]> gcc.gnu.org Git - gcc.git/blame - gcc/gcse.c
Automated conversion of passes to C++ classes
[gcc.git] / gcc / gcse.c
CommitLineData
e45425ec 1/* Partial redundancy elimination / Hoisting for RTL.
d1e082c2 2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
7506f491 3
1322177d 4This file is part of GCC.
7506f491 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
7506f491 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
7506f491
DE
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
7506f491
DE
19
20/* TODO
21 - reordering of memory allocation and freeing to be more space efficient
b11f0116
BC
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
7506f491
DE
24*/
25
26/* References searched while implementing this.
7506f491
DE
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
7506f491
DE
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
7506f491
DE
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
f4e584dc
JL
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
a42cd965
AM
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
f4e584dc
JL
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
7506f491
DE
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133*/
134
135#include "config.h"
50b2596f 136#include "system.h"
4977bab6
ZW
137#include "coretypes.h"
138#include "tm.h"
718f9c0f 139#include "diagnostic-core.h"
01198c2f 140#include "toplev.h"
7506f491 141
b11f0116 142#include "hard-reg-set.h"
7506f491 143#include "rtl.h"
b0656d8b 144#include "tree.h"
6baf1cc8 145#include "tm_p.h"
7506f491 146#include "regs.h"
b11f0116 147#include "ira.h"
7506f491 148#include "flags.h"
7506f491
DE
149#include "insn-config.h"
150#include "recog.h"
151#include "basic-block.h"
49ad7cfa 152#include "function.h"
589005ff 153#include "expr.h"
e7d482b9 154#include "except.h"
fb0c0a12 155#include "ggc.h"
f1fa37ff 156#include "params.h"
ae860ff7 157#include "cselib.h"
d128effb 158#include "intl.h"
7506f491 159#include "obstack.h"
ef330312 160#include "tree-pass.h"
4a8fb1a1 161#include "hash-table.h"
6fb5fa3c
DB
162#include "df.h"
163#include "dbgcnt.h"
ec0a1343 164#include "target.h"
7c6811fe 165#include "gcse.h"
4fa31c2a 166
f4e584dc 167/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
4cad6dba 168 are a superset of those done by classic GCSE.
7506f491 169
e45425ec
SB
170 Two passes of copy/constant propagation are done around PRE or hoisting
171 because the first one enables more GCSE and the second one helps to clean
172 up the copies that PRE and HOIST create. This is needed more for PRE than
173 for HOIST because code hoisting will try to use an existing register
174 containing the common subexpression rather than create a new one. This is
175 harder to do for PRE because of the code motion (which HOIST doesn't do).
7506f491
DE
176
177 Expressions we are interested in GCSE-ing are of the form
178 (set (pseudo-reg) (expression)).
179 Function want_to_gcse_p says what these are.
180
4cad6dba 181 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
3906a4a1 182 This allows PRE to hoist expressions that are expressed in multiple insns,
4cad6dba
SB
183 such as complex address calculations (e.g. for PIC code, or loads with a
184 high part and a low part).
3906a4a1 185
7506f491 186 PRE handles moving invariant expressions out of loops (by treating them as
f4e584dc 187 partially redundant).
7506f491 188
7506f491
DE
189 **********************
190
191 We used to support multiple passes but there are diminishing returns in
192 doing so. The first pass usually makes 90% of the changes that are doable.
193 A second pass can make a few more changes made possible by the first pass.
194 Experiments show any further passes don't make enough changes to justify
195 the expense.
196
197 A study of spec92 using an unlimited number of passes:
198 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
199 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
200 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
201
202 It was found doing copy propagation between each pass enables further
203 substitutions.
204
3906a4a1
SB
205 This study was done before expressions in REG_EQUAL notes were added as
206 candidate expressions for optimization, and before the GIMPLE optimizers
207 were added. Probably, multiple passes is even less efficient now than
208 at the time when the study was conducted.
209
7506f491 210 PRE is quite expensive in complicated functions because the DFA can take
3906a4a1 211 a while to converge. Hence we only perform one pass.
7506f491
DE
212
213 **********************
214
215 The steps for PRE are:
216
217 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
218
219 2) Perform the data flow analysis for PRE.
220
221 3) Delete the redundant instructions
222
223 4) Insert the required copies [if any] that make the partially
224 redundant instructions fully redundant.
225
226 5) For other reaching expressions, insert an instruction to copy the value
227 to a newly created pseudo that will reach the redundant instruction.
228
229 The deletion is done first so that when we do insertions we
230 know which pseudo reg to use.
231
232 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
233 argue it is not. The number of iterations for the algorithm to converge
234 is typically 2-4 so I don't view it as that expensive (relatively speaking).
235
4cad6dba 236 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
7506f491
DE
237 we create. To make an expression reach the place where it's redundant,
238 the result of the expression is copied to a new register, and the redundant
239 expression is deleted by replacing it with this new register. Classic GCSE
240 doesn't have this problem as much as it computes the reaching defs of
a3c28ba2
KH
241 each register in each block and thus can try to use an existing
242 register. */
7506f491
DE
243\f
244/* GCSE global vars. */
245
7c6811fe
RS
246struct target_gcse default_target_gcse;
247#if SWITCHABLE_TARGET
248struct target_gcse *this_target_gcse = &default_target_gcse;
249#endif
250
5f39ad47
SB
251/* Set to non-zero if CSE should run after all GCSE optimizations are done. */
252int flag_rerun_cse_after_global_opts;
f4e584dc 253
7506f491
DE
254/* An obstack for our working variables. */
255static struct obstack gcse_obstack;
256
7506f491
DE
257/* Hash table of expressions. */
258
259struct expr
260{
43c8a043 261 /* The expression. */
7506f491
DE
262 rtx expr;
263 /* Index in the available expression bitmaps. */
264 int bitmap_index;
265 /* Next entry with the same hash. */
266 struct expr *next_same_hash;
267 /* List of anticipatable occurrences in basic blocks in the function.
268 An "anticipatable occurrence" is one that is the first occurrence in the
f4e584dc
JL
269 basic block, the operands are not modified in the basic block prior
270 to the occurrence and the output is not used between the start of
271 the block and the occurrence. */
7506f491
DE
272 struct occr *antic_occr;
273 /* List of available occurrence in basic blocks in the function.
274 An "available occurrence" is one that is the last occurrence in the
275 basic block and the operands are not modified by following statements in
276 the basic block [including this insn]. */
277 struct occr *avail_occr;
278 /* Non-null if the computation is PRE redundant.
279 The value is the newly created pseudo-reg to record a copy of the
280 expression in all the places that reach the redundant copy. */
281 rtx reaching_reg;
20160347
MK
282 /* Maximum distance in instructions this expression can travel.
283 We avoid moving simple expressions for more than a few instructions
284 to keep register pressure under control.
285 A value of "0" removes restrictions on how far the expression can
286 travel. */
287 int max_distance;
7506f491
DE
288};
289
290/* Occurrence of an expression.
291 There is one per basic block. If a pattern appears more than once the
292 last appearance is used [or first for anticipatable expressions]. */
293
294struct occr
295{
296 /* Next occurrence of this expression. */
297 struct occr *next;
298 /* The insn that computes the expression. */
299 rtx insn;
cc2902df 300 /* Nonzero if this [anticipatable] occurrence has been deleted. */
7506f491 301 char deleted_p;
cc2902df 302 /* Nonzero if this [available] occurrence has been copied to
7506f491
DE
303 reaching_reg. */
304 /* ??? This is mutually exclusive with deleted_p, so they could share
305 the same byte. */
306 char copied_p;
307};
308
cad9aa15 309typedef struct occr *occr_t;
cad9aa15 310
e45425ec 311/* Expression hash tables.
7506f491
DE
312 Each hash table is an array of buckets.
313 ??? It is known that if it were an array of entries, structure elements
314 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
315 not clear whether in the final analysis a sufficient amount of memory would
316 be saved as the size of the available expression bitmaps would be larger
317 [one could build a mapping table without holes afterwards though].
c4c81601 318 Someday I'll perform the computation and figure it out. */
7506f491 319
7e5487a2 320struct hash_table_d
02280659
ZD
321{
322 /* The table itself.
323 This is an array of `expr_hash_table_size' elements. */
324 struct expr **table;
325
326 /* Size of the hash table, in elements. */
327 unsigned int size;
2e653e39 328
02280659
ZD
329 /* Number of hash table elements. */
330 unsigned int n_elems;
02280659 331};
c4c81601 332
02280659 333/* Expression hash table. */
7e5487a2 334static struct hash_table_d expr_hash_table;
02280659 335
a13d4ebf 336/* This is a list of expressions which are MEMs and will be used by load
589005ff 337 or store motion.
43c8a043
EB
338 Load motion tracks MEMs which aren't killed by anything except itself,
339 i.e. loads and stores to a single location.
589005ff 340 We can then allow movement of these MEM refs with a little special
a13d4ebf
AM
341 allowance. (all stores copy the same value to the reaching reg used
342 for the loads). This means all values used to store into memory must have
43c8a043 343 no side effects so we can re-issue the setter value. */
a13d4ebf
AM
344
345struct ls_expr
346{
347 struct expr * expr; /* Gcse expression reference for LM. */
348 rtx pattern; /* Pattern of this mem. */
47a3dae1 349 rtx pattern_regs; /* List of registers mentioned by the mem. */
aaa4ca30
AJ
350 rtx loads; /* INSN list of loads seen. */
351 rtx stores; /* INSN list of stores seen. */
a13d4ebf
AM
352 struct ls_expr * next; /* Next in the list. */
353 int invalid; /* Invalid for some reason. */
354 int index; /* If it maps to a bitmap index. */
b58b21d5 355 unsigned int hash_index; /* Index when in a hash table. */
a13d4ebf
AM
356 rtx reaching_reg; /* Register to use when re-writing. */
357};
358
359/* Head of the list of load/store memory refs. */
360static struct ls_expr * pre_ldst_mems = NULL;
361
4a8fb1a1
LC
362struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
363{
364 typedef ls_expr value_type;
365 typedef value_type compare_type;
366 static inline hashval_t hash (const value_type *);
367 static inline bool equal (const value_type *, const compare_type *);
368};
369
370/* Hashtable helpers. */
371inline hashval_t
372pre_ldst_expr_hasher::hash (const value_type *x)
373{
374 int do_not_record_p = 0;
375 return
376 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
377}
378
379static int expr_equiv_p (const_rtx, const_rtx);
380
381inline bool
382pre_ldst_expr_hasher::equal (const value_type *ptr1,
383 const compare_type *ptr2)
384{
385 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
386}
387
9727e468 388/* Hashtable for the load/store memory refs. */
4a8fb1a1 389static hash_table <pre_ldst_expr_hasher> pre_ldst_table;
9727e468 390
7506f491
DE
391/* Bitmap containing one bit for each register in the program.
392 Used when performing GCSE to track which registers have been set since
393 the start of the basic block. */
73991d6a 394static regset reg_set_bitmap;
7506f491 395
a13d4ebf
AM
396/* Array, indexed by basic block number for a list of insns which modify
397 memory within that block. */
9771b263 398static vec<rtx> *modify_mem_list;
0516f6fe 399static bitmap modify_mem_list_set;
a13d4ebf 400
6ce1edcf
NF
401typedef struct modify_pair_s
402{
403 rtx dest; /* A MEM. */
404 rtx dest_addr; /* The canonical address of `dest'. */
405} modify_pair;
406
6ce1edcf
NF
407
408/* This array parallels modify_mem_list, except that it stores MEMs
409 being set and their canonicalized memory addresses. */
9771b263 410static vec<modify_pair> *canon_modify_mem_list;
0516f6fe 411
aa47fcfa
JL
412/* Bitmap indexed by block numbers to record which blocks contain
413 function calls. */
414static bitmap blocks_with_calls;
415
7506f491
DE
416/* Various variables for statistics gathering. */
417
418/* Memory used in a pass.
419 This isn't intended to be absolutely precise. Its intent is only
420 to keep an eye on memory usage. */
421static int bytes_used;
c4c81601 422
7506f491
DE
423/* GCSE substitutions made. */
424static int gcse_subst_count;
425/* Number of copy instructions created. */
426static int gcse_create_count;
7506f491 427\f
20160347
MK
428/* Doing code hoisting. */
429static bool doing_code_hoisting_p = false;
430\f
e83f4801 431/* For available exprs */
df35c271 432static sbitmap *ae_kill;
7506f491 433\f
b11f0116
BC
434/* Data stored for each basic block. */
435struct bb_data
436{
437 /* Maximal register pressure inside basic block for given register class
438 (defined only for the pressure classes). */
439 int max_reg_pressure[N_REG_CLASSES];
4b8181c5
BC
440 /* Recorded register pressure of basic block before trying to hoist
441 an expression. Will be used to restore the register pressure
442 if the expression should not be hoisted. */
443 int old_pressure;
444 /* Recorded register live_in info of basic block during code hoisting
445 process. BACKUP is used to record live_in info before trying to
446 hoist an expression, and will be used to restore LIVE_IN if the
447 expression should not be hoisted. */
448 bitmap live_in, backup;
b11f0116
BC
449};
450
451#define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
452
453static basic_block curr_bb;
454
455/* Current register pressure for each pressure class. */
456static int curr_reg_pressure[N_REG_CLASSES];
457\f
458
1d088dee 459static void compute_can_copy (void);
9fe15a12
KG
460static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
461static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
703ad42b 462static void *gcse_alloc (unsigned long);
eb232f4e 463static void alloc_gcse_mem (void);
1d088dee 464static void free_gcse_mem (void);
7e5487a2
ILT
465static void hash_scan_insn (rtx, struct hash_table_d *);
466static void hash_scan_set (rtx, rtx, struct hash_table_d *);
467static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
468static void hash_scan_call (rtx, rtx, struct hash_table_d *);
20160347 469static int want_to_gcse_p (rtx, int *);
ed7a4b4b
KG
470static int oprs_unchanged_p (const_rtx, const_rtx, int);
471static int oprs_anticipatable_p (const_rtx, const_rtx);
472static int oprs_available_p (const_rtx, const_rtx);
20160347 473static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
7e5487a2 474 struct hash_table_d *);
ed7a4b4b 475static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
1d088dee
AJ
476static void record_last_reg_set_info (rtx, int);
477static void record_last_mem_set_info (rtx);
7bc980e1 478static void record_last_set_info (rtx, const_rtx, void *);
7e5487a2 479static void compute_hash_table (struct hash_table_d *);
e45425ec 480static void alloc_hash_table (struct hash_table_d *);
7e5487a2
ILT
481static void free_hash_table (struct hash_table_d *);
482static void compute_hash_table_work (struct hash_table_d *);
483static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
e45425ec 484static void compute_transp (const_rtx, int, sbitmap *);
1d088dee 485static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
7e5487a2 486 struct hash_table_d *);
7bc980e1 487static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
ed7a4b4b 488static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
7bc980e1 489static void canon_list_insert (rtx, const_rtx, void *);
1d088dee
AJ
490static void alloc_pre_mem (int, int);
491static void free_pre_mem (void);
43c8a043 492static struct edge_list *compute_pre_data (void);
1d088dee
AJ
493static int pre_expr_reaches_here_p (basic_block, struct expr *,
494 basic_block);
eae7938e 495static void insert_insn_end_basic_block (struct expr *, basic_block);
1d088dee
AJ
496static void pre_insert_copy_insn (struct expr *, rtx);
497static void pre_insert_copies (void);
498static int pre_delete (void);
43c8a043 499static int pre_gcse (struct edge_list *);
5f39ad47 500static int one_pre_gcse_pass (void);
1d088dee
AJ
501static void add_label_notes (rtx, rtx);
502static void alloc_code_hoist_mem (int, int);
503static void free_code_hoist_mem (void);
504static void compute_code_hoist_vbeinout (void);
505static void compute_code_hoist_data (void);
b11f0116
BC
506static int should_hoist_expr_to_dom (basic_block, struct expr *, basic_block,
507 sbitmap, int, int *, enum reg_class,
4b8181c5 508 int *, bitmap, rtx);
5f39ad47 509static int hoist_code (void);
4b8181c5 510static enum reg_class get_regno_pressure_class (int regno, int *nregs);
b11f0116 511static enum reg_class get_pressure_class_and_nregs (rtx insn, int *nregs);
1d088dee 512static int one_code_hoisting_pass (void);
1d088dee
AJ
513static rtx process_insert_insn (struct expr *);
514static int pre_edge_insert (struct edge_list *, struct expr **);
1d088dee
AJ
515static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
516 basic_block, char *);
517static struct ls_expr * ldst_entry (rtx);
518static void free_ldst_entry (struct ls_expr *);
43c8a043 519static void free_ld_motion_mems (void);
1d088dee
AJ
520static void print_ldst_list (FILE *);
521static struct ls_expr * find_rtx_in_ldst (rtx);
ed7a4b4b 522static int simple_mem (const_rtx);
1d088dee
AJ
523static void invalidate_any_buried_refs (rtx);
524static void compute_ld_motion_mems (void);
525static void trim_ld_motion_mems (void);
526static void update_ld_motion_stores (struct expr *);
1d088dee
AJ
527static void clear_modify_mem_tables (void);
528static void free_modify_mem_tables (void);
529static rtx gcse_emit_move_after (rtx, rtx, rtx);
d128effb 530static bool is_too_expensive (const char *);
1b4572a8
KG
531
532#define GNEW(T) ((T *) gmalloc (sizeof (T)))
533#define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
534
535#define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
536#define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
1b4572a8
KG
537
538#define GNEWVAR(T, S) ((T *) gmalloc ((S)))
539#define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
1b4572a8
KG
540
541#define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
542#define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
7506f491 543\f
7506f491
DE
544/* Misc. utilities. */
545
7c6811fe
RS
546#define can_copy \
547 (this_target_gcse->x_can_copy)
548#define can_copy_init_p \
549 (this_target_gcse->x_can_copy_init_p)
773eae39 550
7506f491
DE
551/* Compute which modes support reg/reg copy operations. */
552
553static void
1d088dee 554compute_can_copy (void)
7506f491
DE
555{
556 int i;
50b2596f 557#ifndef AVOID_CCMODE_COPIES
8e42ace1 558 rtx reg, insn;
50b2596f 559#endif
773eae39 560 memset (can_copy, 0, NUM_MACHINE_MODES);
7506f491
DE
561
562 start_sequence ();
563 for (i = 0; i < NUM_MACHINE_MODES; i++)
c4c81601
RK
564 if (GET_MODE_CLASS (i) == MODE_CC)
565 {
7506f491 566#ifdef AVOID_CCMODE_COPIES
773eae39 567 can_copy[i] = 0;
7506f491 568#else
c4c81601
RK
569 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
570 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
9714cf43 571 if (recog (PATTERN (insn), insn, NULL) >= 0)
773eae39 572 can_copy[i] = 1;
7506f491 573#endif
c4c81601 574 }
141b5810 575 else
773eae39 576 can_copy[i] = 1;
c4c81601 577
7506f491 578 end_sequence ();
7506f491 579}
773eae39
EB
580
581/* Returns whether the mode supports reg/reg copy operations. */
582
583bool
1d088dee 584can_copy_p (enum machine_mode mode)
773eae39 585{
773eae39
EB
586 if (! can_copy_init_p)
587 {
588 compute_can_copy ();
589 can_copy_init_p = true;
590 }
591
592 return can_copy[mode] != 0;
593}
7506f491
DE
594\f
595/* Cover function to xmalloc to record bytes allocated. */
596
703ad42b 597static void *
4ac11022 598gmalloc (size_t size)
7506f491
DE
599{
600 bytes_used += size;
601 return xmalloc (size);
602}
603
9fe15a12
KG
604/* Cover function to xcalloc to record bytes allocated. */
605
606static void *
607gcalloc (size_t nelem, size_t elsize)
608{
609 bytes_used += nelem * elsize;
610 return xcalloc (nelem, elsize);
611}
612
77bbd421 613/* Cover function to obstack_alloc. */
7506f491 614
703ad42b 615static void *
1d088dee 616gcse_alloc (unsigned long size)
7506f491 617{
77bbd421 618 bytes_used += size;
703ad42b 619 return obstack_alloc (&gcse_obstack, size);
7506f491
DE
620}
621
4a81774c 622/* Allocate memory for the reg/memory set tracking tables.
7506f491
DE
623 This is called at the start of each pass. */
624
625static void
eb232f4e 626alloc_gcse_mem (void)
7506f491 627{
7506f491 628 /* Allocate vars to track sets of regs. */
7a8cba34 629 reg_set_bitmap = ALLOC_REG_SET (NULL);
7506f491 630
a13d4ebf 631 /* Allocate array to keep a list of insns which modify memory in each
9771b263
DN
632 basic block. The two typedefs are needed to work around the
633 pre-processor limitation with template types in macro arguments. */
634 typedef vec<rtx> vec_rtx_heap;
635 typedef vec<modify_pair> vec_modify_pair_heap;
636 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block);
637 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap, last_basic_block);
8bdbfff5
NS
638 modify_mem_list_set = BITMAP_ALLOC (NULL);
639 blocks_with_calls = BITMAP_ALLOC (NULL);
7506f491
DE
640}
641
642/* Free memory allocated by alloc_gcse_mem. */
643
644static void
1d088dee 645free_gcse_mem (void)
7506f491 646{
d5b8da97
SB
647 FREE_REG_SET (reg_set_bitmap);
648
73991d6a 649 free_modify_mem_tables ();
8bdbfff5
NS
650 BITMAP_FREE (modify_mem_list_set);
651 BITMAP_FREE (blocks_with_calls);
7506f491 652}
b5ce41ff
JL
653\f
654/* Compute the local properties of each recorded expression.
c4c81601
RK
655
656 Local properties are those that are defined by the block, irrespective of
657 other blocks.
b5ce41ff
JL
658
659 An expression is transparent in a block if its operands are not modified
660 in the block.
661
662 An expression is computed (locally available) in a block if it is computed
663 at least once and expression would contain the same value if the
664 computation was moved to the end of the block.
665
666 An expression is locally anticipatable in a block if it is computed at
667 least once and expression would contain the same value if the computation
668 was moved to the beginning of the block.
669
e45425ec 670 We call this routine for pre and code hoisting. They all compute
c4c81601 671 basically the same information and thus can easily share this code.
7506f491 672
c4c81601
RK
673 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
674 properties. If NULL, then it is not necessary to compute or record that
675 particular property.
b5ce41ff 676
e45425ec 677 TABLE controls which hash table to look at. */
589005ff 678
b5ce41ff 679static void
7b1b4aed 680compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
7e5487a2 681 struct hash_table_d *table)
b5ce41ff 682{
02280659 683 unsigned int i;
589005ff 684
b5ce41ff
JL
685 /* Initialize any bitmaps that were passed in. */
686 if (transp)
695ab36a 687 {
f61e445a 688 bitmap_vector_ones (transp, last_basic_block);
695ab36a 689 }
c4c81601 690
b5ce41ff 691 if (comp)
f61e445a 692 bitmap_vector_clear (comp, last_basic_block);
b5ce41ff 693 if (antloc)
f61e445a 694 bitmap_vector_clear (antloc, last_basic_block);
b5ce41ff 695
02280659 696 for (i = 0; i < table->size; i++)
7506f491 697 {
b5ce41ff
JL
698 struct expr *expr;
699
02280659 700 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
b5ce41ff 701 {
b5ce41ff 702 int indx = expr->bitmap_index;
c4c81601 703 struct occr *occr;
b5ce41ff
JL
704
705 /* The expression is transparent in this block if it is not killed.
706 We start by assuming all are transparent [none are killed], and
707 then reset the bits for those that are. */
b5ce41ff 708 if (transp)
e45425ec 709 compute_transp (expr->expr, indx, transp);
b5ce41ff
JL
710
711 /* The occurrences recorded in antic_occr are exactly those that
cc2902df 712 we want to set to nonzero in ANTLOC. */
b5ce41ff 713 if (antloc)
c4c81601
RK
714 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
715 {
d7c028c0 716 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
b5ce41ff 717
c4c81601
RK
718 /* While we're scanning the table, this is a good place to
719 initialize this. */
720 occr->deleted_p = 0;
721 }
b5ce41ff
JL
722
723 /* The occurrences recorded in avail_occr are exactly those that
cc2902df 724 we want to set to nonzero in COMP. */
b5ce41ff 725 if (comp)
c4c81601
RK
726 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
727 {
d7c028c0 728 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
b5ce41ff 729
c4c81601
RK
730 /* While we're scanning the table, this is a good place to
731 initialize this. */
732 occr->copied_p = 0;
733 }
b5ce41ff
JL
734
735 /* While we're scanning the table, this is a good place to
736 initialize this. */
737 expr->reaching_reg = 0;
738 }
7506f491 739 }
7506f491
DE
740}
741\f
7506f491
DE
742/* Hash table support. */
743
80c29cc4
RZ
744struct reg_avail_info
745{
e0082a72 746 basic_block last_bb;
80c29cc4
RZ
747 int first_set;
748 int last_set;
749};
750
751static struct reg_avail_info *reg_avail_info;
e0082a72 752static basic_block current_bb;
7506f491 753
fb0c0a12
RK
754/* See whether X, the source of a set, is something we want to consider for
755 GCSE. */
7506f491
DE
756
757static int
20160347 758want_to_gcse_p (rtx x, int *max_distance_ptr)
7506f491 759{
3d8504ac
RS
760#ifdef STACK_REGS
761 /* On register stack architectures, don't GCSE constants from the
762 constant pool, as the benefits are often swamped by the overhead
763 of shuffling the register stack between basic blocks. */
764 if (IS_STACK_MODE (GET_MODE (x)))
765 x = avoid_constant_pool_reference (x);
766#endif
767
20160347
MK
768 /* GCSE'ing constants:
769
770 We do not specifically distinguish between constant and non-constant
5e8f01f4 771 expressions in PRE and Hoist. We use set_src_cost below to limit
20160347
MK
772 the maximum distance simple expressions can travel.
773
774 Nevertheless, constants are much easier to GCSE, and, hence,
775 it is easy to overdo the optimizations. Usually, excessive PRE and
776 Hoisting of constant leads to increased register pressure.
777
778 RA can deal with this by rematerialing some of the constants.
779 Therefore, it is important that the back-end generates sets of constants
780 in a way that allows reload rematerialize them under high register
781 pressure, i.e., a pseudo register with REG_EQUAL to constant
782 is set only once. Failing to do so will result in IRA/reload
783 spilling such constants under high register pressure instead of
784 rematerializing them. */
785
c4c81601 786 switch (GET_CODE (x))
7506f491
DE
787 {
788 case REG:
789 case SUBREG:
20160347
MK
790 case CALL:
791 return 0;
792
d8116890 793 CASE_CONST_ANY:
20160347
MK
794 if (!doing_code_hoisting_p)
795 /* Do not PRE constants. */
796 return 0;
797
798 /* FALLTHRU */
7506f491
DE
799
800 default:
20160347
MK
801 if (doing_code_hoisting_p)
802 /* PRE doesn't implement max_distance restriction. */
803 {
804 int cost;
805 int max_distance;
806
807 gcc_assert (!optimize_function_for_speed_p (cfun)
808 && optimize_function_for_size_p (cfun));
5e8f01f4 809 cost = set_src_cost (x, 0);
20160347
MK
810
811 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
812 {
813 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
814 if (max_distance == 0)
815 return 0;
816
817 gcc_assert (max_distance > 0);
818 }
819 else
820 max_distance = 0;
821
822 if (max_distance_ptr)
823 *max_distance_ptr = max_distance;
824 }
825
df35c271 826 return can_assign_to_reg_without_clobbers_p (x);
7506f491 827 }
1707bafa
RS
828}
829
df35c271 830/* Used internally by can_assign_to_reg_without_clobbers_p. */
1707bafa
RS
831
832static GTY(()) rtx test_insn;
833
df35c271
SB
834/* Return true if we can assign X to a pseudo register such that the
835 resulting insn does not result in clobbering a hard register as a
836 side-effect.
ec0a1343
JB
837
838 Additionally, if the target requires it, check that the resulting insn
839 can be copied. If it cannot, this means that X is special and probably
840 has hidden side-effects we don't want to mess with.
841
df35c271
SB
842 This function is typically used by code motion passes, to verify
843 that it is safe to insert an insn without worrying about clobbering
844 maybe live hard regs. */
1707bafa 845
df35c271
SB
846bool
847can_assign_to_reg_without_clobbers_p (rtx x)
1707bafa
RS
848{
849 int num_clobbers = 0;
850 int icode;
7506f491 851
fb0c0a12
RK
852 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
853 if (general_operand (x, GET_MODE (x)))
854 return 1;
855 else if (GET_MODE (x) == VOIDmode)
856 return 0;
857
858 /* Otherwise, check if we can make a valid insn from it. First initialize
859 our test insn if we haven't already. */
860 if (test_insn == 0)
861 {
862 test_insn
863 = make_insn_raw (gen_rtx_SET (VOIDmode,
864 gen_rtx_REG (word_mode,
865 FIRST_PSEUDO_REGISTER * 2),
866 const0_rtx));
867 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
fb0c0a12
RK
868 }
869
870 /* Now make an insn like the one we would make when GCSE'ing and see if
871 valid. */
872 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
873 SET_SRC (PATTERN (test_insn)) = x;
b8698a0f 874
ec0a1343
JB
875 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
876 if (icode < 0)
877 return false;
b8698a0f 878
ec0a1343
JB
879 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
880 return false;
b8698a0f 881
ec0a1343
JB
882 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
883 return false;
b8698a0f 884
ec0a1343 885 return true;
7506f491
DE
886}
887
cc2902df 888/* Return nonzero if the operands of expression X are unchanged from the
7506f491
DE
889 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
890 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
891
892static int
ed7a4b4b 893oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
7506f491 894{
c4c81601 895 int i, j;
7506f491 896 enum rtx_code code;
6f7d635c 897 const char *fmt;
7506f491 898
7506f491
DE
899 if (x == 0)
900 return 1;
901
902 code = GET_CODE (x);
903 switch (code)
904 {
905 case REG:
80c29cc4
RZ
906 {
907 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
908
909 if (info->last_bb != current_bb)
910 return 1;
589005ff 911 if (avail_p)
4a81774c 912 return info->last_set < DF_INSN_LUID (insn);
80c29cc4 913 else
4a81774c 914 return info->first_set >= DF_INSN_LUID (insn);
80c29cc4 915 }
7506f491
DE
916
917 case MEM:
85c0f02d
SB
918 if (! flag_gcse_lm
919 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
920 x, avail_p))
a13d4ebf 921 return 0;
7506f491 922 else
c4c81601 923 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
7506f491
DE
924
925 case PRE_DEC:
926 case PRE_INC:
927 case POST_DEC:
928 case POST_INC:
4b983fdc
RH
929 case PRE_MODIFY:
930 case POST_MODIFY:
7506f491
DE
931 return 0;
932
933 case PC:
934 case CC0: /*FIXME*/
935 case CONST:
d8116890 936 CASE_CONST_ANY:
7506f491
DE
937 case SYMBOL_REF:
938 case LABEL_REF:
939 case ADDR_VEC:
940 case ADDR_DIFF_VEC:
941 return 1;
942
943 default:
944 break;
945 }
946
c4c81601 947 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
7506f491
DE
948 {
949 if (fmt[i] == 'e')
950 {
c4c81601
RK
951 /* If we are about to do the last recursive call needed at this
952 level, change it into iteration. This function is called enough
953 to be worth it. */
7506f491 954 if (i == 0)
c4c81601
RK
955 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
956
957 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
7506f491
DE
958 return 0;
959 }
960 else if (fmt[i] == 'E')
c4c81601
RK
961 for (j = 0; j < XVECLEN (x, i); j++)
962 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
963 return 0;
7506f491
DE
964 }
965
966 return 1;
967}
968
43c8a043 969/* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
a13d4ebf 970
43c8a043
EB
971struct mem_conflict_info
972{
973 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
974 see if a memory store conflicts with this memory load. */
975 const_rtx mem;
a13d4ebf 976
43c8a043
EB
977 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
978 references. */
979 bool conflict;
980};
981
982/* DEST is the output of an instruction. If it is a memory reference and
983 possibly conflicts with the load found in DATA, then communicate this
984 information back through DATA. */
a13d4ebf
AM
985
986static void
7bc980e1 987mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
43c8a043 988 void *data)
a13d4ebf 989{
43c8a043
EB
990 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
991
a13d4ebf
AM
992 while (GET_CODE (dest) == SUBREG
993 || GET_CODE (dest) == ZERO_EXTRACT
a13d4ebf
AM
994 || GET_CODE (dest) == STRICT_LOW_PART)
995 dest = XEXP (dest, 0);
996
997 /* If DEST is not a MEM, then it will not conflict with the load. Note
998 that function calls are assumed to clobber memory, but are handled
999 elsewhere. */
7b1b4aed 1000 if (! MEM_P (dest))
a13d4ebf 1001 return;
aaa4ca30 1002
a13d4ebf 1003 /* If we are setting a MEM in our list of specially recognized MEMs,
589005ff 1004 don't mark as killed this time. */
43c8a043 1005 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
a13d4ebf
AM
1006 {
1007 if (!find_rtx_in_ldst (dest))
43c8a043 1008 mci->conflict = true;
a13d4ebf
AM
1009 return;
1010 }
aaa4ca30 1011
53d9622b 1012 if (true_dependence (dest, GET_MODE (dest), mci->mem))
43c8a043 1013 mci->conflict = true;
a13d4ebf
AM
1014}
1015
1016/* Return nonzero if the expression in X (a memory reference) is killed
4a81774c 1017 in block BB before or after the insn with the LUID in UID_LIMIT.
a13d4ebf
AM
1018 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1019 before UID_LIMIT.
1020
1021 To check the entire block, set UID_LIMIT to max_uid + 1 and
1022 AVAIL_P to 0. */
1023
1024static int
43c8a043
EB
1025load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1026 int avail_p)
a13d4ebf 1027{
9771b263 1028 vec<rtx> list = modify_mem_list[bb->index];
6409abe3
NF
1029 rtx setter;
1030 unsigned ix;
16c5b95d
MH
1031
1032 /* If this is a readonly then we aren't going to be changing it. */
1033 if (MEM_READONLY_P (x))
1034 return 0;
1035
9771b263 1036 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
a13d4ebf 1037 {
43c8a043
EB
1038 struct mem_conflict_info mci;
1039
a13d4ebf
AM
1040 /* Ignore entries in the list that do not apply. */
1041 if ((avail_p
6409abe3 1042 && DF_INSN_LUID (setter) < uid_limit)
a13d4ebf 1043 || (! avail_p
6409abe3
NF
1044 && DF_INSN_LUID (setter) > uid_limit))
1045 continue;
a13d4ebf
AM
1046
1047 /* If SETTER is a call everything is clobbered. Note that calls
1048 to pure functions are never put on the list, so we need not
1049 worry about them. */
7b1b4aed 1050 if (CALL_P (setter))
a13d4ebf
AM
1051 return 1;
1052
1053 /* SETTER must be an INSN of some kind that sets memory. Call
43c8a043
EB
1054 note_stores to examine each hunk of memory that is modified. */
1055 mci.mem = x;
1056 mci.conflict = false;
1057 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1058 if (mci.conflict)
a13d4ebf 1059 return 1;
a13d4ebf
AM
1060 }
1061 return 0;
1062}
1063
cc2902df 1064/* Return nonzero if the operands of expression X are unchanged from
7506f491
DE
1065 the start of INSN's basic block up to but not including INSN. */
1066
1067static int
ed7a4b4b 1068oprs_anticipatable_p (const_rtx x, const_rtx insn)
7506f491
DE
1069{
1070 return oprs_unchanged_p (x, insn, 0);
1071}
1072
cc2902df 1073/* Return nonzero if the operands of expression X are unchanged from
7506f491
DE
1074 INSN to the end of INSN's basic block. */
1075
1076static int
ed7a4b4b 1077oprs_available_p (const_rtx x, const_rtx insn)
7506f491
DE
1078{
1079 return oprs_unchanged_p (x, insn, 1);
1080}
1081
1082/* Hash expression X.
c4c81601
RK
1083
1084 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1085 indicating if a volatile operand is found or if the expression contains
b58b21d5 1086 something we don't want to insert in the table. HASH_TABLE_SIZE is
0516f6fe 1087 the current size of the hash table to be probed. */
7506f491
DE
1088
1089static unsigned int
ed7a4b4b 1090hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
b58b21d5 1091 int hash_table_size)
7506f491
DE
1092{
1093 unsigned int hash;
1094
1095 *do_not_record_p = 0;
1096
43c8a043 1097 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
7506f491
DE
1098 return hash % hash_table_size;
1099}
172890a2 1100
0516f6fe 1101/* Return nonzero if exp1 is equivalent to exp2. */
7506f491
DE
1102
1103static int
ed7a4b4b 1104expr_equiv_p (const_rtx x, const_rtx y)
7506f491 1105{
0516f6fe 1106 return exp_equiv_p (x, y, 0, true);
7506f491
DE
1107}
1108
02280659 1109/* Insert expression X in INSN in the hash TABLE.
7506f491
DE
1110 If it is already present, record it as the last occurrence in INSN's
1111 basic block.
1112
1113 MODE is the mode of the value X is being stored into.
1114 It is only used if X is a CONST_INT.
1115
cc2902df 1116 ANTIC_P is nonzero if X is an anticipatable expression.
20160347
MK
1117 AVAIL_P is nonzero if X is an available expression.
1118
1119 MAX_DISTANCE is the maximum distance in instructions this expression can
1120 be moved. */
7506f491
DE
1121
1122static void
1d088dee 1123insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
20160347 1124 int avail_p, int max_distance, struct hash_table_d *table)
7506f491
DE
1125{
1126 int found, do_not_record_p;
1127 unsigned int hash;
1128 struct expr *cur_expr, *last_expr = NULL;
1129 struct occr *antic_occr, *avail_occr;
7506f491 1130
02280659 1131 hash = hash_expr (x, mode, &do_not_record_p, table->size);
7506f491
DE
1132
1133 /* Do not insert expression in table if it contains volatile operands,
1134 or if hash_expr determines the expression is something we don't want
1135 to or can't handle. */
1136 if (do_not_record_p)
1137 return;
1138
02280659 1139 cur_expr = table->table[hash];
7506f491
DE
1140 found = 0;
1141
c4c81601 1142 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
7506f491
DE
1143 {
1144 /* If the expression isn't found, save a pointer to the end of
1145 the list. */
1146 last_expr = cur_expr;
1147 cur_expr = cur_expr->next_same_hash;
1148 }
1149
1150 if (! found)
1151 {
1b4572a8 1152 cur_expr = GOBNEW (struct expr);
7506f491 1153 bytes_used += sizeof (struct expr);
02280659 1154 if (table->table[hash] == NULL)
c4c81601 1155 /* This is the first pattern that hashed to this index. */
02280659 1156 table->table[hash] = cur_expr;
7506f491 1157 else
c4c81601
RK
1158 /* Add EXPR to end of this hash chain. */
1159 last_expr->next_same_hash = cur_expr;
1160
589005ff 1161 /* Set the fields of the expr element. */
7506f491 1162 cur_expr->expr = x;
02280659 1163 cur_expr->bitmap_index = table->n_elems++;
7506f491
DE
1164 cur_expr->next_same_hash = NULL;
1165 cur_expr->antic_occr = NULL;
1166 cur_expr->avail_occr = NULL;
20160347
MK
1167 gcc_assert (max_distance >= 0);
1168 cur_expr->max_distance = max_distance;
7506f491 1169 }
20160347
MK
1170 else
1171 gcc_assert (cur_expr->max_distance == max_distance);
7506f491
DE
1172
1173 /* Now record the occurrence(s). */
7506f491
DE
1174 if (antic_p)
1175 {
1176 antic_occr = cur_expr->antic_occr;
1177
b0de17ef
SB
1178 if (antic_occr
1179 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
b6e47ceb 1180 antic_occr = NULL;
7506f491
DE
1181
1182 if (antic_occr)
c4c81601
RK
1183 /* Found another instance of the expression in the same basic block.
1184 Prefer the currently recorded one. We want the first one in the
1185 block and the block is scanned from start to end. */
1186 ; /* nothing to do */
7506f491
DE
1187 else
1188 {
1189 /* First occurrence of this expression in this basic block. */
1b4572a8 1190 antic_occr = GOBNEW (struct occr);
7506f491 1191 bytes_used += sizeof (struct occr);
7506f491 1192 antic_occr->insn = insn;
b6e47ceb 1193 antic_occr->next = cur_expr->antic_occr;
f9957958 1194 antic_occr->deleted_p = 0;
b6e47ceb 1195 cur_expr->antic_occr = antic_occr;
7506f491
DE
1196 }
1197 }
1198
1199 if (avail_p)
1200 {
1201 avail_occr = cur_expr->avail_occr;
1202
b0de17ef
SB
1203 if (avail_occr
1204 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
7506f491 1205 {
b6e47ceb
JL
1206 /* Found another instance of the expression in the same basic block.
1207 Prefer this occurrence to the currently recorded one. We want
1208 the last one in the block and the block is scanned from start
1209 to end. */
1210 avail_occr->insn = insn;
7506f491 1211 }
7506f491
DE
1212 else
1213 {
1214 /* First occurrence of this expression in this basic block. */
1b4572a8 1215 avail_occr = GOBNEW (struct occr);
7506f491 1216 bytes_used += sizeof (struct occr);
7506f491 1217 avail_occr->insn = insn;
b6e47ceb 1218 avail_occr->next = cur_expr->avail_occr;
f9957958 1219 avail_occr->deleted_p = 0;
b6e47ceb 1220 cur_expr->avail_occr = avail_occr;
7506f491
DE
1221 }
1222 }
1223}
1224
43c8a043 1225/* Scan SET present in INSN and add an entry to the hash TABLE. */
7506f491
DE
1226
1227static void
43c8a043 1228hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
7506f491 1229{
43c8a043
EB
1230 rtx src = SET_SRC (set);
1231 rtx dest = SET_DEST (set);
172890a2 1232 rtx note;
7506f491 1233
6e72d1e9 1234 if (GET_CODE (src) == CALL)
02280659 1235 hash_scan_call (src, insn, table);
7506f491 1236
7b1b4aed 1237 else if (REG_P (dest))
7506f491 1238 {
172890a2 1239 unsigned int regno = REGNO (dest);
20160347 1240 int max_distance = 0;
7506f491 1241
29470771
SB
1242 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1243
90631280
PB
1244 This allows us to do a single GCSE pass and still eliminate
1245 redundant constants, addresses or other expressions that are
29470771
SB
1246 constructed with multiple instructions.
1247
e45425ec 1248 However, keep the original SRC if INSN is a simple reg-reg move.
29470771
SB
1249 In this case, there will almost always be a REG_EQUAL note on the
1250 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1251 for INSN, we miss copy propagation opportunities and we perform the
1252 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1253 do more than one PRE GCSE pass.
1254
fa10beec 1255 Note that this does not impede profitable constant propagations. We
29470771 1256 "look through" reg-reg sets in lookup_avail_set. */
90631280
PB
1257 note = find_reg_equal_equiv_note (insn);
1258 if (note != 0
29470771
SB
1259 && REG_NOTE_KIND (note) == REG_EQUAL
1260 && !REG_P (src)
e45425ec 1261 && want_to_gcse_p (XEXP (note, 0), NULL))
43c8a043 1262 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
172890a2 1263
7506f491 1264 /* Only record sets of pseudo-regs in the hash table. */
e45425ec 1265 if (regno >= FIRST_PSEUDO_REGISTER
7506f491 1266 /* Don't GCSE something if we can't do a reg/reg copy. */
773eae39 1267 && can_copy_p (GET_MODE (dest))
068473ec 1268 /* GCSE commonly inserts instruction after the insn. We can't
1d65f45c
RH
1269 do that easily for EH edges so disable GCSE on these for now. */
1270 /* ??? We can now easily create new EH landing pads at the
1271 gimple level, for splitting edges; there's no reason we
1272 can't do the same thing at the rtl level. */
1273 && !can_throw_internal (insn)
7506f491 1274 /* Is SET_SRC something we want to gcse? */
20160347 1275 && want_to_gcse_p (src, &max_distance)
172890a2 1276 /* Don't CSE a nop. */
43c8a043 1277 && ! set_noop_p (set)
43e72072
JJ
1278 /* Don't GCSE if it has attached REG_EQUIV note.
1279 At this point this only function parameters should have
1280 REG_EQUIV notes and if the argument slot is used somewhere
a1f300c0 1281 explicitly, it means address of parameter has been taken,
43e72072 1282 so we should not extend the lifetime of the pseudo. */
90631280 1283 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
7506f491
DE
1284 {
1285 /* An expression is not anticipatable if its operands are
52d76e11 1286 modified before this insn or if this is not the only SET in
6fb5fa3c
DB
1287 this insn. The latter condition does not have to mean that
1288 SRC itself is not anticipatable, but we just will not be
1289 able to handle code motion of insns with multiple sets. */
1290 int antic_p = oprs_anticipatable_p (src, insn)
1291 && !multiple_sets (insn);
7506f491 1292 /* An expression is not available if its operands are
eb296bd9
GK
1293 subsequently modified, including this insn. It's also not
1294 available if this is a branch, because we can't insert
1295 a set after the branch. */
1296 int avail_p = (oprs_available_p (src, insn)
1297 && ! JUMP_P (insn));
c4c81601 1298
20160347
MK
1299 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1300 max_distance, table);
7506f491 1301 }
7506f491 1302 }
d91edf86 1303 /* In case of store we want to consider the memory value as available in
f5f2e3cd
MH
1304 the REG stored in that memory. This makes it possible to remove
1305 redundant loads from due to stores to the same location. */
7b1b4aed 1306 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
f5f2e3cd
MH
1307 {
1308 unsigned int regno = REGNO (src);
fb039b24 1309 int max_distance = 0;
f5f2e3cd 1310
e45425ec
SB
1311 /* Only record sets of pseudo-regs in the hash table. */
1312 if (regno >= FIRST_PSEUDO_REGISTER
f5f2e3cd
MH
1313 /* Don't GCSE something if we can't do a reg/reg copy. */
1314 && can_copy_p (GET_MODE (src))
1315 /* GCSE commonly inserts instruction after the insn. We can't
1d65f45c
RH
1316 do that easily for EH edges so disable GCSE on these for now. */
1317 && !can_throw_internal (insn)
f5f2e3cd 1318 /* Is SET_DEST something we want to gcse? */
fb039b24 1319 && want_to_gcse_p (dest, &max_distance)
f5f2e3cd 1320 /* Don't CSE a nop. */
43c8a043 1321 && ! set_noop_p (set)
f5f2e3cd
MH
1322 /* Don't GCSE if it has attached REG_EQUIV note.
1323 At this point this only function parameters should have
1324 REG_EQUIV notes and if the argument slot is used somewhere
1325 explicitly, it means address of parameter has been taken,
1326 so we should not extend the lifetime of the pseudo. */
1327 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
7b1b4aed 1328 || ! MEM_P (XEXP (note, 0))))
f5f2e3cd
MH
1329 {
1330 /* Stores are never anticipatable. */
1331 int antic_p = 0;
1332 /* An expression is not available if its operands are
1333 subsequently modified, including this insn. It's also not
1334 available if this is a branch, because we can't insert
1335 a set after the branch. */
1336 int avail_p = oprs_available_p (dest, insn)
1337 && ! JUMP_P (insn);
1338
1339 /* Record the memory expression (DEST) in the hash table. */
4bcaf354 1340 insert_expr_in_table (dest, GET_MODE (dest), insn,
fb039b24 1341 antic_p, avail_p, max_distance, table);
f5f2e3cd
MH
1342 }
1343 }
7506f491
DE
1344}
1345
1346static void
1d088dee 1347hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
7e5487a2 1348 struct hash_table_d *table ATTRIBUTE_UNUSED)
7506f491
DE
1349{
1350 /* Currently nothing to do. */
1351}
1352
1353static void
1d088dee 1354hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
7e5487a2 1355 struct hash_table_d *table ATTRIBUTE_UNUSED)
7506f491
DE
1356{
1357 /* Currently nothing to do. */
1358}
1359
43c8a043 1360/* Process INSN and add hash table entries as appropriate. */
7506f491
DE
1361
1362static void
7e5487a2 1363hash_scan_insn (rtx insn, struct hash_table_d *table)
7506f491
DE
1364{
1365 rtx pat = PATTERN (insn);
c4c81601 1366 int i;
7506f491
DE
1367
1368 /* Pick out the sets of INSN and for other forms of instructions record
1369 what's been modified. */
1370
172890a2 1371 if (GET_CODE (pat) == SET)
02280659 1372 hash_scan_set (pat, insn, table);
43c8a043
EB
1373
1374 else if (GET_CODE (pat) == CLOBBER)
1375 hash_scan_clobber (pat, insn, table);
1376
1377 else if (GET_CODE (pat) == CALL)
1378 hash_scan_call (pat, insn, table);
1379
7506f491 1380 else if (GET_CODE (pat) == PARALLEL)
c4c81601
RK
1381 for (i = 0; i < XVECLEN (pat, 0); i++)
1382 {
1383 rtx x = XVECEXP (pat, 0, i);
7506f491 1384
c4c81601 1385 if (GET_CODE (x) == SET)
02280659 1386 hash_scan_set (x, insn, table);
c4c81601 1387 else if (GET_CODE (x) == CLOBBER)
02280659 1388 hash_scan_clobber (x, insn, table);
6e72d1e9 1389 else if (GET_CODE (x) == CALL)
02280659 1390 hash_scan_call (x, insn, table);
c4c81601 1391 }
7506f491
DE
1392}
1393
43c8a043
EB
1394/* Dump the hash table TABLE to file FILE under the name NAME. */
1395
7506f491 1396static void
7e5487a2 1397dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
7506f491
DE
1398{
1399 int i;
1400 /* Flattened out table, so it's printed in proper order. */
4da896b2
MM
1401 struct expr **flat_table;
1402 unsigned int *hash_val;
c4c81601 1403 struct expr *expr;
4da896b2 1404
1b4572a8
KG
1405 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1406 hash_val = XNEWVEC (unsigned int, table->n_elems);
7506f491 1407
02280659
ZD
1408 for (i = 0; i < (int) table->size; i++)
1409 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
c4c81601
RK
1410 {
1411 flat_table[expr->bitmap_index] = expr;
1412 hash_val[expr->bitmap_index] = i;
1413 }
7506f491
DE
1414
1415 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
02280659 1416 name, table->size, table->n_elems);
7506f491 1417
02280659 1418 for (i = 0; i < (int) table->n_elems; i++)
21318741
RK
1419 if (flat_table[i] != 0)
1420 {
a0ac9e5a 1421 expr = flat_table[i];
20160347
MK
1422 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1423 expr->bitmap_index, hash_val[i], expr->max_distance);
a0ac9e5a 1424 print_rtl (file, expr->expr);
21318741
RK
1425 fprintf (file, "\n");
1426 }
7506f491
DE
1427
1428 fprintf (file, "\n");
4da896b2 1429
4da896b2
MM
1430 free (flat_table);
1431 free (hash_val);
7506f491
DE
1432}
1433
1434/* Record register first/last/block set information for REGNO in INSN.
c4c81601 1435
80c29cc4 1436 first_set records the first place in the block where the register
7506f491 1437 is set and is used to compute "anticipatability".
c4c81601 1438
80c29cc4 1439 last_set records the last place in the block where the register
7506f491 1440 is set and is used to compute "availability".
c4c81601 1441
80c29cc4 1442 last_bb records the block for which first_set and last_set are
4a81774c 1443 valid, as a quick test to invalidate them. */
7506f491
DE
1444
1445static void
1d088dee 1446record_last_reg_set_info (rtx insn, int regno)
7506f491 1447{
80c29cc4 1448 struct reg_avail_info *info = &reg_avail_info[regno];
4a81774c 1449 int luid = DF_INSN_LUID (insn);
c4c81601 1450
4a81774c 1451 info->last_set = luid;
80c29cc4
RZ
1452 if (info->last_bb != current_bb)
1453 {
1454 info->last_bb = current_bb;
4a81774c 1455 info->first_set = luid;
80c29cc4 1456 }
7506f491
DE
1457}
1458
a13d4ebf
AM
1459/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1460 Note we store a pair of elements in the list, so they have to be
1461 taken off pairwise. */
1462
589005ff 1463static void
43c8a043 1464canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
1d088dee 1465 void * v_insn)
a13d4ebf
AM
1466{
1467 rtx dest_addr, insn;
0fe854a7 1468 int bb;
f32682ca 1469 modify_pair pair;
a13d4ebf
AM
1470
1471 while (GET_CODE (dest) == SUBREG
1472 || GET_CODE (dest) == ZERO_EXTRACT
a13d4ebf
AM
1473 || GET_CODE (dest) == STRICT_LOW_PART)
1474 dest = XEXP (dest, 0);
1475
1476 /* If DEST is not a MEM, then it will not conflict with a load. Note
1477 that function calls are assumed to clobber memory, but are handled
1478 elsewhere. */
1479
7b1b4aed 1480 if (! MEM_P (dest))
a13d4ebf
AM
1481 return;
1482
1483 dest_addr = get_addr (XEXP (dest, 0));
1484 dest_addr = canon_rtx (dest_addr);
589005ff 1485 insn = (rtx) v_insn;
b0de17ef 1486 bb = BLOCK_FOR_INSN (insn)->index;
a13d4ebf 1487
f32682ca
DN
1488 pair.dest = dest;
1489 pair.dest_addr = dest_addr;
9771b263 1490 canon_modify_mem_list[bb].safe_push (pair);
a13d4ebf
AM
1491}
1492
a13d4ebf
AM
1493/* Record memory modification information for INSN. We do not actually care
1494 about the memory location(s) that are set, or even how they are set (consider
1495 a CALL_INSN). We merely need to record which insns modify memory. */
7506f491
DE
1496
1497static void
1d088dee 1498record_last_mem_set_info (rtx insn)
7506f491 1499{
85c0f02d
SB
1500 int bb;
1501
1502 if (! flag_gcse_lm)
1503 return;
0fe854a7 1504
ccef9ef5 1505 /* load_killed_in_block_p will handle the case of calls clobbering
dc297297 1506 everything. */
85c0f02d 1507 bb = BLOCK_FOR_INSN (insn)->index;
9771b263 1508 modify_mem_list[bb].safe_push (insn);
0fe854a7 1509 bitmap_set_bit (modify_mem_list_set, bb);
a13d4ebf 1510
7b1b4aed 1511 if (CALL_P (insn))
6ce1edcf 1512 bitmap_set_bit (blocks_with_calls, bb);
a13d4ebf 1513 else
0fe854a7 1514 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
7506f491
DE
1515}
1516
7506f491 1517/* Called from compute_hash_table via note_stores to handle one
84832317
MM
1518 SET or CLOBBER in an insn. DATA is really the instruction in which
1519 the SET is taking place. */
7506f491
DE
1520
1521static void
7bc980e1 1522record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
7506f491 1523{
84832317
MM
1524 rtx last_set_insn = (rtx) data;
1525
7506f491
DE
1526 if (GET_CODE (dest) == SUBREG)
1527 dest = SUBREG_REG (dest);
1528
7b1b4aed 1529 if (REG_P (dest))
7506f491 1530 record_last_reg_set_info (last_set_insn, REGNO (dest));
7b1b4aed 1531 else if (MEM_P (dest)
7506f491
DE
1532 /* Ignore pushes, they clobber nothing. */
1533 && ! push_operand (dest, GET_MODE (dest)))
1534 record_last_mem_set_info (last_set_insn);
1535}
1536
e45425ec 1537/* Top level function to create an expression hash table.
7506f491
DE
1538
1539 Expression entries are placed in the hash table if
1540 - they are of the form (set (pseudo-reg) src),
1541 - src is something we want to perform GCSE on,
1542 - none of the operands are subsequently modified in the block
1543
7506f491
DE
1544 Currently src must be a pseudo-reg or a const_int.
1545
02280659 1546 TABLE is the table computed. */
7506f491
DE
1547
1548static void
7e5487a2 1549compute_hash_table_work (struct hash_table_d *table)
7506f491 1550{
5f39ad47 1551 int i;
7506f491 1552
a13d4ebf 1553 /* re-Cache any INSN_LIST nodes we have allocated. */
73991d6a 1554 clear_modify_mem_tables ();
7506f491 1555 /* Some working arrays used to track first and last set in each block. */
5f39ad47 1556 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
80c29cc4 1557
5f39ad47 1558 for (i = 0; i < max_reg_num (); ++i)
e0082a72 1559 reg_avail_info[i].last_bb = NULL;
7506f491 1560
e0082a72 1561 FOR_EACH_BB (current_bb)
7506f491
DE
1562 {
1563 rtx insn;
770ae6cc 1564 unsigned int regno;
7506f491
DE
1565
1566 /* First pass over the instructions records information used to
4a81774c 1567 determine when registers and memory are first and last set. */
eb232f4e 1568 FOR_BB_INSNS (current_bb, insn)
7506f491 1569 {
a344c9f1 1570 if (!NONDEBUG_INSN_P (insn))
7506f491
DE
1571 continue;
1572
7b1b4aed 1573 if (CALL_P (insn))
7506f491 1574 {
c7fb4c7a
SB
1575 hard_reg_set_iterator hrsi;
1576 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1577 0, regno, hrsi)
1578 record_last_reg_set_info (insn, regno);
c4c81601 1579
e45425ec
SB
1580 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1581 record_last_mem_set_info (insn);
7506f491
DE
1582 }
1583
84832317 1584 note_stores (PATTERN (insn), record_last_set_info, insn);
7506f491
DE
1585 }
1586
1587 /* The next pass builds the hash table. */
eb232f4e 1588 FOR_BB_INSNS (current_bb, insn)
a344c9f1 1589 if (NONDEBUG_INSN_P (insn))
4a8cae83 1590 hash_scan_insn (insn, table);
7506f491
DE
1591 }
1592
80c29cc4
RZ
1593 free (reg_avail_info);
1594 reg_avail_info = NULL;
7506f491
DE
1595}
1596
02280659 1597/* Allocate space for the set/expr hash TABLE.
e45425ec 1598 It is used to determine the number of buckets to use. */
7506f491
DE
1599
1600static void
e45425ec 1601alloc_hash_table (struct hash_table_d *table)
7506f491
DE
1602{
1603 int n;
1604
b5b8b0ac
AO
1605 n = get_max_insn_count ();
1606
1607 table->size = n / 4;
02280659
ZD
1608 if (table->size < 11)
1609 table->size = 11;
c4c81601 1610
7506f491
DE
1611 /* Attempt to maintain efficient use of hash table.
1612 Making it an odd number is simplest for now.
1613 ??? Later take some measurements. */
02280659
ZD
1614 table->size |= 1;
1615 n = table->size * sizeof (struct expr *);
1b4572a8 1616 table->table = GNEWVAR (struct expr *, n);
7506f491
DE
1617}
1618
02280659 1619/* Free things allocated by alloc_hash_table. */
7506f491
DE
1620
1621static void
7e5487a2 1622free_hash_table (struct hash_table_d *table)
7506f491 1623{
02280659 1624 free (table->table);
7506f491
DE
1625}
1626
e45425ec 1627/* Compute the expression hash table TABLE. */
7506f491
DE
1628
1629static void
7e5487a2 1630compute_hash_table (struct hash_table_d *table)
7506f491
DE
1631{
1632 /* Initialize count of number of entries in hash table. */
02280659 1633 table->n_elems = 0;
703ad42b 1634 memset (table->table, 0, table->size * sizeof (struct expr *));
7506f491 1635
02280659 1636 compute_hash_table_work (table);
7506f491
DE
1637}
1638\f
1639/* Expression tracking support. */
1640
e45425ec
SB
1641/* Clear canon_modify_mem_list and modify_mem_list tables. */
1642static void
1643clear_modify_mem_tables (void)
0e3f0221 1644{
e45425ec
SB
1645 unsigned i;
1646 bitmap_iterator bi;
0e3f0221 1647
e45425ec 1648 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
0e3f0221 1649 {
9771b263
DN
1650 modify_mem_list[i].release ();
1651 canon_modify_mem_list[i].release ();
0e3f0221 1652 }
e45425ec
SB
1653 bitmap_clear (modify_mem_list_set);
1654 bitmap_clear (blocks_with_calls);
0e3f0221
RS
1655}
1656
e45425ec 1657/* Release memory used by modify_mem_list_set. */
0e3f0221 1658
e45425ec
SB
1659static void
1660free_modify_mem_tables (void)
e129b3f9 1661{
e45425ec
SB
1662 clear_modify_mem_tables ();
1663 free (modify_mem_list);
1664 free (canon_modify_mem_list);
1665 modify_mem_list = 0;
1666 canon_modify_mem_list = 0;
e129b3f9 1667}
e45425ec
SB
1668\f
1669/* For each block, compute whether X is transparent. X is either an
1670 expression or an assignment [though we don't care which, for this context
1671 an assignment is treated as an expression]. For each block where an
1672 element of X is modified, reset the INDX bit in BMAP. */
0e3f0221 1673
e45425ec
SB
1674static void
1675compute_transp (const_rtx x, int indx, sbitmap *bmap)
0e3f0221 1676{
e45425ec
SB
1677 int i, j;
1678 enum rtx_code code;
1679 const char *fmt;
0e3f0221 1680
e45425ec
SB
1681 /* repeat is used to turn tail-recursion into iteration since GCC
1682 can't do it when there's no return value. */
1683 repeat:
0e3f0221 1684
e45425ec
SB
1685 if (x == 0)
1686 return;
72b8d451 1687
e45425ec
SB
1688 code = GET_CODE (x);
1689 switch (code)
0e3f0221 1690 {
e45425ec 1691 case REG:
628f6a4e 1692 {
e45425ec
SB
1693 df_ref def;
1694 for (def = DF_REG_DEF_CHAIN (REGNO (x));
1695 def;
1696 def = DF_REF_NEXT_REG (def))
d7c028c0 1697 bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx);
628f6a4e 1698 }
7821bfc7 1699
e45425ec 1700 return;
72b8d451 1701
e45425ec
SB
1702 case MEM:
1703 if (! MEM_READONLY_P (x))
0e3f0221 1704 {
e45425ec
SB
1705 bitmap_iterator bi;
1706 unsigned bb_index;
92390dd1
PB
1707 rtx x_addr;
1708
1709 x_addr = get_addr (XEXP (x, 0));
1710 x_addr = canon_rtx (x_addr);
e129b3f9 1711
e45425ec
SB
1712 /* First handle all the blocks with calls. We don't need to
1713 do any list walking for them. */
1714 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1715 {
d7c028c0 1716 bitmap_clear_bit (bmap[bb_index], indx);
e45425ec 1717 }
0e3f0221 1718
92390dd1
PB
1719 /* Now iterate over the blocks which have memory modifications
1720 but which do not have any calls. */
1721 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1722 blocks_with_calls,
1723 0, bb_index, bi)
1724 {
1725 vec<modify_pair> list
1726 = canon_modify_mem_list[bb_index];
1727 modify_pair *pair;
1728 unsigned ix;
1729
1730 FOR_EACH_VEC_ELT_REVERSE (list, ix, pair)
1731 {
1732 rtx dest = pair->dest;
1733 rtx dest_addr = pair->dest_addr;
1734
1735 if (canon_true_dependence (dest, GET_MODE (dest),
1736 dest_addr, x, x_addr))
1737 bitmap_clear_bit (bmap[bb_index], indx);
1738 }
1739 }
0e3f0221 1740 }
0e3f0221 1741
e45425ec
SB
1742 x = XEXP (x, 0);
1743 goto repeat;
0e3f0221 1744
e45425ec
SB
1745 case PC:
1746 case CC0: /*FIXME*/
1747 case CONST:
d8116890 1748 CASE_CONST_ANY:
e45425ec
SB
1749 case SYMBOL_REF:
1750 case LABEL_REF:
1751 case ADDR_VEC:
1752 case ADDR_DIFF_VEC:
1753 return;
0e3f0221 1754
e45425ec
SB
1755 default:
1756 break;
1757 }
7821bfc7 1758
e45425ec 1759 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
0e3f0221 1760 {
e45425ec 1761 if (fmt[i] == 'e')
0e3f0221 1762 {
e45425ec
SB
1763 /* If we are about to do the last recursive call
1764 needed at this level, change it into iteration.
1765 This function is called enough to be worth it. */
1766 if (i == 0)
1767 {
1768 x = XEXP (x, i);
1769 goto repeat;
1770 }
1771
1772 compute_transp (XEXP (x, i), indx, bmap);
0e3f0221 1773 }
e45425ec
SB
1774 else if (fmt[i] == 'E')
1775 for (j = 0; j < XVECLEN (x, i); j++)
1776 compute_transp (XVECEXP (x, i, j), indx, bmap);
0e3f0221 1777 }
0e3f0221
RS
1778}
1779\f
a65f3558 1780/* Compute PRE+LCM working variables. */
7506f491
DE
1781
1782/* Local properties of expressions. */
43c8a043 1783
7506f491 1784/* Nonzero for expressions that are transparent in the block. */
a65f3558 1785static sbitmap *transp;
7506f491 1786
a65f3558
JL
1787/* Nonzero for expressions that are computed (available) in the block. */
1788static sbitmap *comp;
7506f491 1789
a65f3558
JL
1790/* Nonzero for expressions that are locally anticipatable in the block. */
1791static sbitmap *antloc;
7506f491 1792
a65f3558
JL
1793/* Nonzero for expressions where this block is an optimal computation
1794 point. */
1795static sbitmap *pre_optimal;
5c35539b 1796
a65f3558
JL
1797/* Nonzero for expressions which are redundant in a particular block. */
1798static sbitmap *pre_redundant;
7506f491 1799
a42cd965
AM
1800/* Nonzero for expressions which should be inserted on a specific edge. */
1801static sbitmap *pre_insert_map;
1802
1803/* Nonzero for expressions which should be deleted in a specific block. */
1804static sbitmap *pre_delete_map;
1805
a65f3558 1806/* Allocate vars used for PRE analysis. */
7506f491
DE
1807
1808static void
1d088dee 1809alloc_pre_mem (int n_blocks, int n_exprs)
7506f491 1810{
a65f3558
JL
1811 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1812 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1813 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5faf03ae 1814
a42cd965
AM
1815 pre_optimal = NULL;
1816 pre_redundant = NULL;
1817 pre_insert_map = NULL;
1818 pre_delete_map = NULL;
a42cd965 1819 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
c4c81601 1820
a42cd965 1821 /* pre_insert and pre_delete are allocated later. */
7506f491
DE
1822}
1823
a65f3558 1824/* Free vars used for PRE analysis. */
7506f491
DE
1825
1826static void
1d088dee 1827free_pre_mem (void)
7506f491 1828{
5a660bff
DB
1829 sbitmap_vector_free (transp);
1830 sbitmap_vector_free (comp);
bd3675fc
JL
1831
1832 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
7506f491 1833
a42cd965 1834 if (pre_optimal)
5a660bff 1835 sbitmap_vector_free (pre_optimal);
a42cd965 1836 if (pre_redundant)
5a660bff 1837 sbitmap_vector_free (pre_redundant);
a42cd965 1838 if (pre_insert_map)
5a660bff 1839 sbitmap_vector_free (pre_insert_map);
a42cd965 1840 if (pre_delete_map)
5a660bff 1841 sbitmap_vector_free (pre_delete_map);
a42cd965 1842
bd3675fc 1843 transp = comp = NULL;
a42cd965 1844 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
7506f491
DE
1845}
1846
9b774782
JL
1847/* Remove certain expressions from anticipatable and transparent
1848 sets of basic blocks that have incoming abnormal edge.
1849 For PRE remove potentially trapping expressions to avoid placing
1850 them on abnormal edges. For hoisting remove memory references that
1851 can be clobbered by calls. */
7506f491
DE
1852
1853static void
9b774782 1854prune_expressions (bool pre_p)
7506f491 1855{
9b774782 1856 sbitmap prune_exprs;
43c8a043 1857 struct expr *expr;
b614171e 1858 unsigned int ui;
9b774782 1859 basic_block bb;
c66e8ae9 1860
9b774782 1861 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
f61e445a 1862 bitmap_clear (prune_exprs);
02280659 1863 for (ui = 0; ui < expr_hash_table.size; ui++)
b614171e 1864 {
43c8a043 1865 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
9b774782
JL
1866 {
1867 /* Note potentially trapping expressions. */
43c8a043 1868 if (may_trap_p (expr->expr))
9b774782 1869 {
d7c028c0 1870 bitmap_set_bit (prune_exprs, expr->bitmap_index);
9b774782
JL
1871 continue;
1872 }
b614171e 1873
43c8a043 1874 if (!pre_p && MEM_P (expr->expr))
9b774782
JL
1875 /* Note memory references that can be clobbered by a call.
1876 We do not split abnormal edges in hoisting, so would
1877 a memory reference get hoisted along an abnormal edge,
1878 it would be placed /before/ the call. Therefore, only
1879 constant memory references can be hoisted along abnormal
1880 edges. */
1881 {
43c8a043
EB
1882 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1883 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
9b774782 1884 continue;
c66e8ae9 1885
43c8a043
EB
1886 if (MEM_READONLY_P (expr->expr)
1887 && !MEM_VOLATILE_P (expr->expr)
1888 && MEM_NOTRAP_P (expr->expr))
9b774782
JL
1889 /* Constant memory reference, e.g., a PIC address. */
1890 continue;
1891
1892 /* ??? Optimally, we would use interprocedural alias
1893 analysis to determine if this mem is actually killed
1894 by this call. */
1895
d7c028c0 1896 bitmap_set_bit (prune_exprs, expr->bitmap_index);
9b774782
JL
1897 }
1898 }
1899 }
c66e8ae9 1900
e0082a72 1901 FOR_EACH_BB (bb)
c66e8ae9 1902 {
b614171e 1903 edge e;
628f6a4e 1904 edge_iterator ei;
b614171e
MM
1905
1906 /* If the current block is the destination of an abnormal edge, we
9b774782
JL
1907 kill all trapping (for PRE) and memory (for hoist) expressions
1908 because we won't be able to properly place the instruction on
1909 the edge. So make them neither anticipatable nor transparent.
1910 This is fairly conservative.
1911
1912 ??? For hoisting it may be necessary to check for set-and-jump
1913 instructions here, not just for abnormal edges. The general problem
1914 is that when an expression cannot not be placed right at the end of
1915 a basic block we should account for any side-effects of a subsequent
1916 jump instructions that could clobber the expression. It would
1917 be best to implement this check along the lines of
b11f0116 1918 should_hoist_expr_to_dom where the target block is already known
9b774782
JL
1919 and, hence, there's no need to conservatively prune expressions on
1920 "intermediate" set-and-jump instructions. */
628f6a4e 1921 FOR_EACH_EDGE (e, ei, bb->preds)
9b774782
JL
1922 if ((e->flags & EDGE_ABNORMAL)
1923 && (pre_p || CALL_P (BB_END (e->src))))
b614171e 1924 {
f61e445a 1925 bitmap_and_compl (antloc[bb->index],
9b774782 1926 antloc[bb->index], prune_exprs);
f61e445a 1927 bitmap_and_compl (transp[bb->index],
9b774782 1928 transp[bb->index], prune_exprs);
b614171e
MM
1929 break;
1930 }
9b774782
JL
1931 }
1932
1933 sbitmap_free (prune_exprs);
1934}
1935
29fa95ed
JL
1936/* It may be necessary to insert a large number of insns on edges to
1937 make the existing occurrences of expressions fully redundant. This
1938 routine examines the set of insertions and deletions and if the ratio
1939 of insertions to deletions is too high for a particular expression, then
1940 the expression is removed from the insertion/deletion sets.
1941
1942 N_ELEMS is the number of elements in the hash table. */
1943
1944static void
1945prune_insertions_deletions (int n_elems)
1946{
1947 sbitmap_iterator sbi;
1948 sbitmap prune_exprs;
1949
1950 /* We always use I to iterate over blocks/edges and J to iterate over
1951 expressions. */
1952 unsigned int i, j;
1953
1954 /* Counts for the number of times an expression needs to be inserted and
1955 number of times an expression can be removed as a result. */
1956 int *insertions = GCNEWVEC (int, n_elems);
1957 int *deletions = GCNEWVEC (int, n_elems);
1958
1959 /* Set of expressions which require too many insertions relative to
1960 the number of deletions achieved. We will prune these out of the
1961 insertion/deletion sets. */
1962 prune_exprs = sbitmap_alloc (n_elems);
f61e445a 1963 bitmap_clear (prune_exprs);
29fa95ed
JL
1964
1965 /* Iterate over the edges counting the number of times each expression
1966 needs to be inserted. */
1967 for (i = 0; i < (unsigned) n_edges; i++)
1968 {
d4ac4ce2 1969 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
29fa95ed
JL
1970 insertions[j]++;
1971 }
1972
1973 /* Similarly for deletions, but those occur in blocks rather than on
1974 edges. */
1975 for (i = 0; i < (unsigned) last_basic_block; i++)
1976 {
d4ac4ce2 1977 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
29fa95ed
JL
1978 deletions[j]++;
1979 }
1980
1981 /* Now that we have accurate counts, iterate over the elements in the
1982 hash table and see if any need too many insertions relative to the
1983 number of evaluations that can be removed. If so, mark them in
1984 PRUNE_EXPRS. */
1985 for (j = 0; j < (unsigned) n_elems; j++)
1986 if (deletions[j]
1987 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
d7c028c0 1988 bitmap_set_bit (prune_exprs, j);
29fa95ed
JL
1989
1990 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
d4ac4ce2 1991 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
29fa95ed
JL
1992 {
1993 for (i = 0; i < (unsigned) n_edges; i++)
d7c028c0 1994 bitmap_clear_bit (pre_insert_map[i], j);
29fa95ed
JL
1995
1996 for (i = 0; i < (unsigned) last_basic_block; i++)
d7c028c0 1997 bitmap_clear_bit (pre_delete_map[i], j);
29fa95ed
JL
1998 }
1999
2000 sbitmap_free (prune_exprs);
2001 free (insertions);
2002 free (deletions);
2003}
2004
9b774782 2005/* Top level routine to do the dataflow analysis needed by PRE. */
b614171e 2006
43c8a043 2007static struct edge_list *
9b774782
JL
2008compute_pre_data (void)
2009{
43c8a043 2010 struct edge_list *edge_list;
9b774782
JL
2011 basic_block bb;
2012
2013 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2014 prune_expressions (true);
f61e445a 2015 bitmap_vector_clear (ae_kill, last_basic_block);
9b774782
JL
2016
2017 /* Compute ae_kill for each basic block using:
2018
2019 ~(TRANSP | COMP)
2020 */
2021
2022 FOR_EACH_BB (bb)
2023 {
f61e445a
LC
2024 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
2025 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
c66e8ae9
JL
2026 }
2027
10d22567 2028 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
a42cd965 2029 ae_kill, &pre_insert_map, &pre_delete_map);
5a660bff 2030 sbitmap_vector_free (antloc);
bd3675fc 2031 antloc = NULL;
5a660bff 2032 sbitmap_vector_free (ae_kill);
589005ff 2033 ae_kill = NULL;
29fa95ed
JL
2034
2035 prune_insertions_deletions (expr_hash_table.n_elems);
43c8a043
EB
2036
2037 return edge_list;
7506f491
DE
2038}
2039\f
2040/* PRE utilities */
2041
cc2902df 2042/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
a65f3558 2043 block BB.
7506f491
DE
2044
2045 VISITED is a pointer to a working buffer for tracking which BB's have
2046 been visited. It is NULL for the top-level call.
2047
2048 We treat reaching expressions that go through blocks containing the same
2049 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2050 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2051 2 as not reaching. The intent is to improve the probability of finding
2052 only one reaching expression and to reduce register lifetimes by picking
2053 the closest such expression. */
2054
2055static int
43c8a043
EB
2056pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
2057 basic_block bb, char *visited)
7506f491 2058{
36349f8b 2059 edge pred;
628f6a4e 2060 edge_iterator ei;
b8698a0f 2061
628f6a4e 2062 FOR_EACH_EDGE (pred, ei, bb->preds)
7506f491 2063 {
e2d2ed72 2064 basic_block pred_bb = pred->src;
7506f491 2065
36349f8b 2066 if (pred->src == ENTRY_BLOCK_PTR
7506f491 2067 /* Has predecessor has already been visited? */
0b17ab2f 2068 || visited[pred_bb->index])
c4c81601
RK
2069 ;/* Nothing to do. */
2070
7506f491 2071 /* Does this predecessor generate this expression? */
d7c028c0 2072 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
7506f491
DE
2073 {
2074 /* Is this the occurrence we're looking for?
2075 Note that there's only one generating occurrence per block
2076 so we just need to check the block number. */
a65f3558 2077 if (occr_bb == pred_bb)
7506f491 2078 return 1;
c4c81601 2079
0b17ab2f 2080 visited[pred_bb->index] = 1;
7506f491
DE
2081 }
2082 /* Ignore this predecessor if it kills the expression. */
d7c028c0 2083 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
0b17ab2f 2084 visited[pred_bb->index] = 1;
c4c81601 2085
7506f491
DE
2086 /* Neither gen nor kill. */
2087 else
ac7c5af5 2088 {
0b17ab2f 2089 visited[pred_bb->index] = 1;
89e606c9 2090 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
7506f491 2091 return 1;
ac7c5af5 2092 }
7506f491
DE
2093 }
2094
2095 /* All paths have been checked. */
2096 return 0;
2097}
283a2545
RL
2098
2099/* The wrapper for pre_expr_reaches_here_work that ensures that any
dc297297 2100 memory allocated for that function is returned. */
283a2545
RL
2101
2102static int
1d088dee 2103pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
283a2545
RL
2104{
2105 int rval;
5ed6ace5 2106 char *visited = XCNEWVEC (char, last_basic_block);
283a2545 2107
8e42ace1 2108 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
283a2545
RL
2109
2110 free (visited);
c4c81601 2111 return rval;
283a2545 2112}
7506f491 2113\f
43c8a043 2114/* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
a42cd965
AM
2115
2116static rtx
1d088dee 2117process_insert_insn (struct expr *expr)
a42cd965
AM
2118{
2119 rtx reg = expr->reaching_reg;
43c8a043 2120 /* Copy the expression to make sure we don't have any sharing issues. */
fb0c0a12
RK
2121 rtx exp = copy_rtx (expr->expr);
2122 rtx pat;
a42cd965
AM
2123
2124 start_sequence ();
fb0c0a12
RK
2125
2126 /* If the expression is something that's an operand, like a constant,
2127 just copy it to a register. */
2128 if (general_operand (exp, GET_MODE (reg)))
2129 emit_move_insn (reg, exp);
2130
2131 /* Otherwise, make a new insn to compute this expression and make sure the
43c8a043 2132 insn will be recognized (this also adds any needed CLOBBERs). */
282899df
NS
2133 else
2134 {
2135 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2136
57ac4c34 2137 if (insn_invalid_p (insn, false))
2f021b67 2138 gcc_unreachable ();
282899df 2139 }
b8698a0f 2140
2f937369 2141 pat = get_insns ();
a42cd965
AM
2142 end_sequence ();
2143
2144 return pat;
2145}
589005ff 2146
a65f3558
JL
2147/* Add EXPR to the end of basic block BB.
2148
eae7938e 2149 This is used by both the PRE and code hoisting. */
7506f491
DE
2150
2151static void
eae7938e 2152insert_insn_end_basic_block (struct expr *expr, basic_block bb)
7506f491 2153{
a813c111 2154 rtx insn = BB_END (bb);
7506f491
DE
2155 rtx new_insn;
2156 rtx reg = expr->reaching_reg;
2157 int regno = REGNO (reg);
2f937369 2158 rtx pat, pat_end;
7506f491 2159
a42cd965 2160 pat = process_insert_insn (expr);
282899df 2161 gcc_assert (pat && INSN_P (pat));
2f937369
DM
2162
2163 pat_end = pat;
2164 while (NEXT_INSN (pat_end) != NULL_RTX)
2165 pat_end = NEXT_INSN (pat_end);
7506f491
DE
2166
2167 /* If the last insn is a jump, insert EXPR in front [taking care to
4d6922ee 2168 handle cc0, etc. properly]. Similarly we need to care trapping
068473ec 2169 instructions in presence of non-call exceptions. */
7506f491 2170
7b1b4aed 2171 if (JUMP_P (insn)
4b4bf941 2172 || (NONJUMP_INSN_P (insn)
c5cbcccf
ZD
2173 && (!single_succ_p (bb)
2174 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
7506f491 2175 {
7506f491
DE
2176#ifdef HAVE_cc0
2177 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2178 if cc0 isn't set. */
39718607 2179 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
7506f491
DE
2180 if (note)
2181 insn = XEXP (note, 0);
2182 else
2183 {
2184 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2185 if (maybe_cc0_setter
2c3c49de 2186 && INSN_P (maybe_cc0_setter)
7506f491
DE
2187 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2188 insn = maybe_cc0_setter;
2189 }
2190#endif
2191 /* FIXME: What if something in cc0/jump uses value set in new insn? */
6fb5fa3c 2192 new_insn = emit_insn_before_noloc (pat, insn, bb);
3947e2f9 2193 }
c4c81601 2194
3947e2f9
RH
2195 /* Likewise if the last insn is a call, as will happen in the presence
2196 of exception handling. */
7b1b4aed 2197 else if (CALL_P (insn)
c5cbcccf
ZD
2198 && (!single_succ_p (bb)
2199 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
3947e2f9 2200 {
42db504c
SB
2201 /* Keeping in mind targets with small register classes and parameters
2202 in registers, we search backward and place the instructions before
2203 the first parameter is loaded. Do this for everyone for consistency
eae7938e 2204 and a presumption that we'll get better code elsewhere as well. */
3947e2f9
RH
2205
2206 /* Since different machines initialize their parameter registers
2207 in different orders, assume nothing. Collect the set of all
2208 parameter registers. */
a813c111 2209 insn = find_first_parameter_load (insn, BB_HEAD (bb));
3947e2f9 2210
b1d26727
JL
2211 /* If we found all the parameter loads, then we want to insert
2212 before the first parameter load.
2213
2214 If we did not find all the parameter loads, then we might have
2215 stopped on the head of the block, which could be a CODE_LABEL.
2216 If we inserted before the CODE_LABEL, then we would be putting
2217 the insn in the wrong basic block. In that case, put the insn
b5229628 2218 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
7b1b4aed 2219 while (LABEL_P (insn)
589ca5cb 2220 || NOTE_INSN_BASIC_BLOCK_P (insn))
b5229628 2221 insn = NEXT_INSN (insn);
c4c81601 2222
6fb5fa3c 2223 new_insn = emit_insn_before_noloc (pat, insn, bb);
7506f491
DE
2224 }
2225 else
6fb5fa3c 2226 new_insn = emit_insn_after_noloc (pat, insn, bb);
7506f491 2227
2f937369 2228 while (1)
a65f3558 2229 {
2f937369 2230 if (INSN_P (pat))
4a81774c 2231 add_label_notes (PATTERN (pat), new_insn);
2f937369
DM
2232 if (pat == pat_end)
2233 break;
2234 pat = NEXT_INSN (pat);
a65f3558 2235 }
3947e2f9 2236
7506f491
DE
2237 gcse_create_count++;
2238
10d22567 2239 if (dump_file)
7506f491 2240 {
10d22567 2241 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
0b17ab2f 2242 bb->index, INSN_UID (new_insn));
10d22567 2243 fprintf (dump_file, "copying expression %d to reg %d\n",
c4c81601 2244 expr->bitmap_index, regno);
7506f491
DE
2245 }
2246}
2247
a42cd965
AM
2248/* Insert partially redundant expressions on edges in the CFG to make
2249 the expressions fully redundant. */
7506f491 2250
a42cd965 2251static int
1d088dee 2252pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
7506f491 2253{
c4c81601 2254 int e, i, j, num_edges, set_size, did_insert = 0;
a65f3558
JL
2255 sbitmap *inserted;
2256
a42cd965
AM
2257 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2258 if it reaches any of the deleted expressions. */
7506f491 2259
a42cd965
AM
2260 set_size = pre_insert_map[0]->size;
2261 num_edges = NUM_EDGES (edge_list);
02280659 2262 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
f61e445a 2263 bitmap_vector_clear (inserted, num_edges);
7506f491 2264
a42cd965 2265 for (e = 0; e < num_edges; e++)
7506f491
DE
2266 {
2267 int indx;
e2d2ed72 2268 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
a65f3558 2269
a65f3558 2270 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
7506f491 2271 {
a42cd965 2272 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
7506f491 2273
43c8a043
EB
2274 for (j = indx;
2275 insert && j < (int) expr_hash_table.n_elems;
2276 j++, insert >>= 1)
c4c81601
RK
2277 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2278 {
2279 struct expr *expr = index_map[j];
2280 struct occr *occr;
a65f3558 2281
ff7cc307 2282 /* Now look at each deleted occurrence of this expression. */
c4c81601
RK
2283 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2284 {
2285 if (! occr->deleted_p)
2286 continue;
2287
3f117656 2288 /* Insert this expression on this edge if it would
ff7cc307 2289 reach the deleted occurrence in BB. */
d7c028c0 2290 if (!bitmap_bit_p (inserted[e], j))
c4c81601
RK
2291 {
2292 rtx insn;
2293 edge eg = INDEX_EDGE (edge_list, e);
2294
2295 /* We can't insert anything on an abnormal and
2296 critical edge, so we insert the insn at the end of
2297 the previous block. There are several alternatives
2298 detailed in Morgans book P277 (sec 10.5) for
2299 handling this situation. This one is easiest for
2300 now. */
2301
b16aa8a5 2302 if (eg->flags & EDGE_ABNORMAL)
eae7938e 2303 insert_insn_end_basic_block (index_map[j], bb);
c4c81601
RK
2304 else
2305 {
2306 insn = process_insert_insn (index_map[j]);
2307 insert_insn_on_edge (insn, eg);
2308 }
2309
10d22567 2310 if (dump_file)
c4c81601 2311 {
5f39ad47 2312 fprintf (dump_file, "PRE: edge (%d,%d), ",
0b17ab2f
RH
2313 bb->index,
2314 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
10d22567 2315 fprintf (dump_file, "copy expression %d\n",
c4c81601
RK
2316 expr->bitmap_index);
2317 }
2318
a13d4ebf 2319 update_ld_motion_stores (expr);
d7c028c0 2320 bitmap_set_bit (inserted[e], j);
c4c81601
RK
2321 did_insert = 1;
2322 gcse_create_count++;
2323 }
2324 }
2325 }
7506f491
DE
2326 }
2327 }
5faf03ae 2328
5a660bff 2329 sbitmap_vector_free (inserted);
a42cd965 2330 return did_insert;
7506f491
DE
2331}
2332
073089a7 2333/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
b885908b
MH
2334 Given "old_reg <- expr" (INSN), instead of adding after it
2335 reaching_reg <- old_reg
2336 it's better to do the following:
2337 reaching_reg <- expr
2338 old_reg <- reaching_reg
2339 because this way copy propagation can discover additional PRE
f5f2e3cd
MH
2340 opportunities. But if this fails, we try the old way.
2341 When "expr" is a store, i.e.
2342 given "MEM <- old_reg", instead of adding after it
2343 reaching_reg <- old_reg
2344 it's better to add it before as follows:
2345 reaching_reg <- old_reg
2346 MEM <- reaching_reg. */
7506f491
DE
2347
2348static void
1d088dee 2349pre_insert_copy_insn (struct expr *expr, rtx insn)
7506f491
DE
2350{
2351 rtx reg = expr->reaching_reg;
2352 int regno = REGNO (reg);
2353 int indx = expr->bitmap_index;
073089a7 2354 rtx pat = PATTERN (insn);
64068ca2 2355 rtx set, first_set, new_insn;
b885908b 2356 rtx old_reg;
073089a7 2357 int i;
7506f491 2358
073089a7 2359 /* This block matches the logic in hash_scan_insn. */
282899df 2360 switch (GET_CODE (pat))
073089a7 2361 {
282899df
NS
2362 case SET:
2363 set = pat;
2364 break;
2365
2366 case PARALLEL:
073089a7
RS
2367 /* Search through the parallel looking for the set whose
2368 source was the expression that we're interested in. */
64068ca2 2369 first_set = NULL_RTX;
073089a7
RS
2370 set = NULL_RTX;
2371 for (i = 0; i < XVECLEN (pat, 0); i++)
2372 {
2373 rtx x = XVECEXP (pat, 0, i);
64068ca2 2374 if (GET_CODE (x) == SET)
073089a7 2375 {
64068ca2
RS
2376 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2377 may not find an equivalent expression, but in this
2378 case the PARALLEL will have a single set. */
2379 if (first_set == NULL_RTX)
2380 first_set = x;
2381 if (expr_equiv_p (SET_SRC (x), expr->expr))
2382 {
2383 set = x;
2384 break;
2385 }
073089a7
RS
2386 }
2387 }
64068ca2
RS
2388
2389 gcc_assert (first_set);
2390 if (set == NULL_RTX)
2391 set = first_set;
282899df
NS
2392 break;
2393
2394 default:
2395 gcc_unreachable ();
073089a7 2396 }
c4c81601 2397
7b1b4aed 2398 if (REG_P (SET_DEST (set)))
073089a7 2399 {
f5f2e3cd
MH
2400 old_reg = SET_DEST (set);
2401 /* Check if we can modify the set destination in the original insn. */
2402 if (validate_change (insn, &SET_DEST (set), reg, 0))
2403 {
2404 new_insn = gen_move_insn (old_reg, reg);
2405 new_insn = emit_insn_after (new_insn, insn);
f5f2e3cd
MH
2406 }
2407 else
2408 {
2409 new_insn = gen_move_insn (reg, old_reg);
2410 new_insn = emit_insn_after (new_insn, insn);
f5f2e3cd 2411 }
073089a7 2412 }
f5f2e3cd 2413 else /* This is possible only in case of a store to memory. */
073089a7 2414 {
f5f2e3cd 2415 old_reg = SET_SRC (set);
073089a7 2416 new_insn = gen_move_insn (reg, old_reg);
f5f2e3cd
MH
2417
2418 /* Check if we can modify the set source in the original insn. */
2419 if (validate_change (insn, &SET_SRC (set), reg, 0))
2420 new_insn = emit_insn_before (new_insn, insn);
2421 else
2422 new_insn = emit_insn_after (new_insn, insn);
073089a7 2423 }
7506f491
DE
2424
2425 gcse_create_count++;
2426
10d22567
ZD
2427 if (dump_file)
2428 fprintf (dump_file,
a42cd965 2429 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
b0de17ef 2430 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
a42cd965 2431 INSN_UID (insn), regno);
7506f491
DE
2432}
2433
2434/* Copy available expressions that reach the redundant expression
2435 to `reaching_reg'. */
2436
2437static void
1d088dee 2438pre_insert_copies (void)
7506f491 2439{
f5f2e3cd 2440 unsigned int i, added_copy;
c4c81601
RK
2441 struct expr *expr;
2442 struct occr *occr;
2443 struct occr *avail;
a65f3558 2444
7506f491
DE
2445 /* For each available expression in the table, copy the result to
2446 `reaching_reg' if the expression reaches a deleted one.
2447
2448 ??? The current algorithm is rather brute force.
2449 Need to do some profiling. */
2450
02280659 2451 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2452 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601
RK
2453 {
2454 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2455 we don't want to insert a copy here because the expression may not
2456 really be redundant. So only insert an insn if the expression was
2457 deleted. This test also avoids further processing if the
2458 expression wasn't deleted anywhere. */
2459 if (expr->reaching_reg == NULL)
2460 continue;
7b1b4aed 2461
f5f2e3cd 2462 /* Set when we add a copy for that expression. */
7b1b4aed 2463 added_copy = 0;
c4c81601
RK
2464
2465 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2466 {
2467 if (! occr->deleted_p)
2468 continue;
7506f491 2469
c4c81601
RK
2470 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2471 {
2472 rtx insn = avail->insn;
7506f491 2473
c4c81601
RK
2474 /* No need to handle this one if handled already. */
2475 if (avail->copied_p)
2476 continue;
7506f491 2477
c4c81601 2478 /* Don't handle this one if it's a redundant one. */
4a81774c 2479 if (INSN_DELETED_P (insn))
c4c81601 2480 continue;
7506f491 2481
c4c81601 2482 /* Or if the expression doesn't reach the deleted one. */
589005ff 2483 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
e2d2ed72
AM
2484 expr,
2485 BLOCK_FOR_INSN (occr->insn)))
c4c81601 2486 continue;
7506f491 2487
f5f2e3cd
MH
2488 added_copy = 1;
2489
c4c81601
RK
2490 /* Copy the result of avail to reaching_reg. */
2491 pre_insert_copy_insn (expr, insn);
2492 avail->copied_p = 1;
2493 }
2494 }
f5f2e3cd 2495
7b1b4aed 2496 if (added_copy)
f5f2e3cd 2497 update_ld_motion_stores (expr);
c4c81601 2498 }
7506f491
DE
2499}
2500
10d1bb36
JH
2501/* Emit move from SRC to DEST noting the equivalence with expression computed
2502 in INSN. */
43c8a043 2503
10d1bb36 2504static rtx
43c8a043 2505gcse_emit_move_after (rtx dest, rtx src, rtx insn)
10d1bb36 2506{
60564289 2507 rtx new_rtx;
6bdb8dd6 2508 rtx set = single_set (insn), set2;
10d1bb36 2509 rtx note;
dca3da7a 2510 rtx eqv = NULL_RTX;
10d1bb36
JH
2511
2512 /* This should never fail since we're creating a reg->reg copy
2513 we've verified to be valid. */
2514
60564289 2515 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
285464d0 2516
dca3da7a
SB
2517 /* Note the equivalence for local CSE pass. Take the note from the old
2518 set if there was one. Otherwise record the SET_SRC from the old set
2519 unless DEST is also an operand of the SET_SRC. */
60564289 2520 set2 = single_set (new_rtx);
6bdb8dd6 2521 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
60564289 2522 return new_rtx;
10d1bb36
JH
2523 if ((note = find_reg_equal_equiv_note (insn)))
2524 eqv = XEXP (note, 0);
dca3da7a
SB
2525 else if (! REG_P (dest)
2526 || ! reg_mentioned_p (dest, SET_SRC (set)))
10d1bb36
JH
2527 eqv = SET_SRC (set);
2528
dca3da7a
SB
2529 if (eqv != NULL_RTX)
2530 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
10d1bb36 2531
60564289 2532 return new_rtx;
10d1bb36
JH
2533}
2534
7506f491 2535/* Delete redundant computations.
7506f491
DE
2536 Deletion is done by changing the insn to copy the `reaching_reg' of
2537 the expression into the result of the SET. It is left to later passes
2538 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
2539
43c8a043 2540 Return nonzero if a change is made. */
7506f491
DE
2541
2542static int
1d088dee 2543pre_delete (void)
7506f491 2544{
2e653e39 2545 unsigned int i;
63bc1d05 2546 int changed;
c4c81601
RK
2547 struct expr *expr;
2548 struct occr *occr;
a65f3558 2549
7506f491 2550 changed = 0;
02280659 2551 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2552 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601
RK
2553 {
2554 int indx = expr->bitmap_index;
7506f491 2555
43c8a043 2556 /* We only need to search antic_occr since we require ANTLOC != 0. */
c4c81601
RK
2557 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2558 {
2559 rtx insn = occr->insn;
2560 rtx set;
e2d2ed72 2561 basic_block bb = BLOCK_FOR_INSN (insn);
7506f491 2562
073089a7 2563 /* We only delete insns that have a single_set. */
d7c028c0 2564 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
6fb5fa3c
DB
2565 && (set = single_set (insn)) != 0
2566 && dbg_cnt (pre_insn))
c4c81601 2567 {
c4c81601
RK
2568 /* Create a pseudo-reg to store the result of reaching
2569 expressions into. Get the mode for the new pseudo from
2570 the mode of the original destination pseudo. */
2571 if (expr->reaching_reg == NULL)
46b71b03 2572 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
c4c81601 2573
43c8a043 2574 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
10d1bb36
JH
2575 delete_insn (insn);
2576 occr->deleted_p = 1;
10d1bb36
JH
2577 changed = 1;
2578 gcse_subst_count++;
7506f491 2579
10d22567 2580 if (dump_file)
c4c81601 2581 {
10d22567 2582 fprintf (dump_file,
c4c81601
RK
2583 "PRE: redundant insn %d (expression %d) in ",
2584 INSN_UID (insn), indx);
10d22567 2585 fprintf (dump_file, "bb %d, reaching reg is %d\n",
0b17ab2f 2586 bb->index, REGNO (expr->reaching_reg));
c4c81601
RK
2587 }
2588 }
2589 }
2590 }
7506f491
DE
2591
2592 return changed;
2593}
2594
2595/* Perform GCSE optimizations using PRE.
2596 This is called by one_pre_gcse_pass after all the dataflow analysis
2597 has been done.
2598
c4c81601
RK
2599 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2600 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2601 Compiler Design and Implementation.
7506f491 2602
c4c81601
RK
2603 ??? A new pseudo reg is created to hold the reaching expression. The nice
2604 thing about the classical approach is that it would try to use an existing
2605 reg. If the register can't be adequately optimized [i.e. we introduce
2606 reload problems], one could add a pass here to propagate the new register
2607 through the block.
7506f491 2608
c4c81601
RK
2609 ??? We don't handle single sets in PARALLELs because we're [currently] not
2610 able to copy the rest of the parallel when we insert copies to create full
2611 redundancies from partial redundancies. However, there's no reason why we
2612 can't handle PARALLELs in the cases where there are no partial
7506f491
DE
2613 redundancies. */
2614
2615static int
43c8a043 2616pre_gcse (struct edge_list *edge_list)
7506f491 2617{
2e653e39
RK
2618 unsigned int i;
2619 int did_insert, changed;
7506f491 2620 struct expr **index_map;
c4c81601 2621 struct expr *expr;
7506f491
DE
2622
2623 /* Compute a mapping from expression number (`bitmap_index') to
2624 hash table entry. */
2625
5ed6ace5 2626 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
02280659 2627 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2628 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601 2629 index_map[expr->bitmap_index] = expr;
7506f491 2630
7506f491
DE
2631 /* Delete the redundant insns first so that
2632 - we know what register to use for the new insns and for the other
2633 ones with reaching expressions
2634 - we know which insns are redundant when we go to create copies */
c4c81601 2635
7506f491 2636 changed = pre_delete ();
a42cd965 2637 did_insert = pre_edge_insert (edge_list, index_map);
c4c81601 2638
7506f491 2639 /* In other places with reaching expressions, copy the expression to the
a42cd965 2640 specially allocated pseudo-reg that reaches the redundant expr. */
7506f491 2641 pre_insert_copies ();
a42cd965
AM
2642 if (did_insert)
2643 {
2644 commit_edge_insertions ();
2645 changed = 1;
2646 }
7506f491 2647
283a2545 2648 free (index_map);
7506f491
DE
2649 return changed;
2650}
2651
2652/* Top level routine to perform one PRE GCSE pass.
2653
cc2902df 2654 Return nonzero if a change was made. */
7506f491
DE
2655
2656static int
5f39ad47 2657one_pre_gcse_pass (void)
7506f491
DE
2658{
2659 int changed = 0;
2660
2661 gcse_subst_count = 0;
2662 gcse_create_count = 0;
2663
5f39ad47
SB
2664 /* Return if there's nothing to do, or it is too expensive. */
2665 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
2666 || is_too_expensive (_("PRE disabled")))
2667 return 0;
2668
2669 /* We need alias. */
2670 init_alias_analysis ();
2671
2672 bytes_used = 0;
2673 gcc_obstack_init (&gcse_obstack);
2674 alloc_gcse_mem ();
2675
e45425ec 2676 alloc_hash_table (&expr_hash_table);
a42cd965 2677 add_noreturn_fake_exit_edges ();
a13d4ebf
AM
2678 if (flag_gcse_lm)
2679 compute_ld_motion_mems ();
2680
02280659 2681 compute_hash_table (&expr_hash_table);
43c8a043
EB
2682 if (flag_gcse_lm)
2683 trim_ld_motion_mems ();
10d22567
ZD
2684 if (dump_file)
2685 dump_hash_table (dump_file, "Expression", &expr_hash_table);
c4c81601 2686
02280659 2687 if (expr_hash_table.n_elems > 0)
7506f491 2688 {
43c8a043 2689 struct edge_list *edge_list;
02280659 2690 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
43c8a043
EB
2691 edge_list = compute_pre_data ();
2692 changed |= pre_gcse (edge_list);
a42cd965 2693 free_edge_list (edge_list);
7506f491
DE
2694 free_pre_mem ();
2695 }
c4c81601 2696
43c8a043
EB
2697 if (flag_gcse_lm)
2698 free_ld_motion_mems ();
6809cbf9 2699 remove_fake_exit_edges ();
02280659 2700 free_hash_table (&expr_hash_table);
7506f491 2701
5f39ad47
SB
2702 free_gcse_mem ();
2703 obstack_free (&gcse_obstack, NULL);
2704
2705 /* We are finished with alias. */
2706 end_alias_analysis ();
2707
10d22567 2708 if (dump_file)
7506f491 2709 {
5f39ad47
SB
2710 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2711 current_function_name (), n_basic_blocks, bytes_used);
10d22567 2712 fprintf (dump_file, "%d substs, %d insns created\n",
c4c81601 2713 gcse_subst_count, gcse_create_count);
7506f491
DE
2714 }
2715
2716 return changed;
2717}
aeb2f500 2718\f
cf7c4aa6
HPN
2719/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2720 to INSN. If such notes are added to an insn which references a
2721 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2722 that note, because the following loop optimization pass requires
2723 them. */
aeb2f500 2724
aeb2f500
JW
2725/* ??? If there was a jump optimization pass after gcse and before loop,
2726 then we would not need to do this here, because jump would add the
cf7c4aa6 2727 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
aeb2f500
JW
2728
2729static void
1d088dee 2730add_label_notes (rtx x, rtx insn)
aeb2f500
JW
2731{
2732 enum rtx_code code = GET_CODE (x);
2733 int i, j;
6f7d635c 2734 const char *fmt;
aeb2f500
JW
2735
2736 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2737 {
6b3603c2 2738 /* This code used to ignore labels that referred to dispatch tables to
e0bb17a8 2739 avoid flow generating (slightly) worse code.
6b3603c2 2740
ac7c5af5
JL
2741 We no longer ignore such label references (see LABEL_REF handling in
2742 mark_jump_label for additional information). */
c4c81601 2743
cb2f563b
HPN
2744 /* There's no reason for current users to emit jump-insns with
2745 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2746 notes. */
2747 gcc_assert (!JUMP_P (insn));
65c5f2a6
ILT
2748 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
2749
cb2f563b
HPN
2750 if (LABEL_P (XEXP (x, 0)))
2751 LABEL_NUSES (XEXP (x, 0))++;
2752
aeb2f500
JW
2753 return;
2754 }
2755
c4c81601 2756 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
aeb2f500
JW
2757 {
2758 if (fmt[i] == 'e')
2759 add_label_notes (XEXP (x, i), insn);
2760 else if (fmt[i] == 'E')
2761 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2762 add_label_notes (XVECEXP (x, i, j), insn);
2763 }
2764}
a65f3558 2765
bb457bd9
JL
2766/* Code Hoisting variables and subroutines. */
2767
2768/* Very busy expressions. */
2769static sbitmap *hoist_vbein;
2770static sbitmap *hoist_vbeout;
2771
bb457bd9 2772/* ??? We could compute post dominators and run this algorithm in
68e82b83 2773 reverse to perform tail merging, doing so would probably be
bb457bd9
JL
2774 more effective than the tail merging code in jump.c.
2775
2776 It's unclear if tail merging could be run in parallel with
2777 code hoisting. It would be nice. */
2778
2779/* Allocate vars used for code hoisting analysis. */
2780
2781static void
1d088dee 2782alloc_code_hoist_mem (int n_blocks, int n_exprs)
bb457bd9
JL
2783{
2784 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2785 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2786 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2787
2788 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2789 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
bb457bd9
JL
2790}
2791
2792/* Free vars used for code hoisting analysis. */
2793
2794static void
1d088dee 2795free_code_hoist_mem (void)
bb457bd9 2796{
5a660bff
DB
2797 sbitmap_vector_free (antloc);
2798 sbitmap_vector_free (transp);
2799 sbitmap_vector_free (comp);
bb457bd9 2800
5a660bff
DB
2801 sbitmap_vector_free (hoist_vbein);
2802 sbitmap_vector_free (hoist_vbeout);
bb457bd9 2803
d47cc544 2804 free_dominance_info (CDI_DOMINATORS);
bb457bd9
JL
2805}
2806
2807/* Compute the very busy expressions at entry/exit from each block.
2808
2809 An expression is very busy if all paths from a given point
2810 compute the expression. */
2811
2812static void
1d088dee 2813compute_code_hoist_vbeinout (void)
bb457bd9 2814{
e0082a72
ZD
2815 int changed, passes;
2816 basic_block bb;
bb457bd9 2817
f61e445a
LC
2818 bitmap_vector_clear (hoist_vbeout, last_basic_block);
2819 bitmap_vector_clear (hoist_vbein, last_basic_block);
bb457bd9
JL
2820
2821 passes = 0;
2822 changed = 1;
c4c81601 2823
bb457bd9
JL
2824 while (changed)
2825 {
2826 changed = 0;
c4c81601 2827
bb457bd9
JL
2828 /* We scan the blocks in the reverse order to speed up
2829 the convergence. */
e0082a72 2830 FOR_EACH_BB_REVERSE (bb)
bb457bd9 2831 {
e0082a72 2832 if (bb->next_bb != EXIT_BLOCK_PTR)
ce4c0015 2833 {
d7c028c0
LC
2834 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2835 hoist_vbein, bb);
ce4c0015
MK
2836
2837 /* Include expressions in VBEout that are calculated
2838 in BB and available at its end. */
f61e445a 2839 bitmap_ior (hoist_vbeout[bb->index],
ce4c0015
MK
2840 hoist_vbeout[bb->index], comp[bb->index]);
2841 }
f8423fea 2842
f61e445a 2843 changed |= bitmap_or_and (hoist_vbein[bb->index],
f8423fea
SB
2844 antloc[bb->index],
2845 hoist_vbeout[bb->index],
2846 transp[bb->index]);
bb457bd9 2847 }
c4c81601 2848
bb457bd9
JL
2849 passes++;
2850 }
2851
10d22567 2852 if (dump_file)
cad9aa15
MK
2853 {
2854 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2855
2856 FOR_EACH_BB (bb)
2857 {
2858 fprintf (dump_file, "vbein (%d): ", bb->index);
f61e445a 2859 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
cad9aa15 2860 fprintf (dump_file, "vbeout(%d): ", bb->index);
f61e445a 2861 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
cad9aa15
MK
2862 }
2863 }
bb457bd9
JL
2864}
2865
2866/* Top level routine to do the dataflow analysis needed by code hoisting. */
2867
2868static void
1d088dee 2869compute_code_hoist_data (void)
bb457bd9 2870{
02280659 2871 compute_local_properties (transp, comp, antloc, &expr_hash_table);
9b774782 2872 prune_expressions (false);
bb457bd9 2873 compute_code_hoist_vbeinout ();
d47cc544 2874 calculate_dominance_info (CDI_DOMINATORS);
10d22567
ZD
2875 if (dump_file)
2876 fprintf (dump_file, "\n");
bb457bd9
JL
2877}
2878
4b8181c5
BC
2879/* Update register pressure for BB when hoisting an expression from
2880 instruction FROM, if live ranges of inputs are shrunk. Also
2881 maintain live_in information if live range of register referred
2882 in FROM is shrunk.
2883
2884 Return 0 if register pressure doesn't change, otherwise return
2885 the number by which register pressure is decreased.
2886
2887 NOTE: Register pressure won't be increased in this function. */
2888
2889static int
2890update_bb_reg_pressure (basic_block bb, rtx from)
2891{
2892 rtx dreg, insn;
2893 basic_block succ_bb;
2894 df_ref *op, op_ref;
2895 edge succ;
2896 edge_iterator ei;
2897 int decreased_pressure = 0;
2898 int nregs;
2899 enum reg_class pressure_class;
2900
2901 for (op = DF_INSN_USES (from); *op; op++)
2902 {
2903 dreg = DF_REF_REAL_REG (*op);
2904 /* The live range of register is shrunk only if it isn't:
2905 1. referred on any path from the end of this block to EXIT, or
2906 2. referred by insns other than FROM in this block. */
2907 FOR_EACH_EDGE (succ, ei, bb->succs)
2908 {
2909 succ_bb = succ->dest;
2910 if (succ_bb == EXIT_BLOCK_PTR)
2911 continue;
2912
2913 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2914 break;
2915 }
2916 if (succ != NULL)
2917 continue;
2918
2919 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2920 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2921 {
2922 if (!DF_REF_INSN_INFO (op_ref))
2923 continue;
2924
2925 insn = DF_REF_INSN (op_ref);
2926 if (BLOCK_FOR_INSN (insn) == bb
2927 && NONDEBUG_INSN_P (insn) && insn != from)
2928 break;
2929 }
2930
2931 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2932 /* Decrease register pressure and update live_in information for
2933 this block. */
2934 if (!op_ref && pressure_class != NO_REGS)
2935 {
2936 decreased_pressure += nregs;
2937 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2938 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2939 }
2940 }
2941 return decreased_pressure;
2942}
2943
b11f0116
BC
2944/* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2945 flow graph, if it can reach BB unimpared. Stop the search if the
2946 expression would need to be moved more than DISTANCE instructions.
2947
2948 DISTANCE is the number of instructions through which EXPR can be
2949 hoisted up in flow graph.
2950
2951 BB_SIZE points to an array which contains the number of instructions
2952 for each basic block.
2953
2954 PRESSURE_CLASS and NREGS are register class and number of hard registers
2955 for storing EXPR.
2956
2957 HOISTED_BBS points to a bitmap indicating basic blocks through which
2958 EXPR is hoisted.
bb457bd9 2959
4b8181c5
BC
2960 FROM is the instruction from which EXPR is hoisted.
2961
bb457bd9
JL
2962 It's unclear exactly what Muchnick meant by "unimpared". It seems
2963 to me that the expression must either be computed or transparent in
2964 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2965 would allow the expression to be hoisted out of loops, even if
2966 the expression wasn't a loop invariant.
2967
2968 Contrast this to reachability for PRE where an expression is
2969 considered reachable if *any* path reaches instead of *all*
2970 paths. */
2971
2972static int
b11f0116
BC
2973should_hoist_expr_to_dom (basic_block expr_bb, struct expr *expr,
2974 basic_block bb, sbitmap visited, int distance,
2975 int *bb_size, enum reg_class pressure_class,
4b8181c5 2976 int *nregs, bitmap hoisted_bbs, rtx from)
bb457bd9 2977{
b11f0116 2978 unsigned int i;
bb457bd9 2979 edge pred;
628f6a4e 2980 edge_iterator ei;
b11f0116 2981 sbitmap_iterator sbi;
283a2545 2982 int visited_allocated_locally = 0;
4b8181c5 2983 int decreased_pressure = 0;
589005ff 2984
4b8181c5
BC
2985 if (flag_ira_hoist_pressure)
2986 {
2987 /* Record old information of basic block BB when it is visited
2988 at the first time. */
2989 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2990 {
2991 struct bb_data *data = BB_DATA (bb);
2992 bitmap_copy (data->backup, data->live_in);
2993 data->old_pressure = data->max_reg_pressure[pressure_class];
2994 }
2995 decreased_pressure = update_bb_reg_pressure (bb, from);
2996 }
20160347
MK
2997 /* Terminate the search if distance, for which EXPR is allowed to move,
2998 is exhausted. */
2999 if (distance > 0)
3000 {
4b8181c5
BC
3001 if (flag_ira_hoist_pressure)
3002 {
3003 /* Prefer to hoist EXPR if register pressure is decreased. */
3004 if (decreased_pressure > *nregs)
3005 distance += bb_size[bb->index];
3006 /* Let EXPR be hoisted through basic block at no cost if one
3007 of following conditions is satisfied:
3008
3009 1. The basic block has low register pressure.
3010 2. Register pressure won't be increases after hoisting EXPR.
3011
3012 Constant expressions is handled conservatively, because
3013 hoisting constant expression aggressively results in worse
3014 code. This decision is made by the observation of CSiBE
3015 on ARM target, while it has no obvious effect on other
3016 targets like x86, x86_64, mips and powerpc. */
3017 else if (CONST_INT_P (expr->expr)
3018 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
3019 >= ira_class_hard_regs_num[pressure_class]
3020 && decreased_pressure < *nregs))
3021 distance -= bb_size[bb->index];
3022 }
3023 else
b11f0116 3024 distance -= bb_size[bb->index];
20160347
MK
3025
3026 if (distance <= 0)
3027 return 0;
3028 }
3029 else
3030 gcc_assert (distance == 0);
bb457bd9
JL
3031
3032 if (visited == NULL)
3033 {
8e42ace1 3034 visited_allocated_locally = 1;
8cba9a05 3035 visited = sbitmap_alloc (last_basic_block);
f61e445a 3036 bitmap_clear (visited);
bb457bd9
JL
3037 }
3038
628f6a4e 3039 FOR_EACH_EDGE (pred, ei, bb->preds)
bb457bd9 3040 {
e2d2ed72 3041 basic_block pred_bb = pred->src;
bb457bd9
JL
3042
3043 if (pred->src == ENTRY_BLOCK_PTR)
3044 break;
f305679f
JH
3045 else if (pred_bb == expr_bb)
3046 continue;
d7c028c0 3047 else if (bitmap_bit_p (visited, pred_bb->index))
bb457bd9 3048 continue;
d7c028c0 3049 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
bb457bd9
JL
3050 break;
3051 /* Not killed. */
3052 else
3053 {
d7c028c0 3054 bitmap_set_bit (visited, pred_bb->index);
b11f0116
BC
3055 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
3056 visited, distance, bb_size,
4b8181c5
BC
3057 pressure_class, nregs,
3058 hoisted_bbs, from))
bb457bd9
JL
3059 break;
3060 }
3061 }
589005ff 3062 if (visited_allocated_locally)
b11f0116
BC
3063 {
3064 /* If EXPR can be hoisted to expr_bb, record basic blocks through
4b8181c5 3065 which EXPR is hoisted in hoisted_bbs. */
b11f0116
BC
3066 if (flag_ira_hoist_pressure && !pred)
3067 {
4b8181c5
BC
3068 /* Record the basic block from which EXPR is hoisted. */
3069 bitmap_set_bit (visited, bb->index);
d4ac4ce2 3070 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
4b8181c5 3071 bitmap_set_bit (hoisted_bbs, i);
b11f0116
BC
3072 }
3073 sbitmap_free (visited);
3074 }
c4c81601 3075
bb457bd9
JL
3076 return (pred == NULL);
3077}
3078\f
073a8998 3079/* Find occurrence in BB. */
43c8a043 3080
20160347
MK
3081static struct occr *
3082find_occr_in_bb (struct occr *occr, basic_block bb)
3083{
3084 /* Find the right occurrence of this expression. */
3085 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3086 occr = occr->next;
3087
3088 return occr;
3089}
3090
b11f0116
BC
3091/* Actually perform code hoisting.
3092
3093 The code hoisting pass can hoist multiple computations of the same
3094 expression along dominated path to a dominating basic block, like
3095 from b2/b3 to b1 as depicted below:
3096
3097 b1 ------
3098 /\ |
3099 / \ |
3100 bx by distance
3101 / \ |
3102 / \ |
3103 b2 b3 ------
3104
3105 Unfortunately code hoisting generally extends the live range of an
3106 output pseudo register, which increases register pressure and hurts
3107 register allocation. To address this issue, an attribute MAX_DISTANCE
3108 is computed and attached to each expression. The attribute is computed
3109 from rtx cost of the corresponding expression and it's used to control
3110 how long the expression can be hoisted up in flow graph. As the
3111 expression is hoisted up in flow graph, GCC decreases its DISTANCE
4b8181c5
BC
3112 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3113 register pressure if live ranges of inputs are shrunk.
b11f0116
BC
3114
3115 Option "-fira-hoist-pressure" implements register pressure directed
3116 hoist based on upper method. The rationale is:
3117 1. Calculate register pressure for each basic block by reusing IRA
3118 facility.
3119 2. When expression is hoisted through one basic block, GCC checks
4b8181c5
BC
3120 the change of live ranges for inputs/output. The basic block's
3121 register pressure will be increased because of extended live
3122 range of output. However, register pressure will be decreased
3123 if the live ranges of inputs are shrunk.
3124 3. After knowing how hoisting affects register pressure, GCC prefers
3125 to hoist the expression if it can decrease register pressure, by
3126 increasing DISTANCE of the corresponding expression.
3127 4. If hoisting the expression increases register pressure, GCC checks
3128 register pressure of the basic block and decrease DISTANCE only if
3129 the register pressure is high. In other words, expression will be
3130 hoisted through at no cost if the basic block has low register
3131 pressure.
3132 5. Update register pressure information for basic blocks through
3133 which expression is hoisted. */
c4c81601 3134
5f39ad47 3135static int
1d088dee 3136hoist_code (void)
bb457bd9 3137{
e0082a72 3138 basic_block bb, dominated;
9771b263 3139 vec<basic_block> dom_tree_walk;
cad9aa15 3140 unsigned int dom_tree_walk_index;
9771b263 3141 vec<basic_block> domby;
b11f0116 3142 unsigned int i, j, k;
bb457bd9 3143 struct expr **index_map;
c4c81601 3144 struct expr *expr;
20160347
MK
3145 int *to_bb_head;
3146 int *bb_size;
5f39ad47 3147 int changed = 0;
b11f0116
BC
3148 struct bb_data *data;
3149 /* Basic blocks that have occurrences reachable from BB. */
3150 bitmap from_bbs;
3151 /* Basic blocks through which expr is hoisted. */
3152 bitmap hoisted_bbs = NULL;
3153 bitmap_iterator bi;
bb457bd9 3154
bb457bd9
JL
3155 /* Compute a mapping from expression number (`bitmap_index') to
3156 hash table entry. */
3157
5ed6ace5 3158 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
02280659 3159 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 3160 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601 3161 index_map[expr->bitmap_index] = expr;
bb457bd9 3162
20160347
MK
3163 /* Calculate sizes of basic blocks and note how far
3164 each instruction is from the start of its block. We then use this
3165 data to restrict distance an expression can travel. */
3166
3167 to_bb_head = XCNEWVEC (int, get_max_uid ());
3168 bb_size = XCNEWVEC (int, last_basic_block);
3169
3170 FOR_EACH_BB (bb)
3171 {
3172 rtx insn;
20160347
MK
3173 int to_head;
3174
20160347 3175 to_head = 0;
05b5ea34 3176 FOR_BB_INSNS (bb, insn)
20160347
MK
3177 {
3178 /* Don't count debug instructions to avoid them affecting
3179 decision choices. */
3180 if (NONDEBUG_INSN_P (insn))
3181 to_bb_head[INSN_UID (insn)] = to_head++;
20160347
MK
3182 }
3183
3184 bb_size[bb->index] = to_head;
3185 }
3186
cad9aa15
MK
3187 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
3188 && (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
3189 == ENTRY_BLOCK_PTR->next_bb));
3190
b11f0116
BC
3191 from_bbs = BITMAP_ALLOC (NULL);
3192 if (flag_ira_hoist_pressure)
3193 hoisted_bbs = BITMAP_ALLOC (NULL);
3194
cad9aa15
MK
3195 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3196 ENTRY_BLOCK_PTR->next_bb);
3197
bb457bd9
JL
3198 /* Walk over each basic block looking for potentially hoistable
3199 expressions, nothing gets hoisted from the entry block. */
9771b263 3200 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
bb457bd9 3201 {
cad9aa15
MK
3202 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3203
9771b263 3204 if (domby.length () == 0)
cad9aa15 3205 continue;
bb457bd9
JL
3206
3207 /* Examine each expression that is very busy at the exit of this
3208 block. These are the potentially hoistable expressions. */
5829cc0f 3209 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
bb457bd9 3210 {
d7c028c0 3211 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
bb457bd9 3212 {
b11f0116
BC
3213 int nregs = 0;
3214 enum reg_class pressure_class = NO_REGS;
cad9aa15
MK
3215 /* Current expression. */
3216 struct expr *expr = index_map[i];
073a8998 3217 /* Number of occurrences of EXPR that can be hoisted to BB. */
cad9aa15 3218 int hoistable = 0;
073a8998 3219 /* Occurrences reachable from BB. */
6e1aa848 3220 vec<occr_t> occrs_to_hoist = vNULL;
cad9aa15
MK
3221 /* We want to insert the expression into BB only once, so
3222 note when we've inserted it. */
3223 int insn_inserted_p;
3224 occr_t occr;
3225
ce4c0015 3226 /* If an expression is computed in BB and is available at end of
073a8998 3227 BB, hoist all occurrences dominated by BB to BB. */
d7c028c0 3228 if (bitmap_bit_p (comp[bb->index], i))
cad9aa15
MK
3229 {
3230 occr = find_occr_in_bb (expr->antic_occr, bb);
3231
3232 if (occr)
3233 {
073a8998 3234 /* An occurrence might've been already deleted
cad9aa15 3235 while processing a dominator of BB. */
2d36b47f 3236 if (!occr->deleted_p)
cad9aa15
MK
3237 {
3238 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3239 hoistable++;
3240 }
3241 }
3242 else
3243 hoistable++;
3244 }
ce4c0015 3245
bb457bd9
JL
3246 /* We've found a potentially hoistable expression, now
3247 we look at every block BB dominates to see if it
3248 computes the expression. */
9771b263 3249 FOR_EACH_VEC_ELT (domby, j, dominated)
bb457bd9 3250 {
20160347
MK
3251 int max_distance;
3252
bb457bd9 3253 /* Ignore self dominance. */
c635a1ec 3254 if (bb == dominated)
bb457bd9 3255 continue;
bb457bd9
JL
3256 /* We've found a dominated block, now see if it computes
3257 the busy expression and whether or not moving that
3258 expression to the "beginning" of that block is safe. */
d7c028c0 3259 if (!bitmap_bit_p (antloc[dominated->index], i))
bb457bd9
JL
3260 continue;
3261
cad9aa15
MK
3262 occr = find_occr_in_bb (expr->antic_occr, dominated);
3263 gcc_assert (occr);
20160347 3264
073a8998 3265 /* An occurrence might've been already deleted
cad9aa15
MK
3266 while processing a dominator of BB. */
3267 if (occr->deleted_p)
2d36b47f 3268 continue;
cad9aa15
MK
3269 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3270
3271 max_distance = expr->max_distance;
3272 if (max_distance > 0)
3273 /* Adjust MAX_DISTANCE to account for the fact that
3274 OCCR won't have to travel all of DOMINATED, but
3275 only part of it. */
3276 max_distance += (bb_size[dominated->index]
3277 - to_bb_head[INSN_UID (occr->insn)]);
20160347 3278
b11f0116
BC
3279 pressure_class = get_pressure_class_and_nregs (occr->insn,
3280 &nregs);
3281
3282 /* Note if the expression should be hoisted from the dominated
3283 block to BB if it can reach DOMINATED unimpared.
bb457bd9
JL
3284
3285 Keep track of how many times this expression is hoistable
3286 from a dominated block into BB. */
b11f0116
BC
3287 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3288 max_distance, bb_size,
3289 pressure_class, &nregs,
4b8181c5 3290 hoisted_bbs, occr->insn))
cad9aa15
MK
3291 {
3292 hoistable++;
9771b263 3293 occrs_to_hoist.safe_push (occr);
cad9aa15
MK
3294 bitmap_set_bit (from_bbs, dominated->index);
3295 }
bb457bd9
JL
3296 }
3297
ff7cc307 3298 /* If we found more than one hoistable occurrence of this
cad9aa15 3299 expression, then note it in the vector of expressions to
bb457bd9
JL
3300 hoist. It makes no sense to hoist things which are computed
3301 in only one BB, and doing so tends to pessimize register
3302 allocation. One could increase this value to try harder
3303 to avoid any possible code expansion due to register
3304 allocation issues; however experiments have shown that
3305 the vast majority of hoistable expressions are only movable
e0bb17a8 3306 from two successors, so raising this threshold is likely
bb457bd9 3307 to nullify any benefit we get from code hoisting. */
62a3f636 3308 if (hoistable > 1 && dbg_cnt (hoist_insn))
bb457bd9 3309 {
9771b263 3310 /* If (hoistable != vec::length), then there is
073a8998 3311 an occurrence of EXPR in BB itself. Don't waste
cad9aa15 3312 time looking for LCA in this case. */
9771b263 3313 if ((unsigned) hoistable == occrs_to_hoist.length ())
cad9aa15
MK
3314 {
3315 basic_block lca;
3316
3317 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3318 from_bbs);
3319 if (lca != bb)
073a8998 3320 /* Punt, it's better to hoist these occurrences to
cad9aa15 3321 LCA. */
9771b263 3322 occrs_to_hoist.release ();
cad9aa15 3323 }
bb457bd9 3324 }
cad9aa15 3325 else
688010ba 3326 /* Punt, no point hoisting a single occurrence. */
9771b263 3327 occrs_to_hoist.release ();
bb457bd9 3328
b11f0116 3329 if (flag_ira_hoist_pressure
9771b263 3330 && !occrs_to_hoist.is_empty ())
b11f0116 3331 {
4b8181c5
BC
3332 /* Increase register pressure of basic blocks to which
3333 expr is hoisted because of extended live range of
3334 output. */
b11f0116
BC
3335 data = BB_DATA (bb);
3336 data->max_reg_pressure[pressure_class] += nregs;
4b8181c5
BC
3337 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3338 {
3339 data = BB_DATA (BASIC_BLOCK (k));
3340 data->max_reg_pressure[pressure_class] += nregs;
3341 }
b11f0116
BC
3342 }
3343 else if (flag_ira_hoist_pressure)
3344 {
4b8181c5
BC
3345 /* Restore register pressure and live_in info for basic
3346 blocks recorded in hoisted_bbs when expr will not be
3347 hoisted. */
b11f0116
BC
3348 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3349 {
3350 data = BB_DATA (BASIC_BLOCK (k));
4b8181c5
BC
3351 bitmap_copy (data->live_in, data->backup);
3352 data->max_reg_pressure[pressure_class]
3353 = data->old_pressure;
b11f0116
BC
3354 }
3355 }
3356
3357 if (flag_ira_hoist_pressure)
3358 bitmap_clear (hoisted_bbs);
3359
cad9aa15 3360 insn_inserted_p = 0;
bb457bd9 3361
073a8998 3362 /* Walk through occurrences of I'th expressions we want
cad9aa15 3363 to hoist to BB and make the transformations. */
9771b263 3364 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
bb457bd9 3365 {
cad9aa15
MK
3366 rtx insn;
3367 rtx set;
3368
3369 gcc_assert (!occr->deleted_p);
3370
3371 insn = occr->insn;
3372 set = single_set (insn);
3373 gcc_assert (set);
3374
3375 /* Create a pseudo-reg to store the result of reaching
3376 expressions into. Get the mode for the new pseudo
3377 from the mode of the original destination pseudo.
3378
3379 It is important to use new pseudos whenever we
3380 emit a set. This will allow reload to use
3381 rematerialization for such registers. */
3382 if (!insn_inserted_p)
3383 expr->reaching_reg
3384 = gen_reg_rtx_and_attrs (SET_DEST (set));
3385
43c8a043 3386 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
cad9aa15
MK
3387 insn);
3388 delete_insn (insn);
3389 occr->deleted_p = 1;
3390 changed = 1;
3391 gcse_subst_count++;
3392
3393 if (!insn_inserted_p)
bb457bd9 3394 {
cad9aa15
MK
3395 insert_insn_end_basic_block (expr, bb);
3396 insn_inserted_p = 1;
bb457bd9
JL
3397 }
3398 }
cad9aa15 3399
9771b263 3400 occrs_to_hoist.release ();
cad9aa15 3401 bitmap_clear (from_bbs);
bb457bd9
JL
3402 }
3403 }
9771b263 3404 domby.release ();
bb457bd9 3405 }
c4c81601 3406
9771b263 3407 dom_tree_walk.release ();
b11f0116
BC
3408 BITMAP_FREE (from_bbs);
3409 if (flag_ira_hoist_pressure)
3410 BITMAP_FREE (hoisted_bbs);
3411
20160347
MK
3412 free (bb_size);
3413 free (to_bb_head);
8e42ace1 3414 free (index_map);
5f39ad47
SB
3415
3416 return changed;
bb457bd9
JL
3417}
3418
b11f0116
BC
3419/* Return pressure class and number of needed hard registers (through
3420 *NREGS) of register REGNO. */
3421static enum reg_class
3422get_regno_pressure_class (int regno, int *nregs)
3423{
3424 if (regno >= FIRST_PSEUDO_REGISTER)
3425 {
3426 enum reg_class pressure_class;
3427
3428 pressure_class = reg_allocno_class (regno);
3429 pressure_class = ira_pressure_class_translate[pressure_class];
3430 *nregs
3431 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3432 return pressure_class;
3433 }
3434 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3435 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3436 {
3437 *nregs = 1;
3438 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3439 }
3440 else
3441 {
3442 *nregs = 0;
3443 return NO_REGS;
3444 }
3445}
3446
3447/* Return pressure class and number of hard registers (through *NREGS)
3448 for destination of INSN. */
3449static enum reg_class
3450get_pressure_class_and_nregs (rtx insn, int *nregs)
3451{
3452 rtx reg;
3453 enum reg_class pressure_class;
3454 rtx set = single_set (insn);
3455
3456 /* Considered invariant insns have only one set. */
3457 gcc_assert (set != NULL_RTX);
3458 reg = SET_DEST (set);
3459 if (GET_CODE (reg) == SUBREG)
3460 reg = SUBREG_REG (reg);
3461 if (MEM_P (reg))
3462 {
3463 *nregs = 0;
3464 pressure_class = NO_REGS;
3465 }
3466 else
3467 {
3468 gcc_assert (REG_P (reg));
3469 pressure_class = reg_allocno_class (REGNO (reg));
3470 pressure_class = ira_pressure_class_translate[pressure_class];
3471 *nregs
3472 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3473 }
3474 return pressure_class;
3475}
3476
3477/* Increase (if INCR_P) or decrease current register pressure for
3478 register REGNO. */
3479static void
3480change_pressure (int regno, bool incr_p)
3481{
3482 int nregs;
3483 enum reg_class pressure_class;
3484
3485 pressure_class = get_regno_pressure_class (regno, &nregs);
3486 if (! incr_p)
3487 curr_reg_pressure[pressure_class] -= nregs;
3488 else
3489 {
3490 curr_reg_pressure[pressure_class] += nregs;
3491 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3492 < curr_reg_pressure[pressure_class])
3493 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3494 = curr_reg_pressure[pressure_class];
3495 }
3496}
3497
3498/* Calculate register pressure for each basic block by walking insns
3499 from last to first. */
3500static void
3501calculate_bb_reg_pressure (void)
3502{
3503 int i;
3504 unsigned int j;
3505 rtx insn;
3506 basic_block bb;
3507 bitmap curr_regs_live;
3508 bitmap_iterator bi;
3509
3510
55a2c322 3511 ira_setup_eliminable_regset (false);
b11f0116
BC
3512 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3513 FOR_EACH_BB (bb)
3514 {
3515 curr_bb = bb;
4b8181c5
BC
3516 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3517 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3518 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3519 bitmap_copy (curr_regs_live, df_get_live_out (bb));
b11f0116
BC
3520 for (i = 0; i < ira_pressure_classes_num; i++)
3521 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3522 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3523 change_pressure (j, true);
3524
3525 FOR_BB_INSNS_REVERSE (bb, insn)
3526 {
3527 rtx dreg;
3528 int regno;
3529 df_ref *def_rec, *use_rec;
3530
3531 if (! NONDEBUG_INSN_P (insn))
3532 continue;
3533
3534 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
3535 {
3536 dreg = DF_REF_REAL_REG (*def_rec);
3537 gcc_assert (REG_P (dreg));
3538 regno = REGNO (dreg);
3539 if (!(DF_REF_FLAGS (*def_rec)
3540 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3541 {
3542 if (bitmap_clear_bit (curr_regs_live, regno))
3543 change_pressure (regno, false);
3544 }
3545 }
3546
3547 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
3548 {
3549 dreg = DF_REF_REAL_REG (*use_rec);
3550 gcc_assert (REG_P (dreg));
3551 regno = REGNO (dreg);
3552 if (bitmap_set_bit (curr_regs_live, regno))
3553 change_pressure (regno, true);
3554 }
3555 }
3556 }
3557 BITMAP_FREE (curr_regs_live);
3558
3559 if (dump_file == NULL)
3560 return;
3561
3562 fprintf (dump_file, "\nRegister Pressure: \n");
3563 FOR_EACH_BB (bb)
3564 {
3565 fprintf (dump_file, " Basic block %d: \n", bb->index);
3566 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3567 {
3568 enum reg_class pressure_class;
3569
3570 pressure_class = ira_pressure_classes[i];
3571 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3572 continue;
3573
3574 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3575 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3576 }
3577 }
3578 fprintf (dump_file, "\n");
3579}
3580
bb457bd9
JL
3581/* Top level routine to perform one code hoisting (aka unification) pass
3582
cc2902df 3583 Return nonzero if a change was made. */
bb457bd9
JL
3584
3585static int
1d088dee 3586one_code_hoisting_pass (void)
bb457bd9
JL
3587{
3588 int changed = 0;
3589
5f39ad47
SB
3590 gcse_subst_count = 0;
3591 gcse_create_count = 0;
3592
3593 /* Return if there's nothing to do, or it is too expensive. */
3594 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
3595 || is_too_expensive (_("GCSE disabled")))
3596 return 0;
3597
20160347
MK
3598 doing_code_hoisting_p = true;
3599
b11f0116
BC
3600 /* Calculate register pressure for each basic block. */
3601 if (flag_ira_hoist_pressure)
3602 {
3603 regstat_init_n_sets_and_refs ();
3604 ira_set_pseudo_classes (false, dump_file);
3605 alloc_aux_for_blocks (sizeof (struct bb_data));
3606 calculate_bb_reg_pressure ();
3607 regstat_free_n_sets_and_refs ();
3608 }
3609
5f39ad47
SB
3610 /* We need alias. */
3611 init_alias_analysis ();
3612
3613 bytes_used = 0;
3614 gcc_obstack_init (&gcse_obstack);
3615 alloc_gcse_mem ();
3616
e45425ec 3617 alloc_hash_table (&expr_hash_table);
02280659 3618 compute_hash_table (&expr_hash_table);
10d22567
ZD
3619 if (dump_file)
3620 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
c4c81601 3621
02280659 3622 if (expr_hash_table.n_elems > 0)
bb457bd9 3623 {
02280659 3624 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
bb457bd9 3625 compute_code_hoist_data ();
5f39ad47 3626 changed = hoist_code ();
bb457bd9
JL
3627 free_code_hoist_mem ();
3628 }
c4c81601 3629
b11f0116
BC
3630 if (flag_ira_hoist_pressure)
3631 {
3632 free_aux_for_blocks ();
3633 free_reg_info ();
3634 }
02280659 3635 free_hash_table (&expr_hash_table);
5f39ad47
SB
3636 free_gcse_mem ();
3637 obstack_free (&gcse_obstack, NULL);
3638
3639 /* We are finished with alias. */
3640 end_alias_analysis ();
3641
3642 if (dump_file)
3643 {
3644 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3645 current_function_name (), n_basic_blocks, bytes_used);
3646 fprintf (dump_file, "%d substs, %d insns created\n",
3647 gcse_subst_count, gcse_create_count);
3648 }
bb457bd9 3649
20160347
MK
3650 doing_code_hoisting_p = false;
3651
bb457bd9
JL
3652 return changed;
3653}
a13d4ebf 3654\f
43c8a043
EB
3655/* Here we provide the things required to do store motion towards the exit.
3656 In order for this to be effective, gcse also needed to be taught how to
3657 move a load when it is killed only by a store to itself.
a13d4ebf
AM
3658
3659 int i;
3660 float a[10];
3661
3662 void foo(float scale)
3663 {
3664 for (i=0; i<10; i++)
3665 a[i] *= scale;
3666 }
3667
3668 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
589005ff
KH
3669 the load out since its live around the loop, and stored at the bottom
3670 of the loop.
a13d4ebf 3671
589005ff 3672 The 'Load Motion' referred to and implemented in this file is
43c8a043 3673 an enhancement to gcse which when using edge based LCM, recognizes
a13d4ebf
AM
3674 this situation and allows gcse to move the load out of the loop.
3675
3676 Once gcse has hoisted the load, store motion can then push this
3677 load towards the exit, and we end up with no loads or stores of 'i'
3678 in the loop. */
3679
ff7cc307 3680/* This will search the ldst list for a matching expression. If it
a13d4ebf
AM
3681 doesn't find one, we create one and initialize it. */
3682
3683static struct ls_expr *
1d088dee 3684ldst_entry (rtx x)
a13d4ebf 3685{
b58b21d5 3686 int do_not_record_p = 0;
a13d4ebf 3687 struct ls_expr * ptr;
b58b21d5 3688 unsigned int hash;
4a8fb1a1 3689 ls_expr **slot;
9727e468 3690 struct ls_expr e;
a13d4ebf 3691
0516f6fe
SB
3692 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3693 NULL, /*have_reg_qty=*/false);
a13d4ebf 3694
9727e468 3695 e.pattern = x;
4a8fb1a1 3696 slot = pre_ldst_table.find_slot_with_hash (&e, hash, INSERT);
9727e468 3697 if (*slot)
4a8fb1a1 3698 return *slot;
b58b21d5 3699
5ed6ace5 3700 ptr = XNEW (struct ls_expr);
b58b21d5
RS
3701
3702 ptr->next = pre_ldst_mems;
3703 ptr->expr = NULL;
3704 ptr->pattern = x;
3705 ptr->pattern_regs = NULL_RTX;
3706 ptr->loads = NULL_RTX;
3707 ptr->stores = NULL_RTX;
3708 ptr->reaching_reg = NULL_RTX;
3709 ptr->invalid = 0;
3710 ptr->index = 0;
3711 ptr->hash_index = hash;
3712 pre_ldst_mems = ptr;
9727e468 3713 *slot = ptr;
589005ff 3714
a13d4ebf
AM
3715 return ptr;
3716}
3717
3718/* Free up an individual ldst entry. */
3719
589005ff 3720static void
1d088dee 3721free_ldst_entry (struct ls_expr * ptr)
a13d4ebf 3722{
aaa4ca30
AJ
3723 free_INSN_LIST_list (& ptr->loads);
3724 free_INSN_LIST_list (& ptr->stores);
a13d4ebf
AM
3725
3726 free (ptr);
3727}
3728
3729/* Free up all memory associated with the ldst list. */
3730
3731static void
43c8a043 3732free_ld_motion_mems (void)
a13d4ebf 3733{
4a8fb1a1
LC
3734 if (pre_ldst_table.is_created ())
3735 pre_ldst_table.dispose ();
9727e468 3736
589005ff 3737 while (pre_ldst_mems)
a13d4ebf
AM
3738 {
3739 struct ls_expr * tmp = pre_ldst_mems;
3740
3741 pre_ldst_mems = pre_ldst_mems->next;
3742
3743 free_ldst_entry (tmp);
3744 }
3745
3746 pre_ldst_mems = NULL;
3747}
3748
3749/* Dump debugging info about the ldst list. */
3750
3751static void
1d088dee 3752print_ldst_list (FILE * file)
a13d4ebf
AM
3753{
3754 struct ls_expr * ptr;
3755
3756 fprintf (file, "LDST list: \n");
3757
43c8a043 3758 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
a13d4ebf
AM
3759 {
3760 fprintf (file, " Pattern (%3d): ", ptr->index);
3761
3762 print_rtl (file, ptr->pattern);
3763
3764 fprintf (file, "\n Loads : ");
3765
3766 if (ptr->loads)
3767 print_rtl (file, ptr->loads);
3768 else
3769 fprintf (file, "(nil)");
3770
3771 fprintf (file, "\n Stores : ");
3772
3773 if (ptr->stores)
3774 print_rtl (file, ptr->stores);
3775 else
3776 fprintf (file, "(nil)");
3777
3778 fprintf (file, "\n\n");
3779 }
3780
3781 fprintf (file, "\n");
3782}
3783
3784/* Returns 1 if X is in the list of ldst only expressions. */
3785
3786static struct ls_expr *
1d088dee 3787find_rtx_in_ldst (rtx x)
a13d4ebf 3788{
9727e468 3789 struct ls_expr e;
4a8fb1a1
LC
3790 ls_expr **slot;
3791 if (!pre_ldst_table.is_created ())
6375779a 3792 return NULL;
9727e468 3793 e.pattern = x;
4a8fb1a1
LC
3794 slot = pre_ldst_table.find_slot (&e, NO_INSERT);
3795 if (!slot || (*slot)->invalid)
9727e468 3796 return NULL;
4a8fb1a1 3797 return *slot;
a13d4ebf 3798}
a13d4ebf
AM
3799\f
3800/* Load Motion for loads which only kill themselves. */
3801
43c8a043
EB
3802/* Return true if x, a MEM, is a simple access with no side effects.
3803 These are the types of loads we consider for the ld_motion list,
3804 otherwise we let the usual aliasing take care of it. */
a13d4ebf 3805
589005ff 3806static int
ed7a4b4b 3807simple_mem (const_rtx x)
a13d4ebf 3808{
a13d4ebf
AM
3809 if (MEM_VOLATILE_P (x))
3810 return 0;
589005ff 3811
a13d4ebf
AM
3812 if (GET_MODE (x) == BLKmode)
3813 return 0;
aaa4ca30 3814
47a3dae1 3815 /* If we are handling exceptions, we must be careful with memory references
8f4f502f 3816 that may trap. If we are not, the behavior is undefined, so we may just
47a3dae1 3817 continue. */
8f4f502f 3818 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
98d3d336
RS
3819 return 0;
3820
47a3dae1
ZD
3821 if (side_effects_p (x))
3822 return 0;
589005ff 3823
47a3dae1
ZD
3824 /* Do not consider function arguments passed on stack. */
3825 if (reg_mentioned_p (stack_pointer_rtx, x))
3826 return 0;
3827
3828 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3829 return 0;
3830
3831 return 1;
a13d4ebf
AM
3832}
3833
589005ff
KH
3834/* Make sure there isn't a buried reference in this pattern anywhere.
3835 If there is, invalidate the entry for it since we're not capable
3836 of fixing it up just yet.. We have to be sure we know about ALL
a13d4ebf
AM
3837 loads since the aliasing code will allow all entries in the
3838 ld_motion list to not-alias itself. If we miss a load, we will get
589005ff 3839 the wrong value since gcse might common it and we won't know to
a13d4ebf
AM
3840 fix it up. */
3841
3842static void
1d088dee 3843invalidate_any_buried_refs (rtx x)
a13d4ebf
AM
3844{
3845 const char * fmt;
8e42ace1 3846 int i, j;
a13d4ebf
AM
3847 struct ls_expr * ptr;
3848
3849 /* Invalidate it in the list. */
7b1b4aed 3850 if (MEM_P (x) && simple_mem (x))
a13d4ebf
AM
3851 {
3852 ptr = ldst_entry (x);
3853 ptr->invalid = 1;
3854 }
3855
3856 /* Recursively process the insn. */
3857 fmt = GET_RTX_FORMAT (GET_CODE (x));
589005ff 3858
a13d4ebf
AM
3859 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3860 {
3861 if (fmt[i] == 'e')
3862 invalidate_any_buried_refs (XEXP (x, i));
3863 else if (fmt[i] == 'E')
3864 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3865 invalidate_any_buried_refs (XVECEXP (x, i, j));
3866 }
3867}
3868
4d3eb89a
HPN
3869/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3870 being defined as MEM loads and stores to symbols, with no side effects
3871 and no registers in the expression. For a MEM destination, we also
3872 check that the insn is still valid if we replace the destination with a
3873 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3874 which don't match this criteria, they are invalidated and trimmed out
3875 later. */
a13d4ebf 3876
589005ff 3877static void
1d088dee 3878compute_ld_motion_mems (void)
a13d4ebf
AM
3879{
3880 struct ls_expr * ptr;
e0082a72 3881 basic_block bb;
a13d4ebf 3882 rtx insn;
589005ff 3883
a13d4ebf 3884 pre_ldst_mems = NULL;
4a8fb1a1 3885 pre_ldst_table.create (13);
a13d4ebf 3886
e0082a72 3887 FOR_EACH_BB (bb)
a13d4ebf 3888 {
eb232f4e 3889 FOR_BB_INSNS (bb, insn)
a13d4ebf 3890 {
b5b8b0ac 3891 if (NONDEBUG_INSN_P (insn))
a13d4ebf
AM
3892 {
3893 if (GET_CODE (PATTERN (insn)) == SET)
3894 {
3895 rtx src = SET_SRC (PATTERN (insn));
3896 rtx dest = SET_DEST (PATTERN (insn));
2df013f3
JB
3897 rtx note = find_reg_equal_equiv_note (insn);
3898 rtx src_eq;
a13d4ebf
AM
3899
3900 /* Check for a simple LOAD... */
7b1b4aed 3901 if (MEM_P (src) && simple_mem (src))
a13d4ebf
AM
3902 {
3903 ptr = ldst_entry (src);
7b1b4aed 3904 if (REG_P (dest))
a13d4ebf
AM
3905 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3906 else
3907 ptr->invalid = 1;
3908 }
3909 else
3910 {
3911 /* Make sure there isn't a buried load somewhere. */
3912 invalidate_any_buried_refs (src);
3913 }
589005ff 3914
2df013f3
JB
3915 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3916 src_eq = XEXP (note, 0);
3917 else
3918 src_eq = NULL_RTX;
3919
3920 if (src_eq != NULL_RTX
3921 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3922 invalidate_any_buried_refs (src_eq);
3923
a13d4ebf
AM
3924 /* Check for stores. Don't worry about aliased ones, they
3925 will block any movement we might do later. We only care
3926 about this exact pattern since those are the only
3927 circumstance that we will ignore the aliasing info. */
7b1b4aed 3928 if (MEM_P (dest) && simple_mem (dest))
a13d4ebf
AM
3929 {
3930 ptr = ldst_entry (dest);
589005ff 3931
7b1b4aed 3932 if (! MEM_P (src)
4d3eb89a
HPN
3933 && GET_CODE (src) != ASM_OPERANDS
3934 /* Check for REG manually since want_to_gcse_p
3935 returns 0 for all REGs. */
df35c271 3936 && can_assign_to_reg_without_clobbers_p (src))
a13d4ebf
AM
3937 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3938 else
3939 ptr->invalid = 1;
3940 }
3941 }
3942 else
3943 invalidate_any_buried_refs (PATTERN (insn));
3944 }
3945 }
3946 }
3947}
3948
589005ff 3949/* Remove any references that have been either invalidated or are not in the
a13d4ebf
AM
3950 expression list for pre gcse. */
3951
3952static void
1d088dee 3953trim_ld_motion_mems (void)
a13d4ebf 3954{
b58b21d5
RS
3955 struct ls_expr * * last = & pre_ldst_mems;
3956 struct ls_expr * ptr = pre_ldst_mems;
a13d4ebf
AM
3957
3958 while (ptr != NULL)
3959 {
b58b21d5 3960 struct expr * expr;
589005ff 3961
a13d4ebf 3962 /* Delete if entry has been made invalid. */
b58b21d5 3963 if (! ptr->invalid)
a13d4ebf 3964 {
a13d4ebf 3965 /* Delete if we cannot find this mem in the expression list. */
b58b21d5 3966 unsigned int hash = ptr->hash_index % expr_hash_table.size;
589005ff 3967
b58b21d5
RS
3968 for (expr = expr_hash_table.table[hash];
3969 expr != NULL;
3970 expr = expr->next_same_hash)
3971 if (expr_equiv_p (expr->expr, ptr->pattern))
3972 break;
a13d4ebf
AM
3973 }
3974 else
b58b21d5
RS
3975 expr = (struct expr *) 0;
3976
3977 if (expr)
a13d4ebf
AM
3978 {
3979 /* Set the expression field if we are keeping it. */
a13d4ebf 3980 ptr->expr = expr;
b58b21d5 3981 last = & ptr->next;
a13d4ebf
AM
3982 ptr = ptr->next;
3983 }
b58b21d5
RS
3984 else
3985 {
3986 *last = ptr->next;
4a8fb1a1 3987 pre_ldst_table.remove_elt_with_hash (ptr, ptr->hash_index);
b58b21d5
RS
3988 free_ldst_entry (ptr);
3989 ptr = * last;
3990 }
a13d4ebf
AM
3991 }
3992
3993 /* Show the world what we've found. */
10d22567
ZD
3994 if (dump_file && pre_ldst_mems != NULL)
3995 print_ldst_list (dump_file);
a13d4ebf
AM
3996}
3997
3998/* This routine will take an expression which we are replacing with
3999 a reaching register, and update any stores that are needed if
4000 that expression is in the ld_motion list. Stores are updated by
a98ebe2e 4001 copying their SRC to the reaching register, and then storing
a13d4ebf
AM
4002 the reaching register into the store location. These keeps the
4003 correct value in the reaching register for the loads. */
4004
4005static void
1d088dee 4006update_ld_motion_stores (struct expr * expr)
a13d4ebf
AM
4007{
4008 struct ls_expr * mem_ptr;
4009
4010 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
4011 {
589005ff
KH
4012 /* We can try to find just the REACHED stores, but is shouldn't
4013 matter to set the reaching reg everywhere... some might be
a13d4ebf
AM
4014 dead and should be eliminated later. */
4015
4d3eb89a
HPN
4016 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4017 where reg is the reaching reg used in the load. We checked in
4018 compute_ld_motion_mems that we can replace (set mem expr) with
4019 (set reg expr) in that insn. */
a13d4ebf 4020 rtx list = mem_ptr->stores;
589005ff 4021
a13d4ebf
AM
4022 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4023 {
4024 rtx insn = XEXP (list, 0);
4025 rtx pat = PATTERN (insn);
4026 rtx src = SET_SRC (pat);
4027 rtx reg = expr->reaching_reg;
038dc49a 4028 rtx copy;
a13d4ebf
AM
4029
4030 /* If we've already copied it, continue. */
4031 if (expr->reaching_reg == src)
4032 continue;
589005ff 4033
10d22567 4034 if (dump_file)
a13d4ebf 4035 {
10d22567 4036 fprintf (dump_file, "PRE: store updated with reaching reg ");
43c8a043 4037 print_rtl (dump_file, reg);
10d22567
ZD
4038 fprintf (dump_file, ":\n ");
4039 print_inline_rtx (dump_file, insn, 8);
4040 fprintf (dump_file, "\n");
a13d4ebf 4041 }
589005ff 4042
4a81774c 4043 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
038dc49a 4044 emit_insn_before (copy, insn);
a13d4ebf 4045 SET_SRC (pat) = reg;
6fb5fa3c 4046 df_insn_rescan (insn);
a13d4ebf
AM
4047
4048 /* un-recognize this pattern since it's probably different now. */
4049 INSN_CODE (insn) = -1;
4050 gcse_create_count++;
4051 }
4052 }
4053}
4054\f
df35c271
SB
4055/* Return true if the graph is too expensive to optimize. PASS is the
4056 optimization about to be performed. */
47a3dae1 4057
df35c271
SB
4058static bool
4059is_too_expensive (const char *pass)
4060{
4061 /* Trying to perform global optimizations on flow graphs which have
4062 a high connectivity will take a long time and is unlikely to be
4063 particularly useful.
aaa4ca30 4064
df35c271
SB
4065 In normal circumstances a cfg should have about twice as many
4066 edges as blocks. But we do not want to punish small functions
4067 which have a couple switch statements. Rather than simply
4068 threshold the number of blocks, uses something with a more
4069 graceful degradation. */
4070 if (n_edges > 20000 + n_basic_blocks * 4)
4071 {
4072 warning (OPT_Wdisabled_optimization,
4073 "%s: %d basic blocks and %d edges/basic block",
4074 pass, n_basic_blocks, n_edges / n_basic_blocks);
a13d4ebf 4075
df35c271
SB
4076 return true;
4077 }
a13d4ebf 4078
e45425ec 4079 /* If allocating memory for the dataflow bitmaps would take up too much
df35c271
SB
4080 storage it's better just to disable the optimization. */
4081 if ((n_basic_blocks
4082 * SBITMAP_SET_SIZE (max_reg_num ())
4083 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4084 {
4085 warning (OPT_Wdisabled_optimization,
4086 "%s: %d basic blocks and %d registers",
4087 pass, n_basic_blocks, max_reg_num ());
a13d4ebf 4088
df35c271
SB
4089 return true;
4090 }
adfcce61 4091
df35c271 4092 return false;
01c43039 4093}
df35c271
SB
4094\f
4095/* All the passes implemented in this file. Each pass has its
4096 own gate and execute function, and at the end of the file a
4097 pass definition for passes.c.
47a3dae1 4098
df35c271
SB
4099 We do not construct an accurate cfg in functions which call
4100 setjmp, so none of these passes runs if the function calls
4101 setjmp.
4102 FIXME: Should just handle setjmp via REG_SETJMP notes. */
a13d4ebf 4103
df35c271
SB
4104static bool
4105gate_rtl_pre (void)
4106{
4107 return optimize > 0 && flag_gcse
1f9081d1
XDL
4108 && !cfun->calls_setjmp
4109 && optimize_function_for_speed_p (cfun)
4110 && dbg_cnt (pre);
df35c271 4111}
589005ff 4112
df35c271
SB
4113static unsigned int
4114execute_rtl_pre (void)
4115{
f2b01cfb 4116 int changed;
df35c271 4117 delete_unreachable_blocks ();
df35c271 4118 df_analyze ();
f2b01cfb
RG
4119 changed = one_pre_gcse_pass ();
4120 flag_rerun_cse_after_global_opts |= changed;
4121 if (changed)
4122 cleanup_cfg (0);
df35c271
SB
4123 return 0;
4124}
aaa4ca30 4125
df35c271
SB
4126static bool
4127gate_rtl_hoist (void)
4128{
4129 return optimize > 0 && flag_gcse
1f9081d1
XDL
4130 && !cfun->calls_setjmp
4131 /* It does not make sense to run code hoisting unless we are optimizing
4132 for code size -- it rarely makes programs faster, and can make then
4133 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4134 && optimize_function_for_size_p (cfun)
4135 && dbg_cnt (hoist);
df35c271 4136}
aaa4ca30 4137
df35c271
SB
4138static unsigned int
4139execute_rtl_hoist (void)
4140{
f2b01cfb 4141 int changed;
df35c271 4142 delete_unreachable_blocks ();
df35c271 4143 df_analyze ();
f2b01cfb
RG
4144 changed = one_code_hoisting_pass ();
4145 flag_rerun_cse_after_global_opts |= changed;
4146 if (changed)
4147 cleanup_cfg (0);
df35c271
SB
4148 return 0;
4149}
ef330312 4150
27a4cd48
DM
4151namespace {
4152
4153const pass_data pass_data_rtl_pre =
ef330312 4154{
27a4cd48
DM
4155 RTL_PASS, /* type */
4156 "rtl pre", /* name */
4157 OPTGROUP_NONE, /* optinfo_flags */
4158 true, /* has_gate */
4159 true, /* has_execute */
4160 TV_PRE, /* tv_id */
4161 PROP_cfglayout, /* properties_required */
4162 0, /* properties_provided */
4163 0, /* properties_destroyed */
4164 0, /* todo_flags_start */
4165 ( TODO_df_finish | TODO_verify_rtl_sharing
4166 | TODO_verify_flow ), /* todo_flags_finish */
5f39ad47 4167};
ef330312 4168
27a4cd48
DM
4169class pass_rtl_pre : public rtl_opt_pass
4170{
4171public:
4172 pass_rtl_pre(gcc::context *ctxt)
4173 : rtl_opt_pass(pass_data_rtl_pre, ctxt)
4174 {}
4175
4176 /* opt_pass methods: */
4177 bool gate () { return gate_rtl_pre (); }
4178 unsigned int execute () { return execute_rtl_pre (); }
4179
4180}; // class pass_rtl_pre
4181
4182} // anon namespace
4183
4184rtl_opt_pass *
4185make_pass_rtl_pre (gcc::context *ctxt)
4186{
4187 return new pass_rtl_pre (ctxt);
4188}
4189
4190namespace {
4191
4192const pass_data pass_data_rtl_hoist =
ef330312 4193{
27a4cd48
DM
4194 RTL_PASS, /* type */
4195 "hoist", /* name */
4196 OPTGROUP_NONE, /* optinfo_flags */
4197 true, /* has_gate */
4198 true, /* has_execute */
4199 TV_HOIST, /* tv_id */
4200 PROP_cfglayout, /* properties_required */
4201 0, /* properties_provided */
4202 0, /* properties_destroyed */
4203 0, /* todo_flags_start */
4204 ( TODO_df_finish | TODO_verify_rtl_sharing
4205 | TODO_verify_flow ), /* todo_flags_finish */
ef330312
PB
4206};
4207
27a4cd48
DM
4208class pass_rtl_hoist : public rtl_opt_pass
4209{
4210public:
4211 pass_rtl_hoist(gcc::context *ctxt)
4212 : rtl_opt_pass(pass_data_rtl_hoist, ctxt)
4213 {}
4214
4215 /* opt_pass methods: */
4216 bool gate () { return gate_rtl_hoist (); }
4217 unsigned int execute () { return execute_rtl_hoist (); }
4218
4219}; // class pass_rtl_hoist
4220
4221} // anon namespace
4222
4223rtl_opt_pass *
4224make_pass_rtl_hoist (gcc::context *ctxt)
4225{
4226 return new pass_rtl_hoist (ctxt);
4227}
4228
e2500fed 4229#include "gt-gcse.h"
This page took 4.792042 seconds and 5 git commands to generate.