]> gcc.gnu.org Git - gcc.git/blame - gcc/gcse.c
Daily bump.
[gcc.git] / gcc / gcse.c
CommitLineData
e45425ec 1/* Partial redundancy elimination / Hoisting for RTL.
62e5bf5d 2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
8cba9a05 3 2006, 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
7506f491 4
1322177d 5This file is part of GCC.
7506f491 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
7506f491 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
7506f491
DE
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
7506f491
DE
20
21/* TODO
22 - reordering of memory allocation and freeing to be more space efficient
b11f0116
BC
23 - calc rough register pressure information and use the info to drive all
24 kinds of code motion (including code hoisting) in a unified way.
7506f491
DE
25*/
26
27/* References searched while implementing this.
7506f491
DE
28
29 Compilers Principles, Techniques and Tools
30 Aho, Sethi, Ullman
31 Addison-Wesley, 1988
32
33 Global Optimization by Suppression of Partial Redundancies
34 E. Morel, C. Renvoise
35 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36
37 A Portable Machine-Independent Global Optimizer - Design and Measurements
38 Frederick Chow
39 Stanford Ph.D. thesis, Dec. 1983
40
7506f491
DE
41 A Fast Algorithm for Code Movement Optimization
42 D.M. Dhamdhere
43 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44
45 A Solution to a Problem with Morel and Renvoise's
46 Global Optimization by Suppression of Partial Redundancies
47 K-H Drechsler, M.P. Stadel
48 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49
50 Practical Adaptation of the Global Optimization
51 Algorithm of Morel and Renvoise
52 D.M. Dhamdhere
53 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54
55 Efficiently Computing Static Single Assignment Form and the Control
56 Dependence Graph
57 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
58 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59
7506f491
DE
60 Lazy Code Motion
61 J. Knoop, O. Ruthing, B. Steffen
62 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63
64 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
65 Time for Reducible Flow Control
66 Thomas Ball
67 ACM Letters on Programming Languages and Systems,
68 Vol. 2, Num. 1-4, Mar-Dec 1993
69
70 An Efficient Representation for Sparse Sets
71 Preston Briggs, Linda Torczon
72 ACM Letters on Programming Languages and Systems,
73 Vol. 2, Num. 1-4, Mar-Dec 1993
74
75 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
76 K-H Drechsler, M.P. Stadel
77 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78
79 Partial Dead Code Elimination
80 J. Knoop, O. Ruthing, B. Steffen
81 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82
83 Effective Partial Redundancy Elimination
84 P. Briggs, K.D. Cooper
85 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86
87 The Program Structure Tree: Computing Control Regions in Linear Time
88 R. Johnson, D. Pearson, K. Pingali
89 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90
91 Optimal Code Motion: Theory and Practice
92 J. Knoop, O. Ruthing, B. Steffen
93 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94
95 The power of assignment motion
96 J. Knoop, O. Ruthing, B. Steffen
97 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98
99 Global code motion / global value numbering
100 C. Click
101 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102
103 Value Driven Redundancy Elimination
104 L.T. Simpson
105 Rice University Ph.D. thesis, Apr. 1996
106
107 Value Numbering
108 L.T. Simpson
109 Massively Scalar Compiler Project, Rice University, Sep. 1996
110
111 High Performance Compilers for Parallel Computing
112 Michael Wolfe
113 Addison-Wesley, 1996
114
f4e584dc
JL
115 Advanced Compiler Design and Implementation
116 Steven Muchnick
117 Morgan Kaufmann, 1997
118
a42cd965
AM
119 Building an Optimizing Compiler
120 Robert Morgan
121 Digital Press, 1998
122
f4e584dc
JL
123 People wishing to speed up the code here should read:
124 Elimination Algorithms for Data Flow Analysis
125 B.G. Ryder, M.C. Paull
126 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127
128 How to Analyze Large Programs Efficiently and Informatively
129 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
130 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131
7506f491
DE
132 People wishing to do something different can find various possibilities
133 in the above papers and elsewhere.
134*/
135
136#include "config.h"
50b2596f 137#include "system.h"
4977bab6
ZW
138#include "coretypes.h"
139#include "tm.h"
718f9c0f 140#include "diagnostic-core.h"
01198c2f 141#include "toplev.h"
7506f491 142
b11f0116 143#include "hard-reg-set.h"
7506f491 144#include "rtl.h"
b0656d8b 145#include "tree.h"
6baf1cc8 146#include "tm_p.h"
7506f491 147#include "regs.h"
b11f0116 148#include "ira.h"
7506f491 149#include "flags.h"
7506f491
DE
150#include "insn-config.h"
151#include "recog.h"
152#include "basic-block.h"
49ad7cfa 153#include "function.h"
589005ff 154#include "expr.h"
e7d482b9 155#include "except.h"
fb0c0a12 156#include "ggc.h"
f1fa37ff 157#include "params.h"
ae860ff7 158#include "cselib.h"
d128effb 159#include "intl.h"
7506f491 160#include "obstack.h"
ef330312 161#include "tree-pass.h"
9727e468 162#include "hashtab.h"
6fb5fa3c
DB
163#include "df.h"
164#include "dbgcnt.h"
ec0a1343 165#include "target.h"
7c6811fe 166#include "gcse.h"
4fa31c2a 167
f4e584dc 168/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
4cad6dba 169 are a superset of those done by classic GCSE.
7506f491 170
e45425ec
SB
171 Two passes of copy/constant propagation are done around PRE or hoisting
172 because the first one enables more GCSE and the second one helps to clean
173 up the copies that PRE and HOIST create. This is needed more for PRE than
174 for HOIST because code hoisting will try to use an existing register
175 containing the common subexpression rather than create a new one. This is
176 harder to do for PRE because of the code motion (which HOIST doesn't do).
7506f491
DE
177
178 Expressions we are interested in GCSE-ing are of the form
179 (set (pseudo-reg) (expression)).
180 Function want_to_gcse_p says what these are.
181
4cad6dba 182 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
3906a4a1 183 This allows PRE to hoist expressions that are expressed in multiple insns,
4cad6dba
SB
184 such as complex address calculations (e.g. for PIC code, or loads with a
185 high part and a low part).
3906a4a1 186
7506f491 187 PRE handles moving invariant expressions out of loops (by treating them as
f4e584dc 188 partially redundant).
7506f491 189
7506f491
DE
190 **********************
191
192 We used to support multiple passes but there are diminishing returns in
193 doing so. The first pass usually makes 90% of the changes that are doable.
194 A second pass can make a few more changes made possible by the first pass.
195 Experiments show any further passes don't make enough changes to justify
196 the expense.
197
198 A study of spec92 using an unlimited number of passes:
199 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
200 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
201 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
202
203 It was found doing copy propagation between each pass enables further
204 substitutions.
205
3906a4a1
SB
206 This study was done before expressions in REG_EQUAL notes were added as
207 candidate expressions for optimization, and before the GIMPLE optimizers
208 were added. Probably, multiple passes is even less efficient now than
209 at the time when the study was conducted.
210
7506f491 211 PRE is quite expensive in complicated functions because the DFA can take
3906a4a1 212 a while to converge. Hence we only perform one pass.
7506f491
DE
213
214 **********************
215
216 The steps for PRE are:
217
218 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
219
220 2) Perform the data flow analysis for PRE.
221
222 3) Delete the redundant instructions
223
224 4) Insert the required copies [if any] that make the partially
225 redundant instructions fully redundant.
226
227 5) For other reaching expressions, insert an instruction to copy the value
228 to a newly created pseudo that will reach the redundant instruction.
229
230 The deletion is done first so that when we do insertions we
231 know which pseudo reg to use.
232
233 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
234 argue it is not. The number of iterations for the algorithm to converge
235 is typically 2-4 so I don't view it as that expensive (relatively speaking).
236
4cad6dba 237 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
7506f491
DE
238 we create. To make an expression reach the place where it's redundant,
239 the result of the expression is copied to a new register, and the redundant
240 expression is deleted by replacing it with this new register. Classic GCSE
241 doesn't have this problem as much as it computes the reaching defs of
a3c28ba2
KH
242 each register in each block and thus can try to use an existing
243 register. */
7506f491
DE
244\f
245/* GCSE global vars. */
246
7c6811fe
RS
247struct target_gcse default_target_gcse;
248#if SWITCHABLE_TARGET
249struct target_gcse *this_target_gcse = &default_target_gcse;
250#endif
251
5f39ad47
SB
252/* Set to non-zero if CSE should run after all GCSE optimizations are done. */
253int flag_rerun_cse_after_global_opts;
f4e584dc 254
7506f491
DE
255/* An obstack for our working variables. */
256static struct obstack gcse_obstack;
257
c4c81601 258struct reg_use {rtx reg_rtx; };
abd535b6 259
7506f491
DE
260/* Hash table of expressions. */
261
262struct expr
263{
43c8a043 264 /* The expression. */
7506f491
DE
265 rtx expr;
266 /* Index in the available expression bitmaps. */
267 int bitmap_index;
268 /* Next entry with the same hash. */
269 struct expr *next_same_hash;
270 /* List of anticipatable occurrences in basic blocks in the function.
271 An "anticipatable occurrence" is one that is the first occurrence in the
f4e584dc
JL
272 basic block, the operands are not modified in the basic block prior
273 to the occurrence and the output is not used between the start of
274 the block and the occurrence. */
7506f491
DE
275 struct occr *antic_occr;
276 /* List of available occurrence in basic blocks in the function.
277 An "available occurrence" is one that is the last occurrence in the
278 basic block and the operands are not modified by following statements in
279 the basic block [including this insn]. */
280 struct occr *avail_occr;
281 /* Non-null if the computation is PRE redundant.
282 The value is the newly created pseudo-reg to record a copy of the
283 expression in all the places that reach the redundant copy. */
284 rtx reaching_reg;
20160347
MK
285 /* Maximum distance in instructions this expression can travel.
286 We avoid moving simple expressions for more than a few instructions
287 to keep register pressure under control.
288 A value of "0" removes restrictions on how far the expression can
289 travel. */
290 int max_distance;
7506f491
DE
291};
292
293/* Occurrence of an expression.
294 There is one per basic block. If a pattern appears more than once the
295 last appearance is used [or first for anticipatable expressions]. */
296
297struct occr
298{
299 /* Next occurrence of this expression. */
300 struct occr *next;
301 /* The insn that computes the expression. */
302 rtx insn;
cc2902df 303 /* Nonzero if this [anticipatable] occurrence has been deleted. */
7506f491 304 char deleted_p;
cc2902df 305 /* Nonzero if this [available] occurrence has been copied to
7506f491
DE
306 reaching_reg. */
307 /* ??? This is mutually exclusive with deleted_p, so they could share
308 the same byte. */
309 char copied_p;
310};
311
cad9aa15
MK
312typedef struct occr *occr_t;
313DEF_VEC_P (occr_t);
314DEF_VEC_ALLOC_P (occr_t, heap);
315
e45425ec 316/* Expression hash tables.
7506f491
DE
317 Each hash table is an array of buckets.
318 ??? It is known that if it were an array of entries, structure elements
319 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
320 not clear whether in the final analysis a sufficient amount of memory would
321 be saved as the size of the available expression bitmaps would be larger
322 [one could build a mapping table without holes afterwards though].
c4c81601 323 Someday I'll perform the computation and figure it out. */
7506f491 324
7e5487a2 325struct hash_table_d
02280659
ZD
326{
327 /* The table itself.
328 This is an array of `expr_hash_table_size' elements. */
329 struct expr **table;
330
331 /* Size of the hash table, in elements. */
332 unsigned int size;
2e653e39 333
02280659
ZD
334 /* Number of hash table elements. */
335 unsigned int n_elems;
02280659 336};
c4c81601 337
02280659 338/* Expression hash table. */
7e5487a2 339static struct hash_table_d expr_hash_table;
02280659 340
a13d4ebf 341/* This is a list of expressions which are MEMs and will be used by load
589005ff 342 or store motion.
43c8a043
EB
343 Load motion tracks MEMs which aren't killed by anything except itself,
344 i.e. loads and stores to a single location.
589005ff 345 We can then allow movement of these MEM refs with a little special
a13d4ebf
AM
346 allowance. (all stores copy the same value to the reaching reg used
347 for the loads). This means all values used to store into memory must have
43c8a043 348 no side effects so we can re-issue the setter value. */
a13d4ebf
AM
349
350struct ls_expr
351{
352 struct expr * expr; /* Gcse expression reference for LM. */
353 rtx pattern; /* Pattern of this mem. */
47a3dae1 354 rtx pattern_regs; /* List of registers mentioned by the mem. */
aaa4ca30
AJ
355 rtx loads; /* INSN list of loads seen. */
356 rtx stores; /* INSN list of stores seen. */
a13d4ebf
AM
357 struct ls_expr * next; /* Next in the list. */
358 int invalid; /* Invalid for some reason. */
359 int index; /* If it maps to a bitmap index. */
b58b21d5 360 unsigned int hash_index; /* Index when in a hash table. */
a13d4ebf
AM
361 rtx reaching_reg; /* Register to use when re-writing. */
362};
363
364/* Head of the list of load/store memory refs. */
365static struct ls_expr * pre_ldst_mems = NULL;
366
9727e468
RG
367/* Hashtable for the load/store memory refs. */
368static htab_t pre_ldst_table = NULL;
369
7506f491
DE
370/* Bitmap containing one bit for each register in the program.
371 Used when performing GCSE to track which registers have been set since
372 the start of the basic block. */
73991d6a 373static regset reg_set_bitmap;
7506f491 374
a13d4ebf
AM
375/* Array, indexed by basic block number for a list of insns which modify
376 memory within that block. */
6409abe3 377static VEC (rtx,heap) **modify_mem_list;
0516f6fe 378static bitmap modify_mem_list_set;
a13d4ebf 379
6ce1edcf
NF
380typedef struct modify_pair_s
381{
382 rtx dest; /* A MEM. */
383 rtx dest_addr; /* The canonical address of `dest'. */
384} modify_pair;
385
386DEF_VEC_O(modify_pair);
387DEF_VEC_ALLOC_O(modify_pair,heap);
388
389/* This array parallels modify_mem_list, except that it stores MEMs
390 being set and their canonicalized memory addresses. */
6409abe3 391static VEC (modify_pair,heap) **canon_modify_mem_list;
0516f6fe 392
aa47fcfa
JL
393/* Bitmap indexed by block numbers to record which blocks contain
394 function calls. */
395static bitmap blocks_with_calls;
396
7506f491
DE
397/* Various variables for statistics gathering. */
398
399/* Memory used in a pass.
400 This isn't intended to be absolutely precise. Its intent is only
401 to keep an eye on memory usage. */
402static int bytes_used;
c4c81601 403
7506f491
DE
404/* GCSE substitutions made. */
405static int gcse_subst_count;
406/* Number of copy instructions created. */
407static int gcse_create_count;
7506f491 408\f
20160347
MK
409/* Doing code hoisting. */
410static bool doing_code_hoisting_p = false;
411\f
e83f4801 412/* For available exprs */
df35c271 413static sbitmap *ae_kill;
7506f491 414\f
b11f0116
BC
415/* Data stored for each basic block. */
416struct bb_data
417{
418 /* Maximal register pressure inside basic block for given register class
419 (defined only for the pressure classes). */
420 int max_reg_pressure[N_REG_CLASSES];
4b8181c5
BC
421 /* Recorded register pressure of basic block before trying to hoist
422 an expression. Will be used to restore the register pressure
423 if the expression should not be hoisted. */
424 int old_pressure;
425 /* Recorded register live_in info of basic block during code hoisting
426 process. BACKUP is used to record live_in info before trying to
427 hoist an expression, and will be used to restore LIVE_IN if the
428 expression should not be hoisted. */
429 bitmap live_in, backup;
b11f0116
BC
430};
431
432#define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
433
434static basic_block curr_bb;
435
436/* Current register pressure for each pressure class. */
437static int curr_reg_pressure[N_REG_CLASSES];
438\f
439
1d088dee 440static void compute_can_copy (void);
9fe15a12
KG
441static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
442static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
703ad42b 443static void *gcse_alloc (unsigned long);
eb232f4e 444static void alloc_gcse_mem (void);
1d088dee 445static void free_gcse_mem (void);
7e5487a2
ILT
446static void hash_scan_insn (rtx, struct hash_table_d *);
447static void hash_scan_set (rtx, rtx, struct hash_table_d *);
448static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
449static void hash_scan_call (rtx, rtx, struct hash_table_d *);
20160347 450static int want_to_gcse_p (rtx, int *);
ed7a4b4b
KG
451static int oprs_unchanged_p (const_rtx, const_rtx, int);
452static int oprs_anticipatable_p (const_rtx, const_rtx);
453static int oprs_available_p (const_rtx, const_rtx);
20160347 454static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
7e5487a2 455 struct hash_table_d *);
ed7a4b4b 456static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
ed7a4b4b 457static int expr_equiv_p (const_rtx, const_rtx);
1d088dee
AJ
458static void record_last_reg_set_info (rtx, int);
459static void record_last_mem_set_info (rtx);
7bc980e1 460static void record_last_set_info (rtx, const_rtx, void *);
7e5487a2 461static void compute_hash_table (struct hash_table_d *);
e45425ec 462static void alloc_hash_table (struct hash_table_d *);
7e5487a2
ILT
463static void free_hash_table (struct hash_table_d *);
464static void compute_hash_table_work (struct hash_table_d *);
465static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
e45425ec 466static void compute_transp (const_rtx, int, sbitmap *);
1d088dee 467static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
7e5487a2 468 struct hash_table_d *);
7bc980e1 469static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
ed7a4b4b 470static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
7bc980e1 471static void canon_list_insert (rtx, const_rtx, void *);
1d088dee
AJ
472static void alloc_pre_mem (int, int);
473static void free_pre_mem (void);
43c8a043 474static struct edge_list *compute_pre_data (void);
1d088dee
AJ
475static int pre_expr_reaches_here_p (basic_block, struct expr *,
476 basic_block);
eae7938e 477static void insert_insn_end_basic_block (struct expr *, basic_block);
1d088dee
AJ
478static void pre_insert_copy_insn (struct expr *, rtx);
479static void pre_insert_copies (void);
480static int pre_delete (void);
43c8a043 481static int pre_gcse (struct edge_list *);
5f39ad47 482static int one_pre_gcse_pass (void);
1d088dee
AJ
483static void add_label_notes (rtx, rtx);
484static void alloc_code_hoist_mem (int, int);
485static void free_code_hoist_mem (void);
486static void compute_code_hoist_vbeinout (void);
487static void compute_code_hoist_data (void);
b11f0116
BC
488static int should_hoist_expr_to_dom (basic_block, struct expr *, basic_block,
489 sbitmap, int, int *, enum reg_class,
4b8181c5 490 int *, bitmap, rtx);
5f39ad47 491static int hoist_code (void);
4b8181c5 492static enum reg_class get_regno_pressure_class (int regno, int *nregs);
b11f0116 493static enum reg_class get_pressure_class_and_nregs (rtx insn, int *nregs);
1d088dee 494static int one_code_hoisting_pass (void);
1d088dee
AJ
495static rtx process_insert_insn (struct expr *);
496static int pre_edge_insert (struct edge_list *, struct expr **);
1d088dee
AJ
497static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
498 basic_block, char *);
499static struct ls_expr * ldst_entry (rtx);
500static void free_ldst_entry (struct ls_expr *);
43c8a043 501static void free_ld_motion_mems (void);
1d088dee
AJ
502static void print_ldst_list (FILE *);
503static struct ls_expr * find_rtx_in_ldst (rtx);
ed7a4b4b 504static int simple_mem (const_rtx);
1d088dee
AJ
505static void invalidate_any_buried_refs (rtx);
506static void compute_ld_motion_mems (void);
507static void trim_ld_motion_mems (void);
508static void update_ld_motion_stores (struct expr *);
1d088dee
AJ
509static void clear_modify_mem_tables (void);
510static void free_modify_mem_tables (void);
511static rtx gcse_emit_move_after (rtx, rtx, rtx);
d128effb 512static bool is_too_expensive (const char *);
1b4572a8
KG
513
514#define GNEW(T) ((T *) gmalloc (sizeof (T)))
515#define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
516
517#define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
518#define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
1b4572a8
KG
519
520#define GNEWVAR(T, S) ((T *) gmalloc ((S)))
521#define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
1b4572a8
KG
522
523#define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
524#define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
7506f491 525\f
7506f491
DE
526/* Misc. utilities. */
527
7c6811fe
RS
528#define can_copy \
529 (this_target_gcse->x_can_copy)
530#define can_copy_init_p \
531 (this_target_gcse->x_can_copy_init_p)
773eae39 532
7506f491
DE
533/* Compute which modes support reg/reg copy operations. */
534
535static void
1d088dee 536compute_can_copy (void)
7506f491
DE
537{
538 int i;
50b2596f 539#ifndef AVOID_CCMODE_COPIES
8e42ace1 540 rtx reg, insn;
50b2596f 541#endif
773eae39 542 memset (can_copy, 0, NUM_MACHINE_MODES);
7506f491
DE
543
544 start_sequence ();
545 for (i = 0; i < NUM_MACHINE_MODES; i++)
c4c81601
RK
546 if (GET_MODE_CLASS (i) == MODE_CC)
547 {
7506f491 548#ifdef AVOID_CCMODE_COPIES
773eae39 549 can_copy[i] = 0;
7506f491 550#else
c4c81601
RK
551 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
552 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
9714cf43 553 if (recog (PATTERN (insn), insn, NULL) >= 0)
773eae39 554 can_copy[i] = 1;
7506f491 555#endif
c4c81601 556 }
141b5810 557 else
773eae39 558 can_copy[i] = 1;
c4c81601 559
7506f491 560 end_sequence ();
7506f491 561}
773eae39
EB
562
563/* Returns whether the mode supports reg/reg copy operations. */
564
565bool
1d088dee 566can_copy_p (enum machine_mode mode)
773eae39 567{
773eae39
EB
568 if (! can_copy_init_p)
569 {
570 compute_can_copy ();
571 can_copy_init_p = true;
572 }
573
574 return can_copy[mode] != 0;
575}
7506f491
DE
576\f
577/* Cover function to xmalloc to record bytes allocated. */
578
703ad42b 579static void *
4ac11022 580gmalloc (size_t size)
7506f491
DE
581{
582 bytes_used += size;
583 return xmalloc (size);
584}
585
9fe15a12
KG
586/* Cover function to xcalloc to record bytes allocated. */
587
588static void *
589gcalloc (size_t nelem, size_t elsize)
590{
591 bytes_used += nelem * elsize;
592 return xcalloc (nelem, elsize);
593}
594
77bbd421 595/* Cover function to obstack_alloc. */
7506f491 596
703ad42b 597static void *
1d088dee 598gcse_alloc (unsigned long size)
7506f491 599{
77bbd421 600 bytes_used += size;
703ad42b 601 return obstack_alloc (&gcse_obstack, size);
7506f491
DE
602}
603
4a81774c 604/* Allocate memory for the reg/memory set tracking tables.
7506f491
DE
605 This is called at the start of each pass. */
606
607static void
eb232f4e 608alloc_gcse_mem (void)
7506f491 609{
7506f491 610 /* Allocate vars to track sets of regs. */
7a8cba34 611 reg_set_bitmap = ALLOC_REG_SET (NULL);
7506f491 612
a13d4ebf
AM
613 /* Allocate array to keep a list of insns which modify memory in each
614 basic block. */
6409abe3
NF
615 modify_mem_list = GCNEWVEC (VEC (rtx,heap) *, last_basic_block);
616 canon_modify_mem_list = GCNEWVEC (VEC (modify_pair,heap) *,
6ce1edcf 617 last_basic_block);
8bdbfff5
NS
618 modify_mem_list_set = BITMAP_ALLOC (NULL);
619 blocks_with_calls = BITMAP_ALLOC (NULL);
7506f491
DE
620}
621
622/* Free memory allocated by alloc_gcse_mem. */
623
624static void
1d088dee 625free_gcse_mem (void)
7506f491 626{
d5b8da97
SB
627 FREE_REG_SET (reg_set_bitmap);
628
73991d6a 629 free_modify_mem_tables ();
8bdbfff5
NS
630 BITMAP_FREE (modify_mem_list_set);
631 BITMAP_FREE (blocks_with_calls);
7506f491 632}
b5ce41ff
JL
633\f
634/* Compute the local properties of each recorded expression.
c4c81601
RK
635
636 Local properties are those that are defined by the block, irrespective of
637 other blocks.
b5ce41ff
JL
638
639 An expression is transparent in a block if its operands are not modified
640 in the block.
641
642 An expression is computed (locally available) in a block if it is computed
643 at least once and expression would contain the same value if the
644 computation was moved to the end of the block.
645
646 An expression is locally anticipatable in a block if it is computed at
647 least once and expression would contain the same value if the computation
648 was moved to the beginning of the block.
649
e45425ec 650 We call this routine for pre and code hoisting. They all compute
c4c81601 651 basically the same information and thus can easily share this code.
7506f491 652
c4c81601
RK
653 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
654 properties. If NULL, then it is not necessary to compute or record that
655 particular property.
b5ce41ff 656
e45425ec 657 TABLE controls which hash table to look at. */
589005ff 658
b5ce41ff 659static void
7b1b4aed 660compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
7e5487a2 661 struct hash_table_d *table)
b5ce41ff 662{
02280659 663 unsigned int i;
589005ff 664
b5ce41ff
JL
665 /* Initialize any bitmaps that were passed in. */
666 if (transp)
695ab36a 667 {
f61e445a 668 bitmap_vector_ones (transp, last_basic_block);
695ab36a 669 }
c4c81601 670
b5ce41ff 671 if (comp)
f61e445a 672 bitmap_vector_clear (comp, last_basic_block);
b5ce41ff 673 if (antloc)
f61e445a 674 bitmap_vector_clear (antloc, last_basic_block);
b5ce41ff 675
02280659 676 for (i = 0; i < table->size; i++)
7506f491 677 {
b5ce41ff
JL
678 struct expr *expr;
679
02280659 680 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
b5ce41ff 681 {
b5ce41ff 682 int indx = expr->bitmap_index;
c4c81601 683 struct occr *occr;
b5ce41ff
JL
684
685 /* The expression is transparent in this block if it is not killed.
686 We start by assuming all are transparent [none are killed], and
687 then reset the bits for those that are. */
b5ce41ff 688 if (transp)
e45425ec 689 compute_transp (expr->expr, indx, transp);
b5ce41ff
JL
690
691 /* The occurrences recorded in antic_occr are exactly those that
cc2902df 692 we want to set to nonzero in ANTLOC. */
b5ce41ff 693 if (antloc)
c4c81601
RK
694 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
695 {
d7c028c0 696 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
b5ce41ff 697
c4c81601
RK
698 /* While we're scanning the table, this is a good place to
699 initialize this. */
700 occr->deleted_p = 0;
701 }
b5ce41ff
JL
702
703 /* The occurrences recorded in avail_occr are exactly those that
cc2902df 704 we want to set to nonzero in COMP. */
b5ce41ff 705 if (comp)
c4c81601
RK
706 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
707 {
d7c028c0 708 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
b5ce41ff 709
c4c81601
RK
710 /* While we're scanning the table, this is a good place to
711 initialize this. */
712 occr->copied_p = 0;
713 }
b5ce41ff
JL
714
715 /* While we're scanning the table, this is a good place to
716 initialize this. */
717 expr->reaching_reg = 0;
718 }
7506f491 719 }
7506f491
DE
720}
721\f
7506f491
DE
722/* Hash table support. */
723
80c29cc4
RZ
724struct reg_avail_info
725{
e0082a72 726 basic_block last_bb;
80c29cc4
RZ
727 int first_set;
728 int last_set;
729};
730
731static struct reg_avail_info *reg_avail_info;
e0082a72 732static basic_block current_bb;
7506f491 733
fb0c0a12
RK
734/* See whether X, the source of a set, is something we want to consider for
735 GCSE. */
7506f491
DE
736
737static int
20160347 738want_to_gcse_p (rtx x, int *max_distance_ptr)
7506f491 739{
3d8504ac
RS
740#ifdef STACK_REGS
741 /* On register stack architectures, don't GCSE constants from the
742 constant pool, as the benefits are often swamped by the overhead
743 of shuffling the register stack between basic blocks. */
744 if (IS_STACK_MODE (GET_MODE (x)))
745 x = avoid_constant_pool_reference (x);
746#endif
747
20160347
MK
748 /* GCSE'ing constants:
749
750 We do not specifically distinguish between constant and non-constant
5e8f01f4 751 expressions in PRE and Hoist. We use set_src_cost below to limit
20160347
MK
752 the maximum distance simple expressions can travel.
753
754 Nevertheless, constants are much easier to GCSE, and, hence,
755 it is easy to overdo the optimizations. Usually, excessive PRE and
756 Hoisting of constant leads to increased register pressure.
757
758 RA can deal with this by rematerialing some of the constants.
759 Therefore, it is important that the back-end generates sets of constants
760 in a way that allows reload rematerialize them under high register
761 pressure, i.e., a pseudo register with REG_EQUAL to constant
762 is set only once. Failing to do so will result in IRA/reload
763 spilling such constants under high register pressure instead of
764 rematerializing them. */
765
c4c81601 766 switch (GET_CODE (x))
7506f491
DE
767 {
768 case REG:
769 case SUBREG:
20160347
MK
770 case CALL:
771 return 0;
772
d8116890 773 CASE_CONST_ANY:
20160347
MK
774 if (!doing_code_hoisting_p)
775 /* Do not PRE constants. */
776 return 0;
777
778 /* FALLTHRU */
7506f491
DE
779
780 default:
20160347
MK
781 if (doing_code_hoisting_p)
782 /* PRE doesn't implement max_distance restriction. */
783 {
784 int cost;
785 int max_distance;
786
787 gcc_assert (!optimize_function_for_speed_p (cfun)
788 && optimize_function_for_size_p (cfun));
5e8f01f4 789 cost = set_src_cost (x, 0);
20160347
MK
790
791 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
792 {
793 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
794 if (max_distance == 0)
795 return 0;
796
797 gcc_assert (max_distance > 0);
798 }
799 else
800 max_distance = 0;
801
802 if (max_distance_ptr)
803 *max_distance_ptr = max_distance;
804 }
805
df35c271 806 return can_assign_to_reg_without_clobbers_p (x);
7506f491 807 }
1707bafa
RS
808}
809
df35c271 810/* Used internally by can_assign_to_reg_without_clobbers_p. */
1707bafa
RS
811
812static GTY(()) rtx test_insn;
813
df35c271
SB
814/* Return true if we can assign X to a pseudo register such that the
815 resulting insn does not result in clobbering a hard register as a
816 side-effect.
ec0a1343
JB
817
818 Additionally, if the target requires it, check that the resulting insn
819 can be copied. If it cannot, this means that X is special and probably
820 has hidden side-effects we don't want to mess with.
821
df35c271
SB
822 This function is typically used by code motion passes, to verify
823 that it is safe to insert an insn without worrying about clobbering
824 maybe live hard regs. */
1707bafa 825
df35c271
SB
826bool
827can_assign_to_reg_without_clobbers_p (rtx x)
1707bafa
RS
828{
829 int num_clobbers = 0;
830 int icode;
7506f491 831
fb0c0a12
RK
832 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
833 if (general_operand (x, GET_MODE (x)))
834 return 1;
835 else if (GET_MODE (x) == VOIDmode)
836 return 0;
837
838 /* Otherwise, check if we can make a valid insn from it. First initialize
839 our test insn if we haven't already. */
840 if (test_insn == 0)
841 {
842 test_insn
843 = make_insn_raw (gen_rtx_SET (VOIDmode,
844 gen_rtx_REG (word_mode,
845 FIRST_PSEUDO_REGISTER * 2),
846 const0_rtx));
847 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
fb0c0a12
RK
848 }
849
850 /* Now make an insn like the one we would make when GCSE'ing and see if
851 valid. */
852 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
853 SET_SRC (PATTERN (test_insn)) = x;
b8698a0f 854
ec0a1343
JB
855 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
856 if (icode < 0)
857 return false;
b8698a0f 858
ec0a1343
JB
859 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
860 return false;
b8698a0f 861
ec0a1343
JB
862 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
863 return false;
b8698a0f 864
ec0a1343 865 return true;
7506f491
DE
866}
867
cc2902df 868/* Return nonzero if the operands of expression X are unchanged from the
7506f491
DE
869 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
870 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
871
872static int
ed7a4b4b 873oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
7506f491 874{
c4c81601 875 int i, j;
7506f491 876 enum rtx_code code;
6f7d635c 877 const char *fmt;
7506f491 878
7506f491
DE
879 if (x == 0)
880 return 1;
881
882 code = GET_CODE (x);
883 switch (code)
884 {
885 case REG:
80c29cc4
RZ
886 {
887 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
888
889 if (info->last_bb != current_bb)
890 return 1;
589005ff 891 if (avail_p)
4a81774c 892 return info->last_set < DF_INSN_LUID (insn);
80c29cc4 893 else
4a81774c 894 return info->first_set >= DF_INSN_LUID (insn);
80c29cc4 895 }
7506f491
DE
896
897 case MEM:
4a81774c 898 if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
a13d4ebf
AM
899 x, avail_p))
900 return 0;
7506f491 901 else
c4c81601 902 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
7506f491
DE
903
904 case PRE_DEC:
905 case PRE_INC:
906 case POST_DEC:
907 case POST_INC:
4b983fdc
RH
908 case PRE_MODIFY:
909 case POST_MODIFY:
7506f491
DE
910 return 0;
911
912 case PC:
913 case CC0: /*FIXME*/
914 case CONST:
d8116890 915 CASE_CONST_ANY:
7506f491
DE
916 case SYMBOL_REF:
917 case LABEL_REF:
918 case ADDR_VEC:
919 case ADDR_DIFF_VEC:
920 return 1;
921
922 default:
923 break;
924 }
925
c4c81601 926 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
7506f491
DE
927 {
928 if (fmt[i] == 'e')
929 {
c4c81601
RK
930 /* If we are about to do the last recursive call needed at this
931 level, change it into iteration. This function is called enough
932 to be worth it. */
7506f491 933 if (i == 0)
c4c81601
RK
934 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
935
936 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
7506f491
DE
937 return 0;
938 }
939 else if (fmt[i] == 'E')
c4c81601
RK
940 for (j = 0; j < XVECLEN (x, i); j++)
941 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
942 return 0;
7506f491
DE
943 }
944
945 return 1;
946}
947
43c8a043 948/* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
a13d4ebf 949
43c8a043
EB
950struct mem_conflict_info
951{
952 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
953 see if a memory store conflicts with this memory load. */
954 const_rtx mem;
a13d4ebf 955
43c8a043
EB
956 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
957 references. */
958 bool conflict;
959};
960
961/* DEST is the output of an instruction. If it is a memory reference and
962 possibly conflicts with the load found in DATA, then communicate this
963 information back through DATA. */
a13d4ebf
AM
964
965static void
7bc980e1 966mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
43c8a043 967 void *data)
a13d4ebf 968{
43c8a043
EB
969 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
970
a13d4ebf
AM
971 while (GET_CODE (dest) == SUBREG
972 || GET_CODE (dest) == ZERO_EXTRACT
a13d4ebf
AM
973 || GET_CODE (dest) == STRICT_LOW_PART)
974 dest = XEXP (dest, 0);
975
976 /* If DEST is not a MEM, then it will not conflict with the load. Note
977 that function calls are assumed to clobber memory, but are handled
978 elsewhere. */
7b1b4aed 979 if (! MEM_P (dest))
a13d4ebf 980 return;
aaa4ca30 981
a13d4ebf 982 /* If we are setting a MEM in our list of specially recognized MEMs,
589005ff 983 don't mark as killed this time. */
43c8a043 984 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
a13d4ebf
AM
985 {
986 if (!find_rtx_in_ldst (dest))
43c8a043 987 mci->conflict = true;
a13d4ebf
AM
988 return;
989 }
aaa4ca30 990
53d9622b 991 if (true_dependence (dest, GET_MODE (dest), mci->mem))
43c8a043 992 mci->conflict = true;
a13d4ebf
AM
993}
994
995/* Return nonzero if the expression in X (a memory reference) is killed
4a81774c 996 in block BB before or after the insn with the LUID in UID_LIMIT.
a13d4ebf
AM
997 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
998 before UID_LIMIT.
999
1000 To check the entire block, set UID_LIMIT to max_uid + 1 and
1001 AVAIL_P to 0. */
1002
1003static int
43c8a043
EB
1004load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1005 int avail_p)
a13d4ebf 1006{
6409abe3
NF
1007 VEC (rtx,heap) *list = modify_mem_list[bb->index];
1008 rtx setter;
1009 unsigned ix;
16c5b95d
MH
1010
1011 /* If this is a readonly then we aren't going to be changing it. */
1012 if (MEM_READONLY_P (x))
1013 return 0;
1014
6409abe3 1015 FOR_EACH_VEC_ELT_REVERSE (rtx, list, ix, setter)
a13d4ebf 1016 {
43c8a043
EB
1017 struct mem_conflict_info mci;
1018
a13d4ebf
AM
1019 /* Ignore entries in the list that do not apply. */
1020 if ((avail_p
6409abe3 1021 && DF_INSN_LUID (setter) < uid_limit)
a13d4ebf 1022 || (! avail_p
6409abe3
NF
1023 && DF_INSN_LUID (setter) > uid_limit))
1024 continue;
a13d4ebf
AM
1025
1026 /* If SETTER is a call everything is clobbered. Note that calls
1027 to pure functions are never put on the list, so we need not
1028 worry about them. */
7b1b4aed 1029 if (CALL_P (setter))
a13d4ebf
AM
1030 return 1;
1031
1032 /* SETTER must be an INSN of some kind that sets memory. Call
43c8a043
EB
1033 note_stores to examine each hunk of memory that is modified. */
1034 mci.mem = x;
1035 mci.conflict = false;
1036 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1037 if (mci.conflict)
a13d4ebf 1038 return 1;
a13d4ebf
AM
1039 }
1040 return 0;
1041}
1042
cc2902df 1043/* Return nonzero if the operands of expression X are unchanged from
7506f491
DE
1044 the start of INSN's basic block up to but not including INSN. */
1045
1046static int
ed7a4b4b 1047oprs_anticipatable_p (const_rtx x, const_rtx insn)
7506f491
DE
1048{
1049 return oprs_unchanged_p (x, insn, 0);
1050}
1051
cc2902df 1052/* Return nonzero if the operands of expression X are unchanged from
7506f491
DE
1053 INSN to the end of INSN's basic block. */
1054
1055static int
ed7a4b4b 1056oprs_available_p (const_rtx x, const_rtx insn)
7506f491
DE
1057{
1058 return oprs_unchanged_p (x, insn, 1);
1059}
1060
1061/* Hash expression X.
c4c81601
RK
1062
1063 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1064 indicating if a volatile operand is found or if the expression contains
b58b21d5 1065 something we don't want to insert in the table. HASH_TABLE_SIZE is
0516f6fe 1066 the current size of the hash table to be probed. */
7506f491
DE
1067
1068static unsigned int
ed7a4b4b 1069hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
b58b21d5 1070 int hash_table_size)
7506f491
DE
1071{
1072 unsigned int hash;
1073
1074 *do_not_record_p = 0;
1075
43c8a043 1076 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
7506f491
DE
1077 return hash % hash_table_size;
1078}
172890a2 1079
0516f6fe 1080/* Return nonzero if exp1 is equivalent to exp2. */
7506f491
DE
1081
1082static int
ed7a4b4b 1083expr_equiv_p (const_rtx x, const_rtx y)
7506f491 1084{
0516f6fe 1085 return exp_equiv_p (x, y, 0, true);
7506f491
DE
1086}
1087
02280659 1088/* Insert expression X in INSN in the hash TABLE.
7506f491
DE
1089 If it is already present, record it as the last occurrence in INSN's
1090 basic block.
1091
1092 MODE is the mode of the value X is being stored into.
1093 It is only used if X is a CONST_INT.
1094
cc2902df 1095 ANTIC_P is nonzero if X is an anticipatable expression.
20160347
MK
1096 AVAIL_P is nonzero if X is an available expression.
1097
1098 MAX_DISTANCE is the maximum distance in instructions this expression can
1099 be moved. */
7506f491
DE
1100
1101static void
1d088dee 1102insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
20160347 1103 int avail_p, int max_distance, struct hash_table_d *table)
7506f491
DE
1104{
1105 int found, do_not_record_p;
1106 unsigned int hash;
1107 struct expr *cur_expr, *last_expr = NULL;
1108 struct occr *antic_occr, *avail_occr;
7506f491 1109
02280659 1110 hash = hash_expr (x, mode, &do_not_record_p, table->size);
7506f491
DE
1111
1112 /* Do not insert expression in table if it contains volatile operands,
1113 or if hash_expr determines the expression is something we don't want
1114 to or can't handle. */
1115 if (do_not_record_p)
1116 return;
1117
02280659 1118 cur_expr = table->table[hash];
7506f491
DE
1119 found = 0;
1120
c4c81601 1121 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
7506f491
DE
1122 {
1123 /* If the expression isn't found, save a pointer to the end of
1124 the list. */
1125 last_expr = cur_expr;
1126 cur_expr = cur_expr->next_same_hash;
1127 }
1128
1129 if (! found)
1130 {
1b4572a8 1131 cur_expr = GOBNEW (struct expr);
7506f491 1132 bytes_used += sizeof (struct expr);
02280659 1133 if (table->table[hash] == NULL)
c4c81601 1134 /* This is the first pattern that hashed to this index. */
02280659 1135 table->table[hash] = cur_expr;
7506f491 1136 else
c4c81601
RK
1137 /* Add EXPR to end of this hash chain. */
1138 last_expr->next_same_hash = cur_expr;
1139
589005ff 1140 /* Set the fields of the expr element. */
7506f491 1141 cur_expr->expr = x;
02280659 1142 cur_expr->bitmap_index = table->n_elems++;
7506f491
DE
1143 cur_expr->next_same_hash = NULL;
1144 cur_expr->antic_occr = NULL;
1145 cur_expr->avail_occr = NULL;
20160347
MK
1146 gcc_assert (max_distance >= 0);
1147 cur_expr->max_distance = max_distance;
7506f491 1148 }
20160347
MK
1149 else
1150 gcc_assert (cur_expr->max_distance == max_distance);
7506f491
DE
1151
1152 /* Now record the occurrence(s). */
7506f491
DE
1153 if (antic_p)
1154 {
1155 antic_occr = cur_expr->antic_occr;
1156
b0de17ef
SB
1157 if (antic_occr
1158 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
b6e47ceb 1159 antic_occr = NULL;
7506f491
DE
1160
1161 if (antic_occr)
c4c81601
RK
1162 /* Found another instance of the expression in the same basic block.
1163 Prefer the currently recorded one. We want the first one in the
1164 block and the block is scanned from start to end. */
1165 ; /* nothing to do */
7506f491
DE
1166 else
1167 {
1168 /* First occurrence of this expression in this basic block. */
1b4572a8 1169 antic_occr = GOBNEW (struct occr);
7506f491 1170 bytes_used += sizeof (struct occr);
7506f491 1171 antic_occr->insn = insn;
b6e47ceb 1172 antic_occr->next = cur_expr->antic_occr;
f9957958 1173 antic_occr->deleted_p = 0;
b6e47ceb 1174 cur_expr->antic_occr = antic_occr;
7506f491
DE
1175 }
1176 }
1177
1178 if (avail_p)
1179 {
1180 avail_occr = cur_expr->avail_occr;
1181
b0de17ef
SB
1182 if (avail_occr
1183 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
7506f491 1184 {
b6e47ceb
JL
1185 /* Found another instance of the expression in the same basic block.
1186 Prefer this occurrence to the currently recorded one. We want
1187 the last one in the block and the block is scanned from start
1188 to end. */
1189 avail_occr->insn = insn;
7506f491 1190 }
7506f491
DE
1191 else
1192 {
1193 /* First occurrence of this expression in this basic block. */
1b4572a8 1194 avail_occr = GOBNEW (struct occr);
7506f491 1195 bytes_used += sizeof (struct occr);
7506f491 1196 avail_occr->insn = insn;
b6e47ceb 1197 avail_occr->next = cur_expr->avail_occr;
f9957958 1198 avail_occr->deleted_p = 0;
b6e47ceb 1199 cur_expr->avail_occr = avail_occr;
7506f491
DE
1200 }
1201 }
1202}
1203
43c8a043 1204/* Scan SET present in INSN and add an entry to the hash TABLE. */
7506f491
DE
1205
1206static void
43c8a043 1207hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
7506f491 1208{
43c8a043
EB
1209 rtx src = SET_SRC (set);
1210 rtx dest = SET_DEST (set);
172890a2 1211 rtx note;
7506f491 1212
6e72d1e9 1213 if (GET_CODE (src) == CALL)
02280659 1214 hash_scan_call (src, insn, table);
7506f491 1215
7b1b4aed 1216 else if (REG_P (dest))
7506f491 1217 {
172890a2 1218 unsigned int regno = REGNO (dest);
20160347 1219 int max_distance = 0;
7506f491 1220
29470771
SB
1221 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1222
90631280
PB
1223 This allows us to do a single GCSE pass and still eliminate
1224 redundant constants, addresses or other expressions that are
29470771
SB
1225 constructed with multiple instructions.
1226
e45425ec 1227 However, keep the original SRC if INSN is a simple reg-reg move.
29470771
SB
1228 In this case, there will almost always be a REG_EQUAL note on the
1229 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1230 for INSN, we miss copy propagation opportunities and we perform the
1231 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1232 do more than one PRE GCSE pass.
1233
fa10beec 1234 Note that this does not impede profitable constant propagations. We
29470771 1235 "look through" reg-reg sets in lookup_avail_set. */
90631280
PB
1236 note = find_reg_equal_equiv_note (insn);
1237 if (note != 0
29470771
SB
1238 && REG_NOTE_KIND (note) == REG_EQUAL
1239 && !REG_P (src)
e45425ec 1240 && want_to_gcse_p (XEXP (note, 0), NULL))
43c8a043 1241 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
172890a2 1242
7506f491 1243 /* Only record sets of pseudo-regs in the hash table. */
e45425ec 1244 if (regno >= FIRST_PSEUDO_REGISTER
7506f491 1245 /* Don't GCSE something if we can't do a reg/reg copy. */
773eae39 1246 && can_copy_p (GET_MODE (dest))
068473ec 1247 /* GCSE commonly inserts instruction after the insn. We can't
1d65f45c
RH
1248 do that easily for EH edges so disable GCSE on these for now. */
1249 /* ??? We can now easily create new EH landing pads at the
1250 gimple level, for splitting edges; there's no reason we
1251 can't do the same thing at the rtl level. */
1252 && !can_throw_internal (insn)
7506f491 1253 /* Is SET_SRC something we want to gcse? */
20160347 1254 && want_to_gcse_p (src, &max_distance)
172890a2 1255 /* Don't CSE a nop. */
43c8a043 1256 && ! set_noop_p (set)
43e72072
JJ
1257 /* Don't GCSE if it has attached REG_EQUIV note.
1258 At this point this only function parameters should have
1259 REG_EQUIV notes and if the argument slot is used somewhere
a1f300c0 1260 explicitly, it means address of parameter has been taken,
43e72072 1261 so we should not extend the lifetime of the pseudo. */
90631280 1262 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
7506f491
DE
1263 {
1264 /* An expression is not anticipatable if its operands are
52d76e11 1265 modified before this insn or if this is not the only SET in
6fb5fa3c
DB
1266 this insn. The latter condition does not have to mean that
1267 SRC itself is not anticipatable, but we just will not be
1268 able to handle code motion of insns with multiple sets. */
1269 int antic_p = oprs_anticipatable_p (src, insn)
1270 && !multiple_sets (insn);
7506f491 1271 /* An expression is not available if its operands are
eb296bd9
GK
1272 subsequently modified, including this insn. It's also not
1273 available if this is a branch, because we can't insert
1274 a set after the branch. */
1275 int avail_p = (oprs_available_p (src, insn)
1276 && ! JUMP_P (insn));
c4c81601 1277
20160347
MK
1278 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1279 max_distance, table);
7506f491 1280 }
7506f491 1281 }
d91edf86 1282 /* In case of store we want to consider the memory value as available in
f5f2e3cd
MH
1283 the REG stored in that memory. This makes it possible to remove
1284 redundant loads from due to stores to the same location. */
7b1b4aed 1285 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
f5f2e3cd
MH
1286 {
1287 unsigned int regno = REGNO (src);
fb039b24 1288 int max_distance = 0;
f5f2e3cd 1289
e45425ec
SB
1290 /* Only record sets of pseudo-regs in the hash table. */
1291 if (regno >= FIRST_PSEUDO_REGISTER
f5f2e3cd
MH
1292 /* Don't GCSE something if we can't do a reg/reg copy. */
1293 && can_copy_p (GET_MODE (src))
1294 /* GCSE commonly inserts instruction after the insn. We can't
1d65f45c
RH
1295 do that easily for EH edges so disable GCSE on these for now. */
1296 && !can_throw_internal (insn)
f5f2e3cd 1297 /* Is SET_DEST something we want to gcse? */
fb039b24 1298 && want_to_gcse_p (dest, &max_distance)
f5f2e3cd 1299 /* Don't CSE a nop. */
43c8a043 1300 && ! set_noop_p (set)
f5f2e3cd
MH
1301 /* Don't GCSE if it has attached REG_EQUIV note.
1302 At this point this only function parameters should have
1303 REG_EQUIV notes and if the argument slot is used somewhere
1304 explicitly, it means address of parameter has been taken,
1305 so we should not extend the lifetime of the pseudo. */
1306 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
7b1b4aed 1307 || ! MEM_P (XEXP (note, 0))))
f5f2e3cd
MH
1308 {
1309 /* Stores are never anticipatable. */
1310 int antic_p = 0;
1311 /* An expression is not available if its operands are
1312 subsequently modified, including this insn. It's also not
1313 available if this is a branch, because we can't insert
1314 a set after the branch. */
1315 int avail_p = oprs_available_p (dest, insn)
1316 && ! JUMP_P (insn);
1317
1318 /* Record the memory expression (DEST) in the hash table. */
4bcaf354 1319 insert_expr_in_table (dest, GET_MODE (dest), insn,
fb039b24 1320 antic_p, avail_p, max_distance, table);
f5f2e3cd
MH
1321 }
1322 }
7506f491
DE
1323}
1324
1325static void
1d088dee 1326hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
7e5487a2 1327 struct hash_table_d *table ATTRIBUTE_UNUSED)
7506f491
DE
1328{
1329 /* Currently nothing to do. */
1330}
1331
1332static void
1d088dee 1333hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
7e5487a2 1334 struct hash_table_d *table ATTRIBUTE_UNUSED)
7506f491
DE
1335{
1336 /* Currently nothing to do. */
1337}
1338
43c8a043 1339/* Process INSN and add hash table entries as appropriate. */
7506f491
DE
1340
1341static void
7e5487a2 1342hash_scan_insn (rtx insn, struct hash_table_d *table)
7506f491
DE
1343{
1344 rtx pat = PATTERN (insn);
c4c81601 1345 int i;
7506f491
DE
1346
1347 /* Pick out the sets of INSN and for other forms of instructions record
1348 what's been modified. */
1349
172890a2 1350 if (GET_CODE (pat) == SET)
02280659 1351 hash_scan_set (pat, insn, table);
43c8a043
EB
1352
1353 else if (GET_CODE (pat) == CLOBBER)
1354 hash_scan_clobber (pat, insn, table);
1355
1356 else if (GET_CODE (pat) == CALL)
1357 hash_scan_call (pat, insn, table);
1358
7506f491 1359 else if (GET_CODE (pat) == PARALLEL)
c4c81601
RK
1360 for (i = 0; i < XVECLEN (pat, 0); i++)
1361 {
1362 rtx x = XVECEXP (pat, 0, i);
7506f491 1363
c4c81601 1364 if (GET_CODE (x) == SET)
02280659 1365 hash_scan_set (x, insn, table);
c4c81601 1366 else if (GET_CODE (x) == CLOBBER)
02280659 1367 hash_scan_clobber (x, insn, table);
6e72d1e9 1368 else if (GET_CODE (x) == CALL)
02280659 1369 hash_scan_call (x, insn, table);
c4c81601 1370 }
7506f491
DE
1371}
1372
43c8a043
EB
1373/* Dump the hash table TABLE to file FILE under the name NAME. */
1374
7506f491 1375static void
7e5487a2 1376dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
7506f491
DE
1377{
1378 int i;
1379 /* Flattened out table, so it's printed in proper order. */
4da896b2
MM
1380 struct expr **flat_table;
1381 unsigned int *hash_val;
c4c81601 1382 struct expr *expr;
4da896b2 1383
1b4572a8
KG
1384 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1385 hash_val = XNEWVEC (unsigned int, table->n_elems);
7506f491 1386
02280659
ZD
1387 for (i = 0; i < (int) table->size; i++)
1388 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
c4c81601
RK
1389 {
1390 flat_table[expr->bitmap_index] = expr;
1391 hash_val[expr->bitmap_index] = i;
1392 }
7506f491
DE
1393
1394 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
02280659 1395 name, table->size, table->n_elems);
7506f491 1396
02280659 1397 for (i = 0; i < (int) table->n_elems; i++)
21318741
RK
1398 if (flat_table[i] != 0)
1399 {
a0ac9e5a 1400 expr = flat_table[i];
20160347
MK
1401 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1402 expr->bitmap_index, hash_val[i], expr->max_distance);
a0ac9e5a 1403 print_rtl (file, expr->expr);
21318741
RK
1404 fprintf (file, "\n");
1405 }
7506f491
DE
1406
1407 fprintf (file, "\n");
4da896b2 1408
4da896b2
MM
1409 free (flat_table);
1410 free (hash_val);
7506f491
DE
1411}
1412
1413/* Record register first/last/block set information for REGNO in INSN.
c4c81601 1414
80c29cc4 1415 first_set records the first place in the block where the register
7506f491 1416 is set and is used to compute "anticipatability".
c4c81601 1417
80c29cc4 1418 last_set records the last place in the block where the register
7506f491 1419 is set and is used to compute "availability".
c4c81601 1420
80c29cc4 1421 last_bb records the block for which first_set and last_set are
4a81774c 1422 valid, as a quick test to invalidate them. */
7506f491
DE
1423
1424static void
1d088dee 1425record_last_reg_set_info (rtx insn, int regno)
7506f491 1426{
80c29cc4 1427 struct reg_avail_info *info = &reg_avail_info[regno];
4a81774c 1428 int luid = DF_INSN_LUID (insn);
c4c81601 1429
4a81774c 1430 info->last_set = luid;
80c29cc4
RZ
1431 if (info->last_bb != current_bb)
1432 {
1433 info->last_bb = current_bb;
4a81774c 1434 info->first_set = luid;
80c29cc4 1435 }
7506f491
DE
1436}
1437
a13d4ebf
AM
1438/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1439 Note we store a pair of elements in the list, so they have to be
1440 taken off pairwise. */
1441
589005ff 1442static void
43c8a043 1443canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
1d088dee 1444 void * v_insn)
a13d4ebf
AM
1445{
1446 rtx dest_addr, insn;
0fe854a7 1447 int bb;
f32682ca 1448 modify_pair pair;
a13d4ebf
AM
1449
1450 while (GET_CODE (dest) == SUBREG
1451 || GET_CODE (dest) == ZERO_EXTRACT
a13d4ebf
AM
1452 || GET_CODE (dest) == STRICT_LOW_PART)
1453 dest = XEXP (dest, 0);
1454
1455 /* If DEST is not a MEM, then it will not conflict with a load. Note
1456 that function calls are assumed to clobber memory, but are handled
1457 elsewhere. */
1458
7b1b4aed 1459 if (! MEM_P (dest))
a13d4ebf
AM
1460 return;
1461
1462 dest_addr = get_addr (XEXP (dest, 0));
1463 dest_addr = canon_rtx (dest_addr);
589005ff 1464 insn = (rtx) v_insn;
b0de17ef 1465 bb = BLOCK_FOR_INSN (insn)->index;
a13d4ebf 1466
f32682ca
DN
1467 pair.dest = dest;
1468 pair.dest_addr = dest_addr;
1469 VEC_safe_push (modify_pair, heap, canon_modify_mem_list[bb], pair);
a13d4ebf
AM
1470}
1471
a13d4ebf
AM
1472/* Record memory modification information for INSN. We do not actually care
1473 about the memory location(s) that are set, or even how they are set (consider
1474 a CALL_INSN). We merely need to record which insns modify memory. */
7506f491
DE
1475
1476static void
1d088dee 1477record_last_mem_set_info (rtx insn)
7506f491 1478{
b0de17ef 1479 int bb = BLOCK_FOR_INSN (insn)->index;
0fe854a7 1480
ccef9ef5 1481 /* load_killed_in_block_p will handle the case of calls clobbering
dc297297 1482 everything. */
6409abe3 1483 VEC_safe_push (rtx, heap, modify_mem_list[bb], insn);
0fe854a7 1484 bitmap_set_bit (modify_mem_list_set, bb);
a13d4ebf 1485
7b1b4aed 1486 if (CALL_P (insn))
6ce1edcf 1487 bitmap_set_bit (blocks_with_calls, bb);
a13d4ebf 1488 else
0fe854a7 1489 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
7506f491
DE
1490}
1491
7506f491 1492/* Called from compute_hash_table via note_stores to handle one
84832317
MM
1493 SET or CLOBBER in an insn. DATA is really the instruction in which
1494 the SET is taking place. */
7506f491
DE
1495
1496static void
7bc980e1 1497record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
7506f491 1498{
84832317
MM
1499 rtx last_set_insn = (rtx) data;
1500
7506f491
DE
1501 if (GET_CODE (dest) == SUBREG)
1502 dest = SUBREG_REG (dest);
1503
7b1b4aed 1504 if (REG_P (dest))
7506f491 1505 record_last_reg_set_info (last_set_insn, REGNO (dest));
7b1b4aed 1506 else if (MEM_P (dest)
7506f491
DE
1507 /* Ignore pushes, they clobber nothing. */
1508 && ! push_operand (dest, GET_MODE (dest)))
1509 record_last_mem_set_info (last_set_insn);
1510}
1511
e45425ec 1512/* Top level function to create an expression hash table.
7506f491
DE
1513
1514 Expression entries are placed in the hash table if
1515 - they are of the form (set (pseudo-reg) src),
1516 - src is something we want to perform GCSE on,
1517 - none of the operands are subsequently modified in the block
1518
7506f491
DE
1519 Currently src must be a pseudo-reg or a const_int.
1520
02280659 1521 TABLE is the table computed. */
7506f491
DE
1522
1523static void
7e5487a2 1524compute_hash_table_work (struct hash_table_d *table)
7506f491 1525{
5f39ad47 1526 int i;
7506f491 1527
a13d4ebf 1528 /* re-Cache any INSN_LIST nodes we have allocated. */
73991d6a 1529 clear_modify_mem_tables ();
7506f491 1530 /* Some working arrays used to track first and last set in each block. */
5f39ad47 1531 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
80c29cc4 1532
5f39ad47 1533 for (i = 0; i < max_reg_num (); ++i)
e0082a72 1534 reg_avail_info[i].last_bb = NULL;
7506f491 1535
e0082a72 1536 FOR_EACH_BB (current_bb)
7506f491
DE
1537 {
1538 rtx insn;
770ae6cc 1539 unsigned int regno;
7506f491
DE
1540
1541 /* First pass over the instructions records information used to
4a81774c 1542 determine when registers and memory are first and last set. */
eb232f4e 1543 FOR_BB_INSNS (current_bb, insn)
7506f491 1544 {
a344c9f1 1545 if (!NONDEBUG_INSN_P (insn))
7506f491
DE
1546 continue;
1547
7b1b4aed 1548 if (CALL_P (insn))
7506f491 1549 {
c7fb4c7a
SB
1550 hard_reg_set_iterator hrsi;
1551 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1552 0, regno, hrsi)
1553 record_last_reg_set_info (insn, regno);
c4c81601 1554
e45425ec
SB
1555 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1556 record_last_mem_set_info (insn);
7506f491
DE
1557 }
1558
84832317 1559 note_stores (PATTERN (insn), record_last_set_info, insn);
7506f491
DE
1560 }
1561
1562 /* The next pass builds the hash table. */
eb232f4e 1563 FOR_BB_INSNS (current_bb, insn)
a344c9f1 1564 if (NONDEBUG_INSN_P (insn))
4a8cae83 1565 hash_scan_insn (insn, table);
7506f491
DE
1566 }
1567
80c29cc4
RZ
1568 free (reg_avail_info);
1569 reg_avail_info = NULL;
7506f491
DE
1570}
1571
02280659 1572/* Allocate space for the set/expr hash TABLE.
e45425ec 1573 It is used to determine the number of buckets to use. */
7506f491
DE
1574
1575static void
e45425ec 1576alloc_hash_table (struct hash_table_d *table)
7506f491
DE
1577{
1578 int n;
1579
b5b8b0ac
AO
1580 n = get_max_insn_count ();
1581
1582 table->size = n / 4;
02280659
ZD
1583 if (table->size < 11)
1584 table->size = 11;
c4c81601 1585
7506f491
DE
1586 /* Attempt to maintain efficient use of hash table.
1587 Making it an odd number is simplest for now.
1588 ??? Later take some measurements. */
02280659
ZD
1589 table->size |= 1;
1590 n = table->size * sizeof (struct expr *);
1b4572a8 1591 table->table = GNEWVAR (struct expr *, n);
7506f491
DE
1592}
1593
02280659 1594/* Free things allocated by alloc_hash_table. */
7506f491
DE
1595
1596static void
7e5487a2 1597free_hash_table (struct hash_table_d *table)
7506f491 1598{
02280659 1599 free (table->table);
7506f491
DE
1600}
1601
e45425ec 1602/* Compute the expression hash table TABLE. */
7506f491
DE
1603
1604static void
7e5487a2 1605compute_hash_table (struct hash_table_d *table)
7506f491
DE
1606{
1607 /* Initialize count of number of entries in hash table. */
02280659 1608 table->n_elems = 0;
703ad42b 1609 memset (table->table, 0, table->size * sizeof (struct expr *));
7506f491 1610
02280659 1611 compute_hash_table_work (table);
7506f491
DE
1612}
1613\f
1614/* Expression tracking support. */
1615
e45425ec
SB
1616/* Clear canon_modify_mem_list and modify_mem_list tables. */
1617static void
1618clear_modify_mem_tables (void)
0e3f0221 1619{
e45425ec
SB
1620 unsigned i;
1621 bitmap_iterator bi;
0e3f0221 1622
e45425ec 1623 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
0e3f0221 1624 {
6409abe3 1625 VEC_free (rtx, heap, modify_mem_list[i]);
6ce1edcf 1626 VEC_free (modify_pair, heap, canon_modify_mem_list[i]);
0e3f0221 1627 }
e45425ec
SB
1628 bitmap_clear (modify_mem_list_set);
1629 bitmap_clear (blocks_with_calls);
0e3f0221
RS
1630}
1631
e45425ec 1632/* Release memory used by modify_mem_list_set. */
0e3f0221 1633
e45425ec
SB
1634static void
1635free_modify_mem_tables (void)
e129b3f9 1636{
e45425ec
SB
1637 clear_modify_mem_tables ();
1638 free (modify_mem_list);
1639 free (canon_modify_mem_list);
1640 modify_mem_list = 0;
1641 canon_modify_mem_list = 0;
e129b3f9 1642}
e45425ec
SB
1643\f
1644/* For each block, compute whether X is transparent. X is either an
1645 expression or an assignment [though we don't care which, for this context
1646 an assignment is treated as an expression]. For each block where an
1647 element of X is modified, reset the INDX bit in BMAP. */
0e3f0221 1648
e45425ec
SB
1649static void
1650compute_transp (const_rtx x, int indx, sbitmap *bmap)
0e3f0221 1651{
e45425ec
SB
1652 int i, j;
1653 enum rtx_code code;
1654 const char *fmt;
0e3f0221 1655
e45425ec
SB
1656 /* repeat is used to turn tail-recursion into iteration since GCC
1657 can't do it when there's no return value. */
1658 repeat:
0e3f0221 1659
e45425ec
SB
1660 if (x == 0)
1661 return;
72b8d451 1662
e45425ec
SB
1663 code = GET_CODE (x);
1664 switch (code)
0e3f0221 1665 {
e45425ec 1666 case REG:
628f6a4e 1667 {
e45425ec
SB
1668 df_ref def;
1669 for (def = DF_REG_DEF_CHAIN (REGNO (x));
1670 def;
1671 def = DF_REF_NEXT_REG (def))
d7c028c0 1672 bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx);
628f6a4e 1673 }
7821bfc7 1674
e45425ec 1675 return;
72b8d451 1676
e45425ec
SB
1677 case MEM:
1678 if (! MEM_READONLY_P (x))
0e3f0221 1679 {
e45425ec
SB
1680 bitmap_iterator bi;
1681 unsigned bb_index;
e129b3f9 1682
e45425ec
SB
1683 /* First handle all the blocks with calls. We don't need to
1684 do any list walking for them. */
1685 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1686 {
d7c028c0 1687 bitmap_clear_bit (bmap[bb_index], indx);
e45425ec 1688 }
0e3f0221 1689
e45425ec
SB
1690 /* Now iterate over the blocks which have memory modifications
1691 but which do not have any calls. */
1692 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1693 blocks_with_calls,
1694 0, bb_index, bi)
1695 {
6409abe3 1696 VEC (modify_pair,heap) *list
6ce1edcf
NF
1697 = canon_modify_mem_list[bb_index];
1698 modify_pair *pair;
1699 unsigned ix;
0e3f0221 1700
6ce1edcf 1701 FOR_EACH_VEC_ELT_REVERSE (modify_pair, list, ix, pair)
e45425ec 1702 {
6ce1edcf
NF
1703 rtx dest = pair->dest;
1704 rtx dest_addr = pair->dest_addr;
0e3f0221 1705
53d9622b
RS
1706 if (canon_true_dependence (dest, GET_MODE (dest),
1707 dest_addr, x, NULL_RTX))
d7c028c0 1708 bitmap_clear_bit (bmap[bb_index], indx);
e45425ec
SB
1709 }
1710 }
0e3f0221 1711 }
0e3f0221 1712
e45425ec
SB
1713 x = XEXP (x, 0);
1714 goto repeat;
0e3f0221 1715
e45425ec
SB
1716 case PC:
1717 case CC0: /*FIXME*/
1718 case CONST:
d8116890 1719 CASE_CONST_ANY:
e45425ec
SB
1720 case SYMBOL_REF:
1721 case LABEL_REF:
1722 case ADDR_VEC:
1723 case ADDR_DIFF_VEC:
1724 return;
0e3f0221 1725
e45425ec
SB
1726 default:
1727 break;
1728 }
7821bfc7 1729
e45425ec 1730 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
0e3f0221 1731 {
e45425ec 1732 if (fmt[i] == 'e')
0e3f0221 1733 {
e45425ec
SB
1734 /* If we are about to do the last recursive call
1735 needed at this level, change it into iteration.
1736 This function is called enough to be worth it. */
1737 if (i == 0)
1738 {
1739 x = XEXP (x, i);
1740 goto repeat;
1741 }
1742
1743 compute_transp (XEXP (x, i), indx, bmap);
0e3f0221 1744 }
e45425ec
SB
1745 else if (fmt[i] == 'E')
1746 for (j = 0; j < XVECLEN (x, i); j++)
1747 compute_transp (XVECEXP (x, i, j), indx, bmap);
0e3f0221 1748 }
0e3f0221
RS
1749}
1750\f
a65f3558 1751/* Compute PRE+LCM working variables. */
7506f491
DE
1752
1753/* Local properties of expressions. */
43c8a043 1754
7506f491 1755/* Nonzero for expressions that are transparent in the block. */
a65f3558 1756static sbitmap *transp;
7506f491 1757
a65f3558
JL
1758/* Nonzero for expressions that are computed (available) in the block. */
1759static sbitmap *comp;
7506f491 1760
a65f3558
JL
1761/* Nonzero for expressions that are locally anticipatable in the block. */
1762static sbitmap *antloc;
7506f491 1763
a65f3558
JL
1764/* Nonzero for expressions where this block is an optimal computation
1765 point. */
1766static sbitmap *pre_optimal;
5c35539b 1767
a65f3558
JL
1768/* Nonzero for expressions which are redundant in a particular block. */
1769static sbitmap *pre_redundant;
7506f491 1770
a42cd965
AM
1771/* Nonzero for expressions which should be inserted on a specific edge. */
1772static sbitmap *pre_insert_map;
1773
1774/* Nonzero for expressions which should be deleted in a specific block. */
1775static sbitmap *pre_delete_map;
1776
a65f3558 1777/* Allocate vars used for PRE analysis. */
7506f491
DE
1778
1779static void
1d088dee 1780alloc_pre_mem (int n_blocks, int n_exprs)
7506f491 1781{
a65f3558
JL
1782 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1783 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1784 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5faf03ae 1785
a42cd965
AM
1786 pre_optimal = NULL;
1787 pre_redundant = NULL;
1788 pre_insert_map = NULL;
1789 pre_delete_map = NULL;
a42cd965 1790 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
c4c81601 1791
a42cd965 1792 /* pre_insert and pre_delete are allocated later. */
7506f491
DE
1793}
1794
a65f3558 1795/* Free vars used for PRE analysis. */
7506f491
DE
1796
1797static void
1d088dee 1798free_pre_mem (void)
7506f491 1799{
5a660bff
DB
1800 sbitmap_vector_free (transp);
1801 sbitmap_vector_free (comp);
bd3675fc
JL
1802
1803 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
7506f491 1804
a42cd965 1805 if (pre_optimal)
5a660bff 1806 sbitmap_vector_free (pre_optimal);
a42cd965 1807 if (pre_redundant)
5a660bff 1808 sbitmap_vector_free (pre_redundant);
a42cd965 1809 if (pre_insert_map)
5a660bff 1810 sbitmap_vector_free (pre_insert_map);
a42cd965 1811 if (pre_delete_map)
5a660bff 1812 sbitmap_vector_free (pre_delete_map);
a42cd965 1813
bd3675fc 1814 transp = comp = NULL;
a42cd965 1815 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
7506f491
DE
1816}
1817
9b774782
JL
1818/* Remove certain expressions from anticipatable and transparent
1819 sets of basic blocks that have incoming abnormal edge.
1820 For PRE remove potentially trapping expressions to avoid placing
1821 them on abnormal edges. For hoisting remove memory references that
1822 can be clobbered by calls. */
7506f491
DE
1823
1824static void
9b774782 1825prune_expressions (bool pre_p)
7506f491 1826{
9b774782 1827 sbitmap prune_exprs;
43c8a043 1828 struct expr *expr;
b614171e 1829 unsigned int ui;
9b774782 1830 basic_block bb;
c66e8ae9 1831
9b774782 1832 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
f61e445a 1833 bitmap_clear (prune_exprs);
02280659 1834 for (ui = 0; ui < expr_hash_table.size; ui++)
b614171e 1835 {
43c8a043 1836 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
9b774782
JL
1837 {
1838 /* Note potentially trapping expressions. */
43c8a043 1839 if (may_trap_p (expr->expr))
9b774782 1840 {
d7c028c0 1841 bitmap_set_bit (prune_exprs, expr->bitmap_index);
9b774782
JL
1842 continue;
1843 }
b614171e 1844
43c8a043 1845 if (!pre_p && MEM_P (expr->expr))
9b774782
JL
1846 /* Note memory references that can be clobbered by a call.
1847 We do not split abnormal edges in hoisting, so would
1848 a memory reference get hoisted along an abnormal edge,
1849 it would be placed /before/ the call. Therefore, only
1850 constant memory references can be hoisted along abnormal
1851 edges. */
1852 {
43c8a043
EB
1853 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1854 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
9b774782 1855 continue;
c66e8ae9 1856
43c8a043
EB
1857 if (MEM_READONLY_P (expr->expr)
1858 && !MEM_VOLATILE_P (expr->expr)
1859 && MEM_NOTRAP_P (expr->expr))
9b774782
JL
1860 /* Constant memory reference, e.g., a PIC address. */
1861 continue;
1862
1863 /* ??? Optimally, we would use interprocedural alias
1864 analysis to determine if this mem is actually killed
1865 by this call. */
1866
d7c028c0 1867 bitmap_set_bit (prune_exprs, expr->bitmap_index);
9b774782
JL
1868 }
1869 }
1870 }
c66e8ae9 1871
e0082a72 1872 FOR_EACH_BB (bb)
c66e8ae9 1873 {
b614171e 1874 edge e;
628f6a4e 1875 edge_iterator ei;
b614171e
MM
1876
1877 /* If the current block is the destination of an abnormal edge, we
9b774782
JL
1878 kill all trapping (for PRE) and memory (for hoist) expressions
1879 because we won't be able to properly place the instruction on
1880 the edge. So make them neither anticipatable nor transparent.
1881 This is fairly conservative.
1882
1883 ??? For hoisting it may be necessary to check for set-and-jump
1884 instructions here, not just for abnormal edges. The general problem
1885 is that when an expression cannot not be placed right at the end of
1886 a basic block we should account for any side-effects of a subsequent
1887 jump instructions that could clobber the expression. It would
1888 be best to implement this check along the lines of
b11f0116 1889 should_hoist_expr_to_dom where the target block is already known
9b774782
JL
1890 and, hence, there's no need to conservatively prune expressions on
1891 "intermediate" set-and-jump instructions. */
628f6a4e 1892 FOR_EACH_EDGE (e, ei, bb->preds)
9b774782
JL
1893 if ((e->flags & EDGE_ABNORMAL)
1894 && (pre_p || CALL_P (BB_END (e->src))))
b614171e 1895 {
f61e445a 1896 bitmap_and_compl (antloc[bb->index],
9b774782 1897 antloc[bb->index], prune_exprs);
f61e445a 1898 bitmap_and_compl (transp[bb->index],
9b774782 1899 transp[bb->index], prune_exprs);
b614171e
MM
1900 break;
1901 }
9b774782
JL
1902 }
1903
1904 sbitmap_free (prune_exprs);
1905}
1906
29fa95ed
JL
1907/* It may be necessary to insert a large number of insns on edges to
1908 make the existing occurrences of expressions fully redundant. This
1909 routine examines the set of insertions and deletions and if the ratio
1910 of insertions to deletions is too high for a particular expression, then
1911 the expression is removed from the insertion/deletion sets.
1912
1913 N_ELEMS is the number of elements in the hash table. */
1914
1915static void
1916prune_insertions_deletions (int n_elems)
1917{
1918 sbitmap_iterator sbi;
1919 sbitmap prune_exprs;
1920
1921 /* We always use I to iterate over blocks/edges and J to iterate over
1922 expressions. */
1923 unsigned int i, j;
1924
1925 /* Counts for the number of times an expression needs to be inserted and
1926 number of times an expression can be removed as a result. */
1927 int *insertions = GCNEWVEC (int, n_elems);
1928 int *deletions = GCNEWVEC (int, n_elems);
1929
1930 /* Set of expressions which require too many insertions relative to
1931 the number of deletions achieved. We will prune these out of the
1932 insertion/deletion sets. */
1933 prune_exprs = sbitmap_alloc (n_elems);
f61e445a 1934 bitmap_clear (prune_exprs);
29fa95ed
JL
1935
1936 /* Iterate over the edges counting the number of times each expression
1937 needs to be inserted. */
1938 for (i = 0; i < (unsigned) n_edges; i++)
1939 {
d4ac4ce2 1940 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
29fa95ed
JL
1941 insertions[j]++;
1942 }
1943
1944 /* Similarly for deletions, but those occur in blocks rather than on
1945 edges. */
1946 for (i = 0; i < (unsigned) last_basic_block; i++)
1947 {
d4ac4ce2 1948 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
29fa95ed
JL
1949 deletions[j]++;
1950 }
1951
1952 /* Now that we have accurate counts, iterate over the elements in the
1953 hash table and see if any need too many insertions relative to the
1954 number of evaluations that can be removed. If so, mark them in
1955 PRUNE_EXPRS. */
1956 for (j = 0; j < (unsigned) n_elems; j++)
1957 if (deletions[j]
1958 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
d7c028c0 1959 bitmap_set_bit (prune_exprs, j);
29fa95ed
JL
1960
1961 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
d4ac4ce2 1962 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
29fa95ed
JL
1963 {
1964 for (i = 0; i < (unsigned) n_edges; i++)
d7c028c0 1965 bitmap_clear_bit (pre_insert_map[i], j);
29fa95ed
JL
1966
1967 for (i = 0; i < (unsigned) last_basic_block; i++)
d7c028c0 1968 bitmap_clear_bit (pre_delete_map[i], j);
29fa95ed
JL
1969 }
1970
1971 sbitmap_free (prune_exprs);
1972 free (insertions);
1973 free (deletions);
1974}
1975
9b774782 1976/* Top level routine to do the dataflow analysis needed by PRE. */
b614171e 1977
43c8a043 1978static struct edge_list *
9b774782
JL
1979compute_pre_data (void)
1980{
43c8a043 1981 struct edge_list *edge_list;
9b774782
JL
1982 basic_block bb;
1983
1984 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1985 prune_expressions (true);
f61e445a 1986 bitmap_vector_clear (ae_kill, last_basic_block);
9b774782
JL
1987
1988 /* Compute ae_kill for each basic block using:
1989
1990 ~(TRANSP | COMP)
1991 */
1992
1993 FOR_EACH_BB (bb)
1994 {
f61e445a
LC
1995 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1996 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
c66e8ae9
JL
1997 }
1998
10d22567 1999 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
a42cd965 2000 ae_kill, &pre_insert_map, &pre_delete_map);
5a660bff 2001 sbitmap_vector_free (antloc);
bd3675fc 2002 antloc = NULL;
5a660bff 2003 sbitmap_vector_free (ae_kill);
589005ff 2004 ae_kill = NULL;
29fa95ed
JL
2005
2006 prune_insertions_deletions (expr_hash_table.n_elems);
43c8a043
EB
2007
2008 return edge_list;
7506f491
DE
2009}
2010\f
2011/* PRE utilities */
2012
cc2902df 2013/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
a65f3558 2014 block BB.
7506f491
DE
2015
2016 VISITED is a pointer to a working buffer for tracking which BB's have
2017 been visited. It is NULL for the top-level call.
2018
2019 We treat reaching expressions that go through blocks containing the same
2020 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2021 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2022 2 as not reaching. The intent is to improve the probability of finding
2023 only one reaching expression and to reduce register lifetimes by picking
2024 the closest such expression. */
2025
2026static int
43c8a043
EB
2027pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
2028 basic_block bb, char *visited)
7506f491 2029{
36349f8b 2030 edge pred;
628f6a4e 2031 edge_iterator ei;
b8698a0f 2032
628f6a4e 2033 FOR_EACH_EDGE (pred, ei, bb->preds)
7506f491 2034 {
e2d2ed72 2035 basic_block pred_bb = pred->src;
7506f491 2036
36349f8b 2037 if (pred->src == ENTRY_BLOCK_PTR
7506f491 2038 /* Has predecessor has already been visited? */
0b17ab2f 2039 || visited[pred_bb->index])
c4c81601
RK
2040 ;/* Nothing to do. */
2041
7506f491 2042 /* Does this predecessor generate this expression? */
d7c028c0 2043 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
7506f491
DE
2044 {
2045 /* Is this the occurrence we're looking for?
2046 Note that there's only one generating occurrence per block
2047 so we just need to check the block number. */
a65f3558 2048 if (occr_bb == pred_bb)
7506f491 2049 return 1;
c4c81601 2050
0b17ab2f 2051 visited[pred_bb->index] = 1;
7506f491
DE
2052 }
2053 /* Ignore this predecessor if it kills the expression. */
d7c028c0 2054 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
0b17ab2f 2055 visited[pred_bb->index] = 1;
c4c81601 2056
7506f491
DE
2057 /* Neither gen nor kill. */
2058 else
ac7c5af5 2059 {
0b17ab2f 2060 visited[pred_bb->index] = 1;
89e606c9 2061 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
7506f491 2062 return 1;
ac7c5af5 2063 }
7506f491
DE
2064 }
2065
2066 /* All paths have been checked. */
2067 return 0;
2068}
283a2545
RL
2069
2070/* The wrapper for pre_expr_reaches_here_work that ensures that any
dc297297 2071 memory allocated for that function is returned. */
283a2545
RL
2072
2073static int
1d088dee 2074pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
283a2545
RL
2075{
2076 int rval;
5ed6ace5 2077 char *visited = XCNEWVEC (char, last_basic_block);
283a2545 2078
8e42ace1 2079 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
283a2545
RL
2080
2081 free (visited);
c4c81601 2082 return rval;
283a2545 2083}
7506f491 2084\f
43c8a043 2085/* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
a42cd965
AM
2086
2087static rtx
1d088dee 2088process_insert_insn (struct expr *expr)
a42cd965
AM
2089{
2090 rtx reg = expr->reaching_reg;
43c8a043 2091 /* Copy the expression to make sure we don't have any sharing issues. */
fb0c0a12
RK
2092 rtx exp = copy_rtx (expr->expr);
2093 rtx pat;
a42cd965
AM
2094
2095 start_sequence ();
fb0c0a12
RK
2096
2097 /* If the expression is something that's an operand, like a constant,
2098 just copy it to a register. */
2099 if (general_operand (exp, GET_MODE (reg)))
2100 emit_move_insn (reg, exp);
2101
2102 /* Otherwise, make a new insn to compute this expression and make sure the
43c8a043 2103 insn will be recognized (this also adds any needed CLOBBERs). */
282899df
NS
2104 else
2105 {
2106 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2107
57ac4c34 2108 if (insn_invalid_p (insn, false))
2f021b67 2109 gcc_unreachable ();
282899df 2110 }
b8698a0f 2111
2f937369 2112 pat = get_insns ();
a42cd965
AM
2113 end_sequence ();
2114
2115 return pat;
2116}
589005ff 2117
a65f3558
JL
2118/* Add EXPR to the end of basic block BB.
2119
eae7938e 2120 This is used by both the PRE and code hoisting. */
7506f491
DE
2121
2122static void
eae7938e 2123insert_insn_end_basic_block (struct expr *expr, basic_block bb)
7506f491 2124{
a813c111 2125 rtx insn = BB_END (bb);
7506f491
DE
2126 rtx new_insn;
2127 rtx reg = expr->reaching_reg;
2128 int regno = REGNO (reg);
2f937369 2129 rtx pat, pat_end;
7506f491 2130
a42cd965 2131 pat = process_insert_insn (expr);
282899df 2132 gcc_assert (pat && INSN_P (pat));
2f937369
DM
2133
2134 pat_end = pat;
2135 while (NEXT_INSN (pat_end) != NULL_RTX)
2136 pat_end = NEXT_INSN (pat_end);
7506f491
DE
2137
2138 /* If the last insn is a jump, insert EXPR in front [taking care to
4d6922ee 2139 handle cc0, etc. properly]. Similarly we need to care trapping
068473ec 2140 instructions in presence of non-call exceptions. */
7506f491 2141
7b1b4aed 2142 if (JUMP_P (insn)
4b4bf941 2143 || (NONJUMP_INSN_P (insn)
c5cbcccf
ZD
2144 && (!single_succ_p (bb)
2145 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
7506f491 2146 {
50b2596f 2147#ifdef HAVE_cc0
7506f491 2148 rtx note;
50b2596f 2149#endif
7506f491
DE
2150
2151 /* If this is a jump table, then we can't insert stuff here. Since
2152 we know the previous real insn must be the tablejump, we insert
2153 the new instruction just before the tablejump. */
2154 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
2155 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
03f43d3d 2156 insn = prev_active_insn (insn);
7506f491
DE
2157
2158#ifdef HAVE_cc0
2159 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2160 if cc0 isn't set. */
2161 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2162 if (note)
2163 insn = XEXP (note, 0);
2164 else
2165 {
2166 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2167 if (maybe_cc0_setter
2c3c49de 2168 && INSN_P (maybe_cc0_setter)
7506f491
DE
2169 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2170 insn = maybe_cc0_setter;
2171 }
2172#endif
2173 /* FIXME: What if something in cc0/jump uses value set in new insn? */
6fb5fa3c 2174 new_insn = emit_insn_before_noloc (pat, insn, bb);
3947e2f9 2175 }
c4c81601 2176
3947e2f9
RH
2177 /* Likewise if the last insn is a call, as will happen in the presence
2178 of exception handling. */
7b1b4aed 2179 else if (CALL_P (insn)
c5cbcccf
ZD
2180 && (!single_succ_p (bb)
2181 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
3947e2f9 2182 {
42db504c
SB
2183 /* Keeping in mind targets with small register classes and parameters
2184 in registers, we search backward and place the instructions before
2185 the first parameter is loaded. Do this for everyone for consistency
eae7938e 2186 and a presumption that we'll get better code elsewhere as well. */
3947e2f9
RH
2187
2188 /* Since different machines initialize their parameter registers
2189 in different orders, assume nothing. Collect the set of all
2190 parameter registers. */
a813c111 2191 insn = find_first_parameter_load (insn, BB_HEAD (bb));
3947e2f9 2192
b1d26727
JL
2193 /* If we found all the parameter loads, then we want to insert
2194 before the first parameter load.
2195
2196 If we did not find all the parameter loads, then we might have
2197 stopped on the head of the block, which could be a CODE_LABEL.
2198 If we inserted before the CODE_LABEL, then we would be putting
2199 the insn in the wrong basic block. In that case, put the insn
b5229628 2200 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
7b1b4aed 2201 while (LABEL_P (insn)
589ca5cb 2202 || NOTE_INSN_BASIC_BLOCK_P (insn))
b5229628 2203 insn = NEXT_INSN (insn);
c4c81601 2204
6fb5fa3c 2205 new_insn = emit_insn_before_noloc (pat, insn, bb);
7506f491
DE
2206 }
2207 else
6fb5fa3c 2208 new_insn = emit_insn_after_noloc (pat, insn, bb);
7506f491 2209
2f937369 2210 while (1)
a65f3558 2211 {
2f937369 2212 if (INSN_P (pat))
4a81774c 2213 add_label_notes (PATTERN (pat), new_insn);
2f937369
DM
2214 if (pat == pat_end)
2215 break;
2216 pat = NEXT_INSN (pat);
a65f3558 2217 }
3947e2f9 2218
7506f491
DE
2219 gcse_create_count++;
2220
10d22567 2221 if (dump_file)
7506f491 2222 {
10d22567 2223 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
0b17ab2f 2224 bb->index, INSN_UID (new_insn));
10d22567 2225 fprintf (dump_file, "copying expression %d to reg %d\n",
c4c81601 2226 expr->bitmap_index, regno);
7506f491
DE
2227 }
2228}
2229
a42cd965
AM
2230/* Insert partially redundant expressions on edges in the CFG to make
2231 the expressions fully redundant. */
7506f491 2232
a42cd965 2233static int
1d088dee 2234pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
7506f491 2235{
c4c81601 2236 int e, i, j, num_edges, set_size, did_insert = 0;
a65f3558
JL
2237 sbitmap *inserted;
2238
a42cd965
AM
2239 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2240 if it reaches any of the deleted expressions. */
7506f491 2241
a42cd965
AM
2242 set_size = pre_insert_map[0]->size;
2243 num_edges = NUM_EDGES (edge_list);
02280659 2244 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
f61e445a 2245 bitmap_vector_clear (inserted, num_edges);
7506f491 2246
a42cd965 2247 for (e = 0; e < num_edges; e++)
7506f491
DE
2248 {
2249 int indx;
e2d2ed72 2250 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
a65f3558 2251
a65f3558 2252 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
7506f491 2253 {
a42cd965 2254 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
7506f491 2255
43c8a043
EB
2256 for (j = indx;
2257 insert && j < (int) expr_hash_table.n_elems;
2258 j++, insert >>= 1)
c4c81601
RK
2259 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2260 {
2261 struct expr *expr = index_map[j];
2262 struct occr *occr;
a65f3558 2263
ff7cc307 2264 /* Now look at each deleted occurrence of this expression. */
c4c81601
RK
2265 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2266 {
2267 if (! occr->deleted_p)
2268 continue;
2269
3f117656 2270 /* Insert this expression on this edge if it would
ff7cc307 2271 reach the deleted occurrence in BB. */
d7c028c0 2272 if (!bitmap_bit_p (inserted[e], j))
c4c81601
RK
2273 {
2274 rtx insn;
2275 edge eg = INDEX_EDGE (edge_list, e);
2276
2277 /* We can't insert anything on an abnormal and
2278 critical edge, so we insert the insn at the end of
2279 the previous block. There are several alternatives
2280 detailed in Morgans book P277 (sec 10.5) for
2281 handling this situation. This one is easiest for
2282 now. */
2283
b16aa8a5 2284 if (eg->flags & EDGE_ABNORMAL)
eae7938e 2285 insert_insn_end_basic_block (index_map[j], bb);
c4c81601
RK
2286 else
2287 {
2288 insn = process_insert_insn (index_map[j]);
2289 insert_insn_on_edge (insn, eg);
2290 }
2291
10d22567 2292 if (dump_file)
c4c81601 2293 {
5f39ad47 2294 fprintf (dump_file, "PRE: edge (%d,%d), ",
0b17ab2f
RH
2295 bb->index,
2296 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
10d22567 2297 fprintf (dump_file, "copy expression %d\n",
c4c81601
RK
2298 expr->bitmap_index);
2299 }
2300
a13d4ebf 2301 update_ld_motion_stores (expr);
d7c028c0 2302 bitmap_set_bit (inserted[e], j);
c4c81601
RK
2303 did_insert = 1;
2304 gcse_create_count++;
2305 }
2306 }
2307 }
7506f491
DE
2308 }
2309 }
5faf03ae 2310
5a660bff 2311 sbitmap_vector_free (inserted);
a42cd965 2312 return did_insert;
7506f491
DE
2313}
2314
073089a7 2315/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
b885908b
MH
2316 Given "old_reg <- expr" (INSN), instead of adding after it
2317 reaching_reg <- old_reg
2318 it's better to do the following:
2319 reaching_reg <- expr
2320 old_reg <- reaching_reg
2321 because this way copy propagation can discover additional PRE
f5f2e3cd
MH
2322 opportunities. But if this fails, we try the old way.
2323 When "expr" is a store, i.e.
2324 given "MEM <- old_reg", instead of adding after it
2325 reaching_reg <- old_reg
2326 it's better to add it before as follows:
2327 reaching_reg <- old_reg
2328 MEM <- reaching_reg. */
7506f491
DE
2329
2330static void
1d088dee 2331pre_insert_copy_insn (struct expr *expr, rtx insn)
7506f491
DE
2332{
2333 rtx reg = expr->reaching_reg;
2334 int regno = REGNO (reg);
2335 int indx = expr->bitmap_index;
073089a7 2336 rtx pat = PATTERN (insn);
64068ca2 2337 rtx set, first_set, new_insn;
b885908b 2338 rtx old_reg;
073089a7 2339 int i;
7506f491 2340
073089a7 2341 /* This block matches the logic in hash_scan_insn. */
282899df 2342 switch (GET_CODE (pat))
073089a7 2343 {
282899df
NS
2344 case SET:
2345 set = pat;
2346 break;
2347
2348 case PARALLEL:
073089a7
RS
2349 /* Search through the parallel looking for the set whose
2350 source was the expression that we're interested in. */
64068ca2 2351 first_set = NULL_RTX;
073089a7
RS
2352 set = NULL_RTX;
2353 for (i = 0; i < XVECLEN (pat, 0); i++)
2354 {
2355 rtx x = XVECEXP (pat, 0, i);
64068ca2 2356 if (GET_CODE (x) == SET)
073089a7 2357 {
64068ca2
RS
2358 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2359 may not find an equivalent expression, but in this
2360 case the PARALLEL will have a single set. */
2361 if (first_set == NULL_RTX)
2362 first_set = x;
2363 if (expr_equiv_p (SET_SRC (x), expr->expr))
2364 {
2365 set = x;
2366 break;
2367 }
073089a7
RS
2368 }
2369 }
64068ca2
RS
2370
2371 gcc_assert (first_set);
2372 if (set == NULL_RTX)
2373 set = first_set;
282899df
NS
2374 break;
2375
2376 default:
2377 gcc_unreachable ();
073089a7 2378 }
c4c81601 2379
7b1b4aed 2380 if (REG_P (SET_DEST (set)))
073089a7 2381 {
f5f2e3cd
MH
2382 old_reg = SET_DEST (set);
2383 /* Check if we can modify the set destination in the original insn. */
2384 if (validate_change (insn, &SET_DEST (set), reg, 0))
2385 {
2386 new_insn = gen_move_insn (old_reg, reg);
2387 new_insn = emit_insn_after (new_insn, insn);
f5f2e3cd
MH
2388 }
2389 else
2390 {
2391 new_insn = gen_move_insn (reg, old_reg);
2392 new_insn = emit_insn_after (new_insn, insn);
f5f2e3cd 2393 }
073089a7 2394 }
f5f2e3cd 2395 else /* This is possible only in case of a store to memory. */
073089a7 2396 {
f5f2e3cd 2397 old_reg = SET_SRC (set);
073089a7 2398 new_insn = gen_move_insn (reg, old_reg);
f5f2e3cd
MH
2399
2400 /* Check if we can modify the set source in the original insn. */
2401 if (validate_change (insn, &SET_SRC (set), reg, 0))
2402 new_insn = emit_insn_before (new_insn, insn);
2403 else
2404 new_insn = emit_insn_after (new_insn, insn);
073089a7 2405 }
7506f491
DE
2406
2407 gcse_create_count++;
2408
10d22567
ZD
2409 if (dump_file)
2410 fprintf (dump_file,
a42cd965 2411 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
b0de17ef 2412 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
a42cd965 2413 INSN_UID (insn), regno);
7506f491
DE
2414}
2415
2416/* Copy available expressions that reach the redundant expression
2417 to `reaching_reg'. */
2418
2419static void
1d088dee 2420pre_insert_copies (void)
7506f491 2421{
f5f2e3cd 2422 unsigned int i, added_copy;
c4c81601
RK
2423 struct expr *expr;
2424 struct occr *occr;
2425 struct occr *avail;
a65f3558 2426
7506f491
DE
2427 /* For each available expression in the table, copy the result to
2428 `reaching_reg' if the expression reaches a deleted one.
2429
2430 ??? The current algorithm is rather brute force.
2431 Need to do some profiling. */
2432
02280659 2433 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2434 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601
RK
2435 {
2436 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2437 we don't want to insert a copy here because the expression may not
2438 really be redundant. So only insert an insn if the expression was
2439 deleted. This test also avoids further processing if the
2440 expression wasn't deleted anywhere. */
2441 if (expr->reaching_reg == NULL)
2442 continue;
7b1b4aed 2443
f5f2e3cd 2444 /* Set when we add a copy for that expression. */
7b1b4aed 2445 added_copy = 0;
c4c81601
RK
2446
2447 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2448 {
2449 if (! occr->deleted_p)
2450 continue;
7506f491 2451
c4c81601
RK
2452 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2453 {
2454 rtx insn = avail->insn;
7506f491 2455
c4c81601
RK
2456 /* No need to handle this one if handled already. */
2457 if (avail->copied_p)
2458 continue;
7506f491 2459
c4c81601 2460 /* Don't handle this one if it's a redundant one. */
4a81774c 2461 if (INSN_DELETED_P (insn))
c4c81601 2462 continue;
7506f491 2463
c4c81601 2464 /* Or if the expression doesn't reach the deleted one. */
589005ff 2465 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
e2d2ed72
AM
2466 expr,
2467 BLOCK_FOR_INSN (occr->insn)))
c4c81601 2468 continue;
7506f491 2469
f5f2e3cd
MH
2470 added_copy = 1;
2471
c4c81601
RK
2472 /* Copy the result of avail to reaching_reg. */
2473 pre_insert_copy_insn (expr, insn);
2474 avail->copied_p = 1;
2475 }
2476 }
f5f2e3cd 2477
7b1b4aed 2478 if (added_copy)
f5f2e3cd 2479 update_ld_motion_stores (expr);
c4c81601 2480 }
7506f491
DE
2481}
2482
10d1bb36
JH
2483/* Emit move from SRC to DEST noting the equivalence with expression computed
2484 in INSN. */
43c8a043 2485
10d1bb36 2486static rtx
43c8a043 2487gcse_emit_move_after (rtx dest, rtx src, rtx insn)
10d1bb36 2488{
60564289 2489 rtx new_rtx;
6bdb8dd6 2490 rtx set = single_set (insn), set2;
10d1bb36
JH
2491 rtx note;
2492 rtx eqv;
2493
2494 /* This should never fail since we're creating a reg->reg copy
2495 we've verified to be valid. */
2496
60564289 2497 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
285464d0 2498
10d1bb36 2499 /* Note the equivalence for local CSE pass. */
60564289 2500 set2 = single_set (new_rtx);
6bdb8dd6 2501 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
60564289 2502 return new_rtx;
10d1bb36
JH
2503 if ((note = find_reg_equal_equiv_note (insn)))
2504 eqv = XEXP (note, 0);
2505 else
2506 eqv = SET_SRC (set);
2507
60564289 2508 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
10d1bb36 2509
60564289 2510 return new_rtx;
10d1bb36
JH
2511}
2512
7506f491 2513/* Delete redundant computations.
7506f491
DE
2514 Deletion is done by changing the insn to copy the `reaching_reg' of
2515 the expression into the result of the SET. It is left to later passes
2516 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
2517
43c8a043 2518 Return nonzero if a change is made. */
7506f491
DE
2519
2520static int
1d088dee 2521pre_delete (void)
7506f491 2522{
2e653e39 2523 unsigned int i;
63bc1d05 2524 int changed;
c4c81601
RK
2525 struct expr *expr;
2526 struct occr *occr;
a65f3558 2527
7506f491 2528 changed = 0;
02280659 2529 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2530 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601
RK
2531 {
2532 int indx = expr->bitmap_index;
7506f491 2533
43c8a043 2534 /* We only need to search antic_occr since we require ANTLOC != 0. */
c4c81601
RK
2535 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2536 {
2537 rtx insn = occr->insn;
2538 rtx set;
e2d2ed72 2539 basic_block bb = BLOCK_FOR_INSN (insn);
7506f491 2540
073089a7 2541 /* We only delete insns that have a single_set. */
d7c028c0 2542 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
6fb5fa3c
DB
2543 && (set = single_set (insn)) != 0
2544 && dbg_cnt (pre_insn))
c4c81601 2545 {
c4c81601
RK
2546 /* Create a pseudo-reg to store the result of reaching
2547 expressions into. Get the mode for the new pseudo from
2548 the mode of the original destination pseudo. */
2549 if (expr->reaching_reg == NULL)
46b71b03 2550 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
c4c81601 2551
43c8a043 2552 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
10d1bb36
JH
2553 delete_insn (insn);
2554 occr->deleted_p = 1;
10d1bb36
JH
2555 changed = 1;
2556 gcse_subst_count++;
7506f491 2557
10d22567 2558 if (dump_file)
c4c81601 2559 {
10d22567 2560 fprintf (dump_file,
c4c81601
RK
2561 "PRE: redundant insn %d (expression %d) in ",
2562 INSN_UID (insn), indx);
10d22567 2563 fprintf (dump_file, "bb %d, reaching reg is %d\n",
0b17ab2f 2564 bb->index, REGNO (expr->reaching_reg));
c4c81601
RK
2565 }
2566 }
2567 }
2568 }
7506f491
DE
2569
2570 return changed;
2571}
2572
2573/* Perform GCSE optimizations using PRE.
2574 This is called by one_pre_gcse_pass after all the dataflow analysis
2575 has been done.
2576
c4c81601
RK
2577 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2578 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2579 Compiler Design and Implementation.
7506f491 2580
c4c81601
RK
2581 ??? A new pseudo reg is created to hold the reaching expression. The nice
2582 thing about the classical approach is that it would try to use an existing
2583 reg. If the register can't be adequately optimized [i.e. we introduce
2584 reload problems], one could add a pass here to propagate the new register
2585 through the block.
7506f491 2586
c4c81601
RK
2587 ??? We don't handle single sets in PARALLELs because we're [currently] not
2588 able to copy the rest of the parallel when we insert copies to create full
2589 redundancies from partial redundancies. However, there's no reason why we
2590 can't handle PARALLELs in the cases where there are no partial
7506f491
DE
2591 redundancies. */
2592
2593static int
43c8a043 2594pre_gcse (struct edge_list *edge_list)
7506f491 2595{
2e653e39
RK
2596 unsigned int i;
2597 int did_insert, changed;
7506f491 2598 struct expr **index_map;
c4c81601 2599 struct expr *expr;
7506f491
DE
2600
2601 /* Compute a mapping from expression number (`bitmap_index') to
2602 hash table entry. */
2603
5ed6ace5 2604 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
02280659 2605 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2606 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601 2607 index_map[expr->bitmap_index] = expr;
7506f491 2608
7506f491
DE
2609 /* Delete the redundant insns first so that
2610 - we know what register to use for the new insns and for the other
2611 ones with reaching expressions
2612 - we know which insns are redundant when we go to create copies */
c4c81601 2613
7506f491 2614 changed = pre_delete ();
a42cd965 2615 did_insert = pre_edge_insert (edge_list, index_map);
c4c81601 2616
7506f491 2617 /* In other places with reaching expressions, copy the expression to the
a42cd965 2618 specially allocated pseudo-reg that reaches the redundant expr. */
7506f491 2619 pre_insert_copies ();
a42cd965
AM
2620 if (did_insert)
2621 {
2622 commit_edge_insertions ();
2623 changed = 1;
2624 }
7506f491 2625
283a2545 2626 free (index_map);
7506f491
DE
2627 return changed;
2628}
2629
2630/* Top level routine to perform one PRE GCSE pass.
2631
cc2902df 2632 Return nonzero if a change was made. */
7506f491
DE
2633
2634static int
5f39ad47 2635one_pre_gcse_pass (void)
7506f491
DE
2636{
2637 int changed = 0;
2638
2639 gcse_subst_count = 0;
2640 gcse_create_count = 0;
2641
5f39ad47
SB
2642 /* Return if there's nothing to do, or it is too expensive. */
2643 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
2644 || is_too_expensive (_("PRE disabled")))
2645 return 0;
2646
2647 /* We need alias. */
2648 init_alias_analysis ();
2649
2650 bytes_used = 0;
2651 gcc_obstack_init (&gcse_obstack);
2652 alloc_gcse_mem ();
2653
e45425ec 2654 alloc_hash_table (&expr_hash_table);
a42cd965 2655 add_noreturn_fake_exit_edges ();
a13d4ebf
AM
2656 if (flag_gcse_lm)
2657 compute_ld_motion_mems ();
2658
02280659 2659 compute_hash_table (&expr_hash_table);
43c8a043
EB
2660 if (flag_gcse_lm)
2661 trim_ld_motion_mems ();
10d22567
ZD
2662 if (dump_file)
2663 dump_hash_table (dump_file, "Expression", &expr_hash_table);
c4c81601 2664
02280659 2665 if (expr_hash_table.n_elems > 0)
7506f491 2666 {
43c8a043 2667 struct edge_list *edge_list;
02280659 2668 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
43c8a043
EB
2669 edge_list = compute_pre_data ();
2670 changed |= pre_gcse (edge_list);
a42cd965 2671 free_edge_list (edge_list);
7506f491
DE
2672 free_pre_mem ();
2673 }
c4c81601 2674
43c8a043
EB
2675 if (flag_gcse_lm)
2676 free_ld_motion_mems ();
6809cbf9 2677 remove_fake_exit_edges ();
02280659 2678 free_hash_table (&expr_hash_table);
7506f491 2679
5f39ad47
SB
2680 free_gcse_mem ();
2681 obstack_free (&gcse_obstack, NULL);
2682
2683 /* We are finished with alias. */
2684 end_alias_analysis ();
2685
10d22567 2686 if (dump_file)
7506f491 2687 {
5f39ad47
SB
2688 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2689 current_function_name (), n_basic_blocks, bytes_used);
10d22567 2690 fprintf (dump_file, "%d substs, %d insns created\n",
c4c81601 2691 gcse_subst_count, gcse_create_count);
7506f491
DE
2692 }
2693
2694 return changed;
2695}
aeb2f500 2696\f
cf7c4aa6
HPN
2697/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2698 to INSN. If such notes are added to an insn which references a
2699 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2700 that note, because the following loop optimization pass requires
2701 them. */
aeb2f500 2702
aeb2f500
JW
2703/* ??? If there was a jump optimization pass after gcse and before loop,
2704 then we would not need to do this here, because jump would add the
cf7c4aa6 2705 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
aeb2f500
JW
2706
2707static void
1d088dee 2708add_label_notes (rtx x, rtx insn)
aeb2f500
JW
2709{
2710 enum rtx_code code = GET_CODE (x);
2711 int i, j;
6f7d635c 2712 const char *fmt;
aeb2f500
JW
2713
2714 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2715 {
6b3603c2 2716 /* This code used to ignore labels that referred to dispatch tables to
e0bb17a8 2717 avoid flow generating (slightly) worse code.
6b3603c2 2718
ac7c5af5
JL
2719 We no longer ignore such label references (see LABEL_REF handling in
2720 mark_jump_label for additional information). */
c4c81601 2721
cb2f563b
HPN
2722 /* There's no reason for current users to emit jump-insns with
2723 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2724 notes. */
2725 gcc_assert (!JUMP_P (insn));
65c5f2a6
ILT
2726 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
2727
cb2f563b
HPN
2728 if (LABEL_P (XEXP (x, 0)))
2729 LABEL_NUSES (XEXP (x, 0))++;
2730
aeb2f500
JW
2731 return;
2732 }
2733
c4c81601 2734 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
aeb2f500
JW
2735 {
2736 if (fmt[i] == 'e')
2737 add_label_notes (XEXP (x, i), insn);
2738 else if (fmt[i] == 'E')
2739 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2740 add_label_notes (XVECEXP (x, i, j), insn);
2741 }
2742}
a65f3558 2743
bb457bd9
JL
2744/* Code Hoisting variables and subroutines. */
2745
2746/* Very busy expressions. */
2747static sbitmap *hoist_vbein;
2748static sbitmap *hoist_vbeout;
2749
bb457bd9 2750/* ??? We could compute post dominators and run this algorithm in
68e82b83 2751 reverse to perform tail merging, doing so would probably be
bb457bd9
JL
2752 more effective than the tail merging code in jump.c.
2753
2754 It's unclear if tail merging could be run in parallel with
2755 code hoisting. It would be nice. */
2756
2757/* Allocate vars used for code hoisting analysis. */
2758
2759static void
1d088dee 2760alloc_code_hoist_mem (int n_blocks, int n_exprs)
bb457bd9
JL
2761{
2762 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2763 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2764 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2765
2766 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2767 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
bb457bd9
JL
2768}
2769
2770/* Free vars used for code hoisting analysis. */
2771
2772static void
1d088dee 2773free_code_hoist_mem (void)
bb457bd9 2774{
5a660bff
DB
2775 sbitmap_vector_free (antloc);
2776 sbitmap_vector_free (transp);
2777 sbitmap_vector_free (comp);
bb457bd9 2778
5a660bff
DB
2779 sbitmap_vector_free (hoist_vbein);
2780 sbitmap_vector_free (hoist_vbeout);
bb457bd9 2781
d47cc544 2782 free_dominance_info (CDI_DOMINATORS);
bb457bd9
JL
2783}
2784
2785/* Compute the very busy expressions at entry/exit from each block.
2786
2787 An expression is very busy if all paths from a given point
2788 compute the expression. */
2789
2790static void
1d088dee 2791compute_code_hoist_vbeinout (void)
bb457bd9 2792{
e0082a72
ZD
2793 int changed, passes;
2794 basic_block bb;
bb457bd9 2795
f61e445a
LC
2796 bitmap_vector_clear (hoist_vbeout, last_basic_block);
2797 bitmap_vector_clear (hoist_vbein, last_basic_block);
bb457bd9
JL
2798
2799 passes = 0;
2800 changed = 1;
c4c81601 2801
bb457bd9
JL
2802 while (changed)
2803 {
2804 changed = 0;
c4c81601 2805
bb457bd9
JL
2806 /* We scan the blocks in the reverse order to speed up
2807 the convergence. */
e0082a72 2808 FOR_EACH_BB_REVERSE (bb)
bb457bd9 2809 {
e0082a72 2810 if (bb->next_bb != EXIT_BLOCK_PTR)
ce4c0015 2811 {
d7c028c0
LC
2812 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2813 hoist_vbein, bb);
ce4c0015
MK
2814
2815 /* Include expressions in VBEout that are calculated
2816 in BB and available at its end. */
f61e445a 2817 bitmap_ior (hoist_vbeout[bb->index],
ce4c0015
MK
2818 hoist_vbeout[bb->index], comp[bb->index]);
2819 }
f8423fea 2820
f61e445a 2821 changed |= bitmap_or_and (hoist_vbein[bb->index],
f8423fea
SB
2822 antloc[bb->index],
2823 hoist_vbeout[bb->index],
2824 transp[bb->index]);
bb457bd9 2825 }
c4c81601 2826
bb457bd9
JL
2827 passes++;
2828 }
2829
10d22567 2830 if (dump_file)
cad9aa15
MK
2831 {
2832 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2833
2834 FOR_EACH_BB (bb)
2835 {
2836 fprintf (dump_file, "vbein (%d): ", bb->index);
f61e445a 2837 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
cad9aa15 2838 fprintf (dump_file, "vbeout(%d): ", bb->index);
f61e445a 2839 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
cad9aa15
MK
2840 }
2841 }
bb457bd9
JL
2842}
2843
2844/* Top level routine to do the dataflow analysis needed by code hoisting. */
2845
2846static void
1d088dee 2847compute_code_hoist_data (void)
bb457bd9 2848{
02280659 2849 compute_local_properties (transp, comp, antloc, &expr_hash_table);
9b774782 2850 prune_expressions (false);
bb457bd9 2851 compute_code_hoist_vbeinout ();
d47cc544 2852 calculate_dominance_info (CDI_DOMINATORS);
10d22567
ZD
2853 if (dump_file)
2854 fprintf (dump_file, "\n");
bb457bd9
JL
2855}
2856
4b8181c5
BC
2857/* Update register pressure for BB when hoisting an expression from
2858 instruction FROM, if live ranges of inputs are shrunk. Also
2859 maintain live_in information if live range of register referred
2860 in FROM is shrunk.
2861
2862 Return 0 if register pressure doesn't change, otherwise return
2863 the number by which register pressure is decreased.
2864
2865 NOTE: Register pressure won't be increased in this function. */
2866
2867static int
2868update_bb_reg_pressure (basic_block bb, rtx from)
2869{
2870 rtx dreg, insn;
2871 basic_block succ_bb;
2872 df_ref *op, op_ref;
2873 edge succ;
2874 edge_iterator ei;
2875 int decreased_pressure = 0;
2876 int nregs;
2877 enum reg_class pressure_class;
2878
2879 for (op = DF_INSN_USES (from); *op; op++)
2880 {
2881 dreg = DF_REF_REAL_REG (*op);
2882 /* The live range of register is shrunk only if it isn't:
2883 1. referred on any path from the end of this block to EXIT, or
2884 2. referred by insns other than FROM in this block. */
2885 FOR_EACH_EDGE (succ, ei, bb->succs)
2886 {
2887 succ_bb = succ->dest;
2888 if (succ_bb == EXIT_BLOCK_PTR)
2889 continue;
2890
2891 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2892 break;
2893 }
2894 if (succ != NULL)
2895 continue;
2896
2897 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2898 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2899 {
2900 if (!DF_REF_INSN_INFO (op_ref))
2901 continue;
2902
2903 insn = DF_REF_INSN (op_ref);
2904 if (BLOCK_FOR_INSN (insn) == bb
2905 && NONDEBUG_INSN_P (insn) && insn != from)
2906 break;
2907 }
2908
2909 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2910 /* Decrease register pressure and update live_in information for
2911 this block. */
2912 if (!op_ref && pressure_class != NO_REGS)
2913 {
2914 decreased_pressure += nregs;
2915 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2916 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2917 }
2918 }
2919 return decreased_pressure;
2920}
2921
b11f0116
BC
2922/* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2923 flow graph, if it can reach BB unimpared. Stop the search if the
2924 expression would need to be moved more than DISTANCE instructions.
2925
2926 DISTANCE is the number of instructions through which EXPR can be
2927 hoisted up in flow graph.
2928
2929 BB_SIZE points to an array which contains the number of instructions
2930 for each basic block.
2931
2932 PRESSURE_CLASS and NREGS are register class and number of hard registers
2933 for storing EXPR.
2934
2935 HOISTED_BBS points to a bitmap indicating basic blocks through which
2936 EXPR is hoisted.
bb457bd9 2937
4b8181c5
BC
2938 FROM is the instruction from which EXPR is hoisted.
2939
bb457bd9
JL
2940 It's unclear exactly what Muchnick meant by "unimpared". It seems
2941 to me that the expression must either be computed or transparent in
2942 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2943 would allow the expression to be hoisted out of loops, even if
2944 the expression wasn't a loop invariant.
2945
2946 Contrast this to reachability for PRE where an expression is
2947 considered reachable if *any* path reaches instead of *all*
2948 paths. */
2949
2950static int
b11f0116
BC
2951should_hoist_expr_to_dom (basic_block expr_bb, struct expr *expr,
2952 basic_block bb, sbitmap visited, int distance,
2953 int *bb_size, enum reg_class pressure_class,
4b8181c5 2954 int *nregs, bitmap hoisted_bbs, rtx from)
bb457bd9 2955{
b11f0116 2956 unsigned int i;
bb457bd9 2957 edge pred;
628f6a4e 2958 edge_iterator ei;
b11f0116 2959 sbitmap_iterator sbi;
283a2545 2960 int visited_allocated_locally = 0;
4b8181c5 2961 int decreased_pressure = 0;
589005ff 2962
4b8181c5
BC
2963 if (flag_ira_hoist_pressure)
2964 {
2965 /* Record old information of basic block BB when it is visited
2966 at the first time. */
2967 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2968 {
2969 struct bb_data *data = BB_DATA (bb);
2970 bitmap_copy (data->backup, data->live_in);
2971 data->old_pressure = data->max_reg_pressure[pressure_class];
2972 }
2973 decreased_pressure = update_bb_reg_pressure (bb, from);
2974 }
20160347
MK
2975 /* Terminate the search if distance, for which EXPR is allowed to move,
2976 is exhausted. */
2977 if (distance > 0)
2978 {
4b8181c5
BC
2979 if (flag_ira_hoist_pressure)
2980 {
2981 /* Prefer to hoist EXPR if register pressure is decreased. */
2982 if (decreased_pressure > *nregs)
2983 distance += bb_size[bb->index];
2984 /* Let EXPR be hoisted through basic block at no cost if one
2985 of following conditions is satisfied:
2986
2987 1. The basic block has low register pressure.
2988 2. Register pressure won't be increases after hoisting EXPR.
2989
2990 Constant expressions is handled conservatively, because
2991 hoisting constant expression aggressively results in worse
2992 code. This decision is made by the observation of CSiBE
2993 on ARM target, while it has no obvious effect on other
2994 targets like x86, x86_64, mips and powerpc. */
2995 else if (CONST_INT_P (expr->expr)
2996 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2997 >= ira_class_hard_regs_num[pressure_class]
2998 && decreased_pressure < *nregs))
2999 distance -= bb_size[bb->index];
3000 }
3001 else
b11f0116 3002 distance -= bb_size[bb->index];
20160347
MK
3003
3004 if (distance <= 0)
3005 return 0;
3006 }
3007 else
3008 gcc_assert (distance == 0);
bb457bd9
JL
3009
3010 if (visited == NULL)
3011 {
8e42ace1 3012 visited_allocated_locally = 1;
8cba9a05 3013 visited = sbitmap_alloc (last_basic_block);
f61e445a 3014 bitmap_clear (visited);
bb457bd9
JL
3015 }
3016
628f6a4e 3017 FOR_EACH_EDGE (pred, ei, bb->preds)
bb457bd9 3018 {
e2d2ed72 3019 basic_block pred_bb = pred->src;
bb457bd9
JL
3020
3021 if (pred->src == ENTRY_BLOCK_PTR)
3022 break;
f305679f
JH
3023 else if (pred_bb == expr_bb)
3024 continue;
d7c028c0 3025 else if (bitmap_bit_p (visited, pred_bb->index))
bb457bd9 3026 continue;
d7c028c0 3027 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
bb457bd9
JL
3028 break;
3029 /* Not killed. */
3030 else
3031 {
d7c028c0 3032 bitmap_set_bit (visited, pred_bb->index);
b11f0116
BC
3033 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
3034 visited, distance, bb_size,
4b8181c5
BC
3035 pressure_class, nregs,
3036 hoisted_bbs, from))
bb457bd9
JL
3037 break;
3038 }
3039 }
589005ff 3040 if (visited_allocated_locally)
b11f0116
BC
3041 {
3042 /* If EXPR can be hoisted to expr_bb, record basic blocks through
4b8181c5 3043 which EXPR is hoisted in hoisted_bbs. */
b11f0116
BC
3044 if (flag_ira_hoist_pressure && !pred)
3045 {
4b8181c5
BC
3046 /* Record the basic block from which EXPR is hoisted. */
3047 bitmap_set_bit (visited, bb->index);
d4ac4ce2 3048 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
4b8181c5 3049 bitmap_set_bit (hoisted_bbs, i);
b11f0116
BC
3050 }
3051 sbitmap_free (visited);
3052 }
c4c81601 3053
bb457bd9
JL
3054 return (pred == NULL);
3055}
3056\f
073a8998 3057/* Find occurrence in BB. */
43c8a043 3058
20160347
MK
3059static struct occr *
3060find_occr_in_bb (struct occr *occr, basic_block bb)
3061{
3062 /* Find the right occurrence of this expression. */
3063 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3064 occr = occr->next;
3065
3066 return occr;
3067}
3068
b11f0116
BC
3069/* Actually perform code hoisting.
3070
3071 The code hoisting pass can hoist multiple computations of the same
3072 expression along dominated path to a dominating basic block, like
3073 from b2/b3 to b1 as depicted below:
3074
3075 b1 ------
3076 /\ |
3077 / \ |
3078 bx by distance
3079 / \ |
3080 / \ |
3081 b2 b3 ------
3082
3083 Unfortunately code hoisting generally extends the live range of an
3084 output pseudo register, which increases register pressure and hurts
3085 register allocation. To address this issue, an attribute MAX_DISTANCE
3086 is computed and attached to each expression. The attribute is computed
3087 from rtx cost of the corresponding expression and it's used to control
3088 how long the expression can be hoisted up in flow graph. As the
3089 expression is hoisted up in flow graph, GCC decreases its DISTANCE
4b8181c5
BC
3090 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3091 register pressure if live ranges of inputs are shrunk.
b11f0116
BC
3092
3093 Option "-fira-hoist-pressure" implements register pressure directed
3094 hoist based on upper method. The rationale is:
3095 1. Calculate register pressure for each basic block by reusing IRA
3096 facility.
3097 2. When expression is hoisted through one basic block, GCC checks
4b8181c5
BC
3098 the change of live ranges for inputs/output. The basic block's
3099 register pressure will be increased because of extended live
3100 range of output. However, register pressure will be decreased
3101 if the live ranges of inputs are shrunk.
3102 3. After knowing how hoisting affects register pressure, GCC prefers
3103 to hoist the expression if it can decrease register pressure, by
3104 increasing DISTANCE of the corresponding expression.
3105 4. If hoisting the expression increases register pressure, GCC checks
3106 register pressure of the basic block and decrease DISTANCE only if
3107 the register pressure is high. In other words, expression will be
3108 hoisted through at no cost if the basic block has low register
3109 pressure.
3110 5. Update register pressure information for basic blocks through
3111 which expression is hoisted. */
c4c81601 3112
5f39ad47 3113static int
1d088dee 3114hoist_code (void)
bb457bd9 3115{
e0082a72 3116 basic_block bb, dominated;
cad9aa15
MK
3117 VEC (basic_block, heap) *dom_tree_walk;
3118 unsigned int dom_tree_walk_index;
66f97d31 3119 VEC (basic_block, heap) *domby;
b11f0116 3120 unsigned int i, j, k;
bb457bd9 3121 struct expr **index_map;
c4c81601 3122 struct expr *expr;
20160347
MK
3123 int *to_bb_head;
3124 int *bb_size;
5f39ad47 3125 int changed = 0;
b11f0116
BC
3126 struct bb_data *data;
3127 /* Basic blocks that have occurrences reachable from BB. */
3128 bitmap from_bbs;
3129 /* Basic blocks through which expr is hoisted. */
3130 bitmap hoisted_bbs = NULL;
3131 bitmap_iterator bi;
bb457bd9 3132
bb457bd9
JL
3133 /* Compute a mapping from expression number (`bitmap_index') to
3134 hash table entry. */
3135
5ed6ace5 3136 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
02280659 3137 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 3138 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601 3139 index_map[expr->bitmap_index] = expr;
bb457bd9 3140
20160347
MK
3141 /* Calculate sizes of basic blocks and note how far
3142 each instruction is from the start of its block. We then use this
3143 data to restrict distance an expression can travel. */
3144
3145 to_bb_head = XCNEWVEC (int, get_max_uid ());
3146 bb_size = XCNEWVEC (int, last_basic_block);
3147
3148 FOR_EACH_BB (bb)
3149 {
3150 rtx insn;
20160347
MK
3151 int to_head;
3152
20160347 3153 to_head = 0;
05b5ea34 3154 FOR_BB_INSNS (bb, insn)
20160347
MK
3155 {
3156 /* Don't count debug instructions to avoid them affecting
3157 decision choices. */
3158 if (NONDEBUG_INSN_P (insn))
3159 to_bb_head[INSN_UID (insn)] = to_head++;
20160347
MK
3160 }
3161
3162 bb_size[bb->index] = to_head;
3163 }
3164
cad9aa15
MK
3165 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
3166 && (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
3167 == ENTRY_BLOCK_PTR->next_bb));
3168
b11f0116
BC
3169 from_bbs = BITMAP_ALLOC (NULL);
3170 if (flag_ira_hoist_pressure)
3171 hoisted_bbs = BITMAP_ALLOC (NULL);
3172
cad9aa15
MK
3173 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3174 ENTRY_BLOCK_PTR->next_bb);
3175
bb457bd9
JL
3176 /* Walk over each basic block looking for potentially hoistable
3177 expressions, nothing gets hoisted from the entry block. */
ac47786e 3178 FOR_EACH_VEC_ELT (basic_block, dom_tree_walk, dom_tree_walk_index, bb)
bb457bd9 3179 {
cad9aa15
MK
3180 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3181
3182 if (VEC_length (basic_block, domby) == 0)
3183 continue;
bb457bd9
JL
3184
3185 /* Examine each expression that is very busy at the exit of this
3186 block. These are the potentially hoistable expressions. */
5829cc0f 3187 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
bb457bd9 3188 {
d7c028c0 3189 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
bb457bd9 3190 {
b11f0116
BC
3191 int nregs = 0;
3192 enum reg_class pressure_class = NO_REGS;
cad9aa15
MK
3193 /* Current expression. */
3194 struct expr *expr = index_map[i];
073a8998 3195 /* Number of occurrences of EXPR that can be hoisted to BB. */
cad9aa15 3196 int hoistable = 0;
073a8998 3197 /* Occurrences reachable from BB. */
cad9aa15
MK
3198 VEC (occr_t, heap) *occrs_to_hoist = NULL;
3199 /* We want to insert the expression into BB only once, so
3200 note when we've inserted it. */
3201 int insn_inserted_p;
3202 occr_t occr;
3203
ce4c0015 3204 /* If an expression is computed in BB and is available at end of
073a8998 3205 BB, hoist all occurrences dominated by BB to BB. */
d7c028c0 3206 if (bitmap_bit_p (comp[bb->index], i))
cad9aa15
MK
3207 {
3208 occr = find_occr_in_bb (expr->antic_occr, bb);
3209
3210 if (occr)
3211 {
073a8998 3212 /* An occurrence might've been already deleted
cad9aa15 3213 while processing a dominator of BB. */
2d36b47f 3214 if (!occr->deleted_p)
cad9aa15
MK
3215 {
3216 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3217 hoistable++;
3218 }
3219 }
3220 else
3221 hoistable++;
3222 }
ce4c0015 3223
bb457bd9
JL
3224 /* We've found a potentially hoistable expression, now
3225 we look at every block BB dominates to see if it
3226 computes the expression. */
ac47786e 3227 FOR_EACH_VEC_ELT (basic_block, domby, j, dominated)
bb457bd9 3228 {
20160347
MK
3229 int max_distance;
3230
bb457bd9 3231 /* Ignore self dominance. */
c635a1ec 3232 if (bb == dominated)
bb457bd9 3233 continue;
bb457bd9
JL
3234 /* We've found a dominated block, now see if it computes
3235 the busy expression and whether or not moving that
3236 expression to the "beginning" of that block is safe. */
d7c028c0 3237 if (!bitmap_bit_p (antloc[dominated->index], i))
bb457bd9
JL
3238 continue;
3239
cad9aa15
MK
3240 occr = find_occr_in_bb (expr->antic_occr, dominated);
3241 gcc_assert (occr);
20160347 3242
073a8998 3243 /* An occurrence might've been already deleted
cad9aa15
MK
3244 while processing a dominator of BB. */
3245 if (occr->deleted_p)
2d36b47f 3246 continue;
cad9aa15
MK
3247 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3248
3249 max_distance = expr->max_distance;
3250 if (max_distance > 0)
3251 /* Adjust MAX_DISTANCE to account for the fact that
3252 OCCR won't have to travel all of DOMINATED, but
3253 only part of it. */
3254 max_distance += (bb_size[dominated->index]
3255 - to_bb_head[INSN_UID (occr->insn)]);
20160347 3256
b11f0116
BC
3257 pressure_class = get_pressure_class_and_nregs (occr->insn,
3258 &nregs);
3259
3260 /* Note if the expression should be hoisted from the dominated
3261 block to BB if it can reach DOMINATED unimpared.
bb457bd9
JL
3262
3263 Keep track of how many times this expression is hoistable
3264 from a dominated block into BB. */
b11f0116
BC
3265 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3266 max_distance, bb_size,
3267 pressure_class, &nregs,
4b8181c5 3268 hoisted_bbs, occr->insn))
cad9aa15
MK
3269 {
3270 hoistable++;
3271 VEC_safe_push (occr_t, heap,
3272 occrs_to_hoist, occr);
3273 bitmap_set_bit (from_bbs, dominated->index);
3274 }
bb457bd9
JL
3275 }
3276
ff7cc307 3277 /* If we found more than one hoistable occurrence of this
cad9aa15 3278 expression, then note it in the vector of expressions to
bb457bd9
JL
3279 hoist. It makes no sense to hoist things which are computed
3280 in only one BB, and doing so tends to pessimize register
3281 allocation. One could increase this value to try harder
3282 to avoid any possible code expansion due to register
3283 allocation issues; however experiments have shown that
3284 the vast majority of hoistable expressions are only movable
e0bb17a8 3285 from two successors, so raising this threshold is likely
bb457bd9 3286 to nullify any benefit we get from code hoisting. */
62a3f636 3287 if (hoistable > 1 && dbg_cnt (hoist_insn))
bb457bd9 3288 {
cad9aa15 3289 /* If (hoistable != VEC_length), then there is
073a8998 3290 an occurrence of EXPR in BB itself. Don't waste
cad9aa15
MK
3291 time looking for LCA in this case. */
3292 if ((unsigned) hoistable
3293 == VEC_length (occr_t, occrs_to_hoist))
3294 {
3295 basic_block lca;
3296
3297 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3298 from_bbs);
3299 if (lca != bb)
073a8998 3300 /* Punt, it's better to hoist these occurrences to
cad9aa15
MK
3301 LCA. */
3302 VEC_free (occr_t, heap, occrs_to_hoist);
3303 }
bb457bd9 3304 }
cad9aa15
MK
3305 else
3306 /* Punt, no point hoisting a single occurence. */
3307 VEC_free (occr_t, heap, occrs_to_hoist);
bb457bd9 3308
b11f0116
BC
3309 if (flag_ira_hoist_pressure
3310 && !VEC_empty (occr_t, occrs_to_hoist))
3311 {
4b8181c5
BC
3312 /* Increase register pressure of basic blocks to which
3313 expr is hoisted because of extended live range of
3314 output. */
b11f0116
BC
3315 data = BB_DATA (bb);
3316 data->max_reg_pressure[pressure_class] += nregs;
4b8181c5
BC
3317 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3318 {
3319 data = BB_DATA (BASIC_BLOCK (k));
3320 data->max_reg_pressure[pressure_class] += nregs;
3321 }
b11f0116
BC
3322 }
3323 else if (flag_ira_hoist_pressure)
3324 {
4b8181c5
BC
3325 /* Restore register pressure and live_in info for basic
3326 blocks recorded in hoisted_bbs when expr will not be
3327 hoisted. */
b11f0116
BC
3328 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3329 {
3330 data = BB_DATA (BASIC_BLOCK (k));
4b8181c5
BC
3331 bitmap_copy (data->live_in, data->backup);
3332 data->max_reg_pressure[pressure_class]
3333 = data->old_pressure;
b11f0116
BC
3334 }
3335 }
3336
3337 if (flag_ira_hoist_pressure)
3338 bitmap_clear (hoisted_bbs);
3339
cad9aa15 3340 insn_inserted_p = 0;
bb457bd9 3341
073a8998 3342 /* Walk through occurrences of I'th expressions we want
cad9aa15 3343 to hoist to BB and make the transformations. */
ac47786e 3344 FOR_EACH_VEC_ELT (occr_t, occrs_to_hoist, j, occr)
bb457bd9 3345 {
cad9aa15
MK
3346 rtx insn;
3347 rtx set;
3348
3349 gcc_assert (!occr->deleted_p);
3350
3351 insn = occr->insn;
3352 set = single_set (insn);
3353 gcc_assert (set);
3354
3355 /* Create a pseudo-reg to store the result of reaching
3356 expressions into. Get the mode for the new pseudo
3357 from the mode of the original destination pseudo.
3358
3359 It is important to use new pseudos whenever we
3360 emit a set. This will allow reload to use
3361 rematerialization for such registers. */
3362 if (!insn_inserted_p)
3363 expr->reaching_reg
3364 = gen_reg_rtx_and_attrs (SET_DEST (set));
3365
43c8a043 3366 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
cad9aa15
MK
3367 insn);
3368 delete_insn (insn);
3369 occr->deleted_p = 1;
3370 changed = 1;
3371 gcse_subst_count++;
3372
3373 if (!insn_inserted_p)
bb457bd9 3374 {
cad9aa15
MK
3375 insert_insn_end_basic_block (expr, bb);
3376 insn_inserted_p = 1;
bb457bd9
JL
3377 }
3378 }
cad9aa15
MK
3379
3380 VEC_free (occr_t, heap, occrs_to_hoist);
3381 bitmap_clear (from_bbs);
bb457bd9
JL
3382 }
3383 }
66f97d31 3384 VEC_free (basic_block, heap, domby);
bb457bd9 3385 }
c4c81601 3386
cad9aa15 3387 VEC_free (basic_block, heap, dom_tree_walk);
b11f0116
BC
3388 BITMAP_FREE (from_bbs);
3389 if (flag_ira_hoist_pressure)
3390 BITMAP_FREE (hoisted_bbs);
3391
20160347
MK
3392 free (bb_size);
3393 free (to_bb_head);
8e42ace1 3394 free (index_map);
5f39ad47
SB
3395
3396 return changed;
bb457bd9
JL
3397}
3398
b11f0116
BC
3399/* Return pressure class and number of needed hard registers (through
3400 *NREGS) of register REGNO. */
3401static enum reg_class
3402get_regno_pressure_class (int regno, int *nregs)
3403{
3404 if (regno >= FIRST_PSEUDO_REGISTER)
3405 {
3406 enum reg_class pressure_class;
3407
3408 pressure_class = reg_allocno_class (regno);
3409 pressure_class = ira_pressure_class_translate[pressure_class];
3410 *nregs
3411 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3412 return pressure_class;
3413 }
3414 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3415 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3416 {
3417 *nregs = 1;
3418 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3419 }
3420 else
3421 {
3422 *nregs = 0;
3423 return NO_REGS;
3424 }
3425}
3426
3427/* Return pressure class and number of hard registers (through *NREGS)
3428 for destination of INSN. */
3429static enum reg_class
3430get_pressure_class_and_nregs (rtx insn, int *nregs)
3431{
3432 rtx reg;
3433 enum reg_class pressure_class;
3434 rtx set = single_set (insn);
3435
3436 /* Considered invariant insns have only one set. */
3437 gcc_assert (set != NULL_RTX);
3438 reg = SET_DEST (set);
3439 if (GET_CODE (reg) == SUBREG)
3440 reg = SUBREG_REG (reg);
3441 if (MEM_P (reg))
3442 {
3443 *nregs = 0;
3444 pressure_class = NO_REGS;
3445 }
3446 else
3447 {
3448 gcc_assert (REG_P (reg));
3449 pressure_class = reg_allocno_class (REGNO (reg));
3450 pressure_class = ira_pressure_class_translate[pressure_class];
3451 *nregs
3452 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3453 }
3454 return pressure_class;
3455}
3456
3457/* Increase (if INCR_P) or decrease current register pressure for
3458 register REGNO. */
3459static void
3460change_pressure (int regno, bool incr_p)
3461{
3462 int nregs;
3463 enum reg_class pressure_class;
3464
3465 pressure_class = get_regno_pressure_class (regno, &nregs);
3466 if (! incr_p)
3467 curr_reg_pressure[pressure_class] -= nregs;
3468 else
3469 {
3470 curr_reg_pressure[pressure_class] += nregs;
3471 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3472 < curr_reg_pressure[pressure_class])
3473 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3474 = curr_reg_pressure[pressure_class];
3475 }
3476}
3477
3478/* Calculate register pressure for each basic block by walking insns
3479 from last to first. */
3480static void
3481calculate_bb_reg_pressure (void)
3482{
3483 int i;
3484 unsigned int j;
3485 rtx insn;
3486 basic_block bb;
3487 bitmap curr_regs_live;
3488 bitmap_iterator bi;
3489
3490
55a2c322 3491 ira_setup_eliminable_regset (false);
b11f0116
BC
3492 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3493 FOR_EACH_BB (bb)
3494 {
3495 curr_bb = bb;
4b8181c5
BC
3496 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3497 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3498 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3499 bitmap_copy (curr_regs_live, df_get_live_out (bb));
b11f0116
BC
3500 for (i = 0; i < ira_pressure_classes_num; i++)
3501 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3502 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3503 change_pressure (j, true);
3504
3505 FOR_BB_INSNS_REVERSE (bb, insn)
3506 {
3507 rtx dreg;
3508 int regno;
3509 df_ref *def_rec, *use_rec;
3510
3511 if (! NONDEBUG_INSN_P (insn))
3512 continue;
3513
3514 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
3515 {
3516 dreg = DF_REF_REAL_REG (*def_rec);
3517 gcc_assert (REG_P (dreg));
3518 regno = REGNO (dreg);
3519 if (!(DF_REF_FLAGS (*def_rec)
3520 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3521 {
3522 if (bitmap_clear_bit (curr_regs_live, regno))
3523 change_pressure (regno, false);
3524 }
3525 }
3526
3527 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
3528 {
3529 dreg = DF_REF_REAL_REG (*use_rec);
3530 gcc_assert (REG_P (dreg));
3531 regno = REGNO (dreg);
3532 if (bitmap_set_bit (curr_regs_live, regno))
3533 change_pressure (regno, true);
3534 }
3535 }
3536 }
3537 BITMAP_FREE (curr_regs_live);
3538
3539 if (dump_file == NULL)
3540 return;
3541
3542 fprintf (dump_file, "\nRegister Pressure: \n");
3543 FOR_EACH_BB (bb)
3544 {
3545 fprintf (dump_file, " Basic block %d: \n", bb->index);
3546 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3547 {
3548 enum reg_class pressure_class;
3549
3550 pressure_class = ira_pressure_classes[i];
3551 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3552 continue;
3553
3554 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3555 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3556 }
3557 }
3558 fprintf (dump_file, "\n");
3559}
3560
bb457bd9
JL
3561/* Top level routine to perform one code hoisting (aka unification) pass
3562
cc2902df 3563 Return nonzero if a change was made. */
bb457bd9
JL
3564
3565static int
1d088dee 3566one_code_hoisting_pass (void)
bb457bd9
JL
3567{
3568 int changed = 0;
3569
5f39ad47
SB
3570 gcse_subst_count = 0;
3571 gcse_create_count = 0;
3572
3573 /* Return if there's nothing to do, or it is too expensive. */
3574 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
3575 || is_too_expensive (_("GCSE disabled")))
3576 return 0;
3577
20160347
MK
3578 doing_code_hoisting_p = true;
3579
b11f0116
BC
3580 /* Calculate register pressure for each basic block. */
3581 if (flag_ira_hoist_pressure)
3582 {
3583 regstat_init_n_sets_and_refs ();
3584 ira_set_pseudo_classes (false, dump_file);
3585 alloc_aux_for_blocks (sizeof (struct bb_data));
3586 calculate_bb_reg_pressure ();
3587 regstat_free_n_sets_and_refs ();
3588 }
3589
5f39ad47
SB
3590 /* We need alias. */
3591 init_alias_analysis ();
3592
3593 bytes_used = 0;
3594 gcc_obstack_init (&gcse_obstack);
3595 alloc_gcse_mem ();
3596
e45425ec 3597 alloc_hash_table (&expr_hash_table);
02280659 3598 compute_hash_table (&expr_hash_table);
10d22567
ZD
3599 if (dump_file)
3600 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
c4c81601 3601
02280659 3602 if (expr_hash_table.n_elems > 0)
bb457bd9 3603 {
02280659 3604 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
bb457bd9 3605 compute_code_hoist_data ();
5f39ad47 3606 changed = hoist_code ();
bb457bd9
JL
3607 free_code_hoist_mem ();
3608 }
c4c81601 3609
b11f0116
BC
3610 if (flag_ira_hoist_pressure)
3611 {
3612 free_aux_for_blocks ();
3613 free_reg_info ();
3614 }
02280659 3615 free_hash_table (&expr_hash_table);
5f39ad47
SB
3616 free_gcse_mem ();
3617 obstack_free (&gcse_obstack, NULL);
3618
3619 /* We are finished with alias. */
3620 end_alias_analysis ();
3621
3622 if (dump_file)
3623 {
3624 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3625 current_function_name (), n_basic_blocks, bytes_used);
3626 fprintf (dump_file, "%d substs, %d insns created\n",
3627 gcse_subst_count, gcse_create_count);
3628 }
bb457bd9 3629
20160347
MK
3630 doing_code_hoisting_p = false;
3631
bb457bd9
JL
3632 return changed;
3633}
a13d4ebf 3634\f
43c8a043
EB
3635/* Here we provide the things required to do store motion towards the exit.
3636 In order for this to be effective, gcse also needed to be taught how to
3637 move a load when it is killed only by a store to itself.
a13d4ebf
AM
3638
3639 int i;
3640 float a[10];
3641
3642 void foo(float scale)
3643 {
3644 for (i=0; i<10; i++)
3645 a[i] *= scale;
3646 }
3647
3648 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
589005ff
KH
3649 the load out since its live around the loop, and stored at the bottom
3650 of the loop.
a13d4ebf 3651
589005ff 3652 The 'Load Motion' referred to and implemented in this file is
43c8a043 3653 an enhancement to gcse which when using edge based LCM, recognizes
a13d4ebf
AM
3654 this situation and allows gcse to move the load out of the loop.
3655
3656 Once gcse has hoisted the load, store motion can then push this
3657 load towards the exit, and we end up with no loads or stores of 'i'
3658 in the loop. */
3659
9727e468
RG
3660static hashval_t
3661pre_ldst_expr_hash (const void *p)
3662{
3663 int do_not_record_p = 0;
1b4572a8 3664 const struct ls_expr *const x = (const struct ls_expr *) p;
43c8a043
EB
3665 return
3666 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
9727e468
RG
3667}
3668
3669static int
3670pre_ldst_expr_eq (const void *p1, const void *p2)
3671{
1b4572a8
KG
3672 const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
3673 *const ptr2 = (const struct ls_expr *) p2;
9727e468
RG
3674 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
3675}
3676
ff7cc307 3677/* This will search the ldst list for a matching expression. If it
a13d4ebf
AM
3678 doesn't find one, we create one and initialize it. */
3679
3680static struct ls_expr *
1d088dee 3681ldst_entry (rtx x)
a13d4ebf 3682{
b58b21d5 3683 int do_not_record_p = 0;
a13d4ebf 3684 struct ls_expr * ptr;
b58b21d5 3685 unsigned int hash;
9727e468
RG
3686 void **slot;
3687 struct ls_expr e;
a13d4ebf 3688
0516f6fe
SB
3689 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3690 NULL, /*have_reg_qty=*/false);
a13d4ebf 3691
9727e468
RG
3692 e.pattern = x;
3693 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
3694 if (*slot)
3695 return (struct ls_expr *)*slot;
b58b21d5 3696
5ed6ace5 3697 ptr = XNEW (struct ls_expr);
b58b21d5
RS
3698
3699 ptr->next = pre_ldst_mems;
3700 ptr->expr = NULL;
3701 ptr->pattern = x;
3702 ptr->pattern_regs = NULL_RTX;
3703 ptr->loads = NULL_RTX;
3704 ptr->stores = NULL_RTX;
3705 ptr->reaching_reg = NULL_RTX;
3706 ptr->invalid = 0;
3707 ptr->index = 0;
3708 ptr->hash_index = hash;
3709 pre_ldst_mems = ptr;
9727e468 3710 *slot = ptr;
589005ff 3711
a13d4ebf
AM
3712 return ptr;
3713}
3714
3715/* Free up an individual ldst entry. */
3716
589005ff 3717static void
1d088dee 3718free_ldst_entry (struct ls_expr * ptr)
a13d4ebf 3719{
aaa4ca30
AJ
3720 free_INSN_LIST_list (& ptr->loads);
3721 free_INSN_LIST_list (& ptr->stores);
a13d4ebf
AM
3722
3723 free (ptr);
3724}
3725
3726/* Free up all memory associated with the ldst list. */
3727
3728static void
43c8a043 3729free_ld_motion_mems (void)
a13d4ebf 3730{
35b5442a
RG
3731 if (pre_ldst_table)
3732 htab_delete (pre_ldst_table);
9727e468
RG
3733 pre_ldst_table = NULL;
3734
589005ff 3735 while (pre_ldst_mems)
a13d4ebf
AM
3736 {
3737 struct ls_expr * tmp = pre_ldst_mems;
3738
3739 pre_ldst_mems = pre_ldst_mems->next;
3740
3741 free_ldst_entry (tmp);
3742 }
3743
3744 pre_ldst_mems = NULL;
3745}
3746
3747/* Dump debugging info about the ldst list. */
3748
3749static void
1d088dee 3750print_ldst_list (FILE * file)
a13d4ebf
AM
3751{
3752 struct ls_expr * ptr;
3753
3754 fprintf (file, "LDST list: \n");
3755
43c8a043 3756 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
a13d4ebf
AM
3757 {
3758 fprintf (file, " Pattern (%3d): ", ptr->index);
3759
3760 print_rtl (file, ptr->pattern);
3761
3762 fprintf (file, "\n Loads : ");
3763
3764 if (ptr->loads)
3765 print_rtl (file, ptr->loads);
3766 else
3767 fprintf (file, "(nil)");
3768
3769 fprintf (file, "\n Stores : ");
3770
3771 if (ptr->stores)
3772 print_rtl (file, ptr->stores);
3773 else
3774 fprintf (file, "(nil)");
3775
3776 fprintf (file, "\n\n");
3777 }
3778
3779 fprintf (file, "\n");
3780}
3781
3782/* Returns 1 if X is in the list of ldst only expressions. */
3783
3784static struct ls_expr *
1d088dee 3785find_rtx_in_ldst (rtx x)
a13d4ebf 3786{
9727e468
RG
3787 struct ls_expr e;
3788 void **slot;
6375779a
RG
3789 if (!pre_ldst_table)
3790 return NULL;
9727e468
RG
3791 e.pattern = x;
3792 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
3793 if (!slot || ((struct ls_expr *)*slot)->invalid)
3794 return NULL;
1b4572a8 3795 return (struct ls_expr *) *slot;
a13d4ebf 3796}
a13d4ebf
AM
3797\f
3798/* Load Motion for loads which only kill themselves. */
3799
43c8a043
EB
3800/* Return true if x, a MEM, is a simple access with no side effects.
3801 These are the types of loads we consider for the ld_motion list,
3802 otherwise we let the usual aliasing take care of it. */
a13d4ebf 3803
589005ff 3804static int
ed7a4b4b 3805simple_mem (const_rtx x)
a13d4ebf 3806{
a13d4ebf
AM
3807 if (MEM_VOLATILE_P (x))
3808 return 0;
589005ff 3809
a13d4ebf
AM
3810 if (GET_MODE (x) == BLKmode)
3811 return 0;
aaa4ca30 3812
47a3dae1 3813 /* If we are handling exceptions, we must be careful with memory references
8f4f502f 3814 that may trap. If we are not, the behavior is undefined, so we may just
47a3dae1 3815 continue. */
8f4f502f 3816 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
98d3d336
RS
3817 return 0;
3818
47a3dae1
ZD
3819 if (side_effects_p (x))
3820 return 0;
589005ff 3821
47a3dae1
ZD
3822 /* Do not consider function arguments passed on stack. */
3823 if (reg_mentioned_p (stack_pointer_rtx, x))
3824 return 0;
3825
3826 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3827 return 0;
3828
3829 return 1;
a13d4ebf
AM
3830}
3831
589005ff
KH
3832/* Make sure there isn't a buried reference in this pattern anywhere.
3833 If there is, invalidate the entry for it since we're not capable
3834 of fixing it up just yet.. We have to be sure we know about ALL
a13d4ebf
AM
3835 loads since the aliasing code will allow all entries in the
3836 ld_motion list to not-alias itself. If we miss a load, we will get
589005ff 3837 the wrong value since gcse might common it and we won't know to
a13d4ebf
AM
3838 fix it up. */
3839
3840static void
1d088dee 3841invalidate_any_buried_refs (rtx x)
a13d4ebf
AM
3842{
3843 const char * fmt;
8e42ace1 3844 int i, j;
a13d4ebf
AM
3845 struct ls_expr * ptr;
3846
3847 /* Invalidate it in the list. */
7b1b4aed 3848 if (MEM_P (x) && simple_mem (x))
a13d4ebf
AM
3849 {
3850 ptr = ldst_entry (x);
3851 ptr->invalid = 1;
3852 }
3853
3854 /* Recursively process the insn. */
3855 fmt = GET_RTX_FORMAT (GET_CODE (x));
589005ff 3856
a13d4ebf
AM
3857 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3858 {
3859 if (fmt[i] == 'e')
3860 invalidate_any_buried_refs (XEXP (x, i));
3861 else if (fmt[i] == 'E')
3862 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3863 invalidate_any_buried_refs (XVECEXP (x, i, j));
3864 }
3865}
3866
4d3eb89a
HPN
3867/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3868 being defined as MEM loads and stores to symbols, with no side effects
3869 and no registers in the expression. For a MEM destination, we also
3870 check that the insn is still valid if we replace the destination with a
3871 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3872 which don't match this criteria, they are invalidated and trimmed out
3873 later. */
a13d4ebf 3874
589005ff 3875static void
1d088dee 3876compute_ld_motion_mems (void)
a13d4ebf
AM
3877{
3878 struct ls_expr * ptr;
e0082a72 3879 basic_block bb;
a13d4ebf 3880 rtx insn;
589005ff 3881
a13d4ebf 3882 pre_ldst_mems = NULL;
43c8a043
EB
3883 pre_ldst_table
3884 = htab_create (13, pre_ldst_expr_hash, pre_ldst_expr_eq, NULL);
a13d4ebf 3885
e0082a72 3886 FOR_EACH_BB (bb)
a13d4ebf 3887 {
eb232f4e 3888 FOR_BB_INSNS (bb, insn)
a13d4ebf 3889 {
b5b8b0ac 3890 if (NONDEBUG_INSN_P (insn))
a13d4ebf
AM
3891 {
3892 if (GET_CODE (PATTERN (insn)) == SET)
3893 {
3894 rtx src = SET_SRC (PATTERN (insn));
3895 rtx dest = SET_DEST (PATTERN (insn));
3896
3897 /* Check for a simple LOAD... */
7b1b4aed 3898 if (MEM_P (src) && simple_mem (src))
a13d4ebf
AM
3899 {
3900 ptr = ldst_entry (src);
7b1b4aed 3901 if (REG_P (dest))
a13d4ebf
AM
3902 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3903 else
3904 ptr->invalid = 1;
3905 }
3906 else
3907 {
3908 /* Make sure there isn't a buried load somewhere. */
3909 invalidate_any_buried_refs (src);
3910 }
589005ff 3911
a13d4ebf
AM
3912 /* Check for stores. Don't worry about aliased ones, they
3913 will block any movement we might do later. We only care
3914 about this exact pattern since those are the only
3915 circumstance that we will ignore the aliasing info. */
7b1b4aed 3916 if (MEM_P (dest) && simple_mem (dest))
a13d4ebf
AM
3917 {
3918 ptr = ldst_entry (dest);
589005ff 3919
7b1b4aed 3920 if (! MEM_P (src)
4d3eb89a
HPN
3921 && GET_CODE (src) != ASM_OPERANDS
3922 /* Check for REG manually since want_to_gcse_p
3923 returns 0 for all REGs. */
df35c271 3924 && can_assign_to_reg_without_clobbers_p (src))
a13d4ebf
AM
3925 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3926 else
3927 ptr->invalid = 1;
3928 }
3929 }
3930 else
3931 invalidate_any_buried_refs (PATTERN (insn));
3932 }
3933 }
3934 }
3935}
3936
589005ff 3937/* Remove any references that have been either invalidated or are not in the
a13d4ebf
AM
3938 expression list for pre gcse. */
3939
3940static void
1d088dee 3941trim_ld_motion_mems (void)
a13d4ebf 3942{
b58b21d5
RS
3943 struct ls_expr * * last = & pre_ldst_mems;
3944 struct ls_expr * ptr = pre_ldst_mems;
a13d4ebf
AM
3945
3946 while (ptr != NULL)
3947 {
b58b21d5 3948 struct expr * expr;
589005ff 3949
a13d4ebf 3950 /* Delete if entry has been made invalid. */
b58b21d5 3951 if (! ptr->invalid)
a13d4ebf 3952 {
a13d4ebf 3953 /* Delete if we cannot find this mem in the expression list. */
b58b21d5 3954 unsigned int hash = ptr->hash_index % expr_hash_table.size;
589005ff 3955
b58b21d5
RS
3956 for (expr = expr_hash_table.table[hash];
3957 expr != NULL;
3958 expr = expr->next_same_hash)
3959 if (expr_equiv_p (expr->expr, ptr->pattern))
3960 break;
a13d4ebf
AM
3961 }
3962 else
b58b21d5
RS
3963 expr = (struct expr *) 0;
3964
3965 if (expr)
a13d4ebf
AM
3966 {
3967 /* Set the expression field if we are keeping it. */
a13d4ebf 3968 ptr->expr = expr;
b58b21d5 3969 last = & ptr->next;
a13d4ebf
AM
3970 ptr = ptr->next;
3971 }
b58b21d5
RS
3972 else
3973 {
3974 *last = ptr->next;
9727e468 3975 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
b58b21d5
RS
3976 free_ldst_entry (ptr);
3977 ptr = * last;
3978 }
a13d4ebf
AM
3979 }
3980
3981 /* Show the world what we've found. */
10d22567
ZD
3982 if (dump_file && pre_ldst_mems != NULL)
3983 print_ldst_list (dump_file);
a13d4ebf
AM
3984}
3985
3986/* This routine will take an expression which we are replacing with
3987 a reaching register, and update any stores that are needed if
3988 that expression is in the ld_motion list. Stores are updated by
a98ebe2e 3989 copying their SRC to the reaching register, and then storing
a13d4ebf
AM
3990 the reaching register into the store location. These keeps the
3991 correct value in the reaching register for the loads. */
3992
3993static void
1d088dee 3994update_ld_motion_stores (struct expr * expr)
a13d4ebf
AM
3995{
3996 struct ls_expr * mem_ptr;
3997
3998 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3999 {
589005ff
KH
4000 /* We can try to find just the REACHED stores, but is shouldn't
4001 matter to set the reaching reg everywhere... some might be
a13d4ebf
AM
4002 dead and should be eliminated later. */
4003
4d3eb89a
HPN
4004 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4005 where reg is the reaching reg used in the load. We checked in
4006 compute_ld_motion_mems that we can replace (set mem expr) with
4007 (set reg expr) in that insn. */
a13d4ebf 4008 rtx list = mem_ptr->stores;
589005ff 4009
a13d4ebf
AM
4010 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4011 {
4012 rtx insn = XEXP (list, 0);
4013 rtx pat = PATTERN (insn);
4014 rtx src = SET_SRC (pat);
4015 rtx reg = expr->reaching_reg;
038dc49a 4016 rtx copy;
a13d4ebf
AM
4017
4018 /* If we've already copied it, continue. */
4019 if (expr->reaching_reg == src)
4020 continue;
589005ff 4021
10d22567 4022 if (dump_file)
a13d4ebf 4023 {
10d22567 4024 fprintf (dump_file, "PRE: store updated with reaching reg ");
43c8a043 4025 print_rtl (dump_file, reg);
10d22567
ZD
4026 fprintf (dump_file, ":\n ");
4027 print_inline_rtx (dump_file, insn, 8);
4028 fprintf (dump_file, "\n");
a13d4ebf 4029 }
589005ff 4030
4a81774c 4031 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
038dc49a 4032 emit_insn_before (copy, insn);
a13d4ebf 4033 SET_SRC (pat) = reg;
6fb5fa3c 4034 df_insn_rescan (insn);
a13d4ebf
AM
4035
4036 /* un-recognize this pattern since it's probably different now. */
4037 INSN_CODE (insn) = -1;
4038 gcse_create_count++;
4039 }
4040 }
4041}
4042\f
df35c271
SB
4043/* Return true if the graph is too expensive to optimize. PASS is the
4044 optimization about to be performed. */
47a3dae1 4045
df35c271
SB
4046static bool
4047is_too_expensive (const char *pass)
4048{
4049 /* Trying to perform global optimizations on flow graphs which have
4050 a high connectivity will take a long time and is unlikely to be
4051 particularly useful.
aaa4ca30 4052
df35c271
SB
4053 In normal circumstances a cfg should have about twice as many
4054 edges as blocks. But we do not want to punish small functions
4055 which have a couple switch statements. Rather than simply
4056 threshold the number of blocks, uses something with a more
4057 graceful degradation. */
4058 if (n_edges > 20000 + n_basic_blocks * 4)
4059 {
4060 warning (OPT_Wdisabled_optimization,
4061 "%s: %d basic blocks and %d edges/basic block",
4062 pass, n_basic_blocks, n_edges / n_basic_blocks);
a13d4ebf 4063
df35c271
SB
4064 return true;
4065 }
a13d4ebf 4066
e45425ec 4067 /* If allocating memory for the dataflow bitmaps would take up too much
df35c271
SB
4068 storage it's better just to disable the optimization. */
4069 if ((n_basic_blocks
4070 * SBITMAP_SET_SIZE (max_reg_num ())
4071 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4072 {
4073 warning (OPT_Wdisabled_optimization,
4074 "%s: %d basic blocks and %d registers",
4075 pass, n_basic_blocks, max_reg_num ());
a13d4ebf 4076
df35c271
SB
4077 return true;
4078 }
adfcce61 4079
df35c271 4080 return false;
01c43039 4081}
df35c271
SB
4082\f
4083/* All the passes implemented in this file. Each pass has its
4084 own gate and execute function, and at the end of the file a
4085 pass definition for passes.c.
47a3dae1 4086
df35c271
SB
4087 We do not construct an accurate cfg in functions which call
4088 setjmp, so none of these passes runs if the function calls
4089 setjmp.
4090 FIXME: Should just handle setjmp via REG_SETJMP notes. */
a13d4ebf 4091
df35c271
SB
4092static bool
4093gate_rtl_pre (void)
4094{
4095 return optimize > 0 && flag_gcse
1f9081d1
XDL
4096 && !cfun->calls_setjmp
4097 && optimize_function_for_speed_p (cfun)
4098 && dbg_cnt (pre);
df35c271 4099}
589005ff 4100
df35c271
SB
4101static unsigned int
4102execute_rtl_pre (void)
4103{
f2b01cfb 4104 int changed;
df35c271 4105 delete_unreachable_blocks ();
df35c271 4106 df_analyze ();
f2b01cfb
RG
4107 changed = one_pre_gcse_pass ();
4108 flag_rerun_cse_after_global_opts |= changed;
4109 if (changed)
4110 cleanup_cfg (0);
df35c271
SB
4111 return 0;
4112}
aaa4ca30 4113
df35c271
SB
4114static bool
4115gate_rtl_hoist (void)
4116{
4117 return optimize > 0 && flag_gcse
1f9081d1
XDL
4118 && !cfun->calls_setjmp
4119 /* It does not make sense to run code hoisting unless we are optimizing
4120 for code size -- it rarely makes programs faster, and can make then
4121 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4122 && optimize_function_for_size_p (cfun)
4123 && dbg_cnt (hoist);
df35c271 4124}
aaa4ca30 4125
df35c271
SB
4126static unsigned int
4127execute_rtl_hoist (void)
4128{
f2b01cfb 4129 int changed;
df35c271 4130 delete_unreachable_blocks ();
df35c271 4131 df_analyze ();
f2b01cfb
RG
4132 changed = one_code_hoisting_pass ();
4133 flag_rerun_cse_after_global_opts |= changed;
4134 if (changed)
4135 cleanup_cfg (0);
df35c271
SB
4136 return 0;
4137}
ef330312 4138
5f39ad47 4139struct rtl_opt_pass pass_rtl_pre =
ef330312 4140{
5f39ad47
SB
4141 {
4142 RTL_PASS,
e0a42b0f 4143 "rtl pre", /* name */
2b4e6bf1 4144 OPTGROUP_NONE, /* optinfo_flags */
b8698a0f
L
4145 gate_rtl_pre, /* gate */
4146 execute_rtl_pre, /* execute */
5f39ad47
SB
4147 NULL, /* sub */
4148 NULL, /* next */
4149 0, /* static_pass_number */
4150 TV_PRE, /* tv_id */
4151 PROP_cfglayout, /* properties_required */
4152 0, /* properties_provided */
4153 0, /* properties_destroyed */
4154 0, /* todo_flags_start */
4155 TODO_df_finish | TODO_verify_rtl_sharing |
5f39ad47
SB
4156 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
4157 }
4158};
ef330312 4159
5f39ad47 4160struct rtl_opt_pass pass_rtl_hoist =
ef330312 4161{
8ddbbcae
JH
4162 {
4163 RTL_PASS,
5f39ad47 4164 "hoist", /* name */
2b4e6bf1 4165 OPTGROUP_NONE, /* optinfo_flags */
b8698a0f
L
4166 gate_rtl_hoist, /* gate */
4167 execute_rtl_hoist, /* execute */
ef330312
PB
4168 NULL, /* sub */
4169 NULL, /* next */
4170 0, /* static_pass_number */
5f39ad47 4171 TV_HOIST, /* tv_id */
9c9e26f5 4172 PROP_cfglayout, /* properties_required */
ef330312
PB
4173 0, /* properties_provided */
4174 0, /* properties_destroyed */
4175 0, /* todo_flags_start */
a36b8a1e 4176 TODO_df_finish | TODO_verify_rtl_sharing |
8ddbbcae
JH
4177 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
4178 }
ef330312
PB
4179};
4180
e2500fed 4181#include "gt-gcse.h"
This page took 5.256598 seconds and 5 git commands to generate.