]>
Commit | Line | Data |
---|---|---|
f4e584dc | 1 | /* Global common subexpression elimination/Partial redundancy elimination |
7506f491 | 2 | and global constant/copy propagation for GNU compiler. |
a0134312 | 3 | Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003 |
8e42ace1 | 4 | Free Software Foundation, Inc. |
7506f491 | 5 | |
1322177d | 6 | This file is part of GCC. |
7506f491 | 7 | |
1322177d LB |
8 | GCC is free software; you can redistribute it and/or modify it under |
9 | the terms of the GNU General Public License as published by the Free | |
10 | Software Foundation; either version 2, or (at your option) any later | |
11 | version. | |
7506f491 | 12 | |
1322177d LB |
13 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
14 | WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
15 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
16 | for more details. | |
7506f491 DE |
17 | |
18 | You should have received a copy of the GNU General Public License | |
1322177d LB |
19 | along with GCC; see the file COPYING. If not, write to the Free |
20 | Software Foundation, 59 Temple Place - Suite 330, Boston, MA | |
21 | 02111-1307, USA. */ | |
7506f491 DE |
22 | |
23 | /* TODO | |
24 | - reordering of memory allocation and freeing to be more space efficient | |
25 | - do rough calc of how many regs are needed in each block, and a rough | |
26 | calc of how many regs are available in each class and use that to | |
27 | throttle back the code in cases where RTX_COST is minimal. | |
f4e584dc JL |
28 | - a store to the same address as a load does not kill the load if the |
29 | source of the store is also the destination of the load. Handling this | |
30 | allows more load motion, particularly out of loops. | |
7506f491 DE |
31 | - ability to realloc sbitmap vectors would allow one initial computation |
32 | of reg_set_in_block with only subsequent additions, rather than | |
33 | recomputing it for each pass | |
34 | ||
7506f491 DE |
35 | */ |
36 | ||
37 | /* References searched while implementing this. | |
7506f491 DE |
38 | |
39 | Compilers Principles, Techniques and Tools | |
40 | Aho, Sethi, Ullman | |
41 | Addison-Wesley, 1988 | |
42 | ||
43 | Global Optimization by Suppression of Partial Redundancies | |
44 | E. Morel, C. Renvoise | |
45 | communications of the acm, Vol. 22, Num. 2, Feb. 1979 | |
46 | ||
47 | A Portable Machine-Independent Global Optimizer - Design and Measurements | |
48 | Frederick Chow | |
49 | Stanford Ph.D. thesis, Dec. 1983 | |
50 | ||
7506f491 DE |
51 | A Fast Algorithm for Code Movement Optimization |
52 | D.M. Dhamdhere | |
53 | SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988 | |
54 | ||
55 | A Solution to a Problem with Morel and Renvoise's | |
56 | Global Optimization by Suppression of Partial Redundancies | |
57 | K-H Drechsler, M.P. Stadel | |
58 | ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988 | |
59 | ||
60 | Practical Adaptation of the Global Optimization | |
61 | Algorithm of Morel and Renvoise | |
62 | D.M. Dhamdhere | |
63 | ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991 | |
64 | ||
65 | Efficiently Computing Static Single Assignment Form and the Control | |
66 | Dependence Graph | |
67 | R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck | |
68 | ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991 | |
69 | ||
7506f491 DE |
70 | Lazy Code Motion |
71 | J. Knoop, O. Ruthing, B. Steffen | |
72 | ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI | |
73 | ||
74 | What's In a Region? Or Computing Control Dependence Regions in Near-Linear | |
75 | Time for Reducible Flow Control | |
76 | Thomas Ball | |
77 | ACM Letters on Programming Languages and Systems, | |
78 | Vol. 2, Num. 1-4, Mar-Dec 1993 | |
79 | ||
80 | An Efficient Representation for Sparse Sets | |
81 | Preston Briggs, Linda Torczon | |
82 | ACM Letters on Programming Languages and Systems, | |
83 | Vol. 2, Num. 1-4, Mar-Dec 1993 | |
84 | ||
85 | A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion | |
86 | K-H Drechsler, M.P. Stadel | |
87 | ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993 | |
88 | ||
89 | Partial Dead Code Elimination | |
90 | J. Knoop, O. Ruthing, B. Steffen | |
91 | ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994 | |
92 | ||
93 | Effective Partial Redundancy Elimination | |
94 | P. Briggs, K.D. Cooper | |
95 | ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994 | |
96 | ||
97 | The Program Structure Tree: Computing Control Regions in Linear Time | |
98 | R. Johnson, D. Pearson, K. Pingali | |
99 | ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994 | |
100 | ||
101 | Optimal Code Motion: Theory and Practice | |
102 | J. Knoop, O. Ruthing, B. Steffen | |
103 | ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994 | |
104 | ||
105 | The power of assignment motion | |
106 | J. Knoop, O. Ruthing, B. Steffen | |
107 | ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI | |
108 | ||
109 | Global code motion / global value numbering | |
110 | C. Click | |
111 | ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI | |
112 | ||
113 | Value Driven Redundancy Elimination | |
114 | L.T. Simpson | |
115 | Rice University Ph.D. thesis, Apr. 1996 | |
116 | ||
117 | Value Numbering | |
118 | L.T. Simpson | |
119 | Massively Scalar Compiler Project, Rice University, Sep. 1996 | |
120 | ||
121 | High Performance Compilers for Parallel Computing | |
122 | Michael Wolfe | |
123 | Addison-Wesley, 1996 | |
124 | ||
f4e584dc JL |
125 | Advanced Compiler Design and Implementation |
126 | Steven Muchnick | |
127 | Morgan Kaufmann, 1997 | |
128 | ||
a42cd965 AM |
129 | Building an Optimizing Compiler |
130 | Robert Morgan | |
131 | Digital Press, 1998 | |
132 | ||
f4e584dc JL |
133 | People wishing to speed up the code here should read: |
134 | Elimination Algorithms for Data Flow Analysis | |
135 | B.G. Ryder, M.C. Paull | |
136 | ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986 | |
137 | ||
138 | How to Analyze Large Programs Efficiently and Informatively | |
139 | D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck | |
140 | ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI | |
141 | ||
7506f491 DE |
142 | People wishing to do something different can find various possibilities |
143 | in the above papers and elsewhere. | |
144 | */ | |
145 | ||
146 | #include "config.h" | |
50b2596f | 147 | #include "system.h" |
4977bab6 ZW |
148 | #include "coretypes.h" |
149 | #include "tm.h" | |
01198c2f | 150 | #include "toplev.h" |
7506f491 DE |
151 | |
152 | #include "rtl.h" | |
6baf1cc8 | 153 | #include "tm_p.h" |
7506f491 DE |
154 | #include "regs.h" |
155 | #include "hard-reg-set.h" | |
156 | #include "flags.h" | |
157 | #include "real.h" | |
158 | #include "insn-config.h" | |
159 | #include "recog.h" | |
160 | #include "basic-block.h" | |
50b2596f | 161 | #include "output.h" |
49ad7cfa | 162 | #include "function.h" |
589005ff | 163 | #include "expr.h" |
e7d482b9 | 164 | #include "except.h" |
fb0c0a12 | 165 | #include "ggc.h" |
f1fa37ff | 166 | #include "params.h" |
ae860ff7 | 167 | #include "cselib.h" |
aaa4ca30 | 168 | |
7506f491 | 169 | #include "obstack.h" |
4fa31c2a | 170 | |
7506f491 DE |
171 | /* Propagate flow information through back edges and thus enable PRE's |
172 | moving loop invariant calculations out of loops. | |
173 | ||
174 | Originally this tended to create worse overall code, but several | |
175 | improvements during the development of PRE seem to have made following | |
176 | back edges generally a win. | |
177 | ||
178 | Note much of the loop invariant code motion done here would normally | |
179 | be done by loop.c, which has more heuristics for when to move invariants | |
180 | out of loops. At some point we might need to move some of those | |
181 | heuristics into gcse.c. */ | |
7506f491 | 182 | |
f4e584dc JL |
183 | /* We support GCSE via Partial Redundancy Elimination. PRE optimizations |
184 | are a superset of those done by GCSE. | |
7506f491 | 185 | |
f4e584dc | 186 | We perform the following steps: |
7506f491 DE |
187 | |
188 | 1) Compute basic block information. | |
189 | ||
190 | 2) Compute table of places where registers are set. | |
191 | ||
192 | 3) Perform copy/constant propagation. | |
193 | ||
194 | 4) Perform global cse. | |
195 | ||
e78d9500 | 196 | 5) Perform another pass of copy/constant propagation. |
7506f491 DE |
197 | |
198 | Two passes of copy/constant propagation are done because the first one | |
199 | enables more GCSE and the second one helps to clean up the copies that | |
200 | GCSE creates. This is needed more for PRE than for Classic because Classic | |
201 | GCSE will try to use an existing register containing the common | |
202 | subexpression rather than create a new one. This is harder to do for PRE | |
203 | because of the code motion (which Classic GCSE doesn't do). | |
204 | ||
205 | Expressions we are interested in GCSE-ing are of the form | |
206 | (set (pseudo-reg) (expression)). | |
207 | Function want_to_gcse_p says what these are. | |
208 | ||
209 | PRE handles moving invariant expressions out of loops (by treating them as | |
f4e584dc | 210 | partially redundant). |
7506f491 DE |
211 | |
212 | Eventually it would be nice to replace cse.c/gcse.c with SSA (static single | |
213 | assignment) based GVN (global value numbering). L. T. Simpson's paper | |
214 | (Rice University) on value numbering is a useful reference for this. | |
215 | ||
216 | ********************** | |
217 | ||
218 | We used to support multiple passes but there are diminishing returns in | |
219 | doing so. The first pass usually makes 90% of the changes that are doable. | |
220 | A second pass can make a few more changes made possible by the first pass. | |
221 | Experiments show any further passes don't make enough changes to justify | |
222 | the expense. | |
223 | ||
224 | A study of spec92 using an unlimited number of passes: | |
225 | [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83, | |
226 | [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2, | |
227 | [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1 | |
228 | ||
229 | It was found doing copy propagation between each pass enables further | |
230 | substitutions. | |
231 | ||
232 | PRE is quite expensive in complicated functions because the DFA can take | |
740f35a0 | 233 | awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can |
7506f491 DE |
234 | be modified if one wants to experiment. |
235 | ||
236 | ********************** | |
237 | ||
238 | The steps for PRE are: | |
239 | ||
240 | 1) Build the hash table of expressions we wish to GCSE (expr_hash_table). | |
241 | ||
242 | 2) Perform the data flow analysis for PRE. | |
243 | ||
244 | 3) Delete the redundant instructions | |
245 | ||
246 | 4) Insert the required copies [if any] that make the partially | |
247 | redundant instructions fully redundant. | |
248 | ||
249 | 5) For other reaching expressions, insert an instruction to copy the value | |
250 | to a newly created pseudo that will reach the redundant instruction. | |
251 | ||
252 | The deletion is done first so that when we do insertions we | |
253 | know which pseudo reg to use. | |
254 | ||
255 | Various papers have argued that PRE DFA is expensive (O(n^2)) and others | |
256 | argue it is not. The number of iterations for the algorithm to converge | |
257 | is typically 2-4 so I don't view it as that expensive (relatively speaking). | |
258 | ||
f4e584dc | 259 | PRE GCSE depends heavily on the second CSE pass to clean up the copies |
7506f491 DE |
260 | we create. To make an expression reach the place where it's redundant, |
261 | the result of the expression is copied to a new register, and the redundant | |
262 | expression is deleted by replacing it with this new register. Classic GCSE | |
263 | doesn't have this problem as much as it computes the reaching defs of | |
264 | each register in each block and thus can try to use an existing register. | |
265 | ||
266 | ********************** | |
267 | ||
7506f491 DE |
268 | A fair bit of simplicity is created by creating small functions for simple |
269 | tasks, even when the function is only called in one place. This may | |
270 | measurably slow things down [or may not] by creating more function call | |
271 | overhead than is necessary. The source is laid out so that it's trivial | |
272 | to make the affected functions inline so that one can measure what speed | |
273 | up, if any, can be achieved, and maybe later when things settle things can | |
274 | be rearranged. | |
275 | ||
276 | Help stamp out big monolithic functions! */ | |
277 | \f | |
278 | /* GCSE global vars. */ | |
279 | ||
280 | /* -dG dump file. */ | |
281 | static FILE *gcse_file; | |
282 | ||
f4e584dc JL |
283 | /* Note whether or not we should run jump optimization after gcse. We |
284 | want to do this for two cases. | |
285 | ||
286 | * If we changed any jumps via cprop. | |
287 | ||
288 | * If we added any labels via edge splitting. */ | |
289 | ||
290 | static int run_jump_opt_after_gcse; | |
291 | ||
7506f491 DE |
292 | /* Bitmaps are normally not included in debugging dumps. |
293 | However it's useful to be able to print them from GDB. | |
294 | We could create special functions for this, but it's simpler to | |
295 | just allow passing stderr to the dump_foo fns. Since stderr can | |
296 | be a macro, we store a copy here. */ | |
297 | static FILE *debug_stderr; | |
298 | ||
299 | /* An obstack for our working variables. */ | |
300 | static struct obstack gcse_obstack; | |
301 | ||
cc2902df | 302 | /* Nonzero for each mode that supports (set (reg) (reg)). |
7506f491 DE |
303 | This is trivially true for integer and floating point values. |
304 | It may or may not be true for condition codes. */ | |
305 | static char can_copy_p[(int) NUM_MACHINE_MODES]; | |
306 | ||
cc2902df | 307 | /* Nonzero if can_copy_p has been initialized. */ |
7506f491 DE |
308 | static int can_copy_init_p; |
309 | ||
c4c81601 | 310 | struct reg_use {rtx reg_rtx; }; |
abd535b6 | 311 | |
7506f491 DE |
312 | /* Hash table of expressions. */ |
313 | ||
314 | struct expr | |
315 | { | |
316 | /* The expression (SET_SRC for expressions, PATTERN for assignments). */ | |
317 | rtx expr; | |
318 | /* Index in the available expression bitmaps. */ | |
319 | int bitmap_index; | |
320 | /* Next entry with the same hash. */ | |
321 | struct expr *next_same_hash; | |
322 | /* List of anticipatable occurrences in basic blocks in the function. | |
323 | An "anticipatable occurrence" is one that is the first occurrence in the | |
f4e584dc JL |
324 | basic block, the operands are not modified in the basic block prior |
325 | to the occurrence and the output is not used between the start of | |
326 | the block and the occurrence. */ | |
7506f491 DE |
327 | struct occr *antic_occr; |
328 | /* List of available occurrence in basic blocks in the function. | |
329 | An "available occurrence" is one that is the last occurrence in the | |
330 | basic block and the operands are not modified by following statements in | |
331 | the basic block [including this insn]. */ | |
332 | struct occr *avail_occr; | |
333 | /* Non-null if the computation is PRE redundant. | |
334 | The value is the newly created pseudo-reg to record a copy of the | |
335 | expression in all the places that reach the redundant copy. */ | |
336 | rtx reaching_reg; | |
337 | }; | |
338 | ||
339 | /* Occurrence of an expression. | |
340 | There is one per basic block. If a pattern appears more than once the | |
341 | last appearance is used [or first for anticipatable expressions]. */ | |
342 | ||
343 | struct occr | |
344 | { | |
345 | /* Next occurrence of this expression. */ | |
346 | struct occr *next; | |
347 | /* The insn that computes the expression. */ | |
348 | rtx insn; | |
cc2902df | 349 | /* Nonzero if this [anticipatable] occurrence has been deleted. */ |
7506f491 | 350 | char deleted_p; |
cc2902df | 351 | /* Nonzero if this [available] occurrence has been copied to |
7506f491 DE |
352 | reaching_reg. */ |
353 | /* ??? This is mutually exclusive with deleted_p, so they could share | |
354 | the same byte. */ | |
355 | char copied_p; | |
356 | }; | |
357 | ||
358 | /* Expression and copy propagation hash tables. | |
359 | Each hash table is an array of buckets. | |
360 | ??? It is known that if it were an array of entries, structure elements | |
361 | `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is | |
362 | not clear whether in the final analysis a sufficient amount of memory would | |
363 | be saved as the size of the available expression bitmaps would be larger | |
364 | [one could build a mapping table without holes afterwards though]. | |
c4c81601 | 365 | Someday I'll perform the computation and figure it out. */ |
7506f491 | 366 | |
02280659 ZD |
367 | struct hash_table |
368 | { | |
369 | /* The table itself. | |
370 | This is an array of `expr_hash_table_size' elements. */ | |
371 | struct expr **table; | |
372 | ||
373 | /* Size of the hash table, in elements. */ | |
374 | unsigned int size; | |
2e653e39 | 375 | |
02280659 ZD |
376 | /* Number of hash table elements. */ |
377 | unsigned int n_elems; | |
7506f491 | 378 | |
02280659 ZD |
379 | /* Whether the table is expression of copy propagation one. */ |
380 | int set_p; | |
381 | }; | |
c4c81601 | 382 | |
02280659 ZD |
383 | /* Expression hash table. */ |
384 | static struct hash_table expr_hash_table; | |
385 | ||
386 | /* Copy propagation hash table. */ | |
387 | static struct hash_table set_hash_table; | |
7506f491 DE |
388 | |
389 | /* Mapping of uids to cuids. | |
390 | Only real insns get cuids. */ | |
391 | static int *uid_cuid; | |
392 | ||
393 | /* Highest UID in UID_CUID. */ | |
394 | static int max_uid; | |
395 | ||
396 | /* Get the cuid of an insn. */ | |
b86db3eb BS |
397 | #ifdef ENABLE_CHECKING |
398 | #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)]) | |
399 | #else | |
7506f491 | 400 | #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)]) |
b86db3eb | 401 | #endif |
7506f491 DE |
402 | |
403 | /* Number of cuids. */ | |
404 | static int max_cuid; | |
405 | ||
406 | /* Mapping of cuids to insns. */ | |
407 | static rtx *cuid_insn; | |
408 | ||
409 | /* Get insn from cuid. */ | |
410 | #define CUID_INSN(CUID) (cuid_insn[CUID]) | |
411 | ||
412 | /* Maximum register number in function prior to doing gcse + 1. | |
413 | Registers created during this pass have regno >= max_gcse_regno. | |
414 | This is named with "gcse" to not collide with global of same name. */ | |
770ae6cc | 415 | static unsigned int max_gcse_regno; |
7506f491 | 416 | |
7506f491 | 417 | /* Table of registers that are modified. |
c4c81601 | 418 | |
7506f491 DE |
419 | For each register, each element is a list of places where the pseudo-reg |
420 | is set. | |
421 | ||
422 | For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only | |
423 | requires knowledge of which blocks kill which regs [and thus could use | |
f4e584dc | 424 | a bitmap instead of the lists `reg_set_table' uses]. |
7506f491 | 425 | |
c4c81601 RK |
426 | `reg_set_table' and could be turned into an array of bitmaps (num-bbs x |
427 | num-regs) [however perhaps it may be useful to keep the data as is]. One | |
428 | advantage of recording things this way is that `reg_set_table' is fairly | |
429 | sparse with respect to pseudo regs but for hard regs could be fairly dense | |
430 | [relatively speaking]. And recording sets of pseudo-regs in lists speeds | |
7506f491 DE |
431 | up functions like compute_transp since in the case of pseudo-regs we only |
432 | need to iterate over the number of times a pseudo-reg is set, not over the | |
433 | number of basic blocks [clearly there is a bit of a slow down in the cases | |
434 | where a pseudo is set more than once in a block, however it is believed | |
435 | that the net effect is to speed things up]. This isn't done for hard-regs | |
436 | because recording call-clobbered hard-regs in `reg_set_table' at each | |
c4c81601 RK |
437 | function call can consume a fair bit of memory, and iterating over |
438 | hard-regs stored this way in compute_transp will be more expensive. */ | |
7506f491 | 439 | |
c4c81601 RK |
440 | typedef struct reg_set |
441 | { | |
7506f491 DE |
442 | /* The next setting of this register. */ |
443 | struct reg_set *next; | |
444 | /* The insn where it was set. */ | |
445 | rtx insn; | |
446 | } reg_set; | |
c4c81601 | 447 | |
7506f491 | 448 | static reg_set **reg_set_table; |
c4c81601 | 449 | |
7506f491 DE |
450 | /* Size of `reg_set_table'. |
451 | The table starts out at max_gcse_regno + slop, and is enlarged as | |
452 | necessary. */ | |
453 | static int reg_set_table_size; | |
c4c81601 | 454 | |
7506f491 DE |
455 | /* Amount to grow `reg_set_table' by when it's full. */ |
456 | #define REG_SET_TABLE_SLOP 100 | |
457 | ||
a13d4ebf | 458 | /* This is a list of expressions which are MEMs and will be used by load |
589005ff | 459 | or store motion. |
a13d4ebf AM |
460 | Load motion tracks MEMs which aren't killed by |
461 | anything except itself. (ie, loads and stores to a single location). | |
589005ff | 462 | We can then allow movement of these MEM refs with a little special |
a13d4ebf AM |
463 | allowance. (all stores copy the same value to the reaching reg used |
464 | for the loads). This means all values used to store into memory must have | |
589005ff | 465 | no side effects so we can re-issue the setter value. |
a13d4ebf AM |
466 | Store Motion uses this structure as an expression table to track stores |
467 | which look interesting, and might be moveable towards the exit block. */ | |
468 | ||
469 | struct ls_expr | |
470 | { | |
471 | struct expr * expr; /* Gcse expression reference for LM. */ | |
472 | rtx pattern; /* Pattern of this mem. */ | |
aaa4ca30 AJ |
473 | rtx loads; /* INSN list of loads seen. */ |
474 | rtx stores; /* INSN list of stores seen. */ | |
a13d4ebf AM |
475 | struct ls_expr * next; /* Next in the list. */ |
476 | int invalid; /* Invalid for some reason. */ | |
477 | int index; /* If it maps to a bitmap index. */ | |
478 | int hash_index; /* Index when in a hash table. */ | |
479 | rtx reaching_reg; /* Register to use when re-writing. */ | |
480 | }; | |
481 | ||
482 | /* Head of the list of load/store memory refs. */ | |
483 | static struct ls_expr * pre_ldst_mems = NULL; | |
484 | ||
7506f491 DE |
485 | /* Bitmap containing one bit for each register in the program. |
486 | Used when performing GCSE to track which registers have been set since | |
487 | the start of the basic block. */ | |
73991d6a | 488 | static regset reg_set_bitmap; |
7506f491 DE |
489 | |
490 | /* For each block, a bitmap of registers set in the block. | |
491 | This is used by expr_killed_p and compute_transp. | |
492 | It is computed during hash table computation and not by compute_sets | |
493 | as it includes registers added since the last pass (or between cprop and | |
494 | gcse) and it's currently not easy to realloc sbitmap vectors. */ | |
495 | static sbitmap *reg_set_in_block; | |
496 | ||
a13d4ebf AM |
497 | /* Array, indexed by basic block number for a list of insns which modify |
498 | memory within that block. */ | |
499 | static rtx * modify_mem_list; | |
73991d6a | 500 | bitmap modify_mem_list_set; |
a13d4ebf AM |
501 | |
502 | /* This array parallels modify_mem_list, but is kept canonicalized. */ | |
503 | static rtx * canon_modify_mem_list; | |
73991d6a | 504 | bitmap canon_modify_mem_list_set; |
7506f491 DE |
505 | /* Various variables for statistics gathering. */ |
506 | ||
507 | /* Memory used in a pass. | |
508 | This isn't intended to be absolutely precise. Its intent is only | |
509 | to keep an eye on memory usage. */ | |
510 | static int bytes_used; | |
c4c81601 | 511 | |
7506f491 DE |
512 | /* GCSE substitutions made. */ |
513 | static int gcse_subst_count; | |
514 | /* Number of copy instructions created. */ | |
515 | static int gcse_create_count; | |
516 | /* Number of constants propagated. */ | |
517 | static int const_prop_count; | |
518 | /* Number of copys propagated. */ | |
519 | static int copy_prop_count; | |
7506f491 DE |
520 | \f |
521 | /* These variables are used by classic GCSE. | |
522 | Normally they'd be defined a bit later, but `rd_gen' needs to | |
523 | be declared sooner. */ | |
524 | ||
7506f491 DE |
525 | /* Each block has a bitmap of each type. |
526 | The length of each blocks bitmap is: | |
527 | ||
528 | max_cuid - for reaching definitions | |
529 | n_exprs - for available expressions | |
530 | ||
531 | Thus we view the bitmaps as 2 dimensional arrays. i.e. | |
532 | rd_kill[block_num][cuid_num] | |
c4c81601 | 533 | ae_kill[block_num][expr_num] */ |
7506f491 DE |
534 | |
535 | /* For reaching defs */ | |
536 | static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out; | |
537 | ||
538 | /* for available exprs */ | |
539 | static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out; | |
b5ce41ff | 540 | |
0511851c MM |
541 | /* Objects of this type are passed around by the null-pointer check |
542 | removal routines. */ | |
c4c81601 RK |
543 | struct null_pointer_info |
544 | { | |
0511851c | 545 | /* The basic block being processed. */ |
e0082a72 | 546 | basic_block current_block; |
0511851c | 547 | /* The first register to be handled in this pass. */ |
770ae6cc | 548 | unsigned int min_reg; |
0511851c | 549 | /* One greater than the last register to be handled in this pass. */ |
770ae6cc | 550 | unsigned int max_reg; |
0511851c MM |
551 | sbitmap *nonnull_local; |
552 | sbitmap *nonnull_killed; | |
553 | }; | |
7506f491 | 554 | \f |
c4c81601 RK |
555 | static void compute_can_copy PARAMS ((void)); |
556 | static char *gmalloc PARAMS ((unsigned int)); | |
557 | static char *grealloc PARAMS ((char *, unsigned int)); | |
558 | static char *gcse_alloc PARAMS ((unsigned long)); | |
559 | static void alloc_gcse_mem PARAMS ((rtx)); | |
560 | static void free_gcse_mem PARAMS ((void)); | |
561 | static void alloc_reg_set_mem PARAMS ((int)); | |
562 | static void free_reg_set_mem PARAMS ((void)); | |
563 | static int get_bitmap_width PARAMS ((int, int, int)); | |
564 | static void record_one_set PARAMS ((int, rtx)); | |
565 | static void record_set_info PARAMS ((rtx, rtx, void *)); | |
566 | static void compute_sets PARAMS ((rtx)); | |
02280659 ZD |
567 | static void hash_scan_insn PARAMS ((rtx, struct hash_table *, int)); |
568 | static void hash_scan_set PARAMS ((rtx, rtx, struct hash_table *)); | |
569 | static void hash_scan_clobber PARAMS ((rtx, rtx, struct hash_table *)); | |
570 | static void hash_scan_call PARAMS ((rtx, rtx, struct hash_table *)); | |
c4c81601 RK |
571 | static int want_to_gcse_p PARAMS ((rtx)); |
572 | static int oprs_unchanged_p PARAMS ((rtx, rtx, int)); | |
573 | static int oprs_anticipatable_p PARAMS ((rtx, rtx)); | |
574 | static int oprs_available_p PARAMS ((rtx, rtx)); | |
575 | static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx, | |
02280659 ZD |
576 | int, int, struct hash_table *)); |
577 | static void insert_set_in_table PARAMS ((rtx, rtx, struct hash_table *)); | |
c4c81601 RK |
578 | static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int)); |
579 | static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *)); | |
c0712acb | 580 | static unsigned int hash_string_1 PARAMS ((const char *)); |
c4c81601 RK |
581 | static unsigned int hash_set PARAMS ((int, int)); |
582 | static int expr_equiv_p PARAMS ((rtx, rtx)); | |
583 | static void record_last_reg_set_info PARAMS ((rtx, int)); | |
584 | static void record_last_mem_set_info PARAMS ((rtx)); | |
585 | static void record_last_set_info PARAMS ((rtx, rtx, void *)); | |
02280659 ZD |
586 | static void compute_hash_table PARAMS ((struct hash_table *)); |
587 | static void alloc_hash_table PARAMS ((int, struct hash_table *, int)); | |
588 | static void free_hash_table PARAMS ((struct hash_table *)); | |
589 | static void compute_hash_table_work PARAMS ((struct hash_table *)); | |
590 | static void dump_hash_table PARAMS ((FILE *, const char *, | |
591 | struct hash_table *)); | |
592 | static struct expr *lookup_expr PARAMS ((rtx, struct hash_table *)); | |
593 | static struct expr *lookup_set PARAMS ((unsigned int, rtx, struct hash_table *)); | |
770ae6cc | 594 | static struct expr *next_set PARAMS ((unsigned int, struct expr *)); |
c4c81601 RK |
595 | static void reset_opr_set_tables PARAMS ((void)); |
596 | static int oprs_not_set_p PARAMS ((rtx, rtx)); | |
597 | static void mark_call PARAMS ((rtx)); | |
598 | static void mark_set PARAMS ((rtx, rtx)); | |
599 | static void mark_clobber PARAMS ((rtx, rtx)); | |
600 | static void mark_oprs_set PARAMS ((rtx)); | |
601 | static void alloc_cprop_mem PARAMS ((int, int)); | |
602 | static void free_cprop_mem PARAMS ((void)); | |
603 | static void compute_transp PARAMS ((rtx, int, sbitmap *, int)); | |
604 | static void compute_transpout PARAMS ((void)); | |
605 | static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *, | |
02280659 | 606 | struct hash_table *)); |
711d877c | 607 | static void compute_cprop_data PARAMS ((void)); |
9e71c818 | 608 | static void find_used_regs PARAMS ((rtx *, void *)); |
c4c81601 RK |
609 | static int try_replace_reg PARAMS ((rtx, rtx, rtx)); |
610 | static struct expr *find_avail_set PARAMS ((int, rtx)); | |
0e3f0221 | 611 | static int cprop_jump PARAMS ((basic_block, rtx, rtx, rtx, rtx)); |
a13d4ebf | 612 | static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *)); |
e2d2ed72 | 613 | static int load_killed_in_block_p PARAMS ((basic_block, int, rtx, int)); |
a13d4ebf | 614 | static void canon_list_insert PARAMS ((rtx, rtx, void *)); |
ae860ff7 | 615 | static int cprop_insn PARAMS ((rtx, int)); |
c4c81601 | 616 | static int cprop PARAMS ((int)); |
a0134312 | 617 | static int one_cprop_pass PARAMS ((int, int, int)); |
ae860ff7 | 618 | static bool constprop_register PARAMS ((rtx, rtx, rtx, int)); |
0e3f0221 RS |
619 | static struct expr *find_bypass_set PARAMS ((int, int)); |
620 | static int bypass_block PARAMS ((basic_block, rtx, rtx)); | |
621 | static int bypass_conditional_jumps PARAMS ((void)); | |
c4c81601 RK |
622 | static void alloc_pre_mem PARAMS ((int, int)); |
623 | static void free_pre_mem PARAMS ((void)); | |
624 | static void compute_pre_data PARAMS ((void)); | |
589005ff | 625 | static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *, |
e2d2ed72 AM |
626 | basic_block)); |
627 | static void insert_insn_end_bb PARAMS ((struct expr *, basic_block, int)); | |
c4c81601 RK |
628 | static void pre_insert_copy_insn PARAMS ((struct expr *, rtx)); |
629 | static void pre_insert_copies PARAMS ((void)); | |
630 | static int pre_delete PARAMS ((void)); | |
631 | static int pre_gcse PARAMS ((void)); | |
632 | static int one_pre_gcse_pass PARAMS ((int)); | |
633 | static void add_label_notes PARAMS ((rtx, rtx)); | |
634 | static void alloc_code_hoist_mem PARAMS ((int, int)); | |
635 | static void free_code_hoist_mem PARAMS ((void)); | |
711d877c | 636 | static void compute_code_hoist_vbeinout PARAMS ((void)); |
c4c81601 | 637 | static void compute_code_hoist_data PARAMS ((void)); |
589005ff | 638 | static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block, |
e2d2ed72 | 639 | char *)); |
c4c81601 RK |
640 | static void hoist_code PARAMS ((void)); |
641 | static int one_code_hoisting_pass PARAMS ((void)); | |
642 | static void alloc_rd_mem PARAMS ((int, int)); | |
643 | static void free_rd_mem PARAMS ((void)); | |
e2d2ed72 | 644 | static void handle_rd_kill_set PARAMS ((rtx, int, basic_block)); |
c4c81601 | 645 | static void compute_kill_rd PARAMS ((void)); |
711d877c | 646 | static void compute_rd PARAMS ((void)); |
c4c81601 RK |
647 | static void alloc_avail_expr_mem PARAMS ((int, int)); |
648 | static void free_avail_expr_mem PARAMS ((void)); | |
02280659 | 649 | static void compute_ae_gen PARAMS ((struct hash_table *)); |
e2d2ed72 | 650 | static int expr_killed_p PARAMS ((rtx, basic_block)); |
02280659 | 651 | static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *, struct hash_table *)); |
711d877c | 652 | static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *, |
e2d2ed72 | 653 | basic_block, int)); |
c4c81601 RK |
654 | static rtx computing_insn PARAMS ((struct expr *, rtx)); |
655 | static int def_reaches_here_p PARAMS ((rtx, rtx)); | |
656 | static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int)); | |
657 | static int handle_avail_expr PARAMS ((rtx, struct expr *)); | |
658 | static int classic_gcse PARAMS ((void)); | |
659 | static int one_classic_gcse_pass PARAMS ((int)); | |
660 | static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *)); | |
99a15921 | 661 | static int delete_null_pointer_checks_1 PARAMS ((unsigned int *, |
8e184d9c | 662 | sbitmap *, sbitmap *, |
711d877c KG |
663 | struct null_pointer_info *)); |
664 | static rtx process_insert_insn PARAMS ((struct expr *)); | |
665 | static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **)); | |
c4c81601 | 666 | static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *, |
e2d2ed72 AM |
667 | basic_block, int, char *)); |
668 | static int pre_expr_reaches_here_p_work PARAMS ((basic_block, struct expr *, | |
669 | basic_block, char *)); | |
a13d4ebf AM |
670 | static struct ls_expr * ldst_entry PARAMS ((rtx)); |
671 | static void free_ldst_entry PARAMS ((struct ls_expr *)); | |
672 | static void free_ldst_mems PARAMS ((void)); | |
673 | static void print_ldst_list PARAMS ((FILE *)); | |
674 | static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx)); | |
675 | static int enumerate_ldsts PARAMS ((void)); | |
676 | static inline struct ls_expr * first_ls_expr PARAMS ((void)); | |
677 | static inline struct ls_expr * next_ls_expr PARAMS ((struct ls_expr *)); | |
678 | static int simple_mem PARAMS ((rtx)); | |
679 | static void invalidate_any_buried_refs PARAMS ((rtx)); | |
589005ff | 680 | static void compute_ld_motion_mems PARAMS ((void)); |
a13d4ebf AM |
681 | static void trim_ld_motion_mems PARAMS ((void)); |
682 | static void update_ld_motion_stores PARAMS ((struct expr *)); | |
aaa4ca30 AJ |
683 | static void reg_set_info PARAMS ((rtx, rtx, void *)); |
684 | static int store_ops_ok PARAMS ((rtx, basic_block)); | |
a13d4ebf AM |
685 | static void find_moveable_store PARAMS ((rtx)); |
686 | static int compute_store_table PARAMS ((void)); | |
687 | static int load_kills_store PARAMS ((rtx, rtx)); | |
688 | static int find_loads PARAMS ((rtx, rtx)); | |
689 | static int store_killed_in_insn PARAMS ((rtx, rtx)); | |
aaa4ca30 | 690 | static int store_killed_after PARAMS ((rtx, rtx, basic_block)); |
e2d2ed72 | 691 | static int store_killed_before PARAMS ((rtx, rtx, basic_block)); |
a13d4ebf | 692 | static void build_store_vectors PARAMS ((void)); |
e2d2ed72 | 693 | static void insert_insn_start_bb PARAMS ((rtx, basic_block)); |
a13d4ebf | 694 | static int insert_store PARAMS ((struct ls_expr *, edge)); |
e2d2ed72 | 695 | static void replace_store_insn PARAMS ((rtx, rtx, basic_block)); |
589005ff | 696 | static void delete_store PARAMS ((struct ls_expr *, |
e2d2ed72 | 697 | basic_block)); |
a13d4ebf AM |
698 | static void free_store_memory PARAMS ((void)); |
699 | static void store_motion PARAMS ((void)); | |
0fe854a7 | 700 | static void free_insn_expr_list_list PARAMS ((rtx *)); |
73991d6a JH |
701 | static void clear_modify_mem_tables PARAMS ((void)); |
702 | static void free_modify_mem_tables PARAMS ((void)); | |
10d1bb36 | 703 | static rtx gcse_emit_move_after PARAMS ((rtx, rtx, rtx)); |
8ba46434 R |
704 | static bool do_local_cprop PARAMS ((rtx, rtx, int, rtx*)); |
705 | static bool adjust_libcall_notes PARAMS ((rtx, rtx, rtx, rtx*)); | |
ae860ff7 | 706 | static void local_cprop_pass PARAMS ((int)); |
7506f491 DE |
707 | \f |
708 | /* Entry point for global common subexpression elimination. | |
709 | F is the first instruction in the function. */ | |
710 | ||
e78d9500 | 711 | int |
7506f491 DE |
712 | gcse_main (f, file) |
713 | rtx f; | |
714 | FILE *file; | |
715 | { | |
716 | int changed, pass; | |
717 | /* Bytes used at start of pass. */ | |
718 | int initial_bytes_used; | |
719 | /* Maximum number of bytes used by a pass. */ | |
720 | int max_pass_bytes; | |
721 | /* Point to release obstack data from for each pass. */ | |
722 | char *gcse_obstack_bottom; | |
723 | ||
b5ce41ff JL |
724 | /* We do not construct an accurate cfg in functions which call |
725 | setjmp, so just punt to be safe. */ | |
7506f491 | 726 | if (current_function_calls_setjmp) |
e78d9500 | 727 | return 0; |
589005ff | 728 | |
b5ce41ff JL |
729 | /* Assume that we do not need to run jump optimizations after gcse. */ |
730 | run_jump_opt_after_gcse = 0; | |
731 | ||
7506f491 DE |
732 | /* For calling dump_foo fns from gdb. */ |
733 | debug_stderr = stderr; | |
b5ce41ff | 734 | gcse_file = file; |
7506f491 | 735 | |
b5ce41ff JL |
736 | /* Identify the basic block information for this function, including |
737 | successors and predecessors. */ | |
7506f491 | 738 | max_gcse_regno = max_reg_num (); |
7506f491 | 739 | |
a42cd965 AM |
740 | if (file) |
741 | dump_flow_info (file); | |
742 | ||
7506f491 | 743 | /* Return if there's nothing to do. */ |
0b17ab2f | 744 | if (n_basic_blocks <= 1) |
a18820c6 | 745 | return 0; |
7506f491 | 746 | |
55f7891b JL |
747 | /* Trying to perform global optimizations on flow graphs which have |
748 | a high connectivity will take a long time and is unlikely to be | |
749 | particularly useful. | |
750 | ||
43e72072 | 751 | In normal circumstances a cfg should have about twice as many edges |
55f7891b JL |
752 | as blocks. But we do not want to punish small functions which have |
753 | a couple switch statements. So we require a relatively large number | |
754 | of basic blocks and the ratio of edges to blocks to be high. */ | |
0b17ab2f | 755 | if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20) |
18424ae1 BL |
756 | { |
757 | if (warn_disabled_optimization) | |
8e42ace1 | 758 | warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block", |
0b17ab2f | 759 | n_basic_blocks, n_edges / n_basic_blocks); |
18424ae1 BL |
760 | return 0; |
761 | } | |
55f7891b | 762 | |
f1fa37ff MM |
763 | /* If allocating memory for the cprop bitmap would take up too much |
764 | storage it's better just to disable the optimization. */ | |
589005ff | 765 | if ((n_basic_blocks |
f1fa37ff MM |
766 | * SBITMAP_SET_SIZE (max_gcse_regno) |
767 | * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY) | |
768 | { | |
769 | if (warn_disabled_optimization) | |
770 | warning ("GCSE disabled: %d basic blocks and %d registers", | |
0b17ab2f | 771 | n_basic_blocks, max_gcse_regno); |
f1fa37ff MM |
772 | |
773 | return 0; | |
774 | } | |
775 | ||
7506f491 DE |
776 | /* See what modes support reg/reg copy operations. */ |
777 | if (! can_copy_init_p) | |
778 | { | |
779 | compute_can_copy (); | |
780 | can_copy_init_p = 1; | |
781 | } | |
782 | ||
783 | gcc_obstack_init (&gcse_obstack); | |
a42cd965 | 784 | bytes_used = 0; |
7506f491 | 785 | |
a13d4ebf AM |
786 | /* We need alias. */ |
787 | init_alias_analysis (); | |
c4c81601 RK |
788 | /* Record where pseudo-registers are set. This data is kept accurate |
789 | during each pass. ??? We could also record hard-reg information here | |
790 | [since it's unchanging], however it is currently done during hash table | |
791 | computation. | |
b5ce41ff | 792 | |
c4c81601 RK |
793 | It may be tempting to compute MEM set information here too, but MEM sets |
794 | will be subject to code motion one day and thus we need to compute | |
b5ce41ff | 795 | information about memory sets when we build the hash tables. */ |
7506f491 DE |
796 | |
797 | alloc_reg_set_mem (max_gcse_regno); | |
798 | compute_sets (f); | |
799 | ||
800 | pass = 0; | |
801 | initial_bytes_used = bytes_used; | |
802 | max_pass_bytes = 0; | |
803 | gcse_obstack_bottom = gcse_alloc (1); | |
804 | changed = 1; | |
740f35a0 | 805 | while (changed && pass < MAX_GCSE_PASSES) |
7506f491 DE |
806 | { |
807 | changed = 0; | |
808 | if (file) | |
809 | fprintf (file, "GCSE pass %d\n\n", pass + 1); | |
810 | ||
811 | /* Initialize bytes_used to the space for the pred/succ lists, | |
812 | and the reg_set_table data. */ | |
813 | bytes_used = initial_bytes_used; | |
814 | ||
815 | /* Each pass may create new registers, so recalculate each time. */ | |
816 | max_gcse_regno = max_reg_num (); | |
817 | ||
818 | alloc_gcse_mem (f); | |
819 | ||
b5ce41ff JL |
820 | /* Don't allow constant propagation to modify jumps |
821 | during this pass. */ | |
a0134312 | 822 | changed = one_cprop_pass (pass + 1, 0, 0); |
7506f491 DE |
823 | |
824 | if (optimize_size) | |
b5ce41ff | 825 | changed |= one_classic_gcse_pass (pass + 1); |
7506f491 | 826 | else |
589005ff | 827 | { |
a42cd965 | 828 | changed |= one_pre_gcse_pass (pass + 1); |
a13d4ebf AM |
829 | /* We may have just created new basic blocks. Release and |
830 | recompute various things which are sized on the number of | |
831 | basic blocks. */ | |
832 | if (changed) | |
833 | { | |
73991d6a | 834 | free_modify_mem_tables (); |
a13d4ebf | 835 | modify_mem_list |
d55bc081 | 836 | = (rtx *) gmalloc (last_basic_block * sizeof (rtx)); |
a13d4ebf | 837 | canon_modify_mem_list |
d55bc081 ZD |
838 | = (rtx *) gmalloc (last_basic_block * sizeof (rtx)); |
839 | memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx)); | |
840 | memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx)); | |
a13d4ebf | 841 | } |
a42cd965 AM |
842 | free_reg_set_mem (); |
843 | alloc_reg_set_mem (max_reg_num ()); | |
844 | compute_sets (f); | |
845 | run_jump_opt_after_gcse = 1; | |
846 | } | |
7506f491 DE |
847 | |
848 | if (max_pass_bytes < bytes_used) | |
849 | max_pass_bytes = bytes_used; | |
850 | ||
bb457bd9 JL |
851 | /* Free up memory, then reallocate for code hoisting. We can |
852 | not re-use the existing allocated memory because the tables | |
853 | will not have info for the insns or registers created by | |
854 | partial redundancy elimination. */ | |
7506f491 DE |
855 | free_gcse_mem (); |
856 | ||
bb457bd9 JL |
857 | /* It does not make sense to run code hoisting unless we optimizing |
858 | for code size -- it rarely makes programs faster, and can make | |
859 | them bigger if we did partial redundancy elimination (when optimizing | |
860 | for space, we use a classic gcse algorithm instead of partial | |
861 | redundancy algorithms). */ | |
862 | if (optimize_size) | |
589005ff | 863 | { |
bb457bd9 JL |
864 | max_gcse_regno = max_reg_num (); |
865 | alloc_gcse_mem (f); | |
866 | changed |= one_code_hoisting_pass (); | |
867 | free_gcse_mem (); | |
868 | ||
869 | if (max_pass_bytes < bytes_used) | |
870 | max_pass_bytes = bytes_used; | |
589005ff | 871 | } |
bb457bd9 | 872 | |
7506f491 DE |
873 | if (file) |
874 | { | |
875 | fprintf (file, "\n"); | |
876 | fflush (file); | |
877 | } | |
c4c81601 | 878 | |
7506f491 DE |
879 | obstack_free (&gcse_obstack, gcse_obstack_bottom); |
880 | pass++; | |
881 | } | |
882 | ||
b5ce41ff JL |
883 | /* Do one last pass of copy propagation, including cprop into |
884 | conditional jumps. */ | |
885 | ||
886 | max_gcse_regno = max_reg_num (); | |
887 | alloc_gcse_mem (f); | |
888 | /* This time, go ahead and allow cprop to alter jumps. */ | |
a0134312 | 889 | one_cprop_pass (pass + 1, 1, 0); |
b5ce41ff | 890 | free_gcse_mem (); |
7506f491 DE |
891 | |
892 | if (file) | |
893 | { | |
894 | fprintf (file, "GCSE of %s: %d basic blocks, ", | |
0b17ab2f | 895 | current_function_name, n_basic_blocks); |
7506f491 DE |
896 | fprintf (file, "%d pass%s, %d bytes\n\n", |
897 | pass, pass > 1 ? "es" : "", max_pass_bytes); | |
898 | } | |
899 | ||
6496a589 | 900 | obstack_free (&gcse_obstack, NULL); |
7506f491 | 901 | free_reg_set_mem (); |
a13d4ebf AM |
902 | /* We are finished with alias. */ |
903 | end_alias_analysis (); | |
904 | allocate_reg_info (max_reg_num (), FALSE, FALSE); | |
905 | ||
61ad9a34 JJ |
906 | /* Store motion disabled until it is fixed. */ |
907 | if (0 && !optimize_size && flag_gcse_sm) | |
a13d4ebf AM |
908 | store_motion (); |
909 | /* Record where pseudo-registers are set. */ | |
e78d9500 | 910 | return run_jump_opt_after_gcse; |
7506f491 DE |
911 | } |
912 | \f | |
913 | /* Misc. utilities. */ | |
914 | ||
915 | /* Compute which modes support reg/reg copy operations. */ | |
916 | ||
917 | static void | |
918 | compute_can_copy () | |
919 | { | |
920 | int i; | |
50b2596f | 921 | #ifndef AVOID_CCMODE_COPIES |
8e42ace1 | 922 | rtx reg, insn; |
50b2596f | 923 | #endif |
961192e1 | 924 | memset (can_copy_p, 0, NUM_MACHINE_MODES); |
7506f491 DE |
925 | |
926 | start_sequence (); | |
927 | for (i = 0; i < NUM_MACHINE_MODES; i++) | |
c4c81601 RK |
928 | if (GET_MODE_CLASS (i) == MODE_CC) |
929 | { | |
7506f491 | 930 | #ifdef AVOID_CCMODE_COPIES |
c4c81601 | 931 | can_copy_p[i] = 0; |
7506f491 | 932 | #else |
c4c81601 RK |
933 | reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1); |
934 | insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg)); | |
9714cf43 | 935 | if (recog (PATTERN (insn), insn, NULL) >= 0) |
c4c81601 | 936 | can_copy_p[i] = 1; |
7506f491 | 937 | #endif |
c4c81601 | 938 | } |
141b5810 AO |
939 | else |
940 | can_copy_p[i] = 1; | |
c4c81601 | 941 | |
7506f491 | 942 | end_sequence (); |
7506f491 DE |
943 | } |
944 | \f | |
945 | /* Cover function to xmalloc to record bytes allocated. */ | |
946 | ||
947 | static char * | |
948 | gmalloc (size) | |
949 | unsigned int size; | |
950 | { | |
951 | bytes_used += size; | |
952 | return xmalloc (size); | |
953 | } | |
954 | ||
955 | /* Cover function to xrealloc. | |
956 | We don't record the additional size since we don't know it. | |
957 | It won't affect memory usage stats much anyway. */ | |
958 | ||
959 | static char * | |
960 | grealloc (ptr, size) | |
961 | char *ptr; | |
962 | unsigned int size; | |
963 | { | |
964 | return xrealloc (ptr, size); | |
965 | } | |
966 | ||
77bbd421 | 967 | /* Cover function to obstack_alloc. */ |
7506f491 DE |
968 | |
969 | static char * | |
970 | gcse_alloc (size) | |
971 | unsigned long size; | |
972 | { | |
77bbd421 | 973 | bytes_used += size; |
7506f491 DE |
974 | return (char *) obstack_alloc (&gcse_obstack, size); |
975 | } | |
976 | ||
977 | /* Allocate memory for the cuid mapping array, | |
978 | and reg/memory set tracking tables. | |
979 | ||
980 | This is called at the start of each pass. */ | |
981 | ||
982 | static void | |
983 | alloc_gcse_mem (f) | |
984 | rtx f; | |
985 | { | |
8e42ace1 | 986 | int i, n; |
7506f491 DE |
987 | rtx insn; |
988 | ||
989 | /* Find the largest UID and create a mapping from UIDs to CUIDs. | |
990 | CUIDs are like UIDs except they increase monotonically, have no gaps, | |
991 | and only apply to real insns. */ | |
992 | ||
993 | max_uid = get_max_uid (); | |
994 | n = (max_uid + 1) * sizeof (int); | |
995 | uid_cuid = (int *) gmalloc (n); | |
961192e1 | 996 | memset ((char *) uid_cuid, 0, n); |
7506f491 DE |
997 | for (insn = f, i = 0; insn; insn = NEXT_INSN (insn)) |
998 | { | |
2c3c49de | 999 | if (INSN_P (insn)) |
b86db3eb | 1000 | uid_cuid[INSN_UID (insn)] = i++; |
7506f491 | 1001 | else |
b86db3eb | 1002 | uid_cuid[INSN_UID (insn)] = i; |
7506f491 DE |
1003 | } |
1004 | ||
1005 | /* Create a table mapping cuids to insns. */ | |
1006 | ||
1007 | max_cuid = i; | |
1008 | n = (max_cuid + 1) * sizeof (rtx); | |
1009 | cuid_insn = (rtx *) gmalloc (n); | |
961192e1 | 1010 | memset ((char *) cuid_insn, 0, n); |
7506f491 | 1011 | for (insn = f, i = 0; insn; insn = NEXT_INSN (insn)) |
2c3c49de | 1012 | if (INSN_P (insn)) |
c4c81601 | 1013 | CUID_INSN (i++) = insn; |
7506f491 DE |
1014 | |
1015 | /* Allocate vars to track sets of regs. */ | |
73991d6a | 1016 | reg_set_bitmap = BITMAP_XMALLOC (); |
7506f491 DE |
1017 | |
1018 | /* Allocate vars to track sets of regs, memory per block. */ | |
d55bc081 | 1019 | reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block, |
7506f491 | 1020 | max_gcse_regno); |
a13d4ebf AM |
1021 | /* Allocate array to keep a list of insns which modify memory in each |
1022 | basic block. */ | |
d55bc081 ZD |
1023 | modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx)); |
1024 | canon_modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx)); | |
1025 | memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx)); | |
1026 | memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx)); | |
73991d6a JH |
1027 | modify_mem_list_set = BITMAP_XMALLOC (); |
1028 | canon_modify_mem_list_set = BITMAP_XMALLOC (); | |
7506f491 DE |
1029 | } |
1030 | ||
1031 | /* Free memory allocated by alloc_gcse_mem. */ | |
1032 | ||
1033 | static void | |
1034 | free_gcse_mem () | |
1035 | { | |
1036 | free (uid_cuid); | |
1037 | free (cuid_insn); | |
1038 | ||
73991d6a | 1039 | BITMAP_XFREE (reg_set_bitmap); |
7506f491 | 1040 | |
5a660bff | 1041 | sbitmap_vector_free (reg_set_in_block); |
73991d6a JH |
1042 | free_modify_mem_tables (); |
1043 | BITMAP_XFREE (modify_mem_list_set); | |
1044 | BITMAP_XFREE (canon_modify_mem_list_set); | |
7506f491 DE |
1045 | } |
1046 | ||
0511851c MM |
1047 | /* Many of the global optimization algorithms work by solving dataflow |
1048 | equations for various expressions. Initially, some local value is | |
c4c81601 RK |
1049 | computed for each expression in each block. Then, the values across the |
1050 | various blocks are combined (by following flow graph edges) to arrive at | |
1051 | global values. Conceptually, each set of equations is independent. We | |
1052 | may therefore solve all the equations in parallel, solve them one at a | |
1053 | time, or pick any intermediate approach. | |
1054 | ||
1055 | When you're going to need N two-dimensional bitmaps, each X (say, the | |
1056 | number of blocks) by Y (say, the number of expressions), call this | |
1057 | function. It's not important what X and Y represent; only that Y | |
1058 | correspond to the things that can be done in parallel. This function will | |
1059 | return an appropriate chunking factor C; you should solve C sets of | |
1060 | equations in parallel. By going through this function, we can easily | |
1061 | trade space against time; by solving fewer equations in parallel we use | |
1062 | less space. */ | |
0511851c MM |
1063 | |
1064 | static int | |
1065 | get_bitmap_width (n, x, y) | |
1066 | int n; | |
1067 | int x; | |
1068 | int y; | |
1069 | { | |
1070 | /* It's not really worth figuring out *exactly* how much memory will | |
1071 | be used by a particular choice. The important thing is to get | |
1072 | something approximately right. */ | |
1073 | size_t max_bitmap_memory = 10 * 1024 * 1024; | |
1074 | ||
1075 | /* The number of bytes we'd use for a single column of minimum | |
1076 | width. */ | |
1077 | size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE); | |
1078 | ||
1079 | /* Often, it's reasonable just to solve all the equations in | |
1080 | parallel. */ | |
1081 | if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory) | |
1082 | return y; | |
1083 | ||
1084 | /* Otherwise, pick the largest width we can, without going over the | |
1085 | limit. */ | |
1086 | return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1) | |
1087 | / column_size); | |
1088 | } | |
b5ce41ff JL |
1089 | \f |
1090 | /* Compute the local properties of each recorded expression. | |
c4c81601 RK |
1091 | |
1092 | Local properties are those that are defined by the block, irrespective of | |
1093 | other blocks. | |
b5ce41ff JL |
1094 | |
1095 | An expression is transparent in a block if its operands are not modified | |
1096 | in the block. | |
1097 | ||
1098 | An expression is computed (locally available) in a block if it is computed | |
1099 | at least once and expression would contain the same value if the | |
1100 | computation was moved to the end of the block. | |
1101 | ||
1102 | An expression is locally anticipatable in a block if it is computed at | |
1103 | least once and expression would contain the same value if the computation | |
1104 | was moved to the beginning of the block. | |
1105 | ||
c4c81601 RK |
1106 | We call this routine for cprop, pre and code hoisting. They all compute |
1107 | basically the same information and thus can easily share this code. | |
7506f491 | 1108 | |
c4c81601 RK |
1109 | TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local |
1110 | properties. If NULL, then it is not necessary to compute or record that | |
1111 | particular property. | |
b5ce41ff | 1112 | |
02280659 ZD |
1113 | TABLE controls which hash table to look at. If it is set hash table, |
1114 | additionally, TRANSP is computed as ~TRANSP, since this is really cprop's | |
c4c81601 | 1115 | ABSALTERED. */ |
589005ff | 1116 | |
b5ce41ff | 1117 | static void |
02280659 | 1118 | compute_local_properties (transp, comp, antloc, table) |
b5ce41ff JL |
1119 | sbitmap *transp; |
1120 | sbitmap *comp; | |
1121 | sbitmap *antloc; | |
02280659 | 1122 | struct hash_table *table; |
b5ce41ff | 1123 | { |
02280659 | 1124 | unsigned int i; |
589005ff | 1125 | |
b5ce41ff JL |
1126 | /* Initialize any bitmaps that were passed in. */ |
1127 | if (transp) | |
695ab36a | 1128 | { |
02280659 | 1129 | if (table->set_p) |
d55bc081 | 1130 | sbitmap_vector_zero (transp, last_basic_block); |
695ab36a | 1131 | else |
d55bc081 | 1132 | sbitmap_vector_ones (transp, last_basic_block); |
695ab36a | 1133 | } |
c4c81601 | 1134 | |
b5ce41ff | 1135 | if (comp) |
d55bc081 | 1136 | sbitmap_vector_zero (comp, last_basic_block); |
b5ce41ff | 1137 | if (antloc) |
d55bc081 | 1138 | sbitmap_vector_zero (antloc, last_basic_block); |
b5ce41ff | 1139 | |
02280659 | 1140 | for (i = 0; i < table->size; i++) |
7506f491 | 1141 | { |
b5ce41ff JL |
1142 | struct expr *expr; |
1143 | ||
02280659 | 1144 | for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash) |
b5ce41ff | 1145 | { |
b5ce41ff | 1146 | int indx = expr->bitmap_index; |
c4c81601 | 1147 | struct occr *occr; |
b5ce41ff JL |
1148 | |
1149 | /* The expression is transparent in this block if it is not killed. | |
1150 | We start by assuming all are transparent [none are killed], and | |
1151 | then reset the bits for those that are. */ | |
b5ce41ff | 1152 | if (transp) |
02280659 | 1153 | compute_transp (expr->expr, indx, transp, table->set_p); |
b5ce41ff JL |
1154 | |
1155 | /* The occurrences recorded in antic_occr are exactly those that | |
cc2902df | 1156 | we want to set to nonzero in ANTLOC. */ |
b5ce41ff | 1157 | if (antloc) |
c4c81601 RK |
1158 | for (occr = expr->antic_occr; occr != NULL; occr = occr->next) |
1159 | { | |
1160 | SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx); | |
b5ce41ff | 1161 | |
c4c81601 RK |
1162 | /* While we're scanning the table, this is a good place to |
1163 | initialize this. */ | |
1164 | occr->deleted_p = 0; | |
1165 | } | |
b5ce41ff JL |
1166 | |
1167 | /* The occurrences recorded in avail_occr are exactly those that | |
cc2902df | 1168 | we want to set to nonzero in COMP. */ |
b5ce41ff | 1169 | if (comp) |
c4c81601 RK |
1170 | for (occr = expr->avail_occr; occr != NULL; occr = occr->next) |
1171 | { | |
1172 | SET_BIT (comp[BLOCK_NUM (occr->insn)], indx); | |
b5ce41ff | 1173 | |
c4c81601 RK |
1174 | /* While we're scanning the table, this is a good place to |
1175 | initialize this. */ | |
1176 | occr->copied_p = 0; | |
1177 | } | |
b5ce41ff JL |
1178 | |
1179 | /* While we're scanning the table, this is a good place to | |
1180 | initialize this. */ | |
1181 | expr->reaching_reg = 0; | |
1182 | } | |
7506f491 | 1183 | } |
7506f491 DE |
1184 | } |
1185 | \f | |
1186 | /* Register set information. | |
1187 | ||
1188 | `reg_set_table' records where each register is set or otherwise | |
1189 | modified. */ | |
1190 | ||
1191 | static struct obstack reg_set_obstack; | |
1192 | ||
1193 | static void | |
1194 | alloc_reg_set_mem (n_regs) | |
1195 | int n_regs; | |
1196 | { | |
c4c81601 | 1197 | unsigned int n; |
7506f491 DE |
1198 | |
1199 | reg_set_table_size = n_regs + REG_SET_TABLE_SLOP; | |
1200 | n = reg_set_table_size * sizeof (struct reg_set *); | |
1201 | reg_set_table = (struct reg_set **) gmalloc (n); | |
961192e1 | 1202 | memset ((char *) reg_set_table, 0, n); |
7506f491 DE |
1203 | |
1204 | gcc_obstack_init (®_set_obstack); | |
1205 | } | |
1206 | ||
1207 | static void | |
1208 | free_reg_set_mem () | |
1209 | { | |
1210 | free (reg_set_table); | |
6496a589 | 1211 | obstack_free (®_set_obstack, NULL); |
7506f491 DE |
1212 | } |
1213 | ||
1214 | /* Record REGNO in the reg_set table. */ | |
1215 | ||
1216 | static void | |
1217 | record_one_set (regno, insn) | |
1218 | int regno; | |
1219 | rtx insn; | |
1220 | { | |
172890a2 | 1221 | /* Allocate a new reg_set element and link it onto the list. */ |
63bc1d05 | 1222 | struct reg_set *new_reg_info; |
7506f491 DE |
1223 | |
1224 | /* If the table isn't big enough, enlarge it. */ | |
1225 | if (regno >= reg_set_table_size) | |
1226 | { | |
1227 | int new_size = regno + REG_SET_TABLE_SLOP; | |
c4c81601 RK |
1228 | |
1229 | reg_set_table | |
1230 | = (struct reg_set **) grealloc ((char *) reg_set_table, | |
1231 | new_size * sizeof (struct reg_set *)); | |
961192e1 | 1232 | memset ((char *) (reg_set_table + reg_set_table_size), 0, |
8e42ace1 | 1233 | (new_size - reg_set_table_size) * sizeof (struct reg_set *)); |
7506f491 DE |
1234 | reg_set_table_size = new_size; |
1235 | } | |
1236 | ||
1237 | new_reg_info = (struct reg_set *) obstack_alloc (®_set_obstack, | |
1238 | sizeof (struct reg_set)); | |
1239 | bytes_used += sizeof (struct reg_set); | |
1240 | new_reg_info->insn = insn; | |
274969ea MM |
1241 | new_reg_info->next = reg_set_table[regno]; |
1242 | reg_set_table[regno] = new_reg_info; | |
7506f491 DE |
1243 | } |
1244 | ||
c4c81601 RK |
1245 | /* Called from compute_sets via note_stores to handle one SET or CLOBBER in |
1246 | an insn. The DATA is really the instruction in which the SET is | |
1247 | occurring. */ | |
7506f491 DE |
1248 | |
1249 | static void | |
84832317 | 1250 | record_set_info (dest, setter, data) |
50b2596f | 1251 | rtx dest, setter ATTRIBUTE_UNUSED; |
84832317 | 1252 | void *data; |
7506f491 | 1253 | { |
84832317 MM |
1254 | rtx record_set_insn = (rtx) data; |
1255 | ||
c4c81601 RK |
1256 | if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER) |
1257 | record_one_set (REGNO (dest), record_set_insn); | |
7506f491 DE |
1258 | } |
1259 | ||
1260 | /* Scan the function and record each set of each pseudo-register. | |
1261 | ||
c4c81601 RK |
1262 | This is called once, at the start of the gcse pass. See the comments for |
1263 | `reg_set_table' for further documenation. */ | |
7506f491 DE |
1264 | |
1265 | static void | |
1266 | compute_sets (f) | |
1267 | rtx f; | |
1268 | { | |
c4c81601 | 1269 | rtx insn; |
7506f491 | 1270 | |
c4c81601 | 1271 | for (insn = f; insn != 0; insn = NEXT_INSN (insn)) |
2c3c49de | 1272 | if (INSN_P (insn)) |
c4c81601 | 1273 | note_stores (PATTERN (insn), record_set_info, insn); |
7506f491 DE |
1274 | } |
1275 | \f | |
1276 | /* Hash table support. */ | |
1277 | ||
80c29cc4 RZ |
1278 | struct reg_avail_info |
1279 | { | |
e0082a72 | 1280 | basic_block last_bb; |
80c29cc4 RZ |
1281 | int first_set; |
1282 | int last_set; | |
1283 | }; | |
1284 | ||
1285 | static struct reg_avail_info *reg_avail_info; | |
e0082a72 | 1286 | static basic_block current_bb; |
7506f491 | 1287 | |
7506f491 | 1288 | |
fb0c0a12 RK |
1289 | /* See whether X, the source of a set, is something we want to consider for |
1290 | GCSE. */ | |
7506f491 | 1291 | |
e2500fed | 1292 | static GTY(()) rtx test_insn; |
7506f491 DE |
1293 | static int |
1294 | want_to_gcse_p (x) | |
1295 | rtx x; | |
1296 | { | |
fb0c0a12 RK |
1297 | int num_clobbers = 0; |
1298 | int icode; | |
1299 | ||
c4c81601 | 1300 | switch (GET_CODE (x)) |
7506f491 DE |
1301 | { |
1302 | case REG: | |
1303 | case SUBREG: | |
1304 | case CONST_INT: | |
1305 | case CONST_DOUBLE: | |
69ef87e2 | 1306 | case CONST_VECTOR: |
7506f491 DE |
1307 | case CALL: |
1308 | return 0; | |
1309 | ||
1310 | default: | |
1311 | break; | |
1312 | } | |
1313 | ||
fb0c0a12 RK |
1314 | /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */ |
1315 | if (general_operand (x, GET_MODE (x))) | |
1316 | return 1; | |
1317 | else if (GET_MODE (x) == VOIDmode) | |
1318 | return 0; | |
1319 | ||
1320 | /* Otherwise, check if we can make a valid insn from it. First initialize | |
1321 | our test insn if we haven't already. */ | |
1322 | if (test_insn == 0) | |
1323 | { | |
1324 | test_insn | |
1325 | = make_insn_raw (gen_rtx_SET (VOIDmode, | |
1326 | gen_rtx_REG (word_mode, | |
1327 | FIRST_PSEUDO_REGISTER * 2), | |
1328 | const0_rtx)); | |
1329 | NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0; | |
fb0c0a12 RK |
1330 | } |
1331 | ||
1332 | /* Now make an insn like the one we would make when GCSE'ing and see if | |
1333 | valid. */ | |
1334 | PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x)); | |
1335 | SET_SRC (PATTERN (test_insn)) = x; | |
1336 | return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0 | |
1337 | && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode))); | |
7506f491 DE |
1338 | } |
1339 | ||
cc2902df | 1340 | /* Return nonzero if the operands of expression X are unchanged from the |
7506f491 DE |
1341 | start of INSN's basic block up to but not including INSN (if AVAIL_P == 0), |
1342 | or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */ | |
1343 | ||
1344 | static int | |
1345 | oprs_unchanged_p (x, insn, avail_p) | |
1346 | rtx x, insn; | |
1347 | int avail_p; | |
1348 | { | |
c4c81601 | 1349 | int i, j; |
7506f491 | 1350 | enum rtx_code code; |
6f7d635c | 1351 | const char *fmt; |
7506f491 | 1352 | |
7506f491 DE |
1353 | if (x == 0) |
1354 | return 1; | |
1355 | ||
1356 | code = GET_CODE (x); | |
1357 | switch (code) | |
1358 | { | |
1359 | case REG: | |
80c29cc4 RZ |
1360 | { |
1361 | struct reg_avail_info *info = ®_avail_info[REGNO (x)]; | |
1362 | ||
1363 | if (info->last_bb != current_bb) | |
1364 | return 1; | |
589005ff | 1365 | if (avail_p) |
80c29cc4 RZ |
1366 | return info->last_set < INSN_CUID (insn); |
1367 | else | |
1368 | return info->first_set >= INSN_CUID (insn); | |
1369 | } | |
7506f491 DE |
1370 | |
1371 | case MEM: | |
e0082a72 | 1372 | if (load_killed_in_block_p (current_bb, INSN_CUID (insn), |
a13d4ebf AM |
1373 | x, avail_p)) |
1374 | return 0; | |
7506f491 | 1375 | else |
c4c81601 | 1376 | return oprs_unchanged_p (XEXP (x, 0), insn, avail_p); |
7506f491 DE |
1377 | |
1378 | case PRE_DEC: | |
1379 | case PRE_INC: | |
1380 | case POST_DEC: | |
1381 | case POST_INC: | |
4b983fdc RH |
1382 | case PRE_MODIFY: |
1383 | case POST_MODIFY: | |
7506f491 DE |
1384 | return 0; |
1385 | ||
1386 | case PC: | |
1387 | case CC0: /*FIXME*/ | |
1388 | case CONST: | |
1389 | case CONST_INT: | |
1390 | case CONST_DOUBLE: | |
69ef87e2 | 1391 | case CONST_VECTOR: |
7506f491 DE |
1392 | case SYMBOL_REF: |
1393 | case LABEL_REF: | |
1394 | case ADDR_VEC: | |
1395 | case ADDR_DIFF_VEC: | |
1396 | return 1; | |
1397 | ||
1398 | default: | |
1399 | break; | |
1400 | } | |
1401 | ||
c4c81601 | 1402 | for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) |
7506f491 DE |
1403 | { |
1404 | if (fmt[i] == 'e') | |
1405 | { | |
c4c81601 RK |
1406 | /* If we are about to do the last recursive call needed at this |
1407 | level, change it into iteration. This function is called enough | |
1408 | to be worth it. */ | |
7506f491 | 1409 | if (i == 0) |
c4c81601 RK |
1410 | return oprs_unchanged_p (XEXP (x, i), insn, avail_p); |
1411 | ||
1412 | else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p)) | |
7506f491 DE |
1413 | return 0; |
1414 | } | |
1415 | else if (fmt[i] == 'E') | |
c4c81601 RK |
1416 | for (j = 0; j < XVECLEN (x, i); j++) |
1417 | if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p)) | |
1418 | return 0; | |
7506f491 DE |
1419 | } |
1420 | ||
1421 | return 1; | |
1422 | } | |
1423 | ||
a13d4ebf AM |
1424 | /* Used for communication between mems_conflict_for_gcse_p and |
1425 | load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a | |
1426 | conflict between two memory references. */ | |
1427 | static int gcse_mems_conflict_p; | |
1428 | ||
1429 | /* Used for communication between mems_conflict_for_gcse_p and | |
1430 | load_killed_in_block_p. A memory reference for a load instruction, | |
1431 | mems_conflict_for_gcse_p will see if a memory store conflicts with | |
1432 | this memory load. */ | |
1433 | static rtx gcse_mem_operand; | |
1434 | ||
1435 | /* DEST is the output of an instruction. If it is a memory reference, and | |
1436 | possibly conflicts with the load found in gcse_mem_operand, then set | |
1437 | gcse_mems_conflict_p to a nonzero value. */ | |
1438 | ||
1439 | static void | |
1440 | mems_conflict_for_gcse_p (dest, setter, data) | |
1441 | rtx dest, setter ATTRIBUTE_UNUSED; | |
1442 | void *data ATTRIBUTE_UNUSED; | |
1443 | { | |
1444 | while (GET_CODE (dest) == SUBREG | |
1445 | || GET_CODE (dest) == ZERO_EXTRACT | |
1446 | || GET_CODE (dest) == SIGN_EXTRACT | |
1447 | || GET_CODE (dest) == STRICT_LOW_PART) | |
1448 | dest = XEXP (dest, 0); | |
1449 | ||
1450 | /* If DEST is not a MEM, then it will not conflict with the load. Note | |
1451 | that function calls are assumed to clobber memory, but are handled | |
1452 | elsewhere. */ | |
1453 | if (GET_CODE (dest) != MEM) | |
1454 | return; | |
aaa4ca30 | 1455 | |
a13d4ebf | 1456 | /* If we are setting a MEM in our list of specially recognized MEMs, |
589005ff KH |
1457 | don't mark as killed this time. */ |
1458 | ||
a13d4ebf AM |
1459 | if (dest == gcse_mem_operand && pre_ldst_mems != NULL) |
1460 | { | |
1461 | if (!find_rtx_in_ldst (dest)) | |
1462 | gcse_mems_conflict_p = 1; | |
1463 | return; | |
1464 | } | |
aaa4ca30 | 1465 | |
a13d4ebf AM |
1466 | if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand, |
1467 | rtx_addr_varies_p)) | |
1468 | gcse_mems_conflict_p = 1; | |
1469 | } | |
1470 | ||
1471 | /* Return nonzero if the expression in X (a memory reference) is killed | |
1472 | in block BB before or after the insn with the CUID in UID_LIMIT. | |
1473 | AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills | |
1474 | before UID_LIMIT. | |
1475 | ||
1476 | To check the entire block, set UID_LIMIT to max_uid + 1 and | |
1477 | AVAIL_P to 0. */ | |
1478 | ||
1479 | static int | |
1480 | load_killed_in_block_p (bb, uid_limit, x, avail_p) | |
e2d2ed72 | 1481 | basic_block bb; |
a13d4ebf AM |
1482 | int uid_limit; |
1483 | rtx x; | |
1484 | int avail_p; | |
1485 | { | |
0b17ab2f | 1486 | rtx list_entry = modify_mem_list[bb->index]; |
a13d4ebf AM |
1487 | while (list_entry) |
1488 | { | |
1489 | rtx setter; | |
1490 | /* Ignore entries in the list that do not apply. */ | |
1491 | if ((avail_p | |
1492 | && INSN_CUID (XEXP (list_entry, 0)) < uid_limit) | |
1493 | || (! avail_p | |
1494 | && INSN_CUID (XEXP (list_entry, 0)) > uid_limit)) | |
1495 | { | |
1496 | list_entry = XEXP (list_entry, 1); | |
1497 | continue; | |
1498 | } | |
1499 | ||
1500 | setter = XEXP (list_entry, 0); | |
1501 | ||
1502 | /* If SETTER is a call everything is clobbered. Note that calls | |
1503 | to pure functions are never put on the list, so we need not | |
1504 | worry about them. */ | |
1505 | if (GET_CODE (setter) == CALL_INSN) | |
1506 | return 1; | |
1507 | ||
1508 | /* SETTER must be an INSN of some kind that sets memory. Call | |
589005ff | 1509 | note_stores to examine each hunk of memory that is modified. |
a13d4ebf AM |
1510 | |
1511 | The note_stores interface is pretty limited, so we have to | |
1512 | communicate via global variables. Yuk. */ | |
1513 | gcse_mem_operand = x; | |
1514 | gcse_mems_conflict_p = 0; | |
1515 | note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL); | |
1516 | if (gcse_mems_conflict_p) | |
1517 | return 1; | |
1518 | list_entry = XEXP (list_entry, 1); | |
1519 | } | |
1520 | return 0; | |
1521 | } | |
1522 | ||
cc2902df | 1523 | /* Return nonzero if the operands of expression X are unchanged from |
7506f491 DE |
1524 | the start of INSN's basic block up to but not including INSN. */ |
1525 | ||
1526 | static int | |
1527 | oprs_anticipatable_p (x, insn) | |
1528 | rtx x, insn; | |
1529 | { | |
1530 | return oprs_unchanged_p (x, insn, 0); | |
1531 | } | |
1532 | ||
cc2902df | 1533 | /* Return nonzero if the operands of expression X are unchanged from |
7506f491 DE |
1534 | INSN to the end of INSN's basic block. */ |
1535 | ||
1536 | static int | |
1537 | oprs_available_p (x, insn) | |
1538 | rtx x, insn; | |
1539 | { | |
1540 | return oprs_unchanged_p (x, insn, 1); | |
1541 | } | |
1542 | ||
1543 | /* Hash expression X. | |
c4c81601 RK |
1544 | |
1545 | MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean | |
1546 | indicating if a volatile operand is found or if the expression contains | |
1547 | something we don't want to insert in the table. | |
7506f491 DE |
1548 | |
1549 | ??? One might want to merge this with canon_hash. Later. */ | |
1550 | ||
1551 | static unsigned int | |
1552 | hash_expr (x, mode, do_not_record_p, hash_table_size) | |
1553 | rtx x; | |
1554 | enum machine_mode mode; | |
1555 | int *do_not_record_p; | |
1556 | int hash_table_size; | |
1557 | { | |
1558 | unsigned int hash; | |
1559 | ||
1560 | *do_not_record_p = 0; | |
1561 | ||
1562 | hash = hash_expr_1 (x, mode, do_not_record_p); | |
1563 | return hash % hash_table_size; | |
1564 | } | |
172890a2 | 1565 | |
6462bb43 | 1566 | /* Hash a string. Just add its bytes up. */ |
172890a2 | 1567 | |
6462bb43 AO |
1568 | static inline unsigned |
1569 | hash_string_1 (ps) | |
1570 | const char *ps; | |
1571 | { | |
1572 | unsigned hash = 0; | |
8e42ace1 | 1573 | const unsigned char *p = (const unsigned char *) ps; |
589005ff | 1574 | |
6462bb43 AO |
1575 | if (p) |
1576 | while (*p) | |
1577 | hash += *p++; | |
1578 | ||
1579 | return hash; | |
1580 | } | |
7506f491 DE |
1581 | |
1582 | /* Subroutine of hash_expr to do the actual work. */ | |
1583 | ||
1584 | static unsigned int | |
1585 | hash_expr_1 (x, mode, do_not_record_p) | |
1586 | rtx x; | |
1587 | enum machine_mode mode; | |
1588 | int *do_not_record_p; | |
1589 | { | |
1590 | int i, j; | |
1591 | unsigned hash = 0; | |
1592 | enum rtx_code code; | |
6f7d635c | 1593 | const char *fmt; |
7506f491 | 1594 | |
c4c81601 RK |
1595 | /* Used to turn recursion into iteration. We can't rely on GCC's |
1596 | tail-recursion eliminatio since we need to keep accumulating values | |
1597 | in HASH. */ | |
7506f491 DE |
1598 | |
1599 | if (x == 0) | |
1600 | return hash; | |
1601 | ||
c4c81601 | 1602 | repeat: |
7506f491 DE |
1603 | code = GET_CODE (x); |
1604 | switch (code) | |
1605 | { | |
1606 | case REG: | |
c4c81601 RK |
1607 | hash += ((unsigned int) REG << 7) + REGNO (x); |
1608 | return hash; | |
7506f491 DE |
1609 | |
1610 | case CONST_INT: | |
c4c81601 RK |
1611 | hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode |
1612 | + (unsigned int) INTVAL (x)); | |
1613 | return hash; | |
7506f491 DE |
1614 | |
1615 | case CONST_DOUBLE: | |
1616 | /* This is like the general case, except that it only counts | |
1617 | the integers representing the constant. */ | |
c4c81601 | 1618 | hash += (unsigned int) code + (unsigned int) GET_MODE (x); |
7506f491 DE |
1619 | if (GET_MODE (x) != VOIDmode) |
1620 | for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++) | |
c4c81601 | 1621 | hash += (unsigned int) XWINT (x, i); |
7506f491 | 1622 | else |
c4c81601 RK |
1623 | hash += ((unsigned int) CONST_DOUBLE_LOW (x) |
1624 | + (unsigned int) CONST_DOUBLE_HIGH (x)); | |
7506f491 DE |
1625 | return hash; |
1626 | ||
69ef87e2 AH |
1627 | case CONST_VECTOR: |
1628 | { | |
1629 | int units; | |
1630 | rtx elt; | |
1631 | ||
1632 | units = CONST_VECTOR_NUNITS (x); | |
1633 | ||
1634 | for (i = 0; i < units; ++i) | |
1635 | { | |
1636 | elt = CONST_VECTOR_ELT (x, i); | |
1637 | hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p); | |
1638 | } | |
1639 | ||
1640 | return hash; | |
1641 | } | |
1642 | ||
7506f491 DE |
1643 | /* Assume there is only one rtx object for any given label. */ |
1644 | case LABEL_REF: | |
1645 | /* We don't hash on the address of the CODE_LABEL to avoid bootstrap | |
1646 | differences and differences between each stage's debugging dumps. */ | |
c4c81601 RK |
1647 | hash += (((unsigned int) LABEL_REF << 7) |
1648 | + CODE_LABEL_NUMBER (XEXP (x, 0))); | |
7506f491 DE |
1649 | return hash; |
1650 | ||
1651 | case SYMBOL_REF: | |
1652 | { | |
1653 | /* Don't hash on the symbol's address to avoid bootstrap differences. | |
1654 | Different hash values may cause expressions to be recorded in | |
1655 | different orders and thus different registers to be used in the | |
1656 | final assembler. This also avoids differences in the dump files | |
1657 | between various stages. */ | |
1658 | unsigned int h = 0; | |
3cce094d | 1659 | const unsigned char *p = (const unsigned char *) XSTR (x, 0); |
c4c81601 | 1660 | |
7506f491 DE |
1661 | while (*p) |
1662 | h += (h << 7) + *p++; /* ??? revisit */ | |
c4c81601 RK |
1663 | |
1664 | hash += ((unsigned int) SYMBOL_REF << 7) + h; | |
7506f491 DE |
1665 | return hash; |
1666 | } | |
1667 | ||
1668 | case MEM: | |
1669 | if (MEM_VOLATILE_P (x)) | |
1670 | { | |
1671 | *do_not_record_p = 1; | |
1672 | return 0; | |
1673 | } | |
c4c81601 RK |
1674 | |
1675 | hash += (unsigned int) MEM; | |
d51f3632 JH |
1676 | /* We used alias set for hashing, but this is not good, since the alias |
1677 | set may differ in -fprofile-arcs and -fbranch-probabilities compilation | |
1678 | causing the profiles to fail to match. */ | |
7506f491 DE |
1679 | x = XEXP (x, 0); |
1680 | goto repeat; | |
1681 | ||
1682 | case PRE_DEC: | |
1683 | case PRE_INC: | |
1684 | case POST_DEC: | |
1685 | case POST_INC: | |
1686 | case PC: | |
1687 | case CC0: | |
1688 | case CALL: | |
1689 | case UNSPEC_VOLATILE: | |
1690 | *do_not_record_p = 1; | |
1691 | return 0; | |
1692 | ||
1693 | case ASM_OPERANDS: | |
1694 | if (MEM_VOLATILE_P (x)) | |
1695 | { | |
1696 | *do_not_record_p = 1; | |
1697 | return 0; | |
1698 | } | |
6462bb43 AO |
1699 | else |
1700 | { | |
1701 | /* We don't want to take the filename and line into account. */ | |
1702 | hash += (unsigned) code + (unsigned) GET_MODE (x) | |
1703 | + hash_string_1 (ASM_OPERANDS_TEMPLATE (x)) | |
1704 | + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x)) | |
1705 | + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x); | |
1706 | ||
1707 | if (ASM_OPERANDS_INPUT_LENGTH (x)) | |
1708 | { | |
1709 | for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) | |
1710 | { | |
1711 | hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i), | |
1712 | GET_MODE (ASM_OPERANDS_INPUT (x, i)), | |
1713 | do_not_record_p) | |
1714 | + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT | |
1715 | (x, i))); | |
1716 | } | |
1717 | ||
1718 | hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0)); | |
1719 | x = ASM_OPERANDS_INPUT (x, 0); | |
1720 | mode = GET_MODE (x); | |
1721 | goto repeat; | |
1722 | } | |
1723 | return hash; | |
1724 | } | |
7506f491 DE |
1725 | |
1726 | default: | |
1727 | break; | |
1728 | } | |
1729 | ||
7506f491 | 1730 | hash += (unsigned) code + (unsigned) GET_MODE (x); |
c4c81601 | 1731 | for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) |
7506f491 DE |
1732 | { |
1733 | if (fmt[i] == 'e') | |
1734 | { | |
7506f491 DE |
1735 | /* If we are about to do the last recursive call |
1736 | needed at this level, change it into iteration. | |
1737 | This function is called enough to be worth it. */ | |
1738 | if (i == 0) | |
1739 | { | |
c4c81601 | 1740 | x = XEXP (x, i); |
7506f491 DE |
1741 | goto repeat; |
1742 | } | |
c4c81601 RK |
1743 | |
1744 | hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p); | |
7506f491 DE |
1745 | if (*do_not_record_p) |
1746 | return 0; | |
1747 | } | |
c4c81601 | 1748 | |
7506f491 DE |
1749 | else if (fmt[i] == 'E') |
1750 | for (j = 0; j < XVECLEN (x, i); j++) | |
1751 | { | |
1752 | hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p); | |
1753 | if (*do_not_record_p) | |
1754 | return 0; | |
1755 | } | |
c4c81601 | 1756 | |
7506f491 | 1757 | else if (fmt[i] == 's') |
6462bb43 | 1758 | hash += hash_string_1 (XSTR (x, i)); |
7506f491 | 1759 | else if (fmt[i] == 'i') |
c4c81601 | 1760 | hash += (unsigned int) XINT (x, i); |
7506f491 DE |
1761 | else |
1762 | abort (); | |
1763 | } | |
1764 | ||
1765 | return hash; | |
1766 | } | |
1767 | ||
1768 | /* Hash a set of register REGNO. | |
1769 | ||
c4c81601 RK |
1770 | Sets are hashed on the register that is set. This simplifies the PRE copy |
1771 | propagation code. | |
7506f491 DE |
1772 | |
1773 | ??? May need to make things more elaborate. Later, as necessary. */ | |
1774 | ||
1775 | static unsigned int | |
1776 | hash_set (regno, hash_table_size) | |
1777 | int regno; | |
1778 | int hash_table_size; | |
1779 | { | |
1780 | unsigned int hash; | |
1781 | ||
1782 | hash = regno; | |
1783 | return hash % hash_table_size; | |
1784 | } | |
1785 | ||
cc2902df | 1786 | /* Return nonzero if exp1 is equivalent to exp2. |
7506f491 DE |
1787 | ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */ |
1788 | ||
1789 | static int | |
1790 | expr_equiv_p (x, y) | |
1791 | rtx x, y; | |
1792 | { | |
b3694847 SS |
1793 | int i, j; |
1794 | enum rtx_code code; | |
1795 | const char *fmt; | |
7506f491 DE |
1796 | |
1797 | if (x == y) | |
1798 | return 1; | |
c4c81601 | 1799 | |
7506f491 DE |
1800 | if (x == 0 || y == 0) |
1801 | return x == y; | |
1802 | ||
1803 | code = GET_CODE (x); | |
1804 | if (code != GET_CODE (y)) | |
1805 | return 0; | |
1806 | ||
1807 | /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */ | |
1808 | if (GET_MODE (x) != GET_MODE (y)) | |
1809 | return 0; | |
1810 | ||
1811 | switch (code) | |
1812 | { | |
1813 | case PC: | |
1814 | case CC0: | |
1815 | return x == y; | |
1816 | ||
1817 | case CONST_INT: | |
1818 | return INTVAL (x) == INTVAL (y); | |
1819 | ||
1820 | case LABEL_REF: | |
1821 | return XEXP (x, 0) == XEXP (y, 0); | |
1822 | ||
1823 | case SYMBOL_REF: | |
1824 | return XSTR (x, 0) == XSTR (y, 0); | |
1825 | ||
1826 | case REG: | |
1827 | return REGNO (x) == REGNO (y); | |
1828 | ||
297c3335 RH |
1829 | case MEM: |
1830 | /* Can't merge two expressions in different alias sets, since we can | |
1831 | decide that the expression is transparent in a block when it isn't, | |
1832 | due to it being set with the different alias set. */ | |
1833 | if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y)) | |
1834 | return 0; | |
1835 | break; | |
1836 | ||
7506f491 DE |
1837 | /* For commutative operations, check both orders. */ |
1838 | case PLUS: | |
1839 | case MULT: | |
1840 | case AND: | |
1841 | case IOR: | |
1842 | case XOR: | |
1843 | case NE: | |
1844 | case EQ: | |
1845 | return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0)) | |
1846 | && expr_equiv_p (XEXP (x, 1), XEXP (y, 1))) | |
1847 | || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1)) | |
1848 | && expr_equiv_p (XEXP (x, 1), XEXP (y, 0)))); | |
1849 | ||
6462bb43 AO |
1850 | case ASM_OPERANDS: |
1851 | /* We don't use the generic code below because we want to | |
1852 | disregard filename and line numbers. */ | |
1853 | ||
1854 | /* A volatile asm isn't equivalent to any other. */ | |
1855 | if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y)) | |
1856 | return 0; | |
1857 | ||
1858 | if (GET_MODE (x) != GET_MODE (y) | |
1859 | || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y)) | |
1860 | || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x), | |
1861 | ASM_OPERANDS_OUTPUT_CONSTRAINT (y)) | |
1862 | || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y) | |
1863 | || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y)) | |
1864 | return 0; | |
1865 | ||
1866 | if (ASM_OPERANDS_INPUT_LENGTH (x)) | |
1867 | { | |
1868 | for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) | |
1869 | if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i), | |
1870 | ASM_OPERANDS_INPUT (y, i)) | |
1871 | || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i), | |
1872 | ASM_OPERANDS_INPUT_CONSTRAINT (y, i))) | |
1873 | return 0; | |
1874 | } | |
1875 | ||
1876 | return 1; | |
1877 | ||
7506f491 DE |
1878 | default: |
1879 | break; | |
1880 | } | |
1881 | ||
1882 | /* Compare the elements. If any pair of corresponding elements | |
1883 | fail to match, return 0 for the whole thing. */ | |
1884 | ||
1885 | fmt = GET_RTX_FORMAT (code); | |
1886 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) | |
1887 | { | |
1888 | switch (fmt[i]) | |
1889 | { | |
1890 | case 'e': | |
1891 | if (! expr_equiv_p (XEXP (x, i), XEXP (y, i))) | |
1892 | return 0; | |
1893 | break; | |
1894 | ||
1895 | case 'E': | |
1896 | if (XVECLEN (x, i) != XVECLEN (y, i)) | |
1897 | return 0; | |
1898 | for (j = 0; j < XVECLEN (x, i); j++) | |
1899 | if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j))) | |
1900 | return 0; | |
1901 | break; | |
1902 | ||
1903 | case 's': | |
1904 | if (strcmp (XSTR (x, i), XSTR (y, i))) | |
1905 | return 0; | |
1906 | break; | |
1907 | ||
1908 | case 'i': | |
1909 | if (XINT (x, i) != XINT (y, i)) | |
1910 | return 0; | |
1911 | break; | |
1912 | ||
1913 | case 'w': | |
1914 | if (XWINT (x, i) != XWINT (y, i)) | |
1915 | return 0; | |
1916 | break; | |
1917 | ||
1918 | case '0': | |
1919 | break; | |
aaa4ca30 | 1920 | |
7506f491 DE |
1921 | default: |
1922 | abort (); | |
1923 | } | |
8e42ace1 | 1924 | } |
7506f491 DE |
1925 | |
1926 | return 1; | |
1927 | } | |
1928 | ||
02280659 | 1929 | /* Insert expression X in INSN in the hash TABLE. |
7506f491 DE |
1930 | If it is already present, record it as the last occurrence in INSN's |
1931 | basic block. | |
1932 | ||
1933 | MODE is the mode of the value X is being stored into. | |
1934 | It is only used if X is a CONST_INT. | |
1935 | ||
cc2902df KH |
1936 | ANTIC_P is nonzero if X is an anticipatable expression. |
1937 | AVAIL_P is nonzero if X is an available expression. */ | |
7506f491 DE |
1938 | |
1939 | static void | |
02280659 | 1940 | insert_expr_in_table (x, mode, insn, antic_p, avail_p, table) |
7506f491 DE |
1941 | rtx x; |
1942 | enum machine_mode mode; | |
1943 | rtx insn; | |
1944 | int antic_p, avail_p; | |
02280659 | 1945 | struct hash_table *table; |
7506f491 DE |
1946 | { |
1947 | int found, do_not_record_p; | |
1948 | unsigned int hash; | |
1949 | struct expr *cur_expr, *last_expr = NULL; | |
1950 | struct occr *antic_occr, *avail_occr; | |
1951 | struct occr *last_occr = NULL; | |
1952 | ||
02280659 | 1953 | hash = hash_expr (x, mode, &do_not_record_p, table->size); |
7506f491 DE |
1954 | |
1955 | /* Do not insert expression in table if it contains volatile operands, | |
1956 | or if hash_expr determines the expression is something we don't want | |
1957 | to or can't handle. */ | |
1958 | if (do_not_record_p) | |
1959 | return; | |
1960 | ||
02280659 | 1961 | cur_expr = table->table[hash]; |
7506f491 DE |
1962 | found = 0; |
1963 | ||
c4c81601 | 1964 | while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x))) |
7506f491 DE |
1965 | { |
1966 | /* If the expression isn't found, save a pointer to the end of | |
1967 | the list. */ | |
1968 | last_expr = cur_expr; | |
1969 | cur_expr = cur_expr->next_same_hash; | |
1970 | } | |
1971 | ||
1972 | if (! found) | |
1973 | { | |
1974 | cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr)); | |
1975 | bytes_used += sizeof (struct expr); | |
02280659 | 1976 | if (table->table[hash] == NULL) |
c4c81601 | 1977 | /* This is the first pattern that hashed to this index. */ |
02280659 | 1978 | table->table[hash] = cur_expr; |
7506f491 | 1979 | else |
c4c81601 RK |
1980 | /* Add EXPR to end of this hash chain. */ |
1981 | last_expr->next_same_hash = cur_expr; | |
1982 | ||
589005ff | 1983 | /* Set the fields of the expr element. */ |
7506f491 | 1984 | cur_expr->expr = x; |
02280659 | 1985 | cur_expr->bitmap_index = table->n_elems++; |
7506f491 DE |
1986 | cur_expr->next_same_hash = NULL; |
1987 | cur_expr->antic_occr = NULL; | |
1988 | cur_expr->avail_occr = NULL; | |
1989 | } | |
1990 | ||
1991 | /* Now record the occurrence(s). */ | |
7506f491 DE |
1992 | if (antic_p) |
1993 | { | |
1994 | antic_occr = cur_expr->antic_occr; | |
1995 | ||
1996 | /* Search for another occurrence in the same basic block. */ | |
1997 | while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn)) | |
1998 | { | |
1999 | /* If an occurrence isn't found, save a pointer to the end of | |
2000 | the list. */ | |
2001 | last_occr = antic_occr; | |
2002 | antic_occr = antic_occr->next; | |
2003 | } | |
2004 | ||
2005 | if (antic_occr) | |
c4c81601 RK |
2006 | /* Found another instance of the expression in the same basic block. |
2007 | Prefer the currently recorded one. We want the first one in the | |
2008 | block and the block is scanned from start to end. */ | |
2009 | ; /* nothing to do */ | |
7506f491 DE |
2010 | else |
2011 | { | |
2012 | /* First occurrence of this expression in this basic block. */ | |
2013 | antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr)); | |
2014 | bytes_used += sizeof (struct occr); | |
2015 | /* First occurrence of this expression in any block? */ | |
2016 | if (cur_expr->antic_occr == NULL) | |
2017 | cur_expr->antic_occr = antic_occr; | |
2018 | else | |
2019 | last_occr->next = antic_occr; | |
c4c81601 | 2020 | |
7506f491 DE |
2021 | antic_occr->insn = insn; |
2022 | antic_occr->next = NULL; | |
2023 | } | |
2024 | } | |
2025 | ||
2026 | if (avail_p) | |
2027 | { | |
2028 | avail_occr = cur_expr->avail_occr; | |
2029 | ||
2030 | /* Search for another occurrence in the same basic block. */ | |
2031 | while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn)) | |
2032 | { | |
2033 | /* If an occurrence isn't found, save a pointer to the end of | |
2034 | the list. */ | |
2035 | last_occr = avail_occr; | |
2036 | avail_occr = avail_occr->next; | |
2037 | } | |
2038 | ||
2039 | if (avail_occr) | |
c4c81601 RK |
2040 | /* Found another instance of the expression in the same basic block. |
2041 | Prefer this occurrence to the currently recorded one. We want | |
2042 | the last one in the block and the block is scanned from start | |
2043 | to end. */ | |
2044 | avail_occr->insn = insn; | |
7506f491 DE |
2045 | else |
2046 | { | |
2047 | /* First occurrence of this expression in this basic block. */ | |
2048 | avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr)); | |
2049 | bytes_used += sizeof (struct occr); | |
c4c81601 | 2050 | |
7506f491 DE |
2051 | /* First occurrence of this expression in any block? */ |
2052 | if (cur_expr->avail_occr == NULL) | |
2053 | cur_expr->avail_occr = avail_occr; | |
2054 | else | |
2055 | last_occr->next = avail_occr; | |
c4c81601 | 2056 | |
7506f491 DE |
2057 | avail_occr->insn = insn; |
2058 | avail_occr->next = NULL; | |
2059 | } | |
2060 | } | |
2061 | } | |
2062 | ||
2063 | /* Insert pattern X in INSN in the hash table. | |
2064 | X is a SET of a reg to either another reg or a constant. | |
2065 | If it is already present, record it as the last occurrence in INSN's | |
2066 | basic block. */ | |
2067 | ||
2068 | static void | |
02280659 | 2069 | insert_set_in_table (x, insn, table) |
7506f491 DE |
2070 | rtx x; |
2071 | rtx insn; | |
02280659 | 2072 | struct hash_table *table; |
7506f491 DE |
2073 | { |
2074 | int found; | |
2075 | unsigned int hash; | |
2076 | struct expr *cur_expr, *last_expr = NULL; | |
2077 | struct occr *cur_occr, *last_occr = NULL; | |
2078 | ||
2079 | if (GET_CODE (x) != SET | |
2080 | || GET_CODE (SET_DEST (x)) != REG) | |
2081 | abort (); | |
2082 | ||
02280659 | 2083 | hash = hash_set (REGNO (SET_DEST (x)), table->size); |
7506f491 | 2084 | |
02280659 | 2085 | cur_expr = table->table[hash]; |
7506f491 DE |
2086 | found = 0; |
2087 | ||
c4c81601 | 2088 | while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x))) |
7506f491 DE |
2089 | { |
2090 | /* If the expression isn't found, save a pointer to the end of | |
2091 | the list. */ | |
2092 | last_expr = cur_expr; | |
2093 | cur_expr = cur_expr->next_same_hash; | |
2094 | } | |
2095 | ||
2096 | if (! found) | |
2097 | { | |
2098 | cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr)); | |
2099 | bytes_used += sizeof (struct expr); | |
02280659 | 2100 | if (table->table[hash] == NULL) |
c4c81601 | 2101 | /* This is the first pattern that hashed to this index. */ |
02280659 | 2102 | table->table[hash] = cur_expr; |
7506f491 | 2103 | else |
c4c81601 RK |
2104 | /* Add EXPR to end of this hash chain. */ |
2105 | last_expr->next_same_hash = cur_expr; | |
2106 | ||
7506f491 DE |
2107 | /* Set the fields of the expr element. |
2108 | We must copy X because it can be modified when copy propagation is | |
2109 | performed on its operands. */ | |
7506f491 | 2110 | cur_expr->expr = copy_rtx (x); |
02280659 | 2111 | cur_expr->bitmap_index = table->n_elems++; |
7506f491 DE |
2112 | cur_expr->next_same_hash = NULL; |
2113 | cur_expr->antic_occr = NULL; | |
2114 | cur_expr->avail_occr = NULL; | |
2115 | } | |
2116 | ||
2117 | /* Now record the occurrence. */ | |
7506f491 DE |
2118 | cur_occr = cur_expr->avail_occr; |
2119 | ||
2120 | /* Search for another occurrence in the same basic block. */ | |
2121 | while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn)) | |
2122 | { | |
2123 | /* If an occurrence isn't found, save a pointer to the end of | |
2124 | the list. */ | |
2125 | last_occr = cur_occr; | |
2126 | cur_occr = cur_occr->next; | |
2127 | } | |
2128 | ||
2129 | if (cur_occr) | |
c4c81601 RK |
2130 | /* Found another instance of the expression in the same basic block. |
2131 | Prefer this occurrence to the currently recorded one. We want the | |
2132 | last one in the block and the block is scanned from start to end. */ | |
2133 | cur_occr->insn = insn; | |
7506f491 DE |
2134 | else |
2135 | { | |
2136 | /* First occurrence of this expression in this basic block. */ | |
2137 | cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr)); | |
2138 | bytes_used += sizeof (struct occr); | |
c4c81601 | 2139 | |
7506f491 DE |
2140 | /* First occurrence of this expression in any block? */ |
2141 | if (cur_expr->avail_occr == NULL) | |
2142 | cur_expr->avail_occr = cur_occr; | |
2143 | else | |
2144 | last_occr->next = cur_occr; | |
c4c81601 | 2145 | |
7506f491 DE |
2146 | cur_occr->insn = insn; |
2147 | cur_occr->next = NULL; | |
2148 | } | |
2149 | } | |
2150 | ||
02280659 ZD |
2151 | /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or |
2152 | expression one). */ | |
7506f491 DE |
2153 | |
2154 | static void | |
02280659 | 2155 | hash_scan_set (pat, insn, table) |
7506f491 | 2156 | rtx pat, insn; |
02280659 | 2157 | struct hash_table *table; |
7506f491 DE |
2158 | { |
2159 | rtx src = SET_SRC (pat); | |
2160 | rtx dest = SET_DEST (pat); | |
172890a2 | 2161 | rtx note; |
7506f491 DE |
2162 | |
2163 | if (GET_CODE (src) == CALL) | |
02280659 | 2164 | hash_scan_call (src, insn, table); |
7506f491 | 2165 | |
172890a2 | 2166 | else if (GET_CODE (dest) == REG) |
7506f491 | 2167 | { |
172890a2 | 2168 | unsigned int regno = REGNO (dest); |
7506f491 DE |
2169 | rtx tmp; |
2170 | ||
172890a2 RK |
2171 | /* If this is a single set and we are doing constant propagation, |
2172 | see if a REG_NOTE shows this equivalent to a constant. */ | |
02280659 | 2173 | if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0 |
172890a2 RK |
2174 | && CONSTANT_P (XEXP (note, 0))) |
2175 | src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src); | |
2176 | ||
7506f491 | 2177 | /* Only record sets of pseudo-regs in the hash table. */ |
02280659 | 2178 | if (! table->set_p |
7506f491 DE |
2179 | && regno >= FIRST_PSEUDO_REGISTER |
2180 | /* Don't GCSE something if we can't do a reg/reg copy. */ | |
2181 | && can_copy_p [GET_MODE (dest)] | |
068473ec JH |
2182 | /* GCSE commonly inserts instruction after the insn. We can't |
2183 | do that easily for EH_REGION notes so disable GCSE on these | |
2184 | for now. */ | |
2185 | && !find_reg_note (insn, REG_EH_REGION, NULL_RTX) | |
7506f491 | 2186 | /* Is SET_SRC something we want to gcse? */ |
172890a2 RK |
2187 | && want_to_gcse_p (src) |
2188 | /* Don't CSE a nop. */ | |
43e72072 JJ |
2189 | && ! set_noop_p (pat) |
2190 | /* Don't GCSE if it has attached REG_EQUIV note. | |
2191 | At this point this only function parameters should have | |
2192 | REG_EQUIV notes and if the argument slot is used somewhere | |
a1f300c0 | 2193 | explicitly, it means address of parameter has been taken, |
43e72072 JJ |
2194 | so we should not extend the lifetime of the pseudo. */ |
2195 | && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0 | |
2196 | || GET_CODE (XEXP (note, 0)) != MEM)) | |
7506f491 DE |
2197 | { |
2198 | /* An expression is not anticipatable if its operands are | |
52d76e11 RK |
2199 | modified before this insn or if this is not the only SET in |
2200 | this insn. */ | |
2201 | int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn); | |
7506f491 | 2202 | /* An expression is not available if its operands are |
eb296bd9 GK |
2203 | subsequently modified, including this insn. It's also not |
2204 | available if this is a branch, because we can't insert | |
2205 | a set after the branch. */ | |
2206 | int avail_p = (oprs_available_p (src, insn) | |
2207 | && ! JUMP_P (insn)); | |
c4c81601 | 2208 | |
02280659 | 2209 | insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table); |
7506f491 | 2210 | } |
c4c81601 | 2211 | |
7506f491 | 2212 | /* Record sets for constant/copy propagation. */ |
02280659 | 2213 | else if (table->set_p |
7506f491 DE |
2214 | && regno >= FIRST_PSEUDO_REGISTER |
2215 | && ((GET_CODE (src) == REG | |
2216 | && REGNO (src) >= FIRST_PSEUDO_REGISTER | |
172890a2 RK |
2217 | && can_copy_p [GET_MODE (dest)] |
2218 | && REGNO (src) != regno) | |
b446e5a2 | 2219 | || CONSTANT_P (src)) |
7506f491 DE |
2220 | /* A copy is not available if its src or dest is subsequently |
2221 | modified. Here we want to search from INSN+1 on, but | |
2222 | oprs_available_p searches from INSN on. */ | |
2223 | && (insn == BLOCK_END (BLOCK_NUM (insn)) | |
2224 | || ((tmp = next_nonnote_insn (insn)) != NULL_RTX | |
2225 | && oprs_available_p (pat, tmp)))) | |
02280659 | 2226 | insert_set_in_table (pat, insn, table); |
7506f491 | 2227 | } |
7506f491 DE |
2228 | } |
2229 | ||
2230 | static void | |
02280659 | 2231 | hash_scan_clobber (x, insn, table) |
50b2596f | 2232 | rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED; |
02280659 | 2233 | struct hash_table *table ATTRIBUTE_UNUSED; |
7506f491 DE |
2234 | { |
2235 | /* Currently nothing to do. */ | |
2236 | } | |
2237 | ||
2238 | static void | |
02280659 | 2239 | hash_scan_call (x, insn, table) |
50b2596f | 2240 | rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED; |
02280659 | 2241 | struct hash_table *table ATTRIBUTE_UNUSED; |
7506f491 DE |
2242 | { |
2243 | /* Currently nothing to do. */ | |
2244 | } | |
2245 | ||
2246 | /* Process INSN and add hash table entries as appropriate. | |
2247 | ||
2248 | Only available expressions that set a single pseudo-reg are recorded. | |
2249 | ||
2250 | Single sets in a PARALLEL could be handled, but it's an extra complication | |
2251 | that isn't dealt with right now. The trick is handling the CLOBBERs that | |
2252 | are also in the PARALLEL. Later. | |
2253 | ||
cc2902df | 2254 | If SET_P is nonzero, this is for the assignment hash table, |
ed79bb3d R |
2255 | otherwise it is for the expression hash table. |
2256 | If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should | |
2257 | not record any expressions. */ | |
7506f491 DE |
2258 | |
2259 | static void | |
02280659 | 2260 | hash_scan_insn (insn, table, in_libcall_block) |
7506f491 | 2261 | rtx insn; |
02280659 | 2262 | struct hash_table *table; |
48e87cef | 2263 | int in_libcall_block; |
7506f491 DE |
2264 | { |
2265 | rtx pat = PATTERN (insn); | |
c4c81601 | 2266 | int i; |
7506f491 | 2267 | |
172890a2 RK |
2268 | if (in_libcall_block) |
2269 | return; | |
2270 | ||
7506f491 DE |
2271 | /* Pick out the sets of INSN and for other forms of instructions record |
2272 | what's been modified. */ | |
2273 | ||
172890a2 | 2274 | if (GET_CODE (pat) == SET) |
02280659 | 2275 | hash_scan_set (pat, insn, table); |
7506f491 | 2276 | else if (GET_CODE (pat) == PARALLEL) |
c4c81601 RK |
2277 | for (i = 0; i < XVECLEN (pat, 0); i++) |
2278 | { | |
2279 | rtx x = XVECEXP (pat, 0, i); | |
7506f491 | 2280 | |
c4c81601 | 2281 | if (GET_CODE (x) == SET) |
02280659 | 2282 | hash_scan_set (x, insn, table); |
c4c81601 | 2283 | else if (GET_CODE (x) == CLOBBER) |
02280659 | 2284 | hash_scan_clobber (x, insn, table); |
c4c81601 | 2285 | else if (GET_CODE (x) == CALL) |
02280659 | 2286 | hash_scan_call (x, insn, table); |
c4c81601 | 2287 | } |
7506f491 | 2288 | |
7506f491 | 2289 | else if (GET_CODE (pat) == CLOBBER) |
02280659 | 2290 | hash_scan_clobber (pat, insn, table); |
7506f491 | 2291 | else if (GET_CODE (pat) == CALL) |
02280659 | 2292 | hash_scan_call (pat, insn, table); |
7506f491 DE |
2293 | } |
2294 | ||
2295 | static void | |
02280659 | 2296 | dump_hash_table (file, name, table) |
7506f491 | 2297 | FILE *file; |
dff01034 | 2298 | const char *name; |
02280659 | 2299 | struct hash_table *table; |
7506f491 DE |
2300 | { |
2301 | int i; | |
2302 | /* Flattened out table, so it's printed in proper order. */ | |
4da896b2 MM |
2303 | struct expr **flat_table; |
2304 | unsigned int *hash_val; | |
c4c81601 | 2305 | struct expr *expr; |
4da896b2 | 2306 | |
589005ff | 2307 | flat_table |
02280659 ZD |
2308 | = (struct expr **) xcalloc (table->n_elems, sizeof (struct expr *)); |
2309 | hash_val = (unsigned int *) xmalloc (table->n_elems * sizeof (unsigned int)); | |
7506f491 | 2310 | |
02280659 ZD |
2311 | for (i = 0; i < (int) table->size; i++) |
2312 | for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash) | |
c4c81601 RK |
2313 | { |
2314 | flat_table[expr->bitmap_index] = expr; | |
2315 | hash_val[expr->bitmap_index] = i; | |
2316 | } | |
7506f491 DE |
2317 | |
2318 | fprintf (file, "%s hash table (%d buckets, %d entries)\n", | |
02280659 | 2319 | name, table->size, table->n_elems); |
7506f491 | 2320 | |
02280659 | 2321 | for (i = 0; i < (int) table->n_elems; i++) |
21318741 RK |
2322 | if (flat_table[i] != 0) |
2323 | { | |
a0ac9e5a | 2324 | expr = flat_table[i]; |
21318741 RK |
2325 | fprintf (file, "Index %d (hash value %d)\n ", |
2326 | expr->bitmap_index, hash_val[i]); | |
a0ac9e5a | 2327 | print_rtl (file, expr->expr); |
21318741 RK |
2328 | fprintf (file, "\n"); |
2329 | } | |
7506f491 DE |
2330 | |
2331 | fprintf (file, "\n"); | |
4da896b2 | 2332 | |
4da896b2 MM |
2333 | free (flat_table); |
2334 | free (hash_val); | |
7506f491 DE |
2335 | } |
2336 | ||
2337 | /* Record register first/last/block set information for REGNO in INSN. | |
c4c81601 | 2338 | |
80c29cc4 | 2339 | first_set records the first place in the block where the register |
7506f491 | 2340 | is set and is used to compute "anticipatability". |
c4c81601 | 2341 | |
80c29cc4 | 2342 | last_set records the last place in the block where the register |
7506f491 | 2343 | is set and is used to compute "availability". |
c4c81601 | 2344 | |
80c29cc4 RZ |
2345 | last_bb records the block for which first_set and last_set are |
2346 | valid, as a quick test to invalidate them. | |
2347 | ||
7506f491 DE |
2348 | reg_set_in_block records whether the register is set in the block |
2349 | and is used to compute "transparency". */ | |
2350 | ||
2351 | static void | |
2352 | record_last_reg_set_info (insn, regno) | |
2353 | rtx insn; | |
2354 | int regno; | |
2355 | { | |
80c29cc4 RZ |
2356 | struct reg_avail_info *info = ®_avail_info[regno]; |
2357 | int cuid = INSN_CUID (insn); | |
c4c81601 | 2358 | |
80c29cc4 RZ |
2359 | info->last_set = cuid; |
2360 | if (info->last_bb != current_bb) | |
2361 | { | |
2362 | info->last_bb = current_bb; | |
2363 | info->first_set = cuid; | |
e0082a72 | 2364 | SET_BIT (reg_set_in_block[current_bb->index], regno); |
80c29cc4 | 2365 | } |
7506f491 DE |
2366 | } |
2367 | ||
a13d4ebf AM |
2368 | |
2369 | /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn. | |
2370 | Note we store a pair of elements in the list, so they have to be | |
2371 | taken off pairwise. */ | |
2372 | ||
589005ff | 2373 | static void |
a13d4ebf AM |
2374 | canon_list_insert (dest, unused1, v_insn) |
2375 | rtx dest ATTRIBUTE_UNUSED; | |
2376 | rtx unused1 ATTRIBUTE_UNUSED; | |
2377 | void * v_insn; | |
2378 | { | |
2379 | rtx dest_addr, insn; | |
0fe854a7 | 2380 | int bb; |
a13d4ebf AM |
2381 | |
2382 | while (GET_CODE (dest) == SUBREG | |
2383 | || GET_CODE (dest) == ZERO_EXTRACT | |
2384 | || GET_CODE (dest) == SIGN_EXTRACT | |
2385 | || GET_CODE (dest) == STRICT_LOW_PART) | |
2386 | dest = XEXP (dest, 0); | |
2387 | ||
2388 | /* If DEST is not a MEM, then it will not conflict with a load. Note | |
2389 | that function calls are assumed to clobber memory, but are handled | |
2390 | elsewhere. */ | |
2391 | ||
2392 | if (GET_CODE (dest) != MEM) | |
2393 | return; | |
2394 | ||
2395 | dest_addr = get_addr (XEXP (dest, 0)); | |
2396 | dest_addr = canon_rtx (dest_addr); | |
589005ff | 2397 | insn = (rtx) v_insn; |
0fe854a7 | 2398 | bb = BLOCK_NUM (insn); |
a13d4ebf | 2399 | |
589005ff | 2400 | canon_modify_mem_list[bb] = |
0fe854a7 | 2401 | alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]); |
589005ff | 2402 | canon_modify_mem_list[bb] = |
0fe854a7 RH |
2403 | alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]); |
2404 | bitmap_set_bit (canon_modify_mem_list_set, bb); | |
a13d4ebf AM |
2405 | } |
2406 | ||
a13d4ebf AM |
2407 | /* Record memory modification information for INSN. We do not actually care |
2408 | about the memory location(s) that are set, or even how they are set (consider | |
2409 | a CALL_INSN). We merely need to record which insns modify memory. */ | |
7506f491 DE |
2410 | |
2411 | static void | |
2412 | record_last_mem_set_info (insn) | |
2413 | rtx insn; | |
2414 | { | |
0fe854a7 RH |
2415 | int bb = BLOCK_NUM (insn); |
2416 | ||
ccef9ef5 | 2417 | /* load_killed_in_block_p will handle the case of calls clobbering |
dc297297 | 2418 | everything. */ |
0fe854a7 RH |
2419 | modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]); |
2420 | bitmap_set_bit (modify_mem_list_set, bb); | |
a13d4ebf AM |
2421 | |
2422 | if (GET_CODE (insn) == CALL_INSN) | |
2423 | { | |
2424 | /* Note that traversals of this loop (other than for free-ing) | |
2425 | will break after encountering a CALL_INSN. So, there's no | |
dc297297 | 2426 | need to insert a pair of items, as canon_list_insert does. */ |
589005ff KH |
2427 | canon_modify_mem_list[bb] = |
2428 | alloc_INSN_LIST (insn, canon_modify_mem_list[bb]); | |
0fe854a7 | 2429 | bitmap_set_bit (canon_modify_mem_list_set, bb); |
a13d4ebf AM |
2430 | } |
2431 | else | |
0fe854a7 | 2432 | note_stores (PATTERN (insn), canon_list_insert, (void*) insn); |
7506f491 DE |
2433 | } |
2434 | ||
7506f491 | 2435 | /* Called from compute_hash_table via note_stores to handle one |
84832317 MM |
2436 | SET or CLOBBER in an insn. DATA is really the instruction in which |
2437 | the SET is taking place. */ | |
7506f491 DE |
2438 | |
2439 | static void | |
84832317 | 2440 | record_last_set_info (dest, setter, data) |
50b2596f | 2441 | rtx dest, setter ATTRIBUTE_UNUSED; |
84832317 | 2442 | void *data; |
7506f491 | 2443 | { |
84832317 MM |
2444 | rtx last_set_insn = (rtx) data; |
2445 | ||
7506f491 DE |
2446 | if (GET_CODE (dest) == SUBREG) |
2447 | dest = SUBREG_REG (dest); | |
2448 | ||
2449 | if (GET_CODE (dest) == REG) | |
2450 | record_last_reg_set_info (last_set_insn, REGNO (dest)); | |
2451 | else if (GET_CODE (dest) == MEM | |
2452 | /* Ignore pushes, they clobber nothing. */ | |
2453 | && ! push_operand (dest, GET_MODE (dest))) | |
2454 | record_last_mem_set_info (last_set_insn); | |
2455 | } | |
2456 | ||
2457 | /* Top level function to create an expression or assignment hash table. | |
2458 | ||
2459 | Expression entries are placed in the hash table if | |
2460 | - they are of the form (set (pseudo-reg) src), | |
2461 | - src is something we want to perform GCSE on, | |
2462 | - none of the operands are subsequently modified in the block | |
2463 | ||
2464 | Assignment entries are placed in the hash table if | |
2465 | - they are of the form (set (pseudo-reg) src), | |
2466 | - src is something we want to perform const/copy propagation on, | |
2467 | - none of the operands or target are subsequently modified in the block | |
c4c81601 | 2468 | |
7506f491 DE |
2469 | Currently src must be a pseudo-reg or a const_int. |
2470 | ||
2471 | F is the first insn. | |
02280659 | 2472 | TABLE is the table computed. */ |
7506f491 DE |
2473 | |
2474 | static void | |
02280659 ZD |
2475 | compute_hash_table_work (table) |
2476 | struct hash_table *table; | |
7506f491 | 2477 | { |
80c29cc4 | 2478 | unsigned int i; |
7506f491 DE |
2479 | |
2480 | /* While we compute the hash table we also compute a bit array of which | |
2481 | registers are set in which blocks. | |
7506f491 DE |
2482 | ??? This isn't needed during const/copy propagation, but it's cheap to |
2483 | compute. Later. */ | |
d55bc081 | 2484 | sbitmap_vector_zero (reg_set_in_block, last_basic_block); |
7506f491 | 2485 | |
a13d4ebf | 2486 | /* re-Cache any INSN_LIST nodes we have allocated. */ |
73991d6a | 2487 | clear_modify_mem_tables (); |
7506f491 | 2488 | /* Some working arrays used to track first and last set in each block. */ |
80c29cc4 RZ |
2489 | reg_avail_info = (struct reg_avail_info*) |
2490 | gmalloc (max_gcse_regno * sizeof (struct reg_avail_info)); | |
2491 | ||
2492 | for (i = 0; i < max_gcse_regno; ++i) | |
e0082a72 | 2493 | reg_avail_info[i].last_bb = NULL; |
7506f491 | 2494 | |
e0082a72 | 2495 | FOR_EACH_BB (current_bb) |
7506f491 DE |
2496 | { |
2497 | rtx insn; | |
770ae6cc | 2498 | unsigned int regno; |
ed79bb3d | 2499 | int in_libcall_block; |
7506f491 DE |
2500 | |
2501 | /* First pass over the instructions records information used to | |
2502 | determine when registers and memory are first and last set. | |
ccef9ef5 | 2503 | ??? hard-reg reg_set_in_block computation |
7506f491 DE |
2504 | could be moved to compute_sets since they currently don't change. */ |
2505 | ||
e0082a72 ZD |
2506 | for (insn = current_bb->head; |
2507 | insn && insn != NEXT_INSN (current_bb->end); | |
7506f491 DE |
2508 | insn = NEXT_INSN (insn)) |
2509 | { | |
2c3c49de | 2510 | if (! INSN_P (insn)) |
7506f491 DE |
2511 | continue; |
2512 | ||
2513 | if (GET_CODE (insn) == CALL_INSN) | |
2514 | { | |
19652adf | 2515 | bool clobbers_all = false; |
589005ff | 2516 | #ifdef NON_SAVING_SETJMP |
19652adf ZW |
2517 | if (NON_SAVING_SETJMP |
2518 | && find_reg_note (insn, REG_SETJMP, NULL_RTX)) | |
2519 | clobbers_all = true; | |
2520 | #endif | |
2521 | ||
7506f491 | 2522 | for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
19652adf ZW |
2523 | if (clobbers_all |
2524 | || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)) | |
7506f491 | 2525 | record_last_reg_set_info (insn, regno); |
c4c81601 | 2526 | |
24a28584 | 2527 | mark_call (insn); |
7506f491 DE |
2528 | } |
2529 | ||
84832317 | 2530 | note_stores (PATTERN (insn), record_last_set_info, insn); |
7506f491 DE |
2531 | } |
2532 | ||
2533 | /* The next pass builds the hash table. */ | |
2534 | ||
e0082a72 ZD |
2535 | for (insn = current_bb->head, in_libcall_block = 0; |
2536 | insn && insn != NEXT_INSN (current_bb->end); | |
7506f491 | 2537 | insn = NEXT_INSN (insn)) |
2c3c49de | 2538 | if (INSN_P (insn)) |
c4c81601 RK |
2539 | { |
2540 | if (find_reg_note (insn, REG_LIBCALL, NULL_RTX)) | |
589005ff | 2541 | in_libcall_block = 1; |
02280659 | 2542 | else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX)) |
589005ff | 2543 | in_libcall_block = 0; |
02280659 ZD |
2544 | hash_scan_insn (insn, table, in_libcall_block); |
2545 | if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX)) | |
589005ff | 2546 | in_libcall_block = 0; |
8e42ace1 | 2547 | } |
7506f491 DE |
2548 | } |
2549 | ||
80c29cc4 RZ |
2550 | free (reg_avail_info); |
2551 | reg_avail_info = NULL; | |
7506f491 DE |
2552 | } |
2553 | ||
02280659 | 2554 | /* Allocate space for the set/expr hash TABLE. |
7506f491 | 2555 | N_INSNS is the number of instructions in the function. |
02280659 ZD |
2556 | It is used to determine the number of buckets to use. |
2557 | SET_P determines whether set or expression table will | |
2558 | be created. */ | |
7506f491 DE |
2559 | |
2560 | static void | |
02280659 | 2561 | alloc_hash_table (n_insns, table, set_p) |
7506f491 | 2562 | int n_insns; |
02280659 ZD |
2563 | struct hash_table *table; |
2564 | int set_p; | |
7506f491 DE |
2565 | { |
2566 | int n; | |
2567 | ||
02280659 ZD |
2568 | table->size = n_insns / 4; |
2569 | if (table->size < 11) | |
2570 | table->size = 11; | |
c4c81601 | 2571 | |
7506f491 DE |
2572 | /* Attempt to maintain efficient use of hash table. |
2573 | Making it an odd number is simplest for now. | |
2574 | ??? Later take some measurements. */ | |
02280659 ZD |
2575 | table->size |= 1; |
2576 | n = table->size * sizeof (struct expr *); | |
2577 | table->table = (struct expr **) gmalloc (n); | |
2578 | table->set_p = set_p; | |
7506f491 DE |
2579 | } |
2580 | ||
02280659 | 2581 | /* Free things allocated by alloc_hash_table. */ |
7506f491 DE |
2582 | |
2583 | static void | |
02280659 ZD |
2584 | free_hash_table (table) |
2585 | struct hash_table *table; | |
7506f491 | 2586 | { |
02280659 | 2587 | free (table->table); |
7506f491 DE |
2588 | } |
2589 | ||
02280659 ZD |
2590 | /* Compute the hash TABLE for doing copy/const propagation or |
2591 | expression hash table. */ | |
7506f491 DE |
2592 | |
2593 | static void | |
02280659 ZD |
2594 | compute_hash_table (table) |
2595 | struct hash_table *table; | |
7506f491 DE |
2596 | { |
2597 | /* Initialize count of number of entries in hash table. */ | |
02280659 ZD |
2598 | table->n_elems = 0; |
2599 | memset ((char *) table->table, 0, | |
2600 | table->size * sizeof (struct expr *)); | |
7506f491 | 2601 | |
02280659 | 2602 | compute_hash_table_work (table); |
7506f491 DE |
2603 | } |
2604 | \f | |
2605 | /* Expression tracking support. */ | |
2606 | ||
02280659 | 2607 | /* Lookup pattern PAT in the expression TABLE. |
7506f491 DE |
2608 | The result is a pointer to the table entry, or NULL if not found. */ |
2609 | ||
2610 | static struct expr * | |
02280659 | 2611 | lookup_expr (pat, table) |
7506f491 | 2612 | rtx pat; |
02280659 | 2613 | struct hash_table *table; |
7506f491 DE |
2614 | { |
2615 | int do_not_record_p; | |
2616 | unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p, | |
02280659 | 2617 | table->size); |
7506f491 DE |
2618 | struct expr *expr; |
2619 | ||
2620 | if (do_not_record_p) | |
2621 | return NULL; | |
2622 | ||
02280659 | 2623 | expr = table->table[hash]; |
7506f491 DE |
2624 | |
2625 | while (expr && ! expr_equiv_p (expr->expr, pat)) | |
2626 | expr = expr->next_same_hash; | |
2627 | ||
2628 | return expr; | |
2629 | } | |
2630 | ||
02280659 | 2631 | /* Lookup REGNO in the set TABLE. If PAT is non-NULL look for the entry that |
c4c81601 RK |
2632 | matches it, otherwise return the first entry for REGNO. The result is a |
2633 | pointer to the table entry, or NULL if not found. */ | |
7506f491 DE |
2634 | |
2635 | static struct expr * | |
02280659 | 2636 | lookup_set (regno, pat, table) |
770ae6cc | 2637 | unsigned int regno; |
7506f491 | 2638 | rtx pat; |
02280659 | 2639 | struct hash_table *table; |
7506f491 | 2640 | { |
02280659 | 2641 | unsigned int hash = hash_set (regno, table->size); |
7506f491 DE |
2642 | struct expr *expr; |
2643 | ||
02280659 | 2644 | expr = table->table[hash]; |
7506f491 DE |
2645 | |
2646 | if (pat) | |
2647 | { | |
2648 | while (expr && ! expr_equiv_p (expr->expr, pat)) | |
2649 | expr = expr->next_same_hash; | |
2650 | } | |
2651 | else | |
2652 | { | |
2653 | while (expr && REGNO (SET_DEST (expr->expr)) != regno) | |
2654 | expr = expr->next_same_hash; | |
2655 | } | |
2656 | ||
2657 | return expr; | |
2658 | } | |
2659 | ||
2660 | /* Return the next entry for REGNO in list EXPR. */ | |
2661 | ||
2662 | static struct expr * | |
2663 | next_set (regno, expr) | |
770ae6cc | 2664 | unsigned int regno; |
7506f491 DE |
2665 | struct expr *expr; |
2666 | { | |
2667 | do | |
2668 | expr = expr->next_same_hash; | |
2669 | while (expr && REGNO (SET_DEST (expr->expr)) != regno); | |
c4c81601 | 2670 | |
7506f491 DE |
2671 | return expr; |
2672 | } | |
2673 | ||
0fe854a7 RH |
2674 | /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node |
2675 | types may be mixed. */ | |
2676 | ||
2677 | static void | |
2678 | free_insn_expr_list_list (listp) | |
2679 | rtx *listp; | |
2680 | { | |
2681 | rtx list, next; | |
2682 | ||
2683 | for (list = *listp; list ; list = next) | |
2684 | { | |
2685 | next = XEXP (list, 1); | |
2686 | if (GET_CODE (list) == EXPR_LIST) | |
2687 | free_EXPR_LIST_node (list); | |
2688 | else | |
2689 | free_INSN_LIST_node (list); | |
2690 | } | |
2691 | ||
2692 | *listp = NULL; | |
2693 | } | |
2694 | ||
73991d6a JH |
2695 | /* Clear canon_modify_mem_list and modify_mem_list tables. */ |
2696 | static void | |
2697 | clear_modify_mem_tables () | |
2698 | { | |
2699 | int i; | |
2700 | ||
2701 | EXECUTE_IF_SET_IN_BITMAP | |
0fe854a7 RH |
2702 | (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i)); |
2703 | bitmap_clear (modify_mem_list_set); | |
73991d6a JH |
2704 | |
2705 | EXECUTE_IF_SET_IN_BITMAP | |
2706 | (canon_modify_mem_list_set, 0, i, | |
0fe854a7 RH |
2707 | free_insn_expr_list_list (canon_modify_mem_list + i)); |
2708 | bitmap_clear (canon_modify_mem_list_set); | |
73991d6a JH |
2709 | } |
2710 | ||
2711 | /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */ | |
2712 | ||
2713 | static void | |
2714 | free_modify_mem_tables () | |
2715 | { | |
2716 | clear_modify_mem_tables (); | |
2717 | free (modify_mem_list); | |
2718 | free (canon_modify_mem_list); | |
2719 | modify_mem_list = 0; | |
2720 | canon_modify_mem_list = 0; | |
2721 | } | |
2722 | ||
7506f491 DE |
2723 | /* Reset tables used to keep track of what's still available [since the |
2724 | start of the block]. */ | |
2725 | ||
2726 | static void | |
2727 | reset_opr_set_tables () | |
2728 | { | |
2729 | /* Maintain a bitmap of which regs have been set since beginning of | |
2730 | the block. */ | |
73991d6a | 2731 | CLEAR_REG_SET (reg_set_bitmap); |
c4c81601 | 2732 | |
7506f491 DE |
2733 | /* Also keep a record of the last instruction to modify memory. |
2734 | For now this is very trivial, we only record whether any memory | |
2735 | location has been modified. */ | |
73991d6a | 2736 | clear_modify_mem_tables (); |
7506f491 DE |
2737 | } |
2738 | ||
cc2902df | 2739 | /* Return nonzero if the operands of X are not set before INSN in |
7506f491 DE |
2740 | INSN's basic block. */ |
2741 | ||
2742 | static int | |
2743 | oprs_not_set_p (x, insn) | |
2744 | rtx x, insn; | |
2745 | { | |
c4c81601 | 2746 | int i, j; |
7506f491 | 2747 | enum rtx_code code; |
6f7d635c | 2748 | const char *fmt; |
7506f491 | 2749 | |
7506f491 DE |
2750 | if (x == 0) |
2751 | return 1; | |
2752 | ||
2753 | code = GET_CODE (x); | |
2754 | switch (code) | |
2755 | { | |
2756 | case PC: | |
2757 | case CC0: | |
2758 | case CONST: | |
2759 | case CONST_INT: | |
2760 | case CONST_DOUBLE: | |
69ef87e2 | 2761 | case CONST_VECTOR: |
7506f491 DE |
2762 | case SYMBOL_REF: |
2763 | case LABEL_REF: | |
2764 | case ADDR_VEC: | |
2765 | case ADDR_DIFF_VEC: | |
2766 | return 1; | |
2767 | ||
2768 | case MEM: | |
589005ff | 2769 | if (load_killed_in_block_p (BLOCK_FOR_INSN (insn), |
e2d2ed72 | 2770 | INSN_CUID (insn), x, 0)) |
a13d4ebf | 2771 | return 0; |
c4c81601 RK |
2772 | else |
2773 | return oprs_not_set_p (XEXP (x, 0), insn); | |
7506f491 DE |
2774 | |
2775 | case REG: | |
73991d6a | 2776 | return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x)); |
7506f491 DE |
2777 | |
2778 | default: | |
2779 | break; | |
2780 | } | |
2781 | ||
c4c81601 | 2782 | for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) |
7506f491 DE |
2783 | { |
2784 | if (fmt[i] == 'e') | |
2785 | { | |
7506f491 DE |
2786 | /* If we are about to do the last recursive call |
2787 | needed at this level, change it into iteration. | |
2788 | This function is called enough to be worth it. */ | |
2789 | if (i == 0) | |
c4c81601 RK |
2790 | return oprs_not_set_p (XEXP (x, i), insn); |
2791 | ||
2792 | if (! oprs_not_set_p (XEXP (x, i), insn)) | |
7506f491 DE |
2793 | return 0; |
2794 | } | |
2795 | else if (fmt[i] == 'E') | |
c4c81601 RK |
2796 | for (j = 0; j < XVECLEN (x, i); j++) |
2797 | if (! oprs_not_set_p (XVECEXP (x, i, j), insn)) | |
2798 | return 0; | |
7506f491 DE |
2799 | } |
2800 | ||
2801 | return 1; | |
2802 | } | |
2803 | ||
2804 | /* Mark things set by a CALL. */ | |
2805 | ||
2806 | static void | |
b5ce41ff JL |
2807 | mark_call (insn) |
2808 | rtx insn; | |
7506f491 | 2809 | { |
24a28584 | 2810 | if (! CONST_OR_PURE_CALL_P (insn)) |
a13d4ebf | 2811 | record_last_mem_set_info (insn); |
7506f491 DE |
2812 | } |
2813 | ||
2814 | /* Mark things set by a SET. */ | |
2815 | ||
2816 | static void | |
2817 | mark_set (pat, insn) | |
2818 | rtx pat, insn; | |
2819 | { | |
2820 | rtx dest = SET_DEST (pat); | |
2821 | ||
2822 | while (GET_CODE (dest) == SUBREG | |
2823 | || GET_CODE (dest) == ZERO_EXTRACT | |
2824 | || GET_CODE (dest) == SIGN_EXTRACT | |
2825 | || GET_CODE (dest) == STRICT_LOW_PART) | |
2826 | dest = XEXP (dest, 0); | |
2827 | ||
a13d4ebf | 2828 | if (GET_CODE (dest) == REG) |
73991d6a | 2829 | SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest)); |
a13d4ebf AM |
2830 | else if (GET_CODE (dest) == MEM) |
2831 | record_last_mem_set_info (insn); | |
2832 | ||
7506f491 | 2833 | if (GET_CODE (SET_SRC (pat)) == CALL) |
b5ce41ff | 2834 | mark_call (insn); |
7506f491 DE |
2835 | } |
2836 | ||
2837 | /* Record things set by a CLOBBER. */ | |
2838 | ||
2839 | static void | |
2840 | mark_clobber (pat, insn) | |
2841 | rtx pat, insn; | |
2842 | { | |
2843 | rtx clob = XEXP (pat, 0); | |
2844 | ||
2845 | while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART) | |
2846 | clob = XEXP (clob, 0); | |
2847 | ||
a13d4ebf | 2848 | if (GET_CODE (clob) == REG) |
73991d6a | 2849 | SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob)); |
a13d4ebf AM |
2850 | else |
2851 | record_last_mem_set_info (insn); | |
7506f491 DE |
2852 | } |
2853 | ||
2854 | /* Record things set by INSN. | |
2855 | This data is used by oprs_not_set_p. */ | |
2856 | ||
2857 | static void | |
2858 | mark_oprs_set (insn) | |
2859 | rtx insn; | |
2860 | { | |
2861 | rtx pat = PATTERN (insn); | |
c4c81601 | 2862 | int i; |
7506f491 DE |
2863 | |
2864 | if (GET_CODE (pat) == SET) | |
2865 | mark_set (pat, insn); | |
2866 | else if (GET_CODE (pat) == PARALLEL) | |
c4c81601 RK |
2867 | for (i = 0; i < XVECLEN (pat, 0); i++) |
2868 | { | |
2869 | rtx x = XVECEXP (pat, 0, i); | |
2870 | ||
2871 | if (GET_CODE (x) == SET) | |
2872 | mark_set (x, insn); | |
2873 | else if (GET_CODE (x) == CLOBBER) | |
2874 | mark_clobber (x, insn); | |
2875 | else if (GET_CODE (x) == CALL) | |
2876 | mark_call (insn); | |
2877 | } | |
7506f491 | 2878 | |
7506f491 DE |
2879 | else if (GET_CODE (pat) == CLOBBER) |
2880 | mark_clobber (pat, insn); | |
2881 | else if (GET_CODE (pat) == CALL) | |
b5ce41ff | 2882 | mark_call (insn); |
7506f491 | 2883 | } |
b5ce41ff | 2884 | |
7506f491 DE |
2885 | \f |
2886 | /* Classic GCSE reaching definition support. */ | |
2887 | ||
2888 | /* Allocate reaching def variables. */ | |
2889 | ||
2890 | static void | |
2891 | alloc_rd_mem (n_blocks, n_insns) | |
2892 | int n_blocks, n_insns; | |
2893 | { | |
2894 | rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns); | |
d55bc081 | 2895 | sbitmap_vector_zero (rd_kill, n_blocks); |
7506f491 DE |
2896 | |
2897 | rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns); | |
d55bc081 | 2898 | sbitmap_vector_zero (rd_gen, n_blocks); |
7506f491 DE |
2899 | |
2900 | reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns); | |
d55bc081 | 2901 | sbitmap_vector_zero (reaching_defs, n_blocks); |
7506f491 DE |
2902 | |
2903 | rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns); | |
d55bc081 | 2904 | sbitmap_vector_zero (rd_out, n_blocks); |
7506f491 DE |
2905 | } |
2906 | ||
2907 | /* Free reaching def variables. */ | |
2908 | ||
2909 | static void | |
2910 | free_rd_mem () | |
2911 | { | |
5a660bff DB |
2912 | sbitmap_vector_free (rd_kill); |
2913 | sbitmap_vector_free (rd_gen); | |
2914 | sbitmap_vector_free (reaching_defs); | |
2915 | sbitmap_vector_free (rd_out); | |
7506f491 DE |
2916 | } |
2917 | ||
c4c81601 | 2918 | /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */ |
7506f491 DE |
2919 | |
2920 | static void | |
2921 | handle_rd_kill_set (insn, regno, bb) | |
2922 | rtx insn; | |
e2d2ed72 AM |
2923 | int regno; |
2924 | basic_block bb; | |
7506f491 | 2925 | { |
c4c81601 | 2926 | struct reg_set *this_reg; |
7506f491 | 2927 | |
c4c81601 RK |
2928 | for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next) |
2929 | if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn)) | |
0b17ab2f | 2930 | SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn)); |
7506f491 DE |
2931 | } |
2932 | ||
7506f491 DE |
2933 | /* Compute the set of kill's for reaching definitions. */ |
2934 | ||
2935 | static void | |
2936 | compute_kill_rd () | |
2937 | { | |
e0082a72 | 2938 | int cuid; |
172890a2 RK |
2939 | unsigned int regno; |
2940 | int i; | |
e0082a72 | 2941 | basic_block bb; |
7506f491 DE |
2942 | |
2943 | /* For each block | |
2944 | For each set bit in `gen' of the block (i.e each insn which | |
ac7c5af5 JL |
2945 | generates a definition in the block) |
2946 | Call the reg set by the insn corresponding to that bit regx | |
2947 | Look at the linked list starting at reg_set_table[regx] | |
2948 | For each setting of regx in the linked list, which is not in | |
2949 | this block | |
6d2f8887 | 2950 | Set the bit in `kill' corresponding to that insn. */ |
e0082a72 | 2951 | FOR_EACH_BB (bb) |
c4c81601 | 2952 | for (cuid = 0; cuid < max_cuid; cuid++) |
e0082a72 | 2953 | if (TEST_BIT (rd_gen[bb->index], cuid)) |
7506f491 | 2954 | { |
c4c81601 RK |
2955 | rtx insn = CUID_INSN (cuid); |
2956 | rtx pat = PATTERN (insn); | |
7506f491 | 2957 | |
c4c81601 RK |
2958 | if (GET_CODE (insn) == CALL_INSN) |
2959 | { | |
2960 | for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) | |
4e2db584 | 2961 | if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)) |
e0082a72 | 2962 | handle_rd_kill_set (insn, regno, bb); |
c4c81601 | 2963 | } |
7506f491 | 2964 | |
c4c81601 RK |
2965 | if (GET_CODE (pat) == PARALLEL) |
2966 | { | |
2967 | for (i = XVECLEN (pat, 0) - 1; i >= 0; i--) | |
7506f491 | 2968 | { |
c4c81601 | 2969 | enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i)); |
7506f491 | 2970 | |
c4c81601 RK |
2971 | if ((code == SET || code == CLOBBER) |
2972 | && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG) | |
2973 | handle_rd_kill_set (insn, | |
2974 | REGNO (XEXP (XVECEXP (pat, 0, i), 0)), | |
e0082a72 | 2975 | bb); |
ac7c5af5 | 2976 | } |
ac7c5af5 | 2977 | } |
c4c81601 RK |
2978 | else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG) |
2979 | /* Each setting of this register outside of this block | |
2980 | must be marked in the set of kills in this block. */ | |
e0082a72 | 2981 | handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb); |
7506f491 | 2982 | } |
7506f491 DE |
2983 | } |
2984 | ||
589005ff | 2985 | /* Compute the reaching definitions as in |
7506f491 DE |
2986 | Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman, |
2987 | Chapter 10. It is the same algorithm as used for computing available | |
2988 | expressions but applied to the gens and kills of reaching definitions. */ | |
2989 | ||
2990 | static void | |
2991 | compute_rd () | |
2992 | { | |
e0082a72 ZD |
2993 | int changed, passes; |
2994 | basic_block bb; | |
7506f491 | 2995 | |
e0082a72 ZD |
2996 | FOR_EACH_BB (bb) |
2997 | sbitmap_copy (rd_out[bb->index] /*dst*/, rd_gen[bb->index] /*src*/); | |
7506f491 DE |
2998 | |
2999 | passes = 0; | |
3000 | changed = 1; | |
3001 | while (changed) | |
3002 | { | |
3003 | changed = 0; | |
e0082a72 | 3004 | FOR_EACH_BB (bb) |
ac7c5af5 | 3005 | { |
e0082a72 ZD |
3006 | sbitmap_union_of_preds (reaching_defs[bb->index], rd_out, bb->index); |
3007 | changed |= sbitmap_union_of_diff_cg (rd_out[bb->index], rd_gen[bb->index], | |
3008 | reaching_defs[bb->index], rd_kill[bb->index]); | |
ac7c5af5 | 3009 | } |
7506f491 DE |
3010 | passes++; |
3011 | } | |
3012 | ||
3013 | if (gcse_file) | |
3014 | fprintf (gcse_file, "reaching def computation: %d passes\n", passes); | |
3015 | } | |
3016 | \f | |
3017 | /* Classic GCSE available expression support. */ | |
3018 | ||
3019 | /* Allocate memory for available expression computation. */ | |
3020 | ||
3021 | static void | |
3022 | alloc_avail_expr_mem (n_blocks, n_exprs) | |
3023 | int n_blocks, n_exprs; | |
3024 | { | |
3025 | ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs); | |
d55bc081 | 3026 | sbitmap_vector_zero (ae_kill, n_blocks); |
7506f491 DE |
3027 | |
3028 | ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs); | |
d55bc081 | 3029 | sbitmap_vector_zero (ae_gen, n_blocks); |
7506f491 DE |
3030 | |
3031 | ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs); | |
d55bc081 | 3032 | sbitmap_vector_zero (ae_in, n_blocks); |
7506f491 DE |
3033 | |
3034 | ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs); | |
d55bc081 | 3035 | sbitmap_vector_zero (ae_out, n_blocks); |
7506f491 DE |
3036 | } |
3037 | ||
3038 | static void | |
3039 | free_avail_expr_mem () | |
3040 | { | |
5a660bff DB |
3041 | sbitmap_vector_free (ae_kill); |
3042 | sbitmap_vector_free (ae_gen); | |
3043 | sbitmap_vector_free (ae_in); | |
3044 | sbitmap_vector_free (ae_out); | |
7506f491 DE |
3045 | } |
3046 | ||
3047 | /* Compute the set of available expressions generated in each basic block. */ | |
3048 | ||
3049 | static void | |
02280659 ZD |
3050 | compute_ae_gen (expr_hash_table) |
3051 | struct hash_table *expr_hash_table; | |
7506f491 | 3052 | { |
2e653e39 | 3053 | unsigned int i; |
c4c81601 RK |
3054 | struct expr *expr; |
3055 | struct occr *occr; | |
7506f491 DE |
3056 | |
3057 | /* For each recorded occurrence of each expression, set ae_gen[bb][expr]. | |
3058 | This is all we have to do because an expression is not recorded if it | |
3059 | is not available, and the only expressions we want to work with are the | |
3060 | ones that are recorded. */ | |
02280659 ZD |
3061 | for (i = 0; i < expr_hash_table->size; i++) |
3062 | for (expr = expr_hash_table->table[i]; expr != 0; expr = expr->next_same_hash) | |
c4c81601 RK |
3063 | for (occr = expr->avail_occr; occr != 0; occr = occr->next) |
3064 | SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index); | |
7506f491 DE |
3065 | } |
3066 | ||
cc2902df | 3067 | /* Return nonzero if expression X is killed in BB. */ |
7506f491 DE |
3068 | |
3069 | static int | |
3070 | expr_killed_p (x, bb) | |
3071 | rtx x; | |
e2d2ed72 | 3072 | basic_block bb; |
7506f491 | 3073 | { |
c4c81601 | 3074 | int i, j; |
7506f491 | 3075 | enum rtx_code code; |
6f7d635c | 3076 | const char *fmt; |
7506f491 | 3077 | |
7506f491 DE |
3078 | if (x == 0) |
3079 | return 1; | |
3080 | ||
3081 | code = GET_CODE (x); | |
3082 | switch (code) | |
3083 | { | |
3084 | case REG: | |
0b17ab2f | 3085 | return TEST_BIT (reg_set_in_block[bb->index], REGNO (x)); |
7506f491 DE |
3086 | |
3087 | case MEM: | |
a13d4ebf AM |
3088 | if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0)) |
3089 | return 1; | |
c4c81601 RK |
3090 | else |
3091 | return expr_killed_p (XEXP (x, 0), bb); | |
7506f491 DE |
3092 | |
3093 | case PC: | |
3094 | case CC0: /*FIXME*/ | |
3095 | case CONST: | |
3096 | case CONST_INT: | |
3097 | case CONST_DOUBLE: | |
69ef87e2 | 3098 | case CONST_VECTOR: |
7506f491 DE |
3099 | case SYMBOL_REF: |
3100 | case LABEL_REF: | |
3101 | case ADDR_VEC: | |
3102 | case ADDR_DIFF_VEC: | |
3103 | return 0; | |
3104 | ||
3105 | default: | |
3106 | break; | |
3107 | } | |
3108 | ||
c4c81601 | 3109 | for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) |
7506f491 DE |
3110 | { |
3111 | if (fmt[i] == 'e') | |
3112 | { | |
7506f491 DE |
3113 | /* If we are about to do the last recursive call |
3114 | needed at this level, change it into iteration. | |
3115 | This function is called enough to be worth it. */ | |
3116 | if (i == 0) | |
c4c81601 RK |
3117 | return expr_killed_p (XEXP (x, i), bb); |
3118 | else if (expr_killed_p (XEXP (x, i), bb)) | |
7506f491 DE |
3119 | return 1; |
3120 | } | |
3121 | else if (fmt[i] == 'E') | |
c4c81601 RK |
3122 | for (j = 0; j < XVECLEN (x, i); j++) |
3123 | if (expr_killed_p (XVECEXP (x, i, j), bb)) | |
3124 | return 1; | |
7506f491 DE |
3125 | } |
3126 | ||
3127 | return 0; | |
3128 | } | |
3129 | ||
3130 | /* Compute the set of available expressions killed in each basic block. */ | |
3131 | ||
3132 | static void | |
02280659 | 3133 | compute_ae_kill (ae_gen, ae_kill, expr_hash_table) |
a42cd965 | 3134 | sbitmap *ae_gen, *ae_kill; |
02280659 | 3135 | struct hash_table *expr_hash_table; |
7506f491 | 3136 | { |
e0082a72 | 3137 | basic_block bb; |
2e653e39 | 3138 | unsigned int i; |
c4c81601 | 3139 | struct expr *expr; |
7506f491 | 3140 | |
e0082a72 | 3141 | FOR_EACH_BB (bb) |
02280659 ZD |
3142 | for (i = 0; i < expr_hash_table->size; i++) |
3143 | for (expr = expr_hash_table->table[i]; expr; expr = expr->next_same_hash) | |
7506f491 | 3144 | { |
c4c81601 | 3145 | /* Skip EXPR if generated in this block. */ |
e0082a72 | 3146 | if (TEST_BIT (ae_gen[bb->index], expr->bitmap_index)) |
c4c81601 | 3147 | continue; |
7506f491 | 3148 | |
e0082a72 ZD |
3149 | if (expr_killed_p (expr->expr, bb)) |
3150 | SET_BIT (ae_kill[bb->index], expr->bitmap_index); | |
7506f491 | 3151 | } |
7506f491 | 3152 | } |
7506f491 DE |
3153 | \f |
3154 | /* Actually perform the Classic GCSE optimizations. */ | |
3155 | ||
cc2902df | 3156 | /* Return nonzero if occurrence OCCR of expression EXPR reaches block BB. |
7506f491 | 3157 | |
cc2902df | 3158 | CHECK_SELF_LOOP is nonzero if we should consider a block reaching itself |
7506f491 DE |
3159 | as a positive reach. We want to do this when there are two computations |
3160 | of the expression in the block. | |
3161 | ||
3162 | VISITED is a pointer to a working buffer for tracking which BB's have | |
3163 | been visited. It is NULL for the top-level call. | |
3164 | ||
3165 | We treat reaching expressions that go through blocks containing the same | |
3166 | reaching expression as "not reaching". E.g. if EXPR is generated in blocks | |
3167 | 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block | |
3168 | 2 as not reaching. The intent is to improve the probability of finding | |
3169 | only one reaching expression and to reduce register lifetimes by picking | |
3170 | the closest such expression. */ | |
3171 | ||
3172 | static int | |
283a2545 | 3173 | expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited) |
7506f491 DE |
3174 | struct occr *occr; |
3175 | struct expr *expr; | |
e2d2ed72 | 3176 | basic_block bb; |
7506f491 DE |
3177 | int check_self_loop; |
3178 | char *visited; | |
3179 | { | |
36349f8b | 3180 | edge pred; |
7506f491 | 3181 | |
e2d2ed72 | 3182 | for (pred = bb->pred; pred != NULL; pred = pred->pred_next) |
7506f491 | 3183 | { |
e2d2ed72 | 3184 | basic_block pred_bb = pred->src; |
7506f491 | 3185 | |
0b17ab2f | 3186 | if (visited[pred_bb->index]) |
c4c81601 | 3187 | /* This predecessor has already been visited. Nothing to do. */ |
7506f491 | 3188 | ; |
7506f491 | 3189 | else if (pred_bb == bb) |
ac7c5af5 | 3190 | { |
7506f491 DE |
3191 | /* BB loops on itself. */ |
3192 | if (check_self_loop | |
0b17ab2f RH |
3193 | && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index) |
3194 | && BLOCK_NUM (occr->insn) == pred_bb->index) | |
7506f491 | 3195 | return 1; |
c4c81601 | 3196 | |
0b17ab2f | 3197 | visited[pred_bb->index] = 1; |
ac7c5af5 | 3198 | } |
c4c81601 | 3199 | |
7506f491 | 3200 | /* Ignore this predecessor if it kills the expression. */ |
0b17ab2f RH |
3201 | else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index)) |
3202 | visited[pred_bb->index] = 1; | |
c4c81601 | 3203 | |
7506f491 | 3204 | /* Does this predecessor generate this expression? */ |
0b17ab2f | 3205 | else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)) |
7506f491 DE |
3206 | { |
3207 | /* Is this the occurrence we're looking for? | |
3208 | Note that there's only one generating occurrence per block | |
3209 | so we just need to check the block number. */ | |
0b17ab2f | 3210 | if (BLOCK_NUM (occr->insn) == pred_bb->index) |
7506f491 | 3211 | return 1; |
c4c81601 | 3212 | |
0b17ab2f | 3213 | visited[pred_bb->index] = 1; |
7506f491 | 3214 | } |
c4c81601 | 3215 | |
7506f491 DE |
3216 | /* Neither gen nor kill. */ |
3217 | else | |
ac7c5af5 | 3218 | { |
0b17ab2f | 3219 | visited[pred_bb->index] = 1; |
589005ff | 3220 | if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop, |
283a2545 | 3221 | visited)) |
c4c81601 | 3222 | |
7506f491 | 3223 | return 1; |
ac7c5af5 | 3224 | } |
7506f491 DE |
3225 | } |
3226 | ||
3227 | /* All paths have been checked. */ | |
3228 | return 0; | |
3229 | } | |
3230 | ||
283a2545 | 3231 | /* This wrapper for expr_reaches_here_p_work() is to ensure that any |
dc297297 | 3232 | memory allocated for that function is returned. */ |
283a2545 RL |
3233 | |
3234 | static int | |
3235 | expr_reaches_here_p (occr, expr, bb, check_self_loop) | |
3236 | struct occr *occr; | |
3237 | struct expr *expr; | |
e2d2ed72 | 3238 | basic_block bb; |
283a2545 RL |
3239 | int check_self_loop; |
3240 | { | |
3241 | int rval; | |
d55bc081 | 3242 | char *visited = (char *) xcalloc (last_basic_block, 1); |
283a2545 | 3243 | |
c4c81601 | 3244 | rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited); |
589005ff | 3245 | |
283a2545 | 3246 | free (visited); |
c4c81601 | 3247 | return rval; |
283a2545 RL |
3248 | } |
3249 | ||
7506f491 DE |
3250 | /* Return the instruction that computes EXPR that reaches INSN's basic block. |
3251 | If there is more than one such instruction, return NULL. | |
3252 | ||
3253 | Called only by handle_avail_expr. */ | |
3254 | ||
3255 | static rtx | |
3256 | computing_insn (expr, insn) | |
3257 | struct expr *expr; | |
3258 | rtx insn; | |
3259 | { | |
e2d2ed72 | 3260 | basic_block bb = BLOCK_FOR_INSN (insn); |
7506f491 DE |
3261 | |
3262 | if (expr->avail_occr->next == NULL) | |
589005ff | 3263 | { |
e2d2ed72 | 3264 | if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb) |
c4c81601 RK |
3265 | /* The available expression is actually itself |
3266 | (i.e. a loop in the flow graph) so do nothing. */ | |
3267 | return NULL; | |
3268 | ||
7506f491 DE |
3269 | /* (FIXME) Case that we found a pattern that was created by |
3270 | a substitution that took place. */ | |
3271 | return expr->avail_occr->insn; | |
3272 | } | |
3273 | else | |
3274 | { | |
3275 | /* Pattern is computed more than once. | |
589005ff | 3276 | Search backwards from this insn to see how many of these |
7506f491 DE |
3277 | computations actually reach this insn. */ |
3278 | struct occr *occr; | |
3279 | rtx insn_computes_expr = NULL; | |
3280 | int can_reach = 0; | |
3281 | ||
3282 | for (occr = expr->avail_occr; occr != NULL; occr = occr->next) | |
3283 | { | |
e2d2ed72 | 3284 | if (BLOCK_FOR_INSN (occr->insn) == bb) |
7506f491 DE |
3285 | { |
3286 | /* The expression is generated in this block. | |
3287 | The only time we care about this is when the expression | |
3288 | is generated later in the block [and thus there's a loop]. | |
3289 | We let the normal cse pass handle the other cases. */ | |
c4c81601 RK |
3290 | if (INSN_CUID (insn) < INSN_CUID (occr->insn) |
3291 | && expr_reaches_here_p (occr, expr, bb, 1)) | |
7506f491 DE |
3292 | { |
3293 | can_reach++; | |
3294 | if (can_reach > 1) | |
3295 | return NULL; | |
c4c81601 | 3296 | |
7506f491 DE |
3297 | insn_computes_expr = occr->insn; |
3298 | } | |
3299 | } | |
c4c81601 RK |
3300 | else if (expr_reaches_here_p (occr, expr, bb, 0)) |
3301 | { | |
3302 | can_reach++; | |
3303 | if (can_reach > 1) | |
3304 | return NULL; | |
3305 | ||
3306 | insn_computes_expr = occr->insn; | |
3307 | } | |
7506f491 DE |
3308 | } |
3309 | ||
3310 | if (insn_computes_expr == NULL) | |
3311 | abort (); | |
c4c81601 | 3312 | |
7506f491 DE |
3313 | return insn_computes_expr; |
3314 | } | |
3315 | } | |
3316 | ||
cc2902df | 3317 | /* Return nonzero if the definition in DEF_INSN can reach INSN. |
7506f491 DE |
3318 | Only called by can_disregard_other_sets. */ |
3319 | ||
3320 | static int | |
3321 | def_reaches_here_p (insn, def_insn) | |
3322 | rtx insn, def_insn; | |
3323 | { | |
3324 | rtx reg; | |
3325 | ||
3326 | if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn))) | |
3327 | return 1; | |
3328 | ||
3329 | if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn)) | |
3330 | { | |
3331 | if (INSN_CUID (def_insn) < INSN_CUID (insn)) | |
ac7c5af5 | 3332 | { |
7506f491 DE |
3333 | if (GET_CODE (PATTERN (def_insn)) == PARALLEL) |
3334 | return 1; | |
c4c81601 | 3335 | else if (GET_CODE (PATTERN (def_insn)) == CLOBBER) |
7506f491 DE |
3336 | reg = XEXP (PATTERN (def_insn), 0); |
3337 | else if (GET_CODE (PATTERN (def_insn)) == SET) | |
3338 | reg = SET_DEST (PATTERN (def_insn)); | |
3339 | else | |
3340 | abort (); | |
c4c81601 | 3341 | |
7506f491 DE |
3342 | return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn); |
3343 | } | |
3344 | else | |
3345 | return 0; | |
3346 | } | |
3347 | ||
3348 | return 0; | |
3349 | } | |
3350 | ||
cc2902df | 3351 | /* Return nonzero if *ADDR_THIS_REG can only have one value at INSN. The |
c4c81601 RK |
3352 | value returned is the number of definitions that reach INSN. Returning a |
3353 | value of zero means that [maybe] more than one definition reaches INSN and | |
3354 | the caller can't perform whatever optimization it is trying. i.e. it is | |
3355 | always safe to return zero. */ | |
7506f491 DE |
3356 | |
3357 | static int | |
3358 | can_disregard_other_sets (addr_this_reg, insn, for_combine) | |
3359 | struct reg_set **addr_this_reg; | |
3360 | rtx insn; | |
3361 | int for_combine; | |
3362 | { | |
3363 | int number_of_reaching_defs = 0; | |
c4c81601 | 3364 | struct reg_set *this_reg; |
7506f491 | 3365 | |
c4c81601 RK |
3366 | for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next) |
3367 | if (def_reaches_here_p (insn, this_reg->insn)) | |
3368 | { | |
3369 | number_of_reaching_defs++; | |
3370 | /* Ignore parallels for now. */ | |
3371 | if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL) | |
3372 | return 0; | |
3373 | ||
3374 | if (!for_combine | |
3375 | && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER | |
3376 | || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)), | |
3377 | SET_SRC (PATTERN (insn))))) | |
3378 | /* A setting of the reg to a different value reaches INSN. */ | |
3379 | return 0; | |
3380 | ||
3381 | if (number_of_reaching_defs > 1) | |
3382 | { | |
3383 | /* If in this setting the value the register is being set to is | |
3384 | equal to the previous value the register was set to and this | |
3385 | setting reaches the insn we are trying to do the substitution | |
3386 | on then we are ok. */ | |
3387 | if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER) | |
7506f491 | 3388 | return 0; |
c4c81601 RK |
3389 | else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)), |
3390 | SET_SRC (PATTERN (insn)))) | |
3391 | return 0; | |
3392 | } | |
7506f491 | 3393 | |
589005ff | 3394 | *addr_this_reg = this_reg; |
c4c81601 | 3395 | } |
7506f491 DE |
3396 | |
3397 | return number_of_reaching_defs; | |
3398 | } | |
3399 | ||
3400 | /* Expression computed by insn is available and the substitution is legal, | |
3401 | so try to perform the substitution. | |
3402 | ||
cc2902df | 3403 | The result is nonzero if any changes were made. */ |
7506f491 DE |
3404 | |
3405 | static int | |
3406 | handle_avail_expr (insn, expr) | |
3407 | rtx insn; | |
3408 | struct expr *expr; | |
3409 | { | |
0631e0bf | 3410 | rtx pat, insn_computes_expr, expr_set; |
7506f491 DE |
3411 | rtx to; |
3412 | struct reg_set *this_reg; | |
3413 | int found_setting, use_src; | |
3414 | int changed = 0; | |
3415 | ||
3416 | /* We only handle the case where one computation of the expression | |
3417 | reaches this instruction. */ | |
3418 | insn_computes_expr = computing_insn (expr, insn); | |
3419 | if (insn_computes_expr == NULL) | |
3420 | return 0; | |
0631e0bf JH |
3421 | expr_set = single_set (insn_computes_expr); |
3422 | if (!expr_set) | |
3423 | abort (); | |
7506f491 DE |
3424 | |
3425 | found_setting = 0; | |
3426 | use_src = 0; | |
3427 | ||
3428 | /* At this point we know only one computation of EXPR outside of this | |
3429 | block reaches this insn. Now try to find a register that the | |
3430 | expression is computed into. */ | |
0631e0bf | 3431 | if (GET_CODE (SET_SRC (expr_set)) == REG) |
7506f491 DE |
3432 | { |
3433 | /* This is the case when the available expression that reaches | |
3434 | here has already been handled as an available expression. */ | |
770ae6cc | 3435 | unsigned int regnum_for_replacing |
0631e0bf | 3436 | = REGNO (SET_SRC (expr_set)); |
c4c81601 | 3437 | |
7506f491 DE |
3438 | /* If the register was created by GCSE we can't use `reg_set_table', |
3439 | however we know it's set only once. */ | |
3440 | if (regnum_for_replacing >= max_gcse_regno | |
3441 | /* If the register the expression is computed into is set only once, | |
3442 | or only one set reaches this insn, we can use it. */ | |
3443 | || (((this_reg = reg_set_table[regnum_for_replacing]), | |
3444 | this_reg->next == NULL) | |
3445 | || can_disregard_other_sets (&this_reg, insn, 0))) | |
8e42ace1 KH |
3446 | { |
3447 | use_src = 1; | |
3448 | found_setting = 1; | |
3449 | } | |
7506f491 DE |
3450 | } |
3451 | ||
3452 | if (!found_setting) | |
3453 | { | |
770ae6cc | 3454 | unsigned int regnum_for_replacing |
0631e0bf | 3455 | = REGNO (SET_DEST (expr_set)); |
c4c81601 | 3456 | |
7506f491 DE |
3457 | /* This shouldn't happen. */ |
3458 | if (regnum_for_replacing >= max_gcse_regno) | |
3459 | abort (); | |
c4c81601 | 3460 | |
7506f491 | 3461 | this_reg = reg_set_table[regnum_for_replacing]; |
c4c81601 | 3462 | |
7506f491 DE |
3463 | /* If the register the expression is computed into is set only once, |
3464 | or only one set reaches this insn, use it. */ | |
3465 | if (this_reg->next == NULL | |
3466 | || can_disregard_other_sets (&this_reg, insn, 0)) | |
3467 | found_setting = 1; | |
3468 | } | |
3469 | ||
3470 | if (found_setting) | |
3471 | { | |
3472 | pat = PATTERN (insn); | |
3473 | if (use_src) | |
0631e0bf | 3474 | to = SET_SRC (expr_set); |
7506f491 | 3475 | else |
0631e0bf | 3476 | to = SET_DEST (expr_set); |
7506f491 DE |
3477 | changed = validate_change (insn, &SET_SRC (pat), to, 0); |
3478 | ||
3479 | /* We should be able to ignore the return code from validate_change but | |
3480 | to play it safe we check. */ | |
3481 | if (changed) | |
3482 | { | |
3483 | gcse_subst_count++; | |
3484 | if (gcse_file != NULL) | |
3485 | { | |
c4c81601 RK |
3486 | fprintf (gcse_file, "GCSE: Replacing the source in insn %d with", |
3487 | INSN_UID (insn)); | |
3488 | fprintf (gcse_file, " reg %d %s insn %d\n", | |
3489 | REGNO (to), use_src ? "from" : "set in", | |
7506f491 DE |
3490 | INSN_UID (insn_computes_expr)); |
3491 | } | |
7506f491 DE |
3492 | } |
3493 | } | |
c4c81601 | 3494 | |
7506f491 DE |
3495 | /* The register that the expr is computed into is set more than once. */ |
3496 | else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/) | |
3497 | { | |
3498 | /* Insert an insn after insnx that copies the reg set in insnx | |
3499 | into a new pseudo register call this new register REGN. | |
3500 | From insnb until end of basic block or until REGB is set | |
3501 | replace all uses of REGB with REGN. */ | |
3502 | rtx new_insn; | |
3503 | ||
0631e0bf | 3504 | to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set))); |
7506f491 DE |
3505 | |
3506 | /* Generate the new insn. */ | |
3507 | /* ??? If the change fails, we return 0, even though we created | |
3508 | an insn. I think this is ok. */ | |
9e6a5703 JC |
3509 | new_insn |
3510 | = emit_insn_after (gen_rtx_SET (VOIDmode, to, | |
0631e0bf | 3511 | SET_DEST (expr_set)), |
c4c81601 RK |
3512 | insn_computes_expr); |
3513 | ||
7506f491 DE |
3514 | /* Keep register set table up to date. */ |
3515 | record_one_set (REGNO (to), new_insn); | |
3516 | ||
3517 | gcse_create_count++; | |
3518 | if (gcse_file != NULL) | |
ac7c5af5 | 3519 | { |
c4c81601 | 3520 | fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d", |
7506f491 | 3521 | INSN_UID (NEXT_INSN (insn_computes_expr)), |
c4c81601 RK |
3522 | REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr))))); |
3523 | fprintf (gcse_file, ", computed in insn %d,\n", | |
7506f491 | 3524 | INSN_UID (insn_computes_expr)); |
c4c81601 RK |
3525 | fprintf (gcse_file, " into newly allocated reg %d\n", |
3526 | REGNO (to)); | |
ac7c5af5 | 3527 | } |
7506f491 DE |
3528 | |
3529 | pat = PATTERN (insn); | |
3530 | ||
3531 | /* Do register replacement for INSN. */ | |
3532 | changed = validate_change (insn, &SET_SRC (pat), | |
c4c81601 RK |
3533 | SET_DEST (PATTERN |
3534 | (NEXT_INSN (insn_computes_expr))), | |
7506f491 DE |
3535 | 0); |
3536 | ||
3537 | /* We should be able to ignore the return code from validate_change but | |
3538 | to play it safe we check. */ | |
3539 | if (changed) | |
3540 | { | |
3541 | gcse_subst_count++; | |
3542 | if (gcse_file != NULL) | |
3543 | { | |
c4c81601 RK |
3544 | fprintf (gcse_file, |
3545 | "GCSE: Replacing the source in insn %d with reg %d ", | |
7506f491 | 3546 | INSN_UID (insn), |
c4c81601 RK |
3547 | REGNO (SET_DEST (PATTERN (NEXT_INSN |
3548 | (insn_computes_expr))))); | |
3549 | fprintf (gcse_file, "set in insn %d\n", | |
589005ff | 3550 | INSN_UID (insn_computes_expr)); |
7506f491 | 3551 | } |
7506f491 DE |
3552 | } |
3553 | } | |
3554 | ||
3555 | return changed; | |
3556 | } | |
3557 | ||
c4c81601 RK |
3558 | /* Perform classic GCSE. This is called by one_classic_gcse_pass after all |
3559 | the dataflow analysis has been done. | |
7506f491 | 3560 | |
cc2902df | 3561 | The result is nonzero if a change was made. */ |
7506f491 DE |
3562 | |
3563 | static int | |
3564 | classic_gcse () | |
3565 | { | |
e0082a72 | 3566 | int changed; |
7506f491 | 3567 | rtx insn; |
e0082a72 | 3568 | basic_block bb; |
7506f491 DE |
3569 | |
3570 | /* Note we start at block 1. */ | |
3571 | ||
e0082a72 ZD |
3572 | if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR) |
3573 | return 0; | |
3574 | ||
7506f491 | 3575 | changed = 0; |
e0082a72 | 3576 | FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb) |
7506f491 DE |
3577 | { |
3578 | /* Reset tables used to keep track of what's still valid [since the | |
3579 | start of the block]. */ | |
3580 | reset_opr_set_tables (); | |
3581 | ||
e0082a72 ZD |
3582 | for (insn = bb->head; |
3583 | insn != NULL && insn != NEXT_INSN (bb->end); | |
7506f491 DE |
3584 | insn = NEXT_INSN (insn)) |
3585 | { | |
3586 | /* Is insn of form (set (pseudo-reg) ...)? */ | |
7506f491 DE |
3587 | if (GET_CODE (insn) == INSN |
3588 | && GET_CODE (PATTERN (insn)) == SET | |
3589 | && GET_CODE (SET_DEST (PATTERN (insn))) == REG | |
3590 | && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER) | |
3591 | { | |
3592 | rtx pat = PATTERN (insn); | |
3593 | rtx src = SET_SRC (pat); | |
3594 | struct expr *expr; | |
3595 | ||
3596 | if (want_to_gcse_p (src) | |
3597 | /* Is the expression recorded? */ | |
02280659 | 3598 | && ((expr = lookup_expr (src, &expr_hash_table)) != NULL) |
7506f491 DE |
3599 | /* Is the expression available [at the start of the |
3600 | block]? */ | |
e0082a72 | 3601 | && TEST_BIT (ae_in[bb->index], expr->bitmap_index) |
7506f491 DE |
3602 | /* Are the operands unchanged since the start of the |
3603 | block? */ | |
3604 | && oprs_not_set_p (src, insn)) | |
3605 | changed |= handle_avail_expr (insn, expr); | |
3606 | } | |
3607 | ||
3608 | /* Keep track of everything modified by this insn. */ | |
3609 | /* ??? Need to be careful w.r.t. mods done to INSN. */ | |
2c3c49de | 3610 | if (INSN_P (insn)) |
7506f491 | 3611 | mark_oprs_set (insn); |
ac7c5af5 | 3612 | } |
7506f491 DE |
3613 | } |
3614 | ||
3615 | return changed; | |
3616 | } | |
3617 | ||
3618 | /* Top level routine to perform one classic GCSE pass. | |
3619 | ||
cc2902df | 3620 | Return nonzero if a change was made. */ |
7506f491 DE |
3621 | |
3622 | static int | |
b5ce41ff | 3623 | one_classic_gcse_pass (pass) |
7506f491 DE |
3624 | int pass; |
3625 | { | |
3626 | int changed = 0; | |
3627 | ||
3628 | gcse_subst_count = 0; | |
3629 | gcse_create_count = 0; | |
3630 | ||
02280659 | 3631 | alloc_hash_table (max_cuid, &expr_hash_table, 0); |
d55bc081 | 3632 | alloc_rd_mem (last_basic_block, max_cuid); |
02280659 | 3633 | compute_hash_table (&expr_hash_table); |
7506f491 | 3634 | if (gcse_file) |
02280659 | 3635 | dump_hash_table (gcse_file, "Expression", &expr_hash_table); |
c4c81601 | 3636 | |
02280659 | 3637 | if (expr_hash_table.n_elems > 0) |
7506f491 DE |
3638 | { |
3639 | compute_kill_rd (); | |
3640 | compute_rd (); | |
02280659 ZD |
3641 | alloc_avail_expr_mem (last_basic_block, expr_hash_table.n_elems); |
3642 | compute_ae_gen (&expr_hash_table); | |
3643 | compute_ae_kill (ae_gen, ae_kill, &expr_hash_table); | |
bd0eaec2 | 3644 | compute_available (ae_gen, ae_kill, ae_out, ae_in); |
7506f491 DE |
3645 | changed = classic_gcse (); |
3646 | free_avail_expr_mem (); | |
3647 | } | |
c4c81601 | 3648 | |
7506f491 | 3649 | free_rd_mem (); |
02280659 | 3650 | free_hash_table (&expr_hash_table); |
7506f491 DE |
3651 | |
3652 | if (gcse_file) | |
3653 | { | |
3654 | fprintf (gcse_file, "\n"); | |
c4c81601 RK |
3655 | fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,", |
3656 | current_function_name, pass, bytes_used, gcse_subst_count); | |
3657 | fprintf (gcse_file, "%d insns created\n", gcse_create_count); | |
7506f491 DE |
3658 | } |
3659 | ||
3660 | return changed; | |
3661 | } | |
3662 | \f | |
3663 | /* Compute copy/constant propagation working variables. */ | |
3664 | ||
3665 | /* Local properties of assignments. */ | |
7506f491 DE |
3666 | static sbitmap *cprop_pavloc; |
3667 | static sbitmap *cprop_absaltered; | |
3668 | ||
3669 | /* Global properties of assignments (computed from the local properties). */ | |
7506f491 DE |
3670 | static sbitmap *cprop_avin; |
3671 | static sbitmap *cprop_avout; | |
3672 | ||
c4c81601 RK |
3673 | /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of |
3674 | basic blocks. N_SETS is the number of sets. */ | |
7506f491 DE |
3675 | |
3676 | static void | |
3677 | alloc_cprop_mem (n_blocks, n_sets) | |
3678 | int n_blocks, n_sets; | |
3679 | { | |
3680 | cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets); | |
3681 | cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets); | |
3682 | ||
3683 | cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets); | |
3684 | cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets); | |
3685 | } | |
3686 | ||
3687 | /* Free vars used by copy/const propagation. */ | |
3688 | ||
3689 | static void | |
3690 | free_cprop_mem () | |
3691 | { | |
5a660bff DB |
3692 | sbitmap_vector_free (cprop_pavloc); |
3693 | sbitmap_vector_free (cprop_absaltered); | |
3694 | sbitmap_vector_free (cprop_avin); | |
3695 | sbitmap_vector_free (cprop_avout); | |
7506f491 DE |
3696 | } |
3697 | ||
c4c81601 RK |
3698 | /* For each block, compute whether X is transparent. X is either an |
3699 | expression or an assignment [though we don't care which, for this context | |
3700 | an assignment is treated as an expression]. For each block where an | |
3701 | element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX | |
3702 | bit in BMAP. */ | |
7506f491 DE |
3703 | |
3704 | static void | |
3705 | compute_transp (x, indx, bmap, set_p) | |
3706 | rtx x; | |
3707 | int indx; | |
3708 | sbitmap *bmap; | |
3709 | int set_p; | |
3710 | { | |
e0082a72 ZD |
3711 | int i, j; |
3712 | basic_block bb; | |
7506f491 | 3713 | enum rtx_code code; |
c4c81601 | 3714 | reg_set *r; |
6f7d635c | 3715 | const char *fmt; |
7506f491 | 3716 | |
c4c81601 RK |
3717 | /* repeat is used to turn tail-recursion into iteration since GCC |
3718 | can't do it when there's no return value. */ | |
7506f491 DE |
3719 | repeat: |
3720 | ||
3721 | if (x == 0) | |
3722 | return; | |
3723 | ||
3724 | code = GET_CODE (x); | |
3725 | switch (code) | |
3726 | { | |
3727 | case REG: | |
c4c81601 RK |
3728 | if (set_p) |
3729 | { | |
3730 | if (REGNO (x) < FIRST_PSEUDO_REGISTER) | |
3731 | { | |
e0082a72 ZD |
3732 | FOR_EACH_BB (bb) |
3733 | if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x))) | |
3734 | SET_BIT (bmap[bb->index], indx); | |
c4c81601 RK |
3735 | } |
3736 | else | |
3737 | { | |
3738 | for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next) | |
3739 | SET_BIT (bmap[BLOCK_NUM (r->insn)], indx); | |
3740 | } | |
3741 | } | |
3742 | else | |
3743 | { | |
3744 | if (REGNO (x) < FIRST_PSEUDO_REGISTER) | |
3745 | { | |
e0082a72 ZD |
3746 | FOR_EACH_BB (bb) |
3747 | if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x))) | |
3748 | RESET_BIT (bmap[bb->index], indx); | |
c4c81601 RK |
3749 | } |
3750 | else | |
3751 | { | |
3752 | for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next) | |
3753 | RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx); | |
3754 | } | |
3755 | } | |
7506f491 | 3756 | |
c4c81601 | 3757 | return; |
7506f491 DE |
3758 | |
3759 | case MEM: | |
e0082a72 | 3760 | FOR_EACH_BB (bb) |
a13d4ebf | 3761 | { |
e0082a72 | 3762 | rtx list_entry = canon_modify_mem_list[bb->index]; |
a13d4ebf AM |
3763 | |
3764 | while (list_entry) | |
3765 | { | |
3766 | rtx dest, dest_addr; | |
3767 | ||
3768 | if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN) | |
3769 | { | |
3770 | if (set_p) | |
e0082a72 | 3771 | SET_BIT (bmap[bb->index], indx); |
a13d4ebf | 3772 | else |
e0082a72 | 3773 | RESET_BIT (bmap[bb->index], indx); |
a13d4ebf AM |
3774 | break; |
3775 | } | |
3776 | /* LIST_ENTRY must be an INSN of some kind that sets memory. | |
3777 | Examine each hunk of memory that is modified. */ | |
3778 | ||
3779 | dest = XEXP (list_entry, 0); | |
3780 | list_entry = XEXP (list_entry, 1); | |
3781 | dest_addr = XEXP (list_entry, 0); | |
589005ff | 3782 | |
a13d4ebf AM |
3783 | if (canon_true_dependence (dest, GET_MODE (dest), dest_addr, |
3784 | x, rtx_addr_varies_p)) | |
3785 | { | |
3786 | if (set_p) | |
e0082a72 | 3787 | SET_BIT (bmap[bb->index], indx); |
a13d4ebf | 3788 | else |
e0082a72 | 3789 | RESET_BIT (bmap[bb->index], indx); |
a13d4ebf AM |
3790 | break; |
3791 | } | |
3792 | list_entry = XEXP (list_entry, 1); | |
3793 | } | |
3794 | } | |
c4c81601 | 3795 | |
7506f491 DE |
3796 | x = XEXP (x, 0); |
3797 | goto repeat; | |
3798 | ||
3799 | case PC: | |
3800 | case CC0: /*FIXME*/ | |
3801 | case CONST: | |
3802 | case CONST_INT: | |
3803 | case CONST_DOUBLE: | |
69ef87e2 | 3804 | case CONST_VECTOR: |
7506f491 DE |
3805 | case SYMBOL_REF: |
3806 | case LABEL_REF: | |
3807 | case ADDR_VEC: | |
3808 | case ADDR_DIFF_VEC: | |
3809 | return; | |
3810 | ||
3811 | default: | |
3812 | break; | |
3813 | } | |
3814 | ||
c4c81601 | 3815 | for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) |
7506f491 DE |
3816 | { |
3817 | if (fmt[i] == 'e') | |
3818 | { | |
7506f491 DE |
3819 | /* If we are about to do the last recursive call |
3820 | needed at this level, change it into iteration. | |
3821 | This function is called enough to be worth it. */ | |
3822 | if (i == 0) | |
3823 | { | |
c4c81601 | 3824 | x = XEXP (x, i); |
7506f491 DE |
3825 | goto repeat; |
3826 | } | |
c4c81601 RK |
3827 | |
3828 | compute_transp (XEXP (x, i), indx, bmap, set_p); | |
7506f491 DE |
3829 | } |
3830 | else if (fmt[i] == 'E') | |
c4c81601 RK |
3831 | for (j = 0; j < XVECLEN (x, i); j++) |
3832 | compute_transp (XVECEXP (x, i, j), indx, bmap, set_p); | |
7506f491 DE |
3833 | } |
3834 | } | |
3835 | ||
7506f491 DE |
3836 | /* Top level routine to do the dataflow analysis needed by copy/const |
3837 | propagation. */ | |
3838 | ||
3839 | static void | |
3840 | compute_cprop_data () | |
3841 | { | |
02280659 | 3842 | compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table); |
ce724250 JL |
3843 | compute_available (cprop_pavloc, cprop_absaltered, |
3844 | cprop_avout, cprop_avin); | |
7506f491 DE |
3845 | } |
3846 | \f | |
3847 | /* Copy/constant propagation. */ | |
3848 | ||
7506f491 DE |
3849 | /* Maximum number of register uses in an insn that we handle. */ |
3850 | #define MAX_USES 8 | |
3851 | ||
3852 | /* Table of uses found in an insn. | |
3853 | Allocated statically to avoid alloc/free complexity and overhead. */ | |
3854 | static struct reg_use reg_use_table[MAX_USES]; | |
3855 | ||
3856 | /* Index into `reg_use_table' while building it. */ | |
3857 | static int reg_use_count; | |
3858 | ||
c4c81601 RK |
3859 | /* Set up a list of register numbers used in INSN. The found uses are stored |
3860 | in `reg_use_table'. `reg_use_count' is initialized to zero before entry, | |
3861 | and contains the number of uses in the table upon exit. | |
7506f491 | 3862 | |
c4c81601 RK |
3863 | ??? If a register appears multiple times we will record it multiple times. |
3864 | This doesn't hurt anything but it will slow things down. */ | |
7506f491 DE |
3865 | |
3866 | static void | |
9e71c818 JH |
3867 | find_used_regs (xptr, data) |
3868 | rtx *xptr; | |
3869 | void *data ATTRIBUTE_UNUSED; | |
7506f491 | 3870 | { |
c4c81601 | 3871 | int i, j; |
7506f491 | 3872 | enum rtx_code code; |
6f7d635c | 3873 | const char *fmt; |
9e71c818 | 3874 | rtx x = *xptr; |
7506f491 | 3875 | |
c4c81601 RK |
3876 | /* repeat is used to turn tail-recursion into iteration since GCC |
3877 | can't do it when there's no return value. */ | |
7506f491 | 3878 | repeat: |
7506f491 DE |
3879 | if (x == 0) |
3880 | return; | |
3881 | ||
3882 | code = GET_CODE (x); | |
9e71c818 | 3883 | if (REG_P (x)) |
7506f491 | 3884 | { |
7506f491 DE |
3885 | if (reg_use_count == MAX_USES) |
3886 | return; | |
c4c81601 | 3887 | |
7506f491 DE |
3888 | reg_use_table[reg_use_count].reg_rtx = x; |
3889 | reg_use_count++; | |
7506f491 DE |
3890 | } |
3891 | ||
3892 | /* Recursively scan the operands of this expression. */ | |
3893 | ||
c4c81601 | 3894 | for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) |
7506f491 DE |
3895 | { |
3896 | if (fmt[i] == 'e') | |
3897 | { | |
3898 | /* If we are about to do the last recursive call | |
3899 | needed at this level, change it into iteration. | |
3900 | This function is called enough to be worth it. */ | |
3901 | if (i == 0) | |
3902 | { | |
3903 | x = XEXP (x, 0); | |
3904 | goto repeat; | |
3905 | } | |
c4c81601 | 3906 | |
9e71c818 | 3907 | find_used_regs (&XEXP (x, i), data); |
7506f491 DE |
3908 | } |
3909 | else if (fmt[i] == 'E') | |
c4c81601 | 3910 | for (j = 0; j < XVECLEN (x, i); j++) |
9e71c818 | 3911 | find_used_regs (&XVECEXP (x, i, j), data); |
7506f491 DE |
3912 | } |
3913 | } | |
3914 | ||
3915 | /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO. | |
cc2902df | 3916 | Returns nonzero is successful. */ |
7506f491 DE |
3917 | |
3918 | static int | |
3919 | try_replace_reg (from, to, insn) | |
3920 | rtx from, to, insn; | |
3921 | { | |
172890a2 | 3922 | rtx note = find_reg_equal_equiv_note (insn); |
fb0c0a12 | 3923 | rtx src = 0; |
172890a2 RK |
3924 | int success = 0; |
3925 | rtx set = single_set (insn); | |
833fc3ad | 3926 | |
2b773ee2 JH |
3927 | validate_replace_src_group (from, to, insn); |
3928 | if (num_changes_pending () && apply_change_group ()) | |
3929 | success = 1; | |
9e71c818 | 3930 | |
f305679f | 3931 | if (!success && set && reg_mentioned_p (from, SET_SRC (set))) |
833fc3ad | 3932 | { |
f305679f JH |
3933 | /* If above failed and this is a single set, try to simplify the source of |
3934 | the set given our substitution. We could perhaps try this for multiple | |
3935 | SETs, but it probably won't buy us anything. */ | |
172890a2 RK |
3936 | src = simplify_replace_rtx (SET_SRC (set), from, to); |
3937 | ||
9e71c818 JH |
3938 | if (!rtx_equal_p (src, SET_SRC (set)) |
3939 | && validate_change (insn, &SET_SRC (set), src, 0)) | |
172890a2 | 3940 | success = 1; |
833fc3ad | 3941 | |
f305679f JH |
3942 | /* If we've failed to do replacement, have a single SET, and don't already |
3943 | have a note, add a REG_EQUAL note to not lose information. */ | |
3944 | if (!success && note == 0 && set != 0) | |
3945 | note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src)); | |
3946 | } | |
e251e2a2 | 3947 | |
172890a2 RK |
3948 | /* If there is already a NOTE, update the expression in it with our |
3949 | replacement. */ | |
3950 | else if (note != 0) | |
3951 | XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to); | |
833fc3ad | 3952 | |
172890a2 RK |
3953 | /* REG_EQUAL may get simplified into register. |
3954 | We don't allow that. Remove that note. This code ought | |
3955 | not to hapen, because previous code ought to syntetize | |
3956 | reg-reg move, but be on the safe side. */ | |
3957 | if (note && REG_P (XEXP (note, 0))) | |
3958 | remove_note (insn, note); | |
833fc3ad | 3959 | |
833fc3ad JH |
3960 | return success; |
3961 | } | |
c4c81601 RK |
3962 | |
3963 | /* Find a set of REGNOs that are available on entry to INSN's block. Returns | |
3964 | NULL no such set is found. */ | |
7506f491 DE |
3965 | |
3966 | static struct expr * | |
3967 | find_avail_set (regno, insn) | |
3968 | int regno; | |
3969 | rtx insn; | |
3970 | { | |
cafba495 BS |
3971 | /* SET1 contains the last set found that can be returned to the caller for |
3972 | use in a substitution. */ | |
3973 | struct expr *set1 = 0; | |
589005ff | 3974 | |
cafba495 BS |
3975 | /* Loops are not possible here. To get a loop we would need two sets |
3976 | available at the start of the block containing INSN. ie we would | |
3977 | need two sets like this available at the start of the block: | |
3978 | ||
3979 | (set (reg X) (reg Y)) | |
3980 | (set (reg Y) (reg X)) | |
3981 | ||
3982 | This can not happen since the set of (reg Y) would have killed the | |
3983 | set of (reg X) making it unavailable at the start of this block. */ | |
3984 | while (1) | |
8e42ace1 | 3985 | { |
cafba495 | 3986 | rtx src; |
02280659 | 3987 | struct expr *set = lookup_set (regno, NULL_RTX, &set_hash_table); |
cafba495 BS |
3988 | |
3989 | /* Find a set that is available at the start of the block | |
3990 | which contains INSN. */ | |
3991 | while (set) | |
3992 | { | |
3993 | if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index)) | |
3994 | break; | |
3995 | set = next_set (regno, set); | |
3996 | } | |
7506f491 | 3997 | |
cafba495 BS |
3998 | /* If no available set was found we've reached the end of the |
3999 | (possibly empty) copy chain. */ | |
4000 | if (set == 0) | |
589005ff | 4001 | break; |
cafba495 BS |
4002 | |
4003 | if (GET_CODE (set->expr) != SET) | |
4004 | abort (); | |
4005 | ||
4006 | src = SET_SRC (set->expr); | |
4007 | ||
4008 | /* We know the set is available. | |
4009 | Now check that SRC is ANTLOC (i.e. none of the source operands | |
589005ff | 4010 | have changed since the start of the block). |
cafba495 BS |
4011 | |
4012 | If the source operand changed, we may still use it for the next | |
4013 | iteration of this loop, but we may not use it for substitutions. */ | |
c4c81601 | 4014 | |
cafba495 BS |
4015 | if (CONSTANT_P (src) || oprs_not_set_p (src, insn)) |
4016 | set1 = set; | |
4017 | ||
4018 | /* If the source of the set is anything except a register, then | |
4019 | we have reached the end of the copy chain. */ | |
4020 | if (GET_CODE (src) != REG) | |
7506f491 | 4021 | break; |
7506f491 | 4022 | |
cafba495 BS |
4023 | /* Follow the copy chain, ie start another iteration of the loop |
4024 | and see if we have an available copy into SRC. */ | |
4025 | regno = REGNO (src); | |
8e42ace1 | 4026 | } |
cafba495 BS |
4027 | |
4028 | /* SET1 holds the last set that was available and anticipatable at | |
4029 | INSN. */ | |
4030 | return set1; | |
7506f491 DE |
4031 | } |
4032 | ||
abd535b6 | 4033 | /* Subroutine of cprop_insn that tries to propagate constants into |
0e3f0221 RS |
4034 | JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL |
4035 | it is the instruction that immediately preceeds JUMP, and must be a | |
818b6b7f | 4036 | single SET of a register. FROM is what we will try to replace, |
0e3f0221 | 4037 | SRC is the constant we will try to substitute for it. Returns nonzero |
589005ff | 4038 | if a change was made. */ |
c4c81601 | 4039 | |
abd535b6 | 4040 | static int |
0e3f0221 RS |
4041 | cprop_jump (bb, setcc, jump, from, src) |
4042 | basic_block bb; | |
4043 | rtx setcc; | |
4044 | rtx jump; | |
172890a2 | 4045 | rtx from; |
abd535b6 BS |
4046 | rtx src; |
4047 | { | |
0e3f0221 RS |
4048 | rtx new, new_set; |
4049 | rtx set = pc_set (jump); | |
4050 | ||
4051 | /* First substitute in the INSN condition as the SET_SRC of the JUMP, | |
4052 | then substitute that given values in this expanded JUMP. */ | |
48ddd46c JH |
4053 | if (setcc != NULL |
4054 | && !modified_between_p (from, setcc, jump) | |
4055 | && !modified_between_p (src, setcc, jump)) | |
b2f02503 RS |
4056 | { |
4057 | rtx setcc_set = single_set (setcc); | |
4058 | new_set = simplify_replace_rtx (SET_SRC (set), | |
4059 | SET_DEST (setcc_set), | |
4060 | SET_SRC (setcc_set)); | |
4061 | } | |
0e3f0221 RS |
4062 | else |
4063 | new_set = set; | |
4064 | ||
4065 | new = simplify_replace_rtx (new_set, from, src); | |
abd535b6 BS |
4066 | |
4067 | /* If no simplification can be made, then try the next | |
4068 | register. */ | |
48ddd46c | 4069 | if (rtx_equal_p (new, new_set) || rtx_equal_p (new, SET_SRC (set))) |
abd535b6 | 4070 | return 0; |
589005ff | 4071 | |
7d5ab30e | 4072 | /* If this is now a no-op delete it, otherwise this must be a valid insn. */ |
172890a2 | 4073 | if (new == pc_rtx) |
0e3f0221 | 4074 | delete_insn (jump); |
7d5ab30e | 4075 | else |
abd535b6 | 4076 | { |
48ddd46c JH |
4077 | /* Ensure the value computed inside the jump insn to be equivalent |
4078 | to one computed by setcc. */ | |
4079 | if (setcc | |
4080 | && modified_in_p (new, setcc)) | |
4081 | return 0; | |
0e3f0221 | 4082 | if (! validate_change (jump, &SET_SRC (set), new, 0)) |
7d5ab30e | 4083 | return 0; |
abd535b6 | 4084 | |
7d5ab30e JH |
4085 | /* If this has turned into an unconditional jump, |
4086 | then put a barrier after it so that the unreachable | |
4087 | code will be deleted. */ | |
4088 | if (GET_CODE (SET_SRC (set)) == LABEL_REF) | |
0e3f0221 | 4089 | emit_barrier_after (jump); |
7d5ab30e | 4090 | } |
abd535b6 | 4091 | |
0e3f0221 RS |
4092 | #ifdef HAVE_cc0 |
4093 | /* Delete the cc0 setter. */ | |
818b6b7f | 4094 | if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc)))) |
0e3f0221 RS |
4095 | delete_insn (setcc); |
4096 | #endif | |
4097 | ||
172890a2 | 4098 | run_jump_opt_after_gcse = 1; |
c4c81601 | 4099 | |
172890a2 RK |
4100 | const_prop_count++; |
4101 | if (gcse_file != NULL) | |
4102 | { | |
4103 | fprintf (gcse_file, | |
818b6b7f | 4104 | "CONST-PROP: Replacing reg %d in jump_insn %d with constant ", |
0e3f0221 | 4105 | REGNO (from), INSN_UID (jump)); |
172890a2 RK |
4106 | print_rtl (gcse_file, src); |
4107 | fprintf (gcse_file, "\n"); | |
abd535b6 | 4108 | } |
0005550b | 4109 | purge_dead_edges (bb); |
172890a2 RK |
4110 | |
4111 | return 1; | |
abd535b6 BS |
4112 | } |
4113 | ||
ae860ff7 JH |
4114 | static bool |
4115 | constprop_register (insn, from, to, alter_jumps) | |
4116 | rtx insn; | |
4117 | rtx from; | |
4118 | rtx to; | |
4119 | int alter_jumps; | |
4120 | { | |
4121 | rtx sset; | |
4122 | ||
4123 | /* Check for reg or cc0 setting instructions followed by | |
4124 | conditional branch instructions first. */ | |
4125 | if (alter_jumps | |
4126 | && (sset = single_set (insn)) != NULL | |
4127 | && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn))) | |
4128 | { | |
4129 | rtx dest = SET_DEST (sset); | |
4130 | if ((REG_P (dest) || CC0_P (dest)) | |
4131 | && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to)) | |
4132 | return 1; | |
4133 | } | |
4134 | ||
4135 | /* Handle normal insns next. */ | |
4136 | if (GET_CODE (insn) == INSN | |
4137 | && try_replace_reg (from, to, insn)) | |
4138 | return 1; | |
4139 | ||
4140 | /* Try to propagate a CONST_INT into a conditional jump. | |
4141 | We're pretty specific about what we will handle in this | |
4142 | code, we can extend this as necessary over time. | |
4143 | ||
4144 | Right now the insn in question must look like | |
4145 | (set (pc) (if_then_else ...)) */ | |
4146 | else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn)) | |
4147 | return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to); | |
4148 | return 0; | |
4149 | } | |
4150 | ||
7506f491 | 4151 | /* Perform constant and copy propagation on INSN. |
cc2902df | 4152 | The result is nonzero if a change was made. */ |
7506f491 DE |
4153 | |
4154 | static int | |
ae860ff7 | 4155 | cprop_insn (insn, alter_jumps) |
7506f491 | 4156 | rtx insn; |
b5ce41ff | 4157 | int alter_jumps; |
7506f491 DE |
4158 | { |
4159 | struct reg_use *reg_used; | |
4160 | int changed = 0; | |
833fc3ad | 4161 | rtx note; |
7506f491 | 4162 | |
9e71c818 | 4163 | if (!INSN_P (insn)) |
7506f491 DE |
4164 | return 0; |
4165 | ||
4166 | reg_use_count = 0; | |
9e71c818 | 4167 | note_uses (&PATTERN (insn), find_used_regs, NULL); |
589005ff | 4168 | |
172890a2 | 4169 | note = find_reg_equal_equiv_note (insn); |
833fc3ad | 4170 | |
dc297297 | 4171 | /* We may win even when propagating constants into notes. */ |
833fc3ad | 4172 | if (note) |
9e71c818 | 4173 | find_used_regs (&XEXP (note, 0), NULL); |
7506f491 | 4174 | |
c4c81601 RK |
4175 | for (reg_used = ®_use_table[0]; reg_use_count > 0; |
4176 | reg_used++, reg_use_count--) | |
7506f491 | 4177 | { |
770ae6cc | 4178 | unsigned int regno = REGNO (reg_used->reg_rtx); |
7506f491 DE |
4179 | rtx pat, src; |
4180 | struct expr *set; | |
7506f491 DE |
4181 | |
4182 | /* Ignore registers created by GCSE. | |
dc297297 | 4183 | We do this because ... */ |
7506f491 DE |
4184 | if (regno >= max_gcse_regno) |
4185 | continue; | |
4186 | ||
4187 | /* If the register has already been set in this block, there's | |
4188 | nothing we can do. */ | |
4189 | if (! oprs_not_set_p (reg_used->reg_rtx, insn)) | |
4190 | continue; | |
4191 | ||
4192 | /* Find an assignment that sets reg_used and is available | |
4193 | at the start of the block. */ | |
4194 | set = find_avail_set (regno, insn); | |
4195 | if (! set) | |
4196 | continue; | |
589005ff | 4197 | |
7506f491 DE |
4198 | pat = set->expr; |
4199 | /* ??? We might be able to handle PARALLELs. Later. */ | |
4200 | if (GET_CODE (pat) != SET) | |
4201 | abort (); | |
c4c81601 | 4202 | |
7506f491 DE |
4203 | src = SET_SRC (pat); |
4204 | ||
e78d9500 | 4205 | /* Constant propagation. */ |
b446e5a2 | 4206 | if (CONSTANT_P (src)) |
7506f491 | 4207 | { |
ae860ff7 | 4208 | if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps)) |
7506f491 DE |
4209 | { |
4210 | changed = 1; | |
4211 | const_prop_count++; | |
4212 | if (gcse_file != NULL) | |
4213 | { | |
ae860ff7 JH |
4214 | fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno); |
4215 | fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn)); | |
e78d9500 | 4216 | print_rtl (gcse_file, src); |
7506f491 DE |
4217 | fprintf (gcse_file, "\n"); |
4218 | } | |
7506f491 DE |
4219 | } |
4220 | } | |
4221 | else if (GET_CODE (src) == REG | |
4222 | && REGNO (src) >= FIRST_PSEUDO_REGISTER | |
4223 | && REGNO (src) != regno) | |
4224 | { | |
cafba495 | 4225 | if (try_replace_reg (reg_used->reg_rtx, src, insn)) |
7506f491 | 4226 | { |
cafba495 BS |
4227 | changed = 1; |
4228 | copy_prop_count++; | |
4229 | if (gcse_file != NULL) | |
7506f491 | 4230 | { |
ae860ff7 | 4231 | fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d", |
c4c81601 RK |
4232 | regno, INSN_UID (insn)); |
4233 | fprintf (gcse_file, " with reg %d\n", REGNO (src)); | |
7506f491 | 4234 | } |
cafba495 BS |
4235 | |
4236 | /* The original insn setting reg_used may or may not now be | |
4237 | deletable. We leave the deletion to flow. */ | |
4238 | /* FIXME: If it turns out that the insn isn't deletable, | |
4239 | then we may have unnecessarily extended register lifetimes | |
4240 | and made things worse. */ | |
7506f491 DE |
4241 | } |
4242 | } | |
4243 | } | |
4244 | ||
4245 | return changed; | |
4246 | } | |
4247 | ||
8ba46434 R |
4248 | /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall; |
4249 | their REG_EQUAL notes need updating. */ | |
e197b6fc | 4250 | |
ae860ff7 | 4251 | static bool |
8ba46434 | 4252 | do_local_cprop (x, insn, alter_jumps, libcall_sp) |
ae860ff7 JH |
4253 | rtx x; |
4254 | rtx insn; | |
4255 | int alter_jumps; | |
8ba46434 | 4256 | rtx *libcall_sp; |
ae860ff7 JH |
4257 | { |
4258 | rtx newreg = NULL, newcnst = NULL; | |
4259 | ||
e197b6fc RH |
4260 | /* Rule out USE instructions and ASM statements as we don't want to |
4261 | change the hard registers mentioned. */ | |
ae860ff7 JH |
4262 | if (GET_CODE (x) == REG |
4263 | && (REGNO (x) >= FIRST_PSEUDO_REGISTER | |
e197b6fc RH |
4264 | || (GET_CODE (PATTERN (insn)) != USE |
4265 | && asm_noperands (PATTERN (insn)) < 0))) | |
ae860ff7 JH |
4266 | { |
4267 | cselib_val *val = cselib_lookup (x, GET_MODE (x), 0); | |
4268 | struct elt_loc_list *l; | |
4269 | ||
4270 | if (!val) | |
4271 | return false; | |
4272 | for (l = val->locs; l; l = l->next) | |
4273 | { | |
4274 | rtx this_rtx = l->loc; | |
46690369 JH |
4275 | rtx note; |
4276 | ||
9635cfad JH |
4277 | if (l->in_libcall) |
4278 | continue; | |
4279 | ||
ae860ff7 JH |
4280 | if (CONSTANT_P (this_rtx)) |
4281 | newcnst = this_rtx; | |
46690369 JH |
4282 | if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER |
4283 | /* Don't copy propagate if it has attached REG_EQUIV note. | |
4284 | At this point this only function parameters should have | |
4285 | REG_EQUIV notes and if the argument slot is used somewhere | |
4286 | explicitly, it means address of parameter has been taken, | |
4287 | so we should not extend the lifetime of the pseudo. */ | |
4288 | && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX)) | |
4289 | || GET_CODE (XEXP (note, 0)) != MEM)) | |
ae860ff7 JH |
4290 | newreg = this_rtx; |
4291 | } | |
4292 | if (newcnst && constprop_register (insn, x, newcnst, alter_jumps)) | |
4293 | { | |
8ba46434 R |
4294 | /* If we find a case where we can't fix the retval REG_EQUAL notes |
4295 | match the new register, we either have to abandom this replacement | |
4296 | or fix delete_trivially_dead_insns to preserve the setting insn, | |
4297 | or make it delete the REG_EUAQL note, and fix up all passes that | |
4298 | require the REG_EQUAL note there. */ | |
4299 | if (!adjust_libcall_notes (x, newcnst, insn, libcall_sp)) | |
4300 | abort (); | |
ae860ff7 JH |
4301 | if (gcse_file != NULL) |
4302 | { | |
4303 | fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ", | |
4304 | REGNO (x)); | |
4305 | fprintf (gcse_file, "insn %d with constant ", | |
4306 | INSN_UID (insn)); | |
4307 | print_rtl (gcse_file, newcnst); | |
4308 | fprintf (gcse_file, "\n"); | |
4309 | } | |
4310 | const_prop_count++; | |
4311 | return true; | |
4312 | } | |
4313 | else if (newreg && newreg != x && try_replace_reg (x, newreg, insn)) | |
4314 | { | |
8ba46434 | 4315 | adjust_libcall_notes (x, newreg, insn, libcall_sp); |
ae860ff7 JH |
4316 | if (gcse_file != NULL) |
4317 | { | |
4318 | fprintf (gcse_file, | |
4319 | "LOCAL COPY-PROP: Replacing reg %d in insn %d", | |
4320 | REGNO (x), INSN_UID (insn)); | |
4321 | fprintf (gcse_file, " with reg %d\n", REGNO (newreg)); | |
4322 | } | |
4323 | copy_prop_count++; | |
4324 | return true; | |
4325 | } | |
4326 | } | |
4327 | return false; | |
4328 | } | |
4329 | ||
8ba46434 R |
4330 | /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall; |
4331 | their REG_EQUAL notes need updating to reflect that OLDREG has been | |
f4e3e618 RH |
4332 | replaced with NEWVAL in INSN. Return true if all substitutions could |
4333 | be made. */ | |
8ba46434 R |
4334 | static bool |
4335 | adjust_libcall_notes (oldreg, newval, insn, libcall_sp) | |
4336 | rtx oldreg, newval, insn, *libcall_sp; | |
4337 | { | |
f4e3e618 | 4338 | rtx end; |
8ba46434 R |
4339 | |
4340 | while ((end = *libcall_sp++)) | |
4341 | { | |
f4e3e618 | 4342 | rtx note = find_reg_equal_equiv_note (end); |
8ba46434 R |
4343 | |
4344 | if (! note) | |
4345 | continue; | |
4346 | ||
4347 | if (REG_P (newval)) | |
4348 | { | |
4349 | if (reg_set_between_p (newval, PREV_INSN (insn), end)) | |
4350 | { | |
4351 | do | |
4352 | { | |
4353 | note = find_reg_equal_equiv_note (end); | |
4354 | if (! note) | |
4355 | continue; | |
4356 | if (reg_mentioned_p (newval, XEXP (note, 0))) | |
4357 | return false; | |
4358 | } | |
4359 | while ((end = *libcall_sp++)); | |
4360 | return true; | |
4361 | } | |
4362 | } | |
4363 | XEXP (note, 0) = replace_rtx (XEXP (note, 0), oldreg, newval); | |
4364 | insn = end; | |
4365 | } | |
4366 | return true; | |
4367 | } | |
4368 | ||
4369 | #define MAX_NESTED_LIBCALLS 9 | |
4370 | ||
ae860ff7 JH |
4371 | static void |
4372 | local_cprop_pass (alter_jumps) | |
4373 | int alter_jumps; | |
4374 | { | |
4375 | rtx insn; | |
4376 | struct reg_use *reg_used; | |
8ba46434 | 4377 | rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp; |
ae860ff7 JH |
4378 | |
4379 | cselib_init (); | |
8ba46434 R |
4380 | libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS]; |
4381 | *libcall_sp = 0; | |
ae860ff7 JH |
4382 | for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) |
4383 | { | |
4384 | if (INSN_P (insn)) | |
4385 | { | |
8ba46434 | 4386 | rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX); |
ae860ff7 | 4387 | |
8ba46434 R |
4388 | if (note) |
4389 | { | |
4390 | if (libcall_sp == libcall_stack) | |
4391 | abort (); | |
4392 | *--libcall_sp = XEXP (note, 0); | |
4393 | } | |
4394 | note = find_reg_note (insn, REG_RETVAL, NULL_RTX); | |
4395 | if (note) | |
4396 | libcall_sp++; | |
4397 | note = find_reg_equal_equiv_note (insn); | |
ae860ff7 JH |
4398 | do |
4399 | { | |
4400 | reg_use_count = 0; | |
4401 | note_uses (&PATTERN (insn), find_used_regs, NULL); | |
4402 | if (note) | |
4403 | find_used_regs (&XEXP (note, 0), NULL); | |
4404 | ||
4405 | for (reg_used = ®_use_table[0]; reg_use_count > 0; | |
4406 | reg_used++, reg_use_count--) | |
8ba46434 R |
4407 | if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps, |
4408 | libcall_sp)) | |
ae860ff7 JH |
4409 | break; |
4410 | } | |
4411 | while (reg_use_count); | |
4412 | } | |
4413 | cselib_process_insn (insn); | |
4414 | } | |
4415 | cselib_finish (); | |
4416 | } | |
4417 | ||
c4c81601 | 4418 | /* Forward propagate copies. This includes copies and constants. Return |
cc2902df | 4419 | nonzero if a change was made. */ |
7506f491 DE |
4420 | |
4421 | static int | |
b5ce41ff JL |
4422 | cprop (alter_jumps) |
4423 | int alter_jumps; | |
7506f491 | 4424 | { |
e0082a72 ZD |
4425 | int changed; |
4426 | basic_block bb; | |
7506f491 DE |
4427 | rtx insn; |
4428 | ||
4429 | /* Note we start at block 1. */ | |
e0082a72 ZD |
4430 | if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR) |
4431 | { | |
4432 | if (gcse_file != NULL) | |
4433 | fprintf (gcse_file, "\n"); | |
4434 | return 0; | |
4435 | } | |
7506f491 DE |
4436 | |
4437 | changed = 0; | |
e0082a72 | 4438 | FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb) |
7506f491 DE |
4439 | { |
4440 | /* Reset tables used to keep track of what's still valid [since the | |
4441 | start of the block]. */ | |
4442 | reset_opr_set_tables (); | |
4443 | ||
e0082a72 ZD |
4444 | for (insn = bb->head; |
4445 | insn != NULL && insn != NEXT_INSN (bb->end); | |
7506f491 | 4446 | insn = NEXT_INSN (insn)) |
172890a2 RK |
4447 | if (INSN_P (insn)) |
4448 | { | |
ae860ff7 | 4449 | changed |= cprop_insn (insn, alter_jumps); |
7506f491 | 4450 | |
172890a2 RK |
4451 | /* Keep track of everything modified by this insn. */ |
4452 | /* ??? Need to be careful w.r.t. mods done to INSN. Don't | |
4453 | call mark_oprs_set if we turned the insn into a NOTE. */ | |
4454 | if (GET_CODE (insn) != NOTE) | |
4455 | mark_oprs_set (insn); | |
8e42ace1 | 4456 | } |
7506f491 DE |
4457 | } |
4458 | ||
4459 | if (gcse_file != NULL) | |
4460 | fprintf (gcse_file, "\n"); | |
4461 | ||
4462 | return changed; | |
4463 | } | |
4464 | ||
4465 | /* Perform one copy/constant propagation pass. | |
a0134312 RS |
4466 | PASS is the pass count. If CPROP_JUMPS is true, perform constant |
4467 | propagation into conditional jumps. If BYPASS_JUMPS is true, | |
4468 | perform conditional jump bypassing optimizations. */ | |
7506f491 DE |
4469 | |
4470 | static int | |
a0134312 | 4471 | one_cprop_pass (pass, cprop_jumps, bypass_jumps) |
7506f491 | 4472 | int pass; |
a0134312 RS |
4473 | int cprop_jumps; |
4474 | int bypass_jumps; | |
7506f491 DE |
4475 | { |
4476 | int changed = 0; | |
4477 | ||
4478 | const_prop_count = 0; | |
4479 | copy_prop_count = 0; | |
4480 | ||
a0134312 | 4481 | local_cprop_pass (cprop_jumps); |
ae860ff7 | 4482 | |
02280659 ZD |
4483 | alloc_hash_table (max_cuid, &set_hash_table, 1); |
4484 | compute_hash_table (&set_hash_table); | |
7506f491 | 4485 | if (gcse_file) |
02280659 ZD |
4486 | dump_hash_table (gcse_file, "SET", &set_hash_table); |
4487 | if (set_hash_table.n_elems > 0) | |
7506f491 | 4488 | { |
02280659 | 4489 | alloc_cprop_mem (last_basic_block, set_hash_table.n_elems); |
7506f491 | 4490 | compute_cprop_data (); |
a0134312 RS |
4491 | changed = cprop (cprop_jumps); |
4492 | if (bypass_jumps) | |
0e3f0221 | 4493 | changed |= bypass_conditional_jumps (); |
7506f491 DE |
4494 | free_cprop_mem (); |
4495 | } | |
c4c81601 | 4496 | |
02280659 | 4497 | free_hash_table (&set_hash_table); |
7506f491 DE |
4498 | |
4499 | if (gcse_file) | |
4500 | { | |
c4c81601 RK |
4501 | fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ", |
4502 | current_function_name, pass, bytes_used); | |
4503 | fprintf (gcse_file, "%d const props, %d copy props\n\n", | |
4504 | const_prop_count, copy_prop_count); | |
7506f491 DE |
4505 | } |
4506 | ||
4507 | return changed; | |
4508 | } | |
4509 | \f | |
0e3f0221 RS |
4510 | /* Bypass conditional jumps. */ |
4511 | ||
4512 | /* Find a set of REGNO to a constant that is available at the end of basic | |
4513 | block BB. Returns NULL if no such set is found. Based heavily upon | |
4514 | find_avail_set. */ | |
4515 | ||
4516 | static struct expr * | |
4517 | find_bypass_set (regno, bb) | |
4518 | int regno; | |
4519 | int bb; | |
4520 | { | |
4521 | struct expr *result = 0; | |
4522 | ||
4523 | for (;;) | |
4524 | { | |
4525 | rtx src; | |
02280659 | 4526 | struct expr *set = lookup_set (regno, NULL_RTX, &set_hash_table); |
0e3f0221 RS |
4527 | |
4528 | while (set) | |
4529 | { | |
4530 | if (TEST_BIT (cprop_avout[bb], set->bitmap_index)) | |
4531 | break; | |
4532 | set = next_set (regno, set); | |
4533 | } | |
4534 | ||
4535 | if (set == 0) | |
4536 | break; | |
4537 | ||
4538 | if (GET_CODE (set->expr) != SET) | |
4539 | abort (); | |
4540 | ||
4541 | src = SET_SRC (set->expr); | |
4542 | if (CONSTANT_P (src)) | |
4543 | result = set; | |
4544 | ||
4545 | if (GET_CODE (src) != REG) | |
4546 | break; | |
4547 | ||
4548 | regno = REGNO (src); | |
4549 | } | |
4550 | return result; | |
4551 | } | |
4552 | ||
4553 | ||
4554 | /* Subroutine of bypass_conditional_jumps that attempts to bypass the given | |
4555 | basic block BB which has more than one predecessor. If not NULL, SETCC | |
4556 | is the first instruction of BB, which is immediately followed by JUMP_INSN | |
4557 | JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB. | |
4558 | Returns nonzero if a change was made. */ | |
4559 | ||
4560 | static int | |
4561 | bypass_block (bb, setcc, jump) | |
4562 | basic_block bb; | |
4563 | rtx setcc, jump; | |
4564 | { | |
4565 | rtx insn, note; | |
4566 | edge e, enext; | |
818b6b7f | 4567 | int i, change; |
0e3f0221 RS |
4568 | |
4569 | insn = (setcc != NULL) ? setcc : jump; | |
4570 | ||
4571 | /* Determine set of register uses in INSN. */ | |
4572 | reg_use_count = 0; | |
4573 | note_uses (&PATTERN (insn), find_used_regs, NULL); | |
4574 | note = find_reg_equal_equiv_note (insn); | |
4575 | if (note) | |
4576 | find_used_regs (&XEXP (note, 0), NULL); | |
4577 | ||
4578 | change = 0; | |
4579 | for (e = bb->pred; e; e = enext) | |
4580 | { | |
4581 | enext = e->pred_next; | |
4582 | for (i = 0; i < reg_use_count; i++) | |
4583 | { | |
4584 | struct reg_use *reg_used = ®_use_table[i]; | |
589005ff | 4585 | unsigned int regno = REGNO (reg_used->reg_rtx); |
818b6b7f | 4586 | basic_block dest, old_dest; |
589005ff KH |
4587 | struct expr *set; |
4588 | rtx src, new; | |
0e3f0221 | 4589 | |
589005ff KH |
4590 | if (regno >= max_gcse_regno) |
4591 | continue; | |
0e3f0221 | 4592 | |
589005ff | 4593 | set = find_bypass_set (regno, e->src->index); |
0e3f0221 RS |
4594 | |
4595 | if (! set) | |
4596 | continue; | |
4597 | ||
589005ff | 4598 | src = SET_SRC (pc_set (jump)); |
0e3f0221 RS |
4599 | |
4600 | if (setcc != NULL) | |
4601 | src = simplify_replace_rtx (src, | |
589005ff KH |
4602 | SET_DEST (PATTERN (setcc)), |
4603 | SET_SRC (PATTERN (setcc))); | |
0e3f0221 RS |
4604 | |
4605 | new = simplify_replace_rtx (src, reg_used->reg_rtx, | |
589005ff | 4606 | SET_SRC (set->expr)); |
0e3f0221 | 4607 | |
589005ff | 4608 | if (new == pc_rtx) |
0e3f0221 RS |
4609 | dest = FALLTHRU_EDGE (bb)->dest; |
4610 | else if (GET_CODE (new) == LABEL_REF) | |
4611 | dest = BRANCH_EDGE (bb)->dest; | |
4612 | else | |
4613 | dest = NULL; | |
4614 | ||
4615 | /* Once basic block indices are stable, we should be able | |
4616 | to use redirect_edge_and_branch_force instead. */ | |
818b6b7f RH |
4617 | old_dest = e->dest; |
4618 | if (dest != NULL && dest != old_dest | |
0e3f0221 RS |
4619 | && redirect_edge_and_branch (e, dest)) |
4620 | { | |
818b6b7f | 4621 | /* Copy the register setter to the redirected edge. |
0e3f0221 RS |
4622 | Don't copy CC0 setters, as CC0 is dead after jump. */ |
4623 | if (setcc) | |
4624 | { | |
4625 | rtx pat = PATTERN (setcc); | |
818b6b7f | 4626 | if (!CC0_P (SET_DEST (pat))) |
0e3f0221 RS |
4627 | insert_insn_on_edge (copy_insn (pat), e); |
4628 | } | |
4629 | ||
4630 | if (gcse_file != NULL) | |
4631 | { | |
818b6b7f RH |
4632 | fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d in jump_insn %d equals constant ", |
4633 | regno, INSN_UID (jump)); | |
0e3f0221 RS |
4634 | print_rtl (gcse_file, SET_SRC (set->expr)); |
4635 | fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n", | |
818b6b7f | 4636 | e->src->index, old_dest->index, dest->index); |
0e3f0221 RS |
4637 | } |
4638 | change = 1; | |
4639 | break; | |
4640 | } | |
4641 | } | |
4642 | } | |
4643 | return change; | |
4644 | } | |
4645 | ||
4646 | /* Find basic blocks with more than one predecessor that only contain a | |
4647 | single conditional jump. If the result of the comparison is known at | |
4648 | compile-time from any incoming edge, redirect that edge to the | |
4649 | appropriate target. Returns nonzero if a change was made. */ | |
4650 | ||
4651 | static int | |
4652 | bypass_conditional_jumps () | |
4653 | { | |
4654 | basic_block bb; | |
4655 | int changed; | |
4656 | rtx setcc; | |
4657 | rtx insn; | |
4658 | rtx dest; | |
4659 | ||
4660 | /* Note we start at block 1. */ | |
4661 | if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR) | |
4662 | return 0; | |
4663 | ||
4664 | changed = 0; | |
4665 | FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, | |
589005ff | 4666 | EXIT_BLOCK_PTR, next_bb) |
0e3f0221 RS |
4667 | { |
4668 | /* Check for more than one predecessor. */ | |
4669 | if (bb->pred && bb->pred->pred_next) | |
4670 | { | |
4671 | setcc = NULL_RTX; | |
4672 | for (insn = bb->head; | |
4673 | insn != NULL && insn != NEXT_INSN (bb->end); | |
4674 | insn = NEXT_INSN (insn)) | |
4675 | if (GET_CODE (insn) == INSN) | |
4676 | { | |
9543a9d2 | 4677 | if (setcc) |
0e3f0221 | 4678 | break; |
ba4f7968 | 4679 | if (GET_CODE (PATTERN (insn)) != SET) |
0e3f0221 RS |
4680 | break; |
4681 | ||
ba4f7968 | 4682 | dest = SET_DEST (PATTERN (insn)); |
818b6b7f | 4683 | if (REG_P (dest) || CC0_P (dest)) |
0e3f0221 | 4684 | setcc = insn; |
0e3f0221 RS |
4685 | else |
4686 | break; | |
4687 | } | |
4688 | else if (GET_CODE (insn) == JUMP_INSN) | |
4689 | { | |
4690 | if (any_condjump_p (insn) && onlyjump_p (insn)) | |
4691 | changed |= bypass_block (bb, setcc, insn); | |
4692 | break; | |
4693 | } | |
4694 | else if (INSN_P (insn)) | |
4695 | break; | |
4696 | } | |
4697 | } | |
4698 | ||
818b6b7f | 4699 | /* If we bypassed any register setting insns, we inserted a |
0e3f0221 RS |
4700 | copy on the redirected edge. These need to be commited. */ |
4701 | if (changed) | |
4702 | commit_edge_insertions(); | |
4703 | ||
4704 | return changed; | |
4705 | } | |
4706 | \f | |
a65f3558 | 4707 | /* Compute PRE+LCM working variables. */ |
7506f491 DE |
4708 | |
4709 | /* Local properties of expressions. */ | |
4710 | /* Nonzero for expressions that are transparent in the block. */ | |
a65f3558 | 4711 | static sbitmap *transp; |
7506f491 | 4712 | |
5c35539b RH |
4713 | /* Nonzero for expressions that are transparent at the end of the block. |
4714 | This is only zero for expressions killed by abnormal critical edge | |
4715 | created by a calls. */ | |
a65f3558 | 4716 | static sbitmap *transpout; |
5c35539b | 4717 | |
a65f3558 JL |
4718 | /* Nonzero for expressions that are computed (available) in the block. */ |
4719 | static sbitmap *comp; | |
7506f491 | 4720 | |
a65f3558 JL |
4721 | /* Nonzero for expressions that are locally anticipatable in the block. */ |
4722 | static sbitmap *antloc; | |
7506f491 | 4723 | |
a65f3558 JL |
4724 | /* Nonzero for expressions where this block is an optimal computation |
4725 | point. */ | |
4726 | static sbitmap *pre_optimal; | |
5c35539b | 4727 | |
a65f3558 JL |
4728 | /* Nonzero for expressions which are redundant in a particular block. */ |
4729 | static sbitmap *pre_redundant; | |
7506f491 | 4730 | |
a42cd965 AM |
4731 | /* Nonzero for expressions which should be inserted on a specific edge. */ |
4732 | static sbitmap *pre_insert_map; | |
4733 | ||
4734 | /* Nonzero for expressions which should be deleted in a specific block. */ | |
4735 | static sbitmap *pre_delete_map; | |
4736 | ||
4737 | /* Contains the edge_list returned by pre_edge_lcm. */ | |
4738 | static struct edge_list *edge_list; | |
4739 | ||
a65f3558 JL |
4740 | /* Redundant insns. */ |
4741 | static sbitmap pre_redundant_insns; | |
7506f491 | 4742 | |
a65f3558 | 4743 | /* Allocate vars used for PRE analysis. */ |
7506f491 DE |
4744 | |
4745 | static void | |
a65f3558 JL |
4746 | alloc_pre_mem (n_blocks, n_exprs) |
4747 | int n_blocks, n_exprs; | |
7506f491 | 4748 | { |
a65f3558 JL |
4749 | transp = sbitmap_vector_alloc (n_blocks, n_exprs); |
4750 | comp = sbitmap_vector_alloc (n_blocks, n_exprs); | |
4751 | antloc = sbitmap_vector_alloc (n_blocks, n_exprs); | |
5faf03ae | 4752 | |
a42cd965 AM |
4753 | pre_optimal = NULL; |
4754 | pre_redundant = NULL; | |
4755 | pre_insert_map = NULL; | |
4756 | pre_delete_map = NULL; | |
4757 | ae_in = NULL; | |
4758 | ae_out = NULL; | |
a42cd965 | 4759 | ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs); |
c4c81601 | 4760 | |
a42cd965 | 4761 | /* pre_insert and pre_delete are allocated later. */ |
7506f491 DE |
4762 | } |
4763 | ||
a65f3558 | 4764 | /* Free vars used for PRE analysis. */ |
7506f491 DE |
4765 | |
4766 | static void | |
a65f3558 | 4767 | free_pre_mem () |
7506f491 | 4768 | { |
5a660bff DB |
4769 | sbitmap_vector_free (transp); |
4770 | sbitmap_vector_free (comp); | |
bd3675fc JL |
4771 | |
4772 | /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */ | |
7506f491 | 4773 | |
a42cd965 | 4774 | if (pre_optimal) |
5a660bff | 4775 | sbitmap_vector_free (pre_optimal); |
a42cd965 | 4776 | if (pre_redundant) |
5a660bff | 4777 | sbitmap_vector_free (pre_redundant); |
a42cd965 | 4778 | if (pre_insert_map) |
5a660bff | 4779 | sbitmap_vector_free (pre_insert_map); |
a42cd965 | 4780 | if (pre_delete_map) |
5a660bff | 4781 | sbitmap_vector_free (pre_delete_map); |
a42cd965 | 4782 | if (ae_in) |
5a660bff | 4783 | sbitmap_vector_free (ae_in); |
a42cd965 | 4784 | if (ae_out) |
5a660bff | 4785 | sbitmap_vector_free (ae_out); |
a42cd965 | 4786 | |
bd3675fc | 4787 | transp = comp = NULL; |
a42cd965 | 4788 | pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL; |
55d3f917 | 4789 | ae_in = ae_out = NULL; |
7506f491 DE |
4790 | } |
4791 | ||
4792 | /* Top level routine to do the dataflow analysis needed by PRE. */ | |
4793 | ||
4794 | static void | |
4795 | compute_pre_data () | |
4796 | { | |
b614171e | 4797 | sbitmap trapping_expr; |
e0082a72 | 4798 | basic_block bb; |
b614171e | 4799 | unsigned int ui; |
c66e8ae9 | 4800 | |
02280659 | 4801 | compute_local_properties (transp, comp, antloc, &expr_hash_table); |
d55bc081 | 4802 | sbitmap_vector_zero (ae_kill, last_basic_block); |
c66e8ae9 | 4803 | |
b614171e | 4804 | /* Collect expressions which might trap. */ |
02280659 | 4805 | trapping_expr = sbitmap_alloc (expr_hash_table.n_elems); |
b614171e | 4806 | sbitmap_zero (trapping_expr); |
02280659 | 4807 | for (ui = 0; ui < expr_hash_table.size; ui++) |
b614171e MM |
4808 | { |
4809 | struct expr *e; | |
02280659 | 4810 | for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash) |
b614171e MM |
4811 | if (may_trap_p (e->expr)) |
4812 | SET_BIT (trapping_expr, e->bitmap_index); | |
4813 | } | |
4814 | ||
c66e8ae9 JL |
4815 | /* Compute ae_kill for each basic block using: |
4816 | ||
4817 | ~(TRANSP | COMP) | |
4818 | ||
a2e90653 | 4819 | This is significantly faster than compute_ae_kill. */ |
c66e8ae9 | 4820 | |
e0082a72 | 4821 | FOR_EACH_BB (bb) |
c66e8ae9 | 4822 | { |
b614171e MM |
4823 | edge e; |
4824 | ||
4825 | /* If the current block is the destination of an abnormal edge, we | |
4826 | kill all trapping expressions because we won't be able to properly | |
4827 | place the instruction on the edge. So make them neither | |
4828 | anticipatable nor transparent. This is fairly conservative. */ | |
e0082a72 | 4829 | for (e = bb->pred; e ; e = e->pred_next) |
b614171e MM |
4830 | if (e->flags & EDGE_ABNORMAL) |
4831 | { | |
e0082a72 ZD |
4832 | sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr); |
4833 | sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr); | |
b614171e MM |
4834 | break; |
4835 | } | |
4836 | ||
e0082a72 ZD |
4837 | sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]); |
4838 | sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]); | |
c66e8ae9 JL |
4839 | } |
4840 | ||
02280659 | 4841 | edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc, |
a42cd965 | 4842 | ae_kill, &pre_insert_map, &pre_delete_map); |
5a660bff | 4843 | sbitmap_vector_free (antloc); |
bd3675fc | 4844 | antloc = NULL; |
5a660bff | 4845 | sbitmap_vector_free (ae_kill); |
589005ff | 4846 | ae_kill = NULL; |
76ac938b | 4847 | sbitmap_free (trapping_expr); |
7506f491 DE |
4848 | } |
4849 | \f | |
4850 | /* PRE utilities */ | |
4851 | ||
cc2902df | 4852 | /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach |
a65f3558 | 4853 | block BB. |
7506f491 DE |
4854 | |
4855 | VISITED is a pointer to a working buffer for tracking which BB's have | |
4856 | been visited. It is NULL for the top-level call. | |
4857 | ||
4858 | We treat reaching expressions that go through blocks containing the same | |
4859 | reaching expression as "not reaching". E.g. if EXPR is generated in blocks | |
4860 | 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block | |
4861 | 2 as not reaching. The intent is to improve the probability of finding | |
4862 | only one reaching expression and to reduce register lifetimes by picking | |
4863 | the closest such expression. */ | |
4864 | ||
4865 | static int | |
89e606c9 | 4866 | pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited) |
e2d2ed72 | 4867 | basic_block occr_bb; |
7506f491 | 4868 | struct expr *expr; |
e2d2ed72 | 4869 | basic_block bb; |
7506f491 DE |
4870 | char *visited; |
4871 | { | |
36349f8b | 4872 | edge pred; |
7506f491 | 4873 | |
e2d2ed72 | 4874 | for (pred = bb->pred; pred != NULL; pred = pred->pred_next) |
7506f491 | 4875 | { |
e2d2ed72 | 4876 | basic_block pred_bb = pred->src; |
7506f491 | 4877 | |
36349f8b | 4878 | if (pred->src == ENTRY_BLOCK_PTR |
7506f491 | 4879 | /* Has predecessor has already been visited? */ |
0b17ab2f | 4880 | || visited[pred_bb->index]) |
c4c81601 RK |
4881 | ;/* Nothing to do. */ |
4882 | ||
7506f491 | 4883 | /* Does this predecessor generate this expression? */ |
0b17ab2f | 4884 | else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index)) |
7506f491 DE |
4885 | { |
4886 | /* Is this the occurrence we're looking for? | |
4887 | Note that there's only one generating occurrence per block | |
4888 | so we just need to check the block number. */ | |
a65f3558 | 4889 | if (occr_bb == pred_bb) |
7506f491 | 4890 | return 1; |
c4c81601 | 4891 | |
0b17ab2f | 4892 | visited[pred_bb->index] = 1; |
7506f491 DE |
4893 | } |
4894 | /* Ignore this predecessor if it kills the expression. */ | |
0b17ab2f RH |
4895 | else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index)) |
4896 | visited[pred_bb->index] = 1; | |
c4c81601 | 4897 | |
7506f491 DE |
4898 | /* Neither gen nor kill. */ |
4899 | else | |
ac7c5af5 | 4900 | { |
0b17ab2f | 4901 | visited[pred_bb->index] = 1; |
89e606c9 | 4902 | if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited)) |
7506f491 | 4903 | return 1; |
ac7c5af5 | 4904 | } |
7506f491 DE |
4905 | } |
4906 | ||
4907 | /* All paths have been checked. */ | |
4908 | return 0; | |
4909 | } | |
283a2545 RL |
4910 | |
4911 | /* The wrapper for pre_expr_reaches_here_work that ensures that any | |
dc297297 | 4912 | memory allocated for that function is returned. */ |
283a2545 RL |
4913 | |
4914 | static int | |
89e606c9 | 4915 | pre_expr_reaches_here_p (occr_bb, expr, bb) |
e2d2ed72 | 4916 | basic_block occr_bb; |
283a2545 | 4917 | struct expr *expr; |
e2d2ed72 | 4918 | basic_block bb; |
283a2545 RL |
4919 | { |
4920 | int rval; | |
d55bc081 | 4921 | char *visited = (char *) xcalloc (last_basic_block, 1); |
283a2545 | 4922 | |
8e42ace1 | 4923 | rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited); |
283a2545 RL |
4924 | |
4925 | free (visited); | |
c4c81601 | 4926 | return rval; |
283a2545 | 4927 | } |
7506f491 | 4928 | \f |
a42cd965 AM |
4929 | |
4930 | /* Given an expr, generate RTL which we can insert at the end of a BB, | |
589005ff | 4931 | or on an edge. Set the block number of any insns generated to |
a42cd965 AM |
4932 | the value of BB. */ |
4933 | ||
4934 | static rtx | |
4935 | process_insert_insn (expr) | |
4936 | struct expr *expr; | |
4937 | { | |
4938 | rtx reg = expr->reaching_reg; | |
fb0c0a12 RK |
4939 | rtx exp = copy_rtx (expr->expr); |
4940 | rtx pat; | |
a42cd965 AM |
4941 | |
4942 | start_sequence (); | |
fb0c0a12 RK |
4943 | |
4944 | /* If the expression is something that's an operand, like a constant, | |
4945 | just copy it to a register. */ | |
4946 | if (general_operand (exp, GET_MODE (reg))) | |
4947 | emit_move_insn (reg, exp); | |
4948 | ||
4949 | /* Otherwise, make a new insn to compute this expression and make sure the | |
4950 | insn will be recognized (this also adds any needed CLOBBERs). Copy the | |
4951 | expression to make sure we don't have any sharing issues. */ | |
8d444206 | 4952 | else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp)))) |
fb0c0a12 | 4953 | abort (); |
589005ff | 4954 | |
2f937369 | 4955 | pat = get_insns (); |
a42cd965 AM |
4956 | end_sequence (); |
4957 | ||
4958 | return pat; | |
4959 | } | |
589005ff | 4960 | |
a65f3558 JL |
4961 | /* Add EXPR to the end of basic block BB. |
4962 | ||
4963 | This is used by both the PRE and code hoisting. | |
4964 | ||
4965 | For PRE, we want to verify that the expr is either transparent | |
4966 | or locally anticipatable in the target block. This check makes | |
4967 | no sense for code hoisting. */ | |
7506f491 DE |
4968 | |
4969 | static void | |
a65f3558 | 4970 | insert_insn_end_bb (expr, bb, pre) |
7506f491 | 4971 | struct expr *expr; |
e2d2ed72 | 4972 | basic_block bb; |
a65f3558 | 4973 | int pre; |
7506f491 | 4974 | { |
e2d2ed72 | 4975 | rtx insn = bb->end; |
7506f491 DE |
4976 | rtx new_insn; |
4977 | rtx reg = expr->reaching_reg; | |
4978 | int regno = REGNO (reg); | |
2f937369 | 4979 | rtx pat, pat_end; |
7506f491 | 4980 | |
a42cd965 | 4981 | pat = process_insert_insn (expr); |
2f937369 DM |
4982 | if (pat == NULL_RTX || ! INSN_P (pat)) |
4983 | abort (); | |
4984 | ||
4985 | pat_end = pat; | |
4986 | while (NEXT_INSN (pat_end) != NULL_RTX) | |
4987 | pat_end = NEXT_INSN (pat_end); | |
7506f491 DE |
4988 | |
4989 | /* If the last insn is a jump, insert EXPR in front [taking care to | |
068473ec JH |
4990 | handle cc0, etc. properly]. Similary we need to care trapping |
4991 | instructions in presence of non-call exceptions. */ | |
7506f491 | 4992 | |
068473ec JH |
4993 | if (GET_CODE (insn) == JUMP_INSN |
4994 | || (GET_CODE (insn) == INSN | |
4995 | && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))) | |
7506f491 | 4996 | { |
50b2596f | 4997 | #ifdef HAVE_cc0 |
7506f491 | 4998 | rtx note; |
50b2596f | 4999 | #endif |
068473ec JH |
5000 | /* It should always be the case that we can put these instructions |
5001 | anywhere in the basic block with performing PRE optimizations. | |
5002 | Check this. */ | |
3b25fbfe | 5003 | if (GET_CODE (insn) == INSN && pre |
0b17ab2f | 5004 | && !TEST_BIT (antloc[bb->index], expr->bitmap_index) |
589005ff | 5005 | && !TEST_BIT (transp[bb->index], expr->bitmap_index)) |
068473ec | 5006 | abort (); |
7506f491 DE |
5007 | |
5008 | /* If this is a jump table, then we can't insert stuff here. Since | |
5009 | we know the previous real insn must be the tablejump, we insert | |
5010 | the new instruction just before the tablejump. */ | |
5011 | if (GET_CODE (PATTERN (insn)) == ADDR_VEC | |
5012 | || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC) | |
5013 | insn = prev_real_insn (insn); | |
5014 | ||
5015 | #ifdef HAVE_cc0 | |
5016 | /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts | |
5017 | if cc0 isn't set. */ | |
5018 | note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); | |
5019 | if (note) | |
5020 | insn = XEXP (note, 0); | |
5021 | else | |
5022 | { | |
5023 | rtx maybe_cc0_setter = prev_nonnote_insn (insn); | |
5024 | if (maybe_cc0_setter | |
2c3c49de | 5025 | && INSN_P (maybe_cc0_setter) |
7506f491 DE |
5026 | && sets_cc0_p (PATTERN (maybe_cc0_setter))) |
5027 | insn = maybe_cc0_setter; | |
5028 | } | |
5029 | #endif | |
5030 | /* FIXME: What if something in cc0/jump uses value set in new insn? */ | |
3c030e88 | 5031 | new_insn = emit_insn_before (pat, insn); |
3947e2f9 | 5032 | } |
c4c81601 | 5033 | |
3947e2f9 RH |
5034 | /* Likewise if the last insn is a call, as will happen in the presence |
5035 | of exception handling. */ | |
068473ec JH |
5036 | else if (GET_CODE (insn) == CALL_INSN |
5037 | && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))) | |
3947e2f9 | 5038 | { |
3947e2f9 RH |
5039 | /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers, |
5040 | we search backward and place the instructions before the first | |
5041 | parameter is loaded. Do this for everyone for consistency and a | |
589005ff | 5042 | presumtion that we'll get better code elsewhere as well. |
3947e2f9 | 5043 | |
c4c81601 | 5044 | It should always be the case that we can put these instructions |
a65f3558 JL |
5045 | anywhere in the basic block with performing PRE optimizations. |
5046 | Check this. */ | |
c4c81601 | 5047 | |
a65f3558 | 5048 | if (pre |
0b17ab2f | 5049 | && !TEST_BIT (antloc[bb->index], expr->bitmap_index) |
589005ff | 5050 | && !TEST_BIT (transp[bb->index], expr->bitmap_index)) |
3947e2f9 RH |
5051 | abort (); |
5052 | ||
5053 | /* Since different machines initialize their parameter registers | |
5054 | in different orders, assume nothing. Collect the set of all | |
5055 | parameter registers. */ | |
833366d6 | 5056 | insn = find_first_parameter_load (insn, bb->head); |
3947e2f9 | 5057 | |
b1d26727 JL |
5058 | /* If we found all the parameter loads, then we want to insert |
5059 | before the first parameter load. | |
5060 | ||
5061 | If we did not find all the parameter loads, then we might have | |
5062 | stopped on the head of the block, which could be a CODE_LABEL. | |
5063 | If we inserted before the CODE_LABEL, then we would be putting | |
5064 | the insn in the wrong basic block. In that case, put the insn | |
b5229628 | 5065 | after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */ |
0a377997 | 5066 | while (GET_CODE (insn) == CODE_LABEL |
589ca5cb | 5067 | || NOTE_INSN_BASIC_BLOCK_P (insn)) |
b5229628 | 5068 | insn = NEXT_INSN (insn); |
c4c81601 | 5069 | |
3c030e88 | 5070 | new_insn = emit_insn_before (pat, insn); |
7506f491 DE |
5071 | } |
5072 | else | |
3c030e88 | 5073 | new_insn = emit_insn_after (pat, insn); |
7506f491 | 5074 | |
2f937369 | 5075 | while (1) |
a65f3558 | 5076 | { |
2f937369 | 5077 | if (INSN_P (pat)) |
a65f3558 | 5078 | { |
2f937369 DM |
5079 | add_label_notes (PATTERN (pat), new_insn); |
5080 | note_stores (PATTERN (pat), record_set_info, pat); | |
a65f3558 | 5081 | } |
2f937369 DM |
5082 | if (pat == pat_end) |
5083 | break; | |
5084 | pat = NEXT_INSN (pat); | |
a65f3558 | 5085 | } |
3947e2f9 | 5086 | |
7506f491 DE |
5087 | gcse_create_count++; |
5088 | ||
5089 | if (gcse_file) | |
5090 | { | |
c4c81601 | 5091 | fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ", |
0b17ab2f | 5092 | bb->index, INSN_UID (new_insn)); |
c4c81601 RK |
5093 | fprintf (gcse_file, "copying expression %d to reg %d\n", |
5094 | expr->bitmap_index, regno); | |
7506f491 DE |
5095 | } |
5096 | } | |
5097 | ||
a42cd965 AM |
5098 | /* Insert partially redundant expressions on edges in the CFG to make |
5099 | the expressions fully redundant. */ | |
7506f491 | 5100 | |
a42cd965 AM |
5101 | static int |
5102 | pre_edge_insert (edge_list, index_map) | |
5103 | struct edge_list *edge_list; | |
7506f491 DE |
5104 | struct expr **index_map; |
5105 | { | |
c4c81601 | 5106 | int e, i, j, num_edges, set_size, did_insert = 0; |
a65f3558 JL |
5107 | sbitmap *inserted; |
5108 | ||
a42cd965 AM |
5109 | /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge |
5110 | if it reaches any of the deleted expressions. */ | |
7506f491 | 5111 | |
a42cd965 AM |
5112 | set_size = pre_insert_map[0]->size; |
5113 | num_edges = NUM_EDGES (edge_list); | |
02280659 | 5114 | inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems); |
a42cd965 | 5115 | sbitmap_vector_zero (inserted, num_edges); |
7506f491 | 5116 | |
a42cd965 | 5117 | for (e = 0; e < num_edges; e++) |
7506f491 DE |
5118 | { |
5119 | int indx; | |
e2d2ed72 | 5120 | basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e); |
a65f3558 | 5121 | |
a65f3558 | 5122 | for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS) |
7506f491 | 5123 | { |
a42cd965 | 5124 | SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i]; |
7506f491 | 5125 | |
02280659 | 5126 | for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1) |
c4c81601 RK |
5127 | if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX) |
5128 | { | |
5129 | struct expr *expr = index_map[j]; | |
5130 | struct occr *occr; | |
a65f3558 | 5131 | |
ff7cc307 | 5132 | /* Now look at each deleted occurrence of this expression. */ |
c4c81601 RK |
5133 | for (occr = expr->antic_occr; occr != NULL; occr = occr->next) |
5134 | { | |
5135 | if (! occr->deleted_p) | |
5136 | continue; | |
5137 | ||
5138 | /* Insert this expression on this edge if if it would | |
ff7cc307 | 5139 | reach the deleted occurrence in BB. */ |
c4c81601 RK |
5140 | if (!TEST_BIT (inserted[e], j)) |
5141 | { | |
5142 | rtx insn; | |
5143 | edge eg = INDEX_EDGE (edge_list, e); | |
5144 | ||
5145 | /* We can't insert anything on an abnormal and | |
5146 | critical edge, so we insert the insn at the end of | |
5147 | the previous block. There are several alternatives | |
5148 | detailed in Morgans book P277 (sec 10.5) for | |
5149 | handling this situation. This one is easiest for | |
5150 | now. */ | |
5151 | ||
5152 | if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL) | |
5153 | insert_insn_end_bb (index_map[j], bb, 0); | |
5154 | else | |
5155 | { | |
5156 | insn = process_insert_insn (index_map[j]); | |
5157 | insert_insn_on_edge (insn, eg); | |
5158 | } | |
5159 | ||
5160 | if (gcse_file) | |
5161 | { | |
5162 | fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ", | |
0b17ab2f RH |
5163 | bb->index, |
5164 | INDEX_EDGE_SUCC_BB (edge_list, e)->index); | |
c4c81601 RK |
5165 | fprintf (gcse_file, "copy expression %d\n", |
5166 | expr->bitmap_index); | |
5167 | } | |
5168 | ||
a13d4ebf | 5169 | update_ld_motion_stores (expr); |
c4c81601 RK |
5170 | SET_BIT (inserted[e], j); |
5171 | did_insert = 1; | |
5172 | gcse_create_count++; | |
5173 | } | |
5174 | } | |
5175 | } | |
7506f491 DE |
5176 | } |
5177 | } | |
5faf03ae | 5178 | |
5a660bff | 5179 | sbitmap_vector_free (inserted); |
a42cd965 | 5180 | return did_insert; |
7506f491 DE |
5181 | } |
5182 | ||
c4c81601 | 5183 | /* Copy the result of INSN to REG. INDX is the expression number. */ |
7506f491 DE |
5184 | |
5185 | static void | |
5186 | pre_insert_copy_insn (expr, insn) | |
5187 | struct expr *expr; | |
5188 | rtx insn; | |
5189 | { | |
5190 | rtx reg = expr->reaching_reg; | |
5191 | int regno = REGNO (reg); | |
5192 | int indx = expr->bitmap_index; | |
5193 | rtx set = single_set (insn); | |
5194 | rtx new_insn; | |
5195 | ||
5196 | if (!set) | |
5197 | abort (); | |
c4c81601 | 5198 | |
cccf0ae8 | 5199 | new_insn = emit_insn_after (gen_move_insn (reg, SET_DEST (set)), insn); |
c4c81601 | 5200 | |
7506f491 DE |
5201 | /* Keep register set table up to date. */ |
5202 | record_one_set (regno, new_insn); | |
5203 | ||
5204 | gcse_create_count++; | |
5205 | ||
5206 | if (gcse_file) | |
a42cd965 AM |
5207 | fprintf (gcse_file, |
5208 | "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n", | |
5209 | BLOCK_NUM (insn), INSN_UID (new_insn), indx, | |
5210 | INSN_UID (insn), regno); | |
222f7ba9 | 5211 | update_ld_motion_stores (expr); |
7506f491 DE |
5212 | } |
5213 | ||
5214 | /* Copy available expressions that reach the redundant expression | |
5215 | to `reaching_reg'. */ | |
5216 | ||
5217 | static void | |
5218 | pre_insert_copies () | |
5219 | { | |
2e653e39 | 5220 | unsigned int i; |
c4c81601 RK |
5221 | struct expr *expr; |
5222 | struct occr *occr; | |
5223 | struct occr *avail; | |
a65f3558 | 5224 | |
7506f491 DE |
5225 | /* For each available expression in the table, copy the result to |
5226 | `reaching_reg' if the expression reaches a deleted one. | |
5227 | ||
5228 | ??? The current algorithm is rather brute force. | |
5229 | Need to do some profiling. */ | |
5230 | ||
02280659 ZD |
5231 | for (i = 0; i < expr_hash_table.size; i++) |
5232 | for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash) | |
c4c81601 RK |
5233 | { |
5234 | /* If the basic block isn't reachable, PPOUT will be TRUE. However, | |
5235 | we don't want to insert a copy here because the expression may not | |
5236 | really be redundant. So only insert an insn if the expression was | |
5237 | deleted. This test also avoids further processing if the | |
5238 | expression wasn't deleted anywhere. */ | |
5239 | if (expr->reaching_reg == NULL) | |
5240 | continue; | |
5241 | ||
5242 | for (occr = expr->antic_occr; occr != NULL; occr = occr->next) | |
5243 | { | |
5244 | if (! occr->deleted_p) | |
5245 | continue; | |
7506f491 | 5246 | |
c4c81601 RK |
5247 | for (avail = expr->avail_occr; avail != NULL; avail = avail->next) |
5248 | { | |
5249 | rtx insn = avail->insn; | |
7506f491 | 5250 | |
c4c81601 RK |
5251 | /* No need to handle this one if handled already. */ |
5252 | if (avail->copied_p) | |
5253 | continue; | |
7506f491 | 5254 | |
c4c81601 RK |
5255 | /* Don't handle this one if it's a redundant one. */ |
5256 | if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn))) | |
5257 | continue; | |
7506f491 | 5258 | |
c4c81601 | 5259 | /* Or if the expression doesn't reach the deleted one. */ |
589005ff | 5260 | if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn), |
e2d2ed72 AM |
5261 | expr, |
5262 | BLOCK_FOR_INSN (occr->insn))) | |
c4c81601 | 5263 | continue; |
7506f491 | 5264 | |
c4c81601 RK |
5265 | /* Copy the result of avail to reaching_reg. */ |
5266 | pre_insert_copy_insn (expr, insn); | |
5267 | avail->copied_p = 1; | |
5268 | } | |
5269 | } | |
5270 | } | |
7506f491 DE |
5271 | } |
5272 | ||
10d1bb36 JH |
5273 | /* Emit move from SRC to DEST noting the equivalence with expression computed |
5274 | in INSN. */ | |
5275 | static rtx | |
5276 | gcse_emit_move_after (src, dest, insn) | |
5277 | rtx src, dest, insn; | |
5278 | { | |
5279 | rtx new; | |
6bdb8dd6 | 5280 | rtx set = single_set (insn), set2; |
10d1bb36 JH |
5281 | rtx note; |
5282 | rtx eqv; | |
5283 | ||
5284 | /* This should never fail since we're creating a reg->reg copy | |
5285 | we've verified to be valid. */ | |
5286 | ||
6bdb8dd6 | 5287 | new = emit_insn_after (gen_move_insn (dest, src), insn); |
285464d0 | 5288 | |
10d1bb36 | 5289 | /* Note the equivalence for local CSE pass. */ |
6bdb8dd6 JH |
5290 | set2 = single_set (new); |
5291 | if (!set2 || !rtx_equal_p (SET_DEST (set2), dest)) | |
5292 | return new; | |
10d1bb36 JH |
5293 | if ((note = find_reg_equal_equiv_note (insn))) |
5294 | eqv = XEXP (note, 0); | |
5295 | else | |
5296 | eqv = SET_SRC (set); | |
5297 | ||
a500466b | 5298 | set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv)); |
10d1bb36 JH |
5299 | |
5300 | return new; | |
5301 | } | |
5302 | ||
7506f491 | 5303 | /* Delete redundant computations. |
7506f491 DE |
5304 | Deletion is done by changing the insn to copy the `reaching_reg' of |
5305 | the expression into the result of the SET. It is left to later passes | |
5306 | (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it. | |
5307 | ||
cc2902df | 5308 | Returns nonzero if a change is made. */ |
7506f491 DE |
5309 | |
5310 | static int | |
5311 | pre_delete () | |
5312 | { | |
2e653e39 | 5313 | unsigned int i; |
63bc1d05 | 5314 | int changed; |
c4c81601 RK |
5315 | struct expr *expr; |
5316 | struct occr *occr; | |
a65f3558 | 5317 | |
7506f491 | 5318 | changed = 0; |
02280659 ZD |
5319 | for (i = 0; i < expr_hash_table.size; i++) |
5320 | for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash) | |
c4c81601 RK |
5321 | { |
5322 | int indx = expr->bitmap_index; | |
7506f491 | 5323 | |
c4c81601 RK |
5324 | /* We only need to search antic_occr since we require |
5325 | ANTLOC != 0. */ | |
7506f491 | 5326 | |
c4c81601 RK |
5327 | for (occr = expr->antic_occr; occr != NULL; occr = occr->next) |
5328 | { | |
5329 | rtx insn = occr->insn; | |
5330 | rtx set; | |
e2d2ed72 | 5331 | basic_block bb = BLOCK_FOR_INSN (insn); |
7506f491 | 5332 | |
0b17ab2f | 5333 | if (TEST_BIT (pre_delete_map[bb->index], indx)) |
c4c81601 RK |
5334 | { |
5335 | set = single_set (insn); | |
5336 | if (! set) | |
5337 | abort (); | |
5338 | ||
5339 | /* Create a pseudo-reg to store the result of reaching | |
5340 | expressions into. Get the mode for the new pseudo from | |
5341 | the mode of the original destination pseudo. */ | |
5342 | if (expr->reaching_reg == NULL) | |
5343 | expr->reaching_reg | |
5344 | = gen_reg_rtx (GET_MODE (SET_DEST (set))); | |
5345 | ||
10d1bb36 JH |
5346 | gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn); |
5347 | delete_insn (insn); | |
5348 | occr->deleted_p = 1; | |
5349 | SET_BIT (pre_redundant_insns, INSN_CUID (insn)); | |
5350 | changed = 1; | |
5351 | gcse_subst_count++; | |
7506f491 | 5352 | |
c4c81601 RK |
5353 | if (gcse_file) |
5354 | { | |
5355 | fprintf (gcse_file, | |
5356 | "PRE: redundant insn %d (expression %d) in ", | |
5357 | INSN_UID (insn), indx); | |
5358 | fprintf (gcse_file, "bb %d, reaching reg is %d\n", | |
0b17ab2f | 5359 | bb->index, REGNO (expr->reaching_reg)); |
c4c81601 RK |
5360 | } |
5361 | } | |
5362 | } | |
5363 | } | |
7506f491 DE |
5364 | |
5365 | return changed; | |
5366 | } | |
5367 | ||
5368 | /* Perform GCSE optimizations using PRE. | |
5369 | This is called by one_pre_gcse_pass after all the dataflow analysis | |
5370 | has been done. | |
5371 | ||
c4c81601 RK |
5372 | This is based on the original Morel-Renvoise paper Fred Chow's thesis, and |
5373 | lazy code motion from Knoop, Ruthing and Steffen as described in Advanced | |
5374 | Compiler Design and Implementation. | |
7506f491 | 5375 | |
c4c81601 RK |
5376 | ??? A new pseudo reg is created to hold the reaching expression. The nice |
5377 | thing about the classical approach is that it would try to use an existing | |
5378 | reg. If the register can't be adequately optimized [i.e. we introduce | |
5379 | reload problems], one could add a pass here to propagate the new register | |
5380 | through the block. | |
7506f491 | 5381 | |
c4c81601 RK |
5382 | ??? We don't handle single sets in PARALLELs because we're [currently] not |
5383 | able to copy the rest of the parallel when we insert copies to create full | |
5384 | redundancies from partial redundancies. However, there's no reason why we | |
5385 | can't handle PARALLELs in the cases where there are no partial | |
7506f491 DE |
5386 | redundancies. */ |
5387 | ||
5388 | static int | |
5389 | pre_gcse () | |
5390 | { | |
2e653e39 RK |
5391 | unsigned int i; |
5392 | int did_insert, changed; | |
7506f491 | 5393 | struct expr **index_map; |
c4c81601 | 5394 | struct expr *expr; |
7506f491 DE |
5395 | |
5396 | /* Compute a mapping from expression number (`bitmap_index') to | |
5397 | hash table entry. */ | |
5398 | ||
02280659 ZD |
5399 | index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *)); |
5400 | for (i = 0; i < expr_hash_table.size; i++) | |
5401 | for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash) | |
c4c81601 | 5402 | index_map[expr->bitmap_index] = expr; |
7506f491 DE |
5403 | |
5404 | /* Reset bitmap used to track which insns are redundant. */ | |
a65f3558 JL |
5405 | pre_redundant_insns = sbitmap_alloc (max_cuid); |
5406 | sbitmap_zero (pre_redundant_insns); | |
7506f491 DE |
5407 | |
5408 | /* Delete the redundant insns first so that | |
5409 | - we know what register to use for the new insns and for the other | |
5410 | ones with reaching expressions | |
5411 | - we know which insns are redundant when we go to create copies */ | |
c4c81601 | 5412 | |
7506f491 DE |
5413 | changed = pre_delete (); |
5414 | ||
a42cd965 | 5415 | did_insert = pre_edge_insert (edge_list, index_map); |
c4c81601 | 5416 | |
7506f491 | 5417 | /* In other places with reaching expressions, copy the expression to the |
a42cd965 | 5418 | specially allocated pseudo-reg that reaches the redundant expr. */ |
7506f491 | 5419 | pre_insert_copies (); |
a42cd965 AM |
5420 | if (did_insert) |
5421 | { | |
5422 | commit_edge_insertions (); | |
5423 | changed = 1; | |
5424 | } | |
7506f491 | 5425 | |
283a2545 | 5426 | free (index_map); |
76ac938b | 5427 | sbitmap_free (pre_redundant_insns); |
7506f491 DE |
5428 | return changed; |
5429 | } | |
5430 | ||
5431 | /* Top level routine to perform one PRE GCSE pass. | |
5432 | ||
cc2902df | 5433 | Return nonzero if a change was made. */ |
7506f491 DE |
5434 | |
5435 | static int | |
b5ce41ff | 5436 | one_pre_gcse_pass (pass) |
7506f491 DE |
5437 | int pass; |
5438 | { | |
5439 | int changed = 0; | |
5440 | ||
5441 | gcse_subst_count = 0; | |
5442 | gcse_create_count = 0; | |
5443 | ||
02280659 | 5444 | alloc_hash_table (max_cuid, &expr_hash_table, 0); |
a42cd965 | 5445 | add_noreturn_fake_exit_edges (); |
a13d4ebf AM |
5446 | if (flag_gcse_lm) |
5447 | compute_ld_motion_mems (); | |
5448 | ||
02280659 | 5449 | compute_hash_table (&expr_hash_table); |
a13d4ebf | 5450 | trim_ld_motion_mems (); |
7506f491 | 5451 | if (gcse_file) |
02280659 | 5452 | dump_hash_table (gcse_file, "Expression", &expr_hash_table); |
c4c81601 | 5453 | |
02280659 | 5454 | if (expr_hash_table.n_elems > 0) |
7506f491 | 5455 | { |
02280659 | 5456 | alloc_pre_mem (last_basic_block, expr_hash_table.n_elems); |
7506f491 DE |
5457 | compute_pre_data (); |
5458 | changed |= pre_gcse (); | |
a42cd965 | 5459 | free_edge_list (edge_list); |
7506f491 DE |
5460 | free_pre_mem (); |
5461 | } | |
c4c81601 | 5462 | |
a13d4ebf | 5463 | free_ldst_mems (); |
a42cd965 | 5464 | remove_fake_edges (); |
02280659 | 5465 | free_hash_table (&expr_hash_table); |
7506f491 DE |
5466 | |
5467 | if (gcse_file) | |
5468 | { | |
c4c81601 RK |
5469 | fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ", |
5470 | current_function_name, pass, bytes_used); | |
5471 | fprintf (gcse_file, "%d substs, %d insns created\n", | |
5472 | gcse_subst_count, gcse_create_count); | |
7506f491 DE |
5473 | } |
5474 | ||
5475 | return changed; | |
5476 | } | |
aeb2f500 JW |
5477 | \f |
5478 | /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN. | |
5b1ef594 JDA |
5479 | If notes are added to an insn which references a CODE_LABEL, the |
5480 | LABEL_NUSES count is incremented. We have to add REG_LABEL notes, | |
5481 | because the following loop optimization pass requires them. */ | |
aeb2f500 JW |
5482 | |
5483 | /* ??? This is very similar to the loop.c add_label_notes function. We | |
5484 | could probably share code here. */ | |
5485 | ||
5486 | /* ??? If there was a jump optimization pass after gcse and before loop, | |
5487 | then we would not need to do this here, because jump would add the | |
5488 | necessary REG_LABEL notes. */ | |
5489 | ||
5490 | static void | |
5491 | add_label_notes (x, insn) | |
5492 | rtx x; | |
5493 | rtx insn; | |
5494 | { | |
5495 | enum rtx_code code = GET_CODE (x); | |
5496 | int i, j; | |
6f7d635c | 5497 | const char *fmt; |
aeb2f500 JW |
5498 | |
5499 | if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x)) | |
5500 | { | |
6b3603c2 | 5501 | /* This code used to ignore labels that referred to dispatch tables to |
ac7c5af5 | 5502 | avoid flow generating (slighly) worse code. |
6b3603c2 | 5503 | |
ac7c5af5 JL |
5504 | We no longer ignore such label references (see LABEL_REF handling in |
5505 | mark_jump_label for additional information). */ | |
c4c81601 | 5506 | |
6b8c9327 | 5507 | REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0), |
6b3603c2 | 5508 | REG_NOTES (insn)); |
5b1ef594 | 5509 | if (LABEL_P (XEXP (x, 0))) |
589005ff | 5510 | LABEL_NUSES (XEXP (x, 0))++; |
aeb2f500 JW |
5511 | return; |
5512 | } | |
5513 | ||
c4c81601 | 5514 | for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) |
aeb2f500 JW |
5515 | { |
5516 | if (fmt[i] == 'e') | |
5517 | add_label_notes (XEXP (x, i), insn); | |
5518 | else if (fmt[i] == 'E') | |
5519 | for (j = XVECLEN (x, i) - 1; j >= 0; j--) | |
5520 | add_label_notes (XVECEXP (x, i, j), insn); | |
5521 | } | |
5522 | } | |
a65f3558 JL |
5523 | |
5524 | /* Compute transparent outgoing information for each block. | |
5525 | ||
5526 | An expression is transparent to an edge unless it is killed by | |
5527 | the edge itself. This can only happen with abnormal control flow, | |
5528 | when the edge is traversed through a call. This happens with | |
5529 | non-local labels and exceptions. | |
5530 | ||
5531 | This would not be necessary if we split the edge. While this is | |
5532 | normally impossible for abnormal critical edges, with some effort | |
5533 | it should be possible with exception handling, since we still have | |
5534 | control over which handler should be invoked. But due to increased | |
5535 | EH table sizes, this may not be worthwhile. */ | |
5536 | ||
5537 | static void | |
5538 | compute_transpout () | |
5539 | { | |
e0082a72 | 5540 | basic_block bb; |
2e653e39 | 5541 | unsigned int i; |
c4c81601 | 5542 | struct expr *expr; |
a65f3558 | 5543 | |
d55bc081 | 5544 | sbitmap_vector_ones (transpout, last_basic_block); |
a65f3558 | 5545 | |
e0082a72 | 5546 | FOR_EACH_BB (bb) |
a65f3558 | 5547 | { |
a65f3558 JL |
5548 | /* Note that flow inserted a nop a the end of basic blocks that |
5549 | end in call instructions for reasons other than abnormal | |
5550 | control flow. */ | |
e0082a72 | 5551 | if (GET_CODE (bb->end) != CALL_INSN) |
a65f3558 JL |
5552 | continue; |
5553 | ||
02280659 ZD |
5554 | for (i = 0; i < expr_hash_table.size; i++) |
5555 | for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash) | |
c4c81601 RK |
5556 | if (GET_CODE (expr->expr) == MEM) |
5557 | { | |
5558 | if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF | |
5559 | && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0))) | |
5560 | continue; | |
589005ff | 5561 | |
c4c81601 RK |
5562 | /* ??? Optimally, we would use interprocedural alias |
5563 | analysis to determine if this mem is actually killed | |
5564 | by this call. */ | |
e0082a72 | 5565 | RESET_BIT (transpout[bb->index], expr->bitmap_index); |
c4c81601 | 5566 | } |
a65f3558 JL |
5567 | } |
5568 | } | |
dfdb644f JL |
5569 | |
5570 | /* Removal of useless null pointer checks */ | |
5571 | ||
dfdb644f | 5572 | /* Called via note_stores. X is set by SETTER. If X is a register we must |
0511851c MM |
5573 | invalidate nonnull_local and set nonnull_killed. DATA is really a |
5574 | `null_pointer_info *'. | |
dfdb644f JL |
5575 | |
5576 | We ignore hard registers. */ | |
c4c81601 | 5577 | |
dfdb644f | 5578 | static void |
84832317 | 5579 | invalidate_nonnull_info (x, setter, data) |
dfdb644f JL |
5580 | rtx x; |
5581 | rtx setter ATTRIBUTE_UNUSED; | |
0511851c | 5582 | void *data; |
dfdb644f | 5583 | { |
770ae6cc RK |
5584 | unsigned int regno; |
5585 | struct null_pointer_info *npi = (struct null_pointer_info *) data; | |
c4c81601 | 5586 | |
dfdb644f JL |
5587 | while (GET_CODE (x) == SUBREG) |
5588 | x = SUBREG_REG (x); | |
5589 | ||
5590 | /* Ignore anything that is not a register or is a hard register. */ | |
5591 | if (GET_CODE (x) != REG | |
0511851c MM |
5592 | || REGNO (x) < npi->min_reg |
5593 | || REGNO (x) >= npi->max_reg) | |
dfdb644f JL |
5594 | return; |
5595 | ||
0511851c | 5596 | regno = REGNO (x) - npi->min_reg; |
dfdb644f | 5597 | |
e0082a72 ZD |
5598 | RESET_BIT (npi->nonnull_local[npi->current_block->index], regno); |
5599 | SET_BIT (npi->nonnull_killed[npi->current_block->index], regno); | |
dfdb644f JL |
5600 | } |
5601 | ||
0511851c MM |
5602 | /* Do null-pointer check elimination for the registers indicated in |
5603 | NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps; | |
5604 | they are not our responsibility to free. */ | |
dfdb644f | 5605 | |
99a15921 | 5606 | static int |
9cd56be1 | 5607 | delete_null_pointer_checks_1 (block_reg, nonnull_avin, |
8e184d9c | 5608 | nonnull_avout, npi) |
770ae6cc | 5609 | unsigned int *block_reg; |
0511851c MM |
5610 | sbitmap *nonnull_avin; |
5611 | sbitmap *nonnull_avout; | |
5612 | struct null_pointer_info *npi; | |
dfdb644f | 5613 | { |
e0082a72 | 5614 | basic_block bb, current_block; |
0511851c MM |
5615 | sbitmap *nonnull_local = npi->nonnull_local; |
5616 | sbitmap *nonnull_killed = npi->nonnull_killed; | |
99a15921 | 5617 | int something_changed = 0; |
589005ff | 5618 | |
dfdb644f JL |
5619 | /* Compute local properties, nonnull and killed. A register will have |
5620 | the nonnull property if at the end of the current block its value is | |
5621 | known to be nonnull. The killed property indicates that somewhere in | |
5622 | the block any information we had about the register is killed. | |
5623 | ||
5624 | Note that a register can have both properties in a single block. That | |
5625 | indicates that it's killed, then later in the block a new value is | |
5626 | computed. */ | |
d55bc081 ZD |
5627 | sbitmap_vector_zero (nonnull_local, last_basic_block); |
5628 | sbitmap_vector_zero (nonnull_killed, last_basic_block); | |
c4c81601 | 5629 | |
e0082a72 | 5630 | FOR_EACH_BB (current_block) |
dfdb644f JL |
5631 | { |
5632 | rtx insn, stop_insn; | |
5633 | ||
0511851c MM |
5634 | /* Set the current block for invalidate_nonnull_info. */ |
5635 | npi->current_block = current_block; | |
5636 | ||
dfdb644f JL |
5637 | /* Scan each insn in the basic block looking for memory references and |
5638 | register sets. */ | |
e0082a72 ZD |
5639 | stop_insn = NEXT_INSN (current_block->end); |
5640 | for (insn = current_block->head; | |
dfdb644f JL |
5641 | insn != stop_insn; |
5642 | insn = NEXT_INSN (insn)) | |
5643 | { | |
5644 | rtx set; | |
0511851c | 5645 | rtx reg; |
dfdb644f JL |
5646 | |
5647 | /* Ignore anything that is not a normal insn. */ | |
2c3c49de | 5648 | if (! INSN_P (insn)) |
dfdb644f JL |
5649 | continue; |
5650 | ||
5651 | /* Basically ignore anything that is not a simple SET. We do have | |
5652 | to make sure to invalidate nonnull_local and set nonnull_killed | |
5653 | for such insns though. */ | |
5654 | set = single_set (insn); | |
5655 | if (!set) | |
5656 | { | |
0511851c | 5657 | note_stores (PATTERN (insn), invalidate_nonnull_info, npi); |
dfdb644f JL |
5658 | continue; |
5659 | } | |
5660 | ||
f63d1bf7 | 5661 | /* See if we've got a usable memory load. We handle it first |
dfdb644f JL |
5662 | in case it uses its address register as a dest (which kills |
5663 | the nonnull property). */ | |
5664 | if (GET_CODE (SET_SRC (set)) == MEM | |
0511851c MM |
5665 | && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG |
5666 | && REGNO (reg) >= npi->min_reg | |
5667 | && REGNO (reg) < npi->max_reg) | |
e0082a72 | 5668 | SET_BIT (nonnull_local[current_block->index], |
0511851c | 5669 | REGNO (reg) - npi->min_reg); |
dfdb644f JL |
5670 | |
5671 | /* Now invalidate stuff clobbered by this insn. */ | |
0511851c | 5672 | note_stores (PATTERN (insn), invalidate_nonnull_info, npi); |
dfdb644f JL |
5673 | |
5674 | /* And handle stores, we do these last since any sets in INSN can | |
5675 | not kill the nonnull property if it is derived from a MEM | |
5676 | appearing in a SET_DEST. */ | |
5677 | if (GET_CODE (SET_DEST (set)) == MEM | |
0511851c MM |
5678 | && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG |
5679 | && REGNO (reg) >= npi->min_reg | |
5680 | && REGNO (reg) < npi->max_reg) | |
e0082a72 | 5681 | SET_BIT (nonnull_local[current_block->index], |
0511851c | 5682 | REGNO (reg) - npi->min_reg); |
dfdb644f JL |
5683 | } |
5684 | } | |
5685 | ||
5686 | /* Now compute global properties based on the local properties. This | |
5687 | is a classic global availablity algorithm. */ | |
ce724250 JL |
5688 | compute_available (nonnull_local, nonnull_killed, |
5689 | nonnull_avout, nonnull_avin); | |
dfdb644f JL |
5690 | |
5691 | /* Now look at each bb and see if it ends with a compare of a value | |
5692 | against zero. */ | |
e0082a72 | 5693 | FOR_EACH_BB (bb) |
dfdb644f | 5694 | { |
e0082a72 | 5695 | rtx last_insn = bb->end; |
0511851c | 5696 | rtx condition, earliest; |
dfdb644f JL |
5697 | int compare_and_branch; |
5698 | ||
0511851c MM |
5699 | /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and |
5700 | since BLOCK_REG[BB] is zero if this block did not end with a | |
5701 | comparison against zero, this condition works. */ | |
e0082a72 ZD |
5702 | if (block_reg[bb->index] < npi->min_reg |
5703 | || block_reg[bb->index] >= npi->max_reg) | |
dfdb644f JL |
5704 | continue; |
5705 | ||
5706 | /* LAST_INSN is a conditional jump. Get its condition. */ | |
5707 | condition = get_condition (last_insn, &earliest); | |
5708 | ||
40d7a3fe NB |
5709 | /* If we can't determine the condition then skip. */ |
5710 | if (! condition) | |
5711 | continue; | |
5712 | ||
dfdb644f | 5713 | /* Is the register known to have a nonzero value? */ |
e0082a72 | 5714 | if (!TEST_BIT (nonnull_avout[bb->index], block_reg[bb->index] - npi->min_reg)) |
dfdb644f JL |
5715 | continue; |
5716 | ||
5717 | /* Try to compute whether the compare/branch at the loop end is one or | |
5718 | two instructions. */ | |
5719 | if (earliest == last_insn) | |
5720 | compare_and_branch = 1; | |
5721 | else if (earliest == prev_nonnote_insn (last_insn)) | |
5722 | compare_and_branch = 2; | |
5723 | else | |
5724 | continue; | |
5725 | ||
5726 | /* We know the register in this comparison is nonnull at exit from | |
5727 | this block. We can optimize this comparison. */ | |
5728 | if (GET_CODE (condition) == NE) | |
5729 | { | |
5730 | rtx new_jump; | |
5731 | ||
38c1593d JH |
5732 | new_jump = emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn)), |
5733 | last_insn); | |
dfdb644f JL |
5734 | JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn); |
5735 | LABEL_NUSES (JUMP_LABEL (new_jump))++; | |
5736 | emit_barrier_after (new_jump); | |
5737 | } | |
8e184d9c | 5738 | |
99a15921 | 5739 | something_changed = 1; |
9cd56be1 | 5740 | delete_insn (last_insn); |
dfdb644f | 5741 | if (compare_and_branch == 2) |
589005ff | 5742 | delete_insn (earliest); |
e0082a72 | 5743 | purge_dead_edges (bb); |
0511851c MM |
5744 | |
5745 | /* Don't check this block again. (Note that BLOCK_END is | |
589005ff | 5746 | invalid here; we deleted the last instruction in the |
0511851c | 5747 | block.) */ |
e0082a72 | 5748 | block_reg[bb->index] = 0; |
0511851c | 5749 | } |
99a15921 JL |
5750 | |
5751 | return something_changed; | |
0511851c MM |
5752 | } |
5753 | ||
5754 | /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated | |
5755 | at compile time. | |
5756 | ||
5757 | This is conceptually similar to global constant/copy propagation and | |
5758 | classic global CSE (it even uses the same dataflow equations as cprop). | |
5759 | ||
5760 | If a register is used as memory address with the form (mem (reg)), then we | |
5761 | know that REG can not be zero at that point in the program. Any instruction | |
5762 | which sets REG "kills" this property. | |
5763 | ||
5764 | So, if every path leading to a conditional branch has an available memory | |
5765 | reference of that form, then we know the register can not have the value | |
589005ff | 5766 | zero at the conditional branch. |
0511851c MM |
5767 | |
5768 | So we merely need to compute the local properies and propagate that data | |
5769 | around the cfg, then optimize where possible. | |
5770 | ||
5771 | We run this pass two times. Once before CSE, then again after CSE. This | |
5772 | has proven to be the most profitable approach. It is rare for new | |
5773 | optimization opportunities of this nature to appear after the first CSE | |
5774 | pass. | |
5775 | ||
5776 | This could probably be integrated with global cprop with a little work. */ | |
5777 | ||
99a15921 | 5778 | int |
0511851c | 5779 | delete_null_pointer_checks (f) |
2e653e39 | 5780 | rtx f ATTRIBUTE_UNUSED; |
0511851c | 5781 | { |
0511851c | 5782 | sbitmap *nonnull_avin, *nonnull_avout; |
770ae6cc | 5783 | unsigned int *block_reg; |
e0082a72 | 5784 | basic_block bb; |
0511851c MM |
5785 | int reg; |
5786 | int regs_per_pass; | |
5787 | int max_reg; | |
5788 | struct null_pointer_info npi; | |
99a15921 | 5789 | int something_changed = 0; |
0511851c | 5790 | |
0511851c | 5791 | /* If we have only a single block, then there's nothing to do. */ |
0b17ab2f | 5792 | if (n_basic_blocks <= 1) |
99a15921 | 5793 | return 0; |
0511851c MM |
5794 | |
5795 | /* Trying to perform global optimizations on flow graphs which have | |
5796 | a high connectivity will take a long time and is unlikely to be | |
5797 | particularly useful. | |
5798 | ||
43e72072 | 5799 | In normal circumstances a cfg should have about twice as many edges |
0511851c MM |
5800 | as blocks. But we do not want to punish small functions which have |
5801 | a couple switch statements. So we require a relatively large number | |
5802 | of basic blocks and the ratio of edges to blocks to be high. */ | |
0b17ab2f | 5803 | if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20) |
99a15921 | 5804 | return 0; |
0511851c | 5805 | |
0511851c MM |
5806 | /* We need four bitmaps, each with a bit for each register in each |
5807 | basic block. */ | |
5808 | max_reg = max_reg_num (); | |
d55bc081 | 5809 | regs_per_pass = get_bitmap_width (4, last_basic_block, max_reg); |
0511851c MM |
5810 | |
5811 | /* Allocate bitmaps to hold local and global properties. */ | |
d55bc081 ZD |
5812 | npi.nonnull_local = sbitmap_vector_alloc (last_basic_block, regs_per_pass); |
5813 | npi.nonnull_killed = sbitmap_vector_alloc (last_basic_block, regs_per_pass); | |
5814 | nonnull_avin = sbitmap_vector_alloc (last_basic_block, regs_per_pass); | |
5815 | nonnull_avout = sbitmap_vector_alloc (last_basic_block, regs_per_pass); | |
0511851c MM |
5816 | |
5817 | /* Go through the basic blocks, seeing whether or not each block | |
5818 | ends with a conditional branch whose condition is a comparison | |
5819 | against zero. Record the register compared in BLOCK_REG. */ | |
d55bc081 | 5820 | block_reg = (unsigned int *) xcalloc (last_basic_block, sizeof (int)); |
e0082a72 | 5821 | FOR_EACH_BB (bb) |
0511851c | 5822 | { |
e0082a72 | 5823 | rtx last_insn = bb->end; |
0511851c MM |
5824 | rtx condition, earliest, reg; |
5825 | ||
5826 | /* We only want conditional branches. */ | |
5827 | if (GET_CODE (last_insn) != JUMP_INSN | |
7f1c097d JH |
5828 | || !any_condjump_p (last_insn) |
5829 | || !onlyjump_p (last_insn)) | |
0511851c MM |
5830 | continue; |
5831 | ||
5832 | /* LAST_INSN is a conditional jump. Get its condition. */ | |
5833 | condition = get_condition (last_insn, &earliest); | |
5834 | ||
4fe9b91c | 5835 | /* If we were unable to get the condition, or it is not an equality |
0511851c MM |
5836 | comparison against zero then there's nothing we can do. */ |
5837 | if (!condition | |
5838 | || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ) | |
5839 | || GET_CODE (XEXP (condition, 1)) != CONST_INT | |
589005ff | 5840 | || (XEXP (condition, 1) |
0511851c MM |
5841 | != CONST0_RTX (GET_MODE (XEXP (condition, 0))))) |
5842 | continue; | |
5843 | ||
5844 | /* We must be checking a register against zero. */ | |
5845 | reg = XEXP (condition, 0); | |
5846 | if (GET_CODE (reg) != REG) | |
5847 | continue; | |
5848 | ||
e0082a72 | 5849 | block_reg[bb->index] = REGNO (reg); |
0511851c MM |
5850 | } |
5851 | ||
5852 | /* Go through the algorithm for each block of registers. */ | |
5853 | for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass) | |
5854 | { | |
5855 | npi.min_reg = reg; | |
5856 | npi.max_reg = MIN (reg + regs_per_pass, max_reg); | |
99a15921 JL |
5857 | something_changed |= delete_null_pointer_checks_1 (block_reg, |
5858 | nonnull_avin, | |
5859 | nonnull_avout, | |
5860 | &npi); | |
dfdb644f JL |
5861 | } |
5862 | ||
0511851c MM |
5863 | /* Free the table of registers compared at the end of every block. */ |
5864 | free (block_reg); | |
5865 | ||
dfdb644f | 5866 | /* Free bitmaps. */ |
5a660bff DB |
5867 | sbitmap_vector_free (npi.nonnull_local); |
5868 | sbitmap_vector_free (npi.nonnull_killed); | |
5869 | sbitmap_vector_free (nonnull_avin); | |
5870 | sbitmap_vector_free (nonnull_avout); | |
99a15921 JL |
5871 | |
5872 | return something_changed; | |
dfdb644f | 5873 | } |
bb457bd9 JL |
5874 | |
5875 | /* Code Hoisting variables and subroutines. */ | |
5876 | ||
5877 | /* Very busy expressions. */ | |
5878 | static sbitmap *hoist_vbein; | |
5879 | static sbitmap *hoist_vbeout; | |
5880 | ||
5881 | /* Hoistable expressions. */ | |
5882 | static sbitmap *hoist_exprs; | |
5883 | ||
5884 | /* Dominator bitmaps. */ | |
355be0dc | 5885 | dominance_info dominators; |
bb457bd9 JL |
5886 | |
5887 | /* ??? We could compute post dominators and run this algorithm in | |
68e82b83 | 5888 | reverse to perform tail merging, doing so would probably be |
bb457bd9 JL |
5889 | more effective than the tail merging code in jump.c. |
5890 | ||
5891 | It's unclear if tail merging could be run in parallel with | |
5892 | code hoisting. It would be nice. */ | |
5893 | ||
5894 | /* Allocate vars used for code hoisting analysis. */ | |
5895 | ||
5896 | static void | |
5897 | alloc_code_hoist_mem (n_blocks, n_exprs) | |
5898 | int n_blocks, n_exprs; | |
5899 | { | |
5900 | antloc = sbitmap_vector_alloc (n_blocks, n_exprs); | |
5901 | transp = sbitmap_vector_alloc (n_blocks, n_exprs); | |
5902 | comp = sbitmap_vector_alloc (n_blocks, n_exprs); | |
5903 | ||
5904 | hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs); | |
5905 | hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs); | |
5906 | hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs); | |
5907 | transpout = sbitmap_vector_alloc (n_blocks, n_exprs); | |
bb457bd9 JL |
5908 | } |
5909 | ||
5910 | /* Free vars used for code hoisting analysis. */ | |
5911 | ||
5912 | static void | |
5913 | free_code_hoist_mem () | |
5914 | { | |
5a660bff DB |
5915 | sbitmap_vector_free (antloc); |
5916 | sbitmap_vector_free (transp); | |
5917 | sbitmap_vector_free (comp); | |
bb457bd9 | 5918 | |
5a660bff DB |
5919 | sbitmap_vector_free (hoist_vbein); |
5920 | sbitmap_vector_free (hoist_vbeout); | |
5921 | sbitmap_vector_free (hoist_exprs); | |
5922 | sbitmap_vector_free (transpout); | |
bb457bd9 | 5923 | |
355be0dc | 5924 | free_dominance_info (dominators); |
bb457bd9 JL |
5925 | } |
5926 | ||
5927 | /* Compute the very busy expressions at entry/exit from each block. | |
5928 | ||
5929 | An expression is very busy if all paths from a given point | |
5930 | compute the expression. */ | |
5931 | ||
5932 | static void | |
5933 | compute_code_hoist_vbeinout () | |
5934 | { | |
e0082a72 ZD |
5935 | int changed, passes; |
5936 | basic_block bb; | |
bb457bd9 | 5937 | |
d55bc081 ZD |
5938 | sbitmap_vector_zero (hoist_vbeout, last_basic_block); |
5939 | sbitmap_vector_zero (hoist_vbein, last_basic_block); | |
bb457bd9 JL |
5940 | |
5941 | passes = 0; | |
5942 | changed = 1; | |
c4c81601 | 5943 | |
bb457bd9 JL |
5944 | while (changed) |
5945 | { | |
5946 | changed = 0; | |
c4c81601 | 5947 | |
bb457bd9 JL |
5948 | /* We scan the blocks in the reverse order to speed up |
5949 | the convergence. */ | |
e0082a72 | 5950 | FOR_EACH_BB_REVERSE (bb) |
bb457bd9 | 5951 | { |
e0082a72 ZD |
5952 | changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index], |
5953 | hoist_vbeout[bb->index], transp[bb->index]); | |
5954 | if (bb->next_bb != EXIT_BLOCK_PTR) | |
5955 | sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index); | |
bb457bd9 | 5956 | } |
c4c81601 | 5957 | |
bb457bd9 JL |
5958 | passes++; |
5959 | } | |
5960 | ||
5961 | if (gcse_file) | |
5962 | fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes); | |
5963 | } | |
5964 | ||
5965 | /* Top level routine to do the dataflow analysis needed by code hoisting. */ | |
5966 | ||
5967 | static void | |
5968 | compute_code_hoist_data () | |
5969 | { | |
02280659 | 5970 | compute_local_properties (transp, comp, antloc, &expr_hash_table); |
bb457bd9 JL |
5971 | compute_transpout (); |
5972 | compute_code_hoist_vbeinout (); | |
355be0dc | 5973 | dominators = calculate_dominance_info (CDI_DOMINATORS); |
bb457bd9 JL |
5974 | if (gcse_file) |
5975 | fprintf (gcse_file, "\n"); | |
5976 | } | |
5977 | ||
5978 | /* Determine if the expression identified by EXPR_INDEX would | |
5979 | reach BB unimpared if it was placed at the end of EXPR_BB. | |
5980 | ||
5981 | It's unclear exactly what Muchnick meant by "unimpared". It seems | |
5982 | to me that the expression must either be computed or transparent in | |
5983 | *every* block in the path(s) from EXPR_BB to BB. Any other definition | |
5984 | would allow the expression to be hoisted out of loops, even if | |
5985 | the expression wasn't a loop invariant. | |
5986 | ||
5987 | Contrast this to reachability for PRE where an expression is | |
5988 | considered reachable if *any* path reaches instead of *all* | |
5989 | paths. */ | |
5990 | ||
5991 | static int | |
5992 | hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited) | |
e2d2ed72 | 5993 | basic_block expr_bb; |
bb457bd9 | 5994 | int expr_index; |
e2d2ed72 | 5995 | basic_block bb; |
bb457bd9 JL |
5996 | char *visited; |
5997 | { | |
5998 | edge pred; | |
283a2545 | 5999 | int visited_allocated_locally = 0; |
589005ff | 6000 | |
bb457bd9 JL |
6001 | |
6002 | if (visited == NULL) | |
6003 | { | |
8e42ace1 | 6004 | visited_allocated_locally = 1; |
d55bc081 | 6005 | visited = xcalloc (last_basic_block, 1); |
bb457bd9 JL |
6006 | } |
6007 | ||
e2d2ed72 | 6008 | for (pred = bb->pred; pred != NULL; pred = pred->pred_next) |
bb457bd9 | 6009 | { |
e2d2ed72 | 6010 | basic_block pred_bb = pred->src; |
bb457bd9 JL |
6011 | |
6012 | if (pred->src == ENTRY_BLOCK_PTR) | |
6013 | break; | |
f305679f JH |
6014 | else if (pred_bb == expr_bb) |
6015 | continue; | |
0b17ab2f | 6016 | else if (visited[pred_bb->index]) |
bb457bd9 | 6017 | continue; |
c4c81601 | 6018 | |
bb457bd9 | 6019 | /* Does this predecessor generate this expression? */ |
0b17ab2f | 6020 | else if (TEST_BIT (comp[pred_bb->index], expr_index)) |
bb457bd9 | 6021 | break; |
0b17ab2f | 6022 | else if (! TEST_BIT (transp[pred_bb->index], expr_index)) |
bb457bd9 | 6023 | break; |
c4c81601 | 6024 | |
bb457bd9 JL |
6025 | /* Not killed. */ |
6026 | else | |
6027 | { | |
0b17ab2f | 6028 | visited[pred_bb->index] = 1; |
bb457bd9 JL |
6029 | if (! hoist_expr_reaches_here_p (expr_bb, expr_index, |
6030 | pred_bb, visited)) | |
6031 | break; | |
6032 | } | |
6033 | } | |
589005ff | 6034 | if (visited_allocated_locally) |
283a2545 | 6035 | free (visited); |
c4c81601 | 6036 | |
bb457bd9 JL |
6037 | return (pred == NULL); |
6038 | } | |
6039 | \f | |
6040 | /* Actually perform code hoisting. */ | |
c4c81601 | 6041 | |
bb457bd9 JL |
6042 | static void |
6043 | hoist_code () | |
6044 | { | |
e0082a72 | 6045 | basic_block bb, dominated; |
c635a1ec DB |
6046 | basic_block *domby; |
6047 | unsigned int domby_len; | |
6048 | unsigned int i,j; | |
bb457bd9 | 6049 | struct expr **index_map; |
c4c81601 | 6050 | struct expr *expr; |
bb457bd9 | 6051 | |
d55bc081 | 6052 | sbitmap_vector_zero (hoist_exprs, last_basic_block); |
bb457bd9 JL |
6053 | |
6054 | /* Compute a mapping from expression number (`bitmap_index') to | |
6055 | hash table entry. */ | |
6056 | ||
02280659 ZD |
6057 | index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *)); |
6058 | for (i = 0; i < expr_hash_table.size; i++) | |
6059 | for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash) | |
c4c81601 | 6060 | index_map[expr->bitmap_index] = expr; |
bb457bd9 JL |
6061 | |
6062 | /* Walk over each basic block looking for potentially hoistable | |
6063 | expressions, nothing gets hoisted from the entry block. */ | |
e0082a72 | 6064 | FOR_EACH_BB (bb) |
bb457bd9 JL |
6065 | { |
6066 | int found = 0; | |
6067 | int insn_inserted_p; | |
6068 | ||
c635a1ec | 6069 | domby_len = get_dominated_by (dominators, bb, &domby); |
bb457bd9 JL |
6070 | /* Examine each expression that is very busy at the exit of this |
6071 | block. These are the potentially hoistable expressions. */ | |
e0082a72 | 6072 | for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++) |
bb457bd9 JL |
6073 | { |
6074 | int hoistable = 0; | |
c4c81601 | 6075 | |
c635a1ec DB |
6076 | if (TEST_BIT (hoist_vbeout[bb->index], i) |
6077 | && TEST_BIT (transpout[bb->index], i)) | |
bb457bd9 JL |
6078 | { |
6079 | /* We've found a potentially hoistable expression, now | |
6080 | we look at every block BB dominates to see if it | |
6081 | computes the expression. */ | |
c635a1ec | 6082 | for (j = 0; j < domby_len; j++) |
bb457bd9 | 6083 | { |
c635a1ec | 6084 | dominated = domby[j]; |
bb457bd9 | 6085 | /* Ignore self dominance. */ |
c635a1ec | 6086 | if (bb == dominated) |
bb457bd9 | 6087 | continue; |
bb457bd9 JL |
6088 | /* We've found a dominated block, now see if it computes |
6089 | the busy expression and whether or not moving that | |
6090 | expression to the "beginning" of that block is safe. */ | |
e0082a72 | 6091 | if (!TEST_BIT (antloc[dominated->index], i)) |
bb457bd9 JL |
6092 | continue; |
6093 | ||
6094 | /* Note if the expression would reach the dominated block | |
589005ff | 6095 | unimpared if it was placed at the end of BB. |
bb457bd9 JL |
6096 | |
6097 | Keep track of how many times this expression is hoistable | |
6098 | from a dominated block into BB. */ | |
e0082a72 | 6099 | if (hoist_expr_reaches_here_p (bb, i, dominated, NULL)) |
bb457bd9 JL |
6100 | hoistable++; |
6101 | } | |
6102 | ||
ff7cc307 | 6103 | /* If we found more than one hoistable occurrence of this |
bb457bd9 JL |
6104 | expression, then note it in the bitmap of expressions to |
6105 | hoist. It makes no sense to hoist things which are computed | |
6106 | in only one BB, and doing so tends to pessimize register | |
6107 | allocation. One could increase this value to try harder | |
6108 | to avoid any possible code expansion due to register | |
6109 | allocation issues; however experiments have shown that | |
6110 | the vast majority of hoistable expressions are only movable | |
6111 | from two successors, so raising this threshhold is likely | |
6112 | to nullify any benefit we get from code hoisting. */ | |
6113 | if (hoistable > 1) | |
6114 | { | |
e0082a72 | 6115 | SET_BIT (hoist_exprs[bb->index], i); |
bb457bd9 JL |
6116 | found = 1; |
6117 | } | |
6118 | } | |
6119 | } | |
bb457bd9 JL |
6120 | /* If we found nothing to hoist, then quit now. */ |
6121 | if (! found) | |
c635a1ec DB |
6122 | { |
6123 | free (domby); | |
bb457bd9 | 6124 | continue; |
c635a1ec | 6125 | } |
bb457bd9 JL |
6126 | |
6127 | /* Loop over all the hoistable expressions. */ | |
e0082a72 | 6128 | for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++) |
bb457bd9 JL |
6129 | { |
6130 | /* We want to insert the expression into BB only once, so | |
6131 | note when we've inserted it. */ | |
6132 | insn_inserted_p = 0; | |
6133 | ||
6134 | /* These tests should be the same as the tests above. */ | |
e0082a72 | 6135 | if (TEST_BIT (hoist_vbeout[bb->index], i)) |
bb457bd9 JL |
6136 | { |
6137 | /* We've found a potentially hoistable expression, now | |
6138 | we look at every block BB dominates to see if it | |
6139 | computes the expression. */ | |
c635a1ec | 6140 | for (j = 0; j < domby_len; j++) |
bb457bd9 | 6141 | { |
c635a1ec | 6142 | dominated = domby[j]; |
bb457bd9 | 6143 | /* Ignore self dominance. */ |
c635a1ec | 6144 | if (bb == dominated) |
bb457bd9 JL |
6145 | continue; |
6146 | ||
6147 | /* We've found a dominated block, now see if it computes | |
6148 | the busy expression and whether or not moving that | |
6149 | expression to the "beginning" of that block is safe. */ | |
e0082a72 | 6150 | if (!TEST_BIT (antloc[dominated->index], i)) |
bb457bd9 JL |
6151 | continue; |
6152 | ||
6153 | /* The expression is computed in the dominated block and | |
6154 | it would be safe to compute it at the start of the | |
6155 | dominated block. Now we have to determine if the | |
ff7cc307 | 6156 | expression would reach the dominated block if it was |
bb457bd9 | 6157 | placed at the end of BB. */ |
e0082a72 | 6158 | if (hoist_expr_reaches_here_p (bb, i, dominated, NULL)) |
bb457bd9 JL |
6159 | { |
6160 | struct expr *expr = index_map[i]; | |
6161 | struct occr *occr = expr->antic_occr; | |
6162 | rtx insn; | |
6163 | rtx set; | |
6164 | ||
ff7cc307 | 6165 | /* Find the right occurrence of this expression. */ |
e0082a72 | 6166 | while (BLOCK_FOR_INSN (occr->insn) != dominated && occr) |
bb457bd9 JL |
6167 | occr = occr->next; |
6168 | ||
6169 | /* Should never happen. */ | |
6170 | if (!occr) | |
6171 | abort (); | |
6172 | ||
6173 | insn = occr->insn; | |
589005ff | 6174 | |
bb457bd9 JL |
6175 | set = single_set (insn); |
6176 | if (! set) | |
6177 | abort (); | |
6178 | ||
6179 | /* Create a pseudo-reg to store the result of reaching | |
6180 | expressions into. Get the mode for the new pseudo | |
6181 | from the mode of the original destination pseudo. */ | |
6182 | if (expr->reaching_reg == NULL) | |
6183 | expr->reaching_reg | |
6184 | = gen_reg_rtx (GET_MODE (SET_DEST (set))); | |
6185 | ||
10d1bb36 JH |
6186 | gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn); |
6187 | delete_insn (insn); | |
6188 | occr->deleted_p = 1; | |
6189 | if (!insn_inserted_p) | |
bb457bd9 | 6190 | { |
10d1bb36 JH |
6191 | insert_insn_end_bb (index_map[i], bb, 0); |
6192 | insn_inserted_p = 1; | |
bb457bd9 JL |
6193 | } |
6194 | } | |
6195 | } | |
6196 | } | |
6197 | } | |
c635a1ec | 6198 | free (domby); |
bb457bd9 | 6199 | } |
c4c81601 | 6200 | |
8e42ace1 | 6201 | free (index_map); |
bb457bd9 JL |
6202 | } |
6203 | ||
6204 | /* Top level routine to perform one code hoisting (aka unification) pass | |
6205 | ||
cc2902df | 6206 | Return nonzero if a change was made. */ |
bb457bd9 JL |
6207 | |
6208 | static int | |
6209 | one_code_hoisting_pass () | |
6210 | { | |
6211 | int changed = 0; | |
6212 | ||
02280659 ZD |
6213 | alloc_hash_table (max_cuid, &expr_hash_table, 0); |
6214 | compute_hash_table (&expr_hash_table); | |
bb457bd9 | 6215 | if (gcse_file) |
02280659 | 6216 | dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table); |
c4c81601 | 6217 | |
02280659 | 6218 | if (expr_hash_table.n_elems > 0) |
bb457bd9 | 6219 | { |
02280659 | 6220 | alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems); |
bb457bd9 JL |
6221 | compute_code_hoist_data (); |
6222 | hoist_code (); | |
6223 | free_code_hoist_mem (); | |
6224 | } | |
c4c81601 | 6225 | |
02280659 | 6226 | free_hash_table (&expr_hash_table); |
bb457bd9 JL |
6227 | |
6228 | return changed; | |
6229 | } | |
a13d4ebf AM |
6230 | \f |
6231 | /* Here we provide the things required to do store motion towards | |
6232 | the exit. In order for this to be effective, gcse also needed to | |
6233 | be taught how to move a load when it is kill only by a store to itself. | |
6234 | ||
6235 | int i; | |
6236 | float a[10]; | |
6237 | ||
6238 | void foo(float scale) | |
6239 | { | |
6240 | for (i=0; i<10; i++) | |
6241 | a[i] *= scale; | |
6242 | } | |
6243 | ||
6244 | 'i' is both loaded and stored to in the loop. Normally, gcse cannot move | |
589005ff KH |
6245 | the load out since its live around the loop, and stored at the bottom |
6246 | of the loop. | |
a13d4ebf | 6247 | |
589005ff | 6248 | The 'Load Motion' referred to and implemented in this file is |
a13d4ebf AM |
6249 | an enhancement to gcse which when using edge based lcm, recognizes |
6250 | this situation and allows gcse to move the load out of the loop. | |
6251 | ||
6252 | Once gcse has hoisted the load, store motion can then push this | |
6253 | load towards the exit, and we end up with no loads or stores of 'i' | |
6254 | in the loop. */ | |
6255 | ||
ff7cc307 | 6256 | /* This will search the ldst list for a matching expression. If it |
a13d4ebf AM |
6257 | doesn't find one, we create one and initialize it. */ |
6258 | ||
6259 | static struct ls_expr * | |
6260 | ldst_entry (x) | |
6261 | rtx x; | |
6262 | { | |
6263 | struct ls_expr * ptr; | |
6264 | ||
6265 | for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr)) | |
6266 | if (expr_equiv_p (ptr->pattern, x)) | |
6267 | break; | |
6268 | ||
6269 | if (!ptr) | |
6270 | { | |
6271 | ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr)); | |
6272 | ||
6273 | ptr->next = pre_ldst_mems; | |
6274 | ptr->expr = NULL; | |
6275 | ptr->pattern = x; | |
6276 | ptr->loads = NULL_RTX; | |
6277 | ptr->stores = NULL_RTX; | |
6278 | ptr->reaching_reg = NULL_RTX; | |
6279 | ptr->invalid = 0; | |
6280 | ptr->index = 0; | |
6281 | ptr->hash_index = 0; | |
6282 | pre_ldst_mems = ptr; | |
6283 | } | |
589005ff | 6284 | |
a13d4ebf AM |
6285 | return ptr; |
6286 | } | |
6287 | ||
6288 | /* Free up an individual ldst entry. */ | |
6289 | ||
589005ff | 6290 | static void |
a13d4ebf AM |
6291 | free_ldst_entry (ptr) |
6292 | struct ls_expr * ptr; | |
6293 | { | |
aaa4ca30 AJ |
6294 | free_INSN_LIST_list (& ptr->loads); |
6295 | free_INSN_LIST_list (& ptr->stores); | |
a13d4ebf AM |
6296 | |
6297 | free (ptr); | |
6298 | } | |
6299 | ||
6300 | /* Free up all memory associated with the ldst list. */ | |
6301 | ||
6302 | static void | |
6303 | free_ldst_mems () | |
6304 | { | |
589005ff | 6305 | while (pre_ldst_mems) |
a13d4ebf AM |
6306 | { |
6307 | struct ls_expr * tmp = pre_ldst_mems; | |
6308 | ||
6309 | pre_ldst_mems = pre_ldst_mems->next; | |
6310 | ||
6311 | free_ldst_entry (tmp); | |
6312 | } | |
6313 | ||
6314 | pre_ldst_mems = NULL; | |
6315 | } | |
6316 | ||
6317 | /* Dump debugging info about the ldst list. */ | |
6318 | ||
6319 | static void | |
6320 | print_ldst_list (file) | |
6321 | FILE * file; | |
6322 | { | |
6323 | struct ls_expr * ptr; | |
6324 | ||
6325 | fprintf (file, "LDST list: \n"); | |
6326 | ||
6327 | for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr)) | |
6328 | { | |
6329 | fprintf (file, " Pattern (%3d): ", ptr->index); | |
6330 | ||
6331 | print_rtl (file, ptr->pattern); | |
6332 | ||
6333 | fprintf (file, "\n Loads : "); | |
6334 | ||
6335 | if (ptr->loads) | |
6336 | print_rtl (file, ptr->loads); | |
6337 | else | |
6338 | fprintf (file, "(nil)"); | |
6339 | ||
6340 | fprintf (file, "\n Stores : "); | |
6341 | ||
6342 | if (ptr->stores) | |
6343 | print_rtl (file, ptr->stores); | |
6344 | else | |
6345 | fprintf (file, "(nil)"); | |
6346 | ||
6347 | fprintf (file, "\n\n"); | |
6348 | } | |
6349 | ||
6350 | fprintf (file, "\n"); | |
6351 | } | |
6352 | ||
6353 | /* Returns 1 if X is in the list of ldst only expressions. */ | |
6354 | ||
6355 | static struct ls_expr * | |
6356 | find_rtx_in_ldst (x) | |
6357 | rtx x; | |
6358 | { | |
6359 | struct ls_expr * ptr; | |
589005ff | 6360 | |
a13d4ebf AM |
6361 | for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next) |
6362 | if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid) | |
6363 | return ptr; | |
6364 | ||
6365 | return NULL; | |
6366 | } | |
6367 | ||
6368 | /* Assign each element of the list of mems a monotonically increasing value. */ | |
6369 | ||
6370 | static int | |
6371 | enumerate_ldsts () | |
6372 | { | |
6373 | struct ls_expr * ptr; | |
6374 | int n = 0; | |
6375 | ||
6376 | for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next) | |
6377 | ptr->index = n++; | |
6378 | ||
6379 | return n; | |
6380 | } | |
6381 | ||
6382 | /* Return first item in the list. */ | |
6383 | ||
6384 | static inline struct ls_expr * | |
6385 | first_ls_expr () | |
6386 | { | |
6387 | return pre_ldst_mems; | |
6388 | } | |
6389 | ||
6390 | /* Return the next item in ther list after the specified one. */ | |
6391 | ||
6392 | static inline struct ls_expr * | |
6393 | next_ls_expr (ptr) | |
6394 | struct ls_expr * ptr; | |
6395 | { | |
6396 | return ptr->next; | |
6397 | } | |
6398 | \f | |
6399 | /* Load Motion for loads which only kill themselves. */ | |
6400 | ||
6401 | /* Return true if x is a simple MEM operation, with no registers or | |
6402 | side effects. These are the types of loads we consider for the | |
6403 | ld_motion list, otherwise we let the usual aliasing take care of it. */ | |
6404 | ||
589005ff | 6405 | static int |
a13d4ebf AM |
6406 | simple_mem (x) |
6407 | rtx x; | |
6408 | { | |
6409 | if (GET_CODE (x) != MEM) | |
6410 | return 0; | |
589005ff | 6411 | |
a13d4ebf AM |
6412 | if (MEM_VOLATILE_P (x)) |
6413 | return 0; | |
589005ff | 6414 | |
a13d4ebf AM |
6415 | if (GET_MODE (x) == BLKmode) |
6416 | return 0; | |
aaa4ca30 AJ |
6417 | |
6418 | if (!rtx_varies_p (XEXP (x, 0), 0)) | |
a13d4ebf | 6419 | return 1; |
589005ff | 6420 | |
a13d4ebf AM |
6421 | return 0; |
6422 | } | |
6423 | ||
589005ff KH |
6424 | /* Make sure there isn't a buried reference in this pattern anywhere. |
6425 | If there is, invalidate the entry for it since we're not capable | |
6426 | of fixing it up just yet.. We have to be sure we know about ALL | |
a13d4ebf AM |
6427 | loads since the aliasing code will allow all entries in the |
6428 | ld_motion list to not-alias itself. If we miss a load, we will get | |
589005ff | 6429 | the wrong value since gcse might common it and we won't know to |
a13d4ebf AM |
6430 | fix it up. */ |
6431 | ||
6432 | static void | |
6433 | invalidate_any_buried_refs (x) | |
6434 | rtx x; | |
6435 | { | |
6436 | const char * fmt; | |
8e42ace1 | 6437 | int i, j; |
a13d4ebf AM |
6438 | struct ls_expr * ptr; |
6439 | ||
6440 | /* Invalidate it in the list. */ | |
6441 | if (GET_CODE (x) == MEM && simple_mem (x)) | |
6442 | { | |
6443 | ptr = ldst_entry (x); | |
6444 | ptr->invalid = 1; | |
6445 | } | |
6446 | ||
6447 | /* Recursively process the insn. */ | |
6448 | fmt = GET_RTX_FORMAT (GET_CODE (x)); | |
589005ff | 6449 | |
a13d4ebf AM |
6450 | for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) |
6451 | { | |
6452 | if (fmt[i] == 'e') | |
6453 | invalidate_any_buried_refs (XEXP (x, i)); | |
6454 | else if (fmt[i] == 'E') | |
6455 | for (j = XVECLEN (x, i) - 1; j >= 0; j--) | |
6456 | invalidate_any_buried_refs (XVECEXP (x, i, j)); | |
6457 | } | |
6458 | } | |
6459 | ||
6460 | /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple | |
6461 | being defined as MEM loads and stores to symbols, with no | |
589005ff | 6462 | side effects and no registers in the expression. If there are any |
f63d1bf7 | 6463 | uses/defs which don't match this criteria, it is invalidated and |
a13d4ebf AM |
6464 | trimmed out later. */ |
6465 | ||
589005ff | 6466 | static void |
a13d4ebf AM |
6467 | compute_ld_motion_mems () |
6468 | { | |
6469 | struct ls_expr * ptr; | |
e0082a72 | 6470 | basic_block bb; |
a13d4ebf | 6471 | rtx insn; |
589005ff | 6472 | |
a13d4ebf AM |
6473 | pre_ldst_mems = NULL; |
6474 | ||
e0082a72 | 6475 | FOR_EACH_BB (bb) |
a13d4ebf | 6476 | { |
e0082a72 ZD |
6477 | for (insn = bb->head; |
6478 | insn && insn != NEXT_INSN (bb->end); | |
a13d4ebf AM |
6479 | insn = NEXT_INSN (insn)) |
6480 | { | |
6481 | if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') | |
6482 | { | |
6483 | if (GET_CODE (PATTERN (insn)) == SET) | |
6484 | { | |
6485 | rtx src = SET_SRC (PATTERN (insn)); | |
6486 | rtx dest = SET_DEST (PATTERN (insn)); | |
6487 | ||
6488 | /* Check for a simple LOAD... */ | |
6489 | if (GET_CODE (src) == MEM && simple_mem (src)) | |
6490 | { | |
6491 | ptr = ldst_entry (src); | |
6492 | if (GET_CODE (dest) == REG) | |
6493 | ptr->loads = alloc_INSN_LIST (insn, ptr->loads); | |
6494 | else | |
6495 | ptr->invalid = 1; | |
6496 | } | |
6497 | else | |
6498 | { | |
6499 | /* Make sure there isn't a buried load somewhere. */ | |
6500 | invalidate_any_buried_refs (src); | |
6501 | } | |
589005ff | 6502 | |
a13d4ebf AM |
6503 | /* Check for stores. Don't worry about aliased ones, they |
6504 | will block any movement we might do later. We only care | |
6505 | about this exact pattern since those are the only | |
6506 | circumstance that we will ignore the aliasing info. */ | |
6507 | if (GET_CODE (dest) == MEM && simple_mem (dest)) | |
6508 | { | |
6509 | ptr = ldst_entry (dest); | |
589005ff | 6510 | |
f54104df AO |
6511 | if (GET_CODE (src) != MEM |
6512 | && GET_CODE (src) != ASM_OPERANDS) | |
a13d4ebf AM |
6513 | ptr->stores = alloc_INSN_LIST (insn, ptr->stores); |
6514 | else | |
6515 | ptr->invalid = 1; | |
6516 | } | |
6517 | } | |
6518 | else | |
6519 | invalidate_any_buried_refs (PATTERN (insn)); | |
6520 | } | |
6521 | } | |
6522 | } | |
6523 | } | |
6524 | ||
589005ff | 6525 | /* Remove any references that have been either invalidated or are not in the |
a13d4ebf AM |
6526 | expression list for pre gcse. */ |
6527 | ||
6528 | static void | |
6529 | trim_ld_motion_mems () | |
6530 | { | |
6531 | struct ls_expr * last = NULL; | |
6532 | struct ls_expr * ptr = first_ls_expr (); | |
6533 | ||
6534 | while (ptr != NULL) | |
6535 | { | |
6536 | int del = ptr->invalid; | |
6537 | struct expr * expr = NULL; | |
589005ff | 6538 | |
a13d4ebf | 6539 | /* Delete if entry has been made invalid. */ |
589005ff | 6540 | if (!del) |
a13d4ebf AM |
6541 | { |
6542 | unsigned int i; | |
589005ff | 6543 | |
a13d4ebf AM |
6544 | del = 1; |
6545 | /* Delete if we cannot find this mem in the expression list. */ | |
02280659 | 6546 | for (i = 0; i < expr_hash_table.size && del; i++) |
a13d4ebf | 6547 | { |
02280659 | 6548 | for (expr = expr_hash_table.table[i]; |
589005ff | 6549 | expr != NULL; |
a13d4ebf AM |
6550 | expr = expr->next_same_hash) |
6551 | if (expr_equiv_p (expr->expr, ptr->pattern)) | |
6552 | { | |
6553 | del = 0; | |
6554 | break; | |
6555 | } | |
6556 | } | |
6557 | } | |
589005ff | 6558 | |
a13d4ebf AM |
6559 | if (del) |
6560 | { | |
6561 | if (last != NULL) | |
6562 | { | |
6563 | last->next = ptr->next; | |
6564 | free_ldst_entry (ptr); | |
6565 | ptr = last->next; | |
6566 | } | |
6567 | else | |
6568 | { | |
6569 | pre_ldst_mems = pre_ldst_mems->next; | |
6570 | free_ldst_entry (ptr); | |
6571 | ptr = pre_ldst_mems; | |
6572 | } | |
6573 | } | |
6574 | else | |
6575 | { | |
6576 | /* Set the expression field if we are keeping it. */ | |
6577 | last = ptr; | |
6578 | ptr->expr = expr; | |
6579 | ptr = ptr->next; | |
6580 | } | |
6581 | } | |
6582 | ||
6583 | /* Show the world what we've found. */ | |
6584 | if (gcse_file && pre_ldst_mems != NULL) | |
6585 | print_ldst_list (gcse_file); | |
6586 | } | |
6587 | ||
6588 | /* This routine will take an expression which we are replacing with | |
6589 | a reaching register, and update any stores that are needed if | |
6590 | that expression is in the ld_motion list. Stores are updated by | |
6591 | copying their SRC to the reaching register, and then storeing | |
6592 | the reaching register into the store location. These keeps the | |
6593 | correct value in the reaching register for the loads. */ | |
6594 | ||
6595 | static void | |
6596 | update_ld_motion_stores (expr) | |
6597 | struct expr * expr; | |
6598 | { | |
6599 | struct ls_expr * mem_ptr; | |
6600 | ||
6601 | if ((mem_ptr = find_rtx_in_ldst (expr->expr))) | |
6602 | { | |
589005ff KH |
6603 | /* We can try to find just the REACHED stores, but is shouldn't |
6604 | matter to set the reaching reg everywhere... some might be | |
a13d4ebf AM |
6605 | dead and should be eliminated later. */ |
6606 | ||
6607 | /* We replace SET mem = expr with | |
6608 | SET reg = expr | |
589005ff | 6609 | SET mem = reg , where reg is the |
a13d4ebf AM |
6610 | reaching reg used in the load. */ |
6611 | rtx list = mem_ptr->stores; | |
589005ff | 6612 | |
a13d4ebf AM |
6613 | for ( ; list != NULL_RTX; list = XEXP (list, 1)) |
6614 | { | |
6615 | rtx insn = XEXP (list, 0); | |
6616 | rtx pat = PATTERN (insn); | |
6617 | rtx src = SET_SRC (pat); | |
6618 | rtx reg = expr->reaching_reg; | |
c57718d3 | 6619 | rtx copy, new; |
a13d4ebf AM |
6620 | |
6621 | /* If we've already copied it, continue. */ | |
6622 | if (expr->reaching_reg == src) | |
6623 | continue; | |
589005ff | 6624 | |
a13d4ebf AM |
6625 | if (gcse_file) |
6626 | { | |
6627 | fprintf (gcse_file, "PRE: store updated with reaching reg "); | |
6628 | print_rtl (gcse_file, expr->reaching_reg); | |
6629 | fprintf (gcse_file, ":\n "); | |
6630 | print_inline_rtx (gcse_file, insn, 8); | |
6631 | fprintf (gcse_file, "\n"); | |
6632 | } | |
589005ff | 6633 | |
a13d4ebf | 6634 | copy = gen_move_insn ( reg, SET_SRC (pat)); |
c57718d3 RK |
6635 | new = emit_insn_before (copy, insn); |
6636 | record_one_set (REGNO (reg), new); | |
a13d4ebf AM |
6637 | SET_SRC (pat) = reg; |
6638 | ||
6639 | /* un-recognize this pattern since it's probably different now. */ | |
6640 | INSN_CODE (insn) = -1; | |
6641 | gcse_create_count++; | |
6642 | } | |
6643 | } | |
6644 | } | |
6645 | \f | |
6646 | /* Store motion code. */ | |
6647 | ||
589005ff | 6648 | /* This is used to communicate the target bitvector we want to use in the |
aaa4ca30 AJ |
6649 | reg_set_info routine when called via the note_stores mechanism. */ |
6650 | static sbitmap * regvec; | |
6651 | ||
a13d4ebf AM |
6652 | /* Used in computing the reverse edge graph bit vectors. */ |
6653 | static sbitmap * st_antloc; | |
6654 | ||
6655 | /* Global holding the number of store expressions we are dealing with. */ | |
6656 | static int num_stores; | |
6657 | ||
aaa4ca30 | 6658 | /* Checks to set if we need to mark a register set. Called from note_stores. */ |
a13d4ebf | 6659 | |
aaa4ca30 AJ |
6660 | static void |
6661 | reg_set_info (dest, setter, data) | |
6662 | rtx dest, setter ATTRIBUTE_UNUSED; | |
6663 | void * data ATTRIBUTE_UNUSED; | |
a13d4ebf | 6664 | { |
aaa4ca30 AJ |
6665 | if (GET_CODE (dest) == SUBREG) |
6666 | dest = SUBREG_REG (dest); | |
adfcce61 | 6667 | |
aaa4ca30 AJ |
6668 | if (GET_CODE (dest) == REG) |
6669 | SET_BIT (*regvec, REGNO (dest)); | |
a13d4ebf AM |
6670 | } |
6671 | ||
cc2902df | 6672 | /* Return nonzero if the register operands of expression X are killed |
aaa4ca30 | 6673 | anywhere in basic block BB. */ |
a13d4ebf AM |
6674 | |
6675 | static int | |
aaa4ca30 | 6676 | store_ops_ok (x, bb) |
a13d4ebf | 6677 | rtx x; |
e2d2ed72 | 6678 | basic_block bb; |
a13d4ebf AM |
6679 | { |
6680 | int i; | |
6681 | enum rtx_code code; | |
6682 | const char * fmt; | |
6683 | ||
6684 | /* Repeat is used to turn tail-recursion into iteration. */ | |
6685 | repeat: | |
6686 | ||
6687 | if (x == 0) | |
6688 | return 1; | |
6689 | ||
6690 | code = GET_CODE (x); | |
6691 | switch (code) | |
6692 | { | |
6693 | case REG: | |
aaa4ca30 AJ |
6694 | /* If a reg has changed after us in this |
6695 | block, the operand has been killed. */ | |
0b17ab2f | 6696 | return TEST_BIT (reg_set_in_block[bb->index], REGNO (x)); |
a13d4ebf AM |
6697 | |
6698 | case MEM: | |
6699 | x = XEXP (x, 0); | |
6700 | goto repeat; | |
6701 | ||
6702 | case PRE_DEC: | |
6703 | case PRE_INC: | |
6704 | case POST_DEC: | |
6705 | case POST_INC: | |
6706 | return 0; | |
6707 | ||
6708 | case PC: | |
6709 | case CC0: /*FIXME*/ | |
6710 | case CONST: | |
6711 | case CONST_INT: | |
6712 | case CONST_DOUBLE: | |
69ef87e2 | 6713 | case CONST_VECTOR: |
a13d4ebf AM |
6714 | case SYMBOL_REF: |
6715 | case LABEL_REF: | |
6716 | case ADDR_VEC: | |
6717 | case ADDR_DIFF_VEC: | |
6718 | return 1; | |
6719 | ||
6720 | default: | |
6721 | break; | |
6722 | } | |
6723 | ||
6724 | i = GET_RTX_LENGTH (code) - 1; | |
6725 | fmt = GET_RTX_FORMAT (code); | |
589005ff | 6726 | |
a13d4ebf AM |
6727 | for (; i >= 0; i--) |
6728 | { | |
6729 | if (fmt[i] == 'e') | |
6730 | { | |
6731 | rtx tem = XEXP (x, i); | |
6732 | ||
6733 | /* If we are about to do the last recursive call | |
6734 | needed at this level, change it into iteration. | |
6735 | This function is called enough to be worth it. */ | |
6736 | if (i == 0) | |
6737 | { | |
6738 | x = tem; | |
6739 | goto repeat; | |
6740 | } | |
589005ff | 6741 | |
aaa4ca30 | 6742 | if (! store_ops_ok (tem, bb)) |
a13d4ebf AM |
6743 | return 0; |
6744 | } | |
6745 | else if (fmt[i] == 'E') | |
6746 | { | |
6747 | int j; | |
589005ff | 6748 | |
a13d4ebf AM |
6749 | for (j = 0; j < XVECLEN (x, i); j++) |
6750 | { | |
aaa4ca30 | 6751 | if (! store_ops_ok (XVECEXP (x, i, j), bb)) |
a13d4ebf AM |
6752 | return 0; |
6753 | } | |
6754 | } | |
6755 | } | |
6756 | ||
6757 | return 1; | |
6758 | } | |
6759 | ||
aaa4ca30 | 6760 | /* Determine whether insn is MEM store pattern that we will consider moving. */ |
a13d4ebf AM |
6761 | |
6762 | static void | |
6763 | find_moveable_store (insn) | |
6764 | rtx insn; | |
6765 | { | |
6766 | struct ls_expr * ptr; | |
6767 | rtx dest = PATTERN (insn); | |
6768 | ||
f54104df AO |
6769 | if (GET_CODE (dest) != SET |
6770 | || GET_CODE (SET_SRC (dest)) == ASM_OPERANDS) | |
a13d4ebf AM |
6771 | return; |
6772 | ||
6773 | dest = SET_DEST (dest); | |
589005ff | 6774 | |
a13d4ebf AM |
6775 | if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest) |
6776 | || GET_MODE (dest) == BLKmode) | |
aaa4ca30 AJ |
6777 | return; |
6778 | ||
6779 | if (GET_CODE (XEXP (dest, 0)) != SYMBOL_REF) | |
a13d4ebf | 6780 | return; |
aaa4ca30 AJ |
6781 | |
6782 | if (rtx_varies_p (XEXP (dest, 0), 0)) | |
a13d4ebf | 6783 | return; |
aaa4ca30 | 6784 | |
a13d4ebf AM |
6785 | ptr = ldst_entry (dest); |
6786 | ptr->stores = alloc_INSN_LIST (insn, ptr->stores); | |
6787 | } | |
6788 | ||
aaa4ca30 AJ |
6789 | /* Perform store motion. Much like gcse, except we move expressions the |
6790 | other way by looking at the flowgraph in reverse. */ | |
a13d4ebf AM |
6791 | |
6792 | static int | |
6793 | compute_store_table () | |
6794 | { | |
e0082a72 ZD |
6795 | int ret; |
6796 | basic_block bb; | |
aaa4ca30 | 6797 | unsigned regno; |
a13d4ebf | 6798 | rtx insn, pat; |
aaa4ca30 | 6799 | |
a13d4ebf AM |
6800 | max_gcse_regno = max_reg_num (); |
6801 | ||
d55bc081 | 6802 | reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block, |
aaa4ca30 | 6803 | max_gcse_regno); |
d55bc081 | 6804 | sbitmap_vector_zero (reg_set_in_block, last_basic_block); |
a13d4ebf | 6805 | pre_ldst_mems = 0; |
aaa4ca30 | 6806 | |
a13d4ebf | 6807 | /* Find all the stores we care about. */ |
e0082a72 | 6808 | FOR_EACH_BB (bb) |
a13d4ebf | 6809 | { |
e0082a72 ZD |
6810 | regvec = & (reg_set_in_block[bb->index]); |
6811 | for (insn = bb->end; | |
6812 | insn && insn != PREV_INSN (bb->end); | |
a13d4ebf AM |
6813 | insn = PREV_INSN (insn)) |
6814 | { | |
19652adf ZW |
6815 | /* Ignore anything that is not a normal insn. */ |
6816 | if (! INSN_P (insn)) | |
a13d4ebf AM |
6817 | continue; |
6818 | ||
aaa4ca30 AJ |
6819 | if (GET_CODE (insn) == CALL_INSN) |
6820 | { | |
19652adf | 6821 | bool clobbers_all = false; |
589005ff | 6822 | #ifdef NON_SAVING_SETJMP |
19652adf ZW |
6823 | if (NON_SAVING_SETJMP |
6824 | && find_reg_note (insn, REG_SETJMP, NULL_RTX)) | |
6825 | clobbers_all = true; | |
6826 | #endif | |
6827 | ||
aaa4ca30 | 6828 | for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
19652adf ZW |
6829 | if (clobbers_all |
6830 | || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)) | |
e0082a72 | 6831 | SET_BIT (reg_set_in_block[bb->index], regno); |
aaa4ca30 | 6832 | } |
589005ff | 6833 | |
a13d4ebf | 6834 | pat = PATTERN (insn); |
aaa4ca30 | 6835 | note_stores (pat, reg_set_info, NULL); |
589005ff | 6836 | |
a13d4ebf AM |
6837 | /* Now that we've marked regs, look for stores. */ |
6838 | if (GET_CODE (pat) == SET) | |
6839 | find_moveable_store (insn); | |
6840 | } | |
6841 | } | |
6842 | ||
6843 | ret = enumerate_ldsts (); | |
589005ff | 6844 | |
a13d4ebf AM |
6845 | if (gcse_file) |
6846 | { | |
6847 | fprintf (gcse_file, "Store Motion Expressions.\n"); | |
6848 | print_ldst_list (gcse_file); | |
6849 | } | |
589005ff | 6850 | |
a13d4ebf AM |
6851 | return ret; |
6852 | } | |
6853 | ||
aaa4ca30 | 6854 | /* Check to see if the load X is aliased with STORE_PATTERN. */ |
a13d4ebf AM |
6855 | |
6856 | static int | |
6857 | load_kills_store (x, store_pattern) | |
6858 | rtx x, store_pattern; | |
6859 | { | |
6860 | if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p)) | |
6861 | return 1; | |
6862 | return 0; | |
6863 | } | |
6864 | ||
589005ff | 6865 | /* Go through the entire insn X, looking for any loads which might alias |
aaa4ca30 | 6866 | STORE_PATTERN. Return 1 if found. */ |
a13d4ebf AM |
6867 | |
6868 | static int | |
6869 | find_loads (x, store_pattern) | |
6870 | rtx x, store_pattern; | |
6871 | { | |
6872 | const char * fmt; | |
8e42ace1 | 6873 | int i, j; |
a13d4ebf AM |
6874 | int ret = 0; |
6875 | ||
24a28584 JH |
6876 | if (!x) |
6877 | return 0; | |
6878 | ||
589005ff | 6879 | if (GET_CODE (x) == SET) |
a13d4ebf AM |
6880 | x = SET_SRC (x); |
6881 | ||
6882 | if (GET_CODE (x) == MEM) | |
6883 | { | |
6884 | if (load_kills_store (x, store_pattern)) | |
6885 | return 1; | |
6886 | } | |
6887 | ||
6888 | /* Recursively process the insn. */ | |
6889 | fmt = GET_RTX_FORMAT (GET_CODE (x)); | |
589005ff | 6890 | |
a13d4ebf AM |
6891 | for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--) |
6892 | { | |
6893 | if (fmt[i] == 'e') | |
6894 | ret |= find_loads (XEXP (x, i), store_pattern); | |
6895 | else if (fmt[i] == 'E') | |
6896 | for (j = XVECLEN (x, i) - 1; j >= 0; j--) | |
6897 | ret |= find_loads (XVECEXP (x, i, j), store_pattern); | |
6898 | } | |
6899 | return ret; | |
6900 | } | |
6901 | ||
589005ff | 6902 | /* Check if INSN kills the store pattern X (is aliased with it). |
a13d4ebf AM |
6903 | Return 1 if it it does. */ |
6904 | ||
589005ff | 6905 | static int |
a13d4ebf AM |
6906 | store_killed_in_insn (x, insn) |
6907 | rtx x, insn; | |
6908 | { | |
6909 | if (GET_RTX_CLASS (GET_CODE (insn)) != 'i') | |
6910 | return 0; | |
589005ff | 6911 | |
a13d4ebf AM |
6912 | if (GET_CODE (insn) == CALL_INSN) |
6913 | { | |
1218665b JJ |
6914 | /* A normal or pure call might read from pattern, |
6915 | but a const call will not. */ | |
a6a063b8 | 6916 | return ! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn); |
a13d4ebf | 6917 | } |
589005ff | 6918 | |
a13d4ebf AM |
6919 | if (GET_CODE (PATTERN (insn)) == SET) |
6920 | { | |
6921 | rtx pat = PATTERN (insn); | |
6922 | /* Check for memory stores to aliased objects. */ | |
6923 | if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x)) | |
aaa4ca30 | 6924 | /* pretend its a load and check for aliasing. */ |
a13d4ebf AM |
6925 | if (find_loads (SET_DEST (pat), x)) |
6926 | return 1; | |
6927 | return find_loads (SET_SRC (pat), x); | |
6928 | } | |
6929 | else | |
6930 | return find_loads (PATTERN (insn), x); | |
6931 | } | |
6932 | ||
6933 | /* Returns 1 if the expression X is loaded or clobbered on or after INSN | |
6934 | within basic block BB. */ | |
6935 | ||
589005ff | 6936 | static int |
aaa4ca30 | 6937 | store_killed_after (x, insn, bb) |
a13d4ebf | 6938 | rtx x, insn; |
e2d2ed72 | 6939 | basic_block bb; |
a13d4ebf | 6940 | { |
8e42ace1 | 6941 | rtx last = bb->end; |
589005ff | 6942 | |
8e42ace1 KH |
6943 | if (insn == last) |
6944 | return 0; | |
aaa4ca30 AJ |
6945 | |
6946 | /* Check if the register operands of the store are OK in this block. | |
589005ff KH |
6947 | Note that if registers are changed ANYWHERE in the block, we'll |
6948 | decide we can't move it, regardless of whether it changed above | |
aaa4ca30 AJ |
6949 | or below the store. This could be improved by checking the register |
6950 | operands while lookinng for aliasing in each insn. */ | |
6951 | if (!store_ops_ok (XEXP (x, 0), bb)) | |
a13d4ebf AM |
6952 | return 1; |
6953 | ||
8e42ace1 KH |
6954 | for ( ; insn && insn != NEXT_INSN (last); insn = NEXT_INSN (insn)) |
6955 | if (store_killed_in_insn (x, insn)) | |
6956 | return 1; | |
589005ff | 6957 | |
a13d4ebf AM |
6958 | return 0; |
6959 | } | |
6960 | ||
aaa4ca30 | 6961 | /* Returns 1 if the expression X is loaded or clobbered on or before INSN |
a13d4ebf | 6962 | within basic block BB. */ |
589005ff | 6963 | static int |
a13d4ebf AM |
6964 | store_killed_before (x, insn, bb) |
6965 | rtx x, insn; | |
e2d2ed72 | 6966 | basic_block bb; |
a13d4ebf | 6967 | { |
8e42ace1 | 6968 | rtx first = bb->head; |
a13d4ebf | 6969 | |
8e42ace1 KH |
6970 | if (insn == first) |
6971 | return store_killed_in_insn (x, insn); | |
589005ff | 6972 | |
aaa4ca30 | 6973 | /* Check if the register operands of the store are OK in this block. |
589005ff KH |
6974 | Note that if registers are changed ANYWHERE in the block, we'll |
6975 | decide we can't move it, regardless of whether it changed above | |
aaa4ca30 AJ |
6976 | or below the store. This could be improved by checking the register |
6977 | operands while lookinng for aliasing in each insn. */ | |
6978 | if (!store_ops_ok (XEXP (x, 0), bb)) | |
a13d4ebf AM |
6979 | return 1; |
6980 | ||
8e42ace1 KH |
6981 | for ( ; insn && insn != PREV_INSN (first); insn = PREV_INSN (insn)) |
6982 | if (store_killed_in_insn (x, insn)) | |
6983 | return 1; | |
589005ff | 6984 | |
8e42ace1 | 6985 | return 0; |
a13d4ebf AM |
6986 | } |
6987 | ||
6988 | #define ANTIC_STORE_LIST(x) ((x)->loads) | |
6989 | #define AVAIL_STORE_LIST(x) ((x)->stores) | |
6990 | ||
6991 | /* Given the table of available store insns at the end of blocks, | |
6992 | determine which ones are not killed by aliasing, and generate | |
6993 | the appropriate vectors for gen and killed. */ | |
6994 | static void | |
589005ff | 6995 | build_store_vectors () |
a13d4ebf | 6996 | { |
e0082a72 | 6997 | basic_block bb, b; |
a13d4ebf AM |
6998 | rtx insn, st; |
6999 | struct ls_expr * ptr; | |
7000 | ||
7001 | /* Build the gen_vector. This is any store in the table which is not killed | |
7002 | by aliasing later in its block. */ | |
d55bc081 ZD |
7003 | ae_gen = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores); |
7004 | sbitmap_vector_zero (ae_gen, last_basic_block); | |
a13d4ebf | 7005 | |
d55bc081 ZD |
7006 | st_antloc = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores); |
7007 | sbitmap_vector_zero (st_antloc, last_basic_block); | |
aaa4ca30 | 7008 | |
a13d4ebf | 7009 | for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr)) |
589005ff | 7010 | { |
a13d4ebf AM |
7011 | /* Put all the stores into either the antic list, or the avail list, |
7012 | or both. */ | |
7013 | rtx store_list = ptr->stores; | |
7014 | ptr->stores = NULL_RTX; | |
7015 | ||
7016 | for (st = store_list; st != NULL; st = XEXP (st, 1)) | |
7017 | { | |
7018 | insn = XEXP (st, 0); | |
e2d2ed72 | 7019 | bb = BLOCK_FOR_INSN (insn); |
589005ff | 7020 | |
aaa4ca30 | 7021 | if (!store_killed_after (ptr->pattern, insn, bb)) |
a13d4ebf AM |
7022 | { |
7023 | /* If we've already seen an availale expression in this block, | |
7024 | we can delete the one we saw already (It occurs earlier in | |
7025 | the block), and replace it with this one). We'll copy the | |
7026 | old SRC expression to an unused register in case there | |
7027 | are any side effects. */ | |
0b17ab2f | 7028 | if (TEST_BIT (ae_gen[bb->index], ptr->index)) |
a13d4ebf AM |
7029 | { |
7030 | /* Find previous store. */ | |
7031 | rtx st; | |
7032 | for (st = AVAIL_STORE_LIST (ptr); st ; st = XEXP (st, 1)) | |
e2d2ed72 | 7033 | if (BLOCK_FOR_INSN (XEXP (st, 0)) == bb) |
a13d4ebf AM |
7034 | break; |
7035 | if (st) | |
7036 | { | |
7037 | rtx r = gen_reg_rtx (GET_MODE (ptr->pattern)); | |
7038 | if (gcse_file) | |
8e42ace1 | 7039 | fprintf (gcse_file, "Removing redundant store:\n"); |
a13d4ebf AM |
7040 | replace_store_insn (r, XEXP (st, 0), bb); |
7041 | XEXP (st, 0) = insn; | |
7042 | continue; | |
7043 | } | |
7044 | } | |
0b17ab2f | 7045 | SET_BIT (ae_gen[bb->index], ptr->index); |
a13d4ebf AM |
7046 | AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, |
7047 | AVAIL_STORE_LIST (ptr)); | |
7048 | } | |
589005ff | 7049 | |
a13d4ebf AM |
7050 | if (!store_killed_before (ptr->pattern, insn, bb)) |
7051 | { | |
7052 | SET_BIT (st_antloc[BLOCK_NUM (insn)], ptr->index); | |
7053 | ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (insn, | |
7054 | ANTIC_STORE_LIST (ptr)); | |
7055 | } | |
7056 | } | |
589005ff | 7057 | |
a13d4ebf AM |
7058 | /* Free the original list of store insns. */ |
7059 | free_INSN_LIST_list (&store_list); | |
7060 | } | |
589005ff | 7061 | |
d55bc081 ZD |
7062 | ae_kill = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores); |
7063 | sbitmap_vector_zero (ae_kill, last_basic_block); | |
a13d4ebf | 7064 | |
d55bc081 ZD |
7065 | transp = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores); |
7066 | sbitmap_vector_zero (transp, last_basic_block); | |
a13d4ebf AM |
7067 | |
7068 | for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr)) | |
e0082a72 | 7069 | FOR_EACH_BB (b) |
a13d4ebf | 7070 | { |
e0082a72 | 7071 | if (store_killed_after (ptr->pattern, b->head, b)) |
a13d4ebf | 7072 | { |
dc297297 | 7073 | /* The anticipatable expression is not killed if it's gen'd. */ |
aaa4ca30 | 7074 | /* |
589005ff | 7075 | We leave this check out for now. If we have a code sequence |
aaa4ca30 AJ |
7076 | in a block which looks like: |
7077 | ST MEMa = x | |
7078 | L y = MEMa | |
7079 | ST MEMa = z | |
7080 | We should flag this as having an ANTIC expression, NOT | |
7081 | transparent, NOT killed, and AVAIL. | |
7082 | Unfortunately, since we haven't re-written all loads to | |
589005ff | 7083 | use the reaching reg, we'll end up doing an incorrect |
aaa4ca30 AJ |
7084 | Load in the middle here if we push the store down. It happens in |
7085 | gcc.c-torture/execute/960311-1.c with -O3 | |
7086 | If we always kill it in this case, we'll sometimes do | |
7087 | uneccessary work, but it shouldn't actually hurt anything. | |
7088 | if (!TEST_BIT (ae_gen[b], ptr->index)). */ | |
e0082a72 | 7089 | SET_BIT (ae_kill[b->index], ptr->index); |
aaa4ca30 AJ |
7090 | } |
7091 | else | |
e0082a72 | 7092 | SET_BIT (transp[b->index], ptr->index); |
aaa4ca30 AJ |
7093 | } |
7094 | ||
7095 | /* Any block with no exits calls some non-returning function, so | |
7096 | we better mark the store killed here, or we might not store to | |
7097 | it at all. If we knew it was abort, we wouldn't have to store, | |
7098 | but we don't know that for sure. */ | |
589005ff | 7099 | if (gcse_file) |
aaa4ca30 AJ |
7100 | { |
7101 | fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n"); | |
7102 | print_ldst_list (gcse_file); | |
d55bc081 ZD |
7103 | dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block); |
7104 | dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block); | |
7105 | dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block); | |
7106 | dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block); | |
a13d4ebf AM |
7107 | } |
7108 | } | |
7109 | ||
589005ff | 7110 | /* Insert an instruction at the begining of a basic block, and update |
a13d4ebf AM |
7111 | the BLOCK_HEAD if needed. */ |
7112 | ||
589005ff | 7113 | static void |
a13d4ebf AM |
7114 | insert_insn_start_bb (insn, bb) |
7115 | rtx insn; | |
e2d2ed72 | 7116 | basic_block bb; |
a13d4ebf AM |
7117 | { |
7118 | /* Insert at start of successor block. */ | |
e2d2ed72 AM |
7119 | rtx prev = PREV_INSN (bb->head); |
7120 | rtx before = bb->head; | |
a13d4ebf AM |
7121 | while (before != 0) |
7122 | { | |
7123 | if (GET_CODE (before) != CODE_LABEL | |
7124 | && (GET_CODE (before) != NOTE | |
7125 | || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK)) | |
7126 | break; | |
7127 | prev = before; | |
e2d2ed72 | 7128 | if (prev == bb->end) |
a13d4ebf AM |
7129 | break; |
7130 | before = NEXT_INSN (before); | |
7131 | } | |
7132 | ||
7133 | insn = emit_insn_after (insn, prev); | |
7134 | ||
a13d4ebf AM |
7135 | if (gcse_file) |
7136 | { | |
7137 | fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n", | |
0b17ab2f | 7138 | bb->index); |
a13d4ebf AM |
7139 | print_inline_rtx (gcse_file, insn, 6); |
7140 | fprintf (gcse_file, "\n"); | |
7141 | } | |
7142 | } | |
7143 | ||
7144 | /* This routine will insert a store on an edge. EXPR is the ldst entry for | |
cc2902df | 7145 | the memory reference, and E is the edge to insert it on. Returns nonzero |
a13d4ebf AM |
7146 | if an edge insertion was performed. */ |
7147 | ||
7148 | static int | |
7149 | insert_store (expr, e) | |
7150 | struct ls_expr * expr; | |
7151 | edge e; | |
7152 | { | |
7153 | rtx reg, insn; | |
e2d2ed72 | 7154 | basic_block bb; |
a13d4ebf AM |
7155 | edge tmp; |
7156 | ||
7157 | /* We did all the deleted before this insert, so if we didn't delete a | |
7158 | store, then we haven't set the reaching reg yet either. */ | |
7159 | if (expr->reaching_reg == NULL_RTX) | |
7160 | return 0; | |
7161 | ||
7162 | reg = expr->reaching_reg; | |
7163 | insn = gen_move_insn (expr->pattern, reg); | |
589005ff | 7164 | |
a13d4ebf AM |
7165 | /* If we are inserting this expression on ALL predecessor edges of a BB, |
7166 | insert it at the start of the BB, and reset the insert bits on the other | |
ff7cc307 | 7167 | edges so we don't try to insert it on the other edges. */ |
e2d2ed72 | 7168 | bb = e->dest; |
a13d4ebf AM |
7169 | for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next) |
7170 | { | |
7171 | int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest); | |
7172 | if (index == EDGE_INDEX_NO_EDGE) | |
7173 | abort (); | |
7174 | if (! TEST_BIT (pre_insert_map[index], expr->index)) | |
7175 | break; | |
7176 | } | |
7177 | ||
7178 | /* If tmp is NULL, we found an insertion on every edge, blank the | |
7179 | insertion vector for these edges, and insert at the start of the BB. */ | |
e2d2ed72 | 7180 | if (!tmp && bb != EXIT_BLOCK_PTR) |
a13d4ebf AM |
7181 | { |
7182 | for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next) | |
7183 | { | |
7184 | int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest); | |
7185 | RESET_BIT (pre_insert_map[index], expr->index); | |
7186 | } | |
7187 | insert_insn_start_bb (insn, bb); | |
7188 | return 0; | |
7189 | } | |
589005ff | 7190 | |
a13d4ebf AM |
7191 | /* We can't insert on this edge, so we'll insert at the head of the |
7192 | successors block. See Morgan, sec 10.5. */ | |
7193 | if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL) | |
7194 | { | |
7195 | insert_insn_start_bb (insn, bb); | |
7196 | return 0; | |
7197 | } | |
7198 | ||
7199 | insert_insn_on_edge (insn, e); | |
589005ff | 7200 | |
a13d4ebf AM |
7201 | if (gcse_file) |
7202 | { | |
7203 | fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n", | |
0b17ab2f | 7204 | e->src->index, e->dest->index); |
a13d4ebf AM |
7205 | print_inline_rtx (gcse_file, insn, 6); |
7206 | fprintf (gcse_file, "\n"); | |
7207 | } | |
589005ff | 7208 | |
a13d4ebf AM |
7209 | return 1; |
7210 | } | |
7211 | ||
7212 | /* This routine will replace a store with a SET to a specified register. */ | |
7213 | ||
7214 | static void | |
7215 | replace_store_insn (reg, del, bb) | |
7216 | rtx reg, del; | |
e2d2ed72 | 7217 | basic_block bb; |
a13d4ebf AM |
7218 | { |
7219 | rtx insn; | |
589005ff | 7220 | |
a13d4ebf AM |
7221 | insn = gen_move_insn (reg, SET_SRC (PATTERN (del))); |
7222 | insn = emit_insn_after (insn, del); | |
589005ff | 7223 | |
a13d4ebf AM |
7224 | if (gcse_file) |
7225 | { | |
589005ff | 7226 | fprintf (gcse_file, |
0b17ab2f | 7227 | "STORE_MOTION delete insn in BB %d:\n ", bb->index); |
a13d4ebf | 7228 | print_inline_rtx (gcse_file, del, 6); |
8e42ace1 | 7229 | fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n "); |
a13d4ebf | 7230 | print_inline_rtx (gcse_file, insn, 6); |
8e42ace1 | 7231 | fprintf (gcse_file, "\n"); |
a13d4ebf | 7232 | } |
589005ff | 7233 | |
49ce134f | 7234 | delete_insn (del); |
a13d4ebf AM |
7235 | } |
7236 | ||
7237 | ||
7238 | /* Delete a store, but copy the value that would have been stored into | |
7239 | the reaching_reg for later storing. */ | |
7240 | ||
7241 | static void | |
7242 | delete_store (expr, bb) | |
7243 | struct ls_expr * expr; | |
e2d2ed72 | 7244 | basic_block bb; |
a13d4ebf AM |
7245 | { |
7246 | rtx reg, i, del; | |
7247 | ||
7248 | if (expr->reaching_reg == NULL_RTX) | |
7249 | expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern)); | |
a13d4ebf | 7250 | |
589005ff KH |
7251 | |
7252 | /* If there is more than 1 store, the earlier ones will be dead, | |
7253 | but it doesn't hurt to replace them here. */ | |
a13d4ebf | 7254 | reg = expr->reaching_reg; |
589005ff | 7255 | |
a13d4ebf AM |
7256 | for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1)) |
7257 | { | |
7258 | del = XEXP (i, 0); | |
e2d2ed72 | 7259 | if (BLOCK_FOR_INSN (del) == bb) |
a13d4ebf | 7260 | { |
589005ff | 7261 | /* We know there is only one since we deleted redundant |
a13d4ebf AM |
7262 | ones during the available computation. */ |
7263 | replace_store_insn (reg, del, bb); | |
7264 | break; | |
7265 | } | |
7266 | } | |
7267 | } | |
7268 | ||
7269 | /* Free memory used by store motion. */ | |
7270 | ||
589005ff | 7271 | static void |
a13d4ebf AM |
7272 | free_store_memory () |
7273 | { | |
7274 | free_ldst_mems (); | |
589005ff | 7275 | |
a13d4ebf | 7276 | if (ae_gen) |
5a660bff | 7277 | sbitmap_vector_free (ae_gen); |
a13d4ebf | 7278 | if (ae_kill) |
5a660bff | 7279 | sbitmap_vector_free (ae_kill); |
a13d4ebf | 7280 | if (transp) |
5a660bff | 7281 | sbitmap_vector_free (transp); |
a13d4ebf | 7282 | if (st_antloc) |
5a660bff | 7283 | sbitmap_vector_free (st_antloc); |
a13d4ebf | 7284 | if (pre_insert_map) |
5a660bff | 7285 | sbitmap_vector_free (pre_insert_map); |
a13d4ebf | 7286 | if (pre_delete_map) |
5a660bff | 7287 | sbitmap_vector_free (pre_delete_map); |
aaa4ca30 AJ |
7288 | if (reg_set_in_block) |
7289 | sbitmap_vector_free (reg_set_in_block); | |
589005ff | 7290 | |
a13d4ebf AM |
7291 | ae_gen = ae_kill = transp = st_antloc = NULL; |
7292 | pre_insert_map = pre_delete_map = reg_set_in_block = NULL; | |
7293 | } | |
7294 | ||
7295 | /* Perform store motion. Much like gcse, except we move expressions the | |
7296 | other way by looking at the flowgraph in reverse. */ | |
7297 | ||
7298 | static void | |
7299 | store_motion () | |
7300 | { | |
e0082a72 | 7301 | basic_block bb; |
0b17ab2f | 7302 | int x; |
a13d4ebf | 7303 | struct ls_expr * ptr; |
adfcce61 | 7304 | int update_flow = 0; |
aaa4ca30 | 7305 | |
a13d4ebf AM |
7306 | if (gcse_file) |
7307 | { | |
7308 | fprintf (gcse_file, "before store motion\n"); | |
7309 | print_rtl (gcse_file, get_insns ()); | |
7310 | } | |
7311 | ||
7312 | ||
7313 | init_alias_analysis (); | |
aaa4ca30 | 7314 | |
a13d4ebf AM |
7315 | /* Find all the stores that are live to the end of their block. */ |
7316 | num_stores = compute_store_table (); | |
7317 | if (num_stores == 0) | |
7318 | { | |
aaa4ca30 | 7319 | sbitmap_vector_free (reg_set_in_block); |
a13d4ebf AM |
7320 | end_alias_analysis (); |
7321 | return; | |
7322 | } | |
7323 | ||
7324 | /* Now compute whats actually available to move. */ | |
7325 | add_noreturn_fake_exit_edges (); | |
7326 | build_store_vectors (); | |
7327 | ||
589005ff KH |
7328 | edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen, |
7329 | st_antloc, ae_kill, &pre_insert_map, | |
a13d4ebf AM |
7330 | &pre_delete_map); |
7331 | ||
7332 | /* Now we want to insert the new stores which are going to be needed. */ | |
7333 | for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr)) | |
7334 | { | |
e0082a72 ZD |
7335 | FOR_EACH_BB (bb) |
7336 | if (TEST_BIT (pre_delete_map[bb->index], ptr->index)) | |
7337 | delete_store (ptr, bb); | |
a13d4ebf | 7338 | |
0b17ab2f RH |
7339 | for (x = 0; x < NUM_EDGES (edge_list); x++) |
7340 | if (TEST_BIT (pre_insert_map[x], ptr->index)) | |
7341 | update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x)); | |
a13d4ebf AM |
7342 | } |
7343 | ||
7344 | if (update_flow) | |
7345 | commit_edge_insertions (); | |
aaa4ca30 | 7346 | |
a13d4ebf AM |
7347 | free_store_memory (); |
7348 | free_edge_list (edge_list); | |
7349 | remove_fake_edges (); | |
7350 | end_alias_analysis (); | |
7351 | } | |
e2500fed | 7352 | |
a0134312 RS |
7353 | \f |
7354 | /* Entry point for jump bypassing optimization pass. */ | |
7355 | ||
7356 | int | |
7357 | bypass_jumps (file) | |
7358 | FILE *file; | |
7359 | { | |
7360 | int changed; | |
7361 | ||
7362 | /* We do not construct an accurate cfg in functions which call | |
7363 | setjmp, so just punt to be safe. */ | |
7364 | if (current_function_calls_setjmp) | |
7365 | return 0; | |
7366 | ||
7367 | /* For calling dump_foo fns from gdb. */ | |
7368 | debug_stderr = stderr; | |
7369 | gcse_file = file; | |
7370 | ||
7371 | /* Identify the basic block information for this function, including | |
7372 | successors and predecessors. */ | |
7373 | max_gcse_regno = max_reg_num (); | |
7374 | ||
7375 | if (file) | |
7376 | dump_flow_info (file); | |
7377 | ||
7378 | /* Return if there's nothing to do. */ | |
7379 | if (n_basic_blocks <= 1) | |
7380 | return 0; | |
7381 | ||
7382 | /* Trying to perform global optimizations on flow graphs which have | |
7383 | a high connectivity will take a long time and is unlikely to be | |
7384 | particularly useful. | |
7385 | ||
7386 | In normal circumstances a cfg should have about twice as many edges | |
7387 | as blocks. But we do not want to punish small functions which have | |
7388 | a couple switch statements. So we require a relatively large number | |
7389 | of basic blocks and the ratio of edges to blocks to be high. */ | |
7390 | if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20) | |
7391 | { | |
7392 | if (warn_disabled_optimization) | |
7393 | warning ("BYPASS disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block", | |
7394 | n_basic_blocks, n_edges / n_basic_blocks); | |
7395 | return 0; | |
7396 | } | |
7397 | ||
7398 | /* If allocating memory for the cprop bitmap would take up too much | |
7399 | storage it's better just to disable the optimization. */ | |
7400 | if ((n_basic_blocks | |
7401 | * SBITMAP_SET_SIZE (max_gcse_regno) | |
7402 | * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY) | |
7403 | { | |
7404 | if (warn_disabled_optimization) | |
7405 | warning ("GCSE disabled: %d basic blocks and %d registers", | |
7406 | n_basic_blocks, max_gcse_regno); | |
7407 | ||
7408 | return 0; | |
7409 | } | |
7410 | ||
7411 | /* See what modes support reg/reg copy operations. */ | |
7412 | if (! can_copy_init_p) | |
7413 | { | |
7414 | compute_can_copy (); | |
7415 | can_copy_init_p = 1; | |
7416 | } | |
7417 | ||
7418 | gcc_obstack_init (&gcse_obstack); | |
7419 | bytes_used = 0; | |
7420 | ||
7421 | /* We need alias. */ | |
7422 | init_alias_analysis (); | |
7423 | ||
7424 | /* Record where pseudo-registers are set. This data is kept accurate | |
7425 | during each pass. ??? We could also record hard-reg information here | |
7426 | [since it's unchanging], however it is currently done during hash table | |
7427 | computation. | |
7428 | ||
7429 | It may be tempting to compute MEM set information here too, but MEM sets | |
7430 | will be subject to code motion one day and thus we need to compute | |
7431 | information about memory sets when we build the hash tables. */ | |
7432 | ||
7433 | alloc_reg_set_mem (max_gcse_regno); | |
7434 | compute_sets (get_insns ()); | |
7435 | ||
7436 | max_gcse_regno = max_reg_num (); | |
7437 | alloc_gcse_mem (get_insns ()); | |
7438 | changed = one_cprop_pass (1, 1, 1); | |
7439 | free_gcse_mem (); | |
7440 | ||
7441 | if (file) | |
7442 | { | |
7443 | fprintf (file, "BYPASS of %s: %d basic blocks, ", | |
7444 | current_function_name, n_basic_blocks); | |
7445 | fprintf (file, "%d bytes\n\n", bytes_used); | |
7446 | } | |
7447 | ||
7448 | obstack_free (&gcse_obstack, NULL); | |
7449 | free_reg_set_mem (); | |
7450 | ||
7451 | /* We are finished with alias. */ | |
7452 | end_alias_analysis (); | |
7453 | allocate_reg_info (max_reg_num (), FALSE, FALSE); | |
7454 | ||
7455 | return changed; | |
7456 | } | |
7457 | ||
e2500fed | 7458 | #include "gt-gcse.h" |