]> gcc.gnu.org Git - gcc.git/blame - gcc/gcse.c
Based on patch from Intel's ORP team:
[gcc.git] / gcc / gcse.c
CommitLineData
f4e584dc 1/* Global common subexpression elimination/Partial redundancy elimination
7506f491 2 and global constant/copy propagation for GNU compiler.
8e42ace1
KH
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
7506f491 5
1322177d 6This file is part of GCC.
7506f491 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
7506f491 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
7506f491
DE
17
18You should have received a copy of the GNU General Public License
1322177d
LB
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
7506f491
DE
22
23/* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
f4e584dc
JL
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
7506f491
DE
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
34
7506f491
DE
35*/
36
37/* References searched while implementing this.
7506f491
DE
38
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
42
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
46
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
50
7506f491
DE
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
54
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
59
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
64
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
69
7506f491
DE
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
73
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
79
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
84
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
88
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
100
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
104
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
112
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
116
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
120
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
124
f4e584dc
JL
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
128
a42cd965
AM
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
132
f4e584dc
JL
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
137
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
141
7506f491
DE
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
144*/
145
146#include "config.h"
50b2596f 147#include "system.h"
01198c2f 148#include "toplev.h"
7506f491
DE
149
150#include "rtl.h"
6baf1cc8 151#include "tm_p.h"
7506f491
DE
152#include "regs.h"
153#include "hard-reg-set.h"
154#include "flags.h"
155#include "real.h"
156#include "insn-config.h"
157#include "recog.h"
158#include "basic-block.h"
50b2596f 159#include "output.h"
49ad7cfa 160#include "function.h"
3cdbd1f8 161#include "expr.h"
fb0c0a12 162#include "ggc.h"
f1fa37ff 163#include "params.h"
aaa4ca30 164
7506f491
DE
165#include "obstack.h"
166#define obstack_chunk_alloc gmalloc
167#define obstack_chunk_free free
168
7506f491
DE
169/* Propagate flow information through back edges and thus enable PRE's
170 moving loop invariant calculations out of loops.
171
172 Originally this tended to create worse overall code, but several
173 improvements during the development of PRE seem to have made following
174 back edges generally a win.
175
176 Note much of the loop invariant code motion done here would normally
177 be done by loop.c, which has more heuristics for when to move invariants
178 out of loops. At some point we might need to move some of those
179 heuristics into gcse.c. */
180#define FOLLOW_BACK_EDGES 1
181
f4e584dc
JL
182/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
183 are a superset of those done by GCSE.
7506f491 184
f4e584dc 185 We perform the following steps:
7506f491
DE
186
187 1) Compute basic block information.
188
189 2) Compute table of places where registers are set.
190
191 3) Perform copy/constant propagation.
192
193 4) Perform global cse.
194
e78d9500 195 5) Perform another pass of copy/constant propagation.
7506f491
DE
196
197 Two passes of copy/constant propagation are done because the first one
198 enables more GCSE and the second one helps to clean up the copies that
199 GCSE creates. This is needed more for PRE than for Classic because Classic
200 GCSE will try to use an existing register containing the common
201 subexpression rather than create a new one. This is harder to do for PRE
202 because of the code motion (which Classic GCSE doesn't do).
203
204 Expressions we are interested in GCSE-ing are of the form
205 (set (pseudo-reg) (expression)).
206 Function want_to_gcse_p says what these are.
207
208 PRE handles moving invariant expressions out of loops (by treating them as
f4e584dc 209 partially redundant).
7506f491
DE
210
211 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
212 assignment) based GVN (global value numbering). L. T. Simpson's paper
213 (Rice University) on value numbering is a useful reference for this.
214
215 **********************
216
217 We used to support multiple passes but there are diminishing returns in
218 doing so. The first pass usually makes 90% of the changes that are doable.
219 A second pass can make a few more changes made possible by the first pass.
220 Experiments show any further passes don't make enough changes to justify
221 the expense.
222
223 A study of spec92 using an unlimited number of passes:
224 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
225 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
226 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
227
228 It was found doing copy propagation between each pass enables further
229 substitutions.
230
231 PRE is quite expensive in complicated functions because the DFA can take
740f35a0 232 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
7506f491
DE
233 be modified if one wants to experiment.
234
235 **********************
236
237 The steps for PRE are:
238
239 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
240
241 2) Perform the data flow analysis for PRE.
242
243 3) Delete the redundant instructions
244
245 4) Insert the required copies [if any] that make the partially
246 redundant instructions fully redundant.
247
248 5) For other reaching expressions, insert an instruction to copy the value
249 to a newly created pseudo that will reach the redundant instruction.
250
251 The deletion is done first so that when we do insertions we
252 know which pseudo reg to use.
253
254 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
255 argue it is not. The number of iterations for the algorithm to converge
256 is typically 2-4 so I don't view it as that expensive (relatively speaking).
257
f4e584dc 258 PRE GCSE depends heavily on the second CSE pass to clean up the copies
7506f491
DE
259 we create. To make an expression reach the place where it's redundant,
260 the result of the expression is copied to a new register, and the redundant
261 expression is deleted by replacing it with this new register. Classic GCSE
262 doesn't have this problem as much as it computes the reaching defs of
263 each register in each block and thus can try to use an existing register.
264
265 **********************
266
7506f491
DE
267 A fair bit of simplicity is created by creating small functions for simple
268 tasks, even when the function is only called in one place. This may
269 measurably slow things down [or may not] by creating more function call
270 overhead than is necessary. The source is laid out so that it's trivial
271 to make the affected functions inline so that one can measure what speed
272 up, if any, can be achieved, and maybe later when things settle things can
273 be rearranged.
274
275 Help stamp out big monolithic functions! */
276\f
277/* GCSE global vars. */
278
279/* -dG dump file. */
280static FILE *gcse_file;
281
f4e584dc
JL
282/* Note whether or not we should run jump optimization after gcse. We
283 want to do this for two cases.
284
285 * If we changed any jumps via cprop.
286
287 * If we added any labels via edge splitting. */
288
289static int run_jump_opt_after_gcse;
290
7506f491
DE
291/* Bitmaps are normally not included in debugging dumps.
292 However it's useful to be able to print them from GDB.
293 We could create special functions for this, but it's simpler to
294 just allow passing stderr to the dump_foo fns. Since stderr can
295 be a macro, we store a copy here. */
296static FILE *debug_stderr;
297
298/* An obstack for our working variables. */
299static struct obstack gcse_obstack;
300
301/* Non-zero for each mode that supports (set (reg) (reg)).
302 This is trivially true for integer and floating point values.
303 It may or may not be true for condition codes. */
304static char can_copy_p[(int) NUM_MACHINE_MODES];
305
306/* Non-zero if can_copy_p has been initialized. */
307static int can_copy_init_p;
308
c4c81601 309struct reg_use {rtx reg_rtx; };
abd535b6 310
7506f491
DE
311/* Hash table of expressions. */
312
313struct expr
314{
315 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
316 rtx expr;
317 /* Index in the available expression bitmaps. */
318 int bitmap_index;
319 /* Next entry with the same hash. */
320 struct expr *next_same_hash;
321 /* List of anticipatable occurrences in basic blocks in the function.
322 An "anticipatable occurrence" is one that is the first occurrence in the
f4e584dc
JL
323 basic block, the operands are not modified in the basic block prior
324 to the occurrence and the output is not used between the start of
325 the block and the occurrence. */
7506f491
DE
326 struct occr *antic_occr;
327 /* List of available occurrence in basic blocks in the function.
328 An "available occurrence" is one that is the last occurrence in the
329 basic block and the operands are not modified by following statements in
330 the basic block [including this insn]. */
331 struct occr *avail_occr;
332 /* Non-null if the computation is PRE redundant.
333 The value is the newly created pseudo-reg to record a copy of the
334 expression in all the places that reach the redundant copy. */
335 rtx reaching_reg;
336};
337
338/* Occurrence of an expression.
339 There is one per basic block. If a pattern appears more than once the
340 last appearance is used [or first for anticipatable expressions]. */
341
342struct occr
343{
344 /* Next occurrence of this expression. */
345 struct occr *next;
346 /* The insn that computes the expression. */
347 rtx insn;
348 /* Non-zero if this [anticipatable] occurrence has been deleted. */
349 char deleted_p;
350 /* Non-zero if this [available] occurrence has been copied to
351 reaching_reg. */
352 /* ??? This is mutually exclusive with deleted_p, so they could share
353 the same byte. */
354 char copied_p;
355};
356
357/* Expression and copy propagation hash tables.
358 Each hash table is an array of buckets.
359 ??? It is known that if it were an array of entries, structure elements
360 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
361 not clear whether in the final analysis a sufficient amount of memory would
362 be saved as the size of the available expression bitmaps would be larger
363 [one could build a mapping table without holes afterwards though].
c4c81601 364 Someday I'll perform the computation and figure it out. */
7506f491
DE
365
366/* Total size of the expression hash table, in elements. */
2e653e39
RK
367static unsigned int expr_hash_table_size;
368
7506f491
DE
369/* The table itself.
370 This is an array of `expr_hash_table_size' elements. */
371static struct expr **expr_hash_table;
372
373/* Total size of the copy propagation hash table, in elements. */
ebb13e7e 374static unsigned int set_hash_table_size;
c4c81601 375
7506f491
DE
376/* The table itself.
377 This is an array of `set_hash_table_size' elements. */
378static struct expr **set_hash_table;
379
380/* Mapping of uids to cuids.
381 Only real insns get cuids. */
382static int *uid_cuid;
383
384/* Highest UID in UID_CUID. */
385static int max_uid;
386
387/* Get the cuid of an insn. */
b86db3eb
BS
388#ifdef ENABLE_CHECKING
389#define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
390#else
7506f491 391#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
b86db3eb 392#endif
7506f491
DE
393
394/* Number of cuids. */
395static int max_cuid;
396
397/* Mapping of cuids to insns. */
398static rtx *cuid_insn;
399
400/* Get insn from cuid. */
401#define CUID_INSN(CUID) (cuid_insn[CUID])
402
403/* Maximum register number in function prior to doing gcse + 1.
404 Registers created during this pass have regno >= max_gcse_regno.
405 This is named with "gcse" to not collide with global of same name. */
770ae6cc 406static unsigned int max_gcse_regno;
7506f491
DE
407
408/* Maximum number of cse-able expressions found. */
409static int n_exprs;
c4c81601 410
7506f491
DE
411/* Maximum number of assignments for copy propagation found. */
412static int n_sets;
413
414/* Table of registers that are modified.
c4c81601 415
7506f491
DE
416 For each register, each element is a list of places where the pseudo-reg
417 is set.
418
419 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
420 requires knowledge of which blocks kill which regs [and thus could use
f4e584dc 421 a bitmap instead of the lists `reg_set_table' uses].
7506f491 422
c4c81601
RK
423 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
424 num-regs) [however perhaps it may be useful to keep the data as is]. One
425 advantage of recording things this way is that `reg_set_table' is fairly
426 sparse with respect to pseudo regs but for hard regs could be fairly dense
427 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
7506f491
DE
428 up functions like compute_transp since in the case of pseudo-regs we only
429 need to iterate over the number of times a pseudo-reg is set, not over the
430 number of basic blocks [clearly there is a bit of a slow down in the cases
431 where a pseudo is set more than once in a block, however it is believed
432 that the net effect is to speed things up]. This isn't done for hard-regs
433 because recording call-clobbered hard-regs in `reg_set_table' at each
c4c81601
RK
434 function call can consume a fair bit of memory, and iterating over
435 hard-regs stored this way in compute_transp will be more expensive. */
7506f491 436
c4c81601
RK
437typedef struct reg_set
438{
7506f491
DE
439 /* The next setting of this register. */
440 struct reg_set *next;
441 /* The insn where it was set. */
442 rtx insn;
443} reg_set;
c4c81601 444
7506f491 445static reg_set **reg_set_table;
c4c81601 446
7506f491
DE
447/* Size of `reg_set_table'.
448 The table starts out at max_gcse_regno + slop, and is enlarged as
449 necessary. */
450static int reg_set_table_size;
c4c81601 451
7506f491
DE
452/* Amount to grow `reg_set_table' by when it's full. */
453#define REG_SET_TABLE_SLOP 100
454
a13d4ebf
AM
455/* This is a list of expressions which are MEMs and will be used by load
456 or store motion.
457 Load motion tracks MEMs which aren't killed by
458 anything except itself. (ie, loads and stores to a single location).
459 We can then allow movement of these MEM refs with a little special
460 allowance. (all stores copy the same value to the reaching reg used
461 for the loads). This means all values used to store into memory must have
462 no side effects so we can re-issue the setter value.
463 Store Motion uses this structure as an expression table to track stores
464 which look interesting, and might be moveable towards the exit block. */
465
466struct ls_expr
467{
468 struct expr * expr; /* Gcse expression reference for LM. */
469 rtx pattern; /* Pattern of this mem. */
aaa4ca30
AJ
470 rtx loads; /* INSN list of loads seen. */
471 rtx stores; /* INSN list of stores seen. */
a13d4ebf
AM
472 struct ls_expr * next; /* Next in the list. */
473 int invalid; /* Invalid for some reason. */
474 int index; /* If it maps to a bitmap index. */
475 int hash_index; /* Index when in a hash table. */
476 rtx reaching_reg; /* Register to use when re-writing. */
477};
478
479/* Head of the list of load/store memory refs. */
480static struct ls_expr * pre_ldst_mems = NULL;
481
7506f491
DE
482/* Bitmap containing one bit for each register in the program.
483 Used when performing GCSE to track which registers have been set since
484 the start of the basic block. */
73991d6a 485static regset reg_set_bitmap;
7506f491
DE
486
487/* For each block, a bitmap of registers set in the block.
488 This is used by expr_killed_p and compute_transp.
489 It is computed during hash table computation and not by compute_sets
490 as it includes registers added since the last pass (or between cprop and
491 gcse) and it's currently not easy to realloc sbitmap vectors. */
492static sbitmap *reg_set_in_block;
493
a13d4ebf
AM
494/* Array, indexed by basic block number for a list of insns which modify
495 memory within that block. */
496static rtx * modify_mem_list;
73991d6a 497bitmap modify_mem_list_set;
a13d4ebf
AM
498
499/* This array parallels modify_mem_list, but is kept canonicalized. */
500static rtx * canon_modify_mem_list;
73991d6a 501bitmap canon_modify_mem_list_set;
7506f491
DE
502/* Various variables for statistics gathering. */
503
504/* Memory used in a pass.
505 This isn't intended to be absolutely precise. Its intent is only
506 to keep an eye on memory usage. */
507static int bytes_used;
c4c81601 508
7506f491
DE
509/* GCSE substitutions made. */
510static int gcse_subst_count;
511/* Number of copy instructions created. */
512static int gcse_create_count;
513/* Number of constants propagated. */
514static int const_prop_count;
515/* Number of copys propagated. */
516static int copy_prop_count;
7506f491
DE
517\f
518/* These variables are used by classic GCSE.
519 Normally they'd be defined a bit later, but `rd_gen' needs to
520 be declared sooner. */
521
7506f491
DE
522/* Each block has a bitmap of each type.
523 The length of each blocks bitmap is:
524
525 max_cuid - for reaching definitions
526 n_exprs - for available expressions
527
528 Thus we view the bitmaps as 2 dimensional arrays. i.e.
529 rd_kill[block_num][cuid_num]
c4c81601 530 ae_kill[block_num][expr_num] */
7506f491
DE
531
532/* For reaching defs */
533static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
534
535/* for available exprs */
536static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
b5ce41ff 537
0511851c
MM
538/* Objects of this type are passed around by the null-pointer check
539 removal routines. */
c4c81601
RK
540struct null_pointer_info
541{
0511851c
MM
542 /* The basic block being processed. */
543 int current_block;
544 /* The first register to be handled in this pass. */
770ae6cc 545 unsigned int min_reg;
0511851c 546 /* One greater than the last register to be handled in this pass. */
770ae6cc 547 unsigned int max_reg;
0511851c
MM
548 sbitmap *nonnull_local;
549 sbitmap *nonnull_killed;
550};
7506f491 551\f
c4c81601
RK
552static void compute_can_copy PARAMS ((void));
553static char *gmalloc PARAMS ((unsigned int));
554static char *grealloc PARAMS ((char *, unsigned int));
555static char *gcse_alloc PARAMS ((unsigned long));
556static void alloc_gcse_mem PARAMS ((rtx));
557static void free_gcse_mem PARAMS ((void));
558static void alloc_reg_set_mem PARAMS ((int));
559static void free_reg_set_mem PARAMS ((void));
560static int get_bitmap_width PARAMS ((int, int, int));
561static void record_one_set PARAMS ((int, rtx));
562static void record_set_info PARAMS ((rtx, rtx, void *));
563static void compute_sets PARAMS ((rtx));
564static void hash_scan_insn PARAMS ((rtx, int, int));
565static void hash_scan_set PARAMS ((rtx, rtx, int));
566static void hash_scan_clobber PARAMS ((rtx, rtx));
567static void hash_scan_call PARAMS ((rtx, rtx));
568static int want_to_gcse_p PARAMS ((rtx));
569static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
570static int oprs_anticipatable_p PARAMS ((rtx, rtx));
571static int oprs_available_p PARAMS ((rtx, rtx));
572static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
573 int, int));
574static void insert_set_in_table PARAMS ((rtx, rtx));
575static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
576static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
c0712acb 577static unsigned int hash_string_1 PARAMS ((const char *));
c4c81601
RK
578static unsigned int hash_set PARAMS ((int, int));
579static int expr_equiv_p PARAMS ((rtx, rtx));
580static void record_last_reg_set_info PARAMS ((rtx, int));
581static void record_last_mem_set_info PARAMS ((rtx));
582static void record_last_set_info PARAMS ((rtx, rtx, void *));
711d877c 583static void compute_hash_table PARAMS ((int));
c4c81601
RK
584static void alloc_set_hash_table PARAMS ((int));
585static void free_set_hash_table PARAMS ((void));
586static void compute_set_hash_table PARAMS ((void));
2e653e39 587static void alloc_expr_hash_table PARAMS ((unsigned int));
c4c81601
RK
588static void free_expr_hash_table PARAMS ((void));
589static void compute_expr_hash_table PARAMS ((void));
590static void dump_hash_table PARAMS ((FILE *, const char *, struct expr **,
591 int, int));
592static struct expr *lookup_expr PARAMS ((rtx));
770ae6cc
RK
593static struct expr *lookup_set PARAMS ((unsigned int, rtx));
594static struct expr *next_set PARAMS ((unsigned int, struct expr *));
c4c81601
RK
595static void reset_opr_set_tables PARAMS ((void));
596static int oprs_not_set_p PARAMS ((rtx, rtx));
597static void mark_call PARAMS ((rtx));
598static void mark_set PARAMS ((rtx, rtx));
599static void mark_clobber PARAMS ((rtx, rtx));
600static void mark_oprs_set PARAMS ((rtx));
601static void alloc_cprop_mem PARAMS ((int, int));
602static void free_cprop_mem PARAMS ((void));
603static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
604static void compute_transpout PARAMS ((void));
605static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
606 int));
711d877c 607static void compute_cprop_data PARAMS ((void));
9e71c818 608static void find_used_regs PARAMS ((rtx *, void *));
c4c81601
RK
609static int try_replace_reg PARAMS ((rtx, rtx, rtx));
610static struct expr *find_avail_set PARAMS ((int, rtx));
0005550b 611static int cprop_jump PARAMS ((basic_block, rtx, rtx, rtx));
e2bef702 612#ifdef HAVE_cc0
0005550b 613static int cprop_cc0_jump PARAMS ((basic_block, rtx, struct reg_use *, rtx));
e2bef702 614#endif
a13d4ebf 615static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *));
e2d2ed72 616static int load_killed_in_block_p PARAMS ((basic_block, int, rtx, int));
a13d4ebf 617static void canon_list_insert PARAMS ((rtx, rtx, void *));
0005550b 618static int cprop_insn PARAMS ((basic_block, rtx, int));
c4c81601
RK
619static int cprop PARAMS ((int));
620static int one_cprop_pass PARAMS ((int, int));
621static void alloc_pre_mem PARAMS ((int, int));
622static void free_pre_mem PARAMS ((void));
623static void compute_pre_data PARAMS ((void));
e2d2ed72
AM
624static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *,
625 basic_block));
626static void insert_insn_end_bb PARAMS ((struct expr *, basic_block, int));
c4c81601
RK
627static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
628static void pre_insert_copies PARAMS ((void));
629static int pre_delete PARAMS ((void));
630static int pre_gcse PARAMS ((void));
631static int one_pre_gcse_pass PARAMS ((int));
632static void add_label_notes PARAMS ((rtx, rtx));
633static void alloc_code_hoist_mem PARAMS ((int, int));
634static void free_code_hoist_mem PARAMS ((void));
711d877c 635static void compute_code_hoist_vbeinout PARAMS ((void));
c4c81601 636static void compute_code_hoist_data PARAMS ((void));
e2d2ed72
AM
637static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block,
638 char *));
c4c81601
RK
639static void hoist_code PARAMS ((void));
640static int one_code_hoisting_pass PARAMS ((void));
641static void alloc_rd_mem PARAMS ((int, int));
642static void free_rd_mem PARAMS ((void));
e2d2ed72 643static void handle_rd_kill_set PARAMS ((rtx, int, basic_block));
c4c81601 644static void compute_kill_rd PARAMS ((void));
711d877c 645static void compute_rd PARAMS ((void));
c4c81601
RK
646static void alloc_avail_expr_mem PARAMS ((int, int));
647static void free_avail_expr_mem PARAMS ((void));
648static void compute_ae_gen PARAMS ((void));
e2d2ed72 649static int expr_killed_p PARAMS ((rtx, basic_block));
c4c81601 650static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *));
711d877c 651static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
e2d2ed72 652 basic_block, int));
c4c81601
RK
653static rtx computing_insn PARAMS ((struct expr *, rtx));
654static int def_reaches_here_p PARAMS ((rtx, rtx));
655static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
656static int handle_avail_expr PARAMS ((rtx, struct expr *));
657static int classic_gcse PARAMS ((void));
658static int one_classic_gcse_pass PARAMS ((int));
659static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
9cd56be1 660static void delete_null_pointer_checks_1 PARAMS ((unsigned int *,
8e184d9c 661 sbitmap *, sbitmap *,
711d877c
KG
662 struct null_pointer_info *));
663static rtx process_insert_insn PARAMS ((struct expr *));
664static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
c4c81601 665static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
e2d2ed72
AM
666 basic_block, int, char *));
667static int pre_expr_reaches_here_p_work PARAMS ((basic_block, struct expr *,
668 basic_block, char *));
a13d4ebf
AM
669static struct ls_expr * ldst_entry PARAMS ((rtx));
670static void free_ldst_entry PARAMS ((struct ls_expr *));
671static void free_ldst_mems PARAMS ((void));
672static void print_ldst_list PARAMS ((FILE *));
673static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx));
674static int enumerate_ldsts PARAMS ((void));
675static inline struct ls_expr * first_ls_expr PARAMS ((void));
676static inline struct ls_expr * next_ls_expr PARAMS ((struct ls_expr *));
677static int simple_mem PARAMS ((rtx));
678static void invalidate_any_buried_refs PARAMS ((rtx));
679static void compute_ld_motion_mems PARAMS ((void));
680static void trim_ld_motion_mems PARAMS ((void));
681static void update_ld_motion_stores PARAMS ((struct expr *));
aaa4ca30
AJ
682static void reg_set_info PARAMS ((rtx, rtx, void *));
683static int store_ops_ok PARAMS ((rtx, basic_block));
a13d4ebf
AM
684static void find_moveable_store PARAMS ((rtx));
685static int compute_store_table PARAMS ((void));
686static int load_kills_store PARAMS ((rtx, rtx));
687static int find_loads PARAMS ((rtx, rtx));
688static int store_killed_in_insn PARAMS ((rtx, rtx));
aaa4ca30 689static int store_killed_after PARAMS ((rtx, rtx, basic_block));
e2d2ed72 690static int store_killed_before PARAMS ((rtx, rtx, basic_block));
a13d4ebf 691static void build_store_vectors PARAMS ((void));
e2d2ed72 692static void insert_insn_start_bb PARAMS ((rtx, basic_block));
a13d4ebf 693static int insert_store PARAMS ((struct ls_expr *, edge));
e2d2ed72
AM
694static void replace_store_insn PARAMS ((rtx, rtx, basic_block));
695static void delete_store PARAMS ((struct ls_expr *,
696 basic_block));
a13d4ebf
AM
697static void free_store_memory PARAMS ((void));
698static void store_motion PARAMS ((void));
73991d6a
JH
699static void clear_modify_mem_tables PARAMS ((void));
700static void free_modify_mem_tables PARAMS ((void));
7506f491
DE
701\f
702/* Entry point for global common subexpression elimination.
703 F is the first instruction in the function. */
704
e78d9500 705int
7506f491
DE
706gcse_main (f, file)
707 rtx f;
708 FILE *file;
709{
710 int changed, pass;
711 /* Bytes used at start of pass. */
712 int initial_bytes_used;
713 /* Maximum number of bytes used by a pass. */
714 int max_pass_bytes;
715 /* Point to release obstack data from for each pass. */
716 char *gcse_obstack_bottom;
717
a13d4ebf
AM
718 /* Insertion of instructions on edges can create new basic blocks; we
719 need the original basic block count so that we can properly deallocate
720 arrays sized on the number of basic blocks originally in the cfg. */
721 int orig_bb_count;
b5ce41ff
JL
722 /* We do not construct an accurate cfg in functions which call
723 setjmp, so just punt to be safe. */
7506f491 724 if (current_function_calls_setjmp)
e78d9500 725 return 0;
7506f491 726
b5ce41ff
JL
727 /* Assume that we do not need to run jump optimizations after gcse. */
728 run_jump_opt_after_gcse = 0;
729
7506f491
DE
730 /* For calling dump_foo fns from gdb. */
731 debug_stderr = stderr;
b5ce41ff 732 gcse_file = file;
7506f491 733
b5ce41ff
JL
734 /* Identify the basic block information for this function, including
735 successors and predecessors. */
7506f491 736 max_gcse_regno = max_reg_num ();
7506f491 737
a42cd965
AM
738 if (file)
739 dump_flow_info (file);
740
a13d4ebf 741 orig_bb_count = n_basic_blocks;
7506f491
DE
742 /* Return if there's nothing to do. */
743 if (n_basic_blocks <= 1)
a18820c6 744 return 0;
7506f491 745
55f7891b
JL
746 /* Trying to perform global optimizations on flow graphs which have
747 a high connectivity will take a long time and is unlikely to be
748 particularly useful.
749
43e72072 750 In normal circumstances a cfg should have about twice as many edges
55f7891b
JL
751 as blocks. But we do not want to punish small functions which have
752 a couple switch statements. So we require a relatively large number
753 of basic blocks and the ratio of edges to blocks to be high. */
754 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
18424ae1
BL
755 {
756 if (warn_disabled_optimization)
8e42ace1
KH
757 warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
758 n_basic_blocks, n_edges / n_basic_blocks);
18424ae1
BL
759 return 0;
760 }
55f7891b 761
f1fa37ff
MM
762 /* If allocating memory for the cprop bitmap would take up too much
763 storage it's better just to disable the optimization. */
764 if ((n_basic_blocks
765 * SBITMAP_SET_SIZE (max_gcse_regno)
766 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
767 {
768 if (warn_disabled_optimization)
769 warning ("GCSE disabled: %d basic blocks and %d registers",
770 n_basic_blocks, max_gcse_regno);
771
772 return 0;
773 }
774
7506f491
DE
775 /* See what modes support reg/reg copy operations. */
776 if (! can_copy_init_p)
777 {
778 compute_can_copy ();
779 can_copy_init_p = 1;
780 }
781
782 gcc_obstack_init (&gcse_obstack);
a42cd965 783 bytes_used = 0;
7506f491 784
a13d4ebf
AM
785 /* We need alias. */
786 init_alias_analysis ();
c4c81601
RK
787 /* Record where pseudo-registers are set. This data is kept accurate
788 during each pass. ??? We could also record hard-reg information here
789 [since it's unchanging], however it is currently done during hash table
790 computation.
b5ce41ff 791
c4c81601
RK
792 It may be tempting to compute MEM set information here too, but MEM sets
793 will be subject to code motion one day and thus we need to compute
b5ce41ff 794 information about memory sets when we build the hash tables. */
7506f491
DE
795
796 alloc_reg_set_mem (max_gcse_regno);
797 compute_sets (f);
798
799 pass = 0;
800 initial_bytes_used = bytes_used;
801 max_pass_bytes = 0;
802 gcse_obstack_bottom = gcse_alloc (1);
803 changed = 1;
740f35a0 804 while (changed && pass < MAX_GCSE_PASSES)
7506f491
DE
805 {
806 changed = 0;
807 if (file)
808 fprintf (file, "GCSE pass %d\n\n", pass + 1);
809
810 /* Initialize bytes_used to the space for the pred/succ lists,
811 and the reg_set_table data. */
812 bytes_used = initial_bytes_used;
813
814 /* Each pass may create new registers, so recalculate each time. */
815 max_gcse_regno = max_reg_num ();
816
817 alloc_gcse_mem (f);
818
b5ce41ff
JL
819 /* Don't allow constant propagation to modify jumps
820 during this pass. */
821 changed = one_cprop_pass (pass + 1, 0);
7506f491
DE
822
823 if (optimize_size)
b5ce41ff 824 changed |= one_classic_gcse_pass (pass + 1);
7506f491 825 else
a42cd965
AM
826 {
827 changed |= one_pre_gcse_pass (pass + 1);
a13d4ebf
AM
828 /* We may have just created new basic blocks. Release and
829 recompute various things which are sized on the number of
830 basic blocks. */
831 if (changed)
832 {
73991d6a 833 free_modify_mem_tables ();
a13d4ebf 834 modify_mem_list
a176492c 835 = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx));
a13d4ebf 836 canon_modify_mem_list
a176492c
GS
837 = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx));
838 memset ((char *) modify_mem_list, 0, n_basic_blocks * sizeof (rtx));
839 memset ((char *) canon_modify_mem_list, 0, n_basic_blocks * sizeof (rtx));
a13d4ebf
AM
840 orig_bb_count = n_basic_blocks;
841 }
a42cd965
AM
842 free_reg_set_mem ();
843 alloc_reg_set_mem (max_reg_num ());
844 compute_sets (f);
845 run_jump_opt_after_gcse = 1;
846 }
7506f491
DE
847
848 if (max_pass_bytes < bytes_used)
849 max_pass_bytes = bytes_used;
850
bb457bd9
JL
851 /* Free up memory, then reallocate for code hoisting. We can
852 not re-use the existing allocated memory because the tables
853 will not have info for the insns or registers created by
854 partial redundancy elimination. */
7506f491
DE
855 free_gcse_mem ();
856
bb457bd9
JL
857 /* It does not make sense to run code hoisting unless we optimizing
858 for code size -- it rarely makes programs faster, and can make
859 them bigger if we did partial redundancy elimination (when optimizing
860 for space, we use a classic gcse algorithm instead of partial
861 redundancy algorithms). */
862 if (optimize_size)
863 {
864 max_gcse_regno = max_reg_num ();
865 alloc_gcse_mem (f);
866 changed |= one_code_hoisting_pass ();
867 free_gcse_mem ();
868
869 if (max_pass_bytes < bytes_used)
870 max_pass_bytes = bytes_used;
871 }
872
7506f491
DE
873 if (file)
874 {
875 fprintf (file, "\n");
876 fflush (file);
877 }
c4c81601 878
7506f491
DE
879 obstack_free (&gcse_obstack, gcse_obstack_bottom);
880 pass++;
881 }
882
b5ce41ff
JL
883 /* Do one last pass of copy propagation, including cprop into
884 conditional jumps. */
885
886 max_gcse_regno = max_reg_num ();
887 alloc_gcse_mem (f);
888 /* This time, go ahead and allow cprop to alter jumps. */
889 one_cprop_pass (pass + 1, 1);
890 free_gcse_mem ();
7506f491
DE
891
892 if (file)
893 {
894 fprintf (file, "GCSE of %s: %d basic blocks, ",
895 current_function_name, n_basic_blocks);
896 fprintf (file, "%d pass%s, %d bytes\n\n",
897 pass, pass > 1 ? "es" : "", max_pass_bytes);
898 }
899
6496a589 900 obstack_free (&gcse_obstack, NULL);
7506f491 901 free_reg_set_mem ();
a13d4ebf
AM
902 /* We are finished with alias. */
903 end_alias_analysis ();
904 allocate_reg_info (max_reg_num (), FALSE, FALSE);
905
b78237cd 906 if (!optimize_size && flag_gcse_sm)
a13d4ebf
AM
907 store_motion ();
908 /* Record where pseudo-registers are set. */
e78d9500 909 return run_jump_opt_after_gcse;
7506f491
DE
910}
911\f
912/* Misc. utilities. */
913
914/* Compute which modes support reg/reg copy operations. */
915
916static void
917compute_can_copy ()
918{
919 int i;
50b2596f 920#ifndef AVOID_CCMODE_COPIES
8e42ace1 921 rtx reg, insn;
50b2596f 922#endif
961192e1 923 memset (can_copy_p, 0, NUM_MACHINE_MODES);
7506f491
DE
924
925 start_sequence ();
926 for (i = 0; i < NUM_MACHINE_MODES; i++)
c4c81601
RK
927 if (GET_MODE_CLASS (i) == MODE_CC)
928 {
7506f491 929#ifdef AVOID_CCMODE_COPIES
c4c81601 930 can_copy_p[i] = 0;
7506f491 931#else
c4c81601
RK
932 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
933 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
9714cf43 934 if (recog (PATTERN (insn), insn, NULL) >= 0)
c4c81601 935 can_copy_p[i] = 1;
7506f491 936#endif
c4c81601 937 }
141b5810
AO
938 else
939 can_copy_p[i] = 1;
c4c81601 940
7506f491 941 end_sequence ();
7506f491
DE
942}
943\f
944/* Cover function to xmalloc to record bytes allocated. */
945
946static char *
947gmalloc (size)
948 unsigned int size;
949{
950 bytes_used += size;
951 return xmalloc (size);
952}
953
954/* Cover function to xrealloc.
955 We don't record the additional size since we don't know it.
956 It won't affect memory usage stats much anyway. */
957
958static char *
959grealloc (ptr, size)
960 char *ptr;
961 unsigned int size;
962{
963 return xrealloc (ptr, size);
964}
965
966/* Cover function to obstack_alloc.
967 We don't need to record the bytes allocated here since
968 obstack_chunk_alloc is set to gmalloc. */
969
970static char *
971gcse_alloc (size)
972 unsigned long size;
973{
974 return (char *) obstack_alloc (&gcse_obstack, size);
975}
976
977/* Allocate memory for the cuid mapping array,
978 and reg/memory set tracking tables.
979
980 This is called at the start of each pass. */
981
982static void
983alloc_gcse_mem (f)
984 rtx f;
985{
8e42ace1 986 int i, n;
7506f491
DE
987 rtx insn;
988
989 /* Find the largest UID and create a mapping from UIDs to CUIDs.
990 CUIDs are like UIDs except they increase monotonically, have no gaps,
991 and only apply to real insns. */
992
993 max_uid = get_max_uid ();
994 n = (max_uid + 1) * sizeof (int);
995 uid_cuid = (int *) gmalloc (n);
961192e1 996 memset ((char *) uid_cuid, 0, n);
7506f491
DE
997 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
998 {
2c3c49de 999 if (INSN_P (insn))
b86db3eb 1000 uid_cuid[INSN_UID (insn)] = i++;
7506f491 1001 else
b86db3eb 1002 uid_cuid[INSN_UID (insn)] = i;
7506f491
DE
1003 }
1004
1005 /* Create a table mapping cuids to insns. */
1006
1007 max_cuid = i;
1008 n = (max_cuid + 1) * sizeof (rtx);
1009 cuid_insn = (rtx *) gmalloc (n);
961192e1 1010 memset ((char *) cuid_insn, 0, n);
7506f491 1011 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
2c3c49de 1012 if (INSN_P (insn))
c4c81601 1013 CUID_INSN (i++) = insn;
7506f491
DE
1014
1015 /* Allocate vars to track sets of regs. */
73991d6a 1016 reg_set_bitmap = BITMAP_XMALLOC ();
7506f491
DE
1017
1018 /* Allocate vars to track sets of regs, memory per block. */
7506f491
DE
1019 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
1020 max_gcse_regno);
a13d4ebf
AM
1021 /* Allocate array to keep a list of insns which modify memory in each
1022 basic block. */
a176492c
GS
1023 modify_mem_list = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx));
1024 canon_modify_mem_list = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx));
1025 memset ((char *) modify_mem_list, 0, n_basic_blocks * sizeof (rtx));
1026 memset ((char *) canon_modify_mem_list, 0, n_basic_blocks * sizeof (rtx));
73991d6a
JH
1027 modify_mem_list_set = BITMAP_XMALLOC ();
1028 canon_modify_mem_list_set = BITMAP_XMALLOC ();
7506f491
DE
1029}
1030
1031/* Free memory allocated by alloc_gcse_mem. */
1032
1033static void
1034free_gcse_mem ()
1035{
1036 free (uid_cuid);
1037 free (cuid_insn);
1038
73991d6a 1039 BITMAP_XFREE (reg_set_bitmap);
7506f491 1040
5a660bff 1041 sbitmap_vector_free (reg_set_in_block);
73991d6a
JH
1042 free_modify_mem_tables ();
1043 BITMAP_XFREE (modify_mem_list_set);
1044 BITMAP_XFREE (canon_modify_mem_list_set);
7506f491
DE
1045}
1046
0511851c
MM
1047/* Many of the global optimization algorithms work by solving dataflow
1048 equations for various expressions. Initially, some local value is
c4c81601
RK
1049 computed for each expression in each block. Then, the values across the
1050 various blocks are combined (by following flow graph edges) to arrive at
1051 global values. Conceptually, each set of equations is independent. We
1052 may therefore solve all the equations in parallel, solve them one at a
1053 time, or pick any intermediate approach.
1054
1055 When you're going to need N two-dimensional bitmaps, each X (say, the
1056 number of blocks) by Y (say, the number of expressions), call this
1057 function. It's not important what X and Y represent; only that Y
1058 correspond to the things that can be done in parallel. This function will
1059 return an appropriate chunking factor C; you should solve C sets of
1060 equations in parallel. By going through this function, we can easily
1061 trade space against time; by solving fewer equations in parallel we use
1062 less space. */
0511851c
MM
1063
1064static int
1065get_bitmap_width (n, x, y)
1066 int n;
1067 int x;
1068 int y;
1069{
1070 /* It's not really worth figuring out *exactly* how much memory will
1071 be used by a particular choice. The important thing is to get
1072 something approximately right. */
1073 size_t max_bitmap_memory = 10 * 1024 * 1024;
1074
1075 /* The number of bytes we'd use for a single column of minimum
1076 width. */
1077 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
1078
1079 /* Often, it's reasonable just to solve all the equations in
1080 parallel. */
1081 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
1082 return y;
1083
1084 /* Otherwise, pick the largest width we can, without going over the
1085 limit. */
1086 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
1087 / column_size);
1088}
b5ce41ff
JL
1089\f
1090/* Compute the local properties of each recorded expression.
c4c81601
RK
1091
1092 Local properties are those that are defined by the block, irrespective of
1093 other blocks.
b5ce41ff
JL
1094
1095 An expression is transparent in a block if its operands are not modified
1096 in the block.
1097
1098 An expression is computed (locally available) in a block if it is computed
1099 at least once and expression would contain the same value if the
1100 computation was moved to the end of the block.
1101
1102 An expression is locally anticipatable in a block if it is computed at
1103 least once and expression would contain the same value if the computation
1104 was moved to the beginning of the block.
1105
c4c81601
RK
1106 We call this routine for cprop, pre and code hoisting. They all compute
1107 basically the same information and thus can easily share this code.
7506f491 1108
c4c81601
RK
1109 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1110 properties. If NULL, then it is not necessary to compute or record that
1111 particular property.
b5ce41ff 1112
c4c81601
RK
1113 SETP controls which hash table to look at. If zero, this routine looks at
1114 the expr hash table; if nonzero this routine looks at the set hash table.
1115 Additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1116 ABSALTERED. */
b5ce41ff
JL
1117
1118static void
1119compute_local_properties (transp, comp, antloc, setp)
1120 sbitmap *transp;
1121 sbitmap *comp;
1122 sbitmap *antloc;
1123 int setp;
1124{
2e653e39 1125 unsigned int i, hash_table_size;
b5ce41ff
JL
1126 struct expr **hash_table;
1127
1128 /* Initialize any bitmaps that were passed in. */
1129 if (transp)
695ab36a
BS
1130 {
1131 if (setp)
1132 sbitmap_vector_zero (transp, n_basic_blocks);
1133 else
1134 sbitmap_vector_ones (transp, n_basic_blocks);
1135 }
c4c81601 1136
b5ce41ff
JL
1137 if (comp)
1138 sbitmap_vector_zero (comp, n_basic_blocks);
1139 if (antloc)
1140 sbitmap_vector_zero (antloc, n_basic_blocks);
1141
1142 /* We use the same code for cprop, pre and hoisting. For cprop
1143 we care about the set hash table, for pre and hoisting we
1144 care about the expr hash table. */
1145 hash_table_size = setp ? set_hash_table_size : expr_hash_table_size;
1146 hash_table = setp ? set_hash_table : expr_hash_table;
1147
1148 for (i = 0; i < hash_table_size; i++)
7506f491 1149 {
b5ce41ff
JL
1150 struct expr *expr;
1151
1152 for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
1153 {
b5ce41ff 1154 int indx = expr->bitmap_index;
c4c81601 1155 struct occr *occr;
b5ce41ff
JL
1156
1157 /* The expression is transparent in this block if it is not killed.
1158 We start by assuming all are transparent [none are killed], and
1159 then reset the bits for those that are. */
b5ce41ff
JL
1160 if (transp)
1161 compute_transp (expr->expr, indx, transp, setp);
1162
1163 /* The occurrences recorded in antic_occr are exactly those that
1164 we want to set to non-zero in ANTLOC. */
b5ce41ff 1165 if (antloc)
c4c81601
RK
1166 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1167 {
1168 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
b5ce41ff 1169
c4c81601
RK
1170 /* While we're scanning the table, this is a good place to
1171 initialize this. */
1172 occr->deleted_p = 0;
1173 }
b5ce41ff
JL
1174
1175 /* The occurrences recorded in avail_occr are exactly those that
1176 we want to set to non-zero in COMP. */
1177 if (comp)
c4c81601
RK
1178 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1179 {
1180 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
b5ce41ff 1181
c4c81601
RK
1182 /* While we're scanning the table, this is a good place to
1183 initialize this. */
1184 occr->copied_p = 0;
1185 }
b5ce41ff
JL
1186
1187 /* While we're scanning the table, this is a good place to
1188 initialize this. */
1189 expr->reaching_reg = 0;
1190 }
7506f491 1191 }
7506f491
DE
1192}
1193\f
1194/* Register set information.
1195
1196 `reg_set_table' records where each register is set or otherwise
1197 modified. */
1198
1199static struct obstack reg_set_obstack;
1200
1201static void
1202alloc_reg_set_mem (n_regs)
1203 int n_regs;
1204{
c4c81601 1205 unsigned int n;
7506f491
DE
1206
1207 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1208 n = reg_set_table_size * sizeof (struct reg_set *);
1209 reg_set_table = (struct reg_set **) gmalloc (n);
961192e1 1210 memset ((char *) reg_set_table, 0, n);
7506f491
DE
1211
1212 gcc_obstack_init (&reg_set_obstack);
1213}
1214
1215static void
1216free_reg_set_mem ()
1217{
1218 free (reg_set_table);
6496a589 1219 obstack_free (&reg_set_obstack, NULL);
7506f491
DE
1220}
1221
1222/* Record REGNO in the reg_set table. */
1223
1224static void
1225record_one_set (regno, insn)
1226 int regno;
1227 rtx insn;
1228{
172890a2 1229 /* Allocate a new reg_set element and link it onto the list. */
63bc1d05 1230 struct reg_set *new_reg_info;
7506f491
DE
1231
1232 /* If the table isn't big enough, enlarge it. */
1233 if (regno >= reg_set_table_size)
1234 {
1235 int new_size = regno + REG_SET_TABLE_SLOP;
c4c81601
RK
1236
1237 reg_set_table
1238 = (struct reg_set **) grealloc ((char *) reg_set_table,
1239 new_size * sizeof (struct reg_set *));
961192e1 1240 memset ((char *) (reg_set_table + reg_set_table_size), 0,
8e42ace1 1241 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
7506f491
DE
1242 reg_set_table_size = new_size;
1243 }
1244
1245 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1246 sizeof (struct reg_set));
1247 bytes_used += sizeof (struct reg_set);
1248 new_reg_info->insn = insn;
274969ea
MM
1249 new_reg_info->next = reg_set_table[regno];
1250 reg_set_table[regno] = new_reg_info;
7506f491
DE
1251}
1252
c4c81601
RK
1253/* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1254 an insn. The DATA is really the instruction in which the SET is
1255 occurring. */
7506f491
DE
1256
1257static void
84832317 1258record_set_info (dest, setter, data)
50b2596f 1259 rtx dest, setter ATTRIBUTE_UNUSED;
84832317 1260 void *data;
7506f491 1261{
84832317
MM
1262 rtx record_set_insn = (rtx) data;
1263
c4c81601
RK
1264 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1265 record_one_set (REGNO (dest), record_set_insn);
7506f491
DE
1266}
1267
1268/* Scan the function and record each set of each pseudo-register.
1269
c4c81601
RK
1270 This is called once, at the start of the gcse pass. See the comments for
1271 `reg_set_table' for further documenation. */
7506f491
DE
1272
1273static void
1274compute_sets (f)
1275 rtx f;
1276{
c4c81601 1277 rtx insn;
7506f491 1278
c4c81601 1279 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
2c3c49de 1280 if (INSN_P (insn))
c4c81601 1281 note_stores (PATTERN (insn), record_set_info, insn);
7506f491
DE
1282}
1283\f
1284/* Hash table support. */
1285
80c29cc4
RZ
1286/* For each register, the cuid of the first/last insn in the block
1287 that set it, or -1 if not set. */
c4c81601 1288#define NEVER_SET -1
80c29cc4
RZ
1289
1290struct reg_avail_info
1291{
1292 int last_bb;
1293 int first_set;
1294 int last_set;
1295};
1296
1297static struct reg_avail_info *reg_avail_info;
1298static int current_bb;
7506f491 1299
7506f491 1300
fb0c0a12
RK
1301/* See whether X, the source of a set, is something we want to consider for
1302 GCSE. */
7506f491
DE
1303
1304static int
1305want_to_gcse_p (x)
1306 rtx x;
1307{
fb0c0a12
RK
1308 static rtx test_insn = 0;
1309 int num_clobbers = 0;
1310 int icode;
1311
c4c81601 1312 switch (GET_CODE (x))
7506f491
DE
1313 {
1314 case REG:
1315 case SUBREG:
1316 case CONST_INT:
1317 case CONST_DOUBLE:
69ef87e2 1318 case CONST_VECTOR:
7506f491
DE
1319 case CALL:
1320 return 0;
1321
1322 default:
1323 break;
1324 }
1325
fb0c0a12
RK
1326 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1327 if (general_operand (x, GET_MODE (x)))
1328 return 1;
1329 else if (GET_MODE (x) == VOIDmode)
1330 return 0;
1331
1332 /* Otherwise, check if we can make a valid insn from it. First initialize
1333 our test insn if we haven't already. */
1334 if (test_insn == 0)
1335 {
1336 test_insn
1337 = make_insn_raw (gen_rtx_SET (VOIDmode,
1338 gen_rtx_REG (word_mode,
1339 FIRST_PSEUDO_REGISTER * 2),
1340 const0_rtx));
1341 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1342 ggc_add_rtx_root (&test_insn, 1);
1343 }
1344
1345 /* Now make an insn like the one we would make when GCSE'ing and see if
1346 valid. */
1347 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1348 SET_SRC (PATTERN (test_insn)) = x;
1349 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1350 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
7506f491
DE
1351}
1352
1353/* Return non-zero if the operands of expression X are unchanged from the
1354 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1355 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1356
1357static int
1358oprs_unchanged_p (x, insn, avail_p)
1359 rtx x, insn;
1360 int avail_p;
1361{
c4c81601 1362 int i, j;
7506f491 1363 enum rtx_code code;
6f7d635c 1364 const char *fmt;
7506f491 1365
7506f491
DE
1366 if (x == 0)
1367 return 1;
1368
1369 code = GET_CODE (x);
1370 switch (code)
1371 {
1372 case REG:
80c29cc4
RZ
1373 {
1374 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1375
1376 if (info->last_bb != current_bb)
1377 return 1;
1378 if (avail_p)
1379 return info->last_set < INSN_CUID (insn);
1380 else
1381 return info->first_set >= INSN_CUID (insn);
1382 }
7506f491
DE
1383
1384 case MEM:
80c29cc4 1385 if (load_killed_in_block_p (BASIC_BLOCK (current_bb), INSN_CUID (insn),
a13d4ebf
AM
1386 x, avail_p))
1387 return 0;
7506f491 1388 else
c4c81601 1389 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
7506f491
DE
1390
1391 case PRE_DEC:
1392 case PRE_INC:
1393 case POST_DEC:
1394 case POST_INC:
4b983fdc
RH
1395 case PRE_MODIFY:
1396 case POST_MODIFY:
7506f491
DE
1397 return 0;
1398
1399 case PC:
1400 case CC0: /*FIXME*/
1401 case CONST:
1402 case CONST_INT:
1403 case CONST_DOUBLE:
69ef87e2 1404 case CONST_VECTOR:
7506f491
DE
1405 case SYMBOL_REF:
1406 case LABEL_REF:
1407 case ADDR_VEC:
1408 case ADDR_DIFF_VEC:
1409 return 1;
1410
1411 default:
1412 break;
1413 }
1414
c4c81601 1415 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
7506f491
DE
1416 {
1417 if (fmt[i] == 'e')
1418 {
c4c81601
RK
1419 /* If we are about to do the last recursive call needed at this
1420 level, change it into iteration. This function is called enough
1421 to be worth it. */
7506f491 1422 if (i == 0)
c4c81601
RK
1423 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1424
1425 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
7506f491
DE
1426 return 0;
1427 }
1428 else if (fmt[i] == 'E')
c4c81601
RK
1429 for (j = 0; j < XVECLEN (x, i); j++)
1430 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1431 return 0;
7506f491
DE
1432 }
1433
1434 return 1;
1435}
1436
a13d4ebf
AM
1437/* Used for communication between mems_conflict_for_gcse_p and
1438 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1439 conflict between two memory references. */
1440static int gcse_mems_conflict_p;
1441
1442/* Used for communication between mems_conflict_for_gcse_p and
1443 load_killed_in_block_p. A memory reference for a load instruction,
1444 mems_conflict_for_gcse_p will see if a memory store conflicts with
1445 this memory load. */
1446static rtx gcse_mem_operand;
1447
1448/* DEST is the output of an instruction. If it is a memory reference, and
1449 possibly conflicts with the load found in gcse_mem_operand, then set
1450 gcse_mems_conflict_p to a nonzero value. */
1451
1452static void
1453mems_conflict_for_gcse_p (dest, setter, data)
1454 rtx dest, setter ATTRIBUTE_UNUSED;
1455 void *data ATTRIBUTE_UNUSED;
1456{
1457 while (GET_CODE (dest) == SUBREG
1458 || GET_CODE (dest) == ZERO_EXTRACT
1459 || GET_CODE (dest) == SIGN_EXTRACT
1460 || GET_CODE (dest) == STRICT_LOW_PART)
1461 dest = XEXP (dest, 0);
1462
1463 /* If DEST is not a MEM, then it will not conflict with the load. Note
1464 that function calls are assumed to clobber memory, but are handled
1465 elsewhere. */
1466 if (GET_CODE (dest) != MEM)
1467 return;
aaa4ca30 1468
a13d4ebf
AM
1469 /* If we are setting a MEM in our list of specially recognized MEMs,
1470 don't mark as killed this time. */
1471
1472 if (dest == gcse_mem_operand && pre_ldst_mems != NULL)
1473 {
1474 if (!find_rtx_in_ldst (dest))
1475 gcse_mems_conflict_p = 1;
1476 return;
1477 }
aaa4ca30 1478
a13d4ebf
AM
1479 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1480 rtx_addr_varies_p))
1481 gcse_mems_conflict_p = 1;
1482}
1483
1484/* Return nonzero if the expression in X (a memory reference) is killed
1485 in block BB before or after the insn with the CUID in UID_LIMIT.
1486 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1487 before UID_LIMIT.
1488
1489 To check the entire block, set UID_LIMIT to max_uid + 1 and
1490 AVAIL_P to 0. */
1491
1492static int
1493load_killed_in_block_p (bb, uid_limit, x, avail_p)
e2d2ed72 1494 basic_block bb;
a13d4ebf
AM
1495 int uid_limit;
1496 rtx x;
1497 int avail_p;
1498{
e2d2ed72 1499 rtx list_entry = modify_mem_list[bb->index];
a13d4ebf
AM
1500 while (list_entry)
1501 {
1502 rtx setter;
1503 /* Ignore entries in the list that do not apply. */
1504 if ((avail_p
1505 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1506 || (! avail_p
1507 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1508 {
1509 list_entry = XEXP (list_entry, 1);
1510 continue;
1511 }
1512
1513 setter = XEXP (list_entry, 0);
1514
1515 /* If SETTER is a call everything is clobbered. Note that calls
1516 to pure functions are never put on the list, so we need not
1517 worry about them. */
1518 if (GET_CODE (setter) == CALL_INSN)
1519 return 1;
1520
1521 /* SETTER must be an INSN of some kind that sets memory. Call
1522 note_stores to examine each hunk of memory that is modified.
1523
1524 The note_stores interface is pretty limited, so we have to
1525 communicate via global variables. Yuk. */
1526 gcse_mem_operand = x;
1527 gcse_mems_conflict_p = 0;
1528 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1529 if (gcse_mems_conflict_p)
1530 return 1;
1531 list_entry = XEXP (list_entry, 1);
1532 }
1533 return 0;
1534}
1535
7506f491
DE
1536/* Return non-zero if the operands of expression X are unchanged from
1537 the start of INSN's basic block up to but not including INSN. */
1538
1539static int
1540oprs_anticipatable_p (x, insn)
1541 rtx x, insn;
1542{
1543 return oprs_unchanged_p (x, insn, 0);
1544}
1545
1546/* Return non-zero if the operands of expression X are unchanged from
1547 INSN to the end of INSN's basic block. */
1548
1549static int
1550oprs_available_p (x, insn)
1551 rtx x, insn;
1552{
1553 return oprs_unchanged_p (x, insn, 1);
1554}
1555
1556/* Hash expression X.
c4c81601
RK
1557
1558 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1559 indicating if a volatile operand is found or if the expression contains
1560 something we don't want to insert in the table.
7506f491
DE
1561
1562 ??? One might want to merge this with canon_hash. Later. */
1563
1564static unsigned int
1565hash_expr (x, mode, do_not_record_p, hash_table_size)
1566 rtx x;
1567 enum machine_mode mode;
1568 int *do_not_record_p;
1569 int hash_table_size;
1570{
1571 unsigned int hash;
1572
1573 *do_not_record_p = 0;
1574
1575 hash = hash_expr_1 (x, mode, do_not_record_p);
1576 return hash % hash_table_size;
1577}
172890a2 1578
6462bb43 1579/* Hash a string. Just add its bytes up. */
172890a2 1580
6462bb43
AO
1581static inline unsigned
1582hash_string_1 (ps)
1583 const char *ps;
1584{
1585 unsigned hash = 0;
8e42ace1 1586 const unsigned char *p = (const unsigned char *) ps;
6462bb43
AO
1587
1588 if (p)
1589 while (*p)
1590 hash += *p++;
1591
1592 return hash;
1593}
7506f491
DE
1594
1595/* Subroutine of hash_expr to do the actual work. */
1596
1597static unsigned int
1598hash_expr_1 (x, mode, do_not_record_p)
1599 rtx x;
1600 enum machine_mode mode;
1601 int *do_not_record_p;
1602{
1603 int i, j;
1604 unsigned hash = 0;
1605 enum rtx_code code;
6f7d635c 1606 const char *fmt;
7506f491 1607
c4c81601
RK
1608 /* Used to turn recursion into iteration. We can't rely on GCC's
1609 tail-recursion eliminatio since we need to keep accumulating values
1610 in HASH. */
7506f491
DE
1611
1612 if (x == 0)
1613 return hash;
1614
c4c81601 1615 repeat:
7506f491
DE
1616 code = GET_CODE (x);
1617 switch (code)
1618 {
1619 case REG:
c4c81601
RK
1620 hash += ((unsigned int) REG << 7) + REGNO (x);
1621 return hash;
7506f491
DE
1622
1623 case CONST_INT:
c4c81601
RK
1624 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1625 + (unsigned int) INTVAL (x));
1626 return hash;
7506f491
DE
1627
1628 case CONST_DOUBLE:
1629 /* This is like the general case, except that it only counts
1630 the integers representing the constant. */
c4c81601 1631 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
7506f491
DE
1632 if (GET_MODE (x) != VOIDmode)
1633 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
c4c81601 1634 hash += (unsigned int) XWINT (x, i);
7506f491 1635 else
c4c81601
RK
1636 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1637 + (unsigned int) CONST_DOUBLE_HIGH (x));
7506f491
DE
1638 return hash;
1639
69ef87e2
AH
1640 case CONST_VECTOR:
1641 {
1642 int units;
1643 rtx elt;
1644
1645 units = CONST_VECTOR_NUNITS (x);
1646
1647 for (i = 0; i < units; ++i)
1648 {
1649 elt = CONST_VECTOR_ELT (x, i);
1650 hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
1651 }
1652
1653 return hash;
1654 }
1655
7506f491
DE
1656 /* Assume there is only one rtx object for any given label. */
1657 case LABEL_REF:
1658 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1659 differences and differences between each stage's debugging dumps. */
c4c81601
RK
1660 hash += (((unsigned int) LABEL_REF << 7)
1661 + CODE_LABEL_NUMBER (XEXP (x, 0)));
7506f491
DE
1662 return hash;
1663
1664 case SYMBOL_REF:
1665 {
1666 /* Don't hash on the symbol's address to avoid bootstrap differences.
1667 Different hash values may cause expressions to be recorded in
1668 different orders and thus different registers to be used in the
1669 final assembler. This also avoids differences in the dump files
1670 between various stages. */
1671 unsigned int h = 0;
3cce094d 1672 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
c4c81601 1673
7506f491
DE
1674 while (*p)
1675 h += (h << 7) + *p++; /* ??? revisit */
c4c81601
RK
1676
1677 hash += ((unsigned int) SYMBOL_REF << 7) + h;
7506f491
DE
1678 return hash;
1679 }
1680
1681 case MEM:
1682 if (MEM_VOLATILE_P (x))
1683 {
1684 *do_not_record_p = 1;
1685 return 0;
1686 }
c4c81601
RK
1687
1688 hash += (unsigned int) MEM;
297c3335 1689 hash += MEM_ALIAS_SET (x);
7506f491
DE
1690 x = XEXP (x, 0);
1691 goto repeat;
1692
1693 case PRE_DEC:
1694 case PRE_INC:
1695 case POST_DEC:
1696 case POST_INC:
1697 case PC:
1698 case CC0:
1699 case CALL:
1700 case UNSPEC_VOLATILE:
1701 *do_not_record_p = 1;
1702 return 0;
1703
1704 case ASM_OPERANDS:
1705 if (MEM_VOLATILE_P (x))
1706 {
1707 *do_not_record_p = 1;
1708 return 0;
1709 }
6462bb43
AO
1710 else
1711 {
1712 /* We don't want to take the filename and line into account. */
1713 hash += (unsigned) code + (unsigned) GET_MODE (x)
1714 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1715 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1716 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1717
1718 if (ASM_OPERANDS_INPUT_LENGTH (x))
1719 {
1720 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1721 {
1722 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1723 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1724 do_not_record_p)
1725 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1726 (x, i)));
1727 }
1728
1729 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1730 x = ASM_OPERANDS_INPUT (x, 0);
1731 mode = GET_MODE (x);
1732 goto repeat;
1733 }
1734 return hash;
1735 }
7506f491
DE
1736
1737 default:
1738 break;
1739 }
1740
7506f491 1741 hash += (unsigned) code + (unsigned) GET_MODE (x);
c4c81601 1742 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
7506f491
DE
1743 {
1744 if (fmt[i] == 'e')
1745 {
7506f491
DE
1746 /* If we are about to do the last recursive call
1747 needed at this level, change it into iteration.
1748 This function is called enough to be worth it. */
1749 if (i == 0)
1750 {
c4c81601 1751 x = XEXP (x, i);
7506f491
DE
1752 goto repeat;
1753 }
c4c81601
RK
1754
1755 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
7506f491
DE
1756 if (*do_not_record_p)
1757 return 0;
1758 }
c4c81601 1759
7506f491
DE
1760 else if (fmt[i] == 'E')
1761 for (j = 0; j < XVECLEN (x, i); j++)
1762 {
1763 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1764 if (*do_not_record_p)
1765 return 0;
1766 }
c4c81601 1767
7506f491 1768 else if (fmt[i] == 's')
6462bb43 1769 hash += hash_string_1 (XSTR (x, i));
7506f491 1770 else if (fmt[i] == 'i')
c4c81601 1771 hash += (unsigned int) XINT (x, i);
7506f491
DE
1772 else
1773 abort ();
1774 }
1775
1776 return hash;
1777}
1778
1779/* Hash a set of register REGNO.
1780
c4c81601
RK
1781 Sets are hashed on the register that is set. This simplifies the PRE copy
1782 propagation code.
7506f491
DE
1783
1784 ??? May need to make things more elaborate. Later, as necessary. */
1785
1786static unsigned int
1787hash_set (regno, hash_table_size)
1788 int regno;
1789 int hash_table_size;
1790{
1791 unsigned int hash;
1792
1793 hash = regno;
1794 return hash % hash_table_size;
1795}
1796
1797/* Return non-zero if exp1 is equivalent to exp2.
1798 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1799
1800static int
1801expr_equiv_p (x, y)
1802 rtx x, y;
1803{
b3694847
SS
1804 int i, j;
1805 enum rtx_code code;
1806 const char *fmt;
7506f491
DE
1807
1808 if (x == y)
1809 return 1;
c4c81601 1810
7506f491
DE
1811 if (x == 0 || y == 0)
1812 return x == y;
1813
1814 code = GET_CODE (x);
1815 if (code != GET_CODE (y))
1816 return 0;
1817
1818 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1819 if (GET_MODE (x) != GET_MODE (y))
1820 return 0;
1821
1822 switch (code)
1823 {
1824 case PC:
1825 case CC0:
1826 return x == y;
1827
1828 case CONST_INT:
1829 return INTVAL (x) == INTVAL (y);
1830
1831 case LABEL_REF:
1832 return XEXP (x, 0) == XEXP (y, 0);
1833
1834 case SYMBOL_REF:
1835 return XSTR (x, 0) == XSTR (y, 0);
1836
1837 case REG:
1838 return REGNO (x) == REGNO (y);
1839
297c3335
RH
1840 case MEM:
1841 /* Can't merge two expressions in different alias sets, since we can
1842 decide that the expression is transparent in a block when it isn't,
1843 due to it being set with the different alias set. */
1844 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1845 return 0;
1846 break;
1847
7506f491
DE
1848 /* For commutative operations, check both orders. */
1849 case PLUS:
1850 case MULT:
1851 case AND:
1852 case IOR:
1853 case XOR:
1854 case NE:
1855 case EQ:
1856 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1857 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1858 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1859 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1860
6462bb43
AO
1861 case ASM_OPERANDS:
1862 /* We don't use the generic code below because we want to
1863 disregard filename and line numbers. */
1864
1865 /* A volatile asm isn't equivalent to any other. */
1866 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1867 return 0;
1868
1869 if (GET_MODE (x) != GET_MODE (y)
1870 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1871 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1872 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1873 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1874 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1875 return 0;
1876
1877 if (ASM_OPERANDS_INPUT_LENGTH (x))
1878 {
1879 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1880 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1881 ASM_OPERANDS_INPUT (y, i))
1882 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1883 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1884 return 0;
1885 }
1886
1887 return 1;
1888
7506f491
DE
1889 default:
1890 break;
1891 }
1892
1893 /* Compare the elements. If any pair of corresponding elements
1894 fail to match, return 0 for the whole thing. */
1895
1896 fmt = GET_RTX_FORMAT (code);
1897 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1898 {
1899 switch (fmt[i])
1900 {
1901 case 'e':
1902 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1903 return 0;
1904 break;
1905
1906 case 'E':
1907 if (XVECLEN (x, i) != XVECLEN (y, i))
1908 return 0;
1909 for (j = 0; j < XVECLEN (x, i); j++)
1910 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1911 return 0;
1912 break;
1913
1914 case 's':
1915 if (strcmp (XSTR (x, i), XSTR (y, i)))
1916 return 0;
1917 break;
1918
1919 case 'i':
1920 if (XINT (x, i) != XINT (y, i))
1921 return 0;
1922 break;
1923
1924 case 'w':
1925 if (XWINT (x, i) != XWINT (y, i))
1926 return 0;
1927 break;
1928
1929 case '0':
1930 break;
aaa4ca30 1931
7506f491
DE
1932 default:
1933 abort ();
1934 }
8e42ace1 1935 }
7506f491
DE
1936
1937 return 1;
1938}
1939
1940/* Insert expression X in INSN in the hash table.
1941 If it is already present, record it as the last occurrence in INSN's
1942 basic block.
1943
1944 MODE is the mode of the value X is being stored into.
1945 It is only used if X is a CONST_INT.
1946
1947 ANTIC_P is non-zero if X is an anticipatable expression.
1948 AVAIL_P is non-zero if X is an available expression. */
1949
1950static void
1951insert_expr_in_table (x, mode, insn, antic_p, avail_p)
1952 rtx x;
1953 enum machine_mode mode;
1954 rtx insn;
1955 int antic_p, avail_p;
1956{
1957 int found, do_not_record_p;
1958 unsigned int hash;
1959 struct expr *cur_expr, *last_expr = NULL;
1960 struct occr *antic_occr, *avail_occr;
1961 struct occr *last_occr = NULL;
1962
1963 hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);
1964
1965 /* Do not insert expression in table if it contains volatile operands,
1966 or if hash_expr determines the expression is something we don't want
1967 to or can't handle. */
1968 if (do_not_record_p)
1969 return;
1970
1971 cur_expr = expr_hash_table[hash];
1972 found = 0;
1973
c4c81601 1974 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
7506f491
DE
1975 {
1976 /* If the expression isn't found, save a pointer to the end of
1977 the list. */
1978 last_expr = cur_expr;
1979 cur_expr = cur_expr->next_same_hash;
1980 }
1981
1982 if (! found)
1983 {
1984 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1985 bytes_used += sizeof (struct expr);
1986 if (expr_hash_table[hash] == NULL)
c4c81601
RK
1987 /* This is the first pattern that hashed to this index. */
1988 expr_hash_table[hash] = cur_expr;
7506f491 1989 else
c4c81601
RK
1990 /* Add EXPR to end of this hash chain. */
1991 last_expr->next_same_hash = cur_expr;
1992
7506f491
DE
1993 /* Set the fields of the expr element. */
1994 cur_expr->expr = x;
1995 cur_expr->bitmap_index = n_exprs++;
1996 cur_expr->next_same_hash = NULL;
1997 cur_expr->antic_occr = NULL;
1998 cur_expr->avail_occr = NULL;
1999 }
2000
2001 /* Now record the occurrence(s). */
7506f491
DE
2002 if (antic_p)
2003 {
2004 antic_occr = cur_expr->antic_occr;
2005
2006 /* Search for another occurrence in the same basic block. */
2007 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
2008 {
2009 /* If an occurrence isn't found, save a pointer to the end of
2010 the list. */
2011 last_occr = antic_occr;
2012 antic_occr = antic_occr->next;
2013 }
2014
2015 if (antic_occr)
c4c81601
RK
2016 /* Found another instance of the expression in the same basic block.
2017 Prefer the currently recorded one. We want the first one in the
2018 block and the block is scanned from start to end. */
2019 ; /* nothing to do */
7506f491
DE
2020 else
2021 {
2022 /* First occurrence of this expression in this basic block. */
2023 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2024 bytes_used += sizeof (struct occr);
2025 /* First occurrence of this expression in any block? */
2026 if (cur_expr->antic_occr == NULL)
2027 cur_expr->antic_occr = antic_occr;
2028 else
2029 last_occr->next = antic_occr;
c4c81601 2030
7506f491
DE
2031 antic_occr->insn = insn;
2032 antic_occr->next = NULL;
2033 }
2034 }
2035
2036 if (avail_p)
2037 {
2038 avail_occr = cur_expr->avail_occr;
2039
2040 /* Search for another occurrence in the same basic block. */
2041 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
2042 {
2043 /* If an occurrence isn't found, save a pointer to the end of
2044 the list. */
2045 last_occr = avail_occr;
2046 avail_occr = avail_occr->next;
2047 }
2048
2049 if (avail_occr)
c4c81601
RK
2050 /* Found another instance of the expression in the same basic block.
2051 Prefer this occurrence to the currently recorded one. We want
2052 the last one in the block and the block is scanned from start
2053 to end. */
2054 avail_occr->insn = insn;
7506f491
DE
2055 else
2056 {
2057 /* First occurrence of this expression in this basic block. */
2058 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2059 bytes_used += sizeof (struct occr);
c4c81601 2060
7506f491
DE
2061 /* First occurrence of this expression in any block? */
2062 if (cur_expr->avail_occr == NULL)
2063 cur_expr->avail_occr = avail_occr;
2064 else
2065 last_occr->next = avail_occr;
c4c81601 2066
7506f491
DE
2067 avail_occr->insn = insn;
2068 avail_occr->next = NULL;
2069 }
2070 }
2071}
2072
2073/* Insert pattern X in INSN in the hash table.
2074 X is a SET of a reg to either another reg or a constant.
2075 If it is already present, record it as the last occurrence in INSN's
2076 basic block. */
2077
2078static void
2079insert_set_in_table (x, insn)
2080 rtx x;
2081 rtx insn;
2082{
2083 int found;
2084 unsigned int hash;
2085 struct expr *cur_expr, *last_expr = NULL;
2086 struct occr *cur_occr, *last_occr = NULL;
2087
2088 if (GET_CODE (x) != SET
2089 || GET_CODE (SET_DEST (x)) != REG)
2090 abort ();
2091
2092 hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);
2093
2094 cur_expr = set_hash_table[hash];
2095 found = 0;
2096
c4c81601 2097 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
7506f491
DE
2098 {
2099 /* If the expression isn't found, save a pointer to the end of
2100 the list. */
2101 last_expr = cur_expr;
2102 cur_expr = cur_expr->next_same_hash;
2103 }
2104
2105 if (! found)
2106 {
2107 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
2108 bytes_used += sizeof (struct expr);
2109 if (set_hash_table[hash] == NULL)
c4c81601
RK
2110 /* This is the first pattern that hashed to this index. */
2111 set_hash_table[hash] = cur_expr;
7506f491 2112 else
c4c81601
RK
2113 /* Add EXPR to end of this hash chain. */
2114 last_expr->next_same_hash = cur_expr;
2115
7506f491
DE
2116 /* Set the fields of the expr element.
2117 We must copy X because it can be modified when copy propagation is
2118 performed on its operands. */
7506f491
DE
2119 cur_expr->expr = copy_rtx (x);
2120 cur_expr->bitmap_index = n_sets++;
2121 cur_expr->next_same_hash = NULL;
2122 cur_expr->antic_occr = NULL;
2123 cur_expr->avail_occr = NULL;
2124 }
2125
2126 /* Now record the occurrence. */
7506f491
DE
2127 cur_occr = cur_expr->avail_occr;
2128
2129 /* Search for another occurrence in the same basic block. */
2130 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
2131 {
2132 /* If an occurrence isn't found, save a pointer to the end of
2133 the list. */
2134 last_occr = cur_occr;
2135 cur_occr = cur_occr->next;
2136 }
2137
2138 if (cur_occr)
c4c81601
RK
2139 /* Found another instance of the expression in the same basic block.
2140 Prefer this occurrence to the currently recorded one. We want the
2141 last one in the block and the block is scanned from start to end. */
2142 cur_occr->insn = insn;
7506f491
DE
2143 else
2144 {
2145 /* First occurrence of this expression in this basic block. */
2146 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2147 bytes_used += sizeof (struct occr);
c4c81601 2148
7506f491
DE
2149 /* First occurrence of this expression in any block? */
2150 if (cur_expr->avail_occr == NULL)
2151 cur_expr->avail_occr = cur_occr;
2152 else
2153 last_occr->next = cur_occr;
c4c81601 2154
7506f491
DE
2155 cur_occr->insn = insn;
2156 cur_occr->next = NULL;
2157 }
2158}
2159
c4c81601
RK
2160/* Scan pattern PAT of INSN and add an entry to the hash table. If SET_P is
2161 non-zero, this is for the assignment hash table, otherwise it is for the
2162 expression hash table. */
7506f491
DE
2163
2164static void
2165hash_scan_set (pat, insn, set_p)
2166 rtx pat, insn;
2167 int set_p;
2168{
2169 rtx src = SET_SRC (pat);
2170 rtx dest = SET_DEST (pat);
172890a2 2171 rtx note;
7506f491
DE
2172
2173 if (GET_CODE (src) == CALL)
2174 hash_scan_call (src, insn);
2175
172890a2 2176 else if (GET_CODE (dest) == REG)
7506f491 2177 {
172890a2 2178 unsigned int regno = REGNO (dest);
7506f491
DE
2179 rtx tmp;
2180
172890a2
RK
2181 /* If this is a single set and we are doing constant propagation,
2182 see if a REG_NOTE shows this equivalent to a constant. */
2183 if (set_p && (note = find_reg_equal_equiv_note (insn)) != 0
2184 && CONSTANT_P (XEXP (note, 0)))
2185 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
2186
7506f491
DE
2187 /* Only record sets of pseudo-regs in the hash table. */
2188 if (! set_p
2189 && regno >= FIRST_PSEUDO_REGISTER
2190 /* Don't GCSE something if we can't do a reg/reg copy. */
2191 && can_copy_p [GET_MODE (dest)]
068473ec
JH
2192 /* GCSE commonly inserts instruction after the insn. We can't
2193 do that easily for EH_REGION notes so disable GCSE on these
2194 for now. */
2195 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
7506f491 2196 /* Is SET_SRC something we want to gcse? */
172890a2
RK
2197 && want_to_gcse_p (src)
2198 /* Don't CSE a nop. */
43e72072
JJ
2199 && ! set_noop_p (pat)
2200 /* Don't GCSE if it has attached REG_EQUIV note.
2201 At this point this only function parameters should have
2202 REG_EQUIV notes and if the argument slot is used somewhere
a1f300c0 2203 explicitly, it means address of parameter has been taken,
43e72072
JJ
2204 so we should not extend the lifetime of the pseudo. */
2205 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2206 || GET_CODE (XEXP (note, 0)) != MEM))
7506f491
DE
2207 {
2208 /* An expression is not anticipatable if its operands are
52d76e11
RK
2209 modified before this insn or if this is not the only SET in
2210 this insn. */
2211 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
7506f491 2212 /* An expression is not available if its operands are
eb296bd9
GK
2213 subsequently modified, including this insn. It's also not
2214 available if this is a branch, because we can't insert
2215 a set after the branch. */
2216 int avail_p = (oprs_available_p (src, insn)
2217 && ! JUMP_P (insn));
c4c81601 2218
7506f491
DE
2219 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
2220 }
c4c81601 2221
7506f491
DE
2222 /* Record sets for constant/copy propagation. */
2223 else if (set_p
2224 && regno >= FIRST_PSEUDO_REGISTER
2225 && ((GET_CODE (src) == REG
2226 && REGNO (src) >= FIRST_PSEUDO_REGISTER
172890a2
RK
2227 && can_copy_p [GET_MODE (dest)]
2228 && REGNO (src) != regno)
b446e5a2 2229 || CONSTANT_P (src))
7506f491
DE
2230 /* A copy is not available if its src or dest is subsequently
2231 modified. Here we want to search from INSN+1 on, but
2232 oprs_available_p searches from INSN on. */
2233 && (insn == BLOCK_END (BLOCK_NUM (insn))
2234 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
2235 && oprs_available_p (pat, tmp))))
2236 insert_set_in_table (pat, insn);
2237 }
7506f491
DE
2238}
2239
2240static void
2241hash_scan_clobber (x, insn)
50b2596f 2242 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
7506f491
DE
2243{
2244 /* Currently nothing to do. */
2245}
2246
2247static void
2248hash_scan_call (x, insn)
50b2596f 2249 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
7506f491
DE
2250{
2251 /* Currently nothing to do. */
2252}
2253
2254/* Process INSN and add hash table entries as appropriate.
2255
2256 Only available expressions that set a single pseudo-reg are recorded.
2257
2258 Single sets in a PARALLEL could be handled, but it's an extra complication
2259 that isn't dealt with right now. The trick is handling the CLOBBERs that
2260 are also in the PARALLEL. Later.
2261
2262 If SET_P is non-zero, this is for the assignment hash table,
ed79bb3d
R
2263 otherwise it is for the expression hash table.
2264 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2265 not record any expressions. */
7506f491
DE
2266
2267static void
ed79bb3d 2268hash_scan_insn (insn, set_p, in_libcall_block)
7506f491
DE
2269 rtx insn;
2270 int set_p;
48e87cef 2271 int in_libcall_block;
7506f491
DE
2272{
2273 rtx pat = PATTERN (insn);
c4c81601 2274 int i;
7506f491 2275
172890a2
RK
2276 if (in_libcall_block)
2277 return;
2278
7506f491
DE
2279 /* Pick out the sets of INSN and for other forms of instructions record
2280 what's been modified. */
2281
172890a2
RK
2282 if (GET_CODE (pat) == SET)
2283 hash_scan_set (pat, insn, set_p);
7506f491 2284 else if (GET_CODE (pat) == PARALLEL)
c4c81601
RK
2285 for (i = 0; i < XVECLEN (pat, 0); i++)
2286 {
2287 rtx x = XVECEXP (pat, 0, i);
7506f491 2288
c4c81601 2289 if (GET_CODE (x) == SET)
172890a2 2290 hash_scan_set (x, insn, set_p);
c4c81601
RK
2291 else if (GET_CODE (x) == CLOBBER)
2292 hash_scan_clobber (x, insn);
2293 else if (GET_CODE (x) == CALL)
2294 hash_scan_call (x, insn);
2295 }
7506f491 2296
7506f491
DE
2297 else if (GET_CODE (pat) == CLOBBER)
2298 hash_scan_clobber (pat, insn);
2299 else if (GET_CODE (pat) == CALL)
2300 hash_scan_call (pat, insn);
2301}
2302
2303static void
2304dump_hash_table (file, name, table, table_size, total_size)
2305 FILE *file;
dff01034 2306 const char *name;
7506f491
DE
2307 struct expr **table;
2308 int table_size, total_size;
2309{
2310 int i;
2311 /* Flattened out table, so it's printed in proper order. */
4da896b2
MM
2312 struct expr **flat_table;
2313 unsigned int *hash_val;
c4c81601 2314 struct expr *expr;
4da896b2
MM
2315
2316 flat_table
2317 = (struct expr **) xcalloc (total_size, sizeof (struct expr *));
2318 hash_val = (unsigned int *) xmalloc (total_size * sizeof (unsigned int));
7506f491 2319
7506f491 2320 for (i = 0; i < table_size; i++)
c4c81601
RK
2321 for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
2322 {
2323 flat_table[expr->bitmap_index] = expr;
2324 hash_val[expr->bitmap_index] = i;
2325 }
7506f491
DE
2326
2327 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2328 name, table_size, total_size);
2329
2330 for (i = 0; i < total_size; i++)
21318741
RK
2331 if (flat_table[i] != 0)
2332 {
a0ac9e5a 2333 expr = flat_table[i];
21318741
RK
2334 fprintf (file, "Index %d (hash value %d)\n ",
2335 expr->bitmap_index, hash_val[i]);
a0ac9e5a 2336 print_rtl (file, expr->expr);
21318741
RK
2337 fprintf (file, "\n");
2338 }
7506f491
DE
2339
2340 fprintf (file, "\n");
4da896b2 2341
4da896b2
MM
2342 free (flat_table);
2343 free (hash_val);
7506f491
DE
2344}
2345
2346/* Record register first/last/block set information for REGNO in INSN.
c4c81601 2347
80c29cc4 2348 first_set records the first place in the block where the register
7506f491 2349 is set and is used to compute "anticipatability".
c4c81601 2350
80c29cc4 2351 last_set records the last place in the block where the register
7506f491 2352 is set and is used to compute "availability".
c4c81601 2353
80c29cc4
RZ
2354 last_bb records the block for which first_set and last_set are
2355 valid, as a quick test to invalidate them.
2356
7506f491
DE
2357 reg_set_in_block records whether the register is set in the block
2358 and is used to compute "transparency". */
2359
2360static void
2361record_last_reg_set_info (insn, regno)
2362 rtx insn;
2363 int regno;
2364{
80c29cc4
RZ
2365 struct reg_avail_info *info = &reg_avail_info[regno];
2366 int cuid = INSN_CUID (insn);
c4c81601 2367
80c29cc4
RZ
2368 info->last_set = cuid;
2369 if (info->last_bb != current_bb)
2370 {
2371 info->last_bb = current_bb;
2372 info->first_set = cuid;
2373 SET_BIT (reg_set_in_block[current_bb], regno);
2374 }
7506f491
DE
2375}
2376
a13d4ebf
AM
2377
2378/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2379 Note we store a pair of elements in the list, so they have to be
2380 taken off pairwise. */
2381
2382static void
2383canon_list_insert (dest, unused1, v_insn)
2384 rtx dest ATTRIBUTE_UNUSED;
2385 rtx unused1 ATTRIBUTE_UNUSED;
2386 void * v_insn;
2387{
2388 rtx dest_addr, insn;
2389
2390 while (GET_CODE (dest) == SUBREG
2391 || GET_CODE (dest) == ZERO_EXTRACT
2392 || GET_CODE (dest) == SIGN_EXTRACT
2393 || GET_CODE (dest) == STRICT_LOW_PART)
2394 dest = XEXP (dest, 0);
2395
2396 /* If DEST is not a MEM, then it will not conflict with a load. Note
2397 that function calls are assumed to clobber memory, but are handled
2398 elsewhere. */
2399
2400 if (GET_CODE (dest) != MEM)
2401 return;
2402
2403 dest_addr = get_addr (XEXP (dest, 0));
2404 dest_addr = canon_rtx (dest_addr);
2405 insn = (rtx) v_insn;
2406
2407 canon_modify_mem_list[BLOCK_NUM (insn)] =
2408 alloc_INSN_LIST (dest_addr, canon_modify_mem_list[BLOCK_NUM (insn)]);
2409 canon_modify_mem_list[BLOCK_NUM (insn)] =
2410 alloc_INSN_LIST (dest, canon_modify_mem_list[BLOCK_NUM (insn)]);
73991d6a 2411 bitmap_set_bit (canon_modify_mem_list_set, BLOCK_NUM (insn));
a13d4ebf
AM
2412}
2413
a13d4ebf
AM
2414/* Record memory modification information for INSN. We do not actually care
2415 about the memory location(s) that are set, or even how they are set (consider
2416 a CALL_INSN). We merely need to record which insns modify memory. */
7506f491
DE
2417
2418static void
2419record_last_mem_set_info (insn)
2420 rtx insn;
2421{
ccef9ef5 2422 /* load_killed_in_block_p will handle the case of calls clobbering
dc297297 2423 everything. */
a13d4ebf
AM
2424 modify_mem_list[BLOCK_NUM (insn)] =
2425 alloc_INSN_LIST (insn, modify_mem_list[BLOCK_NUM (insn)]);
73991d6a 2426 bitmap_set_bit (modify_mem_list_set, BLOCK_NUM (insn));
a13d4ebf
AM
2427
2428 if (GET_CODE (insn) == CALL_INSN)
2429 {
2430 /* Note that traversals of this loop (other than for free-ing)
2431 will break after encountering a CALL_INSN. So, there's no
dc297297 2432 need to insert a pair of items, as canon_list_insert does. */
a13d4ebf
AM
2433 canon_modify_mem_list[BLOCK_NUM (insn)] =
2434 alloc_INSN_LIST (insn, canon_modify_mem_list[BLOCK_NUM (insn)]);
73991d6a 2435 bitmap_set_bit (canon_modify_mem_list_set, BLOCK_NUM (insn));
a13d4ebf
AM
2436 }
2437 else
8e42ace1 2438 note_stores (PATTERN (insn), canon_list_insert, (void*) insn );
7506f491
DE
2439}
2440
7506f491 2441/* Called from compute_hash_table via note_stores to handle one
84832317
MM
2442 SET or CLOBBER in an insn. DATA is really the instruction in which
2443 the SET is taking place. */
7506f491
DE
2444
2445static void
84832317 2446record_last_set_info (dest, setter, data)
50b2596f 2447 rtx dest, setter ATTRIBUTE_UNUSED;
84832317 2448 void *data;
7506f491 2449{
84832317
MM
2450 rtx last_set_insn = (rtx) data;
2451
7506f491
DE
2452 if (GET_CODE (dest) == SUBREG)
2453 dest = SUBREG_REG (dest);
2454
2455 if (GET_CODE (dest) == REG)
2456 record_last_reg_set_info (last_set_insn, REGNO (dest));
2457 else if (GET_CODE (dest) == MEM
2458 /* Ignore pushes, they clobber nothing. */
2459 && ! push_operand (dest, GET_MODE (dest)))
2460 record_last_mem_set_info (last_set_insn);
2461}
2462
2463/* Top level function to create an expression or assignment hash table.
2464
2465 Expression entries are placed in the hash table if
2466 - they are of the form (set (pseudo-reg) src),
2467 - src is something we want to perform GCSE on,
2468 - none of the operands are subsequently modified in the block
2469
2470 Assignment entries are placed in the hash table if
2471 - they are of the form (set (pseudo-reg) src),
2472 - src is something we want to perform const/copy propagation on,
2473 - none of the operands or target are subsequently modified in the block
c4c81601 2474
7506f491
DE
2475 Currently src must be a pseudo-reg or a const_int.
2476
2477 F is the first insn.
2478 SET_P is non-zero for computing the assignment hash table. */
2479
2480static void
b5ce41ff 2481compute_hash_table (set_p)
7506f491
DE
2482 int set_p;
2483{
80c29cc4 2484 unsigned int i;
7506f491
DE
2485
2486 /* While we compute the hash table we also compute a bit array of which
2487 registers are set in which blocks.
7506f491
DE
2488 ??? This isn't needed during const/copy propagation, but it's cheap to
2489 compute. Later. */
2490 sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
7506f491 2491
a13d4ebf 2492 /* re-Cache any INSN_LIST nodes we have allocated. */
73991d6a 2493 clear_modify_mem_tables ();
7506f491 2494 /* Some working arrays used to track first and last set in each block. */
80c29cc4
RZ
2495 reg_avail_info = (struct reg_avail_info*)
2496 gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2497
2498 for (i = 0; i < max_gcse_regno; ++i)
2499 reg_avail_info[i].last_bb = NEVER_SET;
7506f491 2500
80c29cc4 2501 for (current_bb = 0; current_bb < n_basic_blocks; current_bb++)
7506f491
DE
2502 {
2503 rtx insn;
770ae6cc 2504 unsigned int regno;
ed79bb3d 2505 int in_libcall_block;
7506f491
DE
2506
2507 /* First pass over the instructions records information used to
2508 determine when registers and memory are first and last set.
ccef9ef5 2509 ??? hard-reg reg_set_in_block computation
7506f491
DE
2510 could be moved to compute_sets since they currently don't change. */
2511
80c29cc4
RZ
2512 for (insn = BLOCK_HEAD (current_bb);
2513 insn && insn != NEXT_INSN (BLOCK_END (current_bb));
7506f491
DE
2514 insn = NEXT_INSN (insn))
2515 {
2c3c49de 2516 if (! INSN_P (insn))
7506f491
DE
2517 continue;
2518
2519 if (GET_CODE (insn) == CALL_INSN)
2520 {
19652adf
ZW
2521 bool clobbers_all = false;
2522#ifdef NON_SAVING_SETJMP
2523 if (NON_SAVING_SETJMP
2524 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2525 clobbers_all = true;
2526#endif
2527
7506f491 2528 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
19652adf
ZW
2529 if (clobbers_all
2530 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
7506f491 2531 record_last_reg_set_info (insn, regno);
c4c81601 2532
24a28584 2533 mark_call (insn);
7506f491
DE
2534 }
2535
84832317 2536 note_stores (PATTERN (insn), record_last_set_info, insn);
7506f491
DE
2537 }
2538
2539 /* The next pass builds the hash table. */
2540
80c29cc4
RZ
2541 for (insn = BLOCK_HEAD (current_bb), in_libcall_block = 0;
2542 insn && insn != NEXT_INSN (BLOCK_END (current_bb));
7506f491 2543 insn = NEXT_INSN (insn))
2c3c49de 2544 if (INSN_P (insn))
c4c81601
RK
2545 {
2546 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
c63b1ae8
AM
2547 in_libcall_block = 1;
2548 else if (set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2549 in_libcall_block = 0;
2550 hash_scan_insn (insn, set_p, in_libcall_block);
2551 if (!set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2552 in_libcall_block = 0;
8e42ace1 2553 }
7506f491
DE
2554 }
2555
80c29cc4
RZ
2556 free (reg_avail_info);
2557 reg_avail_info = NULL;
7506f491
DE
2558}
2559
2560/* Allocate space for the set hash table.
2561 N_INSNS is the number of instructions in the function.
2562 It is used to determine the number of buckets to use. */
2563
2564static void
2565alloc_set_hash_table (n_insns)
2566 int n_insns;
2567{
2568 int n;
2569
2570 set_hash_table_size = n_insns / 4;
2571 if (set_hash_table_size < 11)
2572 set_hash_table_size = 11;
c4c81601 2573
7506f491
DE
2574 /* Attempt to maintain efficient use of hash table.
2575 Making it an odd number is simplest for now.
2576 ??? Later take some measurements. */
2577 set_hash_table_size |= 1;
2578 n = set_hash_table_size * sizeof (struct expr *);
2579 set_hash_table = (struct expr **) gmalloc (n);
2580}
2581
2582/* Free things allocated by alloc_set_hash_table. */
2583
2584static void
2585free_set_hash_table ()
2586{
2587 free (set_hash_table);
2588}
2589
2590/* Compute the hash table for doing copy/const propagation. */
2591
2592static void
b5ce41ff 2593compute_set_hash_table ()
7506f491
DE
2594{
2595 /* Initialize count of number of entries in hash table. */
2596 n_sets = 0;
961192e1 2597 memset ((char *) set_hash_table, 0,
8e42ace1 2598 set_hash_table_size * sizeof (struct expr *));
7506f491 2599
b5ce41ff 2600 compute_hash_table (1);
7506f491
DE
2601}
2602
2603/* Allocate space for the expression hash table.
2604 N_INSNS is the number of instructions in the function.
2605 It is used to determine the number of buckets to use. */
2606
2607static void
2608alloc_expr_hash_table (n_insns)
2e653e39 2609 unsigned int n_insns;
7506f491
DE
2610{
2611 int n;
2612
2613 expr_hash_table_size = n_insns / 2;
2614 /* Make sure the amount is usable. */
2615 if (expr_hash_table_size < 11)
2616 expr_hash_table_size = 11;
c4c81601 2617
7506f491
DE
2618 /* Attempt to maintain efficient use of hash table.
2619 Making it an odd number is simplest for now.
2620 ??? Later take some measurements. */
2621 expr_hash_table_size |= 1;
2622 n = expr_hash_table_size * sizeof (struct expr *);
2623 expr_hash_table = (struct expr **) gmalloc (n);
2624}
2625
2626/* Free things allocated by alloc_expr_hash_table. */
2627
2628static void
2629free_expr_hash_table ()
2630{
2631 free (expr_hash_table);
2632}
2633
2634/* Compute the hash table for doing GCSE. */
2635
2636static void
b5ce41ff 2637compute_expr_hash_table ()
7506f491
DE
2638{
2639 /* Initialize count of number of entries in hash table. */
2640 n_exprs = 0;
961192e1 2641 memset ((char *) expr_hash_table, 0,
8e42ace1 2642 expr_hash_table_size * sizeof (struct expr *));
7506f491 2643
b5ce41ff 2644 compute_hash_table (0);
7506f491
DE
2645}
2646\f
2647/* Expression tracking support. */
2648
2649/* Lookup pattern PAT in the expression table.
2650 The result is a pointer to the table entry, or NULL if not found. */
2651
2652static struct expr *
2653lookup_expr (pat)
2654 rtx pat;
2655{
2656 int do_not_record_p;
2657 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2658 expr_hash_table_size);
2659 struct expr *expr;
2660
2661 if (do_not_record_p)
2662 return NULL;
2663
2664 expr = expr_hash_table[hash];
2665
2666 while (expr && ! expr_equiv_p (expr->expr, pat))
2667 expr = expr->next_same_hash;
2668
2669 return expr;
2670}
2671
c4c81601
RK
2672/* Lookup REGNO in the set table. If PAT is non-NULL look for the entry that
2673 matches it, otherwise return the first entry for REGNO. The result is a
2674 pointer to the table entry, or NULL if not found. */
7506f491
DE
2675
2676static struct expr *
2677lookup_set (regno, pat)
770ae6cc 2678 unsigned int regno;
7506f491
DE
2679 rtx pat;
2680{
2681 unsigned int hash = hash_set (regno, set_hash_table_size);
2682 struct expr *expr;
2683
2684 expr = set_hash_table[hash];
2685
2686 if (pat)
2687 {
2688 while (expr && ! expr_equiv_p (expr->expr, pat))
2689 expr = expr->next_same_hash;
2690 }
2691 else
2692 {
2693 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2694 expr = expr->next_same_hash;
2695 }
2696
2697 return expr;
2698}
2699
2700/* Return the next entry for REGNO in list EXPR. */
2701
2702static struct expr *
2703next_set (regno, expr)
770ae6cc 2704 unsigned int regno;
7506f491
DE
2705 struct expr *expr;
2706{
2707 do
2708 expr = expr->next_same_hash;
2709 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
c4c81601 2710
7506f491
DE
2711 return expr;
2712}
2713
73991d6a
JH
2714/* Clear canon_modify_mem_list and modify_mem_list tables. */
2715static void
2716clear_modify_mem_tables ()
2717{
2718 int i;
2719
2720 EXECUTE_IF_SET_IN_BITMAP
2721 (canon_modify_mem_list_set, 0, i,
2722 free_INSN_LIST_list (modify_mem_list + i));
2723 bitmap_clear (canon_modify_mem_list_set);
2724
2725 EXECUTE_IF_SET_IN_BITMAP
2726 (canon_modify_mem_list_set, 0, i,
2727 free_INSN_LIST_list (canon_modify_mem_list + i));
2728 bitmap_clear (modify_mem_list_set);
2729}
2730
2731/* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2732
2733static void
2734free_modify_mem_tables ()
2735{
2736 clear_modify_mem_tables ();
2737 free (modify_mem_list);
2738 free (canon_modify_mem_list);
2739 modify_mem_list = 0;
2740 canon_modify_mem_list = 0;
2741}
2742
7506f491
DE
2743/* Reset tables used to keep track of what's still available [since the
2744 start of the block]. */
2745
2746static void
2747reset_opr_set_tables ()
2748{
2749 /* Maintain a bitmap of which regs have been set since beginning of
2750 the block. */
73991d6a 2751 CLEAR_REG_SET (reg_set_bitmap);
c4c81601 2752
7506f491
DE
2753 /* Also keep a record of the last instruction to modify memory.
2754 For now this is very trivial, we only record whether any memory
2755 location has been modified. */
73991d6a 2756 clear_modify_mem_tables ();
7506f491
DE
2757}
2758
2759/* Return non-zero if the operands of X are not set before INSN in
2760 INSN's basic block. */
2761
2762static int
2763oprs_not_set_p (x, insn)
2764 rtx x, insn;
2765{
c4c81601 2766 int i, j;
7506f491 2767 enum rtx_code code;
6f7d635c 2768 const char *fmt;
7506f491 2769
7506f491
DE
2770 if (x == 0)
2771 return 1;
2772
2773 code = GET_CODE (x);
2774 switch (code)
2775 {
2776 case PC:
2777 case CC0:
2778 case CONST:
2779 case CONST_INT:
2780 case CONST_DOUBLE:
69ef87e2 2781 case CONST_VECTOR:
7506f491
DE
2782 case SYMBOL_REF:
2783 case LABEL_REF:
2784 case ADDR_VEC:
2785 case ADDR_DIFF_VEC:
2786 return 1;
2787
2788 case MEM:
e2d2ed72
AM
2789 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2790 INSN_CUID (insn), x, 0))
a13d4ebf 2791 return 0;
c4c81601
RK
2792 else
2793 return oprs_not_set_p (XEXP (x, 0), insn);
7506f491
DE
2794
2795 case REG:
73991d6a 2796 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
7506f491
DE
2797
2798 default:
2799 break;
2800 }
2801
c4c81601 2802 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
7506f491
DE
2803 {
2804 if (fmt[i] == 'e')
2805 {
7506f491
DE
2806 /* If we are about to do the last recursive call
2807 needed at this level, change it into iteration.
2808 This function is called enough to be worth it. */
2809 if (i == 0)
c4c81601
RK
2810 return oprs_not_set_p (XEXP (x, i), insn);
2811
2812 if (! oprs_not_set_p (XEXP (x, i), insn))
7506f491
DE
2813 return 0;
2814 }
2815 else if (fmt[i] == 'E')
c4c81601
RK
2816 for (j = 0; j < XVECLEN (x, i); j++)
2817 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2818 return 0;
7506f491
DE
2819 }
2820
2821 return 1;
2822}
2823
2824/* Mark things set by a CALL. */
2825
2826static void
b5ce41ff
JL
2827mark_call (insn)
2828 rtx insn;
7506f491 2829{
24a28584 2830 if (! CONST_OR_PURE_CALL_P (insn))
a13d4ebf 2831 record_last_mem_set_info (insn);
7506f491
DE
2832}
2833
2834/* Mark things set by a SET. */
2835
2836static void
2837mark_set (pat, insn)
2838 rtx pat, insn;
2839{
2840 rtx dest = SET_DEST (pat);
2841
2842 while (GET_CODE (dest) == SUBREG
2843 || GET_CODE (dest) == ZERO_EXTRACT
2844 || GET_CODE (dest) == SIGN_EXTRACT
2845 || GET_CODE (dest) == STRICT_LOW_PART)
2846 dest = XEXP (dest, 0);
2847
a13d4ebf 2848 if (GET_CODE (dest) == REG)
73991d6a 2849 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
a13d4ebf
AM
2850 else if (GET_CODE (dest) == MEM)
2851 record_last_mem_set_info (insn);
2852
7506f491 2853 if (GET_CODE (SET_SRC (pat)) == CALL)
b5ce41ff 2854 mark_call (insn);
7506f491
DE
2855}
2856
2857/* Record things set by a CLOBBER. */
2858
2859static void
2860mark_clobber (pat, insn)
2861 rtx pat, insn;
2862{
2863 rtx clob = XEXP (pat, 0);
2864
2865 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2866 clob = XEXP (clob, 0);
2867
a13d4ebf 2868 if (GET_CODE (clob) == REG)
73991d6a 2869 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
a13d4ebf
AM
2870 else
2871 record_last_mem_set_info (insn);
7506f491
DE
2872}
2873
2874/* Record things set by INSN.
2875 This data is used by oprs_not_set_p. */
2876
2877static void
2878mark_oprs_set (insn)
2879 rtx insn;
2880{
2881 rtx pat = PATTERN (insn);
c4c81601 2882 int i;
7506f491
DE
2883
2884 if (GET_CODE (pat) == SET)
2885 mark_set (pat, insn);
2886 else if (GET_CODE (pat) == PARALLEL)
c4c81601
RK
2887 for (i = 0; i < XVECLEN (pat, 0); i++)
2888 {
2889 rtx x = XVECEXP (pat, 0, i);
2890
2891 if (GET_CODE (x) == SET)
2892 mark_set (x, insn);
2893 else if (GET_CODE (x) == CLOBBER)
2894 mark_clobber (x, insn);
2895 else if (GET_CODE (x) == CALL)
2896 mark_call (insn);
2897 }
7506f491 2898
7506f491
DE
2899 else if (GET_CODE (pat) == CLOBBER)
2900 mark_clobber (pat, insn);
2901 else if (GET_CODE (pat) == CALL)
b5ce41ff 2902 mark_call (insn);
7506f491 2903}
b5ce41ff 2904
7506f491
DE
2905\f
2906/* Classic GCSE reaching definition support. */
2907
2908/* Allocate reaching def variables. */
2909
2910static void
2911alloc_rd_mem (n_blocks, n_insns)
2912 int n_blocks, n_insns;
2913{
2914 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2915 sbitmap_vector_zero (rd_kill, n_basic_blocks);
2916
2917 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2918 sbitmap_vector_zero (rd_gen, n_basic_blocks);
2919
2920 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2921 sbitmap_vector_zero (reaching_defs, n_basic_blocks);
2922
2923 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2924 sbitmap_vector_zero (rd_out, n_basic_blocks);
2925}
2926
2927/* Free reaching def variables. */
2928
2929static void
2930free_rd_mem ()
2931{
5a660bff
DB
2932 sbitmap_vector_free (rd_kill);
2933 sbitmap_vector_free (rd_gen);
2934 sbitmap_vector_free (reaching_defs);
2935 sbitmap_vector_free (rd_out);
7506f491
DE
2936}
2937
c4c81601 2938/* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
7506f491
DE
2939
2940static void
2941handle_rd_kill_set (insn, regno, bb)
2942 rtx insn;
e2d2ed72
AM
2943 int regno;
2944 basic_block bb;
7506f491 2945{
c4c81601 2946 struct reg_set *this_reg;
7506f491 2947
c4c81601
RK
2948 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2949 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
e2d2ed72 2950 SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
7506f491
DE
2951}
2952
7506f491
DE
2953/* Compute the set of kill's for reaching definitions. */
2954
2955static void
2956compute_kill_rd ()
2957{
c4c81601 2958 int bb, cuid;
172890a2
RK
2959 unsigned int regno;
2960 int i;
7506f491
DE
2961
2962 /* For each block
2963 For each set bit in `gen' of the block (i.e each insn which
ac7c5af5
JL
2964 generates a definition in the block)
2965 Call the reg set by the insn corresponding to that bit regx
2966 Look at the linked list starting at reg_set_table[regx]
2967 For each setting of regx in the linked list, which is not in
2968 this block
6d2f8887 2969 Set the bit in `kill' corresponding to that insn. */
7506f491 2970 for (bb = 0; bb < n_basic_blocks; bb++)
c4c81601
RK
2971 for (cuid = 0; cuid < max_cuid; cuid++)
2972 if (TEST_BIT (rd_gen[bb], cuid))
7506f491 2973 {
c4c81601
RK
2974 rtx insn = CUID_INSN (cuid);
2975 rtx pat = PATTERN (insn);
7506f491 2976
c4c81601
RK
2977 if (GET_CODE (insn) == CALL_INSN)
2978 {
2979 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4e2db584
RH
2980 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2981 handle_rd_kill_set (insn, regno, BASIC_BLOCK (bb));
c4c81601 2982 }
7506f491 2983
c4c81601
RK
2984 if (GET_CODE (pat) == PARALLEL)
2985 {
2986 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7506f491 2987 {
c4c81601 2988 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
7506f491 2989
c4c81601
RK
2990 if ((code == SET || code == CLOBBER)
2991 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
2992 handle_rd_kill_set (insn,
2993 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
e2d2ed72 2994 BASIC_BLOCK (bb));
ac7c5af5 2995 }
ac7c5af5 2996 }
c4c81601
RK
2997 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
2998 /* Each setting of this register outside of this block
2999 must be marked in the set of kills in this block. */
e2d2ed72 3000 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), BASIC_BLOCK (bb));
7506f491 3001 }
7506f491
DE
3002}
3003
3004/* Compute the reaching definitions as in
3005 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
3006 Chapter 10. It is the same algorithm as used for computing available
3007 expressions but applied to the gens and kills of reaching definitions. */
3008
3009static void
3010compute_rd ()
3011{
3012 int bb, changed, passes;
3013
3014 for (bb = 0; bb < n_basic_blocks; bb++)
3015 sbitmap_copy (rd_out[bb] /*dst*/, rd_gen[bb] /*src*/);
3016
3017 passes = 0;
3018 changed = 1;
3019 while (changed)
3020 {
3021 changed = 0;
3022 for (bb = 0; bb < n_basic_blocks; bb++)
ac7c5af5 3023 {
36349f8b 3024 sbitmap_union_of_preds (reaching_defs[bb], rd_out, bb);
7506f491
DE
3025 changed |= sbitmap_union_of_diff (rd_out[bb], rd_gen[bb],
3026 reaching_defs[bb], rd_kill[bb]);
ac7c5af5 3027 }
7506f491
DE
3028 passes++;
3029 }
3030
3031 if (gcse_file)
3032 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
3033}
3034\f
3035/* Classic GCSE available expression support. */
3036
3037/* Allocate memory for available expression computation. */
3038
3039static void
3040alloc_avail_expr_mem (n_blocks, n_exprs)
3041 int n_blocks, n_exprs;
3042{
3043 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3044 sbitmap_vector_zero (ae_kill, n_basic_blocks);
3045
3046 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3047 sbitmap_vector_zero (ae_gen, n_basic_blocks);
3048
3049 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3050 sbitmap_vector_zero (ae_in, n_basic_blocks);
3051
3052 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3053 sbitmap_vector_zero (ae_out, n_basic_blocks);
7506f491
DE
3054}
3055
3056static void
3057free_avail_expr_mem ()
3058{
5a660bff
DB
3059 sbitmap_vector_free (ae_kill);
3060 sbitmap_vector_free (ae_gen);
3061 sbitmap_vector_free (ae_in);
3062 sbitmap_vector_free (ae_out);
7506f491
DE
3063}
3064
3065/* Compute the set of available expressions generated in each basic block. */
3066
3067static void
3068compute_ae_gen ()
3069{
2e653e39 3070 unsigned int i;
c4c81601
RK
3071 struct expr *expr;
3072 struct occr *occr;
7506f491
DE
3073
3074 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3075 This is all we have to do because an expression is not recorded if it
3076 is not available, and the only expressions we want to work with are the
3077 ones that are recorded. */
7506f491 3078 for (i = 0; i < expr_hash_table_size; i++)
c4c81601
RK
3079 for (expr = expr_hash_table[i]; expr != 0; expr = expr->next_same_hash)
3080 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
3081 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
7506f491
DE
3082}
3083
3084/* Return non-zero if expression X is killed in BB. */
3085
3086static int
3087expr_killed_p (x, bb)
3088 rtx x;
e2d2ed72 3089 basic_block bb;
7506f491 3090{
c4c81601 3091 int i, j;
7506f491 3092 enum rtx_code code;
6f7d635c 3093 const char *fmt;
7506f491 3094
7506f491
DE
3095 if (x == 0)
3096 return 1;
3097
3098 code = GET_CODE (x);
3099 switch (code)
3100 {
3101 case REG:
e2d2ed72 3102 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
7506f491
DE
3103
3104 case MEM:
a13d4ebf
AM
3105 if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
3106 return 1;
c4c81601
RK
3107 else
3108 return expr_killed_p (XEXP (x, 0), bb);
7506f491
DE
3109
3110 case PC:
3111 case CC0: /*FIXME*/
3112 case CONST:
3113 case CONST_INT:
3114 case CONST_DOUBLE:
69ef87e2 3115 case CONST_VECTOR:
7506f491
DE
3116 case SYMBOL_REF:
3117 case LABEL_REF:
3118 case ADDR_VEC:
3119 case ADDR_DIFF_VEC:
3120 return 0;
3121
3122 default:
3123 break;
3124 }
3125
c4c81601 3126 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
7506f491
DE
3127 {
3128 if (fmt[i] == 'e')
3129 {
7506f491
DE
3130 /* If we are about to do the last recursive call
3131 needed at this level, change it into iteration.
3132 This function is called enough to be worth it. */
3133 if (i == 0)
c4c81601
RK
3134 return expr_killed_p (XEXP (x, i), bb);
3135 else if (expr_killed_p (XEXP (x, i), bb))
7506f491
DE
3136 return 1;
3137 }
3138 else if (fmt[i] == 'E')
c4c81601
RK
3139 for (j = 0; j < XVECLEN (x, i); j++)
3140 if (expr_killed_p (XVECEXP (x, i, j), bb))
3141 return 1;
7506f491
DE
3142 }
3143
3144 return 0;
3145}
3146
3147/* Compute the set of available expressions killed in each basic block. */
3148
3149static void
a42cd965
AM
3150compute_ae_kill (ae_gen, ae_kill)
3151 sbitmap *ae_gen, *ae_kill;
7506f491 3152{
2e653e39
RK
3153 int bb;
3154 unsigned int i;
c4c81601 3155 struct expr *expr;
7506f491
DE
3156
3157 for (bb = 0; bb < n_basic_blocks; bb++)
c4c81601
RK
3158 for (i = 0; i < expr_hash_table_size; i++)
3159 for (expr = expr_hash_table[i]; expr; expr = expr->next_same_hash)
7506f491 3160 {
c4c81601
RK
3161 /* Skip EXPR if generated in this block. */
3162 if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
3163 continue;
7506f491 3164
e2d2ed72 3165 if (expr_killed_p (expr->expr, BASIC_BLOCK (bb)))
c4c81601 3166 SET_BIT (ae_kill[bb], expr->bitmap_index);
7506f491 3167 }
7506f491 3168}
7506f491
DE
3169\f
3170/* Actually perform the Classic GCSE optimizations. */
3171
3172/* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
3173
3174 CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
3175 as a positive reach. We want to do this when there are two computations
3176 of the expression in the block.
3177
3178 VISITED is a pointer to a working buffer for tracking which BB's have
3179 been visited. It is NULL for the top-level call.
3180
3181 We treat reaching expressions that go through blocks containing the same
3182 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3183 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3184 2 as not reaching. The intent is to improve the probability of finding
3185 only one reaching expression and to reduce register lifetimes by picking
3186 the closest such expression. */
3187
3188static int
283a2545 3189expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
7506f491
DE
3190 struct occr *occr;
3191 struct expr *expr;
e2d2ed72 3192 basic_block bb;
7506f491
DE
3193 int check_self_loop;
3194 char *visited;
3195{
36349f8b 3196 edge pred;
7506f491 3197
e2d2ed72 3198 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
7506f491 3199 {
e2d2ed72 3200 basic_block pred_bb = pred->src;
7506f491 3201
e2d2ed72 3202 if (visited[pred_bb->index])
c4c81601 3203 /* This predecessor has already been visited. Nothing to do. */
7506f491 3204 ;
7506f491 3205 else if (pred_bb == bb)
ac7c5af5 3206 {
7506f491
DE
3207 /* BB loops on itself. */
3208 if (check_self_loop
e2d2ed72
AM
3209 && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
3210 && BLOCK_NUM (occr->insn) == pred_bb->index)
7506f491 3211 return 1;
c4c81601 3212
e2d2ed72 3213 visited[pred_bb->index] = 1;
ac7c5af5 3214 }
c4c81601 3215
7506f491 3216 /* Ignore this predecessor if it kills the expression. */
e2d2ed72
AM
3217 else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
3218 visited[pred_bb->index] = 1;
c4c81601 3219
7506f491 3220 /* Does this predecessor generate this expression? */
e2d2ed72 3221 else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
7506f491
DE
3222 {
3223 /* Is this the occurrence we're looking for?
3224 Note that there's only one generating occurrence per block
3225 so we just need to check the block number. */
e2d2ed72 3226 if (BLOCK_NUM (occr->insn) == pred_bb->index)
7506f491 3227 return 1;
c4c81601 3228
e2d2ed72 3229 visited[pred_bb->index] = 1;
7506f491 3230 }
c4c81601 3231
7506f491
DE
3232 /* Neither gen nor kill. */
3233 else
ac7c5af5 3234 {
e2d2ed72 3235 visited[pred_bb->index] = 1;
283a2545
RL
3236 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
3237 visited))
c4c81601 3238
7506f491 3239 return 1;
ac7c5af5 3240 }
7506f491
DE
3241 }
3242
3243 /* All paths have been checked. */
3244 return 0;
3245}
3246
283a2545 3247/* This wrapper for expr_reaches_here_p_work() is to ensure that any
dc297297 3248 memory allocated for that function is returned. */
283a2545
RL
3249
3250static int
3251expr_reaches_here_p (occr, expr, bb, check_self_loop)
3252 struct occr *occr;
3253 struct expr *expr;
e2d2ed72 3254 basic_block bb;
283a2545
RL
3255 int check_self_loop;
3256{
3257 int rval;
c4c81601 3258 char *visited = (char *) xcalloc (n_basic_blocks, 1);
283a2545 3259
c4c81601 3260 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
283a2545
RL
3261
3262 free (visited);
c4c81601 3263 return rval;
283a2545
RL
3264}
3265
7506f491
DE
3266/* Return the instruction that computes EXPR that reaches INSN's basic block.
3267 If there is more than one such instruction, return NULL.
3268
3269 Called only by handle_avail_expr. */
3270
3271static rtx
3272computing_insn (expr, insn)
3273 struct expr *expr;
3274 rtx insn;
3275{
e2d2ed72 3276 basic_block bb = BLOCK_FOR_INSN (insn);
7506f491
DE
3277
3278 if (expr->avail_occr->next == NULL)
3279 {
e2d2ed72 3280 if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
c4c81601
RK
3281 /* The available expression is actually itself
3282 (i.e. a loop in the flow graph) so do nothing. */
3283 return NULL;
3284
7506f491
DE
3285 /* (FIXME) Case that we found a pattern that was created by
3286 a substitution that took place. */
3287 return expr->avail_occr->insn;
3288 }
3289 else
3290 {
3291 /* Pattern is computed more than once.
3292 Search backwards from this insn to see how many of these
3293 computations actually reach this insn. */
3294 struct occr *occr;
3295 rtx insn_computes_expr = NULL;
3296 int can_reach = 0;
3297
3298 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
3299 {
e2d2ed72 3300 if (BLOCK_FOR_INSN (occr->insn) == bb)
7506f491
DE
3301 {
3302 /* The expression is generated in this block.
3303 The only time we care about this is when the expression
3304 is generated later in the block [and thus there's a loop].
3305 We let the normal cse pass handle the other cases. */
c4c81601
RK
3306 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
3307 && expr_reaches_here_p (occr, expr, bb, 1))
7506f491
DE
3308 {
3309 can_reach++;
3310 if (can_reach > 1)
3311 return NULL;
c4c81601 3312
7506f491
DE
3313 insn_computes_expr = occr->insn;
3314 }
3315 }
c4c81601
RK
3316 else if (expr_reaches_here_p (occr, expr, bb, 0))
3317 {
3318 can_reach++;
3319 if (can_reach > 1)
3320 return NULL;
3321
3322 insn_computes_expr = occr->insn;
3323 }
7506f491
DE
3324 }
3325
3326 if (insn_computes_expr == NULL)
3327 abort ();
c4c81601 3328
7506f491
DE
3329 return insn_computes_expr;
3330 }
3331}
3332
3333/* Return non-zero if the definition in DEF_INSN can reach INSN.
3334 Only called by can_disregard_other_sets. */
3335
3336static int
3337def_reaches_here_p (insn, def_insn)
3338 rtx insn, def_insn;
3339{
3340 rtx reg;
3341
3342 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3343 return 1;
3344
3345 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3346 {
3347 if (INSN_CUID (def_insn) < INSN_CUID (insn))
ac7c5af5 3348 {
7506f491
DE
3349 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3350 return 1;
c4c81601 3351 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
7506f491
DE
3352 reg = XEXP (PATTERN (def_insn), 0);
3353 else if (GET_CODE (PATTERN (def_insn)) == SET)
3354 reg = SET_DEST (PATTERN (def_insn));
3355 else
3356 abort ();
c4c81601 3357
7506f491
DE
3358 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3359 }
3360 else
3361 return 0;
3362 }
3363
3364 return 0;
3365}
3366
c4c81601
RK
3367/* Return non-zero if *ADDR_THIS_REG can only have one value at INSN. The
3368 value returned is the number of definitions that reach INSN. Returning a
3369 value of zero means that [maybe] more than one definition reaches INSN and
3370 the caller can't perform whatever optimization it is trying. i.e. it is
3371 always safe to return zero. */
7506f491
DE
3372
3373static int
3374can_disregard_other_sets (addr_this_reg, insn, for_combine)
3375 struct reg_set **addr_this_reg;
3376 rtx insn;
3377 int for_combine;
3378{
3379 int number_of_reaching_defs = 0;
c4c81601 3380 struct reg_set *this_reg;
7506f491 3381
c4c81601
RK
3382 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
3383 if (def_reaches_here_p (insn, this_reg->insn))
3384 {
3385 number_of_reaching_defs++;
3386 /* Ignore parallels for now. */
3387 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3388 return 0;
3389
3390 if (!for_combine
3391 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3392 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3393 SET_SRC (PATTERN (insn)))))
3394 /* A setting of the reg to a different value reaches INSN. */
3395 return 0;
3396
3397 if (number_of_reaching_defs > 1)
3398 {
3399 /* If in this setting the value the register is being set to is
3400 equal to the previous value the register was set to and this
3401 setting reaches the insn we are trying to do the substitution
3402 on then we are ok. */
3403 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
7506f491 3404 return 0;
c4c81601
RK
3405 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3406 SET_SRC (PATTERN (insn))))
3407 return 0;
3408 }
7506f491 3409
c4c81601
RK
3410 *addr_this_reg = this_reg;
3411 }
7506f491
DE
3412
3413 return number_of_reaching_defs;
3414}
3415
3416/* Expression computed by insn is available and the substitution is legal,
3417 so try to perform the substitution.
3418
3419 The result is non-zero if any changes were made. */
3420
3421static int
3422handle_avail_expr (insn, expr)
3423 rtx insn;
3424 struct expr *expr;
3425{
0631e0bf 3426 rtx pat, insn_computes_expr, expr_set;
7506f491
DE
3427 rtx to;
3428 struct reg_set *this_reg;
3429 int found_setting, use_src;
3430 int changed = 0;
3431
3432 /* We only handle the case where one computation of the expression
3433 reaches this instruction. */
3434 insn_computes_expr = computing_insn (expr, insn);
3435 if (insn_computes_expr == NULL)
3436 return 0;
0631e0bf
JH
3437 expr_set = single_set (insn_computes_expr);
3438 if (!expr_set)
3439 abort ();
7506f491
DE
3440
3441 found_setting = 0;
3442 use_src = 0;
3443
3444 /* At this point we know only one computation of EXPR outside of this
3445 block reaches this insn. Now try to find a register that the
3446 expression is computed into. */
0631e0bf 3447 if (GET_CODE (SET_SRC (expr_set)) == REG)
7506f491
DE
3448 {
3449 /* This is the case when the available expression that reaches
3450 here has already been handled as an available expression. */
770ae6cc 3451 unsigned int regnum_for_replacing
0631e0bf 3452 = REGNO (SET_SRC (expr_set));
c4c81601 3453
7506f491
DE
3454 /* If the register was created by GCSE we can't use `reg_set_table',
3455 however we know it's set only once. */
3456 if (regnum_for_replacing >= max_gcse_regno
3457 /* If the register the expression is computed into is set only once,
3458 or only one set reaches this insn, we can use it. */
3459 || (((this_reg = reg_set_table[regnum_for_replacing]),
3460 this_reg->next == NULL)
3461 || can_disregard_other_sets (&this_reg, insn, 0)))
8e42ace1
KH
3462 {
3463 use_src = 1;
3464 found_setting = 1;
3465 }
7506f491
DE
3466 }
3467
3468 if (!found_setting)
3469 {
770ae6cc 3470 unsigned int regnum_for_replacing
0631e0bf 3471 = REGNO (SET_DEST (expr_set));
c4c81601 3472
7506f491
DE
3473 /* This shouldn't happen. */
3474 if (regnum_for_replacing >= max_gcse_regno)
3475 abort ();
c4c81601 3476
7506f491 3477 this_reg = reg_set_table[regnum_for_replacing];
c4c81601 3478
7506f491
DE
3479 /* If the register the expression is computed into is set only once,
3480 or only one set reaches this insn, use it. */
3481 if (this_reg->next == NULL
3482 || can_disregard_other_sets (&this_reg, insn, 0))
3483 found_setting = 1;
3484 }
3485
3486 if (found_setting)
3487 {
3488 pat = PATTERN (insn);
3489 if (use_src)
0631e0bf 3490 to = SET_SRC (expr_set);
7506f491 3491 else
0631e0bf 3492 to = SET_DEST (expr_set);
7506f491
DE
3493 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3494
3495 /* We should be able to ignore the return code from validate_change but
3496 to play it safe we check. */
3497 if (changed)
3498 {
3499 gcse_subst_count++;
3500 if (gcse_file != NULL)
3501 {
c4c81601
RK
3502 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3503 INSN_UID (insn));
3504 fprintf (gcse_file, " reg %d %s insn %d\n",
3505 REGNO (to), use_src ? "from" : "set in",
7506f491
DE
3506 INSN_UID (insn_computes_expr));
3507 }
7506f491
DE
3508 }
3509 }
c4c81601 3510
7506f491
DE
3511 /* The register that the expr is computed into is set more than once. */
3512 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3513 {
3514 /* Insert an insn after insnx that copies the reg set in insnx
3515 into a new pseudo register call this new register REGN.
3516 From insnb until end of basic block or until REGB is set
3517 replace all uses of REGB with REGN. */
3518 rtx new_insn;
3519
0631e0bf 3520 to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set)));
7506f491
DE
3521
3522 /* Generate the new insn. */
3523 /* ??? If the change fails, we return 0, even though we created
3524 an insn. I think this is ok. */
9e6a5703
JC
3525 new_insn
3526 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
0631e0bf 3527 SET_DEST (expr_set)),
c4c81601
RK
3528 insn_computes_expr);
3529
7506f491
DE
3530 /* Keep register set table up to date. */
3531 record_one_set (REGNO (to), new_insn);
3532
3533 gcse_create_count++;
3534 if (gcse_file != NULL)
ac7c5af5 3535 {
c4c81601 3536 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
7506f491 3537 INSN_UID (NEXT_INSN (insn_computes_expr)),
c4c81601
RK
3538 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3539 fprintf (gcse_file, ", computed in insn %d,\n",
7506f491 3540 INSN_UID (insn_computes_expr));
c4c81601
RK
3541 fprintf (gcse_file, " into newly allocated reg %d\n",
3542 REGNO (to));
ac7c5af5 3543 }
7506f491
DE
3544
3545 pat = PATTERN (insn);
3546
3547 /* Do register replacement for INSN. */
3548 changed = validate_change (insn, &SET_SRC (pat),
c4c81601
RK
3549 SET_DEST (PATTERN
3550 (NEXT_INSN (insn_computes_expr))),
7506f491
DE
3551 0);
3552
3553 /* We should be able to ignore the return code from validate_change but
3554 to play it safe we check. */
3555 if (changed)
3556 {
3557 gcse_subst_count++;
3558 if (gcse_file != NULL)
3559 {
c4c81601
RK
3560 fprintf (gcse_file,
3561 "GCSE: Replacing the source in insn %d with reg %d ",
7506f491 3562 INSN_UID (insn),
c4c81601
RK
3563 REGNO (SET_DEST (PATTERN (NEXT_INSN
3564 (insn_computes_expr)))));
3565 fprintf (gcse_file, "set in insn %d\n",
7506f491
DE
3566 INSN_UID (insn_computes_expr));
3567 }
7506f491
DE
3568 }
3569 }
3570
3571 return changed;
3572}
3573
c4c81601
RK
3574/* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3575 the dataflow analysis has been done.
7506f491
DE
3576
3577 The result is non-zero if a change was made. */
3578
3579static int
3580classic_gcse ()
3581{
3582 int bb, changed;
3583 rtx insn;
3584
3585 /* Note we start at block 1. */
3586
3587 changed = 0;
3588 for (bb = 1; bb < n_basic_blocks; bb++)
3589 {
3590 /* Reset tables used to keep track of what's still valid [since the
3591 start of the block]. */
3592 reset_opr_set_tables ();
3593
3b413743
RH
3594 for (insn = BLOCK_HEAD (bb);
3595 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
7506f491
DE
3596 insn = NEXT_INSN (insn))
3597 {
3598 /* Is insn of form (set (pseudo-reg) ...)? */
7506f491
DE
3599 if (GET_CODE (insn) == INSN
3600 && GET_CODE (PATTERN (insn)) == SET
3601 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3602 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3603 {
3604 rtx pat = PATTERN (insn);
3605 rtx src = SET_SRC (pat);
3606 struct expr *expr;
3607
3608 if (want_to_gcse_p (src)
3609 /* Is the expression recorded? */
3610 && ((expr = lookup_expr (src)) != NULL)
3611 /* Is the expression available [at the start of the
3612 block]? */
3613 && TEST_BIT (ae_in[bb], expr->bitmap_index)
3614 /* Are the operands unchanged since the start of the
3615 block? */
3616 && oprs_not_set_p (src, insn))
3617 changed |= handle_avail_expr (insn, expr);
3618 }
3619
3620 /* Keep track of everything modified by this insn. */
3621 /* ??? Need to be careful w.r.t. mods done to INSN. */
2c3c49de 3622 if (INSN_P (insn))
7506f491 3623 mark_oprs_set (insn);
ac7c5af5 3624 }
7506f491
DE
3625 }
3626
3627 return changed;
3628}
3629
3630/* Top level routine to perform one classic GCSE pass.
3631
3632 Return non-zero if a change was made. */
3633
3634static int
b5ce41ff 3635one_classic_gcse_pass (pass)
7506f491
DE
3636 int pass;
3637{
3638 int changed = 0;
3639
3640 gcse_subst_count = 0;
3641 gcse_create_count = 0;
3642
3643 alloc_expr_hash_table (max_cuid);
3644 alloc_rd_mem (n_basic_blocks, max_cuid);
b5ce41ff 3645 compute_expr_hash_table ();
7506f491
DE
3646 if (gcse_file)
3647 dump_hash_table (gcse_file, "Expression", expr_hash_table,
3648 expr_hash_table_size, n_exprs);
c4c81601 3649
7506f491
DE
3650 if (n_exprs > 0)
3651 {
3652 compute_kill_rd ();
3653 compute_rd ();
3654 alloc_avail_expr_mem (n_basic_blocks, n_exprs);
3655 compute_ae_gen ();
a42cd965 3656 compute_ae_kill (ae_gen, ae_kill);
bd0eaec2 3657 compute_available (ae_gen, ae_kill, ae_out, ae_in);
7506f491
DE
3658 changed = classic_gcse ();
3659 free_avail_expr_mem ();
3660 }
c4c81601 3661
7506f491
DE
3662 free_rd_mem ();
3663 free_expr_hash_table ();
3664
3665 if (gcse_file)
3666 {
3667 fprintf (gcse_file, "\n");
c4c81601
RK
3668 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3669 current_function_name, pass, bytes_used, gcse_subst_count);
3670 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
7506f491
DE
3671 }
3672
3673 return changed;
3674}
3675\f
3676/* Compute copy/constant propagation working variables. */
3677
3678/* Local properties of assignments. */
7506f491
DE
3679static sbitmap *cprop_pavloc;
3680static sbitmap *cprop_absaltered;
3681
3682/* Global properties of assignments (computed from the local properties). */
7506f491
DE
3683static sbitmap *cprop_avin;
3684static sbitmap *cprop_avout;
3685
c4c81601
RK
3686/* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3687 basic blocks. N_SETS is the number of sets. */
7506f491
DE
3688
3689static void
3690alloc_cprop_mem (n_blocks, n_sets)
3691 int n_blocks, n_sets;
3692{
3693 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3694 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3695
3696 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3697 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3698}
3699
3700/* Free vars used by copy/const propagation. */
3701
3702static void
3703free_cprop_mem ()
3704{
5a660bff
DB
3705 sbitmap_vector_free (cprop_pavloc);
3706 sbitmap_vector_free (cprop_absaltered);
3707 sbitmap_vector_free (cprop_avin);
3708 sbitmap_vector_free (cprop_avout);
7506f491
DE
3709}
3710
c4c81601
RK
3711/* For each block, compute whether X is transparent. X is either an
3712 expression or an assignment [though we don't care which, for this context
3713 an assignment is treated as an expression]. For each block where an
3714 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3715 bit in BMAP. */
7506f491
DE
3716
3717static void
3718compute_transp (x, indx, bmap, set_p)
3719 rtx x;
3720 int indx;
3721 sbitmap *bmap;
3722 int set_p;
3723{
c4c81601 3724 int bb, i, j;
7506f491 3725 enum rtx_code code;
c4c81601 3726 reg_set *r;
6f7d635c 3727 const char *fmt;
7506f491 3728
c4c81601
RK
3729 /* repeat is used to turn tail-recursion into iteration since GCC
3730 can't do it when there's no return value. */
7506f491
DE
3731 repeat:
3732
3733 if (x == 0)
3734 return;
3735
3736 code = GET_CODE (x);
3737 switch (code)
3738 {
3739 case REG:
c4c81601
RK
3740 if (set_p)
3741 {
3742 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3743 {
3744 for (bb = 0; bb < n_basic_blocks; bb++)
3745 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3746 SET_BIT (bmap[bb], indx);
3747 }
3748 else
3749 {
3750 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3751 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3752 }
3753 }
3754 else
3755 {
3756 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3757 {
3758 for (bb = 0; bb < n_basic_blocks; bb++)
3759 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3760 RESET_BIT (bmap[bb], indx);
3761 }
3762 else
3763 {
3764 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3765 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3766 }
3767 }
7506f491 3768
c4c81601 3769 return;
7506f491
DE
3770
3771 case MEM:
a13d4ebf
AM
3772 for (bb = 0; bb < n_basic_blocks; bb++)
3773 {
3774 rtx list_entry = canon_modify_mem_list[bb];
3775
3776 while (list_entry)
3777 {
3778 rtx dest, dest_addr;
3779
3780 if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
3781 {
3782 if (set_p)
3783 SET_BIT (bmap[bb], indx);
3784 else
3785 RESET_BIT (bmap[bb], indx);
3786 break;
3787 }
3788 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3789 Examine each hunk of memory that is modified. */
3790
3791 dest = XEXP (list_entry, 0);
3792 list_entry = XEXP (list_entry, 1);
3793 dest_addr = XEXP (list_entry, 0);
3794
3795 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
3796 x, rtx_addr_varies_p))
3797 {
3798 if (set_p)
3799 SET_BIT (bmap[bb], indx);
3800 else
3801 RESET_BIT (bmap[bb], indx);
3802 break;
3803 }
3804 list_entry = XEXP (list_entry, 1);
3805 }
3806 }
c4c81601 3807
7506f491
DE
3808 x = XEXP (x, 0);
3809 goto repeat;
3810
3811 case PC:
3812 case CC0: /*FIXME*/
3813 case CONST:
3814 case CONST_INT:
3815 case CONST_DOUBLE:
69ef87e2 3816 case CONST_VECTOR:
7506f491
DE
3817 case SYMBOL_REF:
3818 case LABEL_REF:
3819 case ADDR_VEC:
3820 case ADDR_DIFF_VEC:
3821 return;
3822
3823 default:
3824 break;
3825 }
3826
c4c81601 3827 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
7506f491
DE
3828 {
3829 if (fmt[i] == 'e')
3830 {
7506f491
DE
3831 /* If we are about to do the last recursive call
3832 needed at this level, change it into iteration.
3833 This function is called enough to be worth it. */
3834 if (i == 0)
3835 {
c4c81601 3836 x = XEXP (x, i);
7506f491
DE
3837 goto repeat;
3838 }
c4c81601
RK
3839
3840 compute_transp (XEXP (x, i), indx, bmap, set_p);
7506f491
DE
3841 }
3842 else if (fmt[i] == 'E')
c4c81601
RK
3843 for (j = 0; j < XVECLEN (x, i); j++)
3844 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
7506f491
DE
3845 }
3846}
3847
7506f491
DE
3848/* Top level routine to do the dataflow analysis needed by copy/const
3849 propagation. */
3850
3851static void
3852compute_cprop_data ()
3853{
b5ce41ff 3854 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
ce724250
JL
3855 compute_available (cprop_pavloc, cprop_absaltered,
3856 cprop_avout, cprop_avin);
7506f491
DE
3857}
3858\f
3859/* Copy/constant propagation. */
3860
7506f491
DE
3861/* Maximum number of register uses in an insn that we handle. */
3862#define MAX_USES 8
3863
3864/* Table of uses found in an insn.
3865 Allocated statically to avoid alloc/free complexity and overhead. */
3866static struct reg_use reg_use_table[MAX_USES];
3867
3868/* Index into `reg_use_table' while building it. */
3869static int reg_use_count;
3870
c4c81601
RK
3871/* Set up a list of register numbers used in INSN. The found uses are stored
3872 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3873 and contains the number of uses in the table upon exit.
7506f491 3874
c4c81601
RK
3875 ??? If a register appears multiple times we will record it multiple times.
3876 This doesn't hurt anything but it will slow things down. */
7506f491
DE
3877
3878static void
9e71c818
JH
3879find_used_regs (xptr, data)
3880 rtx *xptr;
3881 void *data ATTRIBUTE_UNUSED;
7506f491 3882{
c4c81601 3883 int i, j;
7506f491 3884 enum rtx_code code;
6f7d635c 3885 const char *fmt;
9e71c818 3886 rtx x = *xptr;
7506f491 3887
c4c81601
RK
3888 /* repeat is used to turn tail-recursion into iteration since GCC
3889 can't do it when there's no return value. */
7506f491 3890 repeat:
7506f491
DE
3891 if (x == 0)
3892 return;
3893
3894 code = GET_CODE (x);
9e71c818 3895 if (REG_P (x))
7506f491 3896 {
7506f491
DE
3897 if (reg_use_count == MAX_USES)
3898 return;
c4c81601 3899
7506f491
DE
3900 reg_use_table[reg_use_count].reg_rtx = x;
3901 reg_use_count++;
7506f491
DE
3902 }
3903
3904 /* Recursively scan the operands of this expression. */
3905
c4c81601 3906 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
7506f491
DE
3907 {
3908 if (fmt[i] == 'e')
3909 {
3910 /* If we are about to do the last recursive call
3911 needed at this level, change it into iteration.
3912 This function is called enough to be worth it. */
3913 if (i == 0)
3914 {
3915 x = XEXP (x, 0);
3916 goto repeat;
3917 }
c4c81601 3918
9e71c818 3919 find_used_regs (&XEXP (x, i), data);
7506f491
DE
3920 }
3921 else if (fmt[i] == 'E')
c4c81601 3922 for (j = 0; j < XVECLEN (x, i); j++)
9e71c818 3923 find_used_regs (&XVECEXP (x, i, j), data);
7506f491
DE
3924 }
3925}
3926
3927/* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3928 Returns non-zero is successful. */
3929
3930static int
3931try_replace_reg (from, to, insn)
3932 rtx from, to, insn;
3933{
172890a2 3934 rtx note = find_reg_equal_equiv_note (insn);
fb0c0a12 3935 rtx src = 0;
172890a2
RK
3936 int success = 0;
3937 rtx set = single_set (insn);
833fc3ad 3938
9e71c818
JH
3939 success = validate_replace_src (from, to, insn);
3940
3941 /* If above failed and this is a single set, try to simplify the source of
3942 the set given our substitution. We could perhaps try this for multiple
3943 SETs, but it probably won't buy us anything. */
3944 if (!success && set != 0)
833fc3ad 3945 {
172890a2
RK
3946 src = simplify_replace_rtx (SET_SRC (set), from, to);
3947
9e71c818
JH
3948 if (!rtx_equal_p (src, SET_SRC (set))
3949 && validate_change (insn, &SET_SRC (set), src, 0))
172890a2 3950 success = 1;
833fc3ad
JH
3951 }
3952
fb0c0a12
RK
3953 /* If we've failed to do replacement, have a single SET, and don't already
3954 have a note, add a REG_EQUAL note to not lose information. */
172890a2 3955 if (!success && note == 0 && set != 0)
7fcd7218 3956 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
e251e2a2 3957
172890a2
RK
3958 /* If there is already a NOTE, update the expression in it with our
3959 replacement. */
3960 else if (note != 0)
3961 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
833fc3ad 3962
172890a2
RK
3963 /* REG_EQUAL may get simplified into register.
3964 We don't allow that. Remove that note. This code ought
3965 not to hapen, because previous code ought to syntetize
3966 reg-reg move, but be on the safe side. */
3967 if (note && REG_P (XEXP (note, 0)))
3968 remove_note (insn, note);
833fc3ad 3969
833fc3ad
JH
3970 return success;
3971}
c4c81601
RK
3972
3973/* Find a set of REGNOs that are available on entry to INSN's block. Returns
3974 NULL no such set is found. */
7506f491
DE
3975
3976static struct expr *
3977find_avail_set (regno, insn)
3978 int regno;
3979 rtx insn;
3980{
cafba495
BS
3981 /* SET1 contains the last set found that can be returned to the caller for
3982 use in a substitution. */
3983 struct expr *set1 = 0;
3984
3985 /* Loops are not possible here. To get a loop we would need two sets
3986 available at the start of the block containing INSN. ie we would
3987 need two sets like this available at the start of the block:
3988
3989 (set (reg X) (reg Y))
3990 (set (reg Y) (reg X))
3991
3992 This can not happen since the set of (reg Y) would have killed the
3993 set of (reg X) making it unavailable at the start of this block. */
3994 while (1)
8e42ace1 3995 {
cafba495
BS
3996 rtx src;
3997 struct expr *set = lookup_set (regno, NULL_RTX);
3998
3999 /* Find a set that is available at the start of the block
4000 which contains INSN. */
4001 while (set)
4002 {
4003 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
4004 break;
4005 set = next_set (regno, set);
4006 }
7506f491 4007
cafba495
BS
4008 /* If no available set was found we've reached the end of the
4009 (possibly empty) copy chain. */
4010 if (set == 0)
4011 break;
4012
4013 if (GET_CODE (set->expr) != SET)
4014 abort ();
4015
4016 src = SET_SRC (set->expr);
4017
4018 /* We know the set is available.
4019 Now check that SRC is ANTLOC (i.e. none of the source operands
4020 have changed since the start of the block).
4021
4022 If the source operand changed, we may still use it for the next
4023 iteration of this loop, but we may not use it for substitutions. */
c4c81601 4024
cafba495
BS
4025 if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
4026 set1 = set;
4027
4028 /* If the source of the set is anything except a register, then
4029 we have reached the end of the copy chain. */
4030 if (GET_CODE (src) != REG)
7506f491 4031 break;
7506f491 4032
cafba495
BS
4033 /* Follow the copy chain, ie start another iteration of the loop
4034 and see if we have an available copy into SRC. */
4035 regno = REGNO (src);
8e42ace1 4036 }
cafba495
BS
4037
4038 /* SET1 holds the last set that was available and anticipatable at
4039 INSN. */
4040 return set1;
7506f491
DE
4041}
4042
abd535b6 4043/* Subroutine of cprop_insn that tries to propagate constants into
172890a2
RK
4044 JUMP_INSNS. INSN must be a conditional jump. FROM is what we will try to
4045 replace, SRC is the constant we will try to substitute for it. Returns
4046 nonzero if a change was made. We know INSN has just a SET. */
c4c81601 4047
abd535b6 4048static int
0005550b 4049cprop_jump (bb, insn, from, src)
172890a2
RK
4050 rtx insn;
4051 rtx from;
abd535b6 4052 rtx src;
0005550b 4053 basic_block bb;
abd535b6 4054{
172890a2
RK
4055 rtx set = PATTERN (insn);
4056 rtx new = simplify_replace_rtx (SET_SRC (set), from, src);
abd535b6
BS
4057
4058 /* If no simplification can be made, then try the next
4059 register. */
172890a2 4060 if (rtx_equal_p (new, SET_SRC (set)))
abd535b6
BS
4061 return 0;
4062
7d5ab30e 4063 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
172890a2 4064 if (new == pc_rtx)
7d5ab30e
JH
4065 delete_insn (insn);
4066 else
abd535b6 4067 {
7d5ab30e
JH
4068 if (! validate_change (insn, &SET_SRC (set), new, 0))
4069 return 0;
abd535b6 4070
7d5ab30e
JH
4071 /* If this has turned into an unconditional jump,
4072 then put a barrier after it so that the unreachable
4073 code will be deleted. */
4074 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
4075 emit_barrier_after (insn);
4076 }
abd535b6 4077
172890a2 4078 run_jump_opt_after_gcse = 1;
c4c81601 4079
172890a2
RK
4080 const_prop_count++;
4081 if (gcse_file != NULL)
4082 {
4083 fprintf (gcse_file,
4084 "CONST-PROP: Replacing reg %d in insn %d with constant ",
4085 REGNO (from), INSN_UID (insn));
4086 print_rtl (gcse_file, src);
4087 fprintf (gcse_file, "\n");
abd535b6 4088 }
0005550b 4089 purge_dead_edges (bb);
172890a2
RK
4090
4091 return 1;
abd535b6
BS
4092}
4093
4094#ifdef HAVE_cc0
c4c81601
RK
4095
4096/* Subroutine of cprop_insn that tries to propagate constants into JUMP_INSNS
4097 for machines that have CC0. INSN is a single set that stores into CC0;
4098 the insn following it is a conditional jump. REG_USED is the use we will
4099 try to replace, SRC is the constant we will try to substitute for it.
abd535b6 4100 Returns nonzero if a change was made. */
c4c81601 4101
abd535b6 4102static int
0005550b
JH
4103cprop_cc0_jump (bb, insn, reg_used, src)
4104 basic_block bb;
abd535b6
BS
4105 rtx insn;
4106 struct reg_use *reg_used;
4107 rtx src;
4108{
172890a2
RK
4109 /* First substitute in the SET_SRC of INSN, then substitute that for
4110 CC0 in JUMP. */
abd535b6 4111 rtx jump = NEXT_INSN (insn);
172890a2
RK
4112 rtx new_src = simplify_replace_rtx (SET_SRC (PATTERN (insn)),
4113 reg_used->reg_rtx, src);
abd535b6 4114
0005550b 4115 if (! cprop_jump (bb, jump, cc0_rtx, new_src))
abd535b6
BS
4116 return 0;
4117
4118 /* If we succeeded, delete the cc0 setter. */
ca6c03ca 4119 delete_insn (insn);
172890a2 4120
abd535b6 4121 return 1;
8e42ace1 4122}
abd535b6
BS
4123#endif
4124
7506f491
DE
4125/* Perform constant and copy propagation on INSN.
4126 The result is non-zero if a change was made. */
4127
4128static int
0005550b
JH
4129cprop_insn (bb, insn, alter_jumps)
4130 basic_block bb;
7506f491 4131 rtx insn;
b5ce41ff 4132 int alter_jumps;
7506f491
DE
4133{
4134 struct reg_use *reg_used;
4135 int changed = 0;
833fc3ad 4136 rtx note;
7506f491 4137
9e71c818 4138 if (!INSN_P (insn))
7506f491
DE
4139 return 0;
4140
4141 reg_use_count = 0;
9e71c818 4142 note_uses (&PATTERN (insn), find_used_regs, NULL);
833fc3ad 4143
172890a2 4144 note = find_reg_equal_equiv_note (insn);
833fc3ad 4145
dc297297 4146 /* We may win even when propagating constants into notes. */
833fc3ad 4147 if (note)
9e71c818 4148 find_used_regs (&XEXP (note, 0), NULL);
7506f491 4149
c4c81601
RK
4150 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4151 reg_used++, reg_use_count--)
7506f491 4152 {
770ae6cc 4153 unsigned int regno = REGNO (reg_used->reg_rtx);
7506f491
DE
4154 rtx pat, src;
4155 struct expr *set;
7506f491
DE
4156
4157 /* Ignore registers created by GCSE.
dc297297 4158 We do this because ... */
7506f491
DE
4159 if (regno >= max_gcse_regno)
4160 continue;
4161
4162 /* If the register has already been set in this block, there's
4163 nothing we can do. */
4164 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
4165 continue;
4166
4167 /* Find an assignment that sets reg_used and is available
4168 at the start of the block. */
4169 set = find_avail_set (regno, insn);
4170 if (! set)
4171 continue;
4172
4173 pat = set->expr;
4174 /* ??? We might be able to handle PARALLELs. Later. */
4175 if (GET_CODE (pat) != SET)
4176 abort ();
c4c81601 4177
7506f491
DE
4178 src = SET_SRC (pat);
4179
e78d9500 4180 /* Constant propagation. */
b446e5a2 4181 if (CONSTANT_P (src))
7506f491 4182 {
e78d9500
JL
4183 /* Handle normal insns first. */
4184 if (GET_CODE (insn) == INSN
4185 && try_replace_reg (reg_used->reg_rtx, src, insn))
7506f491
DE
4186 {
4187 changed = 1;
4188 const_prop_count++;
4189 if (gcse_file != NULL)
4190 {
c4c81601
RK
4191 fprintf (gcse_file, "CONST-PROP: Replacing reg %d in ",
4192 regno);
4193 fprintf (gcse_file, "insn %d with constant ",
4194 INSN_UID (insn));
e78d9500 4195 print_rtl (gcse_file, src);
7506f491
DE
4196 fprintf (gcse_file, "\n");
4197 }
4198
4199 /* The original insn setting reg_used may or may not now be
4200 deletable. We leave the deletion to flow. */
4201 }
e78d9500
JL
4202
4203 /* Try to propagate a CONST_INT into a conditional jump.
4204 We're pretty specific about what we will handle in this
4205 code, we can extend this as necessary over time.
4206
4207 Right now the insn in question must look like
abd535b6 4208 (set (pc) (if_then_else ...)) */
b5ce41ff 4209 else if (alter_jumps
6e9a3c38
JL
4210 && GET_CODE (insn) == JUMP_INSN
4211 && condjump_p (insn)
4212 && ! simplejump_p (insn))
0005550b 4213 changed |= cprop_jump (bb, insn, reg_used->reg_rtx, src);
172890a2 4214
abd535b6
BS
4215#ifdef HAVE_cc0
4216 /* Similar code for machines that use a pair of CC0 setter and
4217 conditional jump insn. */
4218 else if (alter_jumps
4219 && GET_CODE (PATTERN (insn)) == SET
4220 && SET_DEST (PATTERN (insn)) == cc0_rtx
4221 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
4222 && condjump_p (NEXT_INSN (insn))
172890a2 4223 && ! simplejump_p (NEXT_INSN (insn))
21715220 4224 && cprop_cc0_jump (bb, insn, reg_used, src))
172890a2
RK
4225 {
4226 changed = 1;
4227 break;
d7836e38 4228 }
abd535b6 4229#endif
7506f491
DE
4230 }
4231 else if (GET_CODE (src) == REG
4232 && REGNO (src) >= FIRST_PSEUDO_REGISTER
4233 && REGNO (src) != regno)
4234 {
cafba495 4235 if (try_replace_reg (reg_used->reg_rtx, src, insn))
7506f491 4236 {
cafba495
BS
4237 changed = 1;
4238 copy_prop_count++;
4239 if (gcse_file != NULL)
7506f491 4240 {
c4c81601
RK
4241 fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d",
4242 regno, INSN_UID (insn));
4243 fprintf (gcse_file, " with reg %d\n", REGNO (src));
7506f491 4244 }
cafba495
BS
4245
4246 /* The original insn setting reg_used may or may not now be
4247 deletable. We leave the deletion to flow. */
4248 /* FIXME: If it turns out that the insn isn't deletable,
4249 then we may have unnecessarily extended register lifetimes
4250 and made things worse. */
7506f491
DE
4251 }
4252 }
4253 }
4254
4255 return changed;
4256}
4257
c4c81601
RK
4258/* Forward propagate copies. This includes copies and constants. Return
4259 non-zero if a change was made. */
7506f491
DE
4260
4261static int
b5ce41ff
JL
4262cprop (alter_jumps)
4263 int alter_jumps;
7506f491
DE
4264{
4265 int bb, changed;
4266 rtx insn;
4267
4268 /* Note we start at block 1. */
4269
4270 changed = 0;
4271 for (bb = 1; bb < n_basic_blocks; bb++)
4272 {
4273 /* Reset tables used to keep track of what's still valid [since the
4274 start of the block]. */
4275 reset_opr_set_tables ();
4276
3b413743
RH
4277 for (insn = BLOCK_HEAD (bb);
4278 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
7506f491 4279 insn = NEXT_INSN (insn))
172890a2
RK
4280 if (INSN_P (insn))
4281 {
0005550b 4282 changed |= cprop_insn (BASIC_BLOCK (bb), insn, alter_jumps);
7506f491 4283
172890a2
RK
4284 /* Keep track of everything modified by this insn. */
4285 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4286 call mark_oprs_set if we turned the insn into a NOTE. */
4287 if (GET_CODE (insn) != NOTE)
4288 mark_oprs_set (insn);
8e42ace1 4289 }
7506f491
DE
4290 }
4291
4292 if (gcse_file != NULL)
4293 fprintf (gcse_file, "\n");
4294
4295 return changed;
4296}
4297
4298/* Perform one copy/constant propagation pass.
4299 F is the first insn in the function.
4300 PASS is the pass count. */
4301
4302static int
b5ce41ff 4303one_cprop_pass (pass, alter_jumps)
7506f491 4304 int pass;
b5ce41ff 4305 int alter_jumps;
7506f491
DE
4306{
4307 int changed = 0;
4308
4309 const_prop_count = 0;
4310 copy_prop_count = 0;
4311
4312 alloc_set_hash_table (max_cuid);
b5ce41ff 4313 compute_set_hash_table ();
7506f491
DE
4314 if (gcse_file)
4315 dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
4316 n_sets);
4317 if (n_sets > 0)
4318 {
4319 alloc_cprop_mem (n_basic_blocks, n_sets);
4320 compute_cprop_data ();
b5ce41ff 4321 changed = cprop (alter_jumps);
7506f491
DE
4322 free_cprop_mem ();
4323 }
c4c81601 4324
7506f491
DE
4325 free_set_hash_table ();
4326
4327 if (gcse_file)
4328 {
c4c81601
RK
4329 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
4330 current_function_name, pass, bytes_used);
4331 fprintf (gcse_file, "%d const props, %d copy props\n\n",
4332 const_prop_count, copy_prop_count);
7506f491
DE
4333 }
4334
4335 return changed;
4336}
4337\f
a65f3558 4338/* Compute PRE+LCM working variables. */
7506f491
DE
4339
4340/* Local properties of expressions. */
4341/* Nonzero for expressions that are transparent in the block. */
a65f3558 4342static sbitmap *transp;
7506f491 4343
5c35539b
RH
4344/* Nonzero for expressions that are transparent at the end of the block.
4345 This is only zero for expressions killed by abnormal critical edge
4346 created by a calls. */
a65f3558 4347static sbitmap *transpout;
5c35539b 4348
a65f3558
JL
4349/* Nonzero for expressions that are computed (available) in the block. */
4350static sbitmap *comp;
7506f491 4351
a65f3558
JL
4352/* Nonzero for expressions that are locally anticipatable in the block. */
4353static sbitmap *antloc;
7506f491 4354
a65f3558
JL
4355/* Nonzero for expressions where this block is an optimal computation
4356 point. */
4357static sbitmap *pre_optimal;
5c35539b 4358
a65f3558
JL
4359/* Nonzero for expressions which are redundant in a particular block. */
4360static sbitmap *pre_redundant;
7506f491 4361
a42cd965
AM
4362/* Nonzero for expressions which should be inserted on a specific edge. */
4363static sbitmap *pre_insert_map;
4364
4365/* Nonzero for expressions which should be deleted in a specific block. */
4366static sbitmap *pre_delete_map;
4367
4368/* Contains the edge_list returned by pre_edge_lcm. */
4369static struct edge_list *edge_list;
4370
a65f3558
JL
4371/* Redundant insns. */
4372static sbitmap pre_redundant_insns;
7506f491 4373
a65f3558 4374/* Allocate vars used for PRE analysis. */
7506f491
DE
4375
4376static void
a65f3558
JL
4377alloc_pre_mem (n_blocks, n_exprs)
4378 int n_blocks, n_exprs;
7506f491 4379{
a65f3558
JL
4380 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4381 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4382 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5faf03ae 4383
a42cd965
AM
4384 pre_optimal = NULL;
4385 pre_redundant = NULL;
4386 pre_insert_map = NULL;
4387 pre_delete_map = NULL;
4388 ae_in = NULL;
4389 ae_out = NULL;
a42cd965 4390 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
c4c81601 4391
a42cd965 4392 /* pre_insert and pre_delete are allocated later. */
7506f491
DE
4393}
4394
a65f3558 4395/* Free vars used for PRE analysis. */
7506f491
DE
4396
4397static void
a65f3558 4398free_pre_mem ()
7506f491 4399{
5a660bff
DB
4400 sbitmap_vector_free (transp);
4401 sbitmap_vector_free (comp);
bd3675fc
JL
4402
4403 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
7506f491 4404
a42cd965 4405 if (pre_optimal)
5a660bff 4406 sbitmap_vector_free (pre_optimal);
a42cd965 4407 if (pre_redundant)
5a660bff 4408 sbitmap_vector_free (pre_redundant);
a42cd965 4409 if (pre_insert_map)
5a660bff 4410 sbitmap_vector_free (pre_insert_map);
a42cd965 4411 if (pre_delete_map)
5a660bff 4412 sbitmap_vector_free (pre_delete_map);
a42cd965 4413 if (ae_in)
5a660bff 4414 sbitmap_vector_free (ae_in);
a42cd965 4415 if (ae_out)
5a660bff 4416 sbitmap_vector_free (ae_out);
a42cd965 4417
bd3675fc 4418 transp = comp = NULL;
a42cd965 4419 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
55d3f917 4420 ae_in = ae_out = NULL;
7506f491
DE
4421}
4422
4423/* Top level routine to do the dataflow analysis needed by PRE. */
4424
4425static void
4426compute_pre_data ()
4427{
b614171e 4428 sbitmap trapping_expr;
c66e8ae9 4429 int i;
b614171e 4430 unsigned int ui;
c66e8ae9 4431
a65f3558 4432 compute_local_properties (transp, comp, antloc, 0);
a42cd965 4433 sbitmap_vector_zero (ae_kill, n_basic_blocks);
c66e8ae9 4434
b614171e
MM
4435 /* Collect expressions which might trap. */
4436 trapping_expr = sbitmap_alloc (n_exprs);
4437 sbitmap_zero (trapping_expr);
4438 for (ui = 0; ui < expr_hash_table_size; ui++)
4439 {
4440 struct expr *e;
4441 for (e = expr_hash_table[ui]; e != NULL; e = e->next_same_hash)
4442 if (may_trap_p (e->expr))
4443 SET_BIT (trapping_expr, e->bitmap_index);
4444 }
4445
c66e8ae9
JL
4446 /* Compute ae_kill for each basic block using:
4447
4448 ~(TRANSP | COMP)
4449
a2e90653 4450 This is significantly faster than compute_ae_kill. */
c66e8ae9
JL
4451
4452 for (i = 0; i < n_basic_blocks; i++)
4453 {
b614171e
MM
4454 edge e;
4455
4456 /* If the current block is the destination of an abnormal edge, we
4457 kill all trapping expressions because we won't be able to properly
4458 place the instruction on the edge. So make them neither
4459 anticipatable nor transparent. This is fairly conservative. */
4460 for (e = BASIC_BLOCK (i)->pred; e ; e = e->pred_next)
4461 if (e->flags & EDGE_ABNORMAL)
4462 {
4463 sbitmap_difference (antloc[i], antloc[i], trapping_expr);
4464 sbitmap_difference (transp[i], transp[i], trapping_expr);
4465 break;
4466 }
4467
c66e8ae9
JL
4468 sbitmap_a_or_b (ae_kill[i], transp[i], comp[i]);
4469 sbitmap_not (ae_kill[i], ae_kill[i]);
4470 }
4471
a42cd965
AM
4472 edge_list = pre_edge_lcm (gcse_file, n_exprs, transp, comp, antloc,
4473 ae_kill, &pre_insert_map, &pre_delete_map);
5a660bff 4474 sbitmap_vector_free (antloc);
bd3675fc 4475 antloc = NULL;
5a660bff 4476 sbitmap_vector_free (ae_kill);
bd3675fc 4477 ae_kill = NULL;
76ac938b 4478 sbitmap_free (trapping_expr);
7506f491
DE
4479}
4480\f
4481/* PRE utilities */
4482
a65f3558
JL
4483/* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
4484 block BB.
7506f491
DE
4485
4486 VISITED is a pointer to a working buffer for tracking which BB's have
4487 been visited. It is NULL for the top-level call.
4488
4489 We treat reaching expressions that go through blocks containing the same
4490 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4491 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4492 2 as not reaching. The intent is to improve the probability of finding
4493 only one reaching expression and to reduce register lifetimes by picking
4494 the closest such expression. */
4495
4496static int
89e606c9 4497pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
e2d2ed72 4498 basic_block occr_bb;
7506f491 4499 struct expr *expr;
e2d2ed72 4500 basic_block bb;
7506f491
DE
4501 char *visited;
4502{
36349f8b 4503 edge pred;
7506f491 4504
e2d2ed72 4505 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
7506f491 4506 {
e2d2ed72 4507 basic_block pred_bb = pred->src;
7506f491 4508
36349f8b 4509 if (pred->src == ENTRY_BLOCK_PTR
7506f491 4510 /* Has predecessor has already been visited? */
e2d2ed72 4511 || visited[pred_bb->index])
c4c81601
RK
4512 ;/* Nothing to do. */
4513
7506f491 4514 /* Does this predecessor generate this expression? */
e2d2ed72 4515 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
7506f491
DE
4516 {
4517 /* Is this the occurrence we're looking for?
4518 Note that there's only one generating occurrence per block
4519 so we just need to check the block number. */
a65f3558 4520 if (occr_bb == pred_bb)
7506f491 4521 return 1;
c4c81601 4522
e2d2ed72 4523 visited[pred_bb->index] = 1;
7506f491
DE
4524 }
4525 /* Ignore this predecessor if it kills the expression. */
e2d2ed72
AM
4526 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
4527 visited[pred_bb->index] = 1;
c4c81601 4528
7506f491
DE
4529 /* Neither gen nor kill. */
4530 else
ac7c5af5 4531 {
e2d2ed72 4532 visited[pred_bb->index] = 1;
89e606c9 4533 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
7506f491 4534 return 1;
ac7c5af5 4535 }
7506f491
DE
4536 }
4537
4538 /* All paths have been checked. */
4539 return 0;
4540}
283a2545
RL
4541
4542/* The wrapper for pre_expr_reaches_here_work that ensures that any
dc297297 4543 memory allocated for that function is returned. */
283a2545
RL
4544
4545static int
89e606c9 4546pre_expr_reaches_here_p (occr_bb, expr, bb)
e2d2ed72 4547 basic_block occr_bb;
283a2545 4548 struct expr *expr;
e2d2ed72 4549 basic_block bb;
283a2545
RL
4550{
4551 int rval;
c4c81601 4552 char *visited = (char *) xcalloc (n_basic_blocks, 1);
283a2545 4553
8e42ace1 4554 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
283a2545
RL
4555
4556 free (visited);
c4c81601 4557 return rval;
283a2545 4558}
7506f491 4559\f
a42cd965
AM
4560
4561/* Given an expr, generate RTL which we can insert at the end of a BB,
4562 or on an edge. Set the block number of any insns generated to
4563 the value of BB. */
4564
4565static rtx
4566process_insert_insn (expr)
4567 struct expr *expr;
4568{
4569 rtx reg = expr->reaching_reg;
fb0c0a12
RK
4570 rtx exp = copy_rtx (expr->expr);
4571 rtx pat;
a42cd965
AM
4572
4573 start_sequence ();
fb0c0a12
RK
4574
4575 /* If the expression is something that's an operand, like a constant,
4576 just copy it to a register. */
4577 if (general_operand (exp, GET_MODE (reg)))
4578 emit_move_insn (reg, exp);
4579
4580 /* Otherwise, make a new insn to compute this expression and make sure the
4581 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4582 expression to make sure we don't have any sharing issues. */
8d444206 4583 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
fb0c0a12
RK
4584 abort ();
4585
a42cd965
AM
4586 pat = gen_sequence ();
4587 end_sequence ();
4588
4589 return pat;
4590}
4591
a65f3558
JL
4592/* Add EXPR to the end of basic block BB.
4593
4594 This is used by both the PRE and code hoisting.
4595
4596 For PRE, we want to verify that the expr is either transparent
4597 or locally anticipatable in the target block. This check makes
4598 no sense for code hoisting. */
7506f491
DE
4599
4600static void
a65f3558 4601insert_insn_end_bb (expr, bb, pre)
7506f491 4602 struct expr *expr;
e2d2ed72 4603 basic_block bb;
a65f3558 4604 int pre;
7506f491 4605{
e2d2ed72 4606 rtx insn = bb->end;
7506f491
DE
4607 rtx new_insn;
4608 rtx reg = expr->reaching_reg;
4609 int regno = REGNO (reg);
a42cd965 4610 rtx pat;
c4c81601 4611 int i;
7506f491 4612
a42cd965 4613 pat = process_insert_insn (expr);
7506f491
DE
4614
4615 /* If the last insn is a jump, insert EXPR in front [taking care to
068473ec
JH
4616 handle cc0, etc. properly]. Similary we need to care trapping
4617 instructions in presence of non-call exceptions. */
7506f491 4618
068473ec
JH
4619 if (GET_CODE (insn) == JUMP_INSN
4620 || (GET_CODE (insn) == INSN
4621 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
7506f491 4622 {
50b2596f 4623#ifdef HAVE_cc0
7506f491 4624 rtx note;
50b2596f 4625#endif
068473ec
JH
4626 /* It should always be the case that we can put these instructions
4627 anywhere in the basic block with performing PRE optimizations.
4628 Check this. */
3b25fbfe 4629 if (GET_CODE (insn) == INSN && pre
068473ec
JH
4630 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4631 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4632 abort ();
7506f491
DE
4633
4634 /* If this is a jump table, then we can't insert stuff here. Since
4635 we know the previous real insn must be the tablejump, we insert
4636 the new instruction just before the tablejump. */
4637 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4638 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4639 insn = prev_real_insn (insn);
4640
4641#ifdef HAVE_cc0
4642 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4643 if cc0 isn't set. */
4644 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4645 if (note)
4646 insn = XEXP (note, 0);
4647 else
4648 {
4649 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4650 if (maybe_cc0_setter
2c3c49de 4651 && INSN_P (maybe_cc0_setter)
7506f491
DE
4652 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4653 insn = maybe_cc0_setter;
4654 }
4655#endif
4656 /* FIXME: What if something in cc0/jump uses value set in new insn? */
3c030e88 4657 new_insn = emit_insn_before (pat, insn);
3947e2f9 4658 }
c4c81601 4659
3947e2f9
RH
4660 /* Likewise if the last insn is a call, as will happen in the presence
4661 of exception handling. */
068473ec
JH
4662 else if (GET_CODE (insn) == CALL_INSN
4663 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
3947e2f9 4664 {
3947e2f9
RH
4665 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4666 we search backward and place the instructions before the first
4667 parameter is loaded. Do this for everyone for consistency and a
c4c81601 4668 presumtion that we'll get better code elsewhere as well.
3947e2f9 4669
c4c81601 4670 It should always be the case that we can put these instructions
a65f3558
JL
4671 anywhere in the basic block with performing PRE optimizations.
4672 Check this. */
c4c81601 4673
a65f3558 4674 if (pre
e2d2ed72
AM
4675 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4676 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
3947e2f9
RH
4677 abort ();
4678
4679 /* Since different machines initialize their parameter registers
4680 in different orders, assume nothing. Collect the set of all
4681 parameter registers. */
833366d6 4682 insn = find_first_parameter_load (insn, bb->head);
3947e2f9 4683
b1d26727
JL
4684 /* If we found all the parameter loads, then we want to insert
4685 before the first parameter load.
4686
4687 If we did not find all the parameter loads, then we might have
4688 stopped on the head of the block, which could be a CODE_LABEL.
4689 If we inserted before the CODE_LABEL, then we would be putting
4690 the insn in the wrong basic block. In that case, put the insn
b5229628 4691 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
0a377997 4692 while (GET_CODE (insn) == CODE_LABEL
589ca5cb 4693 || NOTE_INSN_BASIC_BLOCK_P (insn))
b5229628 4694 insn = NEXT_INSN (insn);
c4c81601 4695
3c030e88 4696 new_insn = emit_insn_before (pat, insn);
7506f491
DE
4697 }
4698 else
3c030e88 4699 new_insn = emit_insn_after (pat, insn);
7506f491 4700
a65f3558
JL
4701 /* Keep block number table up to date.
4702 Note, PAT could be a multiple insn sequence, we have to make
4703 sure that each insn in the sequence is handled. */
4704 if (GET_CODE (pat) == SEQUENCE)
4705 {
a65f3558
JL
4706 for (i = 0; i < XVECLEN (pat, 0); i++)
4707 {
4708 rtx insn = XVECEXP (pat, 0, i);
2c3c49de 4709 if (INSN_P (insn))
a65f3558 4710 add_label_notes (PATTERN (insn), new_insn);
c4c81601 4711
84832317 4712 note_stores (PATTERN (insn), record_set_info, insn);
a65f3558
JL
4713 }
4714 }
4715 else
4716 {
157bd2bb 4717 add_label_notes (pat, new_insn);
c4c81601 4718
a65f3558
JL
4719 /* Keep register set table up to date. */
4720 record_one_set (regno, new_insn);
4721 }
3947e2f9 4722
7506f491
DE
4723 gcse_create_count++;
4724
4725 if (gcse_file)
4726 {
c4c81601 4727 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
e2d2ed72 4728 bb->index, INSN_UID (new_insn));
c4c81601
RK
4729 fprintf (gcse_file, "copying expression %d to reg %d\n",
4730 expr->bitmap_index, regno);
7506f491
DE
4731 }
4732}
4733
a42cd965
AM
4734/* Insert partially redundant expressions on edges in the CFG to make
4735 the expressions fully redundant. */
7506f491 4736
a42cd965
AM
4737static int
4738pre_edge_insert (edge_list, index_map)
4739 struct edge_list *edge_list;
7506f491
DE
4740 struct expr **index_map;
4741{
c4c81601 4742 int e, i, j, num_edges, set_size, did_insert = 0;
a65f3558
JL
4743 sbitmap *inserted;
4744
a42cd965
AM
4745 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4746 if it reaches any of the deleted expressions. */
7506f491 4747
a42cd965
AM
4748 set_size = pre_insert_map[0]->size;
4749 num_edges = NUM_EDGES (edge_list);
4750 inserted = sbitmap_vector_alloc (num_edges, n_exprs);
4751 sbitmap_vector_zero (inserted, num_edges);
7506f491 4752
a42cd965 4753 for (e = 0; e < num_edges; e++)
7506f491
DE
4754 {
4755 int indx;
e2d2ed72 4756 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
a65f3558 4757
a65f3558 4758 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
7506f491 4759 {
a42cd965 4760 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
7506f491 4761
a65f3558 4762 for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
c4c81601
RK
4763 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4764 {
4765 struct expr *expr = index_map[j];
4766 struct occr *occr;
a65f3558 4767
ff7cc307 4768 /* Now look at each deleted occurrence of this expression. */
c4c81601
RK
4769 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4770 {
4771 if (! occr->deleted_p)
4772 continue;
4773
4774 /* Insert this expression on this edge if if it would
ff7cc307 4775 reach the deleted occurrence in BB. */
c4c81601
RK
4776 if (!TEST_BIT (inserted[e], j))
4777 {
4778 rtx insn;
4779 edge eg = INDEX_EDGE (edge_list, e);
4780
4781 /* We can't insert anything on an abnormal and
4782 critical edge, so we insert the insn at the end of
4783 the previous block. There are several alternatives
4784 detailed in Morgans book P277 (sec 10.5) for
4785 handling this situation. This one is easiest for
4786 now. */
4787
4788 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
4789 insert_insn_end_bb (index_map[j], bb, 0);
4790 else
4791 {
4792 insn = process_insert_insn (index_map[j]);
4793 insert_insn_on_edge (insn, eg);
4794 }
4795
4796 if (gcse_file)
4797 {
4798 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
e2d2ed72 4799 bb->index,
c4c81601
RK
4800 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4801 fprintf (gcse_file, "copy expression %d\n",
4802 expr->bitmap_index);
4803 }
4804
a13d4ebf 4805 update_ld_motion_stores (expr);
c4c81601
RK
4806 SET_BIT (inserted[e], j);
4807 did_insert = 1;
4808 gcse_create_count++;
4809 }
4810 }
4811 }
7506f491
DE
4812 }
4813 }
5faf03ae 4814
5a660bff 4815 sbitmap_vector_free (inserted);
a42cd965 4816 return did_insert;
7506f491
DE
4817}
4818
c4c81601 4819/* Copy the result of INSN to REG. INDX is the expression number. */
7506f491
DE
4820
4821static void
4822pre_insert_copy_insn (expr, insn)
4823 struct expr *expr;
4824 rtx insn;
4825{
4826 rtx reg = expr->reaching_reg;
4827 int regno = REGNO (reg);
4828 int indx = expr->bitmap_index;
4829 rtx set = single_set (insn);
4830 rtx new_insn;
4831
4832 if (!set)
4833 abort ();
c4c81601 4834
cccf0ae8 4835 new_insn = emit_insn_after (gen_move_insn (reg, SET_DEST (set)), insn);
c4c81601 4836
7506f491
DE
4837 /* Keep register set table up to date. */
4838 record_one_set (regno, new_insn);
4839
4840 gcse_create_count++;
4841
4842 if (gcse_file)
a42cd965
AM
4843 fprintf (gcse_file,
4844 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4845 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4846 INSN_UID (insn), regno);
222f7ba9 4847 update_ld_motion_stores (expr);
7506f491
DE
4848}
4849
4850/* Copy available expressions that reach the redundant expression
4851 to `reaching_reg'. */
4852
4853static void
4854pre_insert_copies ()
4855{
2e653e39 4856 unsigned int i;
c4c81601
RK
4857 struct expr *expr;
4858 struct occr *occr;
4859 struct occr *avail;
a65f3558 4860
7506f491
DE
4861 /* For each available expression in the table, copy the result to
4862 `reaching_reg' if the expression reaches a deleted one.
4863
4864 ??? The current algorithm is rather brute force.
4865 Need to do some profiling. */
4866
4867 for (i = 0; i < expr_hash_table_size; i++)
c4c81601
RK
4868 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4869 {
4870 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4871 we don't want to insert a copy here because the expression may not
4872 really be redundant. So only insert an insn if the expression was
4873 deleted. This test also avoids further processing if the
4874 expression wasn't deleted anywhere. */
4875 if (expr->reaching_reg == NULL)
4876 continue;
4877
4878 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4879 {
4880 if (! occr->deleted_p)
4881 continue;
7506f491 4882
c4c81601
RK
4883 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4884 {
4885 rtx insn = avail->insn;
7506f491 4886
c4c81601
RK
4887 /* No need to handle this one if handled already. */
4888 if (avail->copied_p)
4889 continue;
7506f491 4890
c4c81601
RK
4891 /* Don't handle this one if it's a redundant one. */
4892 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4893 continue;
7506f491 4894
c4c81601 4895 /* Or if the expression doesn't reach the deleted one. */
e2d2ed72
AM
4896 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4897 expr,
4898 BLOCK_FOR_INSN (occr->insn)))
c4c81601 4899 continue;
7506f491 4900
c4c81601
RK
4901 /* Copy the result of avail to reaching_reg. */
4902 pre_insert_copy_insn (expr, insn);
4903 avail->copied_p = 1;
4904 }
4905 }
4906 }
7506f491
DE
4907}
4908
4909/* Delete redundant computations.
7506f491
DE
4910 Deletion is done by changing the insn to copy the `reaching_reg' of
4911 the expression into the result of the SET. It is left to later passes
4912 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4913
4914 Returns non-zero if a change is made. */
4915
4916static int
4917pre_delete ()
4918{
2e653e39 4919 unsigned int i;
63bc1d05 4920 int changed;
c4c81601
RK
4921 struct expr *expr;
4922 struct occr *occr;
a65f3558 4923
7506f491
DE
4924 changed = 0;
4925 for (i = 0; i < expr_hash_table_size; i++)
c4c81601
RK
4926 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4927 {
4928 int indx = expr->bitmap_index;
7506f491 4929
c4c81601
RK
4930 /* We only need to search antic_occr since we require
4931 ANTLOC != 0. */
7506f491 4932
c4c81601
RK
4933 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4934 {
4935 rtx insn = occr->insn;
4936 rtx set;
e2d2ed72 4937 basic_block bb = BLOCK_FOR_INSN (insn);
7506f491 4938
e2d2ed72 4939 if (TEST_BIT (pre_delete_map[bb->index], indx))
c4c81601
RK
4940 {
4941 set = single_set (insn);
4942 if (! set)
4943 abort ();
4944
4945 /* Create a pseudo-reg to store the result of reaching
4946 expressions into. Get the mode for the new pseudo from
4947 the mode of the original destination pseudo. */
4948 if (expr->reaching_reg == NULL)
4949 expr->reaching_reg
4950 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4951
4952 /* In theory this should never fail since we're creating
4953 a reg->reg copy.
4954
4955 However, on the x86 some of the movXX patterns actually
4956 contain clobbers of scratch regs. This may cause the
4957 insn created by validate_change to not match any pattern
6d2f8887 4958 and thus cause validate_change to fail. */
c4c81601
RK
4959 if (validate_change (insn, &SET_SRC (set),
4960 expr->reaching_reg, 0))
4961 {
4962 occr->deleted_p = 1;
4963 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4964 changed = 1;
4965 gcse_subst_count++;
4966 }
7506f491 4967
c4c81601
RK
4968 if (gcse_file)
4969 {
4970 fprintf (gcse_file,
4971 "PRE: redundant insn %d (expression %d) in ",
4972 INSN_UID (insn), indx);
4973 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
e2d2ed72 4974 bb->index, REGNO (expr->reaching_reg));
c4c81601
RK
4975 }
4976 }
4977 }
4978 }
7506f491
DE
4979
4980 return changed;
4981}
4982
4983/* Perform GCSE optimizations using PRE.
4984 This is called by one_pre_gcse_pass after all the dataflow analysis
4985 has been done.
4986
c4c81601
RK
4987 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4988 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4989 Compiler Design and Implementation.
7506f491 4990
c4c81601
RK
4991 ??? A new pseudo reg is created to hold the reaching expression. The nice
4992 thing about the classical approach is that it would try to use an existing
4993 reg. If the register can't be adequately optimized [i.e. we introduce
4994 reload problems], one could add a pass here to propagate the new register
4995 through the block.
7506f491 4996
c4c81601
RK
4997 ??? We don't handle single sets in PARALLELs because we're [currently] not
4998 able to copy the rest of the parallel when we insert copies to create full
4999 redundancies from partial redundancies. However, there's no reason why we
5000 can't handle PARALLELs in the cases where there are no partial
7506f491
DE
5001 redundancies. */
5002
5003static int
5004pre_gcse ()
5005{
2e653e39
RK
5006 unsigned int i;
5007 int did_insert, changed;
7506f491 5008 struct expr **index_map;
c4c81601 5009 struct expr *expr;
7506f491
DE
5010
5011 /* Compute a mapping from expression number (`bitmap_index') to
5012 hash table entry. */
5013
dd1bd863 5014 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
7506f491 5015 for (i = 0; i < expr_hash_table_size; i++)
c4c81601
RK
5016 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5017 index_map[expr->bitmap_index] = expr;
7506f491
DE
5018
5019 /* Reset bitmap used to track which insns are redundant. */
a65f3558
JL
5020 pre_redundant_insns = sbitmap_alloc (max_cuid);
5021 sbitmap_zero (pre_redundant_insns);
7506f491
DE
5022
5023 /* Delete the redundant insns first so that
5024 - we know what register to use for the new insns and for the other
5025 ones with reaching expressions
5026 - we know which insns are redundant when we go to create copies */
c4c81601 5027
7506f491
DE
5028 changed = pre_delete ();
5029
a42cd965 5030 did_insert = pre_edge_insert (edge_list, index_map);
c4c81601 5031
7506f491 5032 /* In other places with reaching expressions, copy the expression to the
a42cd965 5033 specially allocated pseudo-reg that reaches the redundant expr. */
7506f491 5034 pre_insert_copies ();
a42cd965
AM
5035 if (did_insert)
5036 {
5037 commit_edge_insertions ();
5038 changed = 1;
5039 }
7506f491 5040
283a2545 5041 free (index_map);
76ac938b 5042 sbitmap_free (pre_redundant_insns);
7506f491
DE
5043 return changed;
5044}
5045
5046/* Top level routine to perform one PRE GCSE pass.
5047
5048 Return non-zero if a change was made. */
5049
5050static int
b5ce41ff 5051one_pre_gcse_pass (pass)
7506f491
DE
5052 int pass;
5053{
5054 int changed = 0;
5055
5056 gcse_subst_count = 0;
5057 gcse_create_count = 0;
5058
5059 alloc_expr_hash_table (max_cuid);
a42cd965 5060 add_noreturn_fake_exit_edges ();
a13d4ebf
AM
5061 if (flag_gcse_lm)
5062 compute_ld_motion_mems ();
5063
b5ce41ff 5064 compute_expr_hash_table ();
a13d4ebf 5065 trim_ld_motion_mems ();
7506f491
DE
5066 if (gcse_file)
5067 dump_hash_table (gcse_file, "Expression", expr_hash_table,
5068 expr_hash_table_size, n_exprs);
c4c81601 5069
7506f491
DE
5070 if (n_exprs > 0)
5071 {
5072 alloc_pre_mem (n_basic_blocks, n_exprs);
5073 compute_pre_data ();
5074 changed |= pre_gcse ();
a42cd965 5075 free_edge_list (edge_list);
7506f491
DE
5076 free_pre_mem ();
5077 }
c4c81601 5078
a13d4ebf 5079 free_ldst_mems ();
a42cd965 5080 remove_fake_edges ();
7506f491
DE
5081 free_expr_hash_table ();
5082
5083 if (gcse_file)
5084 {
c4c81601
RK
5085 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5086 current_function_name, pass, bytes_used);
5087 fprintf (gcse_file, "%d substs, %d insns created\n",
5088 gcse_subst_count, gcse_create_count);
7506f491
DE
5089 }
5090
5091 return changed;
5092}
aeb2f500
JW
5093\f
5094/* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5b1ef594
JDA
5095 If notes are added to an insn which references a CODE_LABEL, the
5096 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5097 because the following loop optimization pass requires them. */
aeb2f500
JW
5098
5099/* ??? This is very similar to the loop.c add_label_notes function. We
5100 could probably share code here. */
5101
5102/* ??? If there was a jump optimization pass after gcse and before loop,
5103 then we would not need to do this here, because jump would add the
5104 necessary REG_LABEL notes. */
5105
5106static void
5107add_label_notes (x, insn)
5108 rtx x;
5109 rtx insn;
5110{
5111 enum rtx_code code = GET_CODE (x);
5112 int i, j;
6f7d635c 5113 const char *fmt;
aeb2f500
JW
5114
5115 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
5116 {
6b3603c2 5117 /* This code used to ignore labels that referred to dispatch tables to
ac7c5af5 5118 avoid flow generating (slighly) worse code.
6b3603c2 5119
ac7c5af5
JL
5120 We no longer ignore such label references (see LABEL_REF handling in
5121 mark_jump_label for additional information). */
c4c81601 5122
6b8c9327 5123 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
6b3603c2 5124 REG_NOTES (insn));
5b1ef594
JDA
5125 if (LABEL_P (XEXP (x, 0)))
5126 LABEL_NUSES (XEXP (x, 0))++;
aeb2f500
JW
5127 return;
5128 }
5129
c4c81601 5130 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
aeb2f500
JW
5131 {
5132 if (fmt[i] == 'e')
5133 add_label_notes (XEXP (x, i), insn);
5134 else if (fmt[i] == 'E')
5135 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5136 add_label_notes (XVECEXP (x, i, j), insn);
5137 }
5138}
a65f3558
JL
5139
5140/* Compute transparent outgoing information for each block.
5141
5142 An expression is transparent to an edge unless it is killed by
5143 the edge itself. This can only happen with abnormal control flow,
5144 when the edge is traversed through a call. This happens with
5145 non-local labels and exceptions.
5146
5147 This would not be necessary if we split the edge. While this is
5148 normally impossible for abnormal critical edges, with some effort
5149 it should be possible with exception handling, since we still have
5150 control over which handler should be invoked. But due to increased
5151 EH table sizes, this may not be worthwhile. */
5152
5153static void
5154compute_transpout ()
5155{
5156 int bb;
2e653e39 5157 unsigned int i;
c4c81601 5158 struct expr *expr;
a65f3558
JL
5159
5160 sbitmap_vector_ones (transpout, n_basic_blocks);
5161
5162 for (bb = 0; bb < n_basic_blocks; ++bb)
5163 {
a65f3558
JL
5164 /* Note that flow inserted a nop a the end of basic blocks that
5165 end in call instructions for reasons other than abnormal
5166 control flow. */
5167 if (GET_CODE (BLOCK_END (bb)) != CALL_INSN)
5168 continue;
5169
5170 for (i = 0; i < expr_hash_table_size; i++)
c4c81601
RK
5171 for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
5172 if (GET_CODE (expr->expr) == MEM)
5173 {
5174 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
5175 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
5176 continue;
a65f3558 5177
c4c81601
RK
5178 /* ??? Optimally, we would use interprocedural alias
5179 analysis to determine if this mem is actually killed
5180 by this call. */
5181 RESET_BIT (transpout[bb], expr->bitmap_index);
5182 }
a65f3558
JL
5183 }
5184}
dfdb644f
JL
5185
5186/* Removal of useless null pointer checks */
5187
dfdb644f 5188/* Called via note_stores. X is set by SETTER. If X is a register we must
0511851c
MM
5189 invalidate nonnull_local and set nonnull_killed. DATA is really a
5190 `null_pointer_info *'.
dfdb644f
JL
5191
5192 We ignore hard registers. */
c4c81601 5193
dfdb644f 5194static void
84832317 5195invalidate_nonnull_info (x, setter, data)
dfdb644f
JL
5196 rtx x;
5197 rtx setter ATTRIBUTE_UNUSED;
0511851c 5198 void *data;
dfdb644f 5199{
770ae6cc
RK
5200 unsigned int regno;
5201 struct null_pointer_info *npi = (struct null_pointer_info *) data;
c4c81601 5202
dfdb644f
JL
5203 while (GET_CODE (x) == SUBREG)
5204 x = SUBREG_REG (x);
5205
5206 /* Ignore anything that is not a register or is a hard register. */
5207 if (GET_CODE (x) != REG
0511851c
MM
5208 || REGNO (x) < npi->min_reg
5209 || REGNO (x) >= npi->max_reg)
dfdb644f
JL
5210 return;
5211
0511851c 5212 regno = REGNO (x) - npi->min_reg;
dfdb644f 5213
0511851c
MM
5214 RESET_BIT (npi->nonnull_local[npi->current_block], regno);
5215 SET_BIT (npi->nonnull_killed[npi->current_block], regno);
dfdb644f
JL
5216}
5217
0511851c
MM
5218/* Do null-pointer check elimination for the registers indicated in
5219 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5220 they are not our responsibility to free. */
dfdb644f 5221
0511851c 5222static void
9cd56be1 5223delete_null_pointer_checks_1 (block_reg, nonnull_avin,
8e184d9c 5224 nonnull_avout, npi)
770ae6cc 5225 unsigned int *block_reg;
0511851c
MM
5226 sbitmap *nonnull_avin;
5227 sbitmap *nonnull_avout;
5228 struct null_pointer_info *npi;
dfdb644f 5229{
ce724250 5230 int bb;
0511851c
MM
5231 int current_block;
5232 sbitmap *nonnull_local = npi->nonnull_local;
5233 sbitmap *nonnull_killed = npi->nonnull_killed;
dfdb644f 5234
dfdb644f
JL
5235 /* Compute local properties, nonnull and killed. A register will have
5236 the nonnull property if at the end of the current block its value is
5237 known to be nonnull. The killed property indicates that somewhere in
5238 the block any information we had about the register is killed.
5239
5240 Note that a register can have both properties in a single block. That
5241 indicates that it's killed, then later in the block a new value is
5242 computed. */
5243 sbitmap_vector_zero (nonnull_local, n_basic_blocks);
5244 sbitmap_vector_zero (nonnull_killed, n_basic_blocks);
c4c81601 5245
dfdb644f
JL
5246 for (current_block = 0; current_block < n_basic_blocks; current_block++)
5247 {
5248 rtx insn, stop_insn;
5249
0511851c
MM
5250 /* Set the current block for invalidate_nonnull_info. */
5251 npi->current_block = current_block;
5252
dfdb644f
JL
5253 /* Scan each insn in the basic block looking for memory references and
5254 register sets. */
5255 stop_insn = NEXT_INSN (BLOCK_END (current_block));
5256 for (insn = BLOCK_HEAD (current_block);
5257 insn != stop_insn;
5258 insn = NEXT_INSN (insn))
5259 {
5260 rtx set;
0511851c 5261 rtx reg;
dfdb644f
JL
5262
5263 /* Ignore anything that is not a normal insn. */
2c3c49de 5264 if (! INSN_P (insn))
dfdb644f
JL
5265 continue;
5266
5267 /* Basically ignore anything that is not a simple SET. We do have
5268 to make sure to invalidate nonnull_local and set nonnull_killed
5269 for such insns though. */
5270 set = single_set (insn);
5271 if (!set)
5272 {
0511851c 5273 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
dfdb644f
JL
5274 continue;
5275 }
5276
f63d1bf7 5277 /* See if we've got a usable memory load. We handle it first
dfdb644f
JL
5278 in case it uses its address register as a dest (which kills
5279 the nonnull property). */
5280 if (GET_CODE (SET_SRC (set)) == MEM
0511851c
MM
5281 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
5282 && REGNO (reg) >= npi->min_reg
5283 && REGNO (reg) < npi->max_reg)
dfdb644f 5284 SET_BIT (nonnull_local[current_block],
0511851c 5285 REGNO (reg) - npi->min_reg);
dfdb644f
JL
5286
5287 /* Now invalidate stuff clobbered by this insn. */
0511851c 5288 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
dfdb644f
JL
5289
5290 /* And handle stores, we do these last since any sets in INSN can
5291 not kill the nonnull property if it is derived from a MEM
5292 appearing in a SET_DEST. */
5293 if (GET_CODE (SET_DEST (set)) == MEM
0511851c
MM
5294 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
5295 && REGNO (reg) >= npi->min_reg
5296 && REGNO (reg) < npi->max_reg)
dfdb644f 5297 SET_BIT (nonnull_local[current_block],
0511851c 5298 REGNO (reg) - npi->min_reg);
dfdb644f
JL
5299 }
5300 }
5301
5302 /* Now compute global properties based on the local properties. This
5303 is a classic global availablity algorithm. */
ce724250
JL
5304 compute_available (nonnull_local, nonnull_killed,
5305 nonnull_avout, nonnull_avin);
dfdb644f
JL
5306
5307 /* Now look at each bb and see if it ends with a compare of a value
5308 against zero. */
5309 for (bb = 0; bb < n_basic_blocks; bb++)
5310 {
5311 rtx last_insn = BLOCK_END (bb);
0511851c 5312 rtx condition, earliest;
dfdb644f
JL
5313 int compare_and_branch;
5314
0511851c
MM
5315 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
5316 since BLOCK_REG[BB] is zero if this block did not end with a
5317 comparison against zero, this condition works. */
5318 if (block_reg[bb] < npi->min_reg
5319 || block_reg[bb] >= npi->max_reg)
dfdb644f
JL
5320 continue;
5321
5322 /* LAST_INSN is a conditional jump. Get its condition. */
5323 condition = get_condition (last_insn, &earliest);
5324
40d7a3fe
NB
5325 /* If we can't determine the condition then skip. */
5326 if (! condition)
5327 continue;
5328
dfdb644f 5329 /* Is the register known to have a nonzero value? */
0511851c 5330 if (!TEST_BIT (nonnull_avout[bb], block_reg[bb] - npi->min_reg))
dfdb644f
JL
5331 continue;
5332
5333 /* Try to compute whether the compare/branch at the loop end is one or
5334 two instructions. */
5335 if (earliest == last_insn)
5336 compare_and_branch = 1;
5337 else if (earliest == prev_nonnote_insn (last_insn))
5338 compare_and_branch = 2;
5339 else
5340 continue;
5341
5342 /* We know the register in this comparison is nonnull at exit from
5343 this block. We can optimize this comparison. */
5344 if (GET_CODE (condition) == NE)
5345 {
5346 rtx new_jump;
5347
38c1593d
JH
5348 new_jump = emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn)),
5349 last_insn);
dfdb644f
JL
5350 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
5351 LABEL_NUSES (JUMP_LABEL (new_jump))++;
5352 emit_barrier_after (new_jump);
5353 }
8e184d9c 5354
9cd56be1 5355 delete_insn (last_insn);
dfdb644f 5356 if (compare_and_branch == 2)
9cd56be1
JH
5357 delete_insn (earliest);
5358 purge_dead_edges (BASIC_BLOCK (bb));
0511851c
MM
5359
5360 /* Don't check this block again. (Note that BLOCK_END is
5361 invalid here; we deleted the last instruction in the
5362 block.) */
5363 block_reg[bb] = 0;
5364 }
5365}
5366
5367/* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
5368 at compile time.
5369
5370 This is conceptually similar to global constant/copy propagation and
5371 classic global CSE (it even uses the same dataflow equations as cprop).
5372
5373 If a register is used as memory address with the form (mem (reg)), then we
5374 know that REG can not be zero at that point in the program. Any instruction
5375 which sets REG "kills" this property.
5376
5377 So, if every path leading to a conditional branch has an available memory
5378 reference of that form, then we know the register can not have the value
5379 zero at the conditional branch.
5380
5381 So we merely need to compute the local properies and propagate that data
5382 around the cfg, then optimize where possible.
5383
5384 We run this pass two times. Once before CSE, then again after CSE. This
5385 has proven to be the most profitable approach. It is rare for new
5386 optimization opportunities of this nature to appear after the first CSE
5387 pass.
5388
5389 This could probably be integrated with global cprop with a little work. */
5390
5391void
5392delete_null_pointer_checks (f)
2e653e39 5393 rtx f ATTRIBUTE_UNUSED;
0511851c 5394{
0511851c 5395 sbitmap *nonnull_avin, *nonnull_avout;
770ae6cc 5396 unsigned int *block_reg;
0511851c
MM
5397 int bb;
5398 int reg;
5399 int regs_per_pass;
5400 int max_reg;
5401 struct null_pointer_info npi;
5402
0511851c
MM
5403 /* If we have only a single block, then there's nothing to do. */
5404 if (n_basic_blocks <= 1)
a18820c6 5405 return;
0511851c
MM
5406
5407 /* Trying to perform global optimizations on flow graphs which have
5408 a high connectivity will take a long time and is unlikely to be
5409 particularly useful.
5410
43e72072 5411 In normal circumstances a cfg should have about twice as many edges
0511851c
MM
5412 as blocks. But we do not want to punish small functions which have
5413 a couple switch statements. So we require a relatively large number
5414 of basic blocks and the ratio of edges to blocks to be high. */
5415 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
a18820c6 5416 return;
0511851c 5417
0511851c
MM
5418 /* We need four bitmaps, each with a bit for each register in each
5419 basic block. */
5420 max_reg = max_reg_num ();
5421 regs_per_pass = get_bitmap_width (4, n_basic_blocks, max_reg);
5422
5423 /* Allocate bitmaps to hold local and global properties. */
5424 npi.nonnull_local = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5425 npi.nonnull_killed = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5426 nonnull_avin = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5427 nonnull_avout = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5428
5429 /* Go through the basic blocks, seeing whether or not each block
5430 ends with a conditional branch whose condition is a comparison
5431 against zero. Record the register compared in BLOCK_REG. */
f9e158c3 5432 block_reg = (unsigned int *) xcalloc (n_basic_blocks, sizeof (int));
0511851c
MM
5433 for (bb = 0; bb < n_basic_blocks; bb++)
5434 {
5435 rtx last_insn = BLOCK_END (bb);
5436 rtx condition, earliest, reg;
5437
5438 /* We only want conditional branches. */
5439 if (GET_CODE (last_insn) != JUMP_INSN
7f1c097d
JH
5440 || !any_condjump_p (last_insn)
5441 || !onlyjump_p (last_insn))
0511851c
MM
5442 continue;
5443
5444 /* LAST_INSN is a conditional jump. Get its condition. */
5445 condition = get_condition (last_insn, &earliest);
5446
4fe9b91c 5447 /* If we were unable to get the condition, or it is not an equality
0511851c
MM
5448 comparison against zero then there's nothing we can do. */
5449 if (!condition
5450 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
5451 || GET_CODE (XEXP (condition, 1)) != CONST_INT
5452 || (XEXP (condition, 1)
5453 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
5454 continue;
5455
5456 /* We must be checking a register against zero. */
5457 reg = XEXP (condition, 0);
5458 if (GET_CODE (reg) != REG)
5459 continue;
5460
5461 block_reg[bb] = REGNO (reg);
5462 }
5463
5464 /* Go through the algorithm for each block of registers. */
5465 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
5466 {
5467 npi.min_reg = reg;
5468 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
9cd56be1 5469 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
0511851c 5470 nonnull_avout, &npi);
dfdb644f
JL
5471 }
5472
0511851c
MM
5473 /* Free the table of registers compared at the end of every block. */
5474 free (block_reg);
5475
dfdb644f 5476 /* Free bitmaps. */
5a660bff
DB
5477 sbitmap_vector_free (npi.nonnull_local);
5478 sbitmap_vector_free (npi.nonnull_killed);
5479 sbitmap_vector_free (nonnull_avin);
5480 sbitmap_vector_free (nonnull_avout);
dfdb644f 5481}
bb457bd9
JL
5482
5483/* Code Hoisting variables and subroutines. */
5484
5485/* Very busy expressions. */
5486static sbitmap *hoist_vbein;
5487static sbitmap *hoist_vbeout;
5488
5489/* Hoistable expressions. */
5490static sbitmap *hoist_exprs;
5491
5492/* Dominator bitmaps. */
5493static sbitmap *dominators;
bb457bd9
JL
5494
5495/* ??? We could compute post dominators and run this algorithm in
5496 reverse to to perform tail merging, doing so would probably be
5497 more effective than the tail merging code in jump.c.
5498
5499 It's unclear if tail merging could be run in parallel with
5500 code hoisting. It would be nice. */
5501
5502/* Allocate vars used for code hoisting analysis. */
5503
5504static void
5505alloc_code_hoist_mem (n_blocks, n_exprs)
5506 int n_blocks, n_exprs;
5507{
5508 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5509 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5510 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5511
5512 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5513 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5514 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5515 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5516
5517 dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
bb457bd9
JL
5518}
5519
5520/* Free vars used for code hoisting analysis. */
5521
5522static void
5523free_code_hoist_mem ()
5524{
5a660bff
DB
5525 sbitmap_vector_free (antloc);
5526 sbitmap_vector_free (transp);
5527 sbitmap_vector_free (comp);
bb457bd9 5528
5a660bff
DB
5529 sbitmap_vector_free (hoist_vbein);
5530 sbitmap_vector_free (hoist_vbeout);
5531 sbitmap_vector_free (hoist_exprs);
5532 sbitmap_vector_free (transpout);
bb457bd9 5533
5a660bff 5534 sbitmap_vector_free (dominators);
bb457bd9
JL
5535}
5536
5537/* Compute the very busy expressions at entry/exit from each block.
5538
5539 An expression is very busy if all paths from a given point
5540 compute the expression. */
5541
5542static void
5543compute_code_hoist_vbeinout ()
5544{
5545 int bb, changed, passes;
5546
5547 sbitmap_vector_zero (hoist_vbeout, n_basic_blocks);
5548 sbitmap_vector_zero (hoist_vbein, n_basic_blocks);
5549
5550 passes = 0;
5551 changed = 1;
c4c81601 5552
bb457bd9
JL
5553 while (changed)
5554 {
5555 changed = 0;
c4c81601 5556
bb457bd9
JL
5557 /* We scan the blocks in the reverse order to speed up
5558 the convergence. */
5559 for (bb = n_basic_blocks - 1; bb >= 0; bb--)
5560 {
5561 changed |= sbitmap_a_or_b_and_c (hoist_vbein[bb], antloc[bb],
5562 hoist_vbeout[bb], transp[bb]);
5563 if (bb != n_basic_blocks - 1)
a42cd965 5564 sbitmap_intersection_of_succs (hoist_vbeout[bb], hoist_vbein, bb);
bb457bd9 5565 }
c4c81601 5566
bb457bd9
JL
5567 passes++;
5568 }
5569
5570 if (gcse_file)
5571 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
5572}
5573
5574/* Top level routine to do the dataflow analysis needed by code hoisting. */
5575
5576static void
5577compute_code_hoist_data ()
5578{
5579 compute_local_properties (transp, comp, antloc, 0);
5580 compute_transpout ();
5581 compute_code_hoist_vbeinout ();
f8032688 5582 calculate_dominance_info (NULL, dominators, CDI_DOMINATORS);
bb457bd9
JL
5583 if (gcse_file)
5584 fprintf (gcse_file, "\n");
5585}
5586
5587/* Determine if the expression identified by EXPR_INDEX would
5588 reach BB unimpared if it was placed at the end of EXPR_BB.
5589
5590 It's unclear exactly what Muchnick meant by "unimpared". It seems
5591 to me that the expression must either be computed or transparent in
5592 *every* block in the path(s) from EXPR_BB to BB. Any other definition
5593 would allow the expression to be hoisted out of loops, even if
5594 the expression wasn't a loop invariant.
5595
5596 Contrast this to reachability for PRE where an expression is
5597 considered reachable if *any* path reaches instead of *all*
5598 paths. */
5599
5600static int
5601hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
e2d2ed72 5602 basic_block expr_bb;
bb457bd9 5603 int expr_index;
e2d2ed72 5604 basic_block bb;
bb457bd9
JL
5605 char *visited;
5606{
5607 edge pred;
283a2545
RL
5608 int visited_allocated_locally = 0;
5609
bb457bd9
JL
5610
5611 if (visited == NULL)
5612 {
8e42ace1
KH
5613 visited_allocated_locally = 1;
5614 visited = xcalloc (n_basic_blocks, 1);
bb457bd9
JL
5615 }
5616
e2d2ed72 5617 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
bb457bd9 5618 {
e2d2ed72 5619 basic_block pred_bb = pred->src;
bb457bd9
JL
5620
5621 if (pred->src == ENTRY_BLOCK_PTR)
5622 break;
e2d2ed72 5623 else if (visited[pred_bb->index])
bb457bd9 5624 continue;
c4c81601 5625
bb457bd9 5626 /* Does this predecessor generate this expression? */
e2d2ed72 5627 else if (TEST_BIT (comp[pred_bb->index], expr_index))
bb457bd9 5628 break;
e2d2ed72 5629 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
bb457bd9 5630 break;
c4c81601 5631
bb457bd9
JL
5632 /* Not killed. */
5633 else
5634 {
e2d2ed72 5635 visited[pred_bb->index] = 1;
bb457bd9
JL
5636 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
5637 pred_bb, visited))
5638 break;
5639 }
5640 }
283a2545
RL
5641 if (visited_allocated_locally)
5642 free (visited);
c4c81601 5643
bb457bd9
JL
5644 return (pred == NULL);
5645}
5646\f
5647/* Actually perform code hoisting. */
c4c81601 5648
bb457bd9
JL
5649static void
5650hoist_code ()
5651{
2e653e39
RK
5652 int bb, dominated;
5653 unsigned int i;
bb457bd9 5654 struct expr **index_map;
c4c81601 5655 struct expr *expr;
bb457bd9
JL
5656
5657 sbitmap_vector_zero (hoist_exprs, n_basic_blocks);
5658
5659 /* Compute a mapping from expression number (`bitmap_index') to
5660 hash table entry. */
5661
dd1bd863 5662 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
bb457bd9 5663 for (i = 0; i < expr_hash_table_size; i++)
c4c81601
RK
5664 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5665 index_map[expr->bitmap_index] = expr;
bb457bd9
JL
5666
5667 /* Walk over each basic block looking for potentially hoistable
5668 expressions, nothing gets hoisted from the entry block. */
5669 for (bb = 0; bb < n_basic_blocks; bb++)
5670 {
5671 int found = 0;
5672 int insn_inserted_p;
5673
5674 /* Examine each expression that is very busy at the exit of this
5675 block. These are the potentially hoistable expressions. */
5676 for (i = 0; i < hoist_vbeout[bb]->n_bits; i++)
5677 {
5678 int hoistable = 0;
c4c81601
RK
5679
5680 if (TEST_BIT (hoist_vbeout[bb], i) && TEST_BIT (transpout[bb], i))
bb457bd9
JL
5681 {
5682 /* We've found a potentially hoistable expression, now
5683 we look at every block BB dominates to see if it
5684 computes the expression. */
5685 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5686 {
5687 /* Ignore self dominance. */
5688 if (bb == dominated
5689 || ! TEST_BIT (dominators[dominated], bb))
5690 continue;
5691
5692 /* We've found a dominated block, now see if it computes
5693 the busy expression and whether or not moving that
5694 expression to the "beginning" of that block is safe. */
5695 if (!TEST_BIT (antloc[dominated], i))
5696 continue;
5697
5698 /* Note if the expression would reach the dominated block
5699 unimpared if it was placed at the end of BB.
5700
5701 Keep track of how many times this expression is hoistable
5702 from a dominated block into BB. */
e2d2ed72
AM
5703 if (hoist_expr_reaches_here_p (BASIC_BLOCK (bb), i,
5704 BASIC_BLOCK (dominated), NULL))
bb457bd9
JL
5705 hoistable++;
5706 }
5707
ff7cc307 5708 /* If we found more than one hoistable occurrence of this
bb457bd9
JL
5709 expression, then note it in the bitmap of expressions to
5710 hoist. It makes no sense to hoist things which are computed
5711 in only one BB, and doing so tends to pessimize register
5712 allocation. One could increase this value to try harder
5713 to avoid any possible code expansion due to register
5714 allocation issues; however experiments have shown that
5715 the vast majority of hoistable expressions are only movable
5716 from two successors, so raising this threshhold is likely
5717 to nullify any benefit we get from code hoisting. */
5718 if (hoistable > 1)
5719 {
5720 SET_BIT (hoist_exprs[bb], i);
5721 found = 1;
5722 }
5723 }
5724 }
5725
5726 /* If we found nothing to hoist, then quit now. */
5727 if (! found)
5728 continue;
5729
5730 /* Loop over all the hoistable expressions. */
5731 for (i = 0; i < hoist_exprs[bb]->n_bits; i++)
5732 {
5733 /* We want to insert the expression into BB only once, so
5734 note when we've inserted it. */
5735 insn_inserted_p = 0;
5736
5737 /* These tests should be the same as the tests above. */
5738 if (TEST_BIT (hoist_vbeout[bb], i))
5739 {
5740 /* We've found a potentially hoistable expression, now
5741 we look at every block BB dominates to see if it
5742 computes the expression. */
5743 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5744 {
5745 /* Ignore self dominance. */
5746 if (bb == dominated
5747 || ! TEST_BIT (dominators[dominated], bb))
5748 continue;
5749
5750 /* We've found a dominated block, now see if it computes
5751 the busy expression and whether or not moving that
5752 expression to the "beginning" of that block is safe. */
5753 if (!TEST_BIT (antloc[dominated], i))
5754 continue;
5755
5756 /* The expression is computed in the dominated block and
5757 it would be safe to compute it at the start of the
5758 dominated block. Now we have to determine if the
ff7cc307 5759 expression would reach the dominated block if it was
bb457bd9 5760 placed at the end of BB. */
e2d2ed72
AM
5761 if (hoist_expr_reaches_here_p (BASIC_BLOCK (bb), i,
5762 BASIC_BLOCK (dominated), NULL))
bb457bd9
JL
5763 {
5764 struct expr *expr = index_map[i];
5765 struct occr *occr = expr->antic_occr;
5766 rtx insn;
5767 rtx set;
5768
ff7cc307 5769 /* Find the right occurrence of this expression. */
bb457bd9
JL
5770 while (BLOCK_NUM (occr->insn) != dominated && occr)
5771 occr = occr->next;
5772
5773 /* Should never happen. */
5774 if (!occr)
5775 abort ();
5776
5777 insn = occr->insn;
5778
5779 set = single_set (insn);
5780 if (! set)
5781 abort ();
5782
5783 /* Create a pseudo-reg to store the result of reaching
5784 expressions into. Get the mode for the new pseudo
5785 from the mode of the original destination pseudo. */
5786 if (expr->reaching_reg == NULL)
5787 expr->reaching_reg
5788 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5789
5790 /* In theory this should never fail since we're creating
5791 a reg->reg copy.
5792
c4c81601
RK
5793 However, on the x86 some of the movXX patterns
5794 actually contain clobbers of scratch regs. This may
5795 cause the insn created by validate_change to not
5796 match any pattern and thus cause validate_change to
5797 fail. */
bb457bd9
JL
5798 if (validate_change (insn, &SET_SRC (set),
5799 expr->reaching_reg, 0))
5800 {
5801 occr->deleted_p = 1;
5802 if (!insn_inserted_p)
5803 {
e2d2ed72
AM
5804 insert_insn_end_bb (index_map[i],
5805 BASIC_BLOCK (bb), 0);
bb457bd9
JL
5806 insn_inserted_p = 1;
5807 }
5808 }
5809 }
5810 }
5811 }
5812 }
5813 }
c4c81601 5814
8e42ace1 5815 free (index_map);
bb457bd9
JL
5816}
5817
5818/* Top level routine to perform one code hoisting (aka unification) pass
5819
5820 Return non-zero if a change was made. */
5821
5822static int
5823one_code_hoisting_pass ()
5824{
5825 int changed = 0;
5826
5827 alloc_expr_hash_table (max_cuid);
5828 compute_expr_hash_table ();
5829 if (gcse_file)
5830 dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table,
5831 expr_hash_table_size, n_exprs);
c4c81601 5832
bb457bd9
JL
5833 if (n_exprs > 0)
5834 {
5835 alloc_code_hoist_mem (n_basic_blocks, n_exprs);
5836 compute_code_hoist_data ();
5837 hoist_code ();
5838 free_code_hoist_mem ();
5839 }
c4c81601 5840
bb457bd9
JL
5841 free_expr_hash_table ();
5842
5843 return changed;
5844}
a13d4ebf
AM
5845\f
5846/* Here we provide the things required to do store motion towards
5847 the exit. In order for this to be effective, gcse also needed to
5848 be taught how to move a load when it is kill only by a store to itself.
5849
5850 int i;
5851 float a[10];
5852
5853 void foo(float scale)
5854 {
5855 for (i=0; i<10; i++)
5856 a[i] *= scale;
5857 }
5858
5859 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5860 the load out since its live around the loop, and stored at the bottom
5861 of the loop.
5862
5863 The 'Load Motion' referred to and implemented in this file is
5864 an enhancement to gcse which when using edge based lcm, recognizes
5865 this situation and allows gcse to move the load out of the loop.
5866
5867 Once gcse has hoisted the load, store motion can then push this
5868 load towards the exit, and we end up with no loads or stores of 'i'
5869 in the loop. */
5870
ff7cc307 5871/* This will search the ldst list for a matching expression. If it
a13d4ebf
AM
5872 doesn't find one, we create one and initialize it. */
5873
5874static struct ls_expr *
5875ldst_entry (x)
5876 rtx x;
5877{
5878 struct ls_expr * ptr;
5879
5880 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5881 if (expr_equiv_p (ptr->pattern, x))
5882 break;
5883
5884 if (!ptr)
5885 {
5886 ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr));
5887
5888 ptr->next = pre_ldst_mems;
5889 ptr->expr = NULL;
5890 ptr->pattern = x;
5891 ptr->loads = NULL_RTX;
5892 ptr->stores = NULL_RTX;
5893 ptr->reaching_reg = NULL_RTX;
5894 ptr->invalid = 0;
5895 ptr->index = 0;
5896 ptr->hash_index = 0;
5897 pre_ldst_mems = ptr;
5898 }
5899
5900 return ptr;
5901}
5902
5903/* Free up an individual ldst entry. */
5904
5905static void
5906free_ldst_entry (ptr)
5907 struct ls_expr * ptr;
5908{
aaa4ca30
AJ
5909 free_INSN_LIST_list (& ptr->loads);
5910 free_INSN_LIST_list (& ptr->stores);
a13d4ebf
AM
5911
5912 free (ptr);
5913}
5914
5915/* Free up all memory associated with the ldst list. */
5916
5917static void
5918free_ldst_mems ()
5919{
5920 while (pre_ldst_mems)
5921 {
5922 struct ls_expr * tmp = pre_ldst_mems;
5923
5924 pre_ldst_mems = pre_ldst_mems->next;
5925
5926 free_ldst_entry (tmp);
5927 }
5928
5929 pre_ldst_mems = NULL;
5930}
5931
5932/* Dump debugging info about the ldst list. */
5933
5934static void
5935print_ldst_list (file)
5936 FILE * file;
5937{
5938 struct ls_expr * ptr;
5939
5940 fprintf (file, "LDST list: \n");
5941
5942 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5943 {
5944 fprintf (file, " Pattern (%3d): ", ptr->index);
5945
5946 print_rtl (file, ptr->pattern);
5947
5948 fprintf (file, "\n Loads : ");
5949
5950 if (ptr->loads)
5951 print_rtl (file, ptr->loads);
5952 else
5953 fprintf (file, "(nil)");
5954
5955 fprintf (file, "\n Stores : ");
5956
5957 if (ptr->stores)
5958 print_rtl (file, ptr->stores);
5959 else
5960 fprintf (file, "(nil)");
5961
5962 fprintf (file, "\n\n");
5963 }
5964
5965 fprintf (file, "\n");
5966}
5967
5968/* Returns 1 if X is in the list of ldst only expressions. */
5969
5970static struct ls_expr *
5971find_rtx_in_ldst (x)
5972 rtx x;
5973{
5974 struct ls_expr * ptr;
5975
5976 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5977 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
5978 return ptr;
5979
5980 return NULL;
5981}
5982
5983/* Assign each element of the list of mems a monotonically increasing value. */
5984
5985static int
5986enumerate_ldsts ()
5987{
5988 struct ls_expr * ptr;
5989 int n = 0;
5990
5991 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5992 ptr->index = n++;
5993
5994 return n;
5995}
5996
5997/* Return first item in the list. */
5998
5999static inline struct ls_expr *
6000first_ls_expr ()
6001{
6002 return pre_ldst_mems;
6003}
6004
6005/* Return the next item in ther list after the specified one. */
6006
6007static inline struct ls_expr *
6008next_ls_expr (ptr)
6009 struct ls_expr * ptr;
6010{
6011 return ptr->next;
6012}
6013\f
6014/* Load Motion for loads which only kill themselves. */
6015
6016/* Return true if x is a simple MEM operation, with no registers or
6017 side effects. These are the types of loads we consider for the
6018 ld_motion list, otherwise we let the usual aliasing take care of it. */
6019
6020static int
6021simple_mem (x)
6022 rtx x;
6023{
6024 if (GET_CODE (x) != MEM)
6025 return 0;
6026
6027 if (MEM_VOLATILE_P (x))
6028 return 0;
6029
6030 if (GET_MODE (x) == BLKmode)
6031 return 0;
aaa4ca30
AJ
6032
6033 if (!rtx_varies_p (XEXP (x, 0), 0))
a13d4ebf 6034 return 1;
aaa4ca30 6035
a13d4ebf
AM
6036 return 0;
6037}
6038
6039/* Make sure there isn't a buried reference in this pattern anywhere.
6040 If there is, invalidate the entry for it since we're not capable
6041 of fixing it up just yet.. We have to be sure we know about ALL
6042 loads since the aliasing code will allow all entries in the
6043 ld_motion list to not-alias itself. If we miss a load, we will get
6044 the wrong value since gcse might common it and we won't know to
6045 fix it up. */
6046
6047static void
6048invalidate_any_buried_refs (x)
6049 rtx x;
6050{
6051 const char * fmt;
8e42ace1 6052 int i, j;
a13d4ebf
AM
6053 struct ls_expr * ptr;
6054
6055 /* Invalidate it in the list. */
6056 if (GET_CODE (x) == MEM && simple_mem (x))
6057 {
6058 ptr = ldst_entry (x);
6059 ptr->invalid = 1;
6060 }
6061
6062 /* Recursively process the insn. */
6063 fmt = GET_RTX_FORMAT (GET_CODE (x));
6064
6065 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6066 {
6067 if (fmt[i] == 'e')
6068 invalidate_any_buried_refs (XEXP (x, i));
6069 else if (fmt[i] == 'E')
6070 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6071 invalidate_any_buried_refs (XVECEXP (x, i, j));
6072 }
6073}
6074
6075/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6076 being defined as MEM loads and stores to symbols, with no
6077 side effects and no registers in the expression. If there are any
f63d1bf7 6078 uses/defs which don't match this criteria, it is invalidated and
a13d4ebf
AM
6079 trimmed out later. */
6080
6081static void
6082compute_ld_motion_mems ()
6083{
6084 struct ls_expr * ptr;
6085 int bb;
6086 rtx insn;
6087
6088 pre_ldst_mems = NULL;
6089
6090 for (bb = 0; bb < n_basic_blocks; bb++)
6091 {
6092 for (insn = BLOCK_HEAD (bb);
6093 insn && insn != NEXT_INSN (BLOCK_END (bb));
6094 insn = NEXT_INSN (insn))
6095 {
6096 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
6097 {
6098 if (GET_CODE (PATTERN (insn)) == SET)
6099 {
6100 rtx src = SET_SRC (PATTERN (insn));
6101 rtx dest = SET_DEST (PATTERN (insn));
6102
6103 /* Check for a simple LOAD... */
6104 if (GET_CODE (src) == MEM && simple_mem (src))
6105 {
6106 ptr = ldst_entry (src);
6107 if (GET_CODE (dest) == REG)
6108 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
6109 else
6110 ptr->invalid = 1;
6111 }
6112 else
6113 {
6114 /* Make sure there isn't a buried load somewhere. */
6115 invalidate_any_buried_refs (src);
6116 }
aaa4ca30 6117
a13d4ebf
AM
6118 /* Check for stores. Don't worry about aliased ones, they
6119 will block any movement we might do later. We only care
6120 about this exact pattern since those are the only
6121 circumstance that we will ignore the aliasing info. */
6122 if (GET_CODE (dest) == MEM && simple_mem (dest))
6123 {
6124 ptr = ldst_entry (dest);
6125
f54104df
AO
6126 if (GET_CODE (src) != MEM
6127 && GET_CODE (src) != ASM_OPERANDS)
a13d4ebf
AM
6128 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6129 else
6130 ptr->invalid = 1;
6131 }
6132 }
6133 else
6134 invalidate_any_buried_refs (PATTERN (insn));
6135 }
6136 }
6137 }
6138}
6139
6140/* Remove any references that have been either invalidated or are not in the
6141 expression list for pre gcse. */
6142
6143static void
6144trim_ld_motion_mems ()
6145{
6146 struct ls_expr * last = NULL;
6147 struct ls_expr * ptr = first_ls_expr ();
6148
6149 while (ptr != NULL)
6150 {
6151 int del = ptr->invalid;
6152 struct expr * expr = NULL;
6153
6154 /* Delete if entry has been made invalid. */
6155 if (!del)
6156 {
6157 unsigned int i;
6158
6159 del = 1;
6160 /* Delete if we cannot find this mem in the expression list. */
6161 for (i = 0; i < expr_hash_table_size && del; i++)
6162 {
6163 for (expr = expr_hash_table[i];
6164 expr != NULL;
6165 expr = expr->next_same_hash)
6166 if (expr_equiv_p (expr->expr, ptr->pattern))
6167 {
6168 del = 0;
6169 break;
6170 }
6171 }
6172 }
6173
6174 if (del)
6175 {
6176 if (last != NULL)
6177 {
6178 last->next = ptr->next;
6179 free_ldst_entry (ptr);
6180 ptr = last->next;
6181 }
6182 else
6183 {
6184 pre_ldst_mems = pre_ldst_mems->next;
6185 free_ldst_entry (ptr);
6186 ptr = pre_ldst_mems;
6187 }
6188 }
6189 else
6190 {
6191 /* Set the expression field if we are keeping it. */
6192 last = ptr;
6193 ptr->expr = expr;
6194 ptr = ptr->next;
6195 }
6196 }
6197
6198 /* Show the world what we've found. */
6199 if (gcse_file && pre_ldst_mems != NULL)
6200 print_ldst_list (gcse_file);
6201}
6202
6203/* This routine will take an expression which we are replacing with
6204 a reaching register, and update any stores that are needed if
6205 that expression is in the ld_motion list. Stores are updated by
6206 copying their SRC to the reaching register, and then storeing
6207 the reaching register into the store location. These keeps the
6208 correct value in the reaching register for the loads. */
6209
6210static void
6211update_ld_motion_stores (expr)
6212 struct expr * expr;
6213{
6214 struct ls_expr * mem_ptr;
6215
6216 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
6217 {
6218 /* We can try to find just the REACHED stores, but is shouldn't
6219 matter to set the reaching reg everywhere... some might be
6220 dead and should be eliminated later. */
6221
6222 /* We replace SET mem = expr with
6223 SET reg = expr
6224 SET mem = reg , where reg is the
6225 reaching reg used in the load. */
6226 rtx list = mem_ptr->stores;
6227
6228 for ( ; list != NULL_RTX; list = XEXP (list, 1))
6229 {
6230 rtx insn = XEXP (list, 0);
6231 rtx pat = PATTERN (insn);
6232 rtx src = SET_SRC (pat);
6233 rtx reg = expr->reaching_reg;
c57718d3 6234 rtx copy, new;
a13d4ebf
AM
6235
6236 /* If we've already copied it, continue. */
6237 if (expr->reaching_reg == src)
6238 continue;
6239
6240 if (gcse_file)
6241 {
6242 fprintf (gcse_file, "PRE: store updated with reaching reg ");
6243 print_rtl (gcse_file, expr->reaching_reg);
6244 fprintf (gcse_file, ":\n ");
6245 print_inline_rtx (gcse_file, insn, 8);
6246 fprintf (gcse_file, "\n");
6247 }
6248
6249 copy = gen_move_insn ( reg, SET_SRC (pat));
c57718d3
RK
6250 new = emit_insn_before (copy, insn);
6251 record_one_set (REGNO (reg), new);
a13d4ebf
AM
6252 SET_SRC (pat) = reg;
6253
6254 /* un-recognize this pattern since it's probably different now. */
6255 INSN_CODE (insn) = -1;
6256 gcse_create_count++;
6257 }
6258 }
6259}
6260\f
6261/* Store motion code. */
6262
aaa4ca30
AJ
6263/* This is used to communicate the target bitvector we want to use in the
6264 reg_set_info routine when called via the note_stores mechanism. */
6265static sbitmap * regvec;
6266
a13d4ebf
AM
6267/* Used in computing the reverse edge graph bit vectors. */
6268static sbitmap * st_antloc;
6269
6270/* Global holding the number of store expressions we are dealing with. */
6271static int num_stores;
6272
aaa4ca30 6273/* Checks to set if we need to mark a register set. Called from note_stores. */
a13d4ebf 6274
aaa4ca30
AJ
6275static void
6276reg_set_info (dest, setter, data)
6277 rtx dest, setter ATTRIBUTE_UNUSED;
6278 void * data ATTRIBUTE_UNUSED;
a13d4ebf 6279{
aaa4ca30
AJ
6280 if (GET_CODE (dest) == SUBREG)
6281 dest = SUBREG_REG (dest);
adfcce61 6282
aaa4ca30
AJ
6283 if (GET_CODE (dest) == REG)
6284 SET_BIT (*regvec, REGNO (dest));
a13d4ebf
AM
6285}
6286
6287/* Return non-zero if the register operands of expression X are killed
aaa4ca30 6288 anywhere in basic block BB. */
a13d4ebf
AM
6289
6290static int
aaa4ca30 6291store_ops_ok (x, bb)
a13d4ebf 6292 rtx x;
e2d2ed72 6293 basic_block bb;
a13d4ebf
AM
6294{
6295 int i;
6296 enum rtx_code code;
6297 const char * fmt;
6298
6299 /* Repeat is used to turn tail-recursion into iteration. */
6300 repeat:
6301
6302 if (x == 0)
6303 return 1;
6304
6305 code = GET_CODE (x);
6306 switch (code)
6307 {
6308 case REG:
aaa4ca30
AJ
6309 /* If a reg has changed after us in this
6310 block, the operand has been killed. */
6311 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
a13d4ebf
AM
6312
6313 case MEM:
6314 x = XEXP (x, 0);
6315 goto repeat;
6316
6317 case PRE_DEC:
6318 case PRE_INC:
6319 case POST_DEC:
6320 case POST_INC:
6321 return 0;
6322
6323 case PC:
6324 case CC0: /*FIXME*/
6325 case CONST:
6326 case CONST_INT:
6327 case CONST_DOUBLE:
69ef87e2 6328 case CONST_VECTOR:
a13d4ebf
AM
6329 case SYMBOL_REF:
6330 case LABEL_REF:
6331 case ADDR_VEC:
6332 case ADDR_DIFF_VEC:
6333 return 1;
6334
6335 default:
6336 break;
6337 }
6338
6339 i = GET_RTX_LENGTH (code) - 1;
6340 fmt = GET_RTX_FORMAT (code);
6341
6342 for (; i >= 0; i--)
6343 {
6344 if (fmt[i] == 'e')
6345 {
6346 rtx tem = XEXP (x, i);
6347
6348 /* If we are about to do the last recursive call
6349 needed at this level, change it into iteration.
6350 This function is called enough to be worth it. */
6351 if (i == 0)
6352 {
6353 x = tem;
6354 goto repeat;
6355 }
6356
aaa4ca30 6357 if (! store_ops_ok (tem, bb))
a13d4ebf
AM
6358 return 0;
6359 }
6360 else if (fmt[i] == 'E')
6361 {
6362 int j;
6363
6364 for (j = 0; j < XVECLEN (x, i); j++)
6365 {
aaa4ca30 6366 if (! store_ops_ok (XVECEXP (x, i, j), bb))
a13d4ebf
AM
6367 return 0;
6368 }
6369 }
6370 }
6371
6372 return 1;
6373}
6374
aaa4ca30 6375/* Determine whether insn is MEM store pattern that we will consider moving. */
a13d4ebf
AM
6376
6377static void
6378find_moveable_store (insn)
6379 rtx insn;
6380{
6381 struct ls_expr * ptr;
6382 rtx dest = PATTERN (insn);
6383
f54104df
AO
6384 if (GET_CODE (dest) != SET
6385 || GET_CODE (SET_SRC (dest)) == ASM_OPERANDS)
a13d4ebf
AM
6386 return;
6387
6388 dest = SET_DEST (dest);
6389
6390 if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
6391 || GET_MODE (dest) == BLKmode)
aaa4ca30
AJ
6392 return;
6393
6394 if (GET_CODE (XEXP (dest, 0)) != SYMBOL_REF)
a13d4ebf 6395 return;
aaa4ca30
AJ
6396
6397 if (rtx_varies_p (XEXP (dest, 0), 0))
a13d4ebf 6398 return;
aaa4ca30 6399
a13d4ebf
AM
6400 ptr = ldst_entry (dest);
6401 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6402}
6403
aaa4ca30
AJ
6404/* Perform store motion. Much like gcse, except we move expressions the
6405 other way by looking at the flowgraph in reverse. */
a13d4ebf
AM
6406
6407static int
6408compute_store_table ()
6409{
6410 int bb, ret;
aaa4ca30 6411 unsigned regno;
a13d4ebf 6412 rtx insn, pat;
aaa4ca30 6413
a13d4ebf
AM
6414 max_gcse_regno = max_reg_num ();
6415
aaa4ca30
AJ
6416 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
6417 max_gcse_regno);
6418 sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
a13d4ebf 6419 pre_ldst_mems = 0;
aaa4ca30 6420
a13d4ebf
AM
6421 /* Find all the stores we care about. */
6422 for (bb = 0; bb < n_basic_blocks; bb++)
6423 {
aaa4ca30 6424 regvec = & (reg_set_in_block[bb]);
a13d4ebf
AM
6425 for (insn = BLOCK_END (bb);
6426 insn && insn != PREV_INSN (BLOCK_HEAD (bb));
6427 insn = PREV_INSN (insn))
6428 {
19652adf
ZW
6429 /* Ignore anything that is not a normal insn. */
6430 if (! INSN_P (insn))
a13d4ebf
AM
6431 continue;
6432
aaa4ca30
AJ
6433 if (GET_CODE (insn) == CALL_INSN)
6434 {
19652adf
ZW
6435 bool clobbers_all = false;
6436#ifdef NON_SAVING_SETJMP
6437 if (NON_SAVING_SETJMP
6438 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
6439 clobbers_all = true;
6440#endif
6441
aaa4ca30 6442 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
19652adf
ZW
6443 if (clobbers_all
6444 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
aaa4ca30
AJ
6445 SET_BIT (reg_set_in_block[bb], regno);
6446 }
6447
a13d4ebf 6448 pat = PATTERN (insn);
aaa4ca30
AJ
6449 note_stores (pat, reg_set_info, NULL);
6450
a13d4ebf
AM
6451 /* Now that we've marked regs, look for stores. */
6452 if (GET_CODE (pat) == SET)
6453 find_moveable_store (insn);
6454 }
6455 }
6456
6457 ret = enumerate_ldsts ();
6458
6459 if (gcse_file)
6460 {
6461 fprintf (gcse_file, "Store Motion Expressions.\n");
6462 print_ldst_list (gcse_file);
6463 }
6464
6465 return ret;
6466}
6467
aaa4ca30 6468/* Check to see if the load X is aliased with STORE_PATTERN. */
a13d4ebf
AM
6469
6470static int
6471load_kills_store (x, store_pattern)
6472 rtx x, store_pattern;
6473{
6474 if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p))
6475 return 1;
6476 return 0;
6477}
6478
aaa4ca30
AJ
6479/* Go through the entire insn X, looking for any loads which might alias
6480 STORE_PATTERN. Return 1 if found. */
a13d4ebf
AM
6481
6482static int
6483find_loads (x, store_pattern)
6484 rtx x, store_pattern;
6485{
6486 const char * fmt;
8e42ace1 6487 int i, j;
a13d4ebf
AM
6488 int ret = 0;
6489
24a28584
JH
6490 if (!x)
6491 return 0;
6492
a13d4ebf
AM
6493 if (GET_CODE (x) == SET)
6494 x = SET_SRC (x);
6495
6496 if (GET_CODE (x) == MEM)
6497 {
6498 if (load_kills_store (x, store_pattern))
6499 return 1;
6500 }
6501
6502 /* Recursively process the insn. */
6503 fmt = GET_RTX_FORMAT (GET_CODE (x));
6504
6505 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
6506 {
6507 if (fmt[i] == 'e')
6508 ret |= find_loads (XEXP (x, i), store_pattern);
6509 else if (fmt[i] == 'E')
6510 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6511 ret |= find_loads (XVECEXP (x, i, j), store_pattern);
6512 }
6513 return ret;
6514}
6515
6516/* Check if INSN kills the store pattern X (is aliased with it).
6517 Return 1 if it it does. */
6518
6519static int
6520store_killed_in_insn (x, insn)
6521 rtx x, insn;
6522{
6523 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6524 return 0;
6525
6526 if (GET_CODE (insn) == CALL_INSN)
6527 {
1218665b
JJ
6528 /* A normal or pure call might read from pattern,
6529 but a const call will not. */
24a28584 6530 if (CONST_OR_PURE_CALL_P (insn))
1218665b
JJ
6531 {
6532 rtx link;
6533
6534 for (link = CALL_INSN_FUNCTION_USAGE (insn);
6535 link;
6536 link = XEXP (link, 1))
6537 if (GET_CODE (XEXP (link, 0)) == USE
6538 && GET_CODE (XEXP (XEXP (link, 0), 0)) == MEM
6539 && GET_CODE (XEXP (XEXP (XEXP (link, 0), 0), 0)) == SCRATCH)
6540 return 1;
6541 return 0;
6542 }
a13d4ebf
AM
6543 else
6544 return 1;
6545 }
6546
6547 if (GET_CODE (PATTERN (insn)) == SET)
6548 {
6549 rtx pat = PATTERN (insn);
6550 /* Check for memory stores to aliased objects. */
6551 if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x))
aaa4ca30 6552 /* pretend its a load and check for aliasing. */
a13d4ebf
AM
6553 if (find_loads (SET_DEST (pat), x))
6554 return 1;
6555 return find_loads (SET_SRC (pat), x);
6556 }
6557 else
6558 return find_loads (PATTERN (insn), x);
6559}
6560
6561/* Returns 1 if the expression X is loaded or clobbered on or after INSN
6562 within basic block BB. */
6563
6564static int
aaa4ca30 6565store_killed_after (x, insn, bb)
a13d4ebf 6566 rtx x, insn;
e2d2ed72 6567 basic_block bb;
a13d4ebf 6568{
8e42ace1 6569 rtx last = bb->end;
a13d4ebf 6570
8e42ace1
KH
6571 if (insn == last)
6572 return 0;
aaa4ca30
AJ
6573
6574 /* Check if the register operands of the store are OK in this block.
6575 Note that if registers are changed ANYWHERE in the block, we'll
6576 decide we can't move it, regardless of whether it changed above
6577 or below the store. This could be improved by checking the register
6578 operands while lookinng for aliasing in each insn. */
6579 if (!store_ops_ok (XEXP (x, 0), bb))
a13d4ebf
AM
6580 return 1;
6581
8e42ace1
KH
6582 for ( ; insn && insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
6583 if (store_killed_in_insn (x, insn))
6584 return 1;
a13d4ebf
AM
6585
6586 return 0;
6587}
6588
aaa4ca30 6589/* Returns 1 if the expression X is loaded or clobbered on or before INSN
a13d4ebf
AM
6590 within basic block BB. */
6591static int
6592store_killed_before (x, insn, bb)
6593 rtx x, insn;
e2d2ed72 6594 basic_block bb;
a13d4ebf 6595{
8e42ace1 6596 rtx first = bb->head;
a13d4ebf 6597
8e42ace1
KH
6598 if (insn == first)
6599 return store_killed_in_insn (x, insn);
aaa4ca30
AJ
6600
6601 /* Check if the register operands of the store are OK in this block.
6602 Note that if registers are changed ANYWHERE in the block, we'll
6603 decide we can't move it, regardless of whether it changed above
6604 or below the store. This could be improved by checking the register
6605 operands while lookinng for aliasing in each insn. */
6606 if (!store_ops_ok (XEXP (x, 0), bb))
a13d4ebf
AM
6607 return 1;
6608
8e42ace1
KH
6609 for ( ; insn && insn != PREV_INSN (first); insn = PREV_INSN (insn))
6610 if (store_killed_in_insn (x, insn))
6611 return 1;
a13d4ebf 6612
8e42ace1 6613 return 0;
a13d4ebf
AM
6614}
6615
6616#define ANTIC_STORE_LIST(x) ((x)->loads)
6617#define AVAIL_STORE_LIST(x) ((x)->stores)
6618
6619/* Given the table of available store insns at the end of blocks,
6620 determine which ones are not killed by aliasing, and generate
6621 the appropriate vectors for gen and killed. */
6622static void
6623build_store_vectors ()
6624{
e2d2ed72 6625 basic_block bb;
aaa4ca30 6626 int b;
a13d4ebf
AM
6627 rtx insn, st;
6628 struct ls_expr * ptr;
6629
6630 /* Build the gen_vector. This is any store in the table which is not killed
6631 by aliasing later in its block. */
6632 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6633 sbitmap_vector_zero (ae_gen, n_basic_blocks);
6634
6635 st_antloc = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6636 sbitmap_vector_zero (st_antloc, n_basic_blocks);
aaa4ca30 6637
a13d4ebf
AM
6638 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6639 {
6640 /* Put all the stores into either the antic list, or the avail list,
6641 or both. */
6642 rtx store_list = ptr->stores;
6643 ptr->stores = NULL_RTX;
6644
6645 for (st = store_list; st != NULL; st = XEXP (st, 1))
6646 {
6647 insn = XEXP (st, 0);
e2d2ed72 6648 bb = BLOCK_FOR_INSN (insn);
aaa4ca30
AJ
6649
6650 if (!store_killed_after (ptr->pattern, insn, bb))
a13d4ebf
AM
6651 {
6652 /* If we've already seen an availale expression in this block,
6653 we can delete the one we saw already (It occurs earlier in
6654 the block), and replace it with this one). We'll copy the
6655 old SRC expression to an unused register in case there
6656 are any side effects. */
e2d2ed72 6657 if (TEST_BIT (ae_gen[bb->index], ptr->index))
a13d4ebf
AM
6658 {
6659 /* Find previous store. */
6660 rtx st;
6661 for (st = AVAIL_STORE_LIST (ptr); st ; st = XEXP (st, 1))
e2d2ed72 6662 if (BLOCK_FOR_INSN (XEXP (st, 0)) == bb)
a13d4ebf
AM
6663 break;
6664 if (st)
6665 {
6666 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6667 if (gcse_file)
8e42ace1 6668 fprintf (gcse_file, "Removing redundant store:\n");
a13d4ebf
AM
6669 replace_store_insn (r, XEXP (st, 0), bb);
6670 XEXP (st, 0) = insn;
6671 continue;
6672 }
6673 }
e2d2ed72 6674 SET_BIT (ae_gen[bb->index], ptr->index);
a13d4ebf
AM
6675 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6676 AVAIL_STORE_LIST (ptr));
6677 }
6678
6679 if (!store_killed_before (ptr->pattern, insn, bb))
6680 {
6681 SET_BIT (st_antloc[BLOCK_NUM (insn)], ptr->index);
6682 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6683 ANTIC_STORE_LIST (ptr));
6684 }
6685 }
6686
6687 /* Free the original list of store insns. */
6688 free_INSN_LIST_list (&store_list);
6689 }
6690
6691 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6692 sbitmap_vector_zero (ae_kill, n_basic_blocks);
6693
6694 transp = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
aaa4ca30 6695 sbitmap_vector_zero (transp, n_basic_blocks);
a13d4ebf
AM
6696
6697 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
aaa4ca30 6698 for (b = 0; b < n_basic_blocks; b++)
a13d4ebf 6699 {
aaa4ca30 6700 if (store_killed_after (ptr->pattern, BLOCK_HEAD (b), BASIC_BLOCK (b)))
a13d4ebf 6701 {
dc297297 6702 /* The anticipatable expression is not killed if it's gen'd. */
aaa4ca30
AJ
6703 /*
6704 We leave this check out for now. If we have a code sequence
6705 in a block which looks like:
6706 ST MEMa = x
6707 L y = MEMa
6708 ST MEMa = z
6709 We should flag this as having an ANTIC expression, NOT
6710 transparent, NOT killed, and AVAIL.
6711 Unfortunately, since we haven't re-written all loads to
6712 use the reaching reg, we'll end up doing an incorrect
6713 Load in the middle here if we push the store down. It happens in
6714 gcc.c-torture/execute/960311-1.c with -O3
6715 If we always kill it in this case, we'll sometimes do
6716 uneccessary work, but it shouldn't actually hurt anything.
6717 if (!TEST_BIT (ae_gen[b], ptr->index)). */
6718 SET_BIT (ae_kill[b], ptr->index);
6719 }
6720 else
6721 SET_BIT (transp[b], ptr->index);
6722 }
6723
6724 /* Any block with no exits calls some non-returning function, so
6725 we better mark the store killed here, or we might not store to
6726 it at all. If we knew it was abort, we wouldn't have to store,
6727 but we don't know that for sure. */
6728 if (gcse_file)
6729 {
6730 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
6731 print_ldst_list (gcse_file);
6732 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, n_basic_blocks);
6733 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, n_basic_blocks);
6734 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, n_basic_blocks);
6735 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, n_basic_blocks);
a13d4ebf
AM
6736 }
6737}
6738
6739/* Insert an instruction at the begining of a basic block, and update
6740 the BLOCK_HEAD if needed. */
6741
6742static void
6743insert_insn_start_bb (insn, bb)
6744 rtx insn;
e2d2ed72 6745 basic_block bb;
a13d4ebf
AM
6746{
6747 /* Insert at start of successor block. */
e2d2ed72
AM
6748 rtx prev = PREV_INSN (bb->head);
6749 rtx before = bb->head;
a13d4ebf
AM
6750 while (before != 0)
6751 {
6752 if (GET_CODE (before) != CODE_LABEL
6753 && (GET_CODE (before) != NOTE
6754 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6755 break;
6756 prev = before;
e2d2ed72 6757 if (prev == bb->end)
a13d4ebf
AM
6758 break;
6759 before = NEXT_INSN (before);
6760 }
6761
6762 insn = emit_insn_after (insn, prev);
6763
a13d4ebf
AM
6764 if (gcse_file)
6765 {
6766 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
e2d2ed72 6767 bb->index);
a13d4ebf
AM
6768 print_inline_rtx (gcse_file, insn, 6);
6769 fprintf (gcse_file, "\n");
6770 }
6771}
6772
6773/* This routine will insert a store on an edge. EXPR is the ldst entry for
6774 the memory reference, and E is the edge to insert it on. Returns non-zero
6775 if an edge insertion was performed. */
6776
6777static int
6778insert_store (expr, e)
6779 struct ls_expr * expr;
6780 edge e;
6781{
6782 rtx reg, insn;
e2d2ed72 6783 basic_block bb;
a13d4ebf
AM
6784 edge tmp;
6785
6786 /* We did all the deleted before this insert, so if we didn't delete a
6787 store, then we haven't set the reaching reg yet either. */
6788 if (expr->reaching_reg == NULL_RTX)
6789 return 0;
6790
6791 reg = expr->reaching_reg;
6792 insn = gen_move_insn (expr->pattern, reg);
6793
6794 /* If we are inserting this expression on ALL predecessor edges of a BB,
6795 insert it at the start of the BB, and reset the insert bits on the other
ff7cc307 6796 edges so we don't try to insert it on the other edges. */
e2d2ed72 6797 bb = e->dest;
a13d4ebf
AM
6798 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6799 {
6800 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6801 if (index == EDGE_INDEX_NO_EDGE)
6802 abort ();
6803 if (! TEST_BIT (pre_insert_map[index], expr->index))
6804 break;
6805 }
6806
6807 /* If tmp is NULL, we found an insertion on every edge, blank the
6808 insertion vector for these edges, and insert at the start of the BB. */
e2d2ed72 6809 if (!tmp && bb != EXIT_BLOCK_PTR)
a13d4ebf
AM
6810 {
6811 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6812 {
6813 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6814 RESET_BIT (pre_insert_map[index], expr->index);
6815 }
6816 insert_insn_start_bb (insn, bb);
6817 return 0;
6818 }
6819
6820 /* We can't insert on this edge, so we'll insert at the head of the
6821 successors block. See Morgan, sec 10.5. */
6822 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
6823 {
6824 insert_insn_start_bb (insn, bb);
6825 return 0;
6826 }
6827
6828 insert_insn_on_edge (insn, e);
6829
6830 if (gcse_file)
6831 {
6832 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6833 e->src->index, e->dest->index);
6834 print_inline_rtx (gcse_file, insn, 6);
6835 fprintf (gcse_file, "\n");
6836 }
6837
6838 return 1;
6839}
6840
6841/* This routine will replace a store with a SET to a specified register. */
6842
6843static void
6844replace_store_insn (reg, del, bb)
6845 rtx reg, del;
e2d2ed72 6846 basic_block bb;
a13d4ebf
AM
6847{
6848 rtx insn;
6849
6850 insn = gen_move_insn (reg, SET_SRC (PATTERN (del)));
6851 insn = emit_insn_after (insn, del);
a13d4ebf
AM
6852
6853 if (gcse_file)
6854 {
6855 fprintf (gcse_file,
e2d2ed72 6856 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
a13d4ebf 6857 print_inline_rtx (gcse_file, del, 6);
8e42ace1 6858 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
a13d4ebf 6859 print_inline_rtx (gcse_file, insn, 6);
8e42ace1 6860 fprintf (gcse_file, "\n");
a13d4ebf
AM
6861 }
6862
49ce134f 6863 delete_insn (del);
a13d4ebf
AM
6864}
6865
6866
6867/* Delete a store, but copy the value that would have been stored into
6868 the reaching_reg for later storing. */
6869
6870static void
6871delete_store (expr, bb)
6872 struct ls_expr * expr;
e2d2ed72 6873 basic_block bb;
a13d4ebf
AM
6874{
6875 rtx reg, i, del;
6876
6877 if (expr->reaching_reg == NULL_RTX)
6878 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6879
6880
6881 /* If there is more than 1 store, the earlier ones will be dead,
6882 but it doesn't hurt to replace them here. */
6883 reg = expr->reaching_reg;
6884
6885 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6886 {
6887 del = XEXP (i, 0);
e2d2ed72 6888 if (BLOCK_FOR_INSN (del) == bb)
a13d4ebf
AM
6889 {
6890 /* We know there is only one since we deleted redundant
6891 ones during the available computation. */
6892 replace_store_insn (reg, del, bb);
6893 break;
6894 }
6895 }
6896}
6897
6898/* Free memory used by store motion. */
6899
6900static void
6901free_store_memory ()
6902{
6903 free_ldst_mems ();
aaa4ca30 6904
a13d4ebf 6905 if (ae_gen)
5a660bff 6906 sbitmap_vector_free (ae_gen);
a13d4ebf 6907 if (ae_kill)
5a660bff 6908 sbitmap_vector_free (ae_kill);
a13d4ebf 6909 if (transp)
5a660bff 6910 sbitmap_vector_free (transp);
a13d4ebf 6911 if (st_antloc)
5a660bff 6912 sbitmap_vector_free (st_antloc);
a13d4ebf 6913 if (pre_insert_map)
5a660bff 6914 sbitmap_vector_free (pre_insert_map);
a13d4ebf 6915 if (pre_delete_map)
5a660bff 6916 sbitmap_vector_free (pre_delete_map);
aaa4ca30
AJ
6917 if (reg_set_in_block)
6918 sbitmap_vector_free (reg_set_in_block);
a13d4ebf
AM
6919
6920 ae_gen = ae_kill = transp = st_antloc = NULL;
6921 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6922}
6923
6924/* Perform store motion. Much like gcse, except we move expressions the
6925 other way by looking at the flowgraph in reverse. */
6926
6927static void
6928store_motion ()
6929{
6930 int x;
6931 struct ls_expr * ptr;
adfcce61 6932 int update_flow = 0;
aaa4ca30 6933
a13d4ebf
AM
6934 if (gcse_file)
6935 {
6936 fprintf (gcse_file, "before store motion\n");
6937 print_rtl (gcse_file, get_insns ());
6938 }
6939
6940
6941 init_alias_analysis ();
aaa4ca30 6942
a13d4ebf
AM
6943 /* Find all the stores that are live to the end of their block. */
6944 num_stores = compute_store_table ();
6945 if (num_stores == 0)
6946 {
aaa4ca30 6947 sbitmap_vector_free (reg_set_in_block);
a13d4ebf
AM
6948 end_alias_analysis ();
6949 return;
6950 }
6951
6952 /* Now compute whats actually available to move. */
6953 add_noreturn_fake_exit_edges ();
6954 build_store_vectors ();
6955
6956 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6957 st_antloc, ae_kill, &pre_insert_map,
6958 &pre_delete_map);
6959
6960 /* Now we want to insert the new stores which are going to be needed. */
6961 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6962 {
6963 for (x = 0; x < n_basic_blocks; x++)
6964 if (TEST_BIT (pre_delete_map[x], ptr->index))
e2d2ed72 6965 delete_store (ptr, BASIC_BLOCK (x));
a13d4ebf
AM
6966
6967 for (x = 0; x < NUM_EDGES (edge_list); x++)
6968 if (TEST_BIT (pre_insert_map[x], ptr->index))
6969 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6970 }
6971
6972 if (update_flow)
6973 commit_edge_insertions ();
aaa4ca30 6974
a13d4ebf
AM
6975 free_store_memory ();
6976 free_edge_list (edge_list);
6977 remove_fake_edges ();
6978 end_alias_analysis ();
6979}
This page took 1.742381 seconds and 5 git commands to generate.