689256 | 884 | |
09051660 | 885 | test->u.pred.index = i; |
e0689256 | 886 | |
09051660 RH |
887 | if (preds[i].codes[1] == 0 && code == UNKNOWN) |
888 | code = preds[i].codes[0]; | |
e0689256 | 889 | |
09051660 RH |
890 | allows_const_int = 0; |
891 | for (j = 0; preds[i].codes[j] != 0; j++) | |
9edd4689 | 892 | if (preds[i].codes[j] == CONST_INT) |
09051660 RH |
893 | { |
894 | allows_const_int = 1; | |
895 | break; | |
896 | } | |
9edd4689 | 897 | } |
09051660 | 898 | else |
bcdaba58 | 899 | test->u.pred.index = -1; |
09051660 | 900 | } |
ec1c89e6 RH |
901 | |
902 | /* Can't enforce a mode if we allow const_int. */ | |
903 | if (allows_const_int) | |
904 | mode = VOIDmode; | |
e0689256 | 905 | |
09051660 RH |
906 | /* Accept the operand, ie. record it in `operands'. */ |
907 | test = new_decision_test (DT_accept_op, &place); | |
908 | test->u.opno = XINT (pattern, 0); | |
e0689256 | 909 | |
09051660 RH |
910 | if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL) |
911 | { | |
912 | char base = (was_code == MATCH_OPERATOR ? '0' : 'a'); | |
913 | for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++) | |
914 | { | |
915 | subpos[depth] = i + base; | |
916 | sub = add_to_sequence (XVECEXP (pattern, 2, i), | |
917 | &sub->success, subpos, insn_type, 0); | |
918 | } | |
919 | } | |
920 | goto fini; | |
921 | } | |
ec65fa66 RK |
922 | |
923 | case MATCH_OP_DUP: | |
09051660 RH |
924 | code = UNKNOWN; |
925 | ||
926 | test = new_decision_test (DT_dup, &place); | |
927 | test->u.dup = XINT (pattern, 0); | |
928 | ||
929 | test = new_decision_test (DT_accept_op, &place); | |
930 | test->u.opno = XINT (pattern, 0); | |
931 | ||
e51712db | 932 | for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++) |
ec65fa66 | 933 | { |
09051660 RH |
934 | subpos[depth] = i + '0'; |
935 | sub = add_to_sequence (XVECEXP (pattern, 1, i), | |
936 | &sub->success, subpos, insn_type, 0); | |
ec65fa66 | 937 | } |
09051660 | 938 | goto fini; |
ec65fa66 RK |
939 | |
940 | case MATCH_DUP: | |
f582c9d5 | 941 | case MATCH_PAR_DUP: |
09051660 RH |
942 | code = UNKNOWN; |
943 | ||
944 | test = new_decision_test (DT_dup, &place); | |
945 | test->u.dup = XINT (pattern, 0); | |
946 | goto fini; | |
ec65fa66 RK |
947 | |
948 | case ADDRESS: | |
949 | pattern = XEXP (pattern, 0); | |
950 | goto restart; | |
951 | ||
76d31c63 JL |
952 | default: |
953 | break; | |
ec65fa66 RK |
954 | } |
955 | ||
956 | fmt = GET_RTX_FORMAT (code); | |
957 | len = GET_RTX_LENGTH (code); | |
09051660 RH |
958 | |
959 | /* Do tests against the current node first. */ | |
e51712db | 960 | for (i = 0; i < (size_t) len; i++) |
ec65fa66 | 961 | { |
09051660 | 962 | if (fmt[i] == 'i') |
ec65fa66 | 963 | { |
09051660 RH |
964 | if (i == 0) |
965 | { | |
966 | test = new_decision_test (DT_elt_zero_int, &place); | |
967 | test->u.intval = XINT (pattern, i); | |
968 | } | |
969 | else if (i == 1) | |
970 | { | |
971 | test = new_decision_test (DT_elt_one_int, &place); | |
972 | test->u.intval = XINT (pattern, i); | |
973 | } | |
974 | else | |
975 | abort (); | |
ec65fa66 | 976 | } |
09051660 | 977 | else if (fmt[i] == 'w') |
3d678dca | 978 | { |
070ef6f4 RK |
979 | /* If this value actually fits in an int, we can use a switch |
980 | statement here, so indicate that. */ | |
981 | enum decision_type type | |
982 | = ((int) XWINT (pattern, i) == XWINT (pattern, i)) | |
983 | ? DT_elt_zero_wide_safe : DT_elt_zero_wide; | |
984 | ||
09051660 RH |
985 | if (i != 0) |
986 | abort (); | |
987 | ||
070ef6f4 | 988 | test = new_decision_test (type, &place); |
09051660 | 989 | test->u.intval = XWINT (pattern, i); |
3d678dca | 990 | } |
ec65fa66 RK |
991 | else if (fmt[i] == 'E') |
992 | { | |
ec65fa66 RK |
993 | if (i != 0) |
994 | abort (); | |
09051660 RH |
995 | |
996 | test = new_decision_test (DT_veclen, &place); | |
997 | test->u.veclen = XVECLEN (pattern, i); | |
998 | } | |
999 | } | |
1000 | ||
1001 | /* Now test our sub-patterns. */ | |
1002 | for (i = 0; i < (size_t) len; i++) | |
1003 | { | |
1004 | switch (fmt[i]) | |
1005 | { | |
1006 | case 'e': case 'u': | |
1007 | subpos[depth] = '0' + i; | |
1008 | sub = add_to_sequence (XEXP (pattern, i), &sub->success, | |
1009 | subpos, insn_type, 0); | |
1010 | break; | |
1011 | ||
1012 | case 'E': | |
1013 | { | |
b3694847 | 1014 | int j; |
09051660 RH |
1015 | for (j = 0; j < XVECLEN (pattern, i); j++) |
1016 | { | |
1017 | subpos[depth] = 'a' + j; | |
1018 | sub = add_to_sequence (XVECEXP (pattern, i, j), | |
1019 | &sub->success, subpos, insn_type, 0); | |
1020 | } | |
1021 | break; | |
1022 | } | |
1023 | ||
1024 | case 'i': case 'w': | |
1025 | /* Handled above. */ | |
1026 | break; | |
1027 | case '0': | |
1028 | break; | |
1029 | ||
1030 | default: | |
1031 | abort (); | |
1032 | } | |
1033 | } | |
1034 | ||
1035 | fini: | |
1036 | /* Insert nodes testing mode and code, if they're still relevant, | |
1037 | before any of the nodes we may have added above. */ | |
1038 | if (code != UNKNOWN) | |
1039 | { | |
1040 | place = &this->tests; | |
1041 | test = new_decision_test (DT_code, &place); | |
1042 | test->u.code = code; | |
1043 | } | |
1044 | ||
1045 | if (mode != VOIDmode) | |
1046 | { | |
1047 | place = &this->tests; | |
1048 | test = new_decision_test (DT_mode, &place); | |
1049 | test->u.mode = mode; | |
1050 | } | |
1051 | ||
1052 | /* If we didn't insert any tests or accept nodes, hork. */ | |
1053 | if (this->tests == NULL) | |
1054 | abort (); | |
1055 | ||
b548dffb ZW |
1056 | ret: |
1057 | free (subpos); | |
09051660 RH |
1058 | return sub; |
1059 | } | |
1060 | \f | |
1061 | /* A subroutine of maybe_both_true; examines only one test. | |
1062 | Returns > 0 for "definitely both true" and < 0 for "maybe both true". */ | |
1063 | ||
1064 | static int | |
1065 | maybe_both_true_2 (d1, d2) | |
1066 | struct decision_test *d1, *d2; | |
1067 | { | |
1068 | if (d1->type == d2->type) | |
1069 | { | |
1070 | switch (d1->type) | |
1071 | { | |
1072 | case DT_mode: | |
f0e1f482 | 1073 | return d1->u.mode == d2->u.mode; |
09051660 RH |
1074 | |
1075 | case DT_code: | |
1076 | return d1->u.code == d2->u.code; | |
1077 | ||
1078 | case DT_veclen: | |
1079 | return d1->u.veclen == d2->u.veclen; | |
1080 | ||
1081 | case DT_elt_zero_int: | |
1082 | case DT_elt_one_int: | |
1083 | case DT_elt_zero_wide: | |
070ef6f4 | 1084 | case DT_elt_zero_wide_safe: |
09051660 RH |
1085 | return d1->u.intval == d2->u.intval; |
1086 | ||
1087 | default: | |
1088 | break; | |
1089 | } | |
1090 | } | |
1091 | ||
1092 | /* If either has a predicate that we know something about, set | |
1093 | things up so that D1 is the one that always has a known | |
1094 | predicate. Then see if they have any codes in common. */ | |
1095 | ||
1096 | if (d1->type == DT_pred || d2->type == DT_pred) | |
1097 | { | |
1098 | if (d2->type == DT_pred) | |
1099 | { | |
1100 | struct decision_test *tmp; | |
1101 | tmp = d1, d1 = d2, d2 = tmp; | |
1102 | } | |
1103 | ||
1104 | /* If D2 tests a mode, see if it matches D1. */ | |
1105 | if (d1->u.pred.mode != VOIDmode) | |
1106 | { | |
1107 | if (d2->type == DT_mode) | |
1108 | { | |
f0e1f482 | 1109 | if (d1->u.pred.mode != d2->u.mode |
8f496bc2 HPN |
1110 | /* The mode of an address_operand predicate is the |
1111 | mode of the memory, not the operand. It can only | |
1112 | be used for testing the predicate, so we must | |
1113 | ignore it here. */ | |
1114 | && strcmp (d1->u.pred.name, "address_operand") != 0) | |
09051660 RH |
1115 | return 0; |
1116 | } | |
4dc320a5 RH |
1117 | /* Don't check two predicate modes here, because if both predicates |
1118 | accept CONST_INT, then both can still be true even if the modes | |
1119 | are different. If they don't accept CONST_INT, there will be a | |
1120 | separate DT_mode that will make maybe_both_true_1 return 0. */ | |
09051660 RH |
1121 | } |
1122 | ||
1123 | if (d1->u.pred.index >= 0) | |
1124 | { | |
1125 | /* If D2 tests a code, see if it is in the list of valid | |
1126 | codes for D1's predicate. */ | |
1127 | if (d2->type == DT_code) | |
1128 | { | |
1129 | const RTX_CODE *c = &preds[d1->u.pred.index].codes[0]; | |
1130 | while (*c != 0) | |
1131 | { | |
1132 | if (*c == d2->u.code) | |
1133 | break; | |
1134 | ++c; | |
1135 | } | |
1136 | if (*c == 0) | |
1137 | return 0; | |
1138 | } | |
1139 | ||
1140 | /* Otherwise see if the predicates have any codes in common. */ | |
1141 | else if (d2->type == DT_pred && d2->u.pred.index >= 0) | |
ec65fa66 | 1142 | { |
09051660 RH |
1143 | const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0]; |
1144 | int common = 0; | |
1145 | ||
1146 | while (*c1 != 0 && !common) | |
1147 | { | |
1148 | const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0]; | |
1149 | while (*c2 != 0 && !common) | |
1150 | { | |
1151 | common = (*c1 == *c2); | |
1152 | ++c2; | |
1153 | } | |
1154 | ++c1; | |
1155 | } | |
1156 | ||
1157 | if (!common) | |
1158 | return 0; | |
ec65fa66 RK |
1159 | } |
1160 | } | |
ec65fa66 | 1161 | } |
09051660 | 1162 | |
521b9224 RH |
1163 | /* Tests vs veclen may be known when strict equality is involved. */ |
1164 | if (d1->type == DT_veclen && d2->type == DT_veclen_ge) | |
1165 | return d1->u.veclen >= d2->u.veclen; | |
1166 | if (d1->type == DT_veclen_ge && d2->type == DT_veclen) | |
1167 | return d2->u.veclen >= d1->u.veclen; | |
1168 | ||
09051660 | 1169 | return -1; |
ec65fa66 | 1170 | } |
09051660 RH |
1171 | |
1172 | /* A subroutine of maybe_both_true; examines all the tests for a given node. | |
1173 | Returns > 0 for "definitely both true" and < 0 for "maybe both true". */ | |
1174 | ||
1175 | static int | |
1176 | maybe_both_true_1 (d1, d2) | |
1177 | struct decision_test *d1, *d2; | |
1178 | { | |
1179 | struct decision_test *t1, *t2; | |
1180 | ||
1181 | /* A match_operand with no predicate can match anything. Recognize | |
ff7cc307 | 1182 | this by the existence of a lone DT_accept_op test. */ |
09051660 RH |
1183 | if (d1->type == DT_accept_op || d2->type == DT_accept_op) |
1184 | return 1; | |
1185 | ||
1186 | /* Eliminate pairs of tests while they can exactly match. */ | |
1187 | while (d1 && d2 && d1->type == d2->type) | |
1188 | { | |
1189 | if (maybe_both_true_2 (d1, d2) == 0) | |
1190 | return 0; | |
1191 | d1 = d1->next, d2 = d2->next; | |
1192 | } | |
1193 | ||
1194 | /* After that, consider all pairs. */ | |
1195 | for (t1 = d1; t1 ; t1 = t1->next) | |
1196 | for (t2 = d2; t2 ; t2 = t2->next) | |
1197 | if (maybe_both_true_2 (t1, t2) == 0) | |
1198 | return 0; | |
1199 | ||
1200 | return -1; | |
1201 | } | |
1202 | ||
1203 | /* Return 0 if we can prove that there is no RTL that can match both | |
1204 | D1 and D2. Otherwise, return 1 (it may be that there is an RTL that | |
e0689256 | 1205 | can match both or just that we couldn't prove there wasn't such an RTL). |
ec65fa66 | 1206 | |
cc2902df | 1207 | TOPLEVEL is nonzero if we are to only look at the top level and not |
e0689256 | 1208 | recursively descend. */ |
ec65fa66 | 1209 | |
e0689256 | 1210 | static int |
09051660 | 1211 | maybe_both_true (d1, d2, toplevel) |
e0689256 RK |
1212 | struct decision *d1, *d2; |
1213 | int toplevel; | |
ec65fa66 | 1214 | { |
e0689256 | 1215 | struct decision *p1, *p2; |
00ec6daa JH |
1216 | int cmp; |
1217 | ||
1218 | /* Don't compare strings on the different positions in insn. Doing so | |
1219 | is incorrect and results in false matches from constructs like | |
1220 | ||
1221 | [(set (subreg:HI (match_operand:SI "register_operand" "r") 0) | |
1222 | (subreg:HI (match_operand:SI "register_operand" "r") 0))] | |
1223 | vs | |
1224 | [(set (match_operand:HI "register_operand" "r") | |
1225 | (match_operand:HI "register_operand" "r"))] | |
1226 | ||
1227 | If we are presented with such, we are recursing through the remainder | |
1228 | of a node's success nodes (from the loop at the end of this function). | |
1229 | Skip forward until we come to a position that matches. | |
1230 | ||
1231 | Due to the way position strings are constructed, we know that iterating | |
1232 | forward from the lexically lower position (e.g. "00") will run into | |
1233 | the lexically higher position (e.g. "1") and not the other way around. | |
1234 | This saves a bit of effort. */ | |
1235 | ||
1236 | cmp = strcmp (d1->position, d2->position); | |
1237 | if (cmp != 0) | |
1238 | { | |
1239 | if (toplevel) | |
c4f2c499 | 1240 | abort (); |
00ec6daa JH |
1241 | |
1242 | /* If the d2->position was lexically lower, swap. */ | |
1243 | if (cmp > 0) | |
ace91ff1 | 1244 | p1 = d1, d1 = d2, d2 = p1; |
00ec6daa JH |
1245 | |
1246 | if (d1->success.first == 0) | |
29360e56 | 1247 | return 1; |
00ec6daa | 1248 | for (p1 = d1->success.first; p1; p1 = p1->next) |
09051660 RH |
1249 | if (maybe_both_true (p1, d2, 0)) |
1250 | return 1; | |
00ec6daa | 1251 | |
09051660 | 1252 | return 0; |
00ec6daa | 1253 | } |
e0689256 | 1254 | |
09051660 RH |
1255 | /* Test the current level. */ |
1256 | cmp = maybe_both_true_1 (d1->tests, d2->tests); | |
1257 | if (cmp >= 0) | |
1258 | return cmp; | |
1259 | ||
1260 | /* We can't prove that D1 and D2 cannot both be true. If we are only | |
1261 | to check the top level, return 1. Otherwise, see if we can prove | |
1262 | that all choices in both successors are mutually exclusive. If | |
1263 | either does not have any successors, we can't prove they can't both | |
1264 | be true. */ | |
1265 | ||
1266 | if (toplevel || d1->success.first == 0 || d2->success.first == 0) | |
e0689256 RK |
1267 | return 1; |
1268 | ||
09051660 RH |
1269 | for (p1 = d1->success.first; p1; p1 = p1->next) |
1270 | for (p2 = d2->success.first; p2; p2 = p2->next) | |
1271 | if (maybe_both_true (p1, p2, 0)) | |
1272 | return 1; | |
e0689256 | 1273 | |
09051660 RH |
1274 | return 0; |
1275 | } | |
ec65fa66 | 1276 | |
09051660 | 1277 | /* A subroutine of nodes_identical. Examine two tests for equivalence. */ |
ec65fa66 | 1278 | |
09051660 RH |
1279 | static int |
1280 | nodes_identical_1 (d1, d2) | |
1281 | struct decision_test *d1, *d2; | |
1282 | { | |
1283 | switch (d1->type) | |
ec65fa66 | 1284 | { |
09051660 RH |
1285 | case DT_mode: |
1286 | return d1->u.mode == d2->u.mode; | |
e0689256 | 1287 | |
09051660 RH |
1288 | case DT_code: |
1289 | return d1->u.code == d2->u.code; | |
e0689256 | 1290 | |
09051660 RH |
1291 | case DT_pred: |
1292 | return (d1->u.pred.mode == d2->u.pred.mode | |
1293 | && strcmp (d1->u.pred.name, d2->u.pred.name) == 0); | |
e0689256 | 1294 | |
09051660 RH |
1295 | case DT_c_test: |
1296 | return strcmp (d1->u.c_test, d2->u.c_test) == 0; | |
e0689256 | 1297 | |
09051660 | 1298 | case DT_veclen: |
521b9224 | 1299 | case DT_veclen_ge: |
09051660 | 1300 | return d1->u.veclen == d2->u.veclen; |
e0689256 | 1301 | |
09051660 RH |
1302 | case DT_dup: |
1303 | return d1->u.dup == d2->u.dup; | |
e0689256 | 1304 | |
09051660 RH |
1305 | case DT_elt_zero_int: |
1306 | case DT_elt_one_int: | |
1307 | case DT_elt_zero_wide: | |
070ef6f4 | 1308 | case DT_elt_zero_wide_safe: |
09051660 | 1309 | return d1->u.intval == d2->u.intval; |
e0689256 | 1310 | |
09051660 RH |
1311 | case DT_accept_op: |
1312 | return d1->u.opno == d2->u.opno; | |
1313 | ||
1314 | case DT_accept_insn: | |
1315 | /* Differences will be handled in merge_accept_insn. */ | |
1316 | return 1; | |
1317 | ||
1318 | default: | |
1319 | abort (); | |
ec65fa66 | 1320 | } |
09051660 | 1321 | } |
ec65fa66 | 1322 | |
09051660 | 1323 | /* True iff the two nodes are identical (on one level only). Due |
5b7c7046 | 1324 | to the way these lists are constructed, we shouldn't have to |
09051660 | 1325 | consider different orderings on the tests. */ |
ec65fa66 | 1326 | |
09051660 RH |
1327 | static int |
1328 | nodes_identical (d1, d2) | |
1329 | struct decision *d1, *d2; | |
1330 | { | |
1331 | struct decision_test *t1, *t2; | |
e0689256 | 1332 | |
09051660 RH |
1333 | for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next) |
1334 | { | |
1335 | if (t1->type != t2->type) | |
1336 | return 0; | |
1337 | if (! nodes_identical_1 (t1, t2)) | |
e0689256 | 1338 | return 0; |
09051660 | 1339 | } |
e0689256 | 1340 | |
09051660 | 1341 | /* For success, they should now both be null. */ |
aece2740 RH |
1342 | if (t1 != t2) |
1343 | return 0; | |
1344 | ||
1345 | /* Check that their subnodes are at the same position, as any one set | |
2cec75a1 RH |
1346 | of sibling decisions must be at the same position. Allowing this |
1347 | requires complications to find_afterward and when change_state is | |
1348 | invoked. */ | |
aece2740 RH |
1349 | if (d1->success.first |
1350 | && d2->success.first | |
1351 | && strcmp (d1->success.first->position, d2->success.first->position)) | |
1352 | return 0; | |
1353 | ||
1354 | return 1; | |
e0689256 | 1355 | } |
e0689256 | 1356 | |
09051660 RH |
1357 | /* A subroutine of merge_trees; given two nodes that have been declared |
1358 | identical, cope with two insn accept states. If they differ in the | |
1359 | number of clobbers, then the conflict was created by make_insn_sequence | |
5b7c7046 | 1360 | and we can drop the with-clobbers version on the floor. If both |
09051660 RH |
1361 | nodes have no additional clobbers, we have found an ambiguity in the |
1362 | source machine description. */ | |
1363 | ||
1364 | static void | |
1365 | merge_accept_insn (oldd, addd) | |
1366 | struct decision *oldd, *addd; | |
ec65fa66 | 1367 | { |
09051660 RH |
1368 | struct decision_test *old, *add; |
1369 | ||
1370 | for (old = oldd->tests; old; old = old->next) | |
1371 | if (old->type == DT_accept_insn) | |
1372 | break; | |
1373 | if (old == NULL) | |
1374 | return; | |
e0689256 | 1375 | |
09051660 RH |
1376 | for (add = addd->tests; add; add = add->next) |
1377 | if (add->type == DT_accept_insn) | |
1378 | break; | |
1379 | if (add == NULL) | |
1380 | return; | |
e0689256 | 1381 | |
09051660 RH |
1382 | /* If one node is for a normal insn and the second is for the base |
1383 | insn with clobbers stripped off, the second node should be ignored. */ | |
e0689256 | 1384 | |
09051660 RH |
1385 | if (old->u.insn.num_clobbers_to_add == 0 |
1386 | && add->u.insn.num_clobbers_to_add > 0) | |
1387 | { | |
1388 | /* Nothing to do here. */ | |
1389 | } | |
1390 | else if (old->u.insn.num_clobbers_to_add > 0 | |
1391 | && add->u.insn.num_clobbers_to_add == 0) | |
1392 | { | |
1393 | /* In this case, replace OLD with ADD. */ | |
1394 | old->u.insn = add->u.insn; | |
1395 | } | |
1396 | else | |
1397 | { | |
bcdaba58 RH |
1398 | message_with_line (add->u.insn.lineno, "`%s' matches `%s'", |
1399 | get_insn_name (add->u.insn.code_number), | |
1400 | get_insn_name (old->u.insn.code_number)); | |
1401 | message_with_line (old->u.insn.lineno, "previous definition of `%s'", | |
1402 | get_insn_name (old->u.insn.code_number)); | |
1403 | error_count++; | |
09051660 | 1404 | } |
e0689256 | 1405 | } |
e0689256 | 1406 | |
09051660 RH |
1407 | /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */ |
1408 | ||
1409 | static void | |
e0689256 | 1410 | merge_trees (oldh, addh) |
09051660 | 1411 | struct decision_head *oldh, *addh; |
e0689256 | 1412 | { |
09051660 | 1413 | struct decision *next, *add; |
e0689256 | 1414 | |
09051660 RH |
1415 | if (addh->first == 0) |
1416 | return; | |
1417 | if (oldh->first == 0) | |
1418 | { | |
1419 | *oldh = *addh; | |
1420 | return; | |
1421 | } | |
ec65fa66 | 1422 | |
09051660 RH |
1423 | /* Trying to merge bits at different positions isn't possible. */ |
1424 | if (strcmp (oldh->first->position, addh->first->position)) | |
e0689256 RK |
1425 | abort (); |
1426 | ||
09051660 | 1427 | for (add = addh->first; add ; add = next) |
ec65fa66 | 1428 | { |
09051660 | 1429 | struct decision *old, *insert_before = NULL; |
e0689256 RK |
1430 | |
1431 | next = add->next; | |
1432 | ||
09051660 RH |
1433 | /* The semantics of pattern matching state that the tests are |
1434 | done in the order given in the MD file so that if an insn | |
1435 | matches two patterns, the first one will be used. However, | |
1436 | in practice, most, if not all, patterns are unambiguous so | |
1437 | that their order is independent. In that case, we can merge | |
1438 | identical tests and group all similar modes and codes together. | |
e0689256 RK |
1439 | |
1440 | Scan starting from the end of OLDH until we reach a point | |
09051660 RH |
1441 | where we reach the head of the list or where we pass a |
1442 | pattern that could also be true if NEW is true. If we find | |
1443 | an identical pattern, we can merge them. Also, record the | |
1444 | last node that tests the same code and mode and the last one | |
1445 | that tests just the same mode. | |
e0689256 RK |
1446 | |
1447 | If we have no match, place NEW after the closest match we found. */ | |
5b7c7046 | 1448 | |
09051660 | 1449 | for (old = oldh->last; old; old = old->prev) |
ec65fa66 | 1450 | { |
09051660 | 1451 | if (nodes_identical (old, add)) |
e0689256 | 1452 | { |
09051660 RH |
1453 | merge_accept_insn (old, add); |
1454 | merge_trees (&old->success, &add->success); | |
1455 | goto merged_nodes; | |
1456 | } | |
e0689256 | 1457 | |
09051660 RH |
1458 | if (maybe_both_true (old, add, 0)) |
1459 | break; | |
e0689256 | 1460 | |
09051660 RH |
1461 | /* Insert the nodes in DT test type order, which is roughly |
1462 | how expensive/important the test is. Given that the tests | |
1463 | are also ordered within the list, examining the first is | |
1464 | sufficient. */ | |
dbbbbf3b | 1465 | if ((int) add->tests->type < (int) old->tests->type) |
09051660 RH |
1466 | insert_before = old; |
1467 | } | |
de6a431b | 1468 | |
09051660 RH |
1469 | if (insert_before == NULL) |
1470 | { | |
1471 | add->next = NULL; | |
1472 | add->prev = oldh->last; | |
1473 | oldh->last->next = add; | |
1474 | oldh->last = add; | |
1475 | } | |
1476 | else | |
1477 | { | |
1478 | if ((add->prev = insert_before->prev) != NULL) | |
1479 | add->prev->next = add; | |
1480 | else | |
1481 | oldh->first = add; | |
1482 | add->next = insert_before; | |
1483 | insert_before->prev = add; | |
1484 | } | |
1485 | ||
1486 | merged_nodes:; | |
1487 | } | |
1488 | } | |
1489 | \f | |
5b7c7046 | 1490 | /* Walk the tree looking for sub-nodes that perform common tests. |
09051660 RH |
1491 | Factor out the common test into a new node. This enables us |
1492 | (depending on the test type) to emit switch statements later. */ | |
1493 | ||
1494 | static void | |
1495 | factor_tests (head) | |
1496 | struct decision_head *head; | |
1497 | { | |
1498 | struct decision *first, *next; | |
e0689256 | 1499 | |
09051660 RH |
1500 | for (first = head->first; first && first->next; first = next) |
1501 | { | |
1502 | enum decision_type type; | |
1503 | struct decision *new, *old_last; | |
e0689256 | 1504 | |
09051660 RH |
1505 | type = first->tests->type; |
1506 | next = first->next; | |
e0689256 | 1507 | |
09051660 RH |
1508 | /* Want at least two compatible sequential nodes. */ |
1509 | if (next->tests->type != type) | |
1510 | continue; | |
ec65fa66 | 1511 | |
5b7c7046 | 1512 | /* Don't want all node types, just those we can turn into |
09051660 RH |
1513 | switch statements. */ |
1514 | if (type != DT_mode | |
1515 | && type != DT_code | |
1516 | && type != DT_veclen | |
1517 | && type != DT_elt_zero_int | |
1518 | && type != DT_elt_one_int | |
070ef6f4 | 1519 | && type != DT_elt_zero_wide_safe) |
e0689256 | 1520 | continue; |
ec65fa66 | 1521 | |
09051660 RH |
1522 | /* If we'd been performing more than one test, create a new node |
1523 | below our first test. */ | |
1524 | if (first->tests->next != NULL) | |
1525 | { | |
1526 | new = new_decision (first->position, &first->success); | |
1527 | new->tests = first->tests->next; | |
1528 | first->tests->next = NULL; | |
1529 | } | |
5b7c7046 | 1530 | |
09051660 RH |
1531 | /* Crop the node tree off after our first test. */ |
1532 | first->next = NULL; | |
1533 | old_last = head->last; | |
1534 | head->last = first; | |
1535 | ||
1536 | /* For each compatible test, adjust to perform only one test in | |
1537 | the top level node, then merge the node back into the tree. */ | |
1538 | do | |
1539 | { | |
1540 | struct decision_head h; | |
1541 | ||
1542 | if (next->tests->next != NULL) | |
1543 | { | |
1544 | new = new_decision (next->position, &next->success); | |
1545 | new->tests = next->tests->next; | |
1546 | next->tests->next = NULL; | |
1547 | } | |
1548 | new = next; | |
1549 | next = next->next; | |
1550 | new->next = NULL; | |
1551 | h.first = h.last = new; | |
ec65fa66 | 1552 | |
09051660 RH |
1553 | merge_trees (head, &h); |
1554 | } | |
1555 | while (next && next->tests->type == type); | |
ec65fa66 | 1556 | |
09051660 RH |
1557 | /* After we run out of compatible tests, graft the remaining nodes |
1558 | back onto the tree. */ | |
1559 | if (next) | |
e0689256 | 1560 | { |
09051660 RH |
1561 | next->prev = head->last; |
1562 | head->last->next = next; | |
1563 | head->last = old_last; | |
e0689256 | 1564 | } |
09051660 | 1565 | } |
ec65fa66 | 1566 | |
09051660 RH |
1567 | /* Recurse. */ |
1568 | for (first = head->first; first; first = first->next) | |
1569 | factor_tests (&first->success); | |
1570 | } | |
1571 | ||
1572 | /* After factoring, try to simplify the tests on any one node. | |
1573 | Tests that are useful for switch statements are recognizable | |
1574 | by having only a single test on a node -- we'll be manipulating | |
1575 | nodes with multiple tests: | |
1576 | ||
1577 | If we have mode tests or code tests that are redundant with | |
1578 | predicates, remove them. */ | |
1579 | ||
1580 | static void | |
1581 | simplify_tests (head) | |
1582 | struct decision_head *head; | |
1583 | { | |
1584 | struct decision *tree; | |
1585 | ||
1586 | for (tree = head->first; tree; tree = tree->next) | |
1587 | { | |
1588 | struct decision_test *a, *b; | |
1589 | ||
1590 | a = tree->tests; | |
1591 | b = a->next; | |
1592 | if (b == NULL) | |
1593 | continue; | |
1594 | ||
1595 | /* Find a predicate node. */ | |
1596 | while (b && b->type != DT_pred) | |
1597 | b = b->next; | |
1598 | if (b) | |
e0689256 | 1599 | { |
09051660 RH |
1600 | /* Due to how these tests are constructed, we don't even need |
1601 | to check that the mode and code are compatible -- they were | |
1602 | generated from the predicate in the first place. */ | |
1603 | while (a->type == DT_mode || a->type == DT_code) | |
1604 | a = a->next; | |
1605 | tree->tests = a; | |
e0689256 RK |
1606 | } |
1607 | } | |
ec65fa66 | 1608 | |
09051660 RH |
1609 | /* Recurse. */ |
1610 | for (tree = head->first; tree; tree = tree->next) | |
1611 | simplify_tests (&tree->success); | |
ec65fa66 | 1612 | } |
09051660 | 1613 | |
e0689256 RK |
1614 | /* Count the number of subnodes of HEAD. If the number is high enough, |
1615 | make the first node in HEAD start a separate subroutine in the C code | |
09051660 | 1616 | that is generated. */ |
ec65fa66 RK |
1617 | |
1618 | static int | |
09051660 RH |
1619 | break_out_subroutines (head, initial) |
1620 | struct decision_head *head; | |
e0689256 | 1621 | int initial; |
ec65fa66 RK |
1622 | { |
1623 | int size = 0; | |
87bd0490 | 1624 | struct decision *sub; |
e0689256 | 1625 | |
09051660 RH |
1626 | for (sub = head->first; sub; sub = sub->next) |
1627 | size += 1 + break_out_subroutines (&sub->success, 0); | |
e0689256 RK |
1628 | |
1629 | if (size > SUBROUTINE_THRESHOLD && ! initial) | |
ec65fa66 | 1630 | { |
09051660 | 1631 | head->first->subroutine_number = ++next_subroutine_number; |
ec65fa66 RK |
1632 | size = 1; |
1633 | } | |
1634 | return size; | |
1635 | } | |
09051660 RH |
1636 | |
1637 | /* For each node p, find the next alternative that might be true | |
1638 | when p is true. */ | |
ec65fa66 RK |
1639 | |
1640 | static void | |
09051660 RH |
1641 | find_afterward (head, real_afterward) |
1642 | struct decision_head *head; | |
1643 | struct decision *real_afterward; | |
ec65fa66 | 1644 | { |
09051660 | 1645 | struct decision *p, *q, *afterward; |
69277eec | 1646 | |
a1f300c0 | 1647 | /* We can't propagate alternatives across subroutine boundaries. |
09051660 | 1648 | This is not incorrect, merely a minor optimization loss. */ |
ec65fa66 | 1649 | |
09051660 RH |
1650 | p = head->first; |
1651 | afterward = (p->subroutine_number > 0 ? NULL : real_afterward); | |
e0689256 | 1652 | |
09051660 | 1653 | for ( ; p ; p = p->next) |
e0689256 | 1654 | { |
09051660 RH |
1655 | /* Find the next node that might be true if this one fails. */ |
1656 | for (q = p->next; q ; q = q->next) | |
1657 | if (maybe_both_true (p, q, 1)) | |
1658 | break; | |
e0689256 | 1659 | |
5b7c7046 | 1660 | /* If we reached the end of the list without finding one, |
09051660 RH |
1661 | use the incoming afterward position. */ |
1662 | if (!q) | |
1663 | q = afterward; | |
1664 | p->afterward = q; | |
1665 | if (q) | |
1666 | q->need_label = 1; | |
e0689256 RK |
1667 | } |
1668 | ||
09051660 RH |
1669 | /* Recurse. */ |
1670 | for (p = head->first; p ; p = p->next) | |
1671 | if (p->success.first) | |
1672 | find_afterward (&p->success, p->afterward); | |
1673 | ||
1674 | /* When we are generating a subroutine, record the real afterward | |
1675 | position in the first node where write_tree can find it, and we | |
1676 | can do the right thing at the subroutine call site. */ | |
1677 | p = head->first; | |
1678 | if (p->subroutine_number > 0) | |
1679 | p->afterward = real_afterward; | |
1680 | } | |
1681 | \f | |
1682 | /* Assuming that the state of argument is denoted by OLDPOS, take whatever | |
1683 | actions are necessary to move to NEWPOS. If we fail to move to the | |
cc2902df | 1684 | new state, branch to node AFTERWARD if nonzero, otherwise return. |
e0689256 | 1685 | |
09051660 | 1686 | Failure to move to the new state can only occur if we are trying to |
dc297297 | 1687 | match multiple insns and we try to step past the end of the stream. */ |
e0689256 | 1688 | |
09051660 RH |
1689 | static void |
1690 | change_state (oldpos, newpos, afterward, indent) | |
1691 | const char *oldpos; | |
1692 | const char *newpos; | |
1693 | struct decision *afterward; | |
1694 | const char *indent; | |
1695 | { | |
1696 | int odepth = strlen (oldpos); | |
1697 | int ndepth = strlen (newpos); | |
1698 | int depth; | |
1699 | int old_has_insn, new_has_insn; | |
e0689256 | 1700 | |
09051660 RH |
1701 | /* Pop up as many levels as necessary. */ |
1702 | for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth) | |
1703 | continue; | |
ec65fa66 | 1704 | |
09051660 RH |
1705 | /* Hunt for the last [A-Z] in both strings. */ |
1706 | for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn) | |
0df6c2c7 | 1707 | if (ISUPPER (oldpos[old_has_insn])) |
09051660 | 1708 | break; |
0deeec4e | 1709 | for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn) |
0df6c2c7 | 1710 | if (ISUPPER (newpos[new_has_insn])) |
09051660 | 1711 | break; |
e0689256 | 1712 | |
09051660 RH |
1713 | /* Go down to desired level. */ |
1714 | while (depth < ndepth) | |
1715 | { | |
dc297297 | 1716 | /* It's a different insn from the first one. */ |
0df6c2c7 | 1717 | if (ISUPPER (newpos[depth])) |
ec65fa66 | 1718 | { |
09051660 RH |
1719 | /* We can only fail if we're moving down the tree. */ |
1720 | if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth]) | |
e0689256 | 1721 | { |
5b7c7046 | 1722 | printf ("%stem = peep2_next_insn (%d);\n", |
09051660 | 1723 | indent, newpos[depth] - 'A'); |
e0689256 RK |
1724 | } |
1725 | else | |
1726 | { | |
5b7c7046 | 1727 | printf ("%stem = peep2_next_insn (%d);\n", |
09051660 RH |
1728 | indent, newpos[depth] - 'A'); |
1729 | printf ("%sif (tem == NULL_RTX)\n", indent); | |
1730 | if (afterward) | |
1731 | printf ("%s goto L%d;\n", indent, afterward->number); | |
e0689256 | 1732 | else |
09051660 | 1733 | printf ("%s goto ret0;\n", indent); |
e0689256 | 1734 | } |
23280139 | 1735 | printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1); |
ec65fa66 | 1736 | } |
0df6c2c7 | 1737 | else if (ISLOWER (newpos[depth])) |
09051660 RH |
1738 | printf ("%sx%d = XVECEXP (x%d, 0, %d);\n", |
1739 | indent, depth + 1, depth, newpos[depth] - 'a'); | |
1740 | else | |
1741 | printf ("%sx%d = XEXP (x%d, %c);\n", | |
1742 | indent, depth + 1, depth, newpos[depth]); | |
1743 | ++depth; | |
1744 | } | |
1745 | } | |
1746 | \f | |
1747 | /* Print the enumerator constant for CODE -- the upcase version of | |
1748 | the name. */ | |
1749 | ||
1750 | static void | |
1751 | print_code (code) | |
1752 | enum rtx_code code; | |
1753 | { | |
b3694847 | 1754 | const char *p; |
09051660 RH |
1755 | for (p = GET_RTX_NAME (code); *p; p++) |
1756 | putchar (TOUPPER (*p)); | |
1757 | } | |
ec65fa66 | 1758 | |
09051660 | 1759 | /* Emit code to cross an afterward link -- change state and branch. */ |
ec65fa66 | 1760 | |
09051660 RH |
1761 | static void |
1762 | write_afterward (start, afterward, indent) | |
1763 | struct decision *start; | |
1764 | struct decision *afterward; | |
1765 | const char *indent; | |
1766 | { | |
1767 | if (!afterward || start->subroutine_number > 0) | |
1768 | printf("%sgoto ret0;\n", indent); | |
1769 | else | |
1770 | { | |
1771 | change_state (start->position, afterward->position, NULL, indent); | |
1772 | printf ("%sgoto L%d;\n", indent, afterward->number); | |
1773 | } | |
1774 | } | |
e0689256 | 1775 | |
5b7c7046 | 1776 | /* Emit a switch statement, if possible, for an initial sequence of |
09051660 | 1777 | nodes at START. Return the first node yet untested. */ |
e0689256 | 1778 | |
09051660 RH |
1779 | static struct decision * |
1780 | write_switch (start, depth) | |
1781 | struct decision *start; | |
1782 | int depth; | |
1783 | { | |
1784 | struct decision *p = start; | |
1785 | enum decision_type type = p->tests->type; | |
1651ab85 | 1786 | struct decision *needs_label = NULL; |
ec65fa66 | 1787 | |
09051660 RH |
1788 | /* If we have two or more nodes in sequence that test the same one |
1789 | thing, we may be able to use a switch statement. */ | |
e0689256 | 1790 | |
09051660 RH |
1791 | if (!p->next |
1792 | || p->tests->next | |
1793 | || p->next->tests->type != type | |
2cec75a1 RH |
1794 | || p->next->tests->next |
1795 | || nodes_identical_1 (p->tests, p->next->tests)) | |
09051660 | 1796 | return p; |
e0689256 | 1797 | |
09051660 RH |
1798 | /* DT_code is special in that we can do interesting things with |
1799 | known predicates at the same time. */ | |
1800 | if (type == DT_code) | |
1801 | { | |
1802 | char codemap[NUM_RTX_CODE]; | |
1803 | struct decision *ret; | |
1e193337 | 1804 | RTX_CODE code; |
ec65fa66 | 1805 | |
09051660 | 1806 | memset (codemap, 0, sizeof(codemap)); |
ec65fa66 | 1807 | |
09051660 | 1808 | printf (" switch (GET_CODE (x%d))\n {\n", depth); |
1e193337 | 1809 | code = p->tests->u.code; |
5b7c7046 | 1810 | do |
ec65fa66 | 1811 | { |
1651ab85 AO |
1812 | if (p != start && p->need_label && needs_label == NULL) |
1813 | needs_label = p; | |
1814 | ||
09051660 RH |
1815 | printf (" case "); |
1816 | print_code (code); | |
1817 | printf (":\n goto L%d;\n", p->success.first->number); | |
1818 | p->success.first->need_label = 1; | |
1819 | ||
1820 | codemap[code] = 1; | |
1821 | p = p->next; | |
1822 | } | |
1e193337 RH |
1823 | while (p |
1824 | && ! p->tests->next | |
1825 | && p->tests->type == DT_code | |
1826 | && ! codemap[code = p->tests->u.code]); | |
09051660 RH |
1827 | |
1828 | /* If P is testing a predicate that we know about and we haven't | |
1829 | seen any of the codes that are valid for the predicate, we can | |
1830 | write a series of "case" statement, one for each possible code. | |
1831 | Since we are already in a switch, these redundant tests are very | |
1832 | cheap and will reduce the number of predicates called. */ | |
1833 | ||
1834 | /* Note that while we write out cases for these predicates here, | |
1835 | we don't actually write the test here, as it gets kinda messy. | |
1836 | It is trivial to leave this to later by telling our caller that | |
1837 | we only processed the CODE tests. */ | |
1651ab85 AO |
1838 | if (needs_label != NULL) |
1839 | ret = needs_label; | |
1840 | else | |
1841 | ret = p; | |
09051660 RH |
1842 | |
1843 | while (p && p->tests->type == DT_pred | |
1844 | && p->tests->u.pred.index >= 0) | |
1845 | { | |
1846 | const RTX_CODE *c; | |
ec65fa66 | 1847 | |
09051660 RH |
1848 | for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c) |
1849 | if (codemap[(int) *c] != 0) | |
1850 | goto pred_done; | |
e0689256 | 1851 | |
09051660 | 1852 | for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c) |
ec65fa66 | 1853 | { |
09051660 RH |
1854 | printf (" case "); |
1855 | print_code (*c); | |
1856 | printf (":\n"); | |
1857 | codemap[(int) *c] = 1; | |
ec65fa66 | 1858 | } |
e0689256 | 1859 | |
09051660 RH |
1860 | printf (" goto L%d;\n", p->number); |
1861 | p->need_label = 1; | |
1862 | p = p->next; | |
ec65fa66 RK |
1863 | } |
1864 | ||
09051660 RH |
1865 | pred_done: |
1866 | /* Make the default case skip the predicates we managed to match. */ | |
e0689256 | 1867 | |
09051660 RH |
1868 | printf (" default:\n"); |
1869 | if (p != ret) | |
ec65fa66 | 1870 | { |
09051660 | 1871 | if (p) |
b030d598 | 1872 | { |
09051660 RH |
1873 | printf (" goto L%d;\n", p->number); |
1874 | p->need_label = 1; | |
b030d598 | 1875 | } |
e0689256 | 1876 | else |
09051660 | 1877 | write_afterward (start, start->afterward, " "); |
ec65fa66 | 1878 | } |
ec65fa66 | 1879 | else |
09051660 RH |
1880 | printf (" break;\n"); |
1881 | printf (" }\n"); | |
1882 | ||
1883 | return ret; | |
1884 | } | |
1885 | else if (type == DT_mode | |
1886 | || type == DT_veclen | |
1887 | || type == DT_elt_zero_int | |
1888 | || type == DT_elt_one_int | |
070ef6f4 | 1889 | || type == DT_elt_zero_wide_safe) |
09051660 | 1890 | { |
9591d210 | 1891 | const char *indent = ""; |
9e9f3ede | 1892 | |
9591d210 JH |
1893 | /* We cast switch parameter to integer, so we must ensure that the value |
1894 | fits. */ | |
1895 | if (type == DT_elt_zero_wide_safe) | |
1896 | { | |
1897 | indent = " "; | |
1898 | printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth); | |
1899 | } | |
1900 | printf ("%s switch (", indent); | |
09051660 RH |
1901 | switch (type) |
1902 | { | |
1903 | case DT_mode: | |
c8d8ed65 | 1904 | printf ("GET_MODE (x%d)", depth); |
09051660 RH |
1905 | break; |
1906 | case DT_veclen: | |
c8d8ed65 | 1907 | printf ("XVECLEN (x%d, 0)", depth); |
09051660 RH |
1908 | break; |
1909 | case DT_elt_zero_int: | |
c8d8ed65 | 1910 | printf ("XINT (x%d, 0)", depth); |
09051660 RH |
1911 | break; |
1912 | case DT_elt_one_int: | |
c8d8ed65 | 1913 | printf ("XINT (x%d, 1)", depth); |
09051660 | 1914 | break; |
070ef6f4 | 1915 | case DT_elt_zero_wide_safe: |
c8d8ed65 RK |
1916 | /* Convert result of XWINT to int for portability since some C |
1917 | compilers won't do it and some will. */ | |
1918 | printf ("(int) XWINT (x%d, 0)", depth); | |
09051660 RH |
1919 | break; |
1920 | default: | |
1921 | abort (); | |
1922 | } | |
9591d210 | 1923 | printf (")\n%s {\n", indent); |
cba998bf | 1924 | |
09051660 | 1925 | do |
e0689256 | 1926 | { |
2cec75a1 RH |
1927 | /* Merge trees will not unify identical nodes if their |
1928 | sub-nodes are at different levels. Thus we must check | |
1929 | for duplicate cases. */ | |
1930 | struct decision *q; | |
1931 | for (q = start; q != p; q = q->next) | |
1932 | if (nodes_identical_1 (p->tests, q->tests)) | |
1933 | goto case_done; | |
1934 | ||
1651ab85 AO |
1935 | if (p != start && p->need_label && needs_label == NULL) |
1936 | needs_label = p; | |
1937 | ||
9591d210 | 1938 | printf ("%s case ", indent); |
09051660 | 1939 | switch (type) |
cba998bf | 1940 | { |
09051660 RH |
1941 | case DT_mode: |
1942 | printf ("%smode", GET_MODE_NAME (p->tests->u.mode)); | |
1943 | break; | |
1944 | case DT_veclen: | |
1945 | printf ("%d", p->tests->u.veclen); | |
1946 | break; | |
1947 | case DT_elt_zero_int: | |
1948 | case DT_elt_one_int: | |
1949 | case DT_elt_zero_wide: | |
070ef6f4 | 1950 | case DT_elt_zero_wide_safe: |
bb9b3805 | 1951 | printf (HOST_WIDE_INT_PRINT_DEC_C, p->tests->u.intval); |
09051660 RH |
1952 | break; |
1953 | default: | |
1954 | abort (); | |
cba998bf | 1955 | } |
9591d210 | 1956 | printf (":\n%s goto L%d;\n", indent, p->success.first->number); |
09051660 | 1957 | p->success.first->need_label = 1; |
cba998bf | 1958 | |
09051660 | 1959 | p = p->next; |
e0689256 | 1960 | } |
09051660 | 1961 | while (p && p->tests->type == type && !p->tests->next); |
2cec75a1 RH |
1962 | |
1963 | case_done: | |
9591d210 JH |
1964 | printf ("%s default:\n%s break;\n%s }\n", |
1965 | indent, indent, indent); | |
ec65fa66 | 1966 | |
1651ab85 | 1967 | return needs_label != NULL ? needs_label : p; |
09051660 RH |
1968 | } |
1969 | else | |
1970 | { | |
1971 | /* None of the other tests are ameanable. */ | |
1972 | return p; | |
1973 | } | |
1974 | } | |
ec65fa66 | 1975 | |
09051660 | 1976 | /* Emit code for one test. */ |
e0689256 | 1977 | |
09051660 RH |
1978 | static void |
1979 | write_cond (p, depth, subroutine_type) | |
1980 | struct decision_test *p; | |
1981 | int depth; | |
1982 | enum routine_type subroutine_type; | |
1983 | { | |
1984 | switch (p->type) | |
1985 | { | |
1986 | case DT_mode: | |
1987 | printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode)); | |
1988 | break; | |
e0689256 | 1989 | |
09051660 RH |
1990 | case DT_code: |
1991 | printf ("GET_CODE (x%d) == ", depth); | |
1992 | print_code (p->u.code); | |
1993 | break; | |
1994 | ||
1995 | case DT_veclen: | |
1996 | printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen); | |
1997 | break; | |
1998 | ||
1999 | case DT_elt_zero_int: | |
2000 | printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval); | |
2001 | break; | |
2002 | ||
2003 | case DT_elt_one_int: | |
2004 | printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval); | |
2005 | break; | |
2006 | ||
2007 | case DT_elt_zero_wide: | |
070ef6f4 | 2008 | case DT_elt_zero_wide_safe: |
09051660 | 2009 | printf ("XWINT (x%d, 0) == ", depth); |
bb9b3805 | 2010 | printf (HOST_WIDE_INT_PRINT_DEC_C, p->u.intval); |
09051660 RH |
2011 | break; |
2012 | ||
521b9224 RH |
2013 | case DT_veclen_ge: |
2014 | printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen); | |
2015 | break; | |
2016 | ||
09051660 RH |
2017 | case DT_dup: |
2018 | printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup); | |
2019 | break; | |
2020 | ||
2021 | case DT_pred: | |
2022 | printf ("%s (x%d, %smode)", p->u.pred.name, depth, | |
2023 | GET_MODE_NAME (p->u.pred.mode)); | |
2024 | break; | |
2025 | ||
2026 | case DT_c_test: | |
2027 | printf ("(%s)", p->u.c_test); | |
2028 | break; | |
2029 | ||
2030 | case DT_accept_insn: | |
2031 | switch (subroutine_type) | |
2032 | { | |
2033 | case RECOG: | |
2034 | if (p->u.insn.num_clobbers_to_add == 0) | |
2035 | abort (); | |
2036 | printf ("pnum_clobbers != NULL"); | |
2037 | break; | |
2038 | ||
2039 | default: | |
2040 | abort (); | |
ec65fa66 | 2041 | } |
09051660 | 2042 | break; |
ec65fa66 | 2043 | |
09051660 RH |
2044 | default: |
2045 | abort (); | |
e0689256 | 2046 | } |
09051660 | 2047 | } |
ec65fa66 | 2048 | |
09051660 RH |
2049 | /* Emit code for one action. The previous tests have succeeded; |
2050 | TEST is the last of the chain. In the normal case we simply | |
2051 | perform a state change. For the `accept' tests we must do more work. */ | |
ec65fa66 | 2052 | |
09051660 | 2053 | static void |
23280139 RH |
2054 | write_action (p, test, depth, uncond, success, subroutine_type) |
2055 | struct decision *p; | |
09051660 RH |
2056 | struct decision_test *test; |
2057 | int depth, uncond; | |
2058 | struct decision *success; | |
2059 | enum routine_type subroutine_type; | |
2060 | { | |
2061 | const char *indent; | |
2062 | int want_close = 0; | |
2063 | ||
2064 | if (uncond) | |
2065 | indent = " "; | |
2066 | else if (test->type == DT_accept_op || test->type == DT_accept_insn) | |
e0689256 | 2067 | { |
09051660 RH |
2068 | fputs (" {\n", stdout); |
2069 | indent = " "; | |
2070 | want_close = 1; | |
e0689256 | 2071 | } |
09051660 RH |
2072 | else |
2073 | indent = " "; | |
ec65fa66 | 2074 | |
09051660 | 2075 | if (test->type == DT_accept_op) |
e0689256 | 2076 | { |
09051660 RH |
2077 | printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth); |
2078 | ||
2079 | /* Only allow DT_accept_insn to follow. */ | |
2080 | if (test->next) | |
2081 | { | |
2082 | test = test->next; | |
2083 | if (test->type != DT_accept_insn) | |
2084 | abort (); | |
2085 | } | |
ec65fa66 RK |
2086 | } |
2087 | ||
09051660 RH |
2088 | /* Sanity check that we're now at the end of the list of tests. */ |
2089 | if (test->next) | |
e0689256 | 2090 | abort (); |
ec65fa66 | 2091 | |
09051660 | 2092 | if (test->type == DT_accept_insn) |
ec65fa66 | 2093 | { |
09051660 RH |
2094 | switch (subroutine_type) |
2095 | { | |
2096 | case RECOG: | |
2097 | if (test->u.insn.num_clobbers_to_add != 0) | |
2098 | printf ("%s*pnum_clobbers = %d;\n", | |
2099 | indent, test->u.insn.num_clobbers_to_add); | |
2100 | printf ("%sreturn %d;\n", indent, test->u.insn.code_number); | |
2101 | break; | |
2102 | ||
2103 | case SPLIT: | |
2104 | printf ("%sreturn gen_split_%d (operands);\n", | |
2105 | indent, test->u.insn.code_number); | |
2106 | break; | |
2107 | ||
2108 | case PEEPHOLE2: | |
23280139 RH |
2109 | { |
2110 | int match_len = 0, i; | |
2111 | ||
2112 | for (i = strlen (p->position) - 1; i >= 0; --i) | |
0df6c2c7 | 2113 | if (ISUPPER (p->position[i])) |
23280139 RH |
2114 | { |
2115 | match_len = p->position[i] - 'A'; | |
2116 | break; | |
2117 | } | |
2118 | printf ("%s*_pmatch_len = %d;\n", indent, match_len); | |
2119 | printf ("%stem = gen_peephole2_%d (insn, operands);\n", | |
2120 | indent, test->u.insn.code_number); | |
2121 | printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent); | |
2122 | } | |
09051660 RH |
2123 | break; |
2124 | ||
2125 | default: | |
2126 | abort (); | |
2127 | } | |
ec65fa66 RK |
2128 | } |
2129 | else | |
09051660 RH |
2130 | { |
2131 | printf("%sgoto L%d;\n", indent, success->number); | |
2132 | success->need_label = 1; | |
2133 | } | |
ec65fa66 | 2134 | |
09051660 RH |
2135 | if (want_close) |
2136 | fputs (" }\n", stdout); | |
ec65fa66 RK |
2137 | } |
2138 | ||
09051660 RH |
2139 | /* Return 1 if the test is always true and has no fallthru path. Return -1 |
2140 | if the test does have a fallthru path, but requires that the condition be | |
2141 | terminated. Otherwise return 0 for a normal test. */ | |
2142 | /* ??? is_unconditional is a stupid name for a tri-state function. */ | |
2143 | ||
ec65fa66 | 2144 | static int |
09051660 RH |
2145 | is_unconditional (t, subroutine_type) |
2146 | struct decision_test *t; | |
2147 | enum routine_type subroutine_type; | |
ec65fa66 | 2148 | { |
09051660 RH |
2149 | if (t->type == DT_accept_op) |
2150 | return 1; | |
ec65fa66 | 2151 | |
09051660 RH |
2152 | if (t->type == DT_accept_insn) |
2153 | { | |
2154 | switch (subroutine_type) | |
2155 | { | |
2156 | case RECOG: | |
2157 | return (t->u.insn.num_clobbers_to_add == 0); | |
2158 | case SPLIT: | |
2159 | return 1; | |
2160 | case PEEPHOLE2: | |
2161 | return -1; | |
2162 | default: | |
2163 | abort (); | |
2164 | } | |
2165 | } | |
ec65fa66 | 2166 | |
09051660 | 2167 | return 0; |
ec65fa66 RK |
2168 | } |
2169 | ||
09051660 RH |
2170 | /* Emit code for one node -- the conditional and the accompanying action. |
2171 | Return true if there is no fallthru path. */ | |
2172 | ||
ec65fa66 | 2173 | static int |
09051660 RH |
2174 | write_node (p, depth, subroutine_type) |
2175 | struct decision *p; | |
2176 | int depth; | |
2177 | enum routine_type subroutine_type; | |
ec65fa66 | 2178 | { |
09051660 RH |
2179 | struct decision_test *test, *last_test; |
2180 | int uncond; | |
ec65fa66 | 2181 | |
09051660 RH |
2182 | last_test = test = p->tests; |
2183 | uncond = is_unconditional (test, subroutine_type); | |
2184 | if (uncond == 0) | |
2185 | { | |
2186 | printf (" if ("); | |
2187 | write_cond (test, depth, subroutine_type); | |
2188 | ||
2189 | while ((test = test->next) != NULL) | |
2190 | { | |
2191 | int uncond2; | |
2192 | ||
2193 | last_test = test; | |
2194 | uncond2 = is_unconditional (test, subroutine_type); | |
2195 | if (uncond2 != 0) | |
2196 | break; | |
2197 | ||
2198 | printf ("\n && "); | |
2199 | write_cond (test, depth, subroutine_type); | |
2200 | } | |
2201 | ||
2202 | printf (")\n"); | |
2203 | } | |
2204 | ||
23280139 | 2205 | write_action (p, last_test, depth, uncond, p->success.first, subroutine_type); |
09051660 RH |
2206 | |
2207 | return uncond > 0; | |
ec65fa66 RK |
2208 | } |
2209 | ||
09051660 RH |
2210 | /* Emit code for all of the sibling nodes of HEAD. */ |
2211 | ||
ec65fa66 | 2212 | static void |
09051660 RH |
2213 | write_tree_1 (head, depth, subroutine_type) |
2214 | struct decision_head *head; | |
2215 | int depth; | |
2216 | enum routine_type subroutine_type; | |
ec65fa66 | 2217 | { |
09051660 RH |
2218 | struct decision *p, *next; |
2219 | int uncond = 0; | |
e0689256 | 2220 | |
09051660 RH |
2221 | for (p = head->first; p ; p = next) |
2222 | { | |
2223 | /* The label for the first element was printed in write_tree. */ | |
2224 | if (p != head->first && p->need_label) | |
2225 | OUTPUT_LABEL (" ", p->number); | |
2226 | ||
2227 | /* Attempt to write a switch statement for a whole sequence. */ | |
2228 | next = write_switch (p, depth); | |
2229 | if (p != next) | |
2230 | uncond = 0; | |
2231 | else | |
2232 | { | |
2233 | /* Failed -- fall back and write one node. */ | |
2234 | uncond = write_node (p, depth, subroutine_type); | |
2235 | next = p->next; | |
2236 | } | |
2237 | } | |
e0689256 | 2238 | |
09051660 RH |
2239 | /* Finished with this chain. Close a fallthru path by branching |
2240 | to the afterward node. */ | |
2241 | if (! uncond) | |
2242 | write_afterward (head->last, head->last->afterward, " "); | |
2243 | } | |
e0689256 | 2244 | |
09051660 RH |
2245 | /* Write out the decision tree starting at HEAD. PREVPOS is the |
2246 | position at the node that branched to this node. */ | |
e0689256 RK |
2247 | |
2248 | static void | |
09051660 RH |
2249 | write_tree (head, prevpos, type, initial) |
2250 | struct decision_head *head; | |
85fda1eb | 2251 | const char *prevpos; |
e0689256 | 2252 | enum routine_type type; |
09051660 | 2253 | int initial; |
e0689256 | 2254 | { |
b3694847 | 2255 | struct decision *p = head->first; |
e0689256 | 2256 | |
09051660 RH |
2257 | putchar ('\n'); |
2258 | if (p->need_label) | |
2259 | OUTPUT_LABEL (" ", p->number); | |
2260 | ||
2261 | if (! initial && p->subroutine_number > 0) | |
e0689256 | 2262 | { |
09051660 RH |
2263 | static const char * const name_prefix[] = { |
2264 | "recog", "split", "peephole2" | |
2265 | }; | |
2266 | ||
2267 | static const char * const call_suffix[] = { | |
23280139 | 2268 | ", pnum_clobbers", "", ", _pmatch_len" |
09051660 | 2269 | }; |
e0689256 | 2270 | |
09051660 RH |
2271 | /* This node has been broken out into a separate subroutine. |
2272 | Call it, test the result, and branch accordingly. */ | |
2273 | ||
2274 | if (p->afterward) | |
e0689256 RK |
2275 | { |
2276 | printf (" tem = %s_%d (x0, insn%s);\n", | |
09051660 | 2277 | name_prefix[type], p->subroutine_number, call_suffix[type]); |
ede7cd44 | 2278 | if (IS_SPLIT (type)) |
09051660 | 2279 | printf (" if (tem != 0)\n return tem;\n"); |
71bde1f3 | 2280 | else |
09051660 RH |
2281 | printf (" if (tem >= 0)\n return tem;\n"); |
2282 | ||
2283 | change_state (p->position, p->afterward->position, NULL, " "); | |
2284 | printf (" goto L%d;\n", p->afterward->number); | |
e0689256 RK |
2285 | } |
2286 | else | |
09051660 RH |
2287 | { |
2288 | printf (" return %s_%d (x0, insn%s);\n", | |
2289 | name_prefix[type], p->subroutine_number, call_suffix[type]); | |
2290 | } | |
e0689256 | 2291 | } |
09051660 RH |
2292 | else |
2293 | { | |
2294 | int depth = strlen (p->position); | |
e0689256 | 2295 | |
09051660 RH |
2296 | change_state (prevpos, p->position, head->last->afterward, " "); |
2297 | write_tree_1 (head, depth, type); | |
e0689256 | 2298 | |
09051660 RH |
2299 | for (p = head->first; p; p = p->next) |
2300 | if (p->success.first) | |
2301 | write_tree (&p->success, p->position, type, 0); | |
2302 | } | |
e0689256 RK |
2303 | } |
2304 | ||
09051660 RH |
2305 | /* Write out a subroutine of type TYPE to do comparisons starting at |
2306 | node TREE. */ | |
ede7cd44 | 2307 | |
09051660 RH |
2308 | static void |
2309 | write_subroutine (head, type) | |
2310 | struct decision_head *head; | |
2311 | enum routine_type type; | |
2312 | { | |
e8f9b13a | 2313 | int subfunction = head->first ? head->first->subroutine_number : 0; |
09051660 RH |
2314 | const char *s_or_e; |
2315 | char extension[32]; | |
2316 | int i; | |
5b7c7046 | 2317 | |
09051660 | 2318 | s_or_e = subfunction ? "static " : ""; |
e0689256 | 2319 | |
09051660 RH |
2320 | if (subfunction) |
2321 | sprintf (extension, "_%d", subfunction); | |
2322 | else if (type == RECOG) | |
2323 | extension[0] = '\0'; | |
2324 | else | |
2325 | strcpy (extension, "_insns"); | |
2326 | ||
913d0833 KG |
2327 | switch (type) |
2328 | { | |
2329 | case RECOG: | |
a94ae8f5 | 2330 | printf ("%sint recog%s PARAMS ((rtx, rtx, int *));\n", s_or_e, extension); |
913d0833 KG |
2331 | printf ("%sint\n\ |
2332 | recog%s (x0, insn, pnum_clobbers)\n\ | |
6894579f | 2333 | rtx x0 ATTRIBUTE_UNUSED;\n\ |
913d0833 KG |
2334 | rtx insn ATTRIBUTE_UNUSED;\n\ |
2335 | int *pnum_clobbers ATTRIBUTE_UNUSED;\n", s_or_e, extension); | |
2336 | break; | |
2337 | case SPLIT: | |
a94ae8f5 | 2338 | printf ("%srtx split%s PARAMS ((rtx, rtx));\n", s_or_e, extension); |
913d0833 KG |
2339 | printf ("%srtx\n\ |
2340 | split%s (x0, insn)\n\ | |
6894579f | 2341 | rtx x0 ATTRIBUTE_UNUSED;\n\ |
913d0833 KG |
2342 | rtx insn ATTRIBUTE_UNUSED;\n", s_or_e, extension); |
2343 | break; | |
2344 | case PEEPHOLE2: | |
23280139 RH |
2345 | printf ("%srtx peephole2%s PARAMS ((rtx, rtx, int *));\n", |
2346 | s_or_e, extension); | |
913d0833 | 2347 | printf ("%srtx\n\ |
23280139 | 2348 | peephole2%s (x0, insn, _pmatch_len)\n\ |
6894579f | 2349 | rtx x0 ATTRIBUTE_UNUSED;\n\ |
913d0833 | 2350 | rtx insn ATTRIBUTE_UNUSED;\n\ |
23280139 | 2351 | int *_pmatch_len ATTRIBUTE_UNUSED;\n", s_or_e, extension); |
913d0833 KG |
2352 | break; |
2353 | } | |
09051660 | 2354 | |
b3694847 | 2355 | printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n"); |
09051660 | 2356 | for (i = 1; i <= max_depth; i++) |
b3694847 | 2357 | printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i); |
09051660 | 2358 | |
09051660 RH |
2359 | printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int"); |
2360 | ||
d90ffc8d JH |
2361 | if (!subfunction) |
2362 | printf (" recog_data.insn = NULL_RTX;\n"); | |
2363 | ||
e8f9b13a RH |
2364 | if (head->first) |
2365 | write_tree (head, "", type, 1); | |
2366 | else | |
2367 | printf (" goto ret0;\n"); | |
09051660 | 2368 | |
09051660 RH |
2369 | printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1); |
2370 | } | |
2371 | ||
2372 | /* In break_out_subroutines, we discovered the boundaries for the | |
2373 | subroutines, but did not write them out. Do so now. */ | |
e0689256 | 2374 | |
ec65fa66 | 2375 | static void |
09051660 RH |
2376 | write_subroutines (head, type) |
2377 | struct decision_head *head; | |
2378 | enum routine_type type; | |
ec65fa66 | 2379 | { |
09051660 | 2380 | struct decision *p; |
ec65fa66 | 2381 | |
09051660 RH |
2382 | for (p = head->first; p ; p = p->next) |
2383 | if (p->success.first) | |
2384 | write_subroutines (&p->success, type); | |
ec65fa66 | 2385 | |
09051660 RH |
2386 | if (head->first->subroutine_number > 0) |
2387 | write_subroutine (head, type); | |
2388 | } | |
ede7cd44 | 2389 | |
09051660 | 2390 | /* Begin the output file. */ |
ede7cd44 | 2391 | |
09051660 RH |
2392 | static void |
2393 | write_header () | |
2394 | { | |
2395 | puts ("\ | |
2396 | /* Generated automatically by the program `genrecog' from the target\n\ | |
2397 | machine description file. */\n\ | |
2398 | \n\ | |
2399 | #include \"config.h\"\n\ | |
2400 | #include \"system.h\"\n\ | |
4977bab6 ZW |
2401 | #include \"coretypes.h\"\n\ |
2402 | #include \"tm.h\"\n\ | |
09051660 RH |
2403 | #include \"rtl.h\"\n\ |
2404 | #include \"tm_p.h\"\n\ | |
2405 | #include \"function.h\"\n\ | |
2406 | #include \"insn-config.h\"\n\ | |
2407 | #include \"recog.h\"\n\ | |
2408 | #include \"real.h\"\n\ | |
2409 | #include \"output.h\"\n\ | |
2410 | #include \"flags.h\"\n\ | |
b1afd7f4 KG |
2411 | #include \"hard-reg-set.h\"\n\ |
2412 | #include \"resource.h\"\n\ | |
04f378ce | 2413 | #include \"toplev.h\"\n\ |
5b7c7046 | 2414 | #include \"reload.h\"\n\ |
09051660 RH |
2415 | \n"); |
2416 | ||
2417 | puts ("\n\ | |
2418 | /* `recog' contains a decision tree that recognizes whether the rtx\n\ | |
2419 | X0 is a valid instruction.\n\ | |
2420 | \n\ | |
2421 | recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\ | |
2422 | returns a nonnegative number which is the insn code number for the\n\ | |
2423 | pattern that matched. This is the same as the order in the machine\n\ | |
2424 | description of the entry that matched. This number can be used as an\n\ | |
3f6790bf KG |
2425 | index into `insn_data' and other tables.\n"); |
2426 | puts ("\ | |
09051660 RH |
2427 | The third argument to recog is an optional pointer to an int. If\n\ |
2428 | present, recog will accept a pattern if it matches except for missing\n\ | |
2429 | CLOBBER expressions at the end. In that case, the value pointed to by\n\ | |
2430 | the optional pointer will be set to the number of CLOBBERs that need\n\ | |
3f6790bf KG |
2431 | to be added (it should be initialized to zero by the caller). If it"); |
2432 | puts ("\ | |
09051660 RH |
2433 | is set nonzero, the caller should allocate a PARALLEL of the\n\ |
2434 | appropriate size, copy the initial entries, and call add_clobbers\n\ | |
2435 | (found in insn-emit.c) to fill in the CLOBBERs.\n\ | |
2436 | "); | |
2437 | ||
2438 | puts ("\n\ | |
2439 | The function split_insns returns 0 if the rtl could not\n\ | |
2f937369 | 2440 | be split or the split rtl as an INSN list if it can be.\n\ |
09051660 RH |
2441 | \n\ |
2442 | The function peephole2_insns returns 0 if the rtl could not\n\ | |
2f937369 | 2443 | be matched. If there was a match, the new rtl is returned in an INSN list,\n\ |
09051660 RH |
2444 | and LAST_INSN will point to the last recognized insn in the old sequence.\n\ |
2445 | */\n\n"); | |
2446 | } | |
ec65fa66 | 2447 | |
09051660 RH |
2448 | \f |
2449 | /* Construct and return a sequence of decisions | |
2450 | that will recognize INSN. | |
ec65fa66 | 2451 | |
09051660 RH |
2452 | TYPE says what type of routine we are recognizing (RECOG or SPLIT). */ |
2453 | ||
2454 | static struct decision_head | |
2455 | make_insn_sequence (insn, type) | |
2456 | rtx insn; | |
2457 | enum routine_type type; | |
2458 | { | |
2459 | rtx x; | |
2460 | const char *c_test = XSTR (insn, type == RECOG ? 2 : 1); | |
2199e5fa | 2461 | int truth = maybe_eval_c_test (c_test); |
09051660 RH |
2462 | struct decision *last; |
2463 | struct decision_test *test, **place; | |
2464 | struct decision_head head; | |
3b304f5b | 2465 | char c_test_pos[2]; |
09051660 | 2466 | |
2199e5fa ZW |
2467 | /* We should never see an insn whose C test is false at compile time. */ |
2468 | if (truth == 0) | |
2469 | abort (); | |
2470 | ||
09051660 RH |
2471 | record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL)); |
2472 | ||
3b304f5b | 2473 | c_test_pos[0] = '\0'; |
09051660 | 2474 | if (type == PEEPHOLE2) |
ec65fa66 | 2475 | { |
09051660 RH |
2476 | int i, j; |
2477 | ||
2478 | /* peephole2 gets special treatment: | |
2479 | - X always gets an outer parallel even if it's only one entry | |
2480 | - we remove all traces of outer-level match_scratch and match_dup | |
2481 | expressions here. */ | |
2482 | x = rtx_alloc (PARALLEL); | |
2483 | PUT_MODE (x, VOIDmode); | |
2484 | XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0)); | |
2485 | for (i = j = 0; i < XVECLEN (insn, 0); i++) | |
ede7cd44 | 2486 | { |
09051660 RH |
2487 | rtx tmp = XVECEXP (insn, 0, i); |
2488 | if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP) | |
2489 | { | |
2490 | XVECEXP (x, 0, j) = tmp; | |
2491 | j++; | |
2492 | } | |
2493 | } | |
2494 | XVECLEN (x, 0) = j; | |
4e9887c7 | 2495 | |
4e9887c7 RH |
2496 | c_test_pos[0] = 'A' + j - 1; |
2497 | c_test_pos[1] = '\0'; | |
09051660 RH |
2498 | } |
2499 | else if (XVECLEN (insn, type == RECOG) == 1) | |
2500 | x = XVECEXP (insn, type == RECOG, 0); | |
2501 | else | |
2502 | { | |
2503 | x = rtx_alloc (PARALLEL); | |
2504 | XVEC (x, 0) = XVEC (insn, type == RECOG); | |
2505 | PUT_MODE (x, VOIDmode); | |
2506 | } | |
2507 | ||
7297e9fc | 2508 | validate_pattern (x, insn, NULL_RTX, 0); |
bcdaba58 | 2509 | |
09051660 RH |
2510 | memset(&head, 0, sizeof(head)); |
2511 | last = add_to_sequence (x, &head, "", type, 1); | |
2512 | ||
2513 | /* Find the end of the test chain on the last node. */ | |
2514 | for (test = last->tests; test->next; test = test->next) | |
2515 | continue; | |
2516 | place = &test->next; | |
2517 | ||
2199e5fa ZW |
2518 | /* Skip the C test if it's known to be true at compile time. */ |
2519 | if (truth == -1) | |
09051660 RH |
2520 | { |
2521 | /* Need a new node if we have another test to add. */ | |
2522 | if (test->type == DT_accept_op) | |
2523 | { | |
4e9887c7 | 2524 | last = new_decision (c_test_pos, &last->success); |
09051660 RH |
2525 | place = &last->tests; |
2526 | } | |
2527 | test = new_decision_test (DT_c_test, &place); | |
2528 | test->u.c_test = c_test; | |
2529 | } | |
2530 | ||
2531 | test = new_decision_test (DT_accept_insn, &place); | |
2532 | test->u.insn.code_number = next_insn_code; | |
bcdaba58 | 2533 | test->u.insn.lineno = pattern_lineno; |
09051660 RH |
2534 | test->u.insn.num_clobbers_to_add = 0; |
2535 | ||
2536 | switch (type) | |
2537 | { | |
2538 | case RECOG: | |
2539 | /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends | |
2540 | with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes. | |
2541 | If so, set up to recognize the pattern without these CLOBBERs. */ | |
2542 | ||
2543 | if (GET_CODE (x) == PARALLEL) | |
2544 | { | |
2545 | int i; | |
2546 | ||
2547 | /* Find the last non-clobber in the parallel. */ | |
2548 | for (i = XVECLEN (x, 0); i > 0; i--) | |
ede7cd44 | 2549 | { |
09051660 RH |
2550 | rtx y = XVECEXP (x, 0, i - 1); |
2551 | if (GET_CODE (y) != CLOBBER | |
2552 | || (GET_CODE (XEXP (y, 0)) != REG | |
2553 | && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH)) | |
2554 | break; | |
ede7cd44 | 2555 | } |
09051660 RH |
2556 | |
2557 | if (i != XVECLEN (x, 0)) | |
ede7cd44 | 2558 | { |
09051660 RH |
2559 | rtx new; |
2560 | struct decision_head clobber_head; | |
ede7cd44 | 2561 | |
09051660 RH |
2562 | /* Build a similar insn without the clobbers. */ |
2563 | if (i == 1) | |
2564 | new = XVECEXP (x, 0, 0); | |
ede7cd44 | 2565 | else |
09051660 RH |
2566 | { |
2567 | int j; | |
2568 | ||
2569 | new = rtx_alloc (PARALLEL); | |
2570 | XVEC (new, 0) = rtvec_alloc (i); | |
2571 | for (j = i - 1; j >= 0; j--) | |
2572 | XVECEXP (new, 0, j) = XVECEXP (x, 0, j); | |
2573 | } | |
2574 | ||
2575 | /* Recognize it. */ | |
2576 | memset (&clobber_head, 0, sizeof(clobber_head)); | |
2577 | last = add_to_sequence (new, &clobber_head, "", type, 1); | |
ede7cd44 | 2578 | |
09051660 RH |
2579 | /* Find the end of the test chain on the last node. */ |
2580 | for (test = last->tests; test->next; test = test->next) | |
2581 | continue; | |
2582 | ||
2583 | /* We definitely have a new test to add -- create a new | |
2584 | node if needed. */ | |
2585 | place = &test->next; | |
2586 | if (test->type == DT_accept_op) | |
2587 | { | |
2588 | last = new_decision ("", &last->success); | |
2589 | place = &last->tests; | |
2590 | } | |
2591 | ||
2199e5fa ZW |
2592 | /* Skip the C test if it's known to be true at compile |
2593 | time. */ | |
2594 | if (truth == -1) | |
09051660 RH |
2595 | { |
2596 | test = new_decision_test (DT_c_test, &place); | |
2597 | test->u.c_test = c_test; | |
2598 | } | |
2599 | ||
2600 | test = new_decision_test (DT_accept_insn, &place); | |
2601 | test->u.insn.code_number = next_insn_code; | |
bcdaba58 | 2602 | test->u.insn.lineno = pattern_lineno; |
09051660 RH |
2603 | test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i; |
2604 | ||
2605 | merge_trees (&head, &clobber_head); | |
ede7cd44 | 2606 | } |
ede7cd44 | 2607 | } |
09051660 RH |
2608 | break; |
2609 | ||
2610 | case SPLIT: | |
2611 | /* Define the subroutine we will call below and emit in genemit. */ | |
a94ae8f5 | 2612 | printf ("extern rtx gen_split_%d PARAMS ((rtx *));\n", next_insn_code); |
09051660 RH |
2613 | break; |
2614 | ||
2615 | case PEEPHOLE2: | |
2616 | /* Define the subroutine we will call below and emit in genemit. */ | |
a94ae8f5 | 2617 | printf ("extern rtx gen_peephole2_%d PARAMS ((rtx, rtx *));\n", |
09051660 RH |
2618 | next_insn_code); |
2619 | break; | |
ec65fa66 | 2620 | } |
e0689256 | 2621 | |
09051660 | 2622 | return head; |
ec65fa66 RK |
2623 | } |
2624 | ||
09051660 RH |
2625 | static void |
2626 | process_tree (head, subroutine_type) | |
2627 | struct decision_head *head; | |
2628 | enum routine_type subroutine_type; | |
ec65fa66 | 2629 | { |
4dc320a5 RH |
2630 | if (head->first == NULL) |
2631 | { | |
2632 | /* We can elide peephole2_insns, but not recog or split_insns. */ | |
2633 | if (subroutine_type == PEEPHOLE2) | |
2634 | return; | |
2635 | } | |
2636 | else | |
e8f9b13a RH |
2637 | { |
2638 | factor_tests (head); | |
ec65fa66 | 2639 | |
e8f9b13a RH |
2640 | next_subroutine_number = 0; |
2641 | break_out_subroutines (head, 1); | |
2642 | find_afterward (head, NULL); | |
c1b59dce | 2643 | |
4dc320a5 RH |
2644 | /* We run this after find_afterward, because find_afterward needs |
2645 | the redundant DT_mode tests on predicates to determine whether | |
2646 | two tests can both be true or not. */ | |
2647 | simplify_tests(head); | |
2648 | ||
e8f9b13a RH |
2649 | write_subroutines (head, subroutine_type); |
2650 | } | |
4dc320a5 | 2651 | |
09051660 RH |
2652 | write_subroutine (head, subroutine_type); |
2653 | } | |
2654 | \f | |
a94ae8f5 | 2655 | extern int main PARAMS ((int, char **)); |
36f0e0a6 | 2656 | |
ec65fa66 RK |
2657 | int |
2658 | main (argc, argv) | |
2659 | int argc; | |
2660 | char **argv; | |
2661 | { | |
2662 | rtx desc; | |
09051660 | 2663 | struct decision_head recog_tree, split_tree, peephole2_tree, h; |
ec65fa66 | 2664 | |
f8b6598e | 2665 | progname = "genrecog"; |
09051660 RH |
2666 | |
2667 | memset (&recog_tree, 0, sizeof recog_tree); | |
2668 | memset (&split_tree, 0, sizeof split_tree); | |
2669 | memset (&peephole2_tree, 0, sizeof peephole2_tree); | |
ec65fa66 RK |
2670 | |
2671 | if (argc <= 1) | |
1f978f5f | 2672 | fatal ("no input file name"); |
ec65fa66 | 2673 | |
04d8aa70 | 2674 | if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE) |
c88c0d42 | 2675 | return (FATAL_EXIT_CODE); |
ec65fa66 | 2676 | |
ec65fa66 RK |
2677 | next_insn_code = 0; |
2678 | next_index = 0; | |
2679 | ||
09051660 | 2680 | write_header (); |
ec65fa66 RK |
2681 | |
2682 | /* Read the machine description. */ | |
2683 | ||
2684 | while (1) | |
2685 | { | |
c88c0d42 CP |
2686 | desc = read_md_rtx (&pattern_lineno, &next_insn_code); |
2687 | if (desc == NULL) | |
ec65fa66 | 2688 | break; |
ec65fa66 | 2689 | |
ec65fa66 | 2690 | if (GET_CODE (desc) == DEFINE_INSN) |
09051660 RH |
2691 | { |
2692 | h = make_insn_sequence (desc, RECOG); | |
2693 | merge_trees (&recog_tree, &h); | |
2694 | } | |
ec65fa66 | 2695 | else if (GET_CODE (desc) == DEFINE_SPLIT) |
09051660 RH |
2696 | { |
2697 | h = make_insn_sequence (desc, SPLIT); | |
2698 | merge_trees (&split_tree, &h); | |
2699 | } | |
ede7cd44 | 2700 | else if (GET_CODE (desc) == DEFINE_PEEPHOLE2) |
09051660 RH |
2701 | { |
2702 | h = make_insn_sequence (desc, PEEPHOLE2); | |
2703 | merge_trees (&peephole2_tree, &h); | |
2704 | } | |
5b7c7046 | 2705 | |
ec65fa66 RK |
2706 | next_index++; |
2707 | } | |
2708 | ||
bcdaba58 RH |
2709 | if (error_count) |
2710 | return FATAL_EXIT_CODE; | |
2711 | ||
09051660 | 2712 | puts ("\n\n"); |
ec65fa66 | 2713 | |
09051660 RH |
2714 | process_tree (&recog_tree, RECOG); |
2715 | process_tree (&split_tree, SPLIT); | |
2716 | process_tree (&peephole2_tree, PEEPHOLE2); | |
ede7cd44 | 2717 | |
ec65fa66 | 2718 | fflush (stdout); |
c1b59dce | 2719 | return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE); |
ec65fa66 | 2720 | } |
09051660 | 2721 | \f |
a995e389 RH |
2722 | /* Define this so we can link with print-rtl.o to get debug_rtx function. */ |
2723 | const char * | |
2724 | get_insn_name (code) | |
2725 | int code; | |
2726 | { | |
2727 | if (code < insn_name_ptr_size) | |
2728 | return insn_name_ptr[code]; | |
2729 | else | |
2730 | return NULL; | |
2731 | } | |
09051660 RH |
2732 | |
2733 | static void | |
2734 | record_insn_name (code, name) | |
2735 | int code; | |
2736 | const char *name; | |
2737 | { | |
2738 | static const char *last_real_name = "insn"; | |
2739 | static int last_real_code = 0; | |
2740 | char *new; | |
2741 | ||
2742 | if (insn_name_ptr_size <= code) | |
2743 | { | |
2744 | int new_size; | |
2745 | new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512); | |
2746 | insn_name_ptr = | |
2747 | (char **) xrealloc (insn_name_ptr, sizeof(char *) * new_size); | |
5b7c7046 | 2748 | memset (insn_name_ptr + insn_name_ptr_size, 0, |
09051660 RH |
2749 | sizeof(char *) * (new_size - insn_name_ptr_size)); |
2750 | insn_name_ptr_size = new_size; | |
2751 | } | |
2752 | ||
2753 | if (!name || name[0] == '\0') | |
2754 | { | |
2755 | new = xmalloc (strlen (last_real_name) + 10); | |
2756 | sprintf (new, "%s+%d", last_real_name, code - last_real_code); | |
2757 | } | |
2758 | else | |
2759 | { | |
2760 | last_real_name = new = xstrdup (name); | |
2761 | last_real_code = code; | |
2762 | } | |
5b7c7046 | 2763 | |
09051660 | 2764 | insn_name_ptr[code] = new; |
5b7c7046 | 2765 | } |
09051660 | 2766 | \f |
09051660 RH |
2767 | static void |
2768 | debug_decision_2 (test) | |
2769 | struct decision_test *test; | |
2770 | { | |
2771 | switch (test->type) | |
2772 | { | |
2773 | case DT_mode: | |
2774 | fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode)); | |
2775 | break; | |
2776 | case DT_code: | |
2777 | fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code)); | |
2778 | break; | |
2779 | case DT_veclen: | |
2780 | fprintf (stderr, "veclen=%d", test->u.veclen); | |
2781 | break; | |
2782 | case DT_elt_zero_int: | |
2783 | fprintf (stderr, "elt0_i=%d", (int) test->u.intval); | |
2784 | break; | |
2785 | case DT_elt_one_int: | |
2786 | fprintf (stderr, "elt1_i=%d", (int) test->u.intval); | |
2787 | break; | |
2788 | case DT_elt_zero_wide: | |
2789 | fprintf (stderr, "elt0_w="); | |
2790 | fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval); | |
2791 | break; | |
070ef6f4 RK |
2792 | case DT_elt_zero_wide_safe: |
2793 | fprintf (stderr, "elt0_ws="); | |
2794 | fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval); | |
2795 | break; | |
521b9224 RH |
2796 | case DT_veclen_ge: |
2797 | fprintf (stderr, "veclen>=%d", test->u.veclen); | |
2798 | break; | |
09051660 RH |
2799 | case DT_dup: |
2800 | fprintf (stderr, "dup=%d", test->u.dup); | |
2801 | break; | |
2802 | case DT_pred: | |
2803 | fprintf (stderr, "pred=(%s,%s)", | |
2804 | test->u.pred.name, GET_MODE_NAME(test->u.pred.mode)); | |
2805 | break; | |
2806 | case DT_c_test: | |
2807 | { | |
2808 | char sub[16+4]; | |
2809 | strncpy (sub, test->u.c_test, sizeof(sub)); | |
2810 | memcpy (sub+16, "...", 4); | |
2811 | fprintf (stderr, "c_test=\"%s\"", sub); | |
2812 | } | |
2813 | break; | |
2814 | case DT_accept_op: | |
2815 | fprintf (stderr, "A_op=%d", test->u.opno); | |
2816 | break; | |
2817 | case DT_accept_insn: | |
5b7c7046 | 2818 | fprintf (stderr, "A_insn=(%d,%d)", |
09051660 RH |
2819 | test->u.insn.code_number, test->u.insn.num_clobbers_to_add); |
2820 | break; | |
2821 | ||
2822 | default: | |
2823 | abort (); | |
2824 | } | |
2825 | } | |
2826 | ||
2827 | static void | |
2828 | debug_decision_1 (d, indent) | |
2829 | struct decision *d; | |
2830 | int indent; | |
2831 | { | |
2832 | int i; | |
2833 | struct decision_test *test; | |
2834 | ||
2835 | if (d == NULL) | |
2836 | { | |
2837 | for (i = 0; i < indent; ++i) | |
2838 | putc (' ', stderr); | |
2839 | fputs ("(nil)\n", stderr); | |
2840 | return; | |
2841 | } | |
2842 | ||
2843 | for (i = 0; i < indent; ++i) | |
2844 | putc (' ', stderr); | |
2845 | ||
2846 | putc ('{', stderr); | |
2847 | test = d->tests; | |
2848 | if (test) | |
2849 | { | |
2850 | debug_decision_2 (test); | |
2851 | while ((test = test->next) != NULL) | |
2852 | { | |
2853 | fputs (" + ", stderr); | |
2854 | debug_decision_2 (test); | |
2855 | } | |
2856 | } | |
4dc320a5 RH |
2857 | fprintf (stderr, "} %d n %d a %d\n", d->number, |
2858 | (d->next ? d->next->number : -1), | |
2859 | (d->afterward ? d->afterward->number : -1)); | |
09051660 RH |
2860 | } |
2861 | ||
2862 | static void | |
2863 | debug_decision_0 (d, indent, maxdepth) | |
2864 | struct decision *d; | |
2865 | int indent, maxdepth; | |
2866 | { | |
2867 | struct decision *n; | |
2868 | int i; | |
2869 | ||
2870 | if (maxdepth < 0) | |
2871 | return; | |
2872 | if (d == NULL) | |
2873 | { | |
2874 | for (i = 0; i < indent; ++i) | |
2875 | putc (' ', stderr); | |
2876 | fputs ("(nil)\n", stderr); | |
2877 | return; | |
2878 | } | |
2879 | ||
2880 | debug_decision_1 (d, indent); | |
2881 | for (n = d->success.first; n ; n = n->next) | |
2882 | debug_decision_0 (n, indent + 2, maxdepth - 1); | |
2883 | } | |
2884 | ||
2885 | void | |
2886 | debug_decision (d) | |
2887 | struct decision *d; | |
2888 | { | |
2889 | debug_decision_0 (d, 0, 1000000); | |
2890 | } | |
ec1c89e6 RH |
2891 | |
2892 | void | |
2893 | debug_decision_list (d) | |
2894 | struct decision *d; | |
2895 | { | |
2896 | while (d) | |
2897 | { | |
2898 | debug_decision_0 (d, 0, 0); | |
2899 | d = d->next; | |
2900 | } | |
2901 | } |