]>
Commit | Line | Data |
---|---|---|
f4e584dc | 1 | /* Global common subexpression elimination/Partial redundancy elimination |
7506f491 | 2 | and global constant/copy propagation for GNU compiler. |
a5cad800 | 3 | Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc. |
7506f491 DE |
4 | |
5 | This file is part of GNU CC. | |
6 | ||
7 | GNU CC is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2, or (at your option) | |
10 | any later version. | |
11 | ||
12 | GNU CC is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with GNU CC; see the file COPYING. If not, write to | |
19 | the Free Software Foundation, 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
21 | ||
22 | /* TODO | |
23 | - reordering of memory allocation and freeing to be more space efficient | |
24 | - do rough calc of how many regs are needed in each block, and a rough | |
25 | calc of how many regs are available in each class and use that to | |
26 | throttle back the code in cases where RTX_COST is minimal. | |
f4e584dc JL |
27 | - dead store elimination |
28 | - a store to the same address as a load does not kill the load if the | |
29 | source of the store is also the destination of the load. Handling this | |
30 | allows more load motion, particularly out of loops. | |
7506f491 DE |
31 | - ability to realloc sbitmap vectors would allow one initial computation |
32 | of reg_set_in_block with only subsequent additions, rather than | |
33 | recomputing it for each pass | |
34 | ||
7506f491 DE |
35 | */ |
36 | ||
37 | /* References searched while implementing this. | |
7506f491 DE |
38 | |
39 | Compilers Principles, Techniques and Tools | |
40 | Aho, Sethi, Ullman | |
41 | Addison-Wesley, 1988 | |
42 | ||
43 | Global Optimization by Suppression of Partial Redundancies | |
44 | E. Morel, C. Renvoise | |
45 | communications of the acm, Vol. 22, Num. 2, Feb. 1979 | |
46 | ||
47 | A Portable Machine-Independent Global Optimizer - Design and Measurements | |
48 | Frederick Chow | |
49 | Stanford Ph.D. thesis, Dec. 1983 | |
50 | ||
7506f491 DE |
51 | A Fast Algorithm for Code Movement Optimization |
52 | D.M. Dhamdhere | |
53 | SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988 | |
54 | ||
55 | A Solution to a Problem with Morel and Renvoise's | |
56 | Global Optimization by Suppression of Partial Redundancies | |
57 | K-H Drechsler, M.P. Stadel | |
58 | ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988 | |
59 | ||
60 | Practical Adaptation of the Global Optimization | |
61 | Algorithm of Morel and Renvoise | |
62 | D.M. Dhamdhere | |
63 | ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991 | |
64 | ||
65 | Efficiently Computing Static Single Assignment Form and the Control | |
66 | Dependence Graph | |
67 | R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck | |
68 | ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991 | |
69 | ||
7506f491 DE |
70 | Lazy Code Motion |
71 | J. Knoop, O. Ruthing, B. Steffen | |
72 | ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI | |
73 | ||
74 | What's In a Region? Or Computing Control Dependence Regions in Near-Linear | |
75 | Time for Reducible Flow Control | |
76 | Thomas Ball | |
77 | ACM Letters on Programming Languages and Systems, | |
78 | Vol. 2, Num. 1-4, Mar-Dec 1993 | |
79 | ||
80 | An Efficient Representation for Sparse Sets | |
81 | Preston Briggs, Linda Torczon | |
82 | ACM Letters on Programming Languages and Systems, | |
83 | Vol. 2, Num. 1-4, Mar-Dec 1993 | |
84 | ||
85 | A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion | |
86 | K-H Drechsler, M.P. Stadel | |
87 | ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993 | |
88 | ||
89 | Partial Dead Code Elimination | |
90 | J. Knoop, O. Ruthing, B. Steffen | |
91 | ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994 | |
92 | ||
93 | Effective Partial Redundancy Elimination | |
94 | P. Briggs, K.D. Cooper | |
95 | ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994 | |
96 | ||
97 | The Program Structure Tree: Computing Control Regions in Linear Time | |
98 | R. Johnson, D. Pearson, K. Pingali | |
99 | ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994 | |
100 | ||
101 | Optimal Code Motion: Theory and Practice | |
102 | J. Knoop, O. Ruthing, B. Steffen | |
103 | ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994 | |
104 | ||
105 | The power of assignment motion | |
106 | J. Knoop, O. Ruthing, B. Steffen | |
107 | ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI | |
108 | ||
109 | Global code motion / global value numbering | |
110 | C. Click | |
111 | ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI | |
112 | ||
113 | Value Driven Redundancy Elimination | |
114 | L.T. Simpson | |
115 | Rice University Ph.D. thesis, Apr. 1996 | |
116 | ||
117 | Value Numbering | |
118 | L.T. Simpson | |
119 | Massively Scalar Compiler Project, Rice University, Sep. 1996 | |
120 | ||
121 | High Performance Compilers for Parallel Computing | |
122 | Michael Wolfe | |
123 | Addison-Wesley, 1996 | |
124 | ||
f4e584dc JL |
125 | Advanced Compiler Design and Implementation |
126 | Steven Muchnick | |
127 | Morgan Kaufmann, 1997 | |
128 | ||
129 | People wishing to speed up the code here should read: | |
130 | Elimination Algorithms for Data Flow Analysis | |
131 | B.G. Ryder, M.C. Paull | |
132 | ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986 | |
133 | ||
134 | How to Analyze Large Programs Efficiently and Informatively | |
135 | D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck | |
136 | ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI | |
137 | ||
7506f491 DE |
138 | People wishing to do something different can find various possibilities |
139 | in the above papers and elsewhere. | |
140 | */ | |
141 | ||
142 | #include "config.h" | |
50b2596f | 143 | #include "system.h" |
01198c2f | 144 | #include "toplev.h" |
7506f491 DE |
145 | |
146 | #include "rtl.h" | |
147 | #include "regs.h" | |
148 | #include "hard-reg-set.h" | |
149 | #include "flags.h" | |
150 | #include "real.h" | |
151 | #include "insn-config.h" | |
152 | #include "recog.h" | |
153 | #include "basic-block.h" | |
50b2596f | 154 | #include "output.h" |
49ad7cfa | 155 | #include "function.h" |
3cdbd1f8 | 156 | #include "expr.h" |
7506f491 DE |
157 | |
158 | #include "obstack.h" | |
159 | #define obstack_chunk_alloc gmalloc | |
160 | #define obstack_chunk_free free | |
161 | ||
162 | /* Maximum number of passes to perform. */ | |
163 | #define MAX_PASSES 1 | |
164 | ||
165 | /* Propagate flow information through back edges and thus enable PRE's | |
166 | moving loop invariant calculations out of loops. | |
167 | ||
168 | Originally this tended to create worse overall code, but several | |
169 | improvements during the development of PRE seem to have made following | |
170 | back edges generally a win. | |
171 | ||
172 | Note much of the loop invariant code motion done here would normally | |
173 | be done by loop.c, which has more heuristics for when to move invariants | |
174 | out of loops. At some point we might need to move some of those | |
175 | heuristics into gcse.c. */ | |
176 | #define FOLLOW_BACK_EDGES 1 | |
177 | ||
f4e584dc JL |
178 | /* We support GCSE via Partial Redundancy Elimination. PRE optimizations |
179 | are a superset of those done by GCSE. | |
7506f491 | 180 | |
f4e584dc | 181 | We perform the following steps: |
7506f491 DE |
182 | |
183 | 1) Compute basic block information. | |
184 | ||
185 | 2) Compute table of places where registers are set. | |
186 | ||
187 | 3) Perform copy/constant propagation. | |
188 | ||
189 | 4) Perform global cse. | |
190 | ||
e78d9500 | 191 | 5) Perform another pass of copy/constant propagation. |
7506f491 DE |
192 | |
193 | Two passes of copy/constant propagation are done because the first one | |
194 | enables more GCSE and the second one helps to clean up the copies that | |
195 | GCSE creates. This is needed more for PRE than for Classic because Classic | |
196 | GCSE will try to use an existing register containing the common | |
197 | subexpression rather than create a new one. This is harder to do for PRE | |
198 | because of the code motion (which Classic GCSE doesn't do). | |
199 | ||
200 | Expressions we are interested in GCSE-ing are of the form | |
201 | (set (pseudo-reg) (expression)). | |
202 | Function want_to_gcse_p says what these are. | |
203 | ||
204 | PRE handles moving invariant expressions out of loops (by treating them as | |
f4e584dc | 205 | partially redundant). |
7506f491 DE |
206 | |
207 | Eventually it would be nice to replace cse.c/gcse.c with SSA (static single | |
208 | assignment) based GVN (global value numbering). L. T. Simpson's paper | |
209 | (Rice University) on value numbering is a useful reference for this. | |
210 | ||
211 | ********************** | |
212 | ||
213 | We used to support multiple passes but there are diminishing returns in | |
214 | doing so. The first pass usually makes 90% of the changes that are doable. | |
215 | A second pass can make a few more changes made possible by the first pass. | |
216 | Experiments show any further passes don't make enough changes to justify | |
217 | the expense. | |
218 | ||
219 | A study of spec92 using an unlimited number of passes: | |
220 | [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83, | |
221 | [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2, | |
222 | [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1 | |
223 | ||
224 | It was found doing copy propagation between each pass enables further | |
225 | substitutions. | |
226 | ||
227 | PRE is quite expensive in complicated functions because the DFA can take | |
228 | awhile to converge. Hence we only perform one pass. Macro MAX_PASSES can | |
229 | be modified if one wants to experiment. | |
230 | ||
231 | ********************** | |
232 | ||
233 | The steps for PRE are: | |
234 | ||
235 | 1) Build the hash table of expressions we wish to GCSE (expr_hash_table). | |
236 | ||
237 | 2) Perform the data flow analysis for PRE. | |
238 | ||
239 | 3) Delete the redundant instructions | |
240 | ||
241 | 4) Insert the required copies [if any] that make the partially | |
242 | redundant instructions fully redundant. | |
243 | ||
244 | 5) For other reaching expressions, insert an instruction to copy the value | |
245 | to a newly created pseudo that will reach the redundant instruction. | |
246 | ||
247 | The deletion is done first so that when we do insertions we | |
248 | know which pseudo reg to use. | |
249 | ||
250 | Various papers have argued that PRE DFA is expensive (O(n^2)) and others | |
251 | argue it is not. The number of iterations for the algorithm to converge | |
252 | is typically 2-4 so I don't view it as that expensive (relatively speaking). | |
253 | ||
f4e584dc | 254 | PRE GCSE depends heavily on the second CSE pass to clean up the copies |
7506f491 DE |
255 | we create. To make an expression reach the place where it's redundant, |
256 | the result of the expression is copied to a new register, and the redundant | |
257 | expression is deleted by replacing it with this new register. Classic GCSE | |
258 | doesn't have this problem as much as it computes the reaching defs of | |
259 | each register in each block and thus can try to use an existing register. | |
260 | ||
261 | ********************** | |
262 | ||
7506f491 DE |
263 | A fair bit of simplicity is created by creating small functions for simple |
264 | tasks, even when the function is only called in one place. This may | |
265 | measurably slow things down [or may not] by creating more function call | |
266 | overhead than is necessary. The source is laid out so that it's trivial | |
267 | to make the affected functions inline so that one can measure what speed | |
268 | up, if any, can be achieved, and maybe later when things settle things can | |
269 | be rearranged. | |
270 | ||
271 | Help stamp out big monolithic functions! */ | |
272 | \f | |
273 | /* GCSE global vars. */ | |
274 | ||
275 | /* -dG dump file. */ | |
276 | static FILE *gcse_file; | |
277 | ||
f4e584dc JL |
278 | /* Note whether or not we should run jump optimization after gcse. We |
279 | want to do this for two cases. | |
280 | ||
281 | * If we changed any jumps via cprop. | |
282 | ||
283 | * If we added any labels via edge splitting. */ | |
284 | ||
285 | static int run_jump_opt_after_gcse; | |
286 | ||
287 | /* Element I is a list of I's predecessors/successors. */ | |
288 | static int_list_ptr *s_preds; | |
289 | static int_list_ptr *s_succs; | |
290 | ||
291 | /* Element I is the number of predecessors/successors of basic block I. */ | |
292 | static int *num_preds; | |
293 | static int *num_succs; | |
294 | ||
7506f491 DE |
295 | /* Bitmaps are normally not included in debugging dumps. |
296 | However it's useful to be able to print them from GDB. | |
297 | We could create special functions for this, but it's simpler to | |
298 | just allow passing stderr to the dump_foo fns. Since stderr can | |
299 | be a macro, we store a copy here. */ | |
300 | static FILE *debug_stderr; | |
301 | ||
302 | /* An obstack for our working variables. */ | |
303 | static struct obstack gcse_obstack; | |
304 | ||
305 | /* Non-zero for each mode that supports (set (reg) (reg)). | |
306 | This is trivially true for integer and floating point values. | |
307 | It may or may not be true for condition codes. */ | |
308 | static char can_copy_p[(int) NUM_MACHINE_MODES]; | |
309 | ||
310 | /* Non-zero if can_copy_p has been initialized. */ | |
311 | static int can_copy_init_p; | |
312 | ||
abd535b6 BS |
313 | struct reg_use { |
314 | rtx reg_rtx; | |
315 | }; | |
316 | ||
7506f491 DE |
317 | /* Hash table of expressions. */ |
318 | ||
319 | struct expr | |
320 | { | |
321 | /* The expression (SET_SRC for expressions, PATTERN for assignments). */ | |
322 | rtx expr; | |
323 | /* Index in the available expression bitmaps. */ | |
324 | int bitmap_index; | |
325 | /* Next entry with the same hash. */ | |
326 | struct expr *next_same_hash; | |
327 | /* List of anticipatable occurrences in basic blocks in the function. | |
328 | An "anticipatable occurrence" is one that is the first occurrence in the | |
f4e584dc JL |
329 | basic block, the operands are not modified in the basic block prior |
330 | to the occurrence and the output is not used between the start of | |
331 | the block and the occurrence. */ | |
7506f491 DE |
332 | struct occr *antic_occr; |
333 | /* List of available occurrence in basic blocks in the function. | |
334 | An "available occurrence" is one that is the last occurrence in the | |
335 | basic block and the operands are not modified by following statements in | |
336 | the basic block [including this insn]. */ | |
337 | struct occr *avail_occr; | |
338 | /* Non-null if the computation is PRE redundant. | |
339 | The value is the newly created pseudo-reg to record a copy of the | |
340 | expression in all the places that reach the redundant copy. */ | |
341 | rtx reaching_reg; | |
342 | }; | |
343 | ||
344 | /* Occurrence of an expression. | |
345 | There is one per basic block. If a pattern appears more than once the | |
346 | last appearance is used [or first for anticipatable expressions]. */ | |
347 | ||
348 | struct occr | |
349 | { | |
350 | /* Next occurrence of this expression. */ | |
351 | struct occr *next; | |
352 | /* The insn that computes the expression. */ | |
353 | rtx insn; | |
354 | /* Non-zero if this [anticipatable] occurrence has been deleted. */ | |
355 | char deleted_p; | |
356 | /* Non-zero if this [available] occurrence has been copied to | |
357 | reaching_reg. */ | |
358 | /* ??? This is mutually exclusive with deleted_p, so they could share | |
359 | the same byte. */ | |
360 | char copied_p; | |
361 | }; | |
362 | ||
363 | /* Expression and copy propagation hash tables. | |
364 | Each hash table is an array of buckets. | |
365 | ??? It is known that if it were an array of entries, structure elements | |
366 | `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is | |
367 | not clear whether in the final analysis a sufficient amount of memory would | |
368 | be saved as the size of the available expression bitmaps would be larger | |
369 | [one could build a mapping table without holes afterwards though]. | |
370 | Someday I'll perform the computation and figure it out. | |
371 | */ | |
372 | ||
373 | /* Total size of the expression hash table, in elements. */ | |
374 | static int expr_hash_table_size; | |
375 | /* The table itself. | |
376 | This is an array of `expr_hash_table_size' elements. */ | |
377 | static struct expr **expr_hash_table; | |
378 | ||
379 | /* Total size of the copy propagation hash table, in elements. */ | |
380 | static int set_hash_table_size; | |
381 | /* The table itself. | |
382 | This is an array of `set_hash_table_size' elements. */ | |
383 | static struct expr **set_hash_table; | |
384 | ||
385 | /* Mapping of uids to cuids. | |
386 | Only real insns get cuids. */ | |
387 | static int *uid_cuid; | |
388 | ||
389 | /* Highest UID in UID_CUID. */ | |
390 | static int max_uid; | |
391 | ||
392 | /* Get the cuid of an insn. */ | |
393 | #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)]) | |
394 | ||
395 | /* Number of cuids. */ | |
396 | static int max_cuid; | |
397 | ||
398 | /* Mapping of cuids to insns. */ | |
399 | static rtx *cuid_insn; | |
400 | ||
401 | /* Get insn from cuid. */ | |
402 | #define CUID_INSN(CUID) (cuid_insn[CUID]) | |
403 | ||
404 | /* Maximum register number in function prior to doing gcse + 1. | |
405 | Registers created during this pass have regno >= max_gcse_regno. | |
406 | This is named with "gcse" to not collide with global of same name. */ | |
407 | static int max_gcse_regno; | |
408 | ||
409 | /* Maximum number of cse-able expressions found. */ | |
410 | static int n_exprs; | |
411 | /* Maximum number of assignments for copy propagation found. */ | |
412 | static int n_sets; | |
413 | ||
414 | /* Table of registers that are modified. | |
415 | For each register, each element is a list of places where the pseudo-reg | |
416 | is set. | |
417 | ||
418 | For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only | |
419 | requires knowledge of which blocks kill which regs [and thus could use | |
f4e584dc | 420 | a bitmap instead of the lists `reg_set_table' uses]. |
7506f491 | 421 | |
f4e584dc JL |
422 | `reg_set_table' and could be turned into an array of bitmaps |
423 | (num-bbs x num-regs) | |
7506f491 DE |
424 | [however perhaps it may be useful to keep the data as is]. |
425 | One advantage of recording things this way is that `reg_set_table' is | |
426 | fairly sparse with respect to pseudo regs but for hard regs could be | |
427 | fairly dense [relatively speaking]. | |
428 | And recording sets of pseudo-regs in lists speeds | |
429 | up functions like compute_transp since in the case of pseudo-regs we only | |
430 | need to iterate over the number of times a pseudo-reg is set, not over the | |
431 | number of basic blocks [clearly there is a bit of a slow down in the cases | |
432 | where a pseudo is set more than once in a block, however it is believed | |
433 | that the net effect is to speed things up]. This isn't done for hard-regs | |
434 | because recording call-clobbered hard-regs in `reg_set_table' at each | |
435 | function call can consume a fair bit of memory, and iterating over hard-regs | |
436 | stored this way in compute_transp will be more expensive. */ | |
437 | ||
438 | typedef struct reg_set { | |
439 | /* The next setting of this register. */ | |
440 | struct reg_set *next; | |
441 | /* The insn where it was set. */ | |
442 | rtx insn; | |
443 | } reg_set; | |
444 | static reg_set **reg_set_table; | |
445 | /* Size of `reg_set_table'. | |
446 | The table starts out at max_gcse_regno + slop, and is enlarged as | |
447 | necessary. */ | |
448 | static int reg_set_table_size; | |
449 | /* Amount to grow `reg_set_table' by when it's full. */ | |
450 | #define REG_SET_TABLE_SLOP 100 | |
451 | ||
452 | /* Bitmap containing one bit for each register in the program. | |
453 | Used when performing GCSE to track which registers have been set since | |
454 | the start of the basic block. */ | |
455 | static sbitmap reg_set_bitmap; | |
456 | ||
457 | /* For each block, a bitmap of registers set in the block. | |
458 | This is used by expr_killed_p and compute_transp. | |
459 | It is computed during hash table computation and not by compute_sets | |
460 | as it includes registers added since the last pass (or between cprop and | |
461 | gcse) and it's currently not easy to realloc sbitmap vectors. */ | |
462 | static sbitmap *reg_set_in_block; | |
463 | ||
464 | /* For each block, non-zero if memory is set in that block. | |
465 | This is computed during hash table computation and is used by | |
466 | expr_killed_p and compute_transp. | |
467 | ??? Handling of memory is very simple, we don't make any attempt | |
468 | to optimize things (later). | |
469 | ??? This can be computed by compute_sets since the information | |
470 | doesn't change. */ | |
471 | static char *mem_set_in_block; | |
472 | ||
473 | /* Various variables for statistics gathering. */ | |
474 | ||
475 | /* Memory used in a pass. | |
476 | This isn't intended to be absolutely precise. Its intent is only | |
477 | to keep an eye on memory usage. */ | |
478 | static int bytes_used; | |
479 | /* GCSE substitutions made. */ | |
480 | static int gcse_subst_count; | |
481 | /* Number of copy instructions created. */ | |
482 | static int gcse_create_count; | |
483 | /* Number of constants propagated. */ | |
484 | static int const_prop_count; | |
485 | /* Number of copys propagated. */ | |
486 | static int copy_prop_count; | |
7506f491 DE |
487 | \f |
488 | /* These variables are used by classic GCSE. | |
489 | Normally they'd be defined a bit later, but `rd_gen' needs to | |
490 | be declared sooner. */ | |
491 | ||
492 | /* A bitmap of all ones for implementing the algorithm for available | |
493 | expressions and reaching definitions. */ | |
494 | /* ??? Available expression bitmaps have a different size than reaching | |
495 | definition bitmaps. This should be the larger of the two, however, it | |
496 | is not currently used for reaching definitions. */ | |
497 | static sbitmap u_bitmap; | |
498 | ||
499 | /* Each block has a bitmap of each type. | |
500 | The length of each blocks bitmap is: | |
501 | ||
502 | max_cuid - for reaching definitions | |
503 | n_exprs - for available expressions | |
504 | ||
505 | Thus we view the bitmaps as 2 dimensional arrays. i.e. | |
506 | rd_kill[block_num][cuid_num] | |
507 | ae_kill[block_num][expr_num] | |
508 | */ | |
509 | ||
510 | /* For reaching defs */ | |
511 | static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out; | |
512 | ||
513 | /* for available exprs */ | |
514 | static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out; | |
b5ce41ff | 515 | |
7506f491 | 516 | \f |
ac7c5af5 JL |
517 | static void compute_can_copy PROTO ((void)); |
518 | ||
519 | static char *gmalloc PROTO ((unsigned int)); | |
520 | static char *grealloc PROTO ((char *, unsigned int)); | |
521 | static char *gcse_alloc PROTO ((unsigned long)); | |
522 | static void alloc_gcse_mem PROTO ((rtx)); | |
523 | static void free_gcse_mem PROTO ((void)); | |
ac7c5af5 JL |
524 | static void alloc_reg_set_mem PROTO ((int)); |
525 | static void free_reg_set_mem PROTO ((void)); | |
526 | static void record_one_set PROTO ((int, rtx)); | |
527 | static void record_set_info PROTO ((rtx, rtx)); | |
528 | static void compute_sets PROTO ((rtx)); | |
529 | ||
530 | static void hash_scan_insn PROTO ((rtx, int, int)); | |
531 | static void hash_scan_set PROTO ((rtx, rtx, int)); | |
532 | static void hash_scan_clobber PROTO ((rtx, rtx)); | |
533 | static void hash_scan_call PROTO ((rtx, rtx)); | |
ac7c5af5 JL |
534 | static int want_to_gcse_p PROTO ((rtx)); |
535 | static int oprs_unchanged_p PROTO ((rtx, rtx, int)); | |
7506f491 | 536 | static int oprs_anticipatable_p PROTO ((rtx, rtx)); |
ac7c5af5 | 537 | static int oprs_available_p PROTO ((rtx, rtx)); |
b5ce41ff JL |
538 | static void insert_expr_in_table PROTO ((rtx, enum machine_mode, |
539 | rtx, int, int)); | |
7506f491 | 540 | static void insert_set_in_table PROTO ((rtx, rtx)); |
b5ce41ff JL |
541 | static unsigned int hash_expr PROTO ((rtx, enum machine_mode, |
542 | int *, int)); | |
7506f491 | 543 | static unsigned int hash_expr_1 PROTO ((rtx, enum machine_mode, int *)); |
ac7c5af5 JL |
544 | static unsigned int hash_set PROTO ((int, int)); |
545 | static int expr_equiv_p PROTO ((rtx, rtx)); | |
7506f491 DE |
546 | static void record_last_reg_set_info PROTO ((rtx, int)); |
547 | static void record_last_mem_set_info PROTO ((rtx)); | |
548 | static void record_last_set_info PROTO ((rtx, rtx)); | |
b5ce41ff | 549 | static void compute_hash_table PROTO ((int)); |
7506f491 DE |
550 | static void alloc_set_hash_table PROTO ((int)); |
551 | static void free_set_hash_table PROTO ((void)); | |
b5ce41ff | 552 | static void compute_set_hash_table PROTO ((void)); |
7506f491 DE |
553 | static void alloc_expr_hash_table PROTO ((int)); |
554 | static void free_expr_hash_table PROTO ((void)); | |
b5ce41ff | 555 | static void compute_expr_hash_table PROTO ((void)); |
a65f3558 JL |
556 | static void dump_hash_table PROTO ((FILE *, const char *, struct expr **, |
557 | int, int)); | |
7506f491 | 558 | static struct expr *lookup_expr PROTO ((rtx)); |
ac7c5af5 JL |
559 | static struct expr *lookup_set PROTO ((int, rtx)); |
560 | static struct expr *next_set PROTO ((int, struct expr *)); | |
7506f491 | 561 | static void reset_opr_set_tables PROTO ((void)); |
ac7c5af5 | 562 | static int oprs_not_set_p PROTO ((rtx, rtx)); |
b5ce41ff | 563 | static void mark_call PROTO ((rtx)); |
ac7c5af5 JL |
564 | static void mark_set PROTO ((rtx, rtx)); |
565 | static void mark_clobber PROTO ((rtx, rtx)); | |
566 | static void mark_oprs_set PROTO ((rtx)); | |
567 | ||
ac7c5af5 JL |
568 | static void alloc_cprop_mem PROTO ((int, int)); |
569 | static void free_cprop_mem PROTO ((void)); | |
ac7c5af5 | 570 | static void compute_transp PROTO ((rtx, int, sbitmap *, int)); |
a65f3558 | 571 | static void compute_transpout PROTO ((void)); |
b5ce41ff JL |
572 | static void compute_local_properties PROTO ((sbitmap *, sbitmap *, |
573 | sbitmap *, int)); | |
7506f491 | 574 | static void compute_cprop_avinout PROTO ((void)); |
ac7c5af5 JL |
575 | static void compute_cprop_data PROTO ((void)); |
576 | static void find_used_regs PROTO ((rtx)); | |
577 | static int try_replace_reg PROTO ((rtx, rtx, rtx)); | |
7506f491 | 578 | static struct expr *find_avail_set PROTO ((int, rtx)); |
abd535b6 BS |
579 | static int cprop_jump PROTO((rtx, rtx, struct reg_use *, rtx)); |
580 | static int cprop_cc0_jump PROTO((rtx, struct reg_use *, rtx)); | |
b5ce41ff JL |
581 | static int cprop_insn PROTO ((rtx, int)); |
582 | static int cprop PROTO ((int)); | |
583 | static int one_cprop_pass PROTO ((int, int)); | |
7506f491 | 584 | |
ac7c5af5 JL |
585 | static void alloc_pre_mem PROTO ((int, int)); |
586 | static void free_pre_mem PROTO ((void)); | |
ac7c5af5 | 587 | static void compute_pre_data PROTO ((void)); |
a65f3558 JL |
588 | static int pre_expr_reaches_here_p PROTO ((int, struct expr *, |
589 | int, int, char *)); | |
590 | static void insert_insn_end_bb PROTO ((struct expr *, int, int)); | |
ac7c5af5 | 591 | static void pre_insert PROTO ((struct expr **)); |
7506f491 | 592 | static void pre_insert_copy_insn PROTO ((struct expr *, rtx)); |
ac7c5af5 JL |
593 | static void pre_insert_copies PROTO ((void)); |
594 | static int pre_delete PROTO ((void)); | |
595 | static int pre_gcse PROTO ((void)); | |
b5ce41ff | 596 | static int one_pre_gcse_pass PROTO ((int)); |
aeb2f500 JW |
597 | |
598 | static void add_label_notes PROTO ((rtx, rtx)); | |
b5ce41ff JL |
599 | |
600 | static void alloc_rd_mem PROTO ((int, int)); | |
601 | static void free_rd_mem PROTO ((void)); | |
602 | static void handle_rd_kill_set PROTO ((rtx, int, int)); | |
603 | static void compute_kill_rd PROTO ((void)); | |
604 | static void compute_rd PROTO ((void)); | |
605 | static void alloc_avail_expr_mem PROTO ((int, int)); | |
606 | static void free_avail_expr_mem PROTO ((void)); | |
607 | static void compute_ae_gen PROTO ((void)); | |
608 | static int expr_killed_p PROTO ((rtx, int)); | |
609 | static void compute_ae_kill PROTO ((void)); | |
610 | static void compute_available PROTO ((void)); | |
611 | static int expr_reaches_here_p PROTO ((struct occr *, struct expr *, | |
612 | int, int, char *)); | |
613 | static rtx computing_insn PROTO ((struct expr *, rtx)); | |
614 | static int def_reaches_here_p PROTO ((rtx, rtx)); | |
615 | static int can_disregard_other_sets PROTO ((struct reg_set **, rtx, int)); | |
616 | static int handle_avail_expr PROTO ((rtx, struct expr *)); | |
617 | static int classic_gcse PROTO ((void)); | |
618 | static int one_classic_gcse_pass PROTO ((int)); | |
619 | ||
7506f491 DE |
620 | \f |
621 | /* Entry point for global common subexpression elimination. | |
622 | F is the first instruction in the function. */ | |
623 | ||
e78d9500 | 624 | int |
7506f491 DE |
625 | gcse_main (f, file) |
626 | rtx f; | |
627 | FILE *file; | |
628 | { | |
629 | int changed, pass; | |
630 | /* Bytes used at start of pass. */ | |
631 | int initial_bytes_used; | |
632 | /* Maximum number of bytes used by a pass. */ | |
633 | int max_pass_bytes; | |
634 | /* Point to release obstack data from for each pass. */ | |
635 | char *gcse_obstack_bottom; | |
636 | ||
b5ce41ff JL |
637 | /* We do not construct an accurate cfg in functions which call |
638 | setjmp, so just punt to be safe. */ | |
7506f491 | 639 | if (current_function_calls_setjmp) |
e78d9500 | 640 | return 0; |
7506f491 | 641 | |
b5ce41ff JL |
642 | /* Assume that we do not need to run jump optimizations after gcse. */ |
643 | run_jump_opt_after_gcse = 0; | |
644 | ||
7506f491 DE |
645 | /* For calling dump_foo fns from gdb. */ |
646 | debug_stderr = stderr; | |
b5ce41ff | 647 | gcse_file = file; |
7506f491 | 648 | |
b5ce41ff JL |
649 | /* Identify the basic block information for this function, including |
650 | successors and predecessors. */ | |
7506f491 | 651 | max_gcse_regno = max_reg_num (); |
359da67d | 652 | find_basic_blocks (f, max_gcse_regno, file, 1); |
7506f491 DE |
653 | |
654 | /* Return if there's nothing to do. */ | |
655 | if (n_basic_blocks <= 1) | |
656 | { | |
657 | /* Free storage allocated by find_basic_blocks. */ | |
658 | free_basic_block_vars (0); | |
e78d9500 | 659 | return 0; |
7506f491 DE |
660 | } |
661 | ||
662 | /* See what modes support reg/reg copy operations. */ | |
663 | if (! can_copy_init_p) | |
664 | { | |
665 | compute_can_copy (); | |
666 | can_copy_init_p = 1; | |
667 | } | |
668 | ||
669 | gcc_obstack_init (&gcse_obstack); | |
670 | ||
7506f491 DE |
671 | /* Allocate and compute predecessors/successors. */ |
672 | ||
673 | s_preds = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr)); | |
674 | s_succs = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr)); | |
675 | num_preds = (int *) alloca (n_basic_blocks * sizeof (int)); | |
676 | num_succs = (int *) alloca (n_basic_blocks * sizeof (int)); | |
677 | bytes_used = 4 * n_basic_blocks * sizeof (int_list_ptr); | |
678 | compute_preds_succs (s_preds, s_succs, num_preds, num_succs); | |
679 | ||
680 | if (file) | |
421382ac | 681 | dump_bb_data (file, s_preds, s_succs, 0); |
7506f491 DE |
682 | |
683 | /* Record where pseudo-registers are set. | |
684 | This data is kept accurate during each pass. | |
b5ce41ff | 685 | ??? We could also record hard-reg information here |
7506f491 | 686 | [since it's unchanging], however it is currently done during |
b5ce41ff JL |
687 | hash table computation. |
688 | ||
689 | It may be tempting to compute MEM set information here too, but MEM | |
690 | sets will be subject to code motion one day and thus we need to compute | |
691 | information about memory sets when we build the hash tables. */ | |
7506f491 DE |
692 | |
693 | alloc_reg_set_mem (max_gcse_regno); | |
694 | compute_sets (f); | |
695 | ||
696 | pass = 0; | |
697 | initial_bytes_used = bytes_used; | |
698 | max_pass_bytes = 0; | |
699 | gcse_obstack_bottom = gcse_alloc (1); | |
700 | changed = 1; | |
701 | while (changed && pass < MAX_PASSES) | |
702 | { | |
703 | changed = 0; | |
704 | if (file) | |
705 | fprintf (file, "GCSE pass %d\n\n", pass + 1); | |
706 | ||
707 | /* Initialize bytes_used to the space for the pred/succ lists, | |
708 | and the reg_set_table data. */ | |
709 | bytes_used = initial_bytes_used; | |
710 | ||
711 | /* Each pass may create new registers, so recalculate each time. */ | |
712 | max_gcse_regno = max_reg_num (); | |
713 | ||
714 | alloc_gcse_mem (f); | |
715 | ||
b5ce41ff JL |
716 | /* Don't allow constant propagation to modify jumps |
717 | during this pass. */ | |
718 | changed = one_cprop_pass (pass + 1, 0); | |
7506f491 DE |
719 | |
720 | if (optimize_size) | |
b5ce41ff | 721 | changed |= one_classic_gcse_pass (pass + 1); |
7506f491 | 722 | else |
b5ce41ff | 723 | changed |= one_pre_gcse_pass (pass + 1); |
7506f491 DE |
724 | |
725 | if (max_pass_bytes < bytes_used) | |
726 | max_pass_bytes = bytes_used; | |
727 | ||
728 | free_gcse_mem (); | |
729 | ||
730 | if (file) | |
731 | { | |
732 | fprintf (file, "\n"); | |
733 | fflush (file); | |
734 | } | |
735 | obstack_free (&gcse_obstack, gcse_obstack_bottom); | |
736 | pass++; | |
737 | } | |
738 | ||
b5ce41ff JL |
739 | /* Do one last pass of copy propagation, including cprop into |
740 | conditional jumps. */ | |
741 | ||
742 | max_gcse_regno = max_reg_num (); | |
743 | alloc_gcse_mem (f); | |
744 | /* This time, go ahead and allow cprop to alter jumps. */ | |
745 | one_cprop_pass (pass + 1, 1); | |
746 | free_gcse_mem (); | |
7506f491 DE |
747 | |
748 | if (file) | |
749 | { | |
750 | fprintf (file, "GCSE of %s: %d basic blocks, ", | |
751 | current_function_name, n_basic_blocks); | |
752 | fprintf (file, "%d pass%s, %d bytes\n\n", | |
753 | pass, pass > 1 ? "es" : "", max_pass_bytes); | |
754 | } | |
755 | ||
756 | /* Free our obstack. */ | |
757 | obstack_free (&gcse_obstack, NULL_PTR); | |
758 | /* Free reg_set_table. */ | |
759 | free_reg_set_mem (); | |
760 | /* Free storage used to record predecessor/successor data. */ | |
761 | free_bb_mem (); | |
762 | /* Free storage allocated by find_basic_blocks. */ | |
763 | free_basic_block_vars (0); | |
e78d9500 | 764 | return run_jump_opt_after_gcse; |
7506f491 DE |
765 | } |
766 | \f | |
767 | /* Misc. utilities. */ | |
768 | ||
769 | /* Compute which modes support reg/reg copy operations. */ | |
770 | ||
771 | static void | |
772 | compute_can_copy () | |
773 | { | |
774 | int i; | |
50b2596f | 775 | #ifndef AVOID_CCMODE_COPIES |
7506f491 | 776 | rtx reg,insn; |
50b2596f | 777 | #endif |
7506f491 DE |
778 | char *free_point = (char *) oballoc (1); |
779 | ||
780 | bzero (can_copy_p, NUM_MACHINE_MODES); | |
781 | ||
782 | start_sequence (); | |
783 | for (i = 0; i < NUM_MACHINE_MODES; i++) | |
784 | { | |
785 | switch (GET_MODE_CLASS (i)) | |
786 | { | |
787 | case MODE_CC : | |
788 | #ifdef AVOID_CCMODE_COPIES | |
789 | can_copy_p[i] = 0; | |
790 | #else | |
9e6a5703 JC |
791 | reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1); |
792 | insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg)); | |
7506f491 DE |
793 | if (recog (PATTERN (insn), insn, NULL_PTR) >= 0) |
794 | can_copy_p[i] = 1; | |
795 | #endif | |
796 | break; | |
797 | default : | |
798 | can_copy_p[i] = 1; | |
799 | break; | |
800 | } | |
801 | } | |
802 | end_sequence (); | |
803 | ||
804 | /* Free the objects we just allocated. */ | |
805 | obfree (free_point); | |
806 | } | |
807 | \f | |
808 | /* Cover function to xmalloc to record bytes allocated. */ | |
809 | ||
810 | static char * | |
811 | gmalloc (size) | |
812 | unsigned int size; | |
813 | { | |
814 | bytes_used += size; | |
815 | return xmalloc (size); | |
816 | } | |
817 | ||
818 | /* Cover function to xrealloc. | |
819 | We don't record the additional size since we don't know it. | |
820 | It won't affect memory usage stats much anyway. */ | |
821 | ||
822 | static char * | |
823 | grealloc (ptr, size) | |
824 | char *ptr; | |
825 | unsigned int size; | |
826 | { | |
827 | return xrealloc (ptr, size); | |
828 | } | |
829 | ||
830 | /* Cover function to obstack_alloc. | |
831 | We don't need to record the bytes allocated here since | |
832 | obstack_chunk_alloc is set to gmalloc. */ | |
833 | ||
834 | static char * | |
835 | gcse_alloc (size) | |
836 | unsigned long size; | |
837 | { | |
838 | return (char *) obstack_alloc (&gcse_obstack, size); | |
839 | } | |
840 | ||
841 | /* Allocate memory for the cuid mapping array, | |
842 | and reg/memory set tracking tables. | |
843 | ||
844 | This is called at the start of each pass. */ | |
845 | ||
846 | static void | |
847 | alloc_gcse_mem (f) | |
848 | rtx f; | |
849 | { | |
850 | int i,n; | |
851 | rtx insn; | |
852 | ||
853 | /* Find the largest UID and create a mapping from UIDs to CUIDs. | |
854 | CUIDs are like UIDs except they increase monotonically, have no gaps, | |
855 | and only apply to real insns. */ | |
856 | ||
857 | max_uid = get_max_uid (); | |
858 | n = (max_uid + 1) * sizeof (int); | |
859 | uid_cuid = (int *) gmalloc (n); | |
860 | bzero ((char *) uid_cuid, n); | |
861 | for (insn = f, i = 0; insn; insn = NEXT_INSN (insn)) | |
862 | { | |
863 | if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') | |
864 | INSN_CUID (insn) = i++; | |
865 | else | |
866 | INSN_CUID (insn) = i; | |
867 | } | |
868 | ||
869 | /* Create a table mapping cuids to insns. */ | |
870 | ||
871 | max_cuid = i; | |
872 | n = (max_cuid + 1) * sizeof (rtx); | |
873 | cuid_insn = (rtx *) gmalloc (n); | |
874 | bzero ((char *) cuid_insn, n); | |
875 | for (insn = f, i = 0; insn; insn = NEXT_INSN (insn)) | |
876 | { | |
877 | if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') | |
878 | { | |
879 | CUID_INSN (i) = insn; | |
880 | i++; | |
881 | } | |
882 | } | |
883 | ||
884 | /* Allocate vars to track sets of regs. */ | |
885 | ||
886 | reg_set_bitmap = (sbitmap) sbitmap_alloc (max_gcse_regno); | |
887 | ||
888 | /* Allocate vars to track sets of regs, memory per block. */ | |
889 | ||
890 | reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, | |
891 | max_gcse_regno); | |
892 | mem_set_in_block = (char *) gmalloc (n_basic_blocks); | |
893 | } | |
894 | ||
895 | /* Free memory allocated by alloc_gcse_mem. */ | |
896 | ||
897 | static void | |
898 | free_gcse_mem () | |
899 | { | |
900 | free (uid_cuid); | |
901 | free (cuid_insn); | |
902 | ||
903 | free (reg_set_bitmap); | |
904 | ||
905 | free (reg_set_in_block); | |
906 | free (mem_set_in_block); | |
907 | } | |
908 | ||
b5ce41ff JL |
909 | \f |
910 | /* Compute the local properties of each recorded expression. | |
911 | Local properties are those that are defined by the block, irrespective | |
912 | of other blocks. | |
913 | ||
914 | An expression is transparent in a block if its operands are not modified | |
915 | in the block. | |
916 | ||
917 | An expression is computed (locally available) in a block if it is computed | |
918 | at least once and expression would contain the same value if the | |
919 | computation was moved to the end of the block. | |
920 | ||
921 | An expression is locally anticipatable in a block if it is computed at | |
922 | least once and expression would contain the same value if the computation | |
923 | was moved to the beginning of the block. | |
924 | ||
925 | We call this routine for cprop, pre and code hoisting. They all | |
926 | compute basically the same information and thus can easily share | |
927 | this code. | |
7506f491 | 928 | |
b5ce41ff JL |
929 | TRANSP, COMP, and ANTLOC are destination sbitmaps for recording |
930 | local properties. If NULL, then it is not necessary to compute | |
931 | or record that particular property. | |
932 | ||
933 | SETP controls which hash table to look at. If zero, this routine | |
934 | looks at the expr hash table; if nonzero this routine looks at | |
695ab36a BS |
935 | the set hash table. Additionally, TRANSP is computed as ~TRANSP, |
936 | since this is really cprop's ABSALTERED. */ | |
b5ce41ff JL |
937 | |
938 | static void | |
939 | compute_local_properties (transp, comp, antloc, setp) | |
940 | sbitmap *transp; | |
941 | sbitmap *comp; | |
942 | sbitmap *antloc; | |
943 | int setp; | |
944 | { | |
945 | int i, hash_table_size; | |
946 | struct expr **hash_table; | |
947 | ||
948 | /* Initialize any bitmaps that were passed in. */ | |
949 | if (transp) | |
695ab36a BS |
950 | { |
951 | if (setp) | |
952 | sbitmap_vector_zero (transp, n_basic_blocks); | |
953 | else | |
954 | sbitmap_vector_ones (transp, n_basic_blocks); | |
955 | } | |
b5ce41ff JL |
956 | if (comp) |
957 | sbitmap_vector_zero (comp, n_basic_blocks); | |
958 | if (antloc) | |
959 | sbitmap_vector_zero (antloc, n_basic_blocks); | |
960 | ||
961 | /* We use the same code for cprop, pre and hoisting. For cprop | |
962 | we care about the set hash table, for pre and hoisting we | |
963 | care about the expr hash table. */ | |
964 | hash_table_size = setp ? set_hash_table_size : expr_hash_table_size; | |
965 | hash_table = setp ? set_hash_table : expr_hash_table; | |
966 | ||
967 | for (i = 0; i < hash_table_size; i++) | |
7506f491 | 968 | { |
b5ce41ff JL |
969 | struct expr *expr; |
970 | ||
971 | for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash) | |
972 | { | |
973 | struct occr *occr; | |
974 | int indx = expr->bitmap_index; | |
975 | ||
976 | /* The expression is transparent in this block if it is not killed. | |
977 | We start by assuming all are transparent [none are killed], and | |
978 | then reset the bits for those that are. */ | |
979 | ||
980 | if (transp) | |
981 | compute_transp (expr->expr, indx, transp, setp); | |
982 | ||
983 | /* The occurrences recorded in antic_occr are exactly those that | |
984 | we want to set to non-zero in ANTLOC. */ | |
985 | ||
986 | if (antloc) | |
987 | { | |
988 | for (occr = expr->antic_occr; occr != NULL; occr = occr->next) | |
989 | { | |
990 | int bb = BLOCK_NUM (occr->insn); | |
991 | SET_BIT (antloc[bb], indx); | |
992 | ||
993 | /* While we're scanning the table, this is a good place to | |
994 | initialize this. */ | |
995 | occr->deleted_p = 0; | |
996 | } | |
997 | } | |
998 | ||
999 | /* The occurrences recorded in avail_occr are exactly those that | |
1000 | we want to set to non-zero in COMP. */ | |
1001 | if (comp) | |
1002 | { | |
1003 | ||
1004 | for (occr = expr->avail_occr; occr != NULL; occr = occr->next) | |
1005 | { | |
1006 | int bb = BLOCK_NUM (occr->insn); | |
1007 | SET_BIT (comp[bb], indx); | |
1008 | ||
1009 | /* While we're scanning the table, this is a good place to | |
1010 | initialize this. */ | |
1011 | occr->copied_p = 0; | |
1012 | } | |
1013 | } | |
1014 | ||
1015 | /* While we're scanning the table, this is a good place to | |
1016 | initialize this. */ | |
1017 | expr->reaching_reg = 0; | |
1018 | } | |
7506f491 | 1019 | } |
7506f491 | 1020 | } |
b5ce41ff | 1021 | |
7506f491 DE |
1022 | \f |
1023 | /* Register set information. | |
1024 | ||
1025 | `reg_set_table' records where each register is set or otherwise | |
1026 | modified. */ | |
1027 | ||
1028 | static struct obstack reg_set_obstack; | |
1029 | ||
1030 | static void | |
1031 | alloc_reg_set_mem (n_regs) | |
1032 | int n_regs; | |
1033 | { | |
1034 | int n; | |
1035 | ||
1036 | reg_set_table_size = n_regs + REG_SET_TABLE_SLOP; | |
1037 | n = reg_set_table_size * sizeof (struct reg_set *); | |
1038 | reg_set_table = (struct reg_set **) gmalloc (n); | |
1039 | bzero ((char *) reg_set_table, n); | |
1040 | ||
1041 | gcc_obstack_init (®_set_obstack); | |
1042 | } | |
1043 | ||
1044 | static void | |
1045 | free_reg_set_mem () | |
1046 | { | |
1047 | free (reg_set_table); | |
1048 | obstack_free (®_set_obstack, NULL_PTR); | |
1049 | } | |
1050 | ||
1051 | /* Record REGNO in the reg_set table. */ | |
1052 | ||
1053 | static void | |
1054 | record_one_set (regno, insn) | |
1055 | int regno; | |
1056 | rtx insn; | |
1057 | { | |
1058 | /* allocate a new reg_set element and link it onto the list */ | |
1059 | struct reg_set *new_reg_info, *reg_info_ptr1, *reg_info_ptr2; | |
1060 | ||
1061 | /* If the table isn't big enough, enlarge it. */ | |
1062 | if (regno >= reg_set_table_size) | |
1063 | { | |
1064 | int new_size = regno + REG_SET_TABLE_SLOP; | |
1065 | reg_set_table = (struct reg_set **) | |
1066 | grealloc ((char *) reg_set_table, | |
1067 | new_size * sizeof (struct reg_set *)); | |
1068 | bzero ((char *) (reg_set_table + reg_set_table_size), | |
1069 | (new_size - reg_set_table_size) * sizeof (struct reg_set *)); | |
1070 | reg_set_table_size = new_size; | |
1071 | } | |
1072 | ||
1073 | new_reg_info = (struct reg_set *) obstack_alloc (®_set_obstack, | |
1074 | sizeof (struct reg_set)); | |
1075 | bytes_used += sizeof (struct reg_set); | |
1076 | new_reg_info->insn = insn; | |
1077 | new_reg_info->next = NULL; | |
1078 | if (reg_set_table[regno] == NULL) | |
1079 | reg_set_table[regno] = new_reg_info; | |
1080 | else | |
1081 | { | |
1082 | reg_info_ptr1 = reg_info_ptr2 = reg_set_table[regno]; | |
1083 | /* ??? One could keep a "last" pointer to speed this up. */ | |
1084 | while (reg_info_ptr1 != NULL) | |
1085 | { | |
1086 | reg_info_ptr2 = reg_info_ptr1; | |
1087 | reg_info_ptr1 = reg_info_ptr1->next; | |
1088 | } | |
1089 | reg_info_ptr2->next = new_reg_info; | |
1090 | } | |
1091 | } | |
1092 | ||
1093 | /* For communication between next two functions (via note_stores). */ | |
1094 | static rtx record_set_insn; | |
1095 | ||
1096 | /* Called from compute_sets via note_stores to handle one | |
1097 | SET or CLOBBER in an insn. */ | |
1098 | ||
1099 | static void | |
1100 | record_set_info (dest, setter) | |
50b2596f | 1101 | rtx dest, setter ATTRIBUTE_UNUSED; |
7506f491 DE |
1102 | { |
1103 | if (GET_CODE (dest) == SUBREG) | |
1104 | dest = SUBREG_REG (dest); | |
1105 | ||
1106 | if (GET_CODE (dest) == REG) | |
1107 | { | |
1108 | if (REGNO (dest) >= FIRST_PSEUDO_REGISTER) | |
1109 | record_one_set (REGNO (dest), record_set_insn); | |
1110 | } | |
1111 | } | |
1112 | ||
1113 | /* Scan the function and record each set of each pseudo-register. | |
1114 | ||
1115 | This is called once, at the start of the gcse pass. | |
1116 | See the comments for `reg_set_table' for further docs. */ | |
1117 | ||
1118 | static void | |
1119 | compute_sets (f) | |
1120 | rtx f; | |
1121 | { | |
1122 | rtx insn = f; | |
1123 | ||
1124 | while (insn) | |
1125 | { | |
1126 | if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') | |
1127 | { | |
1128 | record_set_insn = insn; | |
1129 | note_stores (PATTERN (insn), record_set_info); | |
1130 | } | |
1131 | insn = NEXT_INSN (insn); | |
1132 | } | |
1133 | } | |
1134 | \f | |
1135 | /* Hash table support. */ | |
1136 | ||
b86ba9c8 GK |
1137 | #define NEVER_SET -1 |
1138 | ||
7506f491 | 1139 | /* For each register, the cuid of the first/last insn in the block to set it, |
e7d99f1e | 1140 | or -1 if not set. */ |
7506f491 DE |
1141 | static int *reg_first_set; |
1142 | static int *reg_last_set; | |
1143 | ||
1144 | /* While computing "first/last set" info, this is the CUID of first/last insn | |
e7d99f1e | 1145 | to set memory or -1 if not set. `mem_last_set' is also used when |
7506f491 DE |
1146 | performing GCSE to record whether memory has been set since the beginning |
1147 | of the block. | |
1148 | Note that handling of memory is very simple, we don't make any attempt | |
1149 | to optimize things (later). */ | |
1150 | static int mem_first_set; | |
1151 | static int mem_last_set; | |
1152 | ||
7506f491 DE |
1153 | /* Perform a quick check whether X, the source of a set, is something |
1154 | we want to consider for GCSE. */ | |
1155 | ||
1156 | static int | |
1157 | want_to_gcse_p (x) | |
1158 | rtx x; | |
1159 | { | |
1160 | enum rtx_code code = GET_CODE (x); | |
1161 | ||
1162 | switch (code) | |
1163 | { | |
1164 | case REG: | |
1165 | case SUBREG: | |
1166 | case CONST_INT: | |
1167 | case CONST_DOUBLE: | |
1168 | case CALL: | |
1169 | return 0; | |
1170 | ||
1171 | default: | |
1172 | break; | |
1173 | } | |
1174 | ||
1175 | return 1; | |
1176 | } | |
1177 | ||
1178 | /* Return non-zero if the operands of expression X are unchanged from the | |
1179 | start of INSN's basic block up to but not including INSN (if AVAIL_P == 0), | |
1180 | or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */ | |
1181 | ||
1182 | static int | |
1183 | oprs_unchanged_p (x, insn, avail_p) | |
1184 | rtx x, insn; | |
1185 | int avail_p; | |
1186 | { | |
1187 | int i; | |
1188 | enum rtx_code code; | |
6f7d635c | 1189 | const char *fmt; |
7506f491 DE |
1190 | |
1191 | /* repeat is used to turn tail-recursion into iteration. */ | |
1192 | repeat: | |
1193 | ||
1194 | if (x == 0) | |
1195 | return 1; | |
1196 | ||
1197 | code = GET_CODE (x); | |
1198 | switch (code) | |
1199 | { | |
1200 | case REG: | |
1201 | if (avail_p) | |
b86ba9c8 | 1202 | return (reg_last_set[REGNO (x)] == NEVER_SET |
7506f491 DE |
1203 | || reg_last_set[REGNO (x)] < INSN_CUID (insn)); |
1204 | else | |
b86ba9c8 | 1205 | return (reg_first_set[REGNO (x)] == NEVER_SET |
7506f491 DE |
1206 | || reg_first_set[REGNO (x)] >= INSN_CUID (insn)); |
1207 | ||
1208 | case MEM: | |
1209 | if (avail_p) | |
1210 | { | |
b86ba9c8 | 1211 | if (mem_last_set != NEVER_SET |
7506f491 DE |
1212 | && mem_last_set >= INSN_CUID (insn)) |
1213 | return 0; | |
1214 | } | |
1215 | else | |
1216 | { | |
b86ba9c8 | 1217 | if (mem_first_set != NEVER_SET |
7506f491 DE |
1218 | && mem_first_set < INSN_CUID (insn)) |
1219 | return 0; | |
1220 | } | |
1221 | x = XEXP (x, 0); | |
1222 | goto repeat; | |
1223 | ||
1224 | case PRE_DEC: | |
1225 | case PRE_INC: | |
1226 | case POST_DEC: | |
1227 | case POST_INC: | |
1228 | return 0; | |
1229 | ||
1230 | case PC: | |
1231 | case CC0: /*FIXME*/ | |
1232 | case CONST: | |
1233 | case CONST_INT: | |
1234 | case CONST_DOUBLE: | |
1235 | case SYMBOL_REF: | |
1236 | case LABEL_REF: | |
1237 | case ADDR_VEC: | |
1238 | case ADDR_DIFF_VEC: | |
1239 | return 1; | |
1240 | ||
1241 | default: | |
1242 | break; | |
1243 | } | |
1244 | ||
1245 | i = GET_RTX_LENGTH (code) - 1; | |
1246 | fmt = GET_RTX_FORMAT (code); | |
1247 | for (; i >= 0; i--) | |
1248 | { | |
1249 | if (fmt[i] == 'e') | |
1250 | { | |
1251 | rtx tem = XEXP (x, i); | |
1252 | ||
1253 | /* If we are about to do the last recursive call | |
1254 | needed at this level, change it into iteration. | |
1255 | This function is called enough to be worth it. */ | |
1256 | if (i == 0) | |
1257 | { | |
1258 | x = tem; | |
1259 | goto repeat; | |
1260 | } | |
1261 | if (! oprs_unchanged_p (tem, insn, avail_p)) | |
1262 | return 0; | |
1263 | } | |
1264 | else if (fmt[i] == 'E') | |
1265 | { | |
1266 | int j; | |
1267 | for (j = 0; j < XVECLEN (x, i); j++) | |
1268 | { | |
1269 | if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p)) | |
1270 | return 0; | |
1271 | } | |
1272 | } | |
1273 | } | |
1274 | ||
1275 | return 1; | |
1276 | } | |
1277 | ||
1278 | /* Return non-zero if the operands of expression X are unchanged from | |
1279 | the start of INSN's basic block up to but not including INSN. */ | |
1280 | ||
1281 | static int | |
1282 | oprs_anticipatable_p (x, insn) | |
1283 | rtx x, insn; | |
1284 | { | |
1285 | return oprs_unchanged_p (x, insn, 0); | |
1286 | } | |
1287 | ||
1288 | /* Return non-zero if the operands of expression X are unchanged from | |
1289 | INSN to the end of INSN's basic block. */ | |
1290 | ||
1291 | static int | |
1292 | oprs_available_p (x, insn) | |
1293 | rtx x, insn; | |
1294 | { | |
1295 | return oprs_unchanged_p (x, insn, 1); | |
1296 | } | |
1297 | ||
1298 | /* Hash expression X. | |
1299 | MODE is only used if X is a CONST_INT. | |
1300 | A boolean indicating if a volatile operand is found or if the expression | |
1301 | contains something we don't want to insert in the table is stored in | |
1302 | DO_NOT_RECORD_P. | |
1303 | ||
1304 | ??? One might want to merge this with canon_hash. Later. */ | |
1305 | ||
1306 | static unsigned int | |
1307 | hash_expr (x, mode, do_not_record_p, hash_table_size) | |
1308 | rtx x; | |
1309 | enum machine_mode mode; | |
1310 | int *do_not_record_p; | |
1311 | int hash_table_size; | |
1312 | { | |
1313 | unsigned int hash; | |
1314 | ||
1315 | *do_not_record_p = 0; | |
1316 | ||
1317 | hash = hash_expr_1 (x, mode, do_not_record_p); | |
1318 | return hash % hash_table_size; | |
1319 | } | |
1320 | ||
1321 | /* Subroutine of hash_expr to do the actual work. */ | |
1322 | ||
1323 | static unsigned int | |
1324 | hash_expr_1 (x, mode, do_not_record_p) | |
1325 | rtx x; | |
1326 | enum machine_mode mode; | |
1327 | int *do_not_record_p; | |
1328 | { | |
1329 | int i, j; | |
1330 | unsigned hash = 0; | |
1331 | enum rtx_code code; | |
6f7d635c | 1332 | const char *fmt; |
7506f491 DE |
1333 | |
1334 | /* repeat is used to turn tail-recursion into iteration. */ | |
1335 | repeat: | |
1336 | ||
1337 | if (x == 0) | |
1338 | return hash; | |
1339 | ||
1340 | code = GET_CODE (x); | |
1341 | switch (code) | |
1342 | { | |
1343 | case REG: | |
1344 | { | |
1345 | register int regno = REGNO (x); | |
1346 | hash += ((unsigned) REG << 7) + regno; | |
1347 | return hash; | |
1348 | } | |
1349 | ||
1350 | case CONST_INT: | |
1351 | { | |
1352 | unsigned HOST_WIDE_INT tem = INTVAL (x); | |
1353 | hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem; | |
1354 | return hash; | |
1355 | } | |
1356 | ||
1357 | case CONST_DOUBLE: | |
1358 | /* This is like the general case, except that it only counts | |
1359 | the integers representing the constant. */ | |
1360 | hash += (unsigned) code + (unsigned) GET_MODE (x); | |
1361 | if (GET_MODE (x) != VOIDmode) | |
1362 | for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++) | |
1363 | { | |
1364 | unsigned tem = XINT (x, i); | |
1365 | hash += tem; | |
1366 | } | |
1367 | else | |
1368 | hash += ((unsigned) CONST_DOUBLE_LOW (x) | |
1369 | + (unsigned) CONST_DOUBLE_HIGH (x)); | |
1370 | return hash; | |
1371 | ||
1372 | /* Assume there is only one rtx object for any given label. */ | |
1373 | case LABEL_REF: | |
1374 | /* We don't hash on the address of the CODE_LABEL to avoid bootstrap | |
1375 | differences and differences between each stage's debugging dumps. */ | |
1376 | hash += ((unsigned) LABEL_REF << 7) + CODE_LABEL_NUMBER (XEXP (x, 0)); | |
1377 | return hash; | |
1378 | ||
1379 | case SYMBOL_REF: | |
1380 | { | |
1381 | /* Don't hash on the symbol's address to avoid bootstrap differences. | |
1382 | Different hash values may cause expressions to be recorded in | |
1383 | different orders and thus different registers to be used in the | |
1384 | final assembler. This also avoids differences in the dump files | |
1385 | between various stages. */ | |
1386 | unsigned int h = 0; | |
1387 | unsigned char *p = (unsigned char *) XSTR (x, 0); | |
1388 | while (*p) | |
1389 | h += (h << 7) + *p++; /* ??? revisit */ | |
1390 | hash += ((unsigned) SYMBOL_REF << 7) + h; | |
1391 | return hash; | |
1392 | } | |
1393 | ||
1394 | case MEM: | |
1395 | if (MEM_VOLATILE_P (x)) | |
1396 | { | |
1397 | *do_not_record_p = 1; | |
1398 | return 0; | |
1399 | } | |
1400 | hash += (unsigned) MEM; | |
1401 | x = XEXP (x, 0); | |
1402 | goto repeat; | |
1403 | ||
1404 | case PRE_DEC: | |
1405 | case PRE_INC: | |
1406 | case POST_DEC: | |
1407 | case POST_INC: | |
1408 | case PC: | |
1409 | case CC0: | |
1410 | case CALL: | |
1411 | case UNSPEC_VOLATILE: | |
1412 | *do_not_record_p = 1; | |
1413 | return 0; | |
1414 | ||
1415 | case ASM_OPERANDS: | |
1416 | if (MEM_VOLATILE_P (x)) | |
1417 | { | |
1418 | *do_not_record_p = 1; | |
1419 | return 0; | |
1420 | } | |
1421 | ||
1422 | default: | |
1423 | break; | |
1424 | } | |
1425 | ||
1426 | i = GET_RTX_LENGTH (code) - 1; | |
1427 | hash += (unsigned) code + (unsigned) GET_MODE (x); | |
1428 | fmt = GET_RTX_FORMAT (code); | |
1429 | for (; i >= 0; i--) | |
1430 | { | |
1431 | if (fmt[i] == 'e') | |
1432 | { | |
1433 | rtx tem = XEXP (x, i); | |
1434 | ||
1435 | /* If we are about to do the last recursive call | |
1436 | needed at this level, change it into iteration. | |
1437 | This function is called enough to be worth it. */ | |
1438 | if (i == 0) | |
1439 | { | |
1440 | x = tem; | |
1441 | goto repeat; | |
1442 | } | |
1443 | hash += hash_expr_1 (tem, 0, do_not_record_p); | |
1444 | if (*do_not_record_p) | |
1445 | return 0; | |
1446 | } | |
1447 | else if (fmt[i] == 'E') | |
1448 | for (j = 0; j < XVECLEN (x, i); j++) | |
1449 | { | |
1450 | hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p); | |
1451 | if (*do_not_record_p) | |
1452 | return 0; | |
1453 | } | |
1454 | else if (fmt[i] == 's') | |
1455 | { | |
1456 | register unsigned char *p = (unsigned char *) XSTR (x, i); | |
1457 | if (p) | |
1458 | while (*p) | |
1459 | hash += *p++; | |
1460 | } | |
1461 | else if (fmt[i] == 'i') | |
1462 | { | |
1463 | register unsigned tem = XINT (x, i); | |
1464 | hash += tem; | |
1465 | } | |
1466 | else | |
1467 | abort (); | |
1468 | } | |
1469 | ||
1470 | return hash; | |
1471 | } | |
1472 | ||
1473 | /* Hash a set of register REGNO. | |
1474 | ||
1475 | Sets are hashed on the register that is set. | |
1476 | This simplifies the PRE copy propagation code. | |
1477 | ||
1478 | ??? May need to make things more elaborate. Later, as necessary. */ | |
1479 | ||
1480 | static unsigned int | |
1481 | hash_set (regno, hash_table_size) | |
1482 | int regno; | |
1483 | int hash_table_size; | |
1484 | { | |
1485 | unsigned int hash; | |
1486 | ||
1487 | hash = regno; | |
1488 | return hash % hash_table_size; | |
1489 | } | |
1490 | ||
1491 | /* Return non-zero if exp1 is equivalent to exp2. | |
1492 | ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */ | |
1493 | ||
1494 | static int | |
1495 | expr_equiv_p (x, y) | |
1496 | rtx x, y; | |
1497 | { | |
1498 | register int i, j; | |
1499 | register enum rtx_code code; | |
6f7d635c | 1500 | register const char *fmt; |
7506f491 DE |
1501 | |
1502 | if (x == y) | |
1503 | return 1; | |
1504 | if (x == 0 || y == 0) | |
1505 | return x == y; | |
1506 | ||
1507 | code = GET_CODE (x); | |
1508 | if (code != GET_CODE (y)) | |
1509 | return 0; | |
1510 | ||
1511 | /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */ | |
1512 | if (GET_MODE (x) != GET_MODE (y)) | |
1513 | return 0; | |
1514 | ||
1515 | switch (code) | |
1516 | { | |
1517 | case PC: | |
1518 | case CC0: | |
1519 | return x == y; | |
1520 | ||
1521 | case CONST_INT: | |
1522 | return INTVAL (x) == INTVAL (y); | |
1523 | ||
1524 | case LABEL_REF: | |
1525 | return XEXP (x, 0) == XEXP (y, 0); | |
1526 | ||
1527 | case SYMBOL_REF: | |
1528 | return XSTR (x, 0) == XSTR (y, 0); | |
1529 | ||
1530 | case REG: | |
1531 | return REGNO (x) == REGNO (y); | |
1532 | ||
1533 | /* For commutative operations, check both orders. */ | |
1534 | case PLUS: | |
1535 | case MULT: | |
1536 | case AND: | |
1537 | case IOR: | |
1538 | case XOR: | |
1539 | case NE: | |
1540 | case EQ: | |
1541 | return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0)) | |
1542 | && expr_equiv_p (XEXP (x, 1), XEXP (y, 1))) | |
1543 | || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1)) | |
1544 | && expr_equiv_p (XEXP (x, 1), XEXP (y, 0)))); | |
1545 | ||
1546 | default: | |
1547 | break; | |
1548 | } | |
1549 | ||
1550 | /* Compare the elements. If any pair of corresponding elements | |
1551 | fail to match, return 0 for the whole thing. */ | |
1552 | ||
1553 | fmt = GET_RTX_FORMAT (code); | |
1554 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) | |
1555 | { | |
1556 | switch (fmt[i]) | |
1557 | { | |
1558 | case 'e': | |
1559 | if (! expr_equiv_p (XEXP (x, i), XEXP (y, i))) | |
1560 | return 0; | |
1561 | break; | |
1562 | ||
1563 | case 'E': | |
1564 | if (XVECLEN (x, i) != XVECLEN (y, i)) | |
1565 | return 0; | |
1566 | for (j = 0; j < XVECLEN (x, i); j++) | |
1567 | if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j))) | |
1568 | return 0; | |
1569 | break; | |
1570 | ||
1571 | case 's': | |
1572 | if (strcmp (XSTR (x, i), XSTR (y, i))) | |
1573 | return 0; | |
1574 | break; | |
1575 | ||
1576 | case 'i': | |
1577 | if (XINT (x, i) != XINT (y, i)) | |
1578 | return 0; | |
1579 | break; | |
1580 | ||
1581 | case 'w': | |
1582 | if (XWINT (x, i) != XWINT (y, i)) | |
1583 | return 0; | |
1584 | break; | |
1585 | ||
1586 | case '0': | |
1587 | break; | |
1588 | ||
1589 | default: | |
1590 | abort (); | |
1591 | } | |
1592 | } | |
1593 | ||
1594 | return 1; | |
1595 | } | |
1596 | ||
1597 | /* Insert expression X in INSN in the hash table. | |
1598 | If it is already present, record it as the last occurrence in INSN's | |
1599 | basic block. | |
1600 | ||
1601 | MODE is the mode of the value X is being stored into. | |
1602 | It is only used if X is a CONST_INT. | |
1603 | ||
1604 | ANTIC_P is non-zero if X is an anticipatable expression. | |
1605 | AVAIL_P is non-zero if X is an available expression. */ | |
1606 | ||
1607 | static void | |
1608 | insert_expr_in_table (x, mode, insn, antic_p, avail_p) | |
1609 | rtx x; | |
1610 | enum machine_mode mode; | |
1611 | rtx insn; | |
1612 | int antic_p, avail_p; | |
1613 | { | |
1614 | int found, do_not_record_p; | |
1615 | unsigned int hash; | |
1616 | struct expr *cur_expr, *last_expr = NULL; | |
1617 | struct occr *antic_occr, *avail_occr; | |
1618 | struct occr *last_occr = NULL; | |
1619 | ||
1620 | hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size); | |
1621 | ||
1622 | /* Do not insert expression in table if it contains volatile operands, | |
1623 | or if hash_expr determines the expression is something we don't want | |
1624 | to or can't handle. */ | |
1625 | if (do_not_record_p) | |
1626 | return; | |
1627 | ||
1628 | cur_expr = expr_hash_table[hash]; | |
1629 | found = 0; | |
1630 | ||
1631 | while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x))) | |
1632 | { | |
1633 | /* If the expression isn't found, save a pointer to the end of | |
1634 | the list. */ | |
1635 | last_expr = cur_expr; | |
1636 | cur_expr = cur_expr->next_same_hash; | |
1637 | } | |
1638 | ||
1639 | if (! found) | |
1640 | { | |
1641 | cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr)); | |
1642 | bytes_used += sizeof (struct expr); | |
1643 | if (expr_hash_table[hash] == NULL) | |
1644 | { | |
1645 | /* This is the first pattern that hashed to this index. */ | |
1646 | expr_hash_table[hash] = cur_expr; | |
1647 | } | |
1648 | else | |
1649 | { | |
1650 | /* Add EXPR to end of this hash chain. */ | |
1651 | last_expr->next_same_hash = cur_expr; | |
1652 | } | |
1653 | /* Set the fields of the expr element. */ | |
1654 | cur_expr->expr = x; | |
1655 | cur_expr->bitmap_index = n_exprs++; | |
1656 | cur_expr->next_same_hash = NULL; | |
1657 | cur_expr->antic_occr = NULL; | |
1658 | cur_expr->avail_occr = NULL; | |
1659 | } | |
1660 | ||
1661 | /* Now record the occurrence(s). */ | |
1662 | ||
1663 | if (antic_p) | |
1664 | { | |
1665 | antic_occr = cur_expr->antic_occr; | |
1666 | ||
1667 | /* Search for another occurrence in the same basic block. */ | |
1668 | while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn)) | |
1669 | { | |
1670 | /* If an occurrence isn't found, save a pointer to the end of | |
1671 | the list. */ | |
1672 | last_occr = antic_occr; | |
1673 | antic_occr = antic_occr->next; | |
1674 | } | |
1675 | ||
1676 | if (antic_occr) | |
1677 | { | |
1678 | /* Found another instance of the expression in the same basic block. | |
1679 | Prefer the currently recorded one. We want the first one in the | |
1680 | block and the block is scanned from start to end. */ | |
1681 | ; /* nothing to do */ | |
1682 | } | |
1683 | else | |
1684 | { | |
1685 | /* First occurrence of this expression in this basic block. */ | |
1686 | antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr)); | |
1687 | bytes_used += sizeof (struct occr); | |
1688 | /* First occurrence of this expression in any block? */ | |
1689 | if (cur_expr->antic_occr == NULL) | |
1690 | cur_expr->antic_occr = antic_occr; | |
1691 | else | |
1692 | last_occr->next = antic_occr; | |
1693 | antic_occr->insn = insn; | |
1694 | antic_occr->next = NULL; | |
1695 | } | |
1696 | } | |
1697 | ||
1698 | if (avail_p) | |
1699 | { | |
1700 | avail_occr = cur_expr->avail_occr; | |
1701 | ||
1702 | /* Search for another occurrence in the same basic block. */ | |
1703 | while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn)) | |
1704 | { | |
1705 | /* If an occurrence isn't found, save a pointer to the end of | |
1706 | the list. */ | |
1707 | last_occr = avail_occr; | |
1708 | avail_occr = avail_occr->next; | |
1709 | } | |
1710 | ||
1711 | if (avail_occr) | |
1712 | { | |
1713 | /* Found another instance of the expression in the same basic block. | |
1714 | Prefer this occurrence to the currently recorded one. We want | |
1715 | the last one in the block and the block is scanned from start | |
1716 | to end. */ | |
1717 | avail_occr->insn = insn; | |
1718 | } | |
1719 | else | |
1720 | { | |
1721 | /* First occurrence of this expression in this basic block. */ | |
1722 | avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr)); | |
1723 | bytes_used += sizeof (struct occr); | |
1724 | /* First occurrence of this expression in any block? */ | |
1725 | if (cur_expr->avail_occr == NULL) | |
1726 | cur_expr->avail_occr = avail_occr; | |
1727 | else | |
1728 | last_occr->next = avail_occr; | |
1729 | avail_occr->insn = insn; | |
1730 | avail_occr->next = NULL; | |
1731 | } | |
1732 | } | |
1733 | } | |
1734 | ||
1735 | /* Insert pattern X in INSN in the hash table. | |
1736 | X is a SET of a reg to either another reg or a constant. | |
1737 | If it is already present, record it as the last occurrence in INSN's | |
1738 | basic block. */ | |
1739 | ||
1740 | static void | |
1741 | insert_set_in_table (x, insn) | |
1742 | rtx x; | |
1743 | rtx insn; | |
1744 | { | |
1745 | int found; | |
1746 | unsigned int hash; | |
1747 | struct expr *cur_expr, *last_expr = NULL; | |
1748 | struct occr *cur_occr, *last_occr = NULL; | |
1749 | ||
1750 | if (GET_CODE (x) != SET | |
1751 | || GET_CODE (SET_DEST (x)) != REG) | |
1752 | abort (); | |
1753 | ||
1754 | hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size); | |
1755 | ||
1756 | cur_expr = set_hash_table[hash]; | |
1757 | found = 0; | |
1758 | ||
1759 | while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x))) | |
1760 | { | |
1761 | /* If the expression isn't found, save a pointer to the end of | |
1762 | the list. */ | |
1763 | last_expr = cur_expr; | |
1764 | cur_expr = cur_expr->next_same_hash; | |
1765 | } | |
1766 | ||
1767 | if (! found) | |
1768 | { | |
1769 | cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr)); | |
1770 | bytes_used += sizeof (struct expr); | |
1771 | if (set_hash_table[hash] == NULL) | |
1772 | { | |
1773 | /* This is the first pattern that hashed to this index. */ | |
1774 | set_hash_table[hash] = cur_expr; | |
1775 | } | |
1776 | else | |
1777 | { | |
1778 | /* Add EXPR to end of this hash chain. */ | |
1779 | last_expr->next_same_hash = cur_expr; | |
1780 | } | |
1781 | /* Set the fields of the expr element. | |
1782 | We must copy X because it can be modified when copy propagation is | |
1783 | performed on its operands. */ | |
1784 | /* ??? Should this go in a different obstack? */ | |
1785 | cur_expr->expr = copy_rtx (x); | |
1786 | cur_expr->bitmap_index = n_sets++; | |
1787 | cur_expr->next_same_hash = NULL; | |
1788 | cur_expr->antic_occr = NULL; | |
1789 | cur_expr->avail_occr = NULL; | |
1790 | } | |
1791 | ||
1792 | /* Now record the occurrence. */ | |
1793 | ||
1794 | cur_occr = cur_expr->avail_occr; | |
1795 | ||
1796 | /* Search for another occurrence in the same basic block. */ | |
1797 | while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn)) | |
1798 | { | |
1799 | /* If an occurrence isn't found, save a pointer to the end of | |
1800 | the list. */ | |
1801 | last_occr = cur_occr; | |
1802 | cur_occr = cur_occr->next; | |
1803 | } | |
1804 | ||
1805 | if (cur_occr) | |
1806 | { | |
1807 | /* Found another instance of the expression in the same basic block. | |
1808 | Prefer this occurrence to the currently recorded one. We want | |
1809 | the last one in the block and the block is scanned from start | |
1810 | to end. */ | |
1811 | cur_occr->insn = insn; | |
1812 | } | |
1813 | else | |
1814 | { | |
1815 | /* First occurrence of this expression in this basic block. */ | |
1816 | cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr)); | |
1817 | bytes_used += sizeof (struct occr); | |
1818 | /* First occurrence of this expression in any block? */ | |
1819 | if (cur_expr->avail_occr == NULL) | |
1820 | cur_expr->avail_occr = cur_occr; | |
1821 | else | |
1822 | last_occr->next = cur_occr; | |
1823 | cur_occr->insn = insn; | |
1824 | cur_occr->next = NULL; | |
1825 | } | |
1826 | } | |
1827 | ||
1828 | /* Scan pattern PAT of INSN and add an entry to the hash table. | |
1829 | If SET_P is non-zero, this is for the assignment hash table, | |
1830 | otherwise it is for the expression hash table. */ | |
1831 | ||
1832 | static void | |
1833 | hash_scan_set (pat, insn, set_p) | |
1834 | rtx pat, insn; | |
1835 | int set_p; | |
1836 | { | |
1837 | rtx src = SET_SRC (pat); | |
1838 | rtx dest = SET_DEST (pat); | |
1839 | ||
1840 | if (GET_CODE (src) == CALL) | |
1841 | hash_scan_call (src, insn); | |
1842 | ||
1843 | if (GET_CODE (dest) == REG) | |
1844 | { | |
1845 | int regno = REGNO (dest); | |
1846 | rtx tmp; | |
1847 | ||
1848 | /* Only record sets of pseudo-regs in the hash table. */ | |
1849 | if (! set_p | |
1850 | && regno >= FIRST_PSEUDO_REGISTER | |
1851 | /* Don't GCSE something if we can't do a reg/reg copy. */ | |
1852 | && can_copy_p [GET_MODE (dest)] | |
1853 | /* Is SET_SRC something we want to gcse? */ | |
1854 | && want_to_gcse_p (src)) | |
1855 | { | |
1856 | /* An expression is not anticipatable if its operands are | |
1857 | modified before this insn. */ | |
1858 | int antic_p = ! optimize_size && oprs_anticipatable_p (src, insn); | |
1859 | /* An expression is not available if its operands are | |
1860 | subsequently modified, including this insn. */ | |
1861 | int avail_p = oprs_available_p (src, insn); | |
1862 | insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p); | |
1863 | } | |
1864 | /* Record sets for constant/copy propagation. */ | |
1865 | else if (set_p | |
1866 | && regno >= FIRST_PSEUDO_REGISTER | |
1867 | && ((GET_CODE (src) == REG | |
1868 | && REGNO (src) >= FIRST_PSEUDO_REGISTER | |
1869 | && can_copy_p [GET_MODE (dest)]) | |
e78d9500 | 1870 | || GET_CODE (src) == CONST_INT |
05f6f07c | 1871 | || GET_CODE (src) == SYMBOL_REF |
e78d9500 | 1872 | || GET_CODE (src) == CONST_DOUBLE) |
7506f491 DE |
1873 | /* A copy is not available if its src or dest is subsequently |
1874 | modified. Here we want to search from INSN+1 on, but | |
1875 | oprs_available_p searches from INSN on. */ | |
1876 | && (insn == BLOCK_END (BLOCK_NUM (insn)) | |
1877 | || ((tmp = next_nonnote_insn (insn)) != NULL_RTX | |
1878 | && oprs_available_p (pat, tmp)))) | |
1879 | insert_set_in_table (pat, insn); | |
1880 | } | |
7506f491 DE |
1881 | } |
1882 | ||
1883 | static void | |
1884 | hash_scan_clobber (x, insn) | |
50b2596f | 1885 | rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED; |
7506f491 DE |
1886 | { |
1887 | /* Currently nothing to do. */ | |
1888 | } | |
1889 | ||
1890 | static void | |
1891 | hash_scan_call (x, insn) | |
50b2596f | 1892 | rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED; |
7506f491 DE |
1893 | { |
1894 | /* Currently nothing to do. */ | |
1895 | } | |
1896 | ||
1897 | /* Process INSN and add hash table entries as appropriate. | |
1898 | ||
1899 | Only available expressions that set a single pseudo-reg are recorded. | |
1900 | ||
1901 | Single sets in a PARALLEL could be handled, but it's an extra complication | |
1902 | that isn't dealt with right now. The trick is handling the CLOBBERs that | |
1903 | are also in the PARALLEL. Later. | |
1904 | ||
1905 | If SET_P is non-zero, this is for the assignment hash table, | |
ed79bb3d R |
1906 | otherwise it is for the expression hash table. |
1907 | If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should | |
1908 | not record any expressions. */ | |
7506f491 DE |
1909 | |
1910 | static void | |
ed79bb3d | 1911 | hash_scan_insn (insn, set_p, in_libcall_block) |
7506f491 DE |
1912 | rtx insn; |
1913 | int set_p; | |
48e87cef | 1914 | int in_libcall_block; |
7506f491 DE |
1915 | { |
1916 | rtx pat = PATTERN (insn); | |
1917 | ||
1918 | /* Pick out the sets of INSN and for other forms of instructions record | |
1919 | what's been modified. */ | |
1920 | ||
ed79bb3d | 1921 | if (GET_CODE (pat) == SET && ! in_libcall_block) |
7506f491 DE |
1922 | hash_scan_set (pat, insn, set_p); |
1923 | else if (GET_CODE (pat) == PARALLEL) | |
1924 | { | |
1925 | int i; | |
1926 | ||
1927 | for (i = 0; i < XVECLEN (pat, 0); i++) | |
1928 | { | |
1929 | rtx x = XVECEXP (pat, 0, i); | |
1930 | ||
1931 | if (GET_CODE (x) == SET) | |
1932 | { | |
1933 | if (GET_CODE (SET_SRC (x)) == CALL) | |
1934 | hash_scan_call (SET_SRC (x), insn); | |
7506f491 DE |
1935 | } |
1936 | else if (GET_CODE (x) == CLOBBER) | |
1937 | hash_scan_clobber (x, insn); | |
1938 | else if (GET_CODE (x) == CALL) | |
1939 | hash_scan_call (x, insn); | |
1940 | } | |
1941 | } | |
1942 | else if (GET_CODE (pat) == CLOBBER) | |
1943 | hash_scan_clobber (pat, insn); | |
1944 | else if (GET_CODE (pat) == CALL) | |
1945 | hash_scan_call (pat, insn); | |
1946 | } | |
1947 | ||
1948 | static void | |
1949 | dump_hash_table (file, name, table, table_size, total_size) | |
1950 | FILE *file; | |
dff01034 | 1951 | const char *name; |
7506f491 DE |
1952 | struct expr **table; |
1953 | int table_size, total_size; | |
1954 | { | |
1955 | int i; | |
1956 | /* Flattened out table, so it's printed in proper order. */ | |
1957 | struct expr **flat_table = (struct expr **) alloca (total_size * sizeof (struct expr *)); | |
1958 | unsigned int *hash_val = (unsigned int *) alloca (total_size * sizeof (unsigned int)); | |
1959 | ||
1960 | bzero ((char *) flat_table, total_size * sizeof (struct expr *)); | |
1961 | for (i = 0; i < table_size; i++) | |
1962 | { | |
1963 | struct expr *expr; | |
1964 | ||
1965 | for (expr = table[i]; expr != NULL; expr = expr->next_same_hash) | |
1966 | { | |
1967 | flat_table[expr->bitmap_index] = expr; | |
1968 | hash_val[expr->bitmap_index] = i; | |
1969 | } | |
1970 | } | |
1971 | ||
1972 | fprintf (file, "%s hash table (%d buckets, %d entries)\n", | |
1973 | name, table_size, total_size); | |
1974 | ||
1975 | for (i = 0; i < total_size; i++) | |
1976 | { | |
1977 | struct expr *expr = flat_table[i]; | |
1978 | ||
1979 | fprintf (file, "Index %d (hash value %d)\n ", | |
1980 | expr->bitmap_index, hash_val[i]); | |
1981 | print_rtl (file, expr->expr); | |
1982 | fprintf (file, "\n"); | |
1983 | } | |
1984 | ||
1985 | fprintf (file, "\n"); | |
1986 | } | |
1987 | ||
1988 | /* Record register first/last/block set information for REGNO in INSN. | |
1989 | reg_first_set records the first place in the block where the register | |
1990 | is set and is used to compute "anticipatability". | |
1991 | reg_last_set records the last place in the block where the register | |
1992 | is set and is used to compute "availability". | |
1993 | reg_set_in_block records whether the register is set in the block | |
1994 | and is used to compute "transparency". */ | |
1995 | ||
1996 | static void | |
1997 | record_last_reg_set_info (insn, regno) | |
1998 | rtx insn; | |
1999 | int regno; | |
2000 | { | |
b86ba9c8 | 2001 | if (reg_first_set[regno] == NEVER_SET) |
7506f491 DE |
2002 | reg_first_set[regno] = INSN_CUID (insn); |
2003 | reg_last_set[regno] = INSN_CUID (insn); | |
2004 | SET_BIT (reg_set_in_block[BLOCK_NUM (insn)], regno); | |
2005 | } | |
2006 | ||
2007 | /* Record memory first/last/block set information for INSN. */ | |
2008 | ||
2009 | static void | |
2010 | record_last_mem_set_info (insn) | |
2011 | rtx insn; | |
2012 | { | |
b86ba9c8 | 2013 | if (mem_first_set == NEVER_SET) |
7506f491 DE |
2014 | mem_first_set = INSN_CUID (insn); |
2015 | mem_last_set = INSN_CUID (insn); | |
2016 | mem_set_in_block[BLOCK_NUM (insn)] = 1; | |
2017 | } | |
2018 | ||
2019 | /* Used for communicating between next two routines. */ | |
2020 | static rtx last_set_insn; | |
2021 | ||
2022 | /* Called from compute_hash_table via note_stores to handle one | |
2023 | SET or CLOBBER in an insn. */ | |
2024 | ||
2025 | static void | |
2026 | record_last_set_info (dest, setter) | |
50b2596f | 2027 | rtx dest, setter ATTRIBUTE_UNUSED; |
7506f491 DE |
2028 | { |
2029 | if (GET_CODE (dest) == SUBREG) | |
2030 | dest = SUBREG_REG (dest); | |
2031 | ||
2032 | if (GET_CODE (dest) == REG) | |
2033 | record_last_reg_set_info (last_set_insn, REGNO (dest)); | |
2034 | else if (GET_CODE (dest) == MEM | |
2035 | /* Ignore pushes, they clobber nothing. */ | |
2036 | && ! push_operand (dest, GET_MODE (dest))) | |
2037 | record_last_mem_set_info (last_set_insn); | |
2038 | } | |
2039 | ||
2040 | /* Top level function to create an expression or assignment hash table. | |
2041 | ||
2042 | Expression entries are placed in the hash table if | |
2043 | - they are of the form (set (pseudo-reg) src), | |
2044 | - src is something we want to perform GCSE on, | |
2045 | - none of the operands are subsequently modified in the block | |
2046 | ||
2047 | Assignment entries are placed in the hash table if | |
2048 | - they are of the form (set (pseudo-reg) src), | |
2049 | - src is something we want to perform const/copy propagation on, | |
2050 | - none of the operands or target are subsequently modified in the block | |
2051 | Currently src must be a pseudo-reg or a const_int. | |
2052 | ||
2053 | F is the first insn. | |
2054 | SET_P is non-zero for computing the assignment hash table. */ | |
2055 | ||
2056 | static void | |
b5ce41ff | 2057 | compute_hash_table (set_p) |
7506f491 DE |
2058 | int set_p; |
2059 | { | |
2060 | int bb; | |
2061 | ||
2062 | /* While we compute the hash table we also compute a bit array of which | |
2063 | registers are set in which blocks. | |
2064 | We also compute which blocks set memory, in the absence of aliasing | |
2065 | support [which is TODO]. | |
2066 | ??? This isn't needed during const/copy propagation, but it's cheap to | |
2067 | compute. Later. */ | |
2068 | sbitmap_vector_zero (reg_set_in_block, n_basic_blocks); | |
2069 | bzero ((char *) mem_set_in_block, n_basic_blocks); | |
2070 | ||
2071 | /* Some working arrays used to track first and last set in each block. */ | |
2072 | /* ??? One could use alloca here, but at some size a threshold is crossed | |
2073 | beyond which one should use malloc. Are we at that threshold here? */ | |
2074 | reg_first_set = (int *) gmalloc (max_gcse_regno * sizeof (int)); | |
2075 | reg_last_set = (int *) gmalloc (max_gcse_regno * sizeof (int)); | |
2076 | ||
2077 | for (bb = 0; bb < n_basic_blocks; bb++) | |
2078 | { | |
2079 | rtx insn; | |
2080 | int regno; | |
ed79bb3d | 2081 | int in_libcall_block; |
b86ba9c8 | 2082 | int i; |
7506f491 DE |
2083 | |
2084 | /* First pass over the instructions records information used to | |
2085 | determine when registers and memory are first and last set. | |
2086 | ??? The mem_set_in_block and hard-reg reg_set_in_block computation | |
2087 | could be moved to compute_sets since they currently don't change. */ | |
2088 | ||
b86ba9c8 GK |
2089 | for (i = 0; i < max_gcse_regno; i++) |
2090 | reg_first_set[i] = reg_last_set[i] = NEVER_SET; | |
2091 | mem_first_set = NEVER_SET; | |
2092 | mem_last_set = NEVER_SET; | |
7506f491 | 2093 | |
3b413743 RH |
2094 | for (insn = BLOCK_HEAD (bb); |
2095 | insn && insn != NEXT_INSN (BLOCK_END (bb)); | |
7506f491 DE |
2096 | insn = NEXT_INSN (insn)) |
2097 | { | |
2098 | #ifdef NON_SAVING_SETJMP | |
2099 | if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE | |
2100 | && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP) | |
2101 | { | |
2102 | for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) | |
2103 | record_last_reg_set_info (insn, regno); | |
2104 | continue; | |
2105 | } | |
2106 | #endif | |
2107 | ||
2108 | if (GET_RTX_CLASS (GET_CODE (insn)) != 'i') | |
2109 | continue; | |
2110 | ||
2111 | if (GET_CODE (insn) == CALL_INSN) | |
2112 | { | |
2113 | for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) | |
15f8470f JL |
2114 | if ((call_used_regs[regno] |
2115 | && regno != STACK_POINTER_REGNUM | |
2116 | #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM | |
2117 | && regno != HARD_FRAME_POINTER_REGNUM | |
2118 | #endif | |
2119 | #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM | |
2120 | && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno]) | |
2121 | #endif | |
2122 | #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED) | |
2123 | && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic) | |
2124 | #endif | |
2125 | ||
2126 | && regno != FRAME_POINTER_REGNUM) | |
2127 | || global_regs[regno]) | |
7506f491 DE |
2128 | record_last_reg_set_info (insn, regno); |
2129 | if (! CONST_CALL_P (insn)) | |
2130 | record_last_mem_set_info (insn); | |
2131 | } | |
2132 | ||
2133 | last_set_insn = insn; | |
2134 | note_stores (PATTERN (insn), record_last_set_info); | |
2135 | } | |
2136 | ||
2137 | /* The next pass builds the hash table. */ | |
2138 | ||
3b413743 RH |
2139 | for (insn = BLOCK_HEAD (bb), in_libcall_block = 0; |
2140 | insn && insn != NEXT_INSN (BLOCK_END (bb)); | |
7506f491 DE |
2141 | insn = NEXT_INSN (insn)) |
2142 | { | |
2143 | if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') | |
ed79bb3d R |
2144 | { |
2145 | if (find_reg_note (insn, REG_LIBCALL, NULL_RTX)) | |
2146 | in_libcall_block = 1; | |
2147 | else if (find_reg_note (insn, REG_RETVAL, NULL_RTX)) | |
2148 | in_libcall_block = 0; | |
2149 | hash_scan_insn (insn, set_p, in_libcall_block); | |
2150 | } | |
7506f491 DE |
2151 | } |
2152 | } | |
2153 | ||
2154 | free (reg_first_set); | |
2155 | free (reg_last_set); | |
2156 | /* Catch bugs early. */ | |
2157 | reg_first_set = reg_last_set = 0; | |
2158 | } | |
2159 | ||
2160 | /* Allocate space for the set hash table. | |
2161 | N_INSNS is the number of instructions in the function. | |
2162 | It is used to determine the number of buckets to use. */ | |
2163 | ||
2164 | static void | |
2165 | alloc_set_hash_table (n_insns) | |
2166 | int n_insns; | |
2167 | { | |
2168 | int n; | |
2169 | ||
2170 | set_hash_table_size = n_insns / 4; | |
2171 | if (set_hash_table_size < 11) | |
2172 | set_hash_table_size = 11; | |
2173 | /* Attempt to maintain efficient use of hash table. | |
2174 | Making it an odd number is simplest for now. | |
2175 | ??? Later take some measurements. */ | |
2176 | set_hash_table_size |= 1; | |
2177 | n = set_hash_table_size * sizeof (struct expr *); | |
2178 | set_hash_table = (struct expr **) gmalloc (n); | |
2179 | } | |
2180 | ||
2181 | /* Free things allocated by alloc_set_hash_table. */ | |
2182 | ||
2183 | static void | |
2184 | free_set_hash_table () | |
2185 | { | |
2186 | free (set_hash_table); | |
2187 | } | |
2188 | ||
2189 | /* Compute the hash table for doing copy/const propagation. */ | |
2190 | ||
2191 | static void | |
b5ce41ff | 2192 | compute_set_hash_table () |
7506f491 DE |
2193 | { |
2194 | /* Initialize count of number of entries in hash table. */ | |
2195 | n_sets = 0; | |
2196 | bzero ((char *) set_hash_table, set_hash_table_size * sizeof (struct expr *)); | |
2197 | ||
b5ce41ff | 2198 | compute_hash_table (1); |
7506f491 DE |
2199 | } |
2200 | ||
2201 | /* Allocate space for the expression hash table. | |
2202 | N_INSNS is the number of instructions in the function. | |
2203 | It is used to determine the number of buckets to use. */ | |
2204 | ||
2205 | static void | |
2206 | alloc_expr_hash_table (n_insns) | |
2207 | int n_insns; | |
2208 | { | |
2209 | int n; | |
2210 | ||
2211 | expr_hash_table_size = n_insns / 2; | |
2212 | /* Make sure the amount is usable. */ | |
2213 | if (expr_hash_table_size < 11) | |
2214 | expr_hash_table_size = 11; | |
2215 | /* Attempt to maintain efficient use of hash table. | |
2216 | Making it an odd number is simplest for now. | |
2217 | ??? Later take some measurements. */ | |
2218 | expr_hash_table_size |= 1; | |
2219 | n = expr_hash_table_size * sizeof (struct expr *); | |
2220 | expr_hash_table = (struct expr **) gmalloc (n); | |
2221 | } | |
2222 | ||
2223 | /* Free things allocated by alloc_expr_hash_table. */ | |
2224 | ||
2225 | static void | |
2226 | free_expr_hash_table () | |
2227 | { | |
2228 | free (expr_hash_table); | |
2229 | } | |
2230 | ||
2231 | /* Compute the hash table for doing GCSE. */ | |
2232 | ||
2233 | static void | |
b5ce41ff | 2234 | compute_expr_hash_table () |
7506f491 DE |
2235 | { |
2236 | /* Initialize count of number of entries in hash table. */ | |
2237 | n_exprs = 0; | |
2238 | bzero ((char *) expr_hash_table, expr_hash_table_size * sizeof (struct expr *)); | |
2239 | ||
b5ce41ff | 2240 | compute_hash_table (0); |
7506f491 DE |
2241 | } |
2242 | \f | |
2243 | /* Expression tracking support. */ | |
2244 | ||
2245 | /* Lookup pattern PAT in the expression table. | |
2246 | The result is a pointer to the table entry, or NULL if not found. */ | |
2247 | ||
2248 | static struct expr * | |
2249 | lookup_expr (pat) | |
2250 | rtx pat; | |
2251 | { | |
2252 | int do_not_record_p; | |
2253 | unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p, | |
2254 | expr_hash_table_size); | |
2255 | struct expr *expr; | |
2256 | ||
2257 | if (do_not_record_p) | |
2258 | return NULL; | |
2259 | ||
2260 | expr = expr_hash_table[hash]; | |
2261 | ||
2262 | while (expr && ! expr_equiv_p (expr->expr, pat)) | |
2263 | expr = expr->next_same_hash; | |
2264 | ||
2265 | return expr; | |
2266 | } | |
2267 | ||
2268 | /* Lookup REGNO in the set table. | |
2269 | If PAT is non-NULL look for the entry that matches it, otherwise return | |
2270 | the first entry for REGNO. | |
2271 | The result is a pointer to the table entry, or NULL if not found. */ | |
2272 | ||
2273 | static struct expr * | |
2274 | lookup_set (regno, pat) | |
2275 | int regno; | |
2276 | rtx pat; | |
2277 | { | |
2278 | unsigned int hash = hash_set (regno, set_hash_table_size); | |
2279 | struct expr *expr; | |
2280 | ||
2281 | expr = set_hash_table[hash]; | |
2282 | ||
2283 | if (pat) | |
2284 | { | |
2285 | while (expr && ! expr_equiv_p (expr->expr, pat)) | |
2286 | expr = expr->next_same_hash; | |
2287 | } | |
2288 | else | |
2289 | { | |
2290 | while (expr && REGNO (SET_DEST (expr->expr)) != regno) | |
2291 | expr = expr->next_same_hash; | |
2292 | } | |
2293 | ||
2294 | return expr; | |
2295 | } | |
2296 | ||
2297 | /* Return the next entry for REGNO in list EXPR. */ | |
2298 | ||
2299 | static struct expr * | |
2300 | next_set (regno, expr) | |
2301 | int regno; | |
2302 | struct expr *expr; | |
2303 | { | |
2304 | do | |
2305 | expr = expr->next_same_hash; | |
2306 | while (expr && REGNO (SET_DEST (expr->expr)) != regno); | |
2307 | return expr; | |
2308 | } | |
2309 | ||
2310 | /* Reset tables used to keep track of what's still available [since the | |
2311 | start of the block]. */ | |
2312 | ||
2313 | static void | |
2314 | reset_opr_set_tables () | |
2315 | { | |
2316 | /* Maintain a bitmap of which regs have been set since beginning of | |
2317 | the block. */ | |
2318 | sbitmap_zero (reg_set_bitmap); | |
2319 | /* Also keep a record of the last instruction to modify memory. | |
2320 | For now this is very trivial, we only record whether any memory | |
2321 | location has been modified. */ | |
2322 | mem_last_set = 0; | |
2323 | } | |
2324 | ||
2325 | /* Return non-zero if the operands of X are not set before INSN in | |
2326 | INSN's basic block. */ | |
2327 | ||
2328 | static int | |
2329 | oprs_not_set_p (x, insn) | |
2330 | rtx x, insn; | |
2331 | { | |
2332 | int i; | |
2333 | enum rtx_code code; | |
6f7d635c | 2334 | const char *fmt; |
7506f491 DE |
2335 | |
2336 | /* repeat is used to turn tail-recursion into iteration. */ | |
2337 | repeat: | |
2338 | ||
2339 | if (x == 0) | |
2340 | return 1; | |
2341 | ||
2342 | code = GET_CODE (x); | |
2343 | switch (code) | |
2344 | { | |
2345 | case PC: | |
2346 | case CC0: | |
2347 | case CONST: | |
2348 | case CONST_INT: | |
2349 | case CONST_DOUBLE: | |
2350 | case SYMBOL_REF: | |
2351 | case LABEL_REF: | |
2352 | case ADDR_VEC: | |
2353 | case ADDR_DIFF_VEC: | |
2354 | return 1; | |
2355 | ||
2356 | case MEM: | |
2357 | if (mem_last_set != 0) | |
2358 | return 0; | |
2359 | x = XEXP (x, 0); | |
2360 | goto repeat; | |
2361 | ||
2362 | case REG: | |
2363 | return ! TEST_BIT (reg_set_bitmap, REGNO (x)); | |
2364 | ||
2365 | default: | |
2366 | break; | |
2367 | } | |
2368 | ||
2369 | fmt = GET_RTX_FORMAT (code); | |
2370 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) | |
2371 | { | |
2372 | if (fmt[i] == 'e') | |
2373 | { | |
2374 | int not_set_p; | |
2375 | /* If we are about to do the last recursive call | |
2376 | needed at this level, change it into iteration. | |
2377 | This function is called enough to be worth it. */ | |
2378 | if (i == 0) | |
2379 | { | |
2380 | x = XEXP (x, 0); | |
2381 | goto repeat; | |
2382 | } | |
2383 | not_set_p = oprs_not_set_p (XEXP (x, i), insn); | |
2384 | if (! not_set_p) | |
2385 | return 0; | |
2386 | } | |
2387 | else if (fmt[i] == 'E') | |
2388 | { | |
2389 | int j; | |
2390 | for (j = 0; j < XVECLEN (x, i); j++) | |
2391 | { | |
2392 | int not_set_p = oprs_not_set_p (XVECEXP (x, i, j), insn); | |
2393 | if (! not_set_p) | |
2394 | return 0; | |
2395 | } | |
2396 | } | |
2397 | } | |
2398 | ||
2399 | return 1; | |
2400 | } | |
2401 | ||
2402 | /* Mark things set by a CALL. */ | |
2403 | ||
2404 | static void | |
b5ce41ff JL |
2405 | mark_call (insn) |
2406 | rtx insn; | |
7506f491 DE |
2407 | { |
2408 | mem_last_set = INSN_CUID (insn); | |
2409 | } | |
2410 | ||
2411 | /* Mark things set by a SET. */ | |
2412 | ||
2413 | static void | |
2414 | mark_set (pat, insn) | |
2415 | rtx pat, insn; | |
2416 | { | |
2417 | rtx dest = SET_DEST (pat); | |
2418 | ||
2419 | while (GET_CODE (dest) == SUBREG | |
2420 | || GET_CODE (dest) == ZERO_EXTRACT | |
2421 | || GET_CODE (dest) == SIGN_EXTRACT | |
2422 | || GET_CODE (dest) == STRICT_LOW_PART) | |
2423 | dest = XEXP (dest, 0); | |
2424 | ||
2425 | if (GET_CODE (dest) == REG) | |
2426 | SET_BIT (reg_set_bitmap, REGNO (dest)); | |
2427 | else if (GET_CODE (dest) == MEM) | |
2428 | mem_last_set = INSN_CUID (insn); | |
2429 | ||
2430 | if (GET_CODE (SET_SRC (pat)) == CALL) | |
b5ce41ff | 2431 | mark_call (insn); |
7506f491 DE |
2432 | } |
2433 | ||
2434 | /* Record things set by a CLOBBER. */ | |
2435 | ||
2436 | static void | |
2437 | mark_clobber (pat, insn) | |
2438 | rtx pat, insn; | |
2439 | { | |
2440 | rtx clob = XEXP (pat, 0); | |
2441 | ||
2442 | while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART) | |
2443 | clob = XEXP (clob, 0); | |
2444 | ||
2445 | if (GET_CODE (clob) == REG) | |
2446 | SET_BIT (reg_set_bitmap, REGNO (clob)); | |
2447 | else | |
2448 | mem_last_set = INSN_CUID (insn); | |
2449 | } | |
2450 | ||
2451 | /* Record things set by INSN. | |
2452 | This data is used by oprs_not_set_p. */ | |
2453 | ||
2454 | static void | |
2455 | mark_oprs_set (insn) | |
2456 | rtx insn; | |
2457 | { | |
2458 | rtx pat = PATTERN (insn); | |
2459 | ||
2460 | if (GET_CODE (pat) == SET) | |
2461 | mark_set (pat, insn); | |
2462 | else if (GET_CODE (pat) == PARALLEL) | |
2463 | { | |
2464 | int i; | |
2465 | ||
2466 | for (i = 0; i < XVECLEN (pat, 0); i++) | |
2467 | { | |
2468 | rtx x = XVECEXP (pat, 0, i); | |
2469 | ||
2470 | if (GET_CODE (x) == SET) | |
2471 | mark_set (x, insn); | |
2472 | else if (GET_CODE (x) == CLOBBER) | |
2473 | mark_clobber (x, insn); | |
2474 | else if (GET_CODE (x) == CALL) | |
b5ce41ff | 2475 | mark_call (insn); |
7506f491 DE |
2476 | } |
2477 | } | |
2478 | else if (GET_CODE (pat) == CLOBBER) | |
2479 | mark_clobber (pat, insn); | |
2480 | else if (GET_CODE (pat) == CALL) | |
b5ce41ff | 2481 | mark_call (insn); |
7506f491 | 2482 | } |
b5ce41ff | 2483 | |
7506f491 DE |
2484 | \f |
2485 | /* Classic GCSE reaching definition support. */ | |
2486 | ||
2487 | /* Allocate reaching def variables. */ | |
2488 | ||
2489 | static void | |
2490 | alloc_rd_mem (n_blocks, n_insns) | |
2491 | int n_blocks, n_insns; | |
2492 | { | |
2493 | rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns); | |
2494 | sbitmap_vector_zero (rd_kill, n_basic_blocks); | |
2495 | ||
2496 | rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns); | |
2497 | sbitmap_vector_zero (rd_gen, n_basic_blocks); | |
2498 | ||
2499 | reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns); | |
2500 | sbitmap_vector_zero (reaching_defs, n_basic_blocks); | |
2501 | ||
2502 | rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns); | |
2503 | sbitmap_vector_zero (rd_out, n_basic_blocks); | |
2504 | } | |
2505 | ||
2506 | /* Free reaching def variables. */ | |
2507 | ||
2508 | static void | |
2509 | free_rd_mem () | |
2510 | { | |
2511 | free (rd_kill); | |
2512 | free (rd_gen); | |
2513 | free (reaching_defs); | |
2514 | free (rd_out); | |
2515 | } | |
2516 | ||
2517 | /* Add INSN to the kills of BB. | |
2518 | REGNO, set in BB, is killed by INSN. */ | |
2519 | ||
2520 | static void | |
2521 | handle_rd_kill_set (insn, regno, bb) | |
2522 | rtx insn; | |
2523 | int regno, bb; | |
2524 | { | |
2525 | struct reg_set *this_reg = reg_set_table[regno]; | |
2526 | ||
2527 | while (this_reg) | |
2528 | { | |
2529 | if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn)) | |
2530 | SET_BIT (rd_kill[bb], INSN_CUID (this_reg->insn)); | |
2531 | this_reg = this_reg->next; | |
2532 | } | |
2533 | } | |
2534 | ||
7506f491 DE |
2535 | /* Compute the set of kill's for reaching definitions. */ |
2536 | ||
2537 | static void | |
2538 | compute_kill_rd () | |
2539 | { | |
2540 | int bb,cuid; | |
2541 | ||
2542 | /* For each block | |
2543 | For each set bit in `gen' of the block (i.e each insn which | |
ac7c5af5 JL |
2544 | generates a definition in the block) |
2545 | Call the reg set by the insn corresponding to that bit regx | |
2546 | Look at the linked list starting at reg_set_table[regx] | |
2547 | For each setting of regx in the linked list, which is not in | |
2548 | this block | |
2549 | Set the bit in `kill' corresponding to that insn | |
7506f491 DE |
2550 | */ |
2551 | ||
2552 | for (bb = 0; bb < n_basic_blocks; bb++) | |
2553 | { | |
2554 | for (cuid = 0; cuid < max_cuid; cuid++) | |
2555 | { | |
2556 | if (TEST_BIT (rd_gen[bb], cuid)) | |
ac7c5af5 | 2557 | { |
7506f491 DE |
2558 | rtx insn = CUID_INSN (cuid); |
2559 | rtx pat = PATTERN (insn); | |
2560 | ||
2561 | if (GET_CODE (insn) == CALL_INSN) | |
ac7c5af5 | 2562 | { |
7506f491 DE |
2563 | int regno; |
2564 | ||
2565 | for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) | |
ac7c5af5 | 2566 | { |
15f8470f JL |
2567 | if ((call_used_regs[regno] |
2568 | && regno != STACK_POINTER_REGNUM | |
2569 | #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM | |
2570 | && regno != HARD_FRAME_POINTER_REGNUM | |
2571 | #endif | |
2572 | #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM | |
2573 | && ! (regno == ARG_POINTER_REGNUM | |
2574 | && fixed_regs[regno]) | |
2575 | #endif | |
2576 | #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED) | |
2577 | && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic) | |
2578 | #endif | |
2579 | && regno != FRAME_POINTER_REGNUM) | |
2580 | || global_regs[regno]) | |
7506f491 | 2581 | handle_rd_kill_set (insn, regno, bb); |
ac7c5af5 JL |
2582 | } |
2583 | } | |
7506f491 DE |
2584 | |
2585 | if (GET_CODE (pat) == PARALLEL) | |
2586 | { | |
2587 | int i; | |
2588 | ||
2589 | /* We work backwards because ... */ | |
2590 | for (i = XVECLEN (pat, 0) - 1; i >= 0; i--) | |
2591 | { | |
2592 | enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i)); | |
2593 | if ((code == SET || code == CLOBBER) | |
2594 | && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG) | |
2595 | handle_rd_kill_set (insn, | |
2596 | REGNO (XEXP (XVECEXP (pat, 0, i), 0)), | |
2597 | bb); | |
2598 | } | |
2599 | } | |
2600 | else if (GET_CODE (pat) == SET) | |
2601 | { | |
2602 | if (GET_CODE (SET_DEST (pat)) == REG) | |
2603 | { | |
2604 | /* Each setting of this register outside of this block | |
2605 | must be marked in the set of kills in this block. */ | |
2606 | handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb); | |
2607 | } | |
ac7c5af5 | 2608 | } |
7506f491 | 2609 | /* FIXME: CLOBBER? */ |
ac7c5af5 | 2610 | } |
7506f491 DE |
2611 | } |
2612 | } | |
2613 | } | |
2614 | ||
2615 | /* Compute the reaching definitions as in | |
2616 | Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman, | |
2617 | Chapter 10. It is the same algorithm as used for computing available | |
2618 | expressions but applied to the gens and kills of reaching definitions. */ | |
2619 | ||
2620 | static void | |
2621 | compute_rd () | |
2622 | { | |
2623 | int bb, changed, passes; | |
2624 | ||
2625 | for (bb = 0; bb < n_basic_blocks; bb++) | |
2626 | sbitmap_copy (rd_out[bb] /*dst*/, rd_gen[bb] /*src*/); | |
2627 | ||
2628 | passes = 0; | |
2629 | changed = 1; | |
2630 | while (changed) | |
2631 | { | |
2632 | changed = 0; | |
2633 | for (bb = 0; bb < n_basic_blocks; bb++) | |
ac7c5af5 | 2634 | { |
36349f8b | 2635 | sbitmap_union_of_preds (reaching_defs[bb], rd_out, bb); |
7506f491 DE |
2636 | changed |= sbitmap_union_of_diff (rd_out[bb], rd_gen[bb], |
2637 | reaching_defs[bb], rd_kill[bb]); | |
ac7c5af5 | 2638 | } |
7506f491 DE |
2639 | passes++; |
2640 | } | |
2641 | ||
2642 | if (gcse_file) | |
2643 | fprintf (gcse_file, "reaching def computation: %d passes\n", passes); | |
2644 | } | |
2645 | \f | |
2646 | /* Classic GCSE available expression support. */ | |
2647 | ||
2648 | /* Allocate memory for available expression computation. */ | |
2649 | ||
2650 | static void | |
2651 | alloc_avail_expr_mem (n_blocks, n_exprs) | |
2652 | int n_blocks, n_exprs; | |
2653 | { | |
2654 | ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs); | |
2655 | sbitmap_vector_zero (ae_kill, n_basic_blocks); | |
2656 | ||
2657 | ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs); | |
2658 | sbitmap_vector_zero (ae_gen, n_basic_blocks); | |
2659 | ||
2660 | ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs); | |
2661 | sbitmap_vector_zero (ae_in, n_basic_blocks); | |
2662 | ||
2663 | ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs); | |
2664 | sbitmap_vector_zero (ae_out, n_basic_blocks); | |
2665 | ||
2666 | u_bitmap = (sbitmap) sbitmap_alloc (n_exprs); | |
2667 | sbitmap_ones (u_bitmap); | |
2668 | } | |
2669 | ||
2670 | static void | |
2671 | free_avail_expr_mem () | |
2672 | { | |
2673 | free (ae_kill); | |
2674 | free (ae_gen); | |
2675 | free (ae_in); | |
2676 | free (ae_out); | |
2677 | free (u_bitmap); | |
2678 | } | |
2679 | ||
2680 | /* Compute the set of available expressions generated in each basic block. */ | |
2681 | ||
2682 | static void | |
2683 | compute_ae_gen () | |
2684 | { | |
2685 | int i; | |
2686 | ||
2687 | /* For each recorded occurrence of each expression, set ae_gen[bb][expr]. | |
2688 | This is all we have to do because an expression is not recorded if it | |
2689 | is not available, and the only expressions we want to work with are the | |
2690 | ones that are recorded. */ | |
2691 | ||
2692 | for (i = 0; i < expr_hash_table_size; i++) | |
2693 | { | |
2694 | struct expr *expr = expr_hash_table[i]; | |
2695 | while (expr != NULL) | |
2696 | { | |
2697 | struct occr *occr = expr->avail_occr; | |
2698 | while (occr != NULL) | |
2699 | { | |
2700 | SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index); | |
2701 | occr = occr->next; | |
2702 | } | |
2703 | expr = expr->next_same_hash; | |
2704 | } | |
2705 | } | |
2706 | } | |
2707 | ||
2708 | /* Return non-zero if expression X is killed in BB. */ | |
2709 | ||
2710 | static int | |
2711 | expr_killed_p (x, bb) | |
2712 | rtx x; | |
2713 | int bb; | |
2714 | { | |
2715 | int i; | |
2716 | enum rtx_code code; | |
6f7d635c | 2717 | const char *fmt; |
7506f491 DE |
2718 | |
2719 | /* repeat is used to turn tail-recursion into iteration. */ | |
2720 | repeat: | |
2721 | ||
2722 | if (x == 0) | |
2723 | return 1; | |
2724 | ||
2725 | code = GET_CODE (x); | |
2726 | switch (code) | |
2727 | { | |
2728 | case REG: | |
2729 | return TEST_BIT (reg_set_in_block[bb], REGNO (x)); | |
2730 | ||
2731 | case MEM: | |
2732 | if (mem_set_in_block[bb]) | |
2733 | return 1; | |
2734 | x = XEXP (x, 0); | |
2735 | goto repeat; | |
2736 | ||
2737 | case PC: | |
2738 | case CC0: /*FIXME*/ | |
2739 | case CONST: | |
2740 | case CONST_INT: | |
2741 | case CONST_DOUBLE: | |
2742 | case SYMBOL_REF: | |
2743 | case LABEL_REF: | |
2744 | case ADDR_VEC: | |
2745 | case ADDR_DIFF_VEC: | |
2746 | return 0; | |
2747 | ||
2748 | default: | |
2749 | break; | |
2750 | } | |
2751 | ||
2752 | i = GET_RTX_LENGTH (code) - 1; | |
2753 | fmt = GET_RTX_FORMAT (code); | |
2754 | for (; i >= 0; i--) | |
2755 | { | |
2756 | if (fmt[i] == 'e') | |
2757 | { | |
2758 | rtx tem = XEXP (x, i); | |
2759 | ||
2760 | /* If we are about to do the last recursive call | |
2761 | needed at this level, change it into iteration. | |
2762 | This function is called enough to be worth it. */ | |
2763 | if (i == 0) | |
2764 | { | |
2765 | x = tem; | |
2766 | goto repeat; | |
2767 | } | |
2768 | if (expr_killed_p (tem, bb)) | |
2769 | return 1; | |
2770 | } | |
2771 | else if (fmt[i] == 'E') | |
2772 | { | |
2773 | int j; | |
2774 | for (j = 0; j < XVECLEN (x, i); j++) | |
2775 | { | |
2776 | if (expr_killed_p (XVECEXP (x, i, j), bb)) | |
2777 | return 1; | |
2778 | } | |
2779 | } | |
2780 | } | |
2781 | ||
2782 | return 0; | |
2783 | } | |
2784 | ||
2785 | /* Compute the set of available expressions killed in each basic block. */ | |
2786 | ||
2787 | static void | |
2788 | compute_ae_kill () | |
2789 | { | |
2790 | int bb,i; | |
2791 | ||
2792 | for (bb = 0; bb < n_basic_blocks; bb++) | |
2793 | { | |
2794 | for (i = 0; i < expr_hash_table_size; i++) | |
2795 | { | |
2796 | struct expr *expr = expr_hash_table[i]; | |
2797 | ||
2798 | for ( ; expr != NULL; expr = expr->next_same_hash) | |
2799 | { | |
2800 | /* Skip EXPR if generated in this block. */ | |
2801 | if (TEST_BIT (ae_gen[bb], expr->bitmap_index)) | |
2802 | continue; | |
2803 | ||
2804 | if (expr_killed_p (expr->expr, bb)) | |
2805 | SET_BIT (ae_kill[bb], expr->bitmap_index); | |
2806 | } | |
2807 | } | |
2808 | } | |
2809 | } | |
2810 | ||
2811 | /* Compute available expressions. | |
2812 | ||
2813 | Implement the algorithm to find available expressions | |
2814 | as given in the Aho Sethi Ullman book, pages 627-631. */ | |
2815 | ||
2816 | static void | |
2817 | compute_available () | |
2818 | { | |
2819 | int bb, changed, passes; | |
2820 | ||
2821 | sbitmap_zero (ae_in[0]); | |
2822 | ||
2823 | sbitmap_copy (ae_out[0] /*dst*/, ae_gen[0] /*src*/); | |
2824 | ||
2825 | for (bb = 1; bb < n_basic_blocks; bb++) | |
2826 | sbitmap_difference (ae_out[bb], u_bitmap, ae_kill[bb]); | |
2827 | ||
2828 | passes = 0; | |
2829 | changed = 1; | |
2830 | while (changed) | |
2831 | { | |
2832 | changed = 0; | |
2833 | for (bb = 1; bb < n_basic_blocks; bb++) | |
2834 | { | |
36349f8b | 2835 | sbitmap_intersection_of_preds (ae_in[bb], ae_out, bb); |
7506f491 DE |
2836 | changed |= sbitmap_union_of_diff (ae_out[bb], ae_gen[bb], |
2837 | ae_in[bb], ae_kill[bb]); | |
2838 | } | |
2839 | passes++; | |
2840 | } | |
2841 | ||
2842 | if (gcse_file) | |
2843 | fprintf (gcse_file, "avail expr computation: %d passes\n", passes); | |
2844 | } | |
2845 | \f | |
2846 | /* Actually perform the Classic GCSE optimizations. */ | |
2847 | ||
2848 | /* Return non-zero if occurrence OCCR of expression EXPR reaches block BB. | |
2849 | ||
2850 | CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself | |
2851 | as a positive reach. We want to do this when there are two computations | |
2852 | of the expression in the block. | |
2853 | ||
2854 | VISITED is a pointer to a working buffer for tracking which BB's have | |
2855 | been visited. It is NULL for the top-level call. | |
2856 | ||
2857 | We treat reaching expressions that go through blocks containing the same | |
2858 | reaching expression as "not reaching". E.g. if EXPR is generated in blocks | |
2859 | 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block | |
2860 | 2 as not reaching. The intent is to improve the probability of finding | |
2861 | only one reaching expression and to reduce register lifetimes by picking | |
2862 | the closest such expression. */ | |
2863 | ||
2864 | static int | |
2865 | expr_reaches_here_p (occr, expr, bb, check_self_loop, visited) | |
2866 | struct occr *occr; | |
2867 | struct expr *expr; | |
2868 | int bb; | |
2869 | int check_self_loop; | |
2870 | char *visited; | |
2871 | { | |
36349f8b | 2872 | edge pred; |
7506f491 DE |
2873 | |
2874 | if (visited == NULL) | |
2875 | { | |
2876 | visited = (char *) alloca (n_basic_blocks); | |
2877 | bzero (visited, n_basic_blocks); | |
2878 | } | |
2879 | ||
36349f8b | 2880 | for (pred = BASIC_BLOCK(bb)->pred; pred != NULL; pred = pred->pred_next) |
7506f491 | 2881 | { |
36349f8b | 2882 | int pred_bb = pred->src->index; |
7506f491 DE |
2883 | |
2884 | if (visited[pred_bb]) | |
ac7c5af5 | 2885 | { |
7506f491 DE |
2886 | /* This predecessor has already been visited. |
2887 | Nothing to do. */ | |
2888 | ; | |
2889 | } | |
2890 | else if (pred_bb == bb) | |
ac7c5af5 | 2891 | { |
7506f491 DE |
2892 | /* BB loops on itself. */ |
2893 | if (check_self_loop | |
2894 | && TEST_BIT (ae_gen[pred_bb], expr->bitmap_index) | |
2895 | && BLOCK_NUM (occr->insn) == pred_bb) | |
2896 | return 1; | |
2897 | visited[pred_bb] = 1; | |
ac7c5af5 | 2898 | } |
7506f491 DE |
2899 | /* Ignore this predecessor if it kills the expression. */ |
2900 | else if (TEST_BIT (ae_kill[pred_bb], expr->bitmap_index)) | |
2901 | visited[pred_bb] = 1; | |
2902 | /* Does this predecessor generate this expression? */ | |
2903 | else if (TEST_BIT (ae_gen[pred_bb], expr->bitmap_index)) | |
2904 | { | |
2905 | /* Is this the occurrence we're looking for? | |
2906 | Note that there's only one generating occurrence per block | |
2907 | so we just need to check the block number. */ | |
2908 | if (BLOCK_NUM (occr->insn) == pred_bb) | |
2909 | return 1; | |
2910 | visited[pred_bb] = 1; | |
2911 | } | |
2912 | /* Neither gen nor kill. */ | |
2913 | else | |
ac7c5af5 | 2914 | { |
7506f491 DE |
2915 | visited[pred_bb] = 1; |
2916 | if (expr_reaches_here_p (occr, expr, pred_bb, check_self_loop, visited)) | |
2917 | return 1; | |
ac7c5af5 | 2918 | } |
7506f491 DE |
2919 | } |
2920 | ||
2921 | /* All paths have been checked. */ | |
2922 | return 0; | |
2923 | } | |
2924 | ||
2925 | /* Return the instruction that computes EXPR that reaches INSN's basic block. | |
2926 | If there is more than one such instruction, return NULL. | |
2927 | ||
2928 | Called only by handle_avail_expr. */ | |
2929 | ||
2930 | static rtx | |
2931 | computing_insn (expr, insn) | |
2932 | struct expr *expr; | |
2933 | rtx insn; | |
2934 | { | |
2935 | int bb = BLOCK_NUM (insn); | |
2936 | ||
2937 | if (expr->avail_occr->next == NULL) | |
2938 | { | |
2939 | if (BLOCK_NUM (expr->avail_occr->insn) == bb) | |
2940 | { | |
2941 | /* The available expression is actually itself | |
2942 | (i.e. a loop in the flow graph) so do nothing. */ | |
2943 | return NULL; | |
2944 | } | |
2945 | /* (FIXME) Case that we found a pattern that was created by | |
2946 | a substitution that took place. */ | |
2947 | return expr->avail_occr->insn; | |
2948 | } | |
2949 | else | |
2950 | { | |
2951 | /* Pattern is computed more than once. | |
2952 | Search backwards from this insn to see how many of these | |
2953 | computations actually reach this insn. */ | |
2954 | struct occr *occr; | |
2955 | rtx insn_computes_expr = NULL; | |
2956 | int can_reach = 0; | |
2957 | ||
2958 | for (occr = expr->avail_occr; occr != NULL; occr = occr->next) | |
2959 | { | |
2960 | if (BLOCK_NUM (occr->insn) == bb) | |
2961 | { | |
2962 | /* The expression is generated in this block. | |
2963 | The only time we care about this is when the expression | |
2964 | is generated later in the block [and thus there's a loop]. | |
2965 | We let the normal cse pass handle the other cases. */ | |
2966 | if (INSN_CUID (insn) < INSN_CUID (occr->insn)) | |
2967 | { | |
2968 | if (expr_reaches_here_p (occr, expr, bb, 1, NULL)) | |
2969 | { | |
2970 | can_reach++; | |
2971 | if (can_reach > 1) | |
2972 | return NULL; | |
2973 | insn_computes_expr = occr->insn; | |
2974 | } | |
2975 | } | |
2976 | } | |
2977 | else /* Computation of the pattern outside this block. */ | |
2978 | { | |
2979 | if (expr_reaches_here_p (occr, expr, bb, 0, NULL)) | |
2980 | { | |
2981 | can_reach++; | |
2982 | if (can_reach > 1) | |
2983 | return NULL; | |
2984 | insn_computes_expr = occr->insn; | |
2985 | } | |
2986 | } | |
2987 | } | |
2988 | ||
2989 | if (insn_computes_expr == NULL) | |
2990 | abort (); | |
2991 | return insn_computes_expr; | |
2992 | } | |
2993 | } | |
2994 | ||
2995 | /* Return non-zero if the definition in DEF_INSN can reach INSN. | |
2996 | Only called by can_disregard_other_sets. */ | |
2997 | ||
2998 | static int | |
2999 | def_reaches_here_p (insn, def_insn) | |
3000 | rtx insn, def_insn; | |
3001 | { | |
3002 | rtx reg; | |
3003 | ||
3004 | if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn))) | |
3005 | return 1; | |
3006 | ||
3007 | if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn)) | |
3008 | { | |
3009 | if (INSN_CUID (def_insn) < INSN_CUID (insn)) | |
ac7c5af5 | 3010 | { |
7506f491 DE |
3011 | if (GET_CODE (PATTERN (def_insn)) == PARALLEL) |
3012 | return 1; | |
3013 | if (GET_CODE (PATTERN (def_insn)) == CLOBBER) | |
3014 | reg = XEXP (PATTERN (def_insn), 0); | |
3015 | else if (GET_CODE (PATTERN (def_insn)) == SET) | |
3016 | reg = SET_DEST (PATTERN (def_insn)); | |
3017 | else | |
3018 | abort (); | |
3019 | return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn); | |
3020 | } | |
3021 | else | |
3022 | return 0; | |
3023 | } | |
3024 | ||
3025 | return 0; | |
3026 | } | |
3027 | ||
3028 | /* Return non-zero if *ADDR_THIS_REG can only have one value at INSN. | |
3029 | The value returned is the number of definitions that reach INSN. | |
3030 | Returning a value of zero means that [maybe] more than one definition | |
3031 | reaches INSN and the caller can't perform whatever optimization it is | |
3032 | trying. i.e. it is always safe to return zero. */ | |
3033 | ||
3034 | static int | |
3035 | can_disregard_other_sets (addr_this_reg, insn, for_combine) | |
3036 | struct reg_set **addr_this_reg; | |
3037 | rtx insn; | |
3038 | int for_combine; | |
3039 | { | |
3040 | int number_of_reaching_defs = 0; | |
3041 | struct reg_set *this_reg = *addr_this_reg; | |
3042 | ||
3043 | while (this_reg) | |
3044 | { | |
3045 | if (def_reaches_here_p (insn, this_reg->insn)) | |
3046 | { | |
3047 | number_of_reaching_defs++; | |
3048 | /* Ignore parallels for now. */ | |
3049 | if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL) | |
3050 | return 0; | |
3051 | if (!for_combine | |
3052 | && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER | |
3053 | || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)), | |
3054 | SET_SRC (PATTERN (insn))))) | |
3055 | { | |
3056 | /* A setting of the reg to a different value reaches INSN. */ | |
3057 | return 0; | |
3058 | } | |
3059 | if (number_of_reaching_defs > 1) | |
3060 | { | |
3061 | /* If in this setting the value the register is being | |
3062 | set to is equal to the previous value the register | |
3063 | was set to and this setting reaches the insn we are | |
3064 | trying to do the substitution on then we are ok. */ | |
3065 | ||
3066 | if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER) | |
3067 | return 0; | |
3068 | if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)), | |
3069 | SET_SRC (PATTERN (insn)))) | |
3070 | return 0; | |
3071 | } | |
3072 | *addr_this_reg = this_reg; | |
3073 | } | |
3074 | ||
3075 | /* prev_this_reg = this_reg; */ | |
3076 | this_reg = this_reg->next; | |
3077 | } | |
3078 | ||
3079 | return number_of_reaching_defs; | |
3080 | } | |
3081 | ||
3082 | /* Expression computed by insn is available and the substitution is legal, | |
3083 | so try to perform the substitution. | |
3084 | ||
3085 | The result is non-zero if any changes were made. */ | |
3086 | ||
3087 | static int | |
3088 | handle_avail_expr (insn, expr) | |
3089 | rtx insn; | |
3090 | struct expr *expr; | |
3091 | { | |
3092 | rtx pat, insn_computes_expr; | |
3093 | rtx to; | |
3094 | struct reg_set *this_reg; | |
3095 | int found_setting, use_src; | |
3096 | int changed = 0; | |
3097 | ||
3098 | /* We only handle the case where one computation of the expression | |
3099 | reaches this instruction. */ | |
3100 | insn_computes_expr = computing_insn (expr, insn); | |
3101 | if (insn_computes_expr == NULL) | |
3102 | return 0; | |
3103 | ||
3104 | found_setting = 0; | |
3105 | use_src = 0; | |
3106 | ||
3107 | /* At this point we know only one computation of EXPR outside of this | |
3108 | block reaches this insn. Now try to find a register that the | |
3109 | expression is computed into. */ | |
3110 | ||
3111 | if (GET_CODE (SET_SRC (PATTERN (insn_computes_expr))) == REG) | |
3112 | { | |
3113 | /* This is the case when the available expression that reaches | |
3114 | here has already been handled as an available expression. */ | |
3115 | int regnum_for_replacing = REGNO (SET_SRC (PATTERN (insn_computes_expr))); | |
3116 | /* If the register was created by GCSE we can't use `reg_set_table', | |
3117 | however we know it's set only once. */ | |
3118 | if (regnum_for_replacing >= max_gcse_regno | |
3119 | /* If the register the expression is computed into is set only once, | |
3120 | or only one set reaches this insn, we can use it. */ | |
3121 | || (((this_reg = reg_set_table[regnum_for_replacing]), | |
3122 | this_reg->next == NULL) | |
3123 | || can_disregard_other_sets (&this_reg, insn, 0))) | |
3124 | { | |
3125 | use_src = 1; | |
3126 | found_setting = 1; | |
3127 | } | |
3128 | } | |
3129 | ||
3130 | if (!found_setting) | |
3131 | { | |
3132 | int regnum_for_replacing = REGNO (SET_DEST (PATTERN (insn_computes_expr))); | |
3133 | /* This shouldn't happen. */ | |
3134 | if (regnum_for_replacing >= max_gcse_regno) | |
3135 | abort (); | |
3136 | this_reg = reg_set_table[regnum_for_replacing]; | |
3137 | /* If the register the expression is computed into is set only once, | |
3138 | or only one set reaches this insn, use it. */ | |
3139 | if (this_reg->next == NULL | |
3140 | || can_disregard_other_sets (&this_reg, insn, 0)) | |
3141 | found_setting = 1; | |
3142 | } | |
3143 | ||
3144 | if (found_setting) | |
3145 | { | |
3146 | pat = PATTERN (insn); | |
3147 | if (use_src) | |
3148 | to = SET_SRC (PATTERN (insn_computes_expr)); | |
3149 | else | |
3150 | to = SET_DEST (PATTERN (insn_computes_expr)); | |
3151 | changed = validate_change (insn, &SET_SRC (pat), to, 0); | |
3152 | ||
3153 | /* We should be able to ignore the return code from validate_change but | |
3154 | to play it safe we check. */ | |
3155 | if (changed) | |
3156 | { | |
3157 | gcse_subst_count++; | |
3158 | if (gcse_file != NULL) | |
3159 | { | |
3160 | fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d %s insn %d\n", | |
3161 | INSN_UID (insn), REGNO (to), | |
3162 | use_src ? "from" : "set in", | |
3163 | INSN_UID (insn_computes_expr)); | |
3164 | } | |
3165 | ||
3166 | } | |
3167 | } | |
3168 | /* The register that the expr is computed into is set more than once. */ | |
3169 | else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/) | |
3170 | { | |
3171 | /* Insert an insn after insnx that copies the reg set in insnx | |
3172 | into a new pseudo register call this new register REGN. | |
3173 | From insnb until end of basic block or until REGB is set | |
3174 | replace all uses of REGB with REGN. */ | |
3175 | rtx new_insn; | |
3176 | ||
3177 | to = gen_reg_rtx (GET_MODE (SET_DEST (PATTERN (insn_computes_expr)))); | |
3178 | ||
3179 | /* Generate the new insn. */ | |
3180 | /* ??? If the change fails, we return 0, even though we created | |
3181 | an insn. I think this is ok. */ | |
9e6a5703 JC |
3182 | new_insn |
3183 | = emit_insn_after (gen_rtx_SET (VOIDmode, to, | |
3184 | SET_DEST (PATTERN (insn_computes_expr))), | |
7506f491 DE |
3185 | insn_computes_expr); |
3186 | /* Keep block number table up to date. */ | |
3187 | set_block_num (new_insn, BLOCK_NUM (insn_computes_expr)); | |
3188 | /* Keep register set table up to date. */ | |
3189 | record_one_set (REGNO (to), new_insn); | |
3190 | ||
3191 | gcse_create_count++; | |
3192 | if (gcse_file != NULL) | |
ac7c5af5 | 3193 | { |
7506f491 DE |
3194 | fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d, computed in insn %d,\n", |
3195 | INSN_UID (NEXT_INSN (insn_computes_expr)), | |
3196 | REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))), | |
3197 | INSN_UID (insn_computes_expr)); | |
3198 | fprintf (gcse_file, " into newly allocated reg %d\n", REGNO (to)); | |
ac7c5af5 | 3199 | } |
7506f491 DE |
3200 | |
3201 | pat = PATTERN (insn); | |
3202 | ||
3203 | /* Do register replacement for INSN. */ | |
3204 | changed = validate_change (insn, &SET_SRC (pat), | |
3205 | SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr))), | |
3206 | 0); | |
3207 | ||
3208 | /* We should be able to ignore the return code from validate_change but | |
3209 | to play it safe we check. */ | |
3210 | if (changed) | |
3211 | { | |
3212 | gcse_subst_count++; | |
3213 | if (gcse_file != NULL) | |
3214 | { | |
3215 | fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d set in insn %d\n", | |
3216 | INSN_UID (insn), | |
3217 | REGNO (SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr)))), | |
3218 | INSN_UID (insn_computes_expr)); | |
3219 | } | |
3220 | ||
3221 | } | |
3222 | } | |
3223 | ||
3224 | return changed; | |
3225 | } | |
3226 | ||
3227 | /* Perform classic GCSE. | |
3228 | This is called by one_classic_gcse_pass after all the dataflow analysis | |
3229 | has been done. | |
3230 | ||
3231 | The result is non-zero if a change was made. */ | |
3232 | ||
3233 | static int | |
3234 | classic_gcse () | |
3235 | { | |
3236 | int bb, changed; | |
3237 | rtx insn; | |
3238 | ||
3239 | /* Note we start at block 1. */ | |
3240 | ||
3241 | changed = 0; | |
3242 | for (bb = 1; bb < n_basic_blocks; bb++) | |
3243 | { | |
3244 | /* Reset tables used to keep track of what's still valid [since the | |
3245 | start of the block]. */ | |
3246 | reset_opr_set_tables (); | |
3247 | ||
3b413743 RH |
3248 | for (insn = BLOCK_HEAD (bb); |
3249 | insn != NULL && insn != NEXT_INSN (BLOCK_END (bb)); | |
7506f491 DE |
3250 | insn = NEXT_INSN (insn)) |
3251 | { | |
3252 | /* Is insn of form (set (pseudo-reg) ...)? */ | |
3253 | ||
3254 | if (GET_CODE (insn) == INSN | |
3255 | && GET_CODE (PATTERN (insn)) == SET | |
3256 | && GET_CODE (SET_DEST (PATTERN (insn))) == REG | |
3257 | && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER) | |
3258 | { | |
3259 | rtx pat = PATTERN (insn); | |
3260 | rtx src = SET_SRC (pat); | |
3261 | struct expr *expr; | |
3262 | ||
3263 | if (want_to_gcse_p (src) | |
3264 | /* Is the expression recorded? */ | |
3265 | && ((expr = lookup_expr (src)) != NULL) | |
3266 | /* Is the expression available [at the start of the | |
3267 | block]? */ | |
3268 | && TEST_BIT (ae_in[bb], expr->bitmap_index) | |
3269 | /* Are the operands unchanged since the start of the | |
3270 | block? */ | |
3271 | && oprs_not_set_p (src, insn)) | |
3272 | changed |= handle_avail_expr (insn, expr); | |
3273 | } | |
3274 | ||
3275 | /* Keep track of everything modified by this insn. */ | |
3276 | /* ??? Need to be careful w.r.t. mods done to INSN. */ | |
3277 | if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') | |
3278 | mark_oprs_set (insn); | |
ac7c5af5 | 3279 | } |
7506f491 DE |
3280 | } |
3281 | ||
3282 | return changed; | |
3283 | } | |
3284 | ||
3285 | /* Top level routine to perform one classic GCSE pass. | |
3286 | ||
3287 | Return non-zero if a change was made. */ | |
3288 | ||
3289 | static int | |
b5ce41ff | 3290 | one_classic_gcse_pass (pass) |
7506f491 DE |
3291 | int pass; |
3292 | { | |
3293 | int changed = 0; | |
3294 | ||
3295 | gcse_subst_count = 0; | |
3296 | gcse_create_count = 0; | |
3297 | ||
3298 | alloc_expr_hash_table (max_cuid); | |
3299 | alloc_rd_mem (n_basic_blocks, max_cuid); | |
b5ce41ff | 3300 | compute_expr_hash_table (); |
7506f491 DE |
3301 | if (gcse_file) |
3302 | dump_hash_table (gcse_file, "Expression", expr_hash_table, | |
3303 | expr_hash_table_size, n_exprs); | |
3304 | if (n_exprs > 0) | |
3305 | { | |
3306 | compute_kill_rd (); | |
3307 | compute_rd (); | |
3308 | alloc_avail_expr_mem (n_basic_blocks, n_exprs); | |
3309 | compute_ae_gen (); | |
3310 | compute_ae_kill (); | |
3311 | compute_available (); | |
3312 | changed = classic_gcse (); | |
3313 | free_avail_expr_mem (); | |
3314 | } | |
3315 | free_rd_mem (); | |
3316 | free_expr_hash_table (); | |
3317 | ||
3318 | if (gcse_file) | |
3319 | { | |
3320 | fprintf (gcse_file, "\n"); | |
3321 | fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n", | |
3322 | current_function_name, pass, | |
3323 | bytes_used, gcse_subst_count, gcse_create_count); | |
3324 | } | |
3325 | ||
3326 | return changed; | |
3327 | } | |
3328 | \f | |
3329 | /* Compute copy/constant propagation working variables. */ | |
3330 | ||
3331 | /* Local properties of assignments. */ | |
3332 | ||
3333 | static sbitmap *cprop_pavloc; | |
3334 | static sbitmap *cprop_absaltered; | |
3335 | ||
3336 | /* Global properties of assignments (computed from the local properties). */ | |
3337 | ||
3338 | static sbitmap *cprop_avin; | |
3339 | static sbitmap *cprop_avout; | |
3340 | ||
3341 | /* Allocate vars used for copy/const propagation. | |
3342 | N_BLOCKS is the number of basic blocks. | |
3343 | N_SETS is the number of sets. */ | |
3344 | ||
3345 | static void | |
3346 | alloc_cprop_mem (n_blocks, n_sets) | |
3347 | int n_blocks, n_sets; | |
3348 | { | |
3349 | cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets); | |
3350 | cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets); | |
3351 | ||
3352 | cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets); | |
3353 | cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets); | |
3354 | } | |
3355 | ||
3356 | /* Free vars used by copy/const propagation. */ | |
3357 | ||
3358 | static void | |
3359 | free_cprop_mem () | |
3360 | { | |
3361 | free (cprop_pavloc); | |
3362 | free (cprop_absaltered); | |
3363 | free (cprop_avin); | |
3364 | free (cprop_avout); | |
3365 | } | |
3366 | ||
7506f491 DE |
3367 | /* For each block, compute whether X is transparent. |
3368 | X is either an expression or an assignment [though we don't care which, | |
3369 | for this context an assignment is treated as an expression]. | |
3370 | For each block where an element of X is modified, set (SET_P == 1) or reset | |
3371 | (SET_P == 0) the INDX bit in BMAP. */ | |
3372 | ||
3373 | static void | |
3374 | compute_transp (x, indx, bmap, set_p) | |
3375 | rtx x; | |
3376 | int indx; | |
3377 | sbitmap *bmap; | |
3378 | int set_p; | |
3379 | { | |
3380 | int bb,i; | |
3381 | enum rtx_code code; | |
6f7d635c | 3382 | const char *fmt; |
7506f491 DE |
3383 | |
3384 | /* repeat is used to turn tail-recursion into iteration. */ | |
3385 | repeat: | |
3386 | ||
3387 | if (x == 0) | |
3388 | return; | |
3389 | ||
3390 | code = GET_CODE (x); | |
3391 | switch (code) | |
3392 | { | |
3393 | case REG: | |
3394 | { | |
3395 | reg_set *r; | |
3396 | int regno = REGNO (x); | |
3397 | ||
3398 | if (set_p) | |
3399 | { | |
3400 | if (regno < FIRST_PSEUDO_REGISTER) | |
3401 | { | |
3402 | for (bb = 0; bb < n_basic_blocks; bb++) | |
3403 | if (TEST_BIT (reg_set_in_block[bb], regno)) | |
3404 | SET_BIT (bmap[bb], indx); | |
3405 | } | |
3406 | else | |
3407 | { | |
3408 | for (r = reg_set_table[regno]; r != NULL; r = r->next) | |
3409 | { | |
3410 | bb = BLOCK_NUM (r->insn); | |
3411 | SET_BIT (bmap[bb], indx); | |
3412 | } | |
3413 | } | |
3414 | } | |
3415 | else | |
3416 | { | |
3417 | if (regno < FIRST_PSEUDO_REGISTER) | |
3418 | { | |
3419 | for (bb = 0; bb < n_basic_blocks; bb++) | |
3420 | if (TEST_BIT (reg_set_in_block[bb], regno)) | |
3421 | RESET_BIT (bmap[bb], indx); | |
3422 | } | |
3423 | else | |
3424 | { | |
3425 | for (r = reg_set_table[regno]; r != NULL; r = r->next) | |
3426 | { | |
3427 | bb = BLOCK_NUM (r->insn); | |
3428 | RESET_BIT (bmap[bb], indx); | |
3429 | } | |
3430 | } | |
3431 | } | |
3432 | return; | |
3433 | } | |
3434 | ||
3435 | case MEM: | |
3436 | if (set_p) | |
3437 | { | |
3438 | for (bb = 0; bb < n_basic_blocks; bb++) | |
3439 | if (mem_set_in_block[bb]) | |
3440 | SET_BIT (bmap[bb], indx); | |
3441 | } | |
3442 | else | |
3443 | { | |
3444 | for (bb = 0; bb < n_basic_blocks; bb++) | |
3445 | if (mem_set_in_block[bb]) | |
3446 | RESET_BIT (bmap[bb], indx); | |
3447 | } | |
3448 | x = XEXP (x, 0); | |
3449 | goto repeat; | |
3450 | ||
3451 | case PC: | |
3452 | case CC0: /*FIXME*/ | |
3453 | case CONST: | |
3454 | case CONST_INT: | |
3455 | case CONST_DOUBLE: | |
3456 | case SYMBOL_REF: | |
3457 | case LABEL_REF: | |
3458 | case ADDR_VEC: | |
3459 | case ADDR_DIFF_VEC: | |
3460 | return; | |
3461 | ||
3462 | default: | |
3463 | break; | |
3464 | } | |
3465 | ||
3466 | i = GET_RTX_LENGTH (code) - 1; | |
3467 | fmt = GET_RTX_FORMAT (code); | |
3468 | for (; i >= 0; i--) | |
3469 | { | |
3470 | if (fmt[i] == 'e') | |
3471 | { | |
3472 | rtx tem = XEXP (x, i); | |
3473 | ||
3474 | /* If we are about to do the last recursive call | |
3475 | needed at this level, change it into iteration. | |
3476 | This function is called enough to be worth it. */ | |
3477 | if (i == 0) | |
3478 | { | |
3479 | x = tem; | |
3480 | goto repeat; | |
3481 | } | |
3482 | compute_transp (tem, indx, bmap, set_p); | |
3483 | } | |
3484 | else if (fmt[i] == 'E') | |
3485 | { | |
3486 | int j; | |
3487 | for (j = 0; j < XVECLEN (x, i); j++) | |
3488 | compute_transp (XVECEXP (x, i, j), indx, bmap, set_p); | |
3489 | } | |
3490 | } | |
3491 | } | |
3492 | ||
b5ce41ff JL |
3493 | /* Compute the available expressions at the start and end of each |
3494 | basic block for cprop. This particular dataflow equation is | |
3495 | used often enough that we might want to generalize it and make | |
3496 | as a subroutine for other global optimizations that need available | |
3497 | in/out information. */ | |
7506f491 DE |
3498 | static void |
3499 | compute_cprop_avinout () | |
3500 | { | |
3501 | int bb, changed, passes; | |
3502 | ||
3503 | sbitmap_zero (cprop_avin[0]); | |
3504 | sbitmap_vector_ones (cprop_avout, n_basic_blocks); | |
3505 | ||
3506 | passes = 0; | |
3507 | changed = 1; | |
3508 | while (changed) | |
3509 | { | |
3510 | changed = 0; | |
3511 | for (bb = 0; bb < n_basic_blocks; bb++) | |
ac7c5af5 | 3512 | { |
7506f491 | 3513 | if (bb != 0) |
36349f8b | 3514 | sbitmap_intersection_of_preds (cprop_avin[bb], cprop_avout, bb); |
7506f491 DE |
3515 | changed |= sbitmap_union_of_diff (cprop_avout[bb], |
3516 | cprop_pavloc[bb], | |
3517 | cprop_avin[bb], | |
3518 | cprop_absaltered[bb]); | |
3519 | } | |
3520 | passes++; | |
3521 | } | |
3522 | ||
3523 | if (gcse_file) | |
3524 | fprintf (gcse_file, "cprop avail expr computation: %d passes\n", passes); | |
3525 | } | |
3526 | ||
3527 | /* Top level routine to do the dataflow analysis needed by copy/const | |
3528 | propagation. */ | |
3529 | ||
3530 | static void | |
3531 | compute_cprop_data () | |
3532 | { | |
b5ce41ff | 3533 | compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1); |
7506f491 DE |
3534 | compute_cprop_avinout (); |
3535 | } | |
3536 | \f | |
3537 | /* Copy/constant propagation. */ | |
3538 | ||
7506f491 DE |
3539 | /* Maximum number of register uses in an insn that we handle. */ |
3540 | #define MAX_USES 8 | |
3541 | ||
3542 | /* Table of uses found in an insn. | |
3543 | Allocated statically to avoid alloc/free complexity and overhead. */ | |
3544 | static struct reg_use reg_use_table[MAX_USES]; | |
3545 | ||
3546 | /* Index into `reg_use_table' while building it. */ | |
3547 | static int reg_use_count; | |
3548 | ||
3549 | /* Set up a list of register numbers used in INSN. | |
3550 | The found uses are stored in `reg_use_table'. | |
3551 | `reg_use_count' is initialized to zero before entry, and | |
3552 | contains the number of uses in the table upon exit. | |
3553 | ||
3554 | ??? If a register appears multiple times we will record it multiple | |
3555 | times. This doesn't hurt anything but it will slow things down. */ | |
3556 | ||
3557 | static void | |
3558 | find_used_regs (x) | |
3559 | rtx x; | |
3560 | { | |
3561 | int i; | |
3562 | enum rtx_code code; | |
6f7d635c | 3563 | const char *fmt; |
7506f491 DE |
3564 | |
3565 | /* repeat is used to turn tail-recursion into iteration. */ | |
3566 | repeat: | |
3567 | ||
3568 | if (x == 0) | |
3569 | return; | |
3570 | ||
3571 | code = GET_CODE (x); | |
3572 | switch (code) | |
3573 | { | |
3574 | case REG: | |
3575 | if (reg_use_count == MAX_USES) | |
3576 | return; | |
3577 | reg_use_table[reg_use_count].reg_rtx = x; | |
3578 | reg_use_count++; | |
3579 | return; | |
3580 | ||
3581 | case MEM: | |
3582 | x = XEXP (x, 0); | |
3583 | goto repeat; | |
3584 | ||
3585 | case PC: | |
3586 | case CC0: | |
3587 | case CONST: | |
3588 | case CONST_INT: | |
3589 | case CONST_DOUBLE: | |
3590 | case SYMBOL_REF: | |
3591 | case LABEL_REF: | |
3592 | case CLOBBER: | |
3593 | case ADDR_VEC: | |
3594 | case ADDR_DIFF_VEC: | |
3595 | case ASM_INPUT: /*FIXME*/ | |
3596 | return; | |
3597 | ||
3598 | case SET: | |
3599 | if (GET_CODE (SET_DEST (x)) == MEM) | |
3600 | find_used_regs (SET_DEST (x)); | |
3601 | x = SET_SRC (x); | |
3602 | goto repeat; | |
3603 | ||
3604 | default: | |
3605 | break; | |
3606 | } | |
3607 | ||
3608 | /* Recursively scan the operands of this expression. */ | |
3609 | ||
3610 | fmt = GET_RTX_FORMAT (code); | |
3611 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) | |
3612 | { | |
3613 | if (fmt[i] == 'e') | |
3614 | { | |
3615 | /* If we are about to do the last recursive call | |
3616 | needed at this level, change it into iteration. | |
3617 | This function is called enough to be worth it. */ | |
3618 | if (i == 0) | |
3619 | { | |
3620 | x = XEXP (x, 0); | |
3621 | goto repeat; | |
3622 | } | |
3623 | find_used_regs (XEXP (x, i)); | |
3624 | } | |
3625 | else if (fmt[i] == 'E') | |
3626 | { | |
3627 | int j; | |
3628 | for (j = 0; j < XVECLEN (x, i); j++) | |
3629 | find_used_regs (XVECEXP (x, i, j)); | |
3630 | } | |
3631 | } | |
3632 | } | |
3633 | ||
3634 | /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO. | |
3635 | Returns non-zero is successful. */ | |
3636 | ||
3637 | static int | |
3638 | try_replace_reg (from, to, insn) | |
3639 | rtx from, to, insn; | |
3640 | { | |
e78d9500 JL |
3641 | /* If this fails we could try to simplify the result of the |
3642 | replacement and attempt to recognize the simplified insn. | |
3643 | ||
3644 | But we need a general simplify_rtx that doesn't have pass | |
3645 | specific state variables. I'm not aware of one at the moment. */ | |
7506f491 DE |
3646 | return validate_replace_src (from, to, insn); |
3647 | } | |
3648 | ||
3649 | /* Find a set of REGNO that is available on entry to INSN's block. | |
3650 | Returns NULL if not found. */ | |
3651 | ||
3652 | static struct expr * | |
3653 | find_avail_set (regno, insn) | |
3654 | int regno; | |
3655 | rtx insn; | |
3656 | { | |
cafba495 BS |
3657 | /* SET1 contains the last set found that can be returned to the caller for |
3658 | use in a substitution. */ | |
3659 | struct expr *set1 = 0; | |
3660 | ||
3661 | /* Loops are not possible here. To get a loop we would need two sets | |
3662 | available at the start of the block containing INSN. ie we would | |
3663 | need two sets like this available at the start of the block: | |
3664 | ||
3665 | (set (reg X) (reg Y)) | |
3666 | (set (reg Y) (reg X)) | |
3667 | ||
3668 | This can not happen since the set of (reg Y) would have killed the | |
3669 | set of (reg X) making it unavailable at the start of this block. */ | |
3670 | while (1) | |
3671 | { | |
3672 | rtx src; | |
3673 | struct expr *set = lookup_set (regno, NULL_RTX); | |
3674 | ||
3675 | /* Find a set that is available at the start of the block | |
3676 | which contains INSN. */ | |
3677 | while (set) | |
3678 | { | |
3679 | if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index)) | |
3680 | break; | |
3681 | set = next_set (regno, set); | |
3682 | } | |
7506f491 | 3683 | |
cafba495 BS |
3684 | /* If no available set was found we've reached the end of the |
3685 | (possibly empty) copy chain. */ | |
3686 | if (set == 0) | |
3687 | break; | |
3688 | ||
3689 | if (GET_CODE (set->expr) != SET) | |
3690 | abort (); | |
3691 | ||
3692 | src = SET_SRC (set->expr); | |
3693 | ||
3694 | /* We know the set is available. | |
3695 | Now check that SRC is ANTLOC (i.e. none of the source operands | |
3696 | have changed since the start of the block). | |
3697 | ||
3698 | If the source operand changed, we may still use it for the next | |
3699 | iteration of this loop, but we may not use it for substitutions. */ | |
3700 | if (CONSTANT_P (src) || oprs_not_set_p (src, insn)) | |
3701 | set1 = set; | |
3702 | ||
3703 | /* If the source of the set is anything except a register, then | |
3704 | we have reached the end of the copy chain. */ | |
3705 | if (GET_CODE (src) != REG) | |
7506f491 | 3706 | break; |
7506f491 | 3707 | |
cafba495 BS |
3708 | /* Follow the copy chain, ie start another iteration of the loop |
3709 | and see if we have an available copy into SRC. */ | |
3710 | regno = REGNO (src); | |
3711 | } | |
3712 | ||
3713 | /* SET1 holds the last set that was available and anticipatable at | |
3714 | INSN. */ | |
3715 | return set1; | |
7506f491 DE |
3716 | } |
3717 | ||
abd535b6 BS |
3718 | /* Subroutine of cprop_insn that tries to propagate constants into |
3719 | JUMP_INSNS. INSN must be a conditional jump; COPY is a copy of it | |
3720 | that we can use for substitutions. | |
3721 | REG_USED is the use we will try to replace, SRC is the constant we | |
3722 | will try to substitute for it. | |
3723 | Returns nonzero if a change was made. */ | |
3724 | static int | |
3725 | cprop_jump (insn, copy, reg_used, src) | |
3726 | rtx insn, copy; | |
3727 | struct reg_use *reg_used; | |
3728 | rtx src; | |
3729 | { | |
3730 | rtx set = PATTERN (copy); | |
3731 | rtx temp; | |
3732 | ||
3733 | /* Replace the register with the appropriate constant. */ | |
3734 | replace_rtx (SET_SRC (set), reg_used->reg_rtx, src); | |
3735 | ||
3736 | temp = simplify_ternary_operation (GET_CODE (SET_SRC (set)), | |
3737 | GET_MODE (SET_SRC (set)), | |
3738 | GET_MODE (XEXP (SET_SRC (set), 0)), | |
3739 | XEXP (SET_SRC (set), 0), | |
3740 | XEXP (SET_SRC (set), 1), | |
3741 | XEXP (SET_SRC (set), 2)); | |
3742 | ||
3743 | /* If no simplification can be made, then try the next | |
3744 | register. */ | |
3745 | if (temp == 0) | |
3746 | return 0; | |
3747 | ||
3748 | SET_SRC (set) = temp; | |
3749 | ||
3750 | /* That may have changed the structure of TEMP, so | |
3751 | force it to be rerecognized if it has not turned | |
3752 | into a nop or unconditional jump. */ | |
3753 | ||
3754 | INSN_CODE (copy) = -1; | |
3755 | if ((SET_DEST (set) == pc_rtx | |
3756 | && (SET_SRC (set) == pc_rtx | |
3757 | || GET_CODE (SET_SRC (set)) == LABEL_REF)) | |
3758 | || recog (PATTERN (copy), copy, NULL) >= 0) | |
3759 | { | |
3760 | /* This has either become an unconditional jump | |
3761 | or a nop-jump. We'd like to delete nop jumps | |
3762 | here, but doing so confuses gcse. So we just | |
3763 | make the replacement and let later passes | |
3764 | sort things out. */ | |
3765 | PATTERN (insn) = set; | |
3766 | INSN_CODE (insn) = -1; | |
3767 | ||
3768 | /* One less use of the label this insn used to jump to | |
3769 | if we turned this into a NOP jump. */ | |
3770 | if (SET_SRC (set) == pc_rtx && JUMP_LABEL (insn) != 0) | |
3771 | --LABEL_NUSES (JUMP_LABEL (insn)); | |
3772 | ||
3773 | /* If this has turned into an unconditional jump, | |
3774 | then put a barrier after it so that the unreachable | |
3775 | code will be deleted. */ | |
3776 | if (GET_CODE (SET_SRC (set)) == LABEL_REF) | |
3777 | emit_barrier_after (insn); | |
3778 | ||
3779 | run_jump_opt_after_gcse = 1; | |
3780 | ||
3781 | const_prop_count++; | |
3782 | if (gcse_file != NULL) | |
3783 | { | |
3784 | int regno = REGNO (reg_used->reg_rtx); | |
3785 | fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ", | |
3786 | regno, INSN_UID (insn)); | |
3787 | print_rtl (gcse_file, src); | |
3788 | fprintf (gcse_file, "\n"); | |
3789 | } | |
3790 | return 1; | |
3791 | } | |
3792 | return 0; | |
3793 | } | |
3794 | ||
3795 | #ifdef HAVE_cc0 | |
3796 | /* Subroutine of cprop_insn that tries to propagate constants into | |
3797 | JUMP_INSNS for machines that have CC0. INSN is a single set that | |
3798 | stores into CC0; the insn following it is a conditional jump. | |
3799 | REG_USED is the use we will try to replace, SRC is the constant we | |
3800 | will try to substitute for it. | |
3801 | Returns nonzero if a change was made. */ | |
3802 | static int | |
3803 | cprop_cc0_jump (insn, reg_used, src) | |
3804 | rtx insn; | |
3805 | struct reg_use *reg_used; | |
3806 | rtx src; | |
3807 | { | |
3808 | rtx jump = NEXT_INSN (insn); | |
3809 | rtx copy = copy_rtx (jump); | |
3810 | rtx set = PATTERN (copy); | |
3811 | ||
3812 | /* We need to copy the source of the cc0 setter, as cprop_jump is going to | |
3813 | substitute into it. */ | |
3814 | replace_rtx (SET_SRC (set), cc0_rtx, copy_rtx (SET_SRC (PATTERN (insn)))); | |
3815 | if (! cprop_jump (jump, copy, reg_used, src)) | |
3816 | return 0; | |
3817 | ||
3818 | /* If we succeeded, delete the cc0 setter. */ | |
3819 | PUT_CODE (insn, NOTE); | |
3820 | NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; | |
3821 | NOTE_SOURCE_FILE (insn) = 0; | |
3822 | return 1; | |
3823 | } | |
3824 | #endif | |
3825 | ||
7506f491 DE |
3826 | /* Perform constant and copy propagation on INSN. |
3827 | The result is non-zero if a change was made. */ | |
3828 | ||
3829 | static int | |
b5ce41ff | 3830 | cprop_insn (insn, alter_jumps) |
7506f491 | 3831 | rtx insn; |
b5ce41ff | 3832 | int alter_jumps; |
7506f491 DE |
3833 | { |
3834 | struct reg_use *reg_used; | |
3835 | int changed = 0; | |
3836 | ||
e78d9500 JL |
3837 | /* Only propagate into SETs. Note that a conditional jump is a |
3838 | SET with pc_rtx as the destination. */ | |
3839 | if ((GET_CODE (insn) != INSN | |
3840 | && GET_CODE (insn) != JUMP_INSN) | |
7506f491 DE |
3841 | || GET_CODE (PATTERN (insn)) != SET) |
3842 | return 0; | |
3843 | ||
3844 | reg_use_count = 0; | |
3845 | find_used_regs (PATTERN (insn)); | |
3846 | ||
3847 | reg_used = ®_use_table[0]; | |
3848 | for ( ; reg_use_count > 0; reg_used++, reg_use_count--) | |
3849 | { | |
3850 | rtx pat, src; | |
3851 | struct expr *set; | |
3852 | int regno = REGNO (reg_used->reg_rtx); | |
3853 | ||
3854 | /* Ignore registers created by GCSE. | |
3855 | We do this because ... */ | |
3856 | if (regno >= max_gcse_regno) | |
3857 | continue; | |
3858 | ||
3859 | /* If the register has already been set in this block, there's | |
3860 | nothing we can do. */ | |
3861 | if (! oprs_not_set_p (reg_used->reg_rtx, insn)) | |
3862 | continue; | |
3863 | ||
3864 | /* Find an assignment that sets reg_used and is available | |
3865 | at the start of the block. */ | |
3866 | set = find_avail_set (regno, insn); | |
3867 | if (! set) | |
3868 | continue; | |
3869 | ||
3870 | pat = set->expr; | |
3871 | /* ??? We might be able to handle PARALLELs. Later. */ | |
3872 | if (GET_CODE (pat) != SET) | |
3873 | abort (); | |
3874 | src = SET_SRC (pat); | |
3875 | ||
e78d9500 | 3876 | /* Constant propagation. */ |
05f6f07c BS |
3877 | if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE |
3878 | || GET_CODE (src) == SYMBOL_REF) | |
7506f491 | 3879 | { |
e78d9500 JL |
3880 | /* Handle normal insns first. */ |
3881 | if (GET_CODE (insn) == INSN | |
3882 | && try_replace_reg (reg_used->reg_rtx, src, insn)) | |
7506f491 DE |
3883 | { |
3884 | changed = 1; | |
3885 | const_prop_count++; | |
3886 | if (gcse_file != NULL) | |
3887 | { | |
3888 | fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ", | |
3889 | regno, INSN_UID (insn)); | |
e78d9500 | 3890 | print_rtl (gcse_file, src); |
7506f491 DE |
3891 | fprintf (gcse_file, "\n"); |
3892 | } | |
3893 | ||
3894 | /* The original insn setting reg_used may or may not now be | |
3895 | deletable. We leave the deletion to flow. */ | |
3896 | } | |
e78d9500 JL |
3897 | |
3898 | /* Try to propagate a CONST_INT into a conditional jump. | |
3899 | We're pretty specific about what we will handle in this | |
3900 | code, we can extend this as necessary over time. | |
3901 | ||
3902 | Right now the insn in question must look like | |
abd535b6 | 3903 | (set (pc) (if_then_else ...)) */ |
b5ce41ff | 3904 | else if (alter_jumps |
6e9a3c38 JL |
3905 | && GET_CODE (insn) == JUMP_INSN |
3906 | && condjump_p (insn) | |
3907 | && ! simplejump_p (insn)) | |
abd535b6 BS |
3908 | changed |= cprop_jump (insn, copy_rtx (insn), reg_used, src); |
3909 | #ifdef HAVE_cc0 | |
3910 | /* Similar code for machines that use a pair of CC0 setter and | |
3911 | conditional jump insn. */ | |
3912 | else if (alter_jumps | |
3913 | && GET_CODE (PATTERN (insn)) == SET | |
3914 | && SET_DEST (PATTERN (insn)) == cc0_rtx | |
3915 | && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN | |
3916 | && condjump_p (NEXT_INSN (insn)) | |
3917 | && ! simplejump_p (NEXT_INSN (insn))) | |
3918 | changed |= cprop_cc0_jump (insn, reg_used, src); | |
3919 | #endif | |
7506f491 DE |
3920 | } |
3921 | else if (GET_CODE (src) == REG | |
3922 | && REGNO (src) >= FIRST_PSEUDO_REGISTER | |
3923 | && REGNO (src) != regno) | |
3924 | { | |
cafba495 | 3925 | if (try_replace_reg (reg_used->reg_rtx, src, insn)) |
7506f491 | 3926 | { |
cafba495 BS |
3927 | changed = 1; |
3928 | copy_prop_count++; | |
3929 | if (gcse_file != NULL) | |
7506f491 | 3930 | { |
cafba495 BS |
3931 | fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d with reg %d\n", |
3932 | regno, INSN_UID (insn), REGNO (src)); | |
7506f491 | 3933 | } |
cafba495 BS |
3934 | |
3935 | /* The original insn setting reg_used may or may not now be | |
3936 | deletable. We leave the deletion to flow. */ | |
3937 | /* FIXME: If it turns out that the insn isn't deletable, | |
3938 | then we may have unnecessarily extended register lifetimes | |
3939 | and made things worse. */ | |
7506f491 DE |
3940 | } |
3941 | } | |
3942 | } | |
3943 | ||
3944 | return changed; | |
3945 | } | |
3946 | ||
3947 | /* Forward propagate copies. | |
3948 | This includes copies and constants. | |
3949 | Return non-zero if a change was made. */ | |
3950 | ||
3951 | static int | |
b5ce41ff JL |
3952 | cprop (alter_jumps) |
3953 | int alter_jumps; | |
7506f491 DE |
3954 | { |
3955 | int bb, changed; | |
3956 | rtx insn; | |
3957 | ||
3958 | /* Note we start at block 1. */ | |
3959 | ||
3960 | changed = 0; | |
3961 | for (bb = 1; bb < n_basic_blocks; bb++) | |
3962 | { | |
3963 | /* Reset tables used to keep track of what's still valid [since the | |
3964 | start of the block]. */ | |
3965 | reset_opr_set_tables (); | |
3966 | ||
3b413743 RH |
3967 | for (insn = BLOCK_HEAD (bb); |
3968 | insn != NULL && insn != NEXT_INSN (BLOCK_END (bb)); | |
7506f491 DE |
3969 | insn = NEXT_INSN (insn)) |
3970 | { | |
3971 | if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') | |
3972 | { | |
b5ce41ff | 3973 | changed |= cprop_insn (insn, alter_jumps); |
7506f491 DE |
3974 | |
3975 | /* Keep track of everything modified by this insn. */ | |
abd535b6 BS |
3976 | /* ??? Need to be careful w.r.t. mods done to INSN. Don't |
3977 | call mark_oprs_set if we turned the insn into a NOTE. */ | |
3978 | if (GET_CODE (insn) != NOTE) | |
3979 | mark_oprs_set (insn); | |
7506f491 | 3980 | } |
ac7c5af5 | 3981 | } |
7506f491 DE |
3982 | } |
3983 | ||
3984 | if (gcse_file != NULL) | |
3985 | fprintf (gcse_file, "\n"); | |
3986 | ||
3987 | return changed; | |
3988 | } | |
3989 | ||
3990 | /* Perform one copy/constant propagation pass. | |
3991 | F is the first insn in the function. | |
3992 | PASS is the pass count. */ | |
3993 | ||
3994 | static int | |
b5ce41ff | 3995 | one_cprop_pass (pass, alter_jumps) |
7506f491 | 3996 | int pass; |
b5ce41ff | 3997 | int alter_jumps; |
7506f491 DE |
3998 | { |
3999 | int changed = 0; | |
4000 | ||
4001 | const_prop_count = 0; | |
4002 | copy_prop_count = 0; | |
4003 | ||
4004 | alloc_set_hash_table (max_cuid); | |
b5ce41ff | 4005 | compute_set_hash_table (); |
7506f491 DE |
4006 | if (gcse_file) |
4007 | dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size, | |
4008 | n_sets); | |
4009 | if (n_sets > 0) | |
4010 | { | |
4011 | alloc_cprop_mem (n_basic_blocks, n_sets); | |
4012 | compute_cprop_data (); | |
b5ce41ff | 4013 | changed = cprop (alter_jumps); |
7506f491 DE |
4014 | free_cprop_mem (); |
4015 | } | |
4016 | free_set_hash_table (); | |
4017 | ||
4018 | if (gcse_file) | |
4019 | { | |
4020 | fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, %d const props, %d copy props\n", | |
4021 | current_function_name, pass, | |
4022 | bytes_used, const_prop_count, copy_prop_count); | |
4023 | fprintf (gcse_file, "\n"); | |
4024 | } | |
4025 | ||
4026 | return changed; | |
4027 | } | |
4028 | \f | |
a65f3558 | 4029 | /* Compute PRE+LCM working variables. */ |
7506f491 DE |
4030 | |
4031 | /* Local properties of expressions. */ | |
4032 | /* Nonzero for expressions that are transparent in the block. */ | |
a65f3558 | 4033 | static sbitmap *transp; |
7506f491 | 4034 | |
5c35539b RH |
4035 | /* Nonzero for expressions that are transparent at the end of the block. |
4036 | This is only zero for expressions killed by abnormal critical edge | |
4037 | created by a calls. */ | |
a65f3558 | 4038 | static sbitmap *transpout; |
5c35539b | 4039 | |
a65f3558 JL |
4040 | /* Nonzero for expressions that are computed (available) in the block. */ |
4041 | static sbitmap *comp; | |
7506f491 | 4042 | |
a65f3558 JL |
4043 | /* Nonzero for expressions that are locally anticipatable in the block. */ |
4044 | static sbitmap *antloc; | |
7506f491 | 4045 | |
a65f3558 JL |
4046 | /* Nonzero for expressions where this block is an optimal computation |
4047 | point. */ | |
4048 | static sbitmap *pre_optimal; | |
5c35539b | 4049 | |
a65f3558 JL |
4050 | /* Nonzero for expressions which are redundant in a particular block. */ |
4051 | static sbitmap *pre_redundant; | |
7506f491 | 4052 | |
a65f3558 | 4053 | static sbitmap *temp_bitmap; |
7506f491 | 4054 | |
a65f3558 JL |
4055 | /* Redundant insns. */ |
4056 | static sbitmap pre_redundant_insns; | |
7506f491 | 4057 | |
a65f3558 | 4058 | /* Allocate vars used for PRE analysis. */ |
7506f491 DE |
4059 | |
4060 | static void | |
a65f3558 JL |
4061 | alloc_pre_mem (n_blocks, n_exprs) |
4062 | int n_blocks, n_exprs; | |
7506f491 | 4063 | { |
a65f3558 JL |
4064 | transp = sbitmap_vector_alloc (n_blocks, n_exprs); |
4065 | comp = sbitmap_vector_alloc (n_blocks, n_exprs); | |
4066 | antloc = sbitmap_vector_alloc (n_blocks, n_exprs); | |
4067 | ||
4068 | temp_bitmap = sbitmap_vector_alloc (n_blocks, n_exprs); | |
4069 | pre_optimal = sbitmap_vector_alloc (n_blocks, n_exprs); | |
4070 | pre_redundant = sbitmap_vector_alloc (n_blocks, n_exprs); | |
4071 | transpout = sbitmap_vector_alloc (n_blocks, n_exprs); | |
7506f491 DE |
4072 | } |
4073 | ||
a65f3558 | 4074 | /* Free vars used for PRE analysis. */ |
7506f491 DE |
4075 | |
4076 | static void | |
a65f3558 | 4077 | free_pre_mem () |
7506f491 | 4078 | { |
a65f3558 JL |
4079 | free (transp); |
4080 | free (comp); | |
4081 | free (antloc); | |
7506f491 | 4082 | |
a65f3558 JL |
4083 | free (pre_optimal); |
4084 | free (pre_redundant); | |
4085 | free (transpout); | |
7506f491 DE |
4086 | } |
4087 | ||
4088 | /* Top level routine to do the dataflow analysis needed by PRE. */ | |
4089 | ||
4090 | static void | |
4091 | compute_pre_data () | |
4092 | { | |
a65f3558 JL |
4093 | compute_local_properties (transp, comp, antloc, 0); |
4094 | compute_transpout (); | |
4095 | pre_lcm (n_basic_blocks, n_exprs, s_preds, s_succs, transp, | |
4096 | antloc, pre_redundant, pre_optimal); | |
7506f491 | 4097 | } |
a65f3558 | 4098 | |
7506f491 DE |
4099 | \f |
4100 | /* PRE utilities */ | |
4101 | ||
a65f3558 JL |
4102 | /* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach |
4103 | block BB. | |
7506f491 DE |
4104 | |
4105 | VISITED is a pointer to a working buffer for tracking which BB's have | |
4106 | been visited. It is NULL for the top-level call. | |
4107 | ||
a65f3558 JL |
4108 | CHECK_PRE_COMP controls whether or not we check for a computation of |
4109 | EXPR in OCCR_BB. | |
4110 | ||
7506f491 DE |
4111 | We treat reaching expressions that go through blocks containing the same |
4112 | reaching expression as "not reaching". E.g. if EXPR is generated in blocks | |
4113 | 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block | |
4114 | 2 as not reaching. The intent is to improve the probability of finding | |
4115 | only one reaching expression and to reduce register lifetimes by picking | |
4116 | the closest such expression. */ | |
4117 | ||
4118 | static int | |
a65f3558 JL |
4119 | pre_expr_reaches_here_p (occr_bb, expr, bb, check_pre_comp, visited) |
4120 | int occr_bb; | |
7506f491 DE |
4121 | struct expr *expr; |
4122 | int bb; | |
a65f3558 | 4123 | int check_pre_comp; |
7506f491 DE |
4124 | char *visited; |
4125 | { | |
36349f8b | 4126 | edge pred; |
7506f491 DE |
4127 | |
4128 | if (visited == NULL) | |
4129 | { | |
4130 | visited = (char *) alloca (n_basic_blocks); | |
4131 | bzero (visited, n_basic_blocks); | |
4132 | } | |
4133 | ||
36349f8b | 4134 | for (pred = BASIC_BLOCK (bb)->pred; pred != NULL; pred = pred->pred_next) |
7506f491 | 4135 | { |
36349f8b | 4136 | int pred_bb = pred->src->index; |
7506f491 | 4137 | |
36349f8b | 4138 | if (pred->src == ENTRY_BLOCK_PTR |
7506f491 DE |
4139 | /* Has predecessor has already been visited? */ |
4140 | || visited[pred_bb]) | |
ac7c5af5 | 4141 | { |
7506f491 DE |
4142 | /* Nothing to do. */ |
4143 | } | |
4144 | /* Does this predecessor generate this expression? */ | |
a65f3558 JL |
4145 | else if ((!check_pre_comp && occr_bb == pred_bb) |
4146 | || TEST_BIT (comp[pred_bb], expr->bitmap_index)) | |
7506f491 DE |
4147 | { |
4148 | /* Is this the occurrence we're looking for? | |
4149 | Note that there's only one generating occurrence per block | |
4150 | so we just need to check the block number. */ | |
a65f3558 | 4151 | if (occr_bb == pred_bb) |
7506f491 DE |
4152 | return 1; |
4153 | visited[pred_bb] = 1; | |
4154 | } | |
4155 | /* Ignore this predecessor if it kills the expression. */ | |
a65f3558 | 4156 | else if (! TEST_BIT (transp[pred_bb], expr->bitmap_index)) |
7506f491 DE |
4157 | visited[pred_bb] = 1; |
4158 | /* Neither gen nor kill. */ | |
4159 | else | |
ac7c5af5 | 4160 | { |
7506f491 | 4161 | visited[pred_bb] = 1; |
a65f3558 JL |
4162 | if (pre_expr_reaches_here_p (occr_bb, expr, pred_bb, |
4163 | check_pre_comp, visited)) | |
7506f491 | 4164 | return 1; |
ac7c5af5 | 4165 | } |
7506f491 DE |
4166 | } |
4167 | ||
4168 | /* All paths have been checked. */ | |
4169 | return 0; | |
4170 | } | |
4171 | \f | |
a65f3558 JL |
4172 | /* Add EXPR to the end of basic block BB. |
4173 | ||
4174 | This is used by both the PRE and code hoisting. | |
4175 | ||
4176 | For PRE, we want to verify that the expr is either transparent | |
4177 | or locally anticipatable in the target block. This check makes | |
4178 | no sense for code hoisting. */ | |
7506f491 DE |
4179 | |
4180 | static void | |
a65f3558 | 4181 | insert_insn_end_bb (expr, bb, pre) |
7506f491 DE |
4182 | struct expr *expr; |
4183 | int bb; | |
a65f3558 | 4184 | int pre; |
7506f491 DE |
4185 | { |
4186 | rtx insn = BLOCK_END (bb); | |
4187 | rtx new_insn; | |
4188 | rtx reg = expr->reaching_reg; | |
4189 | int regno = REGNO (reg); | |
a65f3558 JL |
4190 | rtx pat, copied_expr; |
4191 | rtx first_new_insn; | |
7506f491 | 4192 | |
a65f3558 JL |
4193 | start_sequence (); |
4194 | copied_expr = copy_rtx (expr->expr); | |
4195 | emit_move_insn (reg, copied_expr); | |
4196 | first_new_insn = get_insns (); | |
4197 | pat = gen_sequence (); | |
4198 | end_sequence (); | |
7506f491 DE |
4199 | |
4200 | /* If the last insn is a jump, insert EXPR in front [taking care to | |
4201 | handle cc0, etc. properly]. */ | |
4202 | ||
4203 | if (GET_CODE (insn) == JUMP_INSN) | |
4204 | { | |
50b2596f | 4205 | #ifdef HAVE_cc0 |
7506f491 | 4206 | rtx note; |
50b2596f | 4207 | #endif |
7506f491 DE |
4208 | |
4209 | /* If this is a jump table, then we can't insert stuff here. Since | |
4210 | we know the previous real insn must be the tablejump, we insert | |
4211 | the new instruction just before the tablejump. */ | |
4212 | if (GET_CODE (PATTERN (insn)) == ADDR_VEC | |
4213 | || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC) | |
4214 | insn = prev_real_insn (insn); | |
4215 | ||
4216 | #ifdef HAVE_cc0 | |
4217 | /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts | |
4218 | if cc0 isn't set. */ | |
4219 | note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); | |
4220 | if (note) | |
4221 | insn = XEXP (note, 0); | |
4222 | else | |
4223 | { | |
4224 | rtx maybe_cc0_setter = prev_nonnote_insn (insn); | |
4225 | if (maybe_cc0_setter | |
4226 | && GET_RTX_CLASS (GET_CODE (maybe_cc0_setter)) == 'i' | |
4227 | && sets_cc0_p (PATTERN (maybe_cc0_setter))) | |
4228 | insn = maybe_cc0_setter; | |
4229 | } | |
4230 | #endif | |
4231 | /* FIXME: What if something in cc0/jump uses value set in new insn? */ | |
4232 | new_insn = emit_insn_before (pat, insn); | |
4233 | if (BLOCK_HEAD (bb) == insn) | |
4234 | BLOCK_HEAD (bb) = new_insn; | |
3947e2f9 RH |
4235 | } |
4236 | /* Likewise if the last insn is a call, as will happen in the presence | |
4237 | of exception handling. */ | |
5c35539b | 4238 | else if (GET_CODE (insn) == CALL_INSN) |
3947e2f9 RH |
4239 | { |
4240 | HARD_REG_SET parm_regs; | |
4241 | int nparm_regs; | |
4242 | rtx p; | |
4243 | ||
4244 | /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers, | |
4245 | we search backward and place the instructions before the first | |
4246 | parameter is loaded. Do this for everyone for consistency and a | |
4247 | presumtion that we'll get better code elsewhere as well. */ | |
4248 | ||
4249 | /* It should always be the case that we can put these instructions | |
a65f3558 JL |
4250 | anywhere in the basic block with performing PRE optimizations. |
4251 | Check this. */ | |
4252 | if (pre | |
4253 | && !TEST_BIT (antloc[bb], expr->bitmap_index) | |
4254 | && !TEST_BIT (transp[bb], expr->bitmap_index)) | |
3947e2f9 RH |
4255 | abort (); |
4256 | ||
4257 | /* Since different machines initialize their parameter registers | |
4258 | in different orders, assume nothing. Collect the set of all | |
4259 | parameter registers. */ | |
4260 | CLEAR_HARD_REG_SET (parm_regs); | |
4261 | nparm_regs = 0; | |
4262 | for (p = CALL_INSN_FUNCTION_USAGE (insn); p ; p = XEXP (p, 1)) | |
4263 | if (GET_CODE (XEXP (p, 0)) == USE | |
4264 | && GET_CODE (XEXP (XEXP (p, 0), 0)) == REG) | |
4265 | { | |
4266 | int regno = REGNO (XEXP (XEXP (p, 0), 0)); | |
4267 | if (regno >= FIRST_PSEUDO_REGISTER) | |
5c35539b | 4268 | abort (); |
3947e2f9 RH |
4269 | SET_HARD_REG_BIT (parm_regs, regno); |
4270 | nparm_regs++; | |
4271 | } | |
4272 | ||
4273 | /* Search backward for the first set of a register in this set. */ | |
4274 | while (nparm_regs && BLOCK_HEAD (bb) != insn) | |
4275 | { | |
4276 | insn = PREV_INSN (insn); | |
4277 | p = single_set (insn); | |
4278 | if (p && GET_CODE (SET_DEST (p)) == REG | |
4279 | && REGNO (SET_DEST (p)) < FIRST_PSEUDO_REGISTER | |
4280 | && TEST_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p)))) | |
4281 | { | |
4282 | CLEAR_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p))); | |
4283 | nparm_regs--; | |
4284 | } | |
4285 | } | |
4286 | ||
b1d26727 JL |
4287 | /* If we found all the parameter loads, then we want to insert |
4288 | before the first parameter load. | |
4289 | ||
4290 | If we did not find all the parameter loads, then we might have | |
4291 | stopped on the head of the block, which could be a CODE_LABEL. | |
4292 | If we inserted before the CODE_LABEL, then we would be putting | |
4293 | the insn in the wrong basic block. In that case, put the insn | |
4294 | after the CODE_LABEL. | |
4295 | ||
4296 | ?!? Do we need to account for NOTE_INSN_BASIC_BLOCK here? */ | |
4297 | if (GET_CODE (insn) != CODE_LABEL) | |
4298 | { | |
4299 | new_insn = emit_insn_before (pat, insn); | |
4300 | if (BLOCK_HEAD (bb) == insn) | |
4301 | BLOCK_HEAD (bb) = new_insn; | |
4302 | } | |
4303 | else | |
4304 | { | |
4305 | new_insn = emit_insn_after (pat, insn); | |
4306 | } | |
7506f491 DE |
4307 | } |
4308 | else | |
4309 | { | |
4310 | new_insn = emit_insn_after (pat, insn); | |
4311 | BLOCK_END (bb) = new_insn; | |
7506f491 DE |
4312 | } |
4313 | ||
a65f3558 JL |
4314 | /* Keep block number table up to date. |
4315 | Note, PAT could be a multiple insn sequence, we have to make | |
4316 | sure that each insn in the sequence is handled. */ | |
4317 | if (GET_CODE (pat) == SEQUENCE) | |
4318 | { | |
4319 | int i; | |
4320 | ||
4321 | for (i = 0; i < XVECLEN (pat, 0); i++) | |
4322 | { | |
4323 | rtx insn = XVECEXP (pat, 0, i); | |
4324 | set_block_num (insn, bb); | |
4325 | if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') | |
4326 | add_label_notes (PATTERN (insn), new_insn); | |
4327 | record_set_insn = insn; | |
4328 | note_stores (PATTERN (insn), record_set_info); | |
4329 | } | |
4330 | } | |
4331 | else | |
4332 | { | |
4333 | add_label_notes (SET_SRC (pat), new_insn); | |
4334 | set_block_num (new_insn, bb); | |
4335 | /* Keep register set table up to date. */ | |
4336 | record_one_set (regno, new_insn); | |
4337 | } | |
3947e2f9 | 4338 | |
7506f491 DE |
4339 | gcse_create_count++; |
4340 | ||
4341 | if (gcse_file) | |
4342 | { | |
a65f3558 | 4343 | fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, copying expression %d to reg %d\n", |
7506f491 DE |
4344 | bb, INSN_UID (new_insn), expr->bitmap_index, regno); |
4345 | } | |
4346 | } | |
4347 | ||
4348 | /* Insert partially redundant expressions at the ends of appropriate basic | |
a65f3558 | 4349 | blocks making them fully redundant. */ |
7506f491 DE |
4350 | |
4351 | static void | |
4352 | pre_insert (index_map) | |
4353 | struct expr **index_map; | |
4354 | { | |
a65f3558 JL |
4355 | int bb, i, set_size; |
4356 | sbitmap *inserted; | |
4357 | ||
4358 | /* Compute INSERT = PRE_OPTIMAL & ~PRE_REDUNDANT. | |
4359 | Where INSERT is nonzero, we add the expression at the end of the basic | |
4360 | block if it reaches any of the deleted expressions. */ | |
7506f491 | 4361 | |
a65f3558 JL |
4362 | set_size = pre_optimal[0]->size; |
4363 | inserted = sbitmap_vector_alloc (n_basic_blocks, n_exprs); | |
4364 | sbitmap_vector_zero (inserted, n_basic_blocks); | |
7506f491 | 4365 | |
7506f491 DE |
4366 | for (bb = 0; bb < n_basic_blocks; bb++) |
4367 | { | |
4368 | int indx; | |
a65f3558 JL |
4369 | |
4370 | /* This computes the number of potential insertions we need. */ | |
4371 | sbitmap_not (temp_bitmap[bb], pre_redundant[bb]); | |
4372 | sbitmap_a_and_b (temp_bitmap[bb], temp_bitmap[bb], pre_optimal[bb]); | |
4373 | ||
4374 | /* TEMP_BITMAP[bb] now contains a bitmap of the expressions that we need | |
4375 | to insert at the end of this basic block. */ | |
4376 | for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS) | |
7506f491 | 4377 | { |
a65f3558 | 4378 | SBITMAP_ELT_TYPE insert = temp_bitmap[bb]->elms[i]; |
7506f491 | 4379 | int j; |
7506f491 | 4380 | |
a65f3558 | 4381 | for (j = indx; insert && j < n_exprs; j++, insert >>= 1) |
7506f491 | 4382 | { |
a65f3558 JL |
4383 | if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX) |
4384 | { | |
4385 | struct expr *expr = index_map[j]; | |
4386 | struct occr *occr; | |
4387 | ||
4388 | /* Now look at each deleted occurence of this expression. */ | |
4389 | for (occr = expr->antic_occr; occr != NULL; occr = occr->next) | |
4390 | { | |
4391 | if (! occr->deleted_p) | |
4392 | continue; | |
4393 | ||
4394 | /* Insert this expression at the end of BB if it would | |
4395 | reach the deleted occurence. */ | |
4396 | if (!TEST_BIT (inserted[bb], j) | |
4397 | && pre_expr_reaches_here_p (bb, expr, | |
4398 | BLOCK_NUM (occr->insn), 0, | |
4399 | NULL)) | |
4400 | { | |
4401 | SET_BIT (inserted[bb], j); | |
4402 | insert_insn_end_bb (index_map[j], bb, 1); | |
4403 | } | |
4404 | } | |
4405 | } | |
7506f491 DE |
4406 | } |
4407 | } | |
4408 | } | |
4409 | } | |
4410 | ||
4411 | /* Copy the result of INSN to REG. | |
4412 | INDX is the expression number. */ | |
4413 | ||
4414 | static void | |
4415 | pre_insert_copy_insn (expr, insn) | |
4416 | struct expr *expr; | |
4417 | rtx insn; | |
4418 | { | |
4419 | rtx reg = expr->reaching_reg; | |
4420 | int regno = REGNO (reg); | |
4421 | int indx = expr->bitmap_index; | |
4422 | rtx set = single_set (insn); | |
4423 | rtx new_insn; | |
4424 | ||
4425 | if (!set) | |
4426 | abort (); | |
9e6a5703 | 4427 | new_insn = emit_insn_after (gen_rtx_SET (VOIDmode, reg, SET_DEST (set)), |
7506f491 DE |
4428 | insn); |
4429 | /* Keep block number table up to date. */ | |
4430 | set_block_num (new_insn, BLOCK_NUM (insn)); | |
4431 | /* Keep register set table up to date. */ | |
4432 | record_one_set (regno, new_insn); | |
4433 | ||
4434 | gcse_create_count++; | |
4435 | ||
4436 | if (gcse_file) | |
4437 | { | |
4438 | fprintf (gcse_file, "PRE: bb %d, insn %d, copying expression %d in insn %d to reg %d\n", | |
4439 | BLOCK_NUM (insn), INSN_UID (new_insn), indx, INSN_UID (insn), regno); | |
4440 | } | |
4441 | } | |
4442 | ||
4443 | /* Copy available expressions that reach the redundant expression | |
4444 | to `reaching_reg'. */ | |
4445 | ||
4446 | static void | |
4447 | pre_insert_copies () | |
4448 | { | |
a65f3558 JL |
4449 | int i, bb; |
4450 | ||
4451 | for (bb = 0; bb < n_basic_blocks; bb++) | |
4452 | { | |
4453 | sbitmap_a_and_b (temp_bitmap[bb], pre_optimal[bb], pre_redundant[bb]); | |
4454 | } | |
7506f491 DE |
4455 | |
4456 | /* For each available expression in the table, copy the result to | |
4457 | `reaching_reg' if the expression reaches a deleted one. | |
4458 | ||
4459 | ??? The current algorithm is rather brute force. | |
4460 | Need to do some profiling. */ | |
4461 | ||
4462 | for (i = 0; i < expr_hash_table_size; i++) | |
4463 | { | |
4464 | struct expr *expr; | |
4465 | ||
4466 | for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash) | |
4467 | { | |
4468 | struct occr *occr; | |
4469 | ||
4470 | /* If the basic block isn't reachable, PPOUT will be TRUE. | |
4471 | However, we don't want to insert a copy here because the | |
4472 | expression may not really be redundant. So only insert | |
4473 | an insn if the expression was deleted. | |
4474 | This test also avoids further processing if the expression | |
4475 | wasn't deleted anywhere. */ | |
4476 | if (expr->reaching_reg == NULL) | |
4477 | continue; | |
4478 | ||
4479 | for (occr = expr->antic_occr; occr != NULL; occr = occr->next) | |
4480 | { | |
4481 | struct occr *avail; | |
4482 | ||
4483 | if (! occr->deleted_p) | |
4484 | continue; | |
4485 | ||
4486 | for (avail = expr->avail_occr; avail != NULL; avail = avail->next) | |
4487 | { | |
4488 | rtx insn = avail->insn; | |
a65f3558 JL |
4489 | int bb = BLOCK_NUM (insn); |
4490 | ||
4491 | if (!TEST_BIT (temp_bitmap[bb], expr->bitmap_index)) | |
4492 | continue; | |
7506f491 DE |
4493 | |
4494 | /* No need to handle this one if handled already. */ | |
4495 | if (avail->copied_p) | |
4496 | continue; | |
4497 | /* Don't handle this one if it's a redundant one. */ | |
a65f3558 | 4498 | if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn))) |
7506f491 DE |
4499 | continue; |
4500 | /* Or if the expression doesn't reach the deleted one. */ | |
a65f3558 | 4501 | if (! pre_expr_reaches_here_p (BLOCK_NUM (avail->insn), expr, |
7506f491 | 4502 | BLOCK_NUM (occr->insn), |
a65f3558 | 4503 | 1, NULL)) |
7506f491 DE |
4504 | continue; |
4505 | ||
4506 | /* Copy the result of avail to reaching_reg. */ | |
4507 | pre_insert_copy_insn (expr, insn); | |
4508 | avail->copied_p = 1; | |
4509 | } | |
4510 | } | |
4511 | } | |
4512 | } | |
4513 | } | |
4514 | ||
4515 | /* Delete redundant computations. | |
7506f491 DE |
4516 | Deletion is done by changing the insn to copy the `reaching_reg' of |
4517 | the expression into the result of the SET. It is left to later passes | |
4518 | (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it. | |
4519 | ||
4520 | Returns non-zero if a change is made. */ | |
4521 | ||
4522 | static int | |
4523 | pre_delete () | |
4524 | { | |
a65f3558 JL |
4525 | int i, bb, changed; |
4526 | ||
4527 | /* Compute the expressions which are redundant and need to be replaced by | |
4528 | copies from the reaching reg to the target reg. */ | |
4529 | for (bb = 0; bb < n_basic_blocks; bb++) | |
4530 | { | |
4531 | sbitmap_not (temp_bitmap[bb], pre_optimal[bb]); | |
4532 | sbitmap_a_and_b (temp_bitmap[bb], temp_bitmap[bb], pre_redundant[bb]); | |
4533 | } | |
7506f491 DE |
4534 | |
4535 | changed = 0; | |
4536 | for (i = 0; i < expr_hash_table_size; i++) | |
4537 | { | |
4538 | struct expr *expr; | |
4539 | ||
4540 | for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash) | |
4541 | { | |
4542 | struct occr *occr; | |
4543 | int indx = expr->bitmap_index; | |
4544 | ||
4545 | /* We only need to search antic_occr since we require | |
4546 | ANTLOC != 0. */ | |
4547 | ||
4548 | for (occr = expr->antic_occr; occr != NULL; occr = occr->next) | |
4549 | { | |
4550 | rtx insn = occr->insn; | |
4551 | rtx set; | |
4552 | int bb = BLOCK_NUM (insn); | |
7506f491 | 4553 | |
a65f3558 | 4554 | if (TEST_BIT (temp_bitmap[bb], indx)) |
7506f491 | 4555 | { |
7506f491 DE |
4556 | set = single_set (insn); |
4557 | if (! set) | |
4558 | abort (); | |
4559 | ||
d3903c22 JL |
4560 | /* Create a pseudo-reg to store the result of reaching |
4561 | expressions into. Get the mode for the new pseudo | |
4562 | from the mode of the original destination pseudo. */ | |
4563 | if (expr->reaching_reg == NULL) | |
4564 | expr->reaching_reg | |
4565 | = gen_reg_rtx (GET_MODE (SET_DEST (set))); | |
4566 | ||
7506f491 DE |
4567 | /* In theory this should never fail since we're creating |
4568 | a reg->reg copy. | |
4569 | ||
4570 | However, on the x86 some of the movXX patterns actually | |
4571 | contain clobbers of scratch regs. This may cause the | |
db35306d | 4572 | insn created by validate_change to not match any pattern |
7506f491 DE |
4573 | and thus cause validate_change to fail. */ |
4574 | if (validate_change (insn, &SET_SRC (set), | |
4575 | expr->reaching_reg, 0)) | |
4576 | { | |
4577 | occr->deleted_p = 1; | |
a65f3558 | 4578 | SET_BIT (pre_redundant_insns, INSN_CUID (insn)); |
7506f491 DE |
4579 | changed = 1; |
4580 | gcse_subst_count++; | |
4581 | } | |
4582 | ||
4583 | if (gcse_file) | |
4584 | { | |
a65f3558 JL |
4585 | fprintf (gcse_file, |
4586 | "PRE: redundant insn %d (expression %d) in bb %d, reaching reg is %d\n", | |
7506f491 DE |
4587 | INSN_UID (insn), indx, bb, REGNO (expr->reaching_reg)); |
4588 | } | |
4589 | } | |
4590 | } | |
4591 | } | |
4592 | } | |
4593 | ||
4594 | return changed; | |
4595 | } | |
4596 | ||
4597 | /* Perform GCSE optimizations using PRE. | |
4598 | This is called by one_pre_gcse_pass after all the dataflow analysis | |
4599 | has been done. | |
4600 | ||
a65f3558 JL |
4601 | This is based on the original Morel-Renvoise paper Fred Chow's thesis, |
4602 | and lazy code motion from Knoop, Ruthing and Steffen as described in | |
4603 | Advanced Compiler Design and Implementation. | |
7506f491 DE |
4604 | |
4605 | ??? A new pseudo reg is created to hold the reaching expression. | |
4606 | The nice thing about the classical approach is that it would try to | |
4607 | use an existing reg. If the register can't be adequately optimized | |
4608 | [i.e. we introduce reload problems], one could add a pass here to | |
4609 | propagate the new register through the block. | |
4610 | ||
4611 | ??? We don't handle single sets in PARALLELs because we're [currently] | |
4612 | not able to copy the rest of the parallel when we insert copies to create | |
4613 | full redundancies from partial redundancies. However, there's no reason | |
4614 | why we can't handle PARALLELs in the cases where there are no partial | |
4615 | redundancies. */ | |
4616 | ||
4617 | static int | |
4618 | pre_gcse () | |
4619 | { | |
4620 | int i; | |
4621 | int changed; | |
4622 | struct expr **index_map; | |
4623 | ||
4624 | /* Compute a mapping from expression number (`bitmap_index') to | |
4625 | hash table entry. */ | |
4626 | ||
4627 | index_map = (struct expr **) alloca (n_exprs * sizeof (struct expr *)); | |
4628 | bzero ((char *) index_map, n_exprs * sizeof (struct expr *)); | |
4629 | for (i = 0; i < expr_hash_table_size; i++) | |
4630 | { | |
4631 | struct expr *expr; | |
4632 | ||
4633 | for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash) | |
4634 | index_map[expr->bitmap_index] = expr; | |
4635 | } | |
4636 | ||
4637 | /* Reset bitmap used to track which insns are redundant. */ | |
a65f3558 JL |
4638 | pre_redundant_insns = sbitmap_alloc (max_cuid); |
4639 | sbitmap_zero (pre_redundant_insns); | |
7506f491 DE |
4640 | |
4641 | /* Delete the redundant insns first so that | |
4642 | - we know what register to use for the new insns and for the other | |
4643 | ones with reaching expressions | |
4644 | - we know which insns are redundant when we go to create copies */ | |
4645 | changed = pre_delete (); | |
4646 | ||
4647 | /* Insert insns in places that make partially redundant expressions | |
4648 | fully redundant. */ | |
4649 | pre_insert (index_map); | |
4650 | ||
4651 | /* In other places with reaching expressions, copy the expression to the | |
4652 | specially allocated pseudo-reg that reaches the redundant expression. */ | |
4653 | pre_insert_copies (); | |
4654 | ||
a65f3558 | 4655 | free (pre_redundant_insns); |
7506f491 DE |
4656 | |
4657 | return changed; | |
4658 | } | |
4659 | ||
4660 | /* Top level routine to perform one PRE GCSE pass. | |
4661 | ||
4662 | Return non-zero if a change was made. */ | |
4663 | ||
4664 | static int | |
b5ce41ff | 4665 | one_pre_gcse_pass (pass) |
7506f491 DE |
4666 | int pass; |
4667 | { | |
4668 | int changed = 0; | |
4669 | ||
4670 | gcse_subst_count = 0; | |
4671 | gcse_create_count = 0; | |
4672 | ||
4673 | alloc_expr_hash_table (max_cuid); | |
b5ce41ff | 4674 | compute_expr_hash_table (); |
7506f491 DE |
4675 | if (gcse_file) |
4676 | dump_hash_table (gcse_file, "Expression", expr_hash_table, | |
4677 | expr_hash_table_size, n_exprs); | |
4678 | if (n_exprs > 0) | |
4679 | { | |
4680 | alloc_pre_mem (n_basic_blocks, n_exprs); | |
4681 | compute_pre_data (); | |
4682 | changed |= pre_gcse (); | |
4683 | free_pre_mem (); | |
4684 | } | |
4685 | free_expr_hash_table (); | |
4686 | ||
4687 | if (gcse_file) | |
4688 | { | |
4689 | fprintf (gcse_file, "\n"); | |
4690 | fprintf (gcse_file, "PRE GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n", | |
4691 | current_function_name, pass, | |
4692 | bytes_used, gcse_subst_count, gcse_create_count); | |
4693 | } | |
4694 | ||
4695 | return changed; | |
4696 | } | |
aeb2f500 JW |
4697 | \f |
4698 | /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN. | |
4699 | We have to add REG_LABEL notes, because the following loop optimization | |
4700 | pass requires them. */ | |
4701 | ||
4702 | /* ??? This is very similar to the loop.c add_label_notes function. We | |
4703 | could probably share code here. */ | |
4704 | ||
4705 | /* ??? If there was a jump optimization pass after gcse and before loop, | |
4706 | then we would not need to do this here, because jump would add the | |
4707 | necessary REG_LABEL notes. */ | |
4708 | ||
4709 | static void | |
4710 | add_label_notes (x, insn) | |
4711 | rtx x; | |
4712 | rtx insn; | |
4713 | { | |
4714 | enum rtx_code code = GET_CODE (x); | |
4715 | int i, j; | |
6f7d635c | 4716 | const char *fmt; |
aeb2f500 JW |
4717 | |
4718 | if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x)) | |
4719 | { | |
6b3603c2 | 4720 | /* This code used to ignore labels that referred to dispatch tables to |
ac7c5af5 | 4721 | avoid flow generating (slighly) worse code. |
6b3603c2 | 4722 | |
ac7c5af5 JL |
4723 | We no longer ignore such label references (see LABEL_REF handling in |
4724 | mark_jump_label for additional information). */ | |
6b3603c2 JL |
4725 | REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0), |
4726 | REG_NOTES (insn)); | |
aeb2f500 JW |
4727 | return; |
4728 | } | |
4729 | ||
4730 | fmt = GET_RTX_FORMAT (code); | |
4731 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) | |
4732 | { | |
4733 | if (fmt[i] == 'e') | |
4734 | add_label_notes (XEXP (x, i), insn); | |
4735 | else if (fmt[i] == 'E') | |
4736 | for (j = XVECLEN (x, i) - 1; j >= 0; j--) | |
4737 | add_label_notes (XVECEXP (x, i, j), insn); | |
4738 | } | |
4739 | } | |
a65f3558 JL |
4740 | |
4741 | /* Compute transparent outgoing information for each block. | |
4742 | ||
4743 | An expression is transparent to an edge unless it is killed by | |
4744 | the edge itself. This can only happen with abnormal control flow, | |
4745 | when the edge is traversed through a call. This happens with | |
4746 | non-local labels and exceptions. | |
4747 | ||
4748 | This would not be necessary if we split the edge. While this is | |
4749 | normally impossible for abnormal critical edges, with some effort | |
4750 | it should be possible with exception handling, since we still have | |
4751 | control over which handler should be invoked. But due to increased | |
4752 | EH table sizes, this may not be worthwhile. */ | |
4753 | ||
4754 | static void | |
4755 | compute_transpout () | |
4756 | { | |
4757 | int bb; | |
4758 | ||
4759 | sbitmap_vector_ones (transpout, n_basic_blocks); | |
4760 | ||
4761 | for (bb = 0; bb < n_basic_blocks; ++bb) | |
4762 | { | |
4763 | int i; | |
4764 | ||
4765 | /* Note that flow inserted a nop a the end of basic blocks that | |
4766 | end in call instructions for reasons other than abnormal | |
4767 | control flow. */ | |
4768 | if (GET_CODE (BLOCK_END (bb)) != CALL_INSN) | |
4769 | continue; | |
4770 | ||
4771 | for (i = 0; i < expr_hash_table_size; i++) | |
4772 | { | |
4773 | struct expr *expr; | |
4774 | for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash) | |
4775 | if (GET_CODE (expr->expr) == MEM) | |
4776 | { | |
4777 | rtx addr = XEXP (expr->expr, 0); | |
4778 | ||
4779 | if (GET_CODE (addr) == SYMBOL_REF | |
4780 | && CONSTANT_POOL_ADDRESS_P (addr)) | |
4781 | continue; | |
4782 | ||
4783 | /* ??? Optimally, we would use interprocedural alias | |
4784 | analysis to determine if this mem is actually killed | |
4785 | by this call. */ | |
4786 | RESET_BIT (transpout[bb], expr->bitmap_index); | |
4787 | } | |
4788 | } | |
4789 | } | |
4790 | } |