]> gcc.gnu.org Git - gcc.git/blame - gcc/gcse.c
[multiple changes]
[gcc.git] / gcc / gcse.c
CommitLineData
e45425ec 1/* Partial redundancy elimination / Hoisting for RTL.
cbe34bb5 2 Copyright (C) 1997-2017 Free Software Foundation, Inc.
7506f491 3
1322177d 4This file is part of GCC.
7506f491 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
7506f491 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
7506f491
DE
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
7506f491
DE
19
20/* TODO
21 - reordering of memory allocation and freeing to be more space efficient
b11f0116
BC
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
7506f491
DE
24*/
25
26/* References searched while implementing this.
7506f491
DE
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
7506f491
DE
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
7506f491
DE
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
f4e584dc
JL
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
a42cd965
AM
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
f4e584dc
JL
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
7506f491
DE
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133*/
134
135#include "config.h"
50b2596f 136#include "system.h"
4977bab6 137#include "coretypes.h"
c7131fb2 138#include "backend.h"
957060b5 139#include "target.h"
c7131fb2 140#include "rtl.h"
957060b5
AM
141#include "tree.h"
142#include "predict.h"
c7131fb2 143#include "df.h"
4d0cdd0c 144#include "memmodel.h"
6baf1cc8 145#include "tm_p.h"
957060b5 146#include "insn-config.h"
0777c850 147#include "print-rtl.h"
7506f491 148#include "regs.h"
b11f0116 149#include "ira.h"
7506f491 150#include "recog.h"
957060b5 151#include "diagnostic-core.h"
60393bbc
AM
152#include "cfgrtl.h"
153#include "cfganal.h"
154#include "lcm.h"
155#include "cfgcleanup.h"
589005ff 156#include "expr.h"
f1fa37ff 157#include "params.h"
d128effb 158#include "intl.h"
ef330312 159#include "tree-pass.h"
6fb5fa3c 160#include "dbgcnt.h"
7c6811fe 161#include "gcse.h"
af3eb110 162#include "gcse-common.h"
4fa31c2a 163
f4e584dc 164/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
4cad6dba 165 are a superset of those done by classic GCSE.
7506f491 166
e45425ec
SB
167 Two passes of copy/constant propagation are done around PRE or hoisting
168 because the first one enables more GCSE and the second one helps to clean
169 up the copies that PRE and HOIST create. This is needed more for PRE than
170 for HOIST because code hoisting will try to use an existing register
171 containing the common subexpression rather than create a new one. This is
172 harder to do for PRE because of the code motion (which HOIST doesn't do).
7506f491
DE
173
174 Expressions we are interested in GCSE-ing are of the form
175 (set (pseudo-reg) (expression)).
176 Function want_to_gcse_p says what these are.
177
4cad6dba 178 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
3906a4a1 179 This allows PRE to hoist expressions that are expressed in multiple insns,
4cad6dba
SB
180 such as complex address calculations (e.g. for PIC code, or loads with a
181 high part and a low part).
3906a4a1 182
7506f491 183 PRE handles moving invariant expressions out of loops (by treating them as
f4e584dc 184 partially redundant).
7506f491 185
7506f491
DE
186 **********************
187
188 We used to support multiple passes but there are diminishing returns in
189 doing so. The first pass usually makes 90% of the changes that are doable.
190 A second pass can make a few more changes made possible by the first pass.
191 Experiments show any further passes don't make enough changes to justify
192 the expense.
193
194 A study of spec92 using an unlimited number of passes:
195 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
196 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
197 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
198
199 It was found doing copy propagation between each pass enables further
200 substitutions.
201
3906a4a1
SB
202 This study was done before expressions in REG_EQUAL notes were added as
203 candidate expressions for optimization, and before the GIMPLE optimizers
204 were added. Probably, multiple passes is even less efficient now than
205 at the time when the study was conducted.
206
7506f491 207 PRE is quite expensive in complicated functions because the DFA can take
3906a4a1 208 a while to converge. Hence we only perform one pass.
7506f491
DE
209
210 **********************
211
212 The steps for PRE are:
213
214 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
215
216 2) Perform the data flow analysis for PRE.
217
218 3) Delete the redundant instructions
219
220 4) Insert the required copies [if any] that make the partially
221 redundant instructions fully redundant.
222
223 5) For other reaching expressions, insert an instruction to copy the value
224 to a newly created pseudo that will reach the redundant instruction.
225
226 The deletion is done first so that when we do insertions we
227 know which pseudo reg to use.
228
229 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
230 argue it is not. The number of iterations for the algorithm to converge
231 is typically 2-4 so I don't view it as that expensive (relatively speaking).
232
4cad6dba 233 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
7506f491
DE
234 we create. To make an expression reach the place where it's redundant,
235 the result of the expression is copied to a new register, and the redundant
236 expression is deleted by replacing it with this new register. Classic GCSE
237 doesn't have this problem as much as it computes the reaching defs of
a3c28ba2
KH
238 each register in each block and thus can try to use an existing
239 register. */
7506f491
DE
240\f
241/* GCSE global vars. */
242
7c6811fe
RS
243struct target_gcse default_target_gcse;
244#if SWITCHABLE_TARGET
245struct target_gcse *this_target_gcse = &default_target_gcse;
246#endif
247
5f39ad47
SB
248/* Set to non-zero if CSE should run after all GCSE optimizations are done. */
249int flag_rerun_cse_after_global_opts;
f4e584dc 250
7506f491
DE
251/* An obstack for our working variables. */
252static struct obstack gcse_obstack;
253
7506f491
DE
254/* Hash table of expressions. */
255
11478306 256struct gcse_expr
7506f491 257{
43c8a043 258 /* The expression. */
7506f491
DE
259 rtx expr;
260 /* Index in the available expression bitmaps. */
261 int bitmap_index;
262 /* Next entry with the same hash. */
11478306 263 struct gcse_expr *next_same_hash;
7506f491
DE
264 /* List of anticipatable occurrences in basic blocks in the function.
265 An "anticipatable occurrence" is one that is the first occurrence in the
f4e584dc
JL
266 basic block, the operands are not modified in the basic block prior
267 to the occurrence and the output is not used between the start of
268 the block and the occurrence. */
11478306 269 struct gcse_occr *antic_occr;
7506f491
DE
270 /* List of available occurrence in basic blocks in the function.
271 An "available occurrence" is one that is the last occurrence in the
272 basic block and the operands are not modified by following statements in
273 the basic block [including this insn]. */
11478306 274 struct gcse_occr *avail_occr;
7506f491
DE
275 /* Non-null if the computation is PRE redundant.
276 The value is the newly created pseudo-reg to record a copy of the
277 expression in all the places that reach the redundant copy. */
278 rtx reaching_reg;
20160347
MK
279 /* Maximum distance in instructions this expression can travel.
280 We avoid moving simple expressions for more than a few instructions
281 to keep register pressure under control.
282 A value of "0" removes restrictions on how far the expression can
283 travel. */
ec7f796e 284 HOST_WIDE_INT max_distance;
7506f491
DE
285};
286
287/* Occurrence of an expression.
288 There is one per basic block. If a pattern appears more than once the
289 last appearance is used [or first for anticipatable expressions]. */
290
11478306 291struct gcse_occr
7506f491
DE
292{
293 /* Next occurrence of this expression. */
11478306 294 struct gcse_occr *next;
7506f491 295 /* The insn that computes the expression. */
cf92a178 296 rtx_insn *insn;
cc2902df 297 /* Nonzero if this [anticipatable] occurrence has been deleted. */
7506f491 298 char deleted_p;
cc2902df 299 /* Nonzero if this [available] occurrence has been copied to
7506f491
DE
300 reaching_reg. */
301 /* ??? This is mutually exclusive with deleted_p, so they could share
302 the same byte. */
303 char copied_p;
304};
305
11478306 306typedef struct gcse_occr *occr_t;
cad9aa15 307
e45425ec 308/* Expression hash tables.
7506f491
DE
309 Each hash table is an array of buckets.
310 ??? It is known that if it were an array of entries, structure elements
311 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
312 not clear whether in the final analysis a sufficient amount of memory would
313 be saved as the size of the available expression bitmaps would be larger
314 [one could build a mapping table without holes afterwards though].
c4c81601 315 Someday I'll perform the computation and figure it out. */
7506f491 316
11478306 317struct gcse_hash_table_d
02280659
ZD
318{
319 /* The table itself.
320 This is an array of `expr_hash_table_size' elements. */
11478306 321 struct gcse_expr **table;
02280659
ZD
322
323 /* Size of the hash table, in elements. */
324 unsigned int size;
2e653e39 325
02280659
ZD
326 /* Number of hash table elements. */
327 unsigned int n_elems;
02280659 328};
c4c81601 329
02280659 330/* Expression hash table. */
11478306 331static struct gcse_hash_table_d expr_hash_table;
02280659 332
a13d4ebf 333/* This is a list of expressions which are MEMs and will be used by load
589005ff 334 or store motion.
43c8a043
EB
335 Load motion tracks MEMs which aren't killed by anything except itself,
336 i.e. loads and stores to a single location.
589005ff 337 We can then allow movement of these MEM refs with a little special
a13d4ebf
AM
338 allowance. (all stores copy the same value to the reaching reg used
339 for the loads). This means all values used to store into memory must have
43c8a043 340 no side effects so we can re-issue the setter value. */
a13d4ebf
AM
341
342struct ls_expr
343{
11478306 344 struct gcse_expr * expr; /* Gcse expression reference for LM. */
a13d4ebf 345 rtx pattern; /* Pattern of this mem. */
47a3dae1 346 rtx pattern_regs; /* List of registers mentioned by the mem. */
0777c850 347 vec<rtx_insn *> stores; /* INSN list of stores seen. */
a13d4ebf
AM
348 struct ls_expr * next; /* Next in the list. */
349 int invalid; /* Invalid for some reason. */
350 int index; /* If it maps to a bitmap index. */
b58b21d5 351 unsigned int hash_index; /* Index when in a hash table. */
a13d4ebf
AM
352 rtx reaching_reg; /* Register to use when re-writing. */
353};
354
355/* Head of the list of load/store memory refs. */
356static struct ls_expr * pre_ldst_mems = NULL;
357
8d67ee55 358struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
4a8fb1a1 359{
4a8fb1a1 360 typedef value_type compare_type;
67f58944
TS
361 static inline hashval_t hash (const ls_expr *);
362 static inline bool equal (const ls_expr *, const ls_expr *);
4a8fb1a1
LC
363};
364
365/* Hashtable helpers. */
366inline hashval_t
67f58944 367pre_ldst_expr_hasher::hash (const ls_expr *x)
4a8fb1a1
LC
368{
369 int do_not_record_p = 0;
370 return
371 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
372}
373
374static int expr_equiv_p (const_rtx, const_rtx);
375
376inline bool
67f58944
TS
377pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
378 const ls_expr *ptr2)
4a8fb1a1
LC
379{
380 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
381}
382
9727e468 383/* Hashtable for the load/store memory refs. */
c203e8a7 384static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
9727e468 385
7506f491
DE
386/* Bitmap containing one bit for each register in the program.
387 Used when performing GCSE to track which registers have been set since
388 the start of the basic block. */
73991d6a 389static regset reg_set_bitmap;
7506f491 390
a13d4ebf
AM
391/* Array, indexed by basic block number for a list of insns which modify
392 memory within that block. */
e26d1bb2 393static vec<rtx_insn *> *modify_mem_list;
0516f6fe 394static bitmap modify_mem_list_set;
a13d4ebf 395
6ce1edcf
NF
396/* This array parallels modify_mem_list, except that it stores MEMs
397 being set and their canonicalized memory addresses. */
9771b263 398static vec<modify_pair> *canon_modify_mem_list;
0516f6fe 399
aa47fcfa
JL
400/* Bitmap indexed by block numbers to record which blocks contain
401 function calls. */
402static bitmap blocks_with_calls;
403
7506f491
DE
404/* Various variables for statistics gathering. */
405
406/* Memory used in a pass.
407 This isn't intended to be absolutely precise. Its intent is only
408 to keep an eye on memory usage. */
409static int bytes_used;
c4c81601 410
7506f491
DE
411/* GCSE substitutions made. */
412static int gcse_subst_count;
413/* Number of copy instructions created. */
414static int gcse_create_count;
7506f491 415\f
20160347
MK
416/* Doing code hoisting. */
417static bool doing_code_hoisting_p = false;
418\f
e83f4801 419/* For available exprs */
df35c271 420static sbitmap *ae_kill;
7506f491 421\f
b11f0116
BC
422/* Data stored for each basic block. */
423struct bb_data
424{
425 /* Maximal register pressure inside basic block for given register class
426 (defined only for the pressure classes). */
427 int max_reg_pressure[N_REG_CLASSES];
4b8181c5
BC
428 /* Recorded register pressure of basic block before trying to hoist
429 an expression. Will be used to restore the register pressure
430 if the expression should not be hoisted. */
431 int old_pressure;
432 /* Recorded register live_in info of basic block during code hoisting
433 process. BACKUP is used to record live_in info before trying to
434 hoist an expression, and will be used to restore LIVE_IN if the
435 expression should not be hoisted. */
436 bitmap live_in, backup;
b11f0116
BC
437};
438
439#define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
440
441static basic_block curr_bb;
442
443/* Current register pressure for each pressure class. */
444static int curr_reg_pressure[N_REG_CLASSES];
445\f
446
1d088dee 447static void compute_can_copy (void);
9fe15a12
KG
448static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
449static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
703ad42b 450static void *gcse_alloc (unsigned long);
eb232f4e 451static void alloc_gcse_mem (void);
1d088dee 452static void free_gcse_mem (void);
11478306
JH
453static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
454static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
455static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
456static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
cf92a178
DM
457static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
458static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
459static int oprs_available_p (const_rtx, const rtx_insn *);
ef4bddc2 460static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
ec7f796e 461 HOST_WIDE_INT, struct gcse_hash_table_d *);
ef4bddc2 462static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
170065c9 463static void record_last_reg_set_info (rtx_insn *, int);
e26d1bb2 464static void record_last_mem_set_info (rtx_insn *);
7bc980e1 465static void record_last_set_info (rtx, const_rtx, void *);
11478306
JH
466static void compute_hash_table (struct gcse_hash_table_d *);
467static void alloc_hash_table (struct gcse_hash_table_d *);
468static void free_hash_table (struct gcse_hash_table_d *);
469static void compute_hash_table_work (struct gcse_hash_table_d *);
470static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
1d088dee 471static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
11478306 472 struct gcse_hash_table_d *);
7bc980e1 473static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
ed7a4b4b 474static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
1d088dee
AJ
475static void alloc_pre_mem (int, int);
476static void free_pre_mem (void);
43c8a043 477static struct edge_list *compute_pre_data (void);
11478306 478static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
1d088dee 479 basic_block);
11478306
JH
480static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
481static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
1d088dee
AJ
482static void pre_insert_copies (void);
483static int pre_delete (void);
43c8a043 484static int pre_gcse (struct edge_list *);
5f39ad47 485static int one_pre_gcse_pass (void);
170065c9 486static void add_label_notes (rtx, rtx_insn *);
1d088dee
AJ
487static void alloc_code_hoist_mem (int, int);
488static void free_code_hoist_mem (void);
489static void compute_code_hoist_vbeinout (void);
490static void compute_code_hoist_data (void);
ec7f796e
ML
491static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *,
492 basic_block,
493 sbitmap, HOST_WIDE_INT, int *,
494 enum reg_class,
cf92a178 495 int *, bitmap, rtx_insn *);
5f39ad47 496static int hoist_code (void);
4b8181c5 497static enum reg_class get_regno_pressure_class (int regno, int *nregs);
cf92a178 498static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
1d088dee 499static int one_code_hoisting_pass (void);
11478306
JH
500static rtx_insn *process_insert_insn (struct gcse_expr *);
501static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
502static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
1d088dee
AJ
503 basic_block, char *);
504static struct ls_expr * ldst_entry (rtx);
505static void free_ldst_entry (struct ls_expr *);
43c8a043 506static void free_ld_motion_mems (void);
1d088dee
AJ
507static void print_ldst_list (FILE *);
508static struct ls_expr * find_rtx_in_ldst (rtx);
ed7a4b4b 509static int simple_mem (const_rtx);
1d088dee
AJ
510static void invalidate_any_buried_refs (rtx);
511static void compute_ld_motion_mems (void);
512static void trim_ld_motion_mems (void);
11478306 513static void update_ld_motion_stores (struct gcse_expr *);
1d088dee
AJ
514static void clear_modify_mem_tables (void);
515static void free_modify_mem_tables (void);
1b4572a8
KG
516
517#define GNEW(T) ((T *) gmalloc (sizeof (T)))
518#define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
519
520#define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
521#define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
1b4572a8
KG
522
523#define GNEWVAR(T, S) ((T *) gmalloc ((S)))
524#define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
1b4572a8
KG
525
526#define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
527#define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
7506f491 528\f
7506f491
DE
529/* Misc. utilities. */
530
7c6811fe
RS
531#define can_copy \
532 (this_target_gcse->x_can_copy)
533#define can_copy_init_p \
534 (this_target_gcse->x_can_copy_init_p)
773eae39 535
7506f491
DE
536/* Compute which modes support reg/reg copy operations. */
537
538static void
1d088dee 539compute_can_copy (void)
7506f491
DE
540{
541 int i;
50b2596f 542#ifndef AVOID_CCMODE_COPIES
21afc57d
TS
543 rtx reg;
544 rtx_insn *insn;
50b2596f 545#endif
773eae39 546 memset (can_copy, 0, NUM_MACHINE_MODES);
7506f491
DE
547
548 start_sequence ();
549 for (i = 0; i < NUM_MACHINE_MODES; i++)
c4c81601
RK
550 if (GET_MODE_CLASS (i) == MODE_CC)
551 {
7506f491 552#ifdef AVOID_CCMODE_COPIES
773eae39 553 can_copy[i] = 0;
7506f491 554#else
ef4bddc2 555 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
f7df4a84 556 insn = emit_insn (gen_rtx_SET (reg, reg));
9714cf43 557 if (recog (PATTERN (insn), insn, NULL) >= 0)
773eae39 558 can_copy[i] = 1;
7506f491 559#endif
c4c81601 560 }
141b5810 561 else
773eae39 562 can_copy[i] = 1;
c4c81601 563
7506f491 564 end_sequence ();
7506f491 565}
773eae39
EB
566
567/* Returns whether the mode supports reg/reg copy operations. */
568
569bool
ef4bddc2 570can_copy_p (machine_mode mode)
773eae39 571{
773eae39
EB
572 if (! can_copy_init_p)
573 {
574 compute_can_copy ();
575 can_copy_init_p = true;
576 }
577
578 return can_copy[mode] != 0;
579}
7506f491
DE
580\f
581/* Cover function to xmalloc to record bytes allocated. */
582
703ad42b 583static void *
4ac11022 584gmalloc (size_t size)
7506f491
DE
585{
586 bytes_used += size;
587 return xmalloc (size);
588}
589
9fe15a12
KG
590/* Cover function to xcalloc to record bytes allocated. */
591
592static void *
593gcalloc (size_t nelem, size_t elsize)
594{
595 bytes_used += nelem * elsize;
596 return xcalloc (nelem, elsize);
597}
598
77bbd421 599/* Cover function to obstack_alloc. */
7506f491 600
703ad42b 601static void *
1d088dee 602gcse_alloc (unsigned long size)
7506f491 603{
77bbd421 604 bytes_used += size;
703ad42b 605 return obstack_alloc (&gcse_obstack, size);
7506f491
DE
606}
607
4a81774c 608/* Allocate memory for the reg/memory set tracking tables.
7506f491
DE
609 This is called at the start of each pass. */
610
611static void
eb232f4e 612alloc_gcse_mem (void)
7506f491 613{
7506f491 614 /* Allocate vars to track sets of regs. */
7a8cba34 615 reg_set_bitmap = ALLOC_REG_SET (NULL);
7506f491 616
a13d4ebf 617 /* Allocate array to keep a list of insns which modify memory in each
9771b263
DN
618 basic block. The two typedefs are needed to work around the
619 pre-processor limitation with template types in macro arguments. */
e26d1bb2 620 typedef vec<rtx_insn *> vec_rtx_heap;
9771b263 621 typedef vec<modify_pair> vec_modify_pair_heap;
8b1c6fd7
DM
622 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
623 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
624 last_basic_block_for_fn (cfun));
8bdbfff5
NS
625 modify_mem_list_set = BITMAP_ALLOC (NULL);
626 blocks_with_calls = BITMAP_ALLOC (NULL);
7506f491
DE
627}
628
629/* Free memory allocated by alloc_gcse_mem. */
630
631static void
1d088dee 632free_gcse_mem (void)
7506f491 633{
d5b8da97
SB
634 FREE_REG_SET (reg_set_bitmap);
635
73991d6a 636 free_modify_mem_tables ();
8bdbfff5
NS
637 BITMAP_FREE (modify_mem_list_set);
638 BITMAP_FREE (blocks_with_calls);
7506f491 639}
b5ce41ff
JL
640\f
641/* Compute the local properties of each recorded expression.
c4c81601
RK
642
643 Local properties are those that are defined by the block, irrespective of
644 other blocks.
b5ce41ff
JL
645
646 An expression is transparent in a block if its operands are not modified
647 in the block.
648
649 An expression is computed (locally available) in a block if it is computed
650 at least once and expression would contain the same value if the
651 computation was moved to the end of the block.
652
653 An expression is locally anticipatable in a block if it is computed at
654 least once and expression would contain the same value if the computation
655 was moved to the beginning of the block.
656
e45425ec 657 We call this routine for pre and code hoisting. They all compute
c4c81601 658 basically the same information and thus can easily share this code.
7506f491 659
c4c81601
RK
660 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
661 properties. If NULL, then it is not necessary to compute or record that
662 particular property.
b5ce41ff 663
e45425ec 664 TABLE controls which hash table to look at. */
589005ff 665
b5ce41ff 666static void
7b1b4aed 667compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
11478306 668 struct gcse_hash_table_d *table)
b5ce41ff 669{
02280659 670 unsigned int i;
589005ff 671
b5ce41ff
JL
672 /* Initialize any bitmaps that were passed in. */
673 if (transp)
695ab36a 674 {
8b1c6fd7 675 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
695ab36a 676 }
c4c81601 677
b5ce41ff 678 if (comp)
8b1c6fd7 679 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
b5ce41ff 680 if (antloc)
8b1c6fd7 681 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
b5ce41ff 682
02280659 683 for (i = 0; i < table->size; i++)
7506f491 684 {
11478306 685 struct gcse_expr *expr;
b5ce41ff 686
02280659 687 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
b5ce41ff 688 {
b5ce41ff 689 int indx = expr->bitmap_index;
11478306 690 struct gcse_occr *occr;
b5ce41ff
JL
691
692 /* The expression is transparent in this block if it is not killed.
693 We start by assuming all are transparent [none are killed], and
694 then reset the bits for those that are. */
b5ce41ff 695 if (transp)
af3eb110
JL
696 compute_transp (expr->expr, indx, transp,
697 blocks_with_calls,
698 modify_mem_list_set,
699 canon_modify_mem_list);
b5ce41ff
JL
700
701 /* The occurrences recorded in antic_occr are exactly those that
cc2902df 702 we want to set to nonzero in ANTLOC. */
b5ce41ff 703 if (antloc)
c4c81601
RK
704 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
705 {
d7c028c0 706 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
b5ce41ff 707
c4c81601
RK
708 /* While we're scanning the table, this is a good place to
709 initialize this. */
710 occr->deleted_p = 0;
711 }
b5ce41ff
JL
712
713 /* The occurrences recorded in avail_occr are exactly those that
cc2902df 714 we want to set to nonzero in COMP. */
b5ce41ff 715 if (comp)
c4c81601
RK
716 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
717 {
d7c028c0 718 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
b5ce41ff 719
c4c81601
RK
720 /* While we're scanning the table, this is a good place to
721 initialize this. */
722 occr->copied_p = 0;
723 }
b5ce41ff
JL
724
725 /* While we're scanning the table, this is a good place to
726 initialize this. */
727 expr->reaching_reg = 0;
728 }
7506f491 729 }
7506f491
DE
730}
731\f
7506f491
DE
732/* Hash table support. */
733
80c29cc4
RZ
734struct reg_avail_info
735{
e0082a72 736 basic_block last_bb;
80c29cc4
RZ
737 int first_set;
738 int last_set;
739};
740
741static struct reg_avail_info *reg_avail_info;
e0082a72 742static basic_block current_bb;
7506f491 743
fb0c0a12
RK
744/* See whether X, the source of a set, is something we want to consider for
745 GCSE. */
7506f491
DE
746
747static int
ec7f796e 748want_to_gcse_p (rtx x, machine_mode mode, HOST_WIDE_INT *max_distance_ptr)
7506f491 749{
3d8504ac
RS
750#ifdef STACK_REGS
751 /* On register stack architectures, don't GCSE constants from the
752 constant pool, as the benefits are often swamped by the overhead
753 of shuffling the register stack between basic blocks. */
754 if (IS_STACK_MODE (GET_MODE (x)))
755 x = avoid_constant_pool_reference (x);
756#endif
757
20160347
MK
758 /* GCSE'ing constants:
759
760 We do not specifically distinguish between constant and non-constant
5e8f01f4 761 expressions in PRE and Hoist. We use set_src_cost below to limit
20160347
MK
762 the maximum distance simple expressions can travel.
763
764 Nevertheless, constants are much easier to GCSE, and, hence,
765 it is easy to overdo the optimizations. Usually, excessive PRE and
766 Hoisting of constant leads to increased register pressure.
767
768 RA can deal with this by rematerialing some of the constants.
769 Therefore, it is important that the back-end generates sets of constants
770 in a way that allows reload rematerialize them under high register
771 pressure, i.e., a pseudo register with REG_EQUAL to constant
772 is set only once. Failing to do so will result in IRA/reload
773 spilling such constants under high register pressure instead of
774 rematerializing them. */
775
c4c81601 776 switch (GET_CODE (x))
7506f491
DE
777 {
778 case REG:
779 case SUBREG:
20160347
MK
780 case CALL:
781 return 0;
782
d8116890 783 CASE_CONST_ANY:
20160347
MK
784 if (!doing_code_hoisting_p)
785 /* Do not PRE constants. */
786 return 0;
787
788 /* FALLTHRU */
7506f491
DE
789
790 default:
20160347
MK
791 if (doing_code_hoisting_p)
792 /* PRE doesn't implement max_distance restriction. */
793 {
794 int cost;
a261ee49 795 HOST_WIDE_INT max_distance;
20160347
MK
796
797 gcc_assert (!optimize_function_for_speed_p (cfun)
798 && optimize_function_for_size_p (cfun));
e548c9df 799 cost = set_src_cost (x, mode, 0);
20160347
MK
800
801 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
802 {
a261ee49
ML
803 max_distance
804 = ((HOST_WIDE_INT)GCSE_COST_DISTANCE_RATIO * cost) / 10;
20160347
MK
805 if (max_distance == 0)
806 return 0;
807
808 gcc_assert (max_distance > 0);
809 }
810 else
811 max_distance = 0;
812
813 if (max_distance_ptr)
814 *max_distance_ptr = max_distance;
815 }
816
0683fd27 817 return can_assign_to_reg_without_clobbers_p (x, mode);
7506f491 818 }
1707bafa
RS
819}
820
df35c271 821/* Used internally by can_assign_to_reg_without_clobbers_p. */
1707bafa 822
cf92a178 823static GTY(()) rtx_insn *test_insn;
1707bafa 824
0683fd27
KT
825/* Return true if we can assign X to a pseudo register of mode MODE
826 such that the resulting insn does not result in clobbering a hard
827 register as a side-effect.
ec0a1343
JB
828
829 Additionally, if the target requires it, check that the resulting insn
830 can be copied. If it cannot, this means that X is special and probably
831 has hidden side-effects we don't want to mess with.
832
df35c271
SB
833 This function is typically used by code motion passes, to verify
834 that it is safe to insert an insn without worrying about clobbering
835 maybe live hard regs. */
1707bafa 836
df35c271 837bool
0683fd27 838can_assign_to_reg_without_clobbers_p (rtx x, machine_mode mode)
1707bafa
RS
839{
840 int num_clobbers = 0;
841 int icode;
0dbaf51e 842 bool can_assign = false;
7506f491 843
fb0c0a12 844 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
0683fd27 845 if (general_operand (x, mode))
fb0c0a12
RK
846 return 1;
847 else if (GET_MODE (x) == VOIDmode)
848 return 0;
849
850 /* Otherwise, check if we can make a valid insn from it. First initialize
851 our test insn if we haven't already. */
852 if (test_insn == 0)
853 {
854 test_insn
f7df4a84 855 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
fb0c0a12
RK
856 FIRST_PSEUDO_REGISTER * 2),
857 const0_rtx));
0f82e5c9 858 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
0dbaf51e 859 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
fb0c0a12
RK
860 }
861
862 /* Now make an insn like the one we would make when GCSE'ing and see if
863 valid. */
0683fd27 864 PUT_MODE (SET_DEST (PATTERN (test_insn)), mode);
fb0c0a12 865 SET_SRC (PATTERN (test_insn)) = x;
b8698a0f 866
ec0a1343 867 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
b8698a0f 868
0dbaf51e
SB
869 /* If the test insn is valid and doesn't need clobbers, and the target also
870 has no objections, we're good. */
871 if (icode >= 0
872 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
873 && ! (targetm.cannot_copy_insn_p
874 && targetm.cannot_copy_insn_p (test_insn)))
875 can_assign = true;
b8698a0f 876
0dbaf51e
SB
877 /* Make sure test_insn doesn't have any pointers into GC space. */
878 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
b8698a0f 879
0dbaf51e 880 return can_assign;
7506f491
DE
881}
882
cc2902df 883/* Return nonzero if the operands of expression X are unchanged from the
7506f491
DE
884 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
885 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
886
887static int
cf92a178 888oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
7506f491 889{
c4c81601 890 int i, j;
7506f491 891 enum rtx_code code;
6f7d635c 892 const char *fmt;
7506f491 893
7506f491
DE
894 if (x == 0)
895 return 1;
896
897 code = GET_CODE (x);
898 switch (code)
899 {
900 case REG:
80c29cc4
RZ
901 {
902 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
903
904 if (info->last_bb != current_bb)
905 return 1;
589005ff 906 if (avail_p)
4a81774c 907 return info->last_set < DF_INSN_LUID (insn);
80c29cc4 908 else
4a81774c 909 return info->first_set >= DF_INSN_LUID (insn);
80c29cc4 910 }
7506f491
DE
911
912 case MEM:
85c0f02d
SB
913 if (! flag_gcse_lm
914 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
915 x, avail_p))
a13d4ebf 916 return 0;
7506f491 917 else
c4c81601 918 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
7506f491
DE
919
920 case PRE_DEC:
921 case PRE_INC:
922 case POST_DEC:
923 case POST_INC:
4b983fdc
RH
924 case PRE_MODIFY:
925 case POST_MODIFY:
7506f491
DE
926 return 0;
927
928 case PC:
929 case CC0: /*FIXME*/
930 case CONST:
d8116890 931 CASE_CONST_ANY:
7506f491
DE
932 case SYMBOL_REF:
933 case LABEL_REF:
934 case ADDR_VEC:
935 case ADDR_DIFF_VEC:
936 return 1;
937
938 default:
939 break;
940 }
941
c4c81601 942 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
7506f491
DE
943 {
944 if (fmt[i] == 'e')
945 {
c4c81601
RK
946 /* If we are about to do the last recursive call needed at this
947 level, change it into iteration. This function is called enough
948 to be worth it. */
7506f491 949 if (i == 0)
c4c81601
RK
950 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
951
952 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
7506f491
DE
953 return 0;
954 }
955 else if (fmt[i] == 'E')
c4c81601
RK
956 for (j = 0; j < XVECLEN (x, i); j++)
957 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
958 return 0;
7506f491
DE
959 }
960
961 return 1;
962}
963
43c8a043 964/* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
a13d4ebf 965
43c8a043
EB
966struct mem_conflict_info
967{
968 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
969 see if a memory store conflicts with this memory load. */
970 const_rtx mem;
a13d4ebf 971
43c8a043
EB
972 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
973 references. */
974 bool conflict;
975};
976
977/* DEST is the output of an instruction. If it is a memory reference and
978 possibly conflicts with the load found in DATA, then communicate this
979 information back through DATA. */
a13d4ebf
AM
980
981static void
7bc980e1 982mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
43c8a043 983 void *data)
a13d4ebf 984{
43c8a043
EB
985 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
986
a13d4ebf
AM
987 while (GET_CODE (dest) == SUBREG
988 || GET_CODE (dest) == ZERO_EXTRACT
a13d4ebf
AM
989 || GET_CODE (dest) == STRICT_LOW_PART)
990 dest = XEXP (dest, 0);
991
992 /* If DEST is not a MEM, then it will not conflict with the load. Note
993 that function calls are assumed to clobber memory, but are handled
994 elsewhere. */
7b1b4aed 995 if (! MEM_P (dest))
a13d4ebf 996 return;
aaa4ca30 997
a13d4ebf 998 /* If we are setting a MEM in our list of specially recognized MEMs,
589005ff 999 don't mark as killed this time. */
43c8a043 1000 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
a13d4ebf
AM
1001 {
1002 if (!find_rtx_in_ldst (dest))
43c8a043 1003 mci->conflict = true;
a13d4ebf
AM
1004 return;
1005 }
aaa4ca30 1006
53d9622b 1007 if (true_dependence (dest, GET_MODE (dest), mci->mem))
43c8a043 1008 mci->conflict = true;
a13d4ebf
AM
1009}
1010
1011/* Return nonzero if the expression in X (a memory reference) is killed
4a81774c 1012 in block BB before or after the insn with the LUID in UID_LIMIT.
a13d4ebf
AM
1013 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1014 before UID_LIMIT.
1015
1016 To check the entire block, set UID_LIMIT to max_uid + 1 and
1017 AVAIL_P to 0. */
1018
1019static int
43c8a043
EB
1020load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1021 int avail_p)
a13d4ebf 1022{
e26d1bb2
DM
1023 vec<rtx_insn *> list = modify_mem_list[bb->index];
1024 rtx_insn *setter;
6409abe3 1025 unsigned ix;
16c5b95d
MH
1026
1027 /* If this is a readonly then we aren't going to be changing it. */
1028 if (MEM_READONLY_P (x))
1029 return 0;
1030
9771b263 1031 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
a13d4ebf 1032 {
43c8a043
EB
1033 struct mem_conflict_info mci;
1034
a13d4ebf
AM
1035 /* Ignore entries in the list that do not apply. */
1036 if ((avail_p
6409abe3 1037 && DF_INSN_LUID (setter) < uid_limit)
a13d4ebf 1038 || (! avail_p
6409abe3
NF
1039 && DF_INSN_LUID (setter) > uid_limit))
1040 continue;
a13d4ebf
AM
1041
1042 /* If SETTER is a call everything is clobbered. Note that calls
1043 to pure functions are never put on the list, so we need not
1044 worry about them. */
7b1b4aed 1045 if (CALL_P (setter))
a13d4ebf
AM
1046 return 1;
1047
1048 /* SETTER must be an INSN of some kind that sets memory. Call
43c8a043
EB
1049 note_stores to examine each hunk of memory that is modified. */
1050 mci.mem = x;
1051 mci.conflict = false;
1052 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1053 if (mci.conflict)
a13d4ebf 1054 return 1;
a13d4ebf
AM
1055 }
1056 return 0;
1057}
1058
cc2902df 1059/* Return nonzero if the operands of expression X are unchanged from
7506f491
DE
1060 the start of INSN's basic block up to but not including INSN. */
1061
1062static int
cf92a178 1063oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
7506f491
DE
1064{
1065 return oprs_unchanged_p (x, insn, 0);
1066}
1067
cc2902df 1068/* Return nonzero if the operands of expression X are unchanged from
7506f491
DE
1069 INSN to the end of INSN's basic block. */
1070
1071static int
cf92a178 1072oprs_available_p (const_rtx x, const rtx_insn *insn)
7506f491
DE
1073{
1074 return oprs_unchanged_p (x, insn, 1);
1075}
1076
1077/* Hash expression X.
c4c81601
RK
1078
1079 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1080 indicating if a volatile operand is found or if the expression contains
b58b21d5 1081 something we don't want to insert in the table. HASH_TABLE_SIZE is
0516f6fe 1082 the current size of the hash table to be probed. */
7506f491
DE
1083
1084static unsigned int
ef4bddc2 1085hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
b58b21d5 1086 int hash_table_size)
7506f491
DE
1087{
1088 unsigned int hash;
1089
1090 *do_not_record_p = 0;
1091
43c8a043 1092 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
7506f491
DE
1093 return hash % hash_table_size;
1094}
172890a2 1095
0516f6fe 1096/* Return nonzero if exp1 is equivalent to exp2. */
7506f491
DE
1097
1098static int
ed7a4b4b 1099expr_equiv_p (const_rtx x, const_rtx y)
7506f491 1100{
0516f6fe 1101 return exp_equiv_p (x, y, 0, true);
7506f491
DE
1102}
1103
02280659 1104/* Insert expression X in INSN in the hash TABLE.
7506f491
DE
1105 If it is already present, record it as the last occurrence in INSN's
1106 basic block.
1107
1108 MODE is the mode of the value X is being stored into.
1109 It is only used if X is a CONST_INT.
1110
cc2902df 1111 ANTIC_P is nonzero if X is an anticipatable expression.
20160347
MK
1112 AVAIL_P is nonzero if X is an available expression.
1113
1114 MAX_DISTANCE is the maximum distance in instructions this expression can
1115 be moved. */
7506f491
DE
1116
1117static void
ef4bddc2 1118insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
cf92a178 1119 int antic_p,
ec7f796e
ML
1120 int avail_p, HOST_WIDE_INT max_distance,
1121 struct gcse_hash_table_d *table)
7506f491
DE
1122{
1123 int found, do_not_record_p;
1124 unsigned int hash;
11478306
JH
1125 struct gcse_expr *cur_expr, *last_expr = NULL;
1126 struct gcse_occr *antic_occr, *avail_occr;
7506f491 1127
02280659 1128 hash = hash_expr (x, mode, &do_not_record_p, table->size);
7506f491
DE
1129
1130 /* Do not insert expression in table if it contains volatile operands,
1131 or if hash_expr determines the expression is something we don't want
1132 to or can't handle. */
1133 if (do_not_record_p)
1134 return;
1135
02280659 1136 cur_expr = table->table[hash];
7506f491
DE
1137 found = 0;
1138
c4c81601 1139 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
7506f491
DE
1140 {
1141 /* If the expression isn't found, save a pointer to the end of
1142 the list. */
1143 last_expr = cur_expr;
1144 cur_expr = cur_expr->next_same_hash;
1145 }
1146
1147 if (! found)
1148 {
11478306
JH
1149 cur_expr = GOBNEW (struct gcse_expr);
1150 bytes_used += sizeof (struct gcse_expr);
02280659 1151 if (table->table[hash] == NULL)
c4c81601 1152 /* This is the first pattern that hashed to this index. */
02280659 1153 table->table[hash] = cur_expr;
7506f491 1154 else
c4c81601
RK
1155 /* Add EXPR to end of this hash chain. */
1156 last_expr->next_same_hash = cur_expr;
1157
589005ff 1158 /* Set the fields of the expr element. */
7506f491 1159 cur_expr->expr = x;
02280659 1160 cur_expr->bitmap_index = table->n_elems++;
7506f491
DE
1161 cur_expr->next_same_hash = NULL;
1162 cur_expr->antic_occr = NULL;
1163 cur_expr->avail_occr = NULL;
20160347
MK
1164 gcc_assert (max_distance >= 0);
1165 cur_expr->max_distance = max_distance;
7506f491 1166 }
20160347
MK
1167 else
1168 gcc_assert (cur_expr->max_distance == max_distance);
7506f491
DE
1169
1170 /* Now record the occurrence(s). */
7506f491
DE
1171 if (antic_p)
1172 {
1173 antic_occr = cur_expr->antic_occr;
1174
b0de17ef
SB
1175 if (antic_occr
1176 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
b6e47ceb 1177 antic_occr = NULL;
7506f491
DE
1178
1179 if (antic_occr)
c4c81601
RK
1180 /* Found another instance of the expression in the same basic block.
1181 Prefer the currently recorded one. We want the first one in the
1182 block and the block is scanned from start to end. */
1183 ; /* nothing to do */
7506f491
DE
1184 else
1185 {
1186 /* First occurrence of this expression in this basic block. */
11478306
JH
1187 antic_occr = GOBNEW (struct gcse_occr);
1188 bytes_used += sizeof (struct gcse_occr);
7506f491 1189 antic_occr->insn = insn;
b6e47ceb 1190 antic_occr->next = cur_expr->antic_occr;
f9957958 1191 antic_occr->deleted_p = 0;
b6e47ceb 1192 cur_expr->antic_occr = antic_occr;
7506f491
DE
1193 }
1194 }
1195
1196 if (avail_p)
1197 {
1198 avail_occr = cur_expr->avail_occr;
1199
b0de17ef
SB
1200 if (avail_occr
1201 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
7506f491 1202 {
b6e47ceb
JL
1203 /* Found another instance of the expression in the same basic block.
1204 Prefer this occurrence to the currently recorded one. We want
1205 the last one in the block and the block is scanned from start
1206 to end. */
1207 avail_occr->insn = insn;
7506f491 1208 }
7506f491
DE
1209 else
1210 {
1211 /* First occurrence of this expression in this basic block. */
11478306
JH
1212 avail_occr = GOBNEW (struct gcse_occr);
1213 bytes_used += sizeof (struct gcse_occr);
7506f491 1214 avail_occr->insn = insn;
b6e47ceb 1215 avail_occr->next = cur_expr->avail_occr;
f9957958 1216 avail_occr->deleted_p = 0;
b6e47ceb 1217 cur_expr->avail_occr = avail_occr;
7506f491
DE
1218 }
1219 }
1220}
1221
43c8a043 1222/* Scan SET present in INSN and add an entry to the hash TABLE. */
7506f491
DE
1223
1224static void
11478306 1225hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
7506f491 1226{
43c8a043
EB
1227 rtx src = SET_SRC (set);
1228 rtx dest = SET_DEST (set);
172890a2 1229 rtx note;
7506f491 1230
6e72d1e9 1231 if (GET_CODE (src) == CALL)
02280659 1232 hash_scan_call (src, insn, table);
7506f491 1233
7b1b4aed 1234 else if (REG_P (dest))
7506f491 1235 {
172890a2 1236 unsigned int regno = REGNO (dest);
ec7f796e 1237 HOST_WIDE_INT max_distance = 0;
7506f491 1238
29470771
SB
1239 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1240
90631280
PB
1241 This allows us to do a single GCSE pass and still eliminate
1242 redundant constants, addresses or other expressions that are
29470771
SB
1243 constructed with multiple instructions.
1244
e45425ec 1245 However, keep the original SRC if INSN is a simple reg-reg move.
29470771
SB
1246 In this case, there will almost always be a REG_EQUAL note on the
1247 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1248 for INSN, we miss copy propagation opportunities and we perform the
1249 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1250 do more than one PRE GCSE pass.
1251
fa10beec 1252 Note that this does not impede profitable constant propagations. We
29470771 1253 "look through" reg-reg sets in lookup_avail_set. */
90631280
PB
1254 note = find_reg_equal_equiv_note (insn);
1255 if (note != 0
29470771
SB
1256 && REG_NOTE_KIND (note) == REG_EQUAL
1257 && !REG_P (src)
e548c9df 1258 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
f7df4a84 1259 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
172890a2 1260
7506f491 1261 /* Only record sets of pseudo-regs in the hash table. */
e45425ec 1262 if (regno >= FIRST_PSEUDO_REGISTER
7506f491 1263 /* Don't GCSE something if we can't do a reg/reg copy. */
773eae39 1264 && can_copy_p (GET_MODE (dest))
068473ec 1265 /* GCSE commonly inserts instruction after the insn. We can't
1d65f45c
RH
1266 do that easily for EH edges so disable GCSE on these for now. */
1267 /* ??? We can now easily create new EH landing pads at the
1268 gimple level, for splitting edges; there's no reason we
1269 can't do the same thing at the rtl level. */
1270 && !can_throw_internal (insn)
7506f491 1271 /* Is SET_SRC something we want to gcse? */
e548c9df 1272 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
172890a2 1273 /* Don't CSE a nop. */
43c8a043 1274 && ! set_noop_p (set)
43e72072
JJ
1275 /* Don't GCSE if it has attached REG_EQUIV note.
1276 At this point this only function parameters should have
1277 REG_EQUIV notes and if the argument slot is used somewhere
a1f300c0 1278 explicitly, it means address of parameter has been taken,
43e72072 1279 so we should not extend the lifetime of the pseudo. */
90631280 1280 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
7506f491
DE
1281 {
1282 /* An expression is not anticipatable if its operands are
52d76e11 1283 modified before this insn or if this is not the only SET in
6fb5fa3c
DB
1284 this insn. The latter condition does not have to mean that
1285 SRC itself is not anticipatable, but we just will not be
1286 able to handle code motion of insns with multiple sets. */
1287 int antic_p = oprs_anticipatable_p (src, insn)
1288 && !multiple_sets (insn);
7506f491 1289 /* An expression is not available if its operands are
eb296bd9
GK
1290 subsequently modified, including this insn. It's also not
1291 available if this is a branch, because we can't insert
1292 a set after the branch. */
1293 int avail_p = (oprs_available_p (src, insn)
1294 && ! JUMP_P (insn));
c4c81601 1295
20160347
MK
1296 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1297 max_distance, table);
7506f491 1298 }
7506f491 1299 }
d91edf86 1300 /* In case of store we want to consider the memory value as available in
f5f2e3cd
MH
1301 the REG stored in that memory. This makes it possible to remove
1302 redundant loads from due to stores to the same location. */
7b1b4aed 1303 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
e548c9df
AM
1304 {
1305 unsigned int regno = REGNO (src);
ec7f796e 1306 HOST_WIDE_INT max_distance = 0;
e548c9df
AM
1307
1308 /* Only record sets of pseudo-regs in the hash table. */
1309 if (regno >= FIRST_PSEUDO_REGISTER
1310 /* Don't GCSE something if we can't do a reg/reg copy. */
1311 && can_copy_p (GET_MODE (src))
1312 /* GCSE commonly inserts instruction after the insn. We can't
1313 do that easily for EH edges so disable GCSE on these for now. */
1314 && !can_throw_internal (insn)
1315 /* Is SET_DEST something we want to gcse? */
1316 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1317 /* Don't CSE a nop. */
1318 && ! set_noop_p (set)
1319 /* Don't GCSE if it has attached REG_EQUIV note.
1320 At this point this only function parameters should have
1321 REG_EQUIV notes and if the argument slot is used somewhere
1322 explicitly, it means address of parameter has been taken,
1323 so we should not extend the lifetime of the pseudo. */
1324 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1325 || ! MEM_P (XEXP (note, 0))))
1326 {
1327 /* Stores are never anticipatable. */
1328 int antic_p = 0;
1329 /* An expression is not available if its operands are
1330 subsequently modified, including this insn. It's also not
1331 available if this is a branch, because we can't insert
1332 a set after the branch. */
1333 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1334
1335 /* Record the memory expression (DEST) in the hash table. */
1336 insert_expr_in_table (dest, GET_MODE (dest), insn,
1337 antic_p, avail_p, max_distance, table);
1338 }
1339 }
7506f491
DE
1340}
1341
1342static void
cf92a178 1343hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
11478306 1344 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
7506f491
DE
1345{
1346 /* Currently nothing to do. */
1347}
1348
1349static void
cf92a178 1350hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
11478306 1351 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
7506f491
DE
1352{
1353 /* Currently nothing to do. */
1354}
1355
43c8a043 1356/* Process INSN and add hash table entries as appropriate. */
7506f491
DE
1357
1358static void
11478306 1359hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
7506f491
DE
1360{
1361 rtx pat = PATTERN (insn);
c4c81601 1362 int i;
7506f491
DE
1363
1364 /* Pick out the sets of INSN and for other forms of instructions record
1365 what's been modified. */
1366
172890a2 1367 if (GET_CODE (pat) == SET)
02280659 1368 hash_scan_set (pat, insn, table);
43c8a043
EB
1369
1370 else if (GET_CODE (pat) == CLOBBER)
1371 hash_scan_clobber (pat, insn, table);
1372
1373 else if (GET_CODE (pat) == CALL)
1374 hash_scan_call (pat, insn, table);
1375
7506f491 1376 else if (GET_CODE (pat) == PARALLEL)
c4c81601
RK
1377 for (i = 0; i < XVECLEN (pat, 0); i++)
1378 {
1379 rtx x = XVECEXP (pat, 0, i);
7506f491 1380
c4c81601 1381 if (GET_CODE (x) == SET)
02280659 1382 hash_scan_set (x, insn, table);
c4c81601 1383 else if (GET_CODE (x) == CLOBBER)
02280659 1384 hash_scan_clobber (x, insn, table);
6e72d1e9 1385 else if (GET_CODE (x) == CALL)
02280659 1386 hash_scan_call (x, insn, table);
c4c81601 1387 }
7506f491
DE
1388}
1389
43c8a043
EB
1390/* Dump the hash table TABLE to file FILE under the name NAME. */
1391
7506f491 1392static void
11478306 1393dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
7506f491
DE
1394{
1395 int i;
1396 /* Flattened out table, so it's printed in proper order. */
11478306 1397 struct gcse_expr **flat_table;
4da896b2 1398 unsigned int *hash_val;
11478306 1399 struct gcse_expr *expr;
4da896b2 1400
11478306 1401 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1b4572a8 1402 hash_val = XNEWVEC (unsigned int, table->n_elems);
7506f491 1403
02280659
ZD
1404 for (i = 0; i < (int) table->size; i++)
1405 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
c4c81601
RK
1406 {
1407 flat_table[expr->bitmap_index] = expr;
1408 hash_val[expr->bitmap_index] = i;
1409 }
7506f491
DE
1410
1411 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
02280659 1412 name, table->size, table->n_elems);
7506f491 1413
02280659 1414 for (i = 0; i < (int) table->n_elems; i++)
21318741
RK
1415 if (flat_table[i] != 0)
1416 {
a0ac9e5a 1417 expr = flat_table[i];
ec7f796e
ML
1418 fprintf (file, "Index %d (hash value %d; max distance "
1419 HOST_WIDE_INT_PRINT_DEC ")\n ",
20160347 1420 expr->bitmap_index, hash_val[i], expr->max_distance);
a0ac9e5a 1421 print_rtl (file, expr->expr);
21318741
RK
1422 fprintf (file, "\n");
1423 }
7506f491
DE
1424
1425 fprintf (file, "\n");
4da896b2 1426
4da896b2
MM
1427 free (flat_table);
1428 free (hash_val);
7506f491
DE
1429}
1430
1431/* Record register first/last/block set information for REGNO in INSN.
c4c81601 1432
80c29cc4 1433 first_set records the first place in the block where the register
7506f491 1434 is set and is used to compute "anticipatability".
c4c81601 1435
80c29cc4 1436 last_set records the last place in the block where the register
7506f491 1437 is set and is used to compute "availability".
c4c81601 1438
80c29cc4 1439 last_bb records the block for which first_set and last_set are
4a81774c 1440 valid, as a quick test to invalidate them. */
7506f491
DE
1441
1442static void
170065c9 1443record_last_reg_set_info (rtx_insn *insn, int regno)
7506f491 1444{
80c29cc4 1445 struct reg_avail_info *info = &reg_avail_info[regno];
4a81774c 1446 int luid = DF_INSN_LUID (insn);
c4c81601 1447
4a81774c 1448 info->last_set = luid;
80c29cc4
RZ
1449 if (info->last_bb != current_bb)
1450 {
1451 info->last_bb = current_bb;
4a81774c 1452 info->first_set = luid;
80c29cc4 1453 }
7506f491
DE
1454}
1455
a13d4ebf
AM
1456/* Record memory modification information for INSN. We do not actually care
1457 about the memory location(s) that are set, or even how they are set (consider
1458 a CALL_INSN). We merely need to record which insns modify memory. */
7506f491
DE
1459
1460static void
e26d1bb2 1461record_last_mem_set_info (rtx_insn *insn)
7506f491 1462{
85c0f02d
SB
1463 if (! flag_gcse_lm)
1464 return;
0fe854a7 1465
af3eb110
JL
1466 record_last_mem_set_info_common (insn, modify_mem_list,
1467 canon_modify_mem_list,
1468 modify_mem_list_set,
1469 blocks_with_calls);
7506f491
DE
1470}
1471
7506f491 1472/* Called from compute_hash_table via note_stores to handle one
84832317
MM
1473 SET or CLOBBER in an insn. DATA is really the instruction in which
1474 the SET is taking place. */
7506f491
DE
1475
1476static void
7bc980e1 1477record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
7506f491 1478{
e26d1bb2 1479 rtx_insn *last_set_insn = (rtx_insn *) data;
84832317 1480
7506f491
DE
1481 if (GET_CODE (dest) == SUBREG)
1482 dest = SUBREG_REG (dest);
1483
7b1b4aed 1484 if (REG_P (dest))
7506f491 1485 record_last_reg_set_info (last_set_insn, REGNO (dest));
7b1b4aed 1486 else if (MEM_P (dest)
7506f491
DE
1487 /* Ignore pushes, they clobber nothing. */
1488 && ! push_operand (dest, GET_MODE (dest)))
1489 record_last_mem_set_info (last_set_insn);
1490}
1491
e45425ec 1492/* Top level function to create an expression hash table.
7506f491
DE
1493
1494 Expression entries are placed in the hash table if
1495 - they are of the form (set (pseudo-reg) src),
1496 - src is something we want to perform GCSE on,
1497 - none of the operands are subsequently modified in the block
1498
7506f491
DE
1499 Currently src must be a pseudo-reg or a const_int.
1500
02280659 1501 TABLE is the table computed. */
7506f491
DE
1502
1503static void
11478306 1504compute_hash_table_work (struct gcse_hash_table_d *table)
7506f491 1505{
5f39ad47 1506 int i;
7506f491 1507
a13d4ebf 1508 /* re-Cache any INSN_LIST nodes we have allocated. */
73991d6a 1509 clear_modify_mem_tables ();
7506f491 1510 /* Some working arrays used to track first and last set in each block. */
5f39ad47 1511 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
80c29cc4 1512
5f39ad47 1513 for (i = 0; i < max_reg_num (); ++i)
e0082a72 1514 reg_avail_info[i].last_bb = NULL;
7506f491 1515
11cd3bed 1516 FOR_EACH_BB_FN (current_bb, cfun)
7506f491 1517 {
cf92a178 1518 rtx_insn *insn;
770ae6cc 1519 unsigned int regno;
7506f491
DE
1520
1521 /* First pass over the instructions records information used to
4a81774c 1522 determine when registers and memory are first and last set. */
eb232f4e 1523 FOR_BB_INSNS (current_bb, insn)
7506f491 1524 {
a344c9f1 1525 if (!NONDEBUG_INSN_P (insn))
7506f491
DE
1526 continue;
1527
7b1b4aed 1528 if (CALL_P (insn))
7506f491 1529 {
c7fb4c7a
SB
1530 hard_reg_set_iterator hrsi;
1531 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1532 0, regno, hrsi)
1533 record_last_reg_set_info (insn, regno);
c4c81601 1534
e45425ec
SB
1535 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1536 record_last_mem_set_info (insn);
7506f491
DE
1537 }
1538
84832317 1539 note_stores (PATTERN (insn), record_last_set_info, insn);
7506f491
DE
1540 }
1541
1542 /* The next pass builds the hash table. */
eb232f4e 1543 FOR_BB_INSNS (current_bb, insn)
a344c9f1 1544 if (NONDEBUG_INSN_P (insn))
4a8cae83 1545 hash_scan_insn (insn, table);
7506f491
DE
1546 }
1547
80c29cc4
RZ
1548 free (reg_avail_info);
1549 reg_avail_info = NULL;
7506f491
DE
1550}
1551
02280659 1552/* Allocate space for the set/expr hash TABLE.
e45425ec 1553 It is used to determine the number of buckets to use. */
7506f491
DE
1554
1555static void
11478306 1556alloc_hash_table (struct gcse_hash_table_d *table)
7506f491
DE
1557{
1558 int n;
1559
b5b8b0ac
AO
1560 n = get_max_insn_count ();
1561
1562 table->size = n / 4;
02280659
ZD
1563 if (table->size < 11)
1564 table->size = 11;
c4c81601 1565
7506f491
DE
1566 /* Attempt to maintain efficient use of hash table.
1567 Making it an odd number is simplest for now.
1568 ??? Later take some measurements. */
02280659 1569 table->size |= 1;
11478306
JH
1570 n = table->size * sizeof (struct gcse_expr *);
1571 table->table = GNEWVAR (struct gcse_expr *, n);
7506f491
DE
1572}
1573
02280659 1574/* Free things allocated by alloc_hash_table. */
7506f491
DE
1575
1576static void
11478306 1577free_hash_table (struct gcse_hash_table_d *table)
7506f491 1578{
02280659 1579 free (table->table);
7506f491
DE
1580}
1581
e45425ec 1582/* Compute the expression hash table TABLE. */
7506f491
DE
1583
1584static void
11478306 1585compute_hash_table (struct gcse_hash_table_d *table)
7506f491
DE
1586{
1587 /* Initialize count of number of entries in hash table. */
02280659 1588 table->n_elems = 0;
11478306 1589 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
7506f491 1590
02280659 1591 compute_hash_table_work (table);
7506f491
DE
1592}
1593\f
1594/* Expression tracking support. */
1595
e45425ec
SB
1596/* Clear canon_modify_mem_list and modify_mem_list tables. */
1597static void
1598clear_modify_mem_tables (void)
0e3f0221 1599{
e45425ec
SB
1600 unsigned i;
1601 bitmap_iterator bi;
0e3f0221 1602
e45425ec 1603 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
0e3f0221 1604 {
9771b263
DN
1605 modify_mem_list[i].release ();
1606 canon_modify_mem_list[i].release ();
0e3f0221 1607 }
e45425ec
SB
1608 bitmap_clear (modify_mem_list_set);
1609 bitmap_clear (blocks_with_calls);
0e3f0221
RS
1610}
1611
e45425ec 1612/* Release memory used by modify_mem_list_set. */
0e3f0221 1613
e45425ec
SB
1614static void
1615free_modify_mem_tables (void)
e129b3f9 1616{
e45425ec
SB
1617 clear_modify_mem_tables ();
1618 free (modify_mem_list);
1619 free (canon_modify_mem_list);
1620 modify_mem_list = 0;
1621 canon_modify_mem_list = 0;
e129b3f9 1622}
e45425ec 1623\f
a65f3558 1624/* Compute PRE+LCM working variables. */
7506f491
DE
1625
1626/* Local properties of expressions. */
43c8a043 1627
7506f491 1628/* Nonzero for expressions that are transparent in the block. */
a65f3558 1629static sbitmap *transp;
7506f491 1630
a65f3558
JL
1631/* Nonzero for expressions that are computed (available) in the block. */
1632static sbitmap *comp;
7506f491 1633
a65f3558
JL
1634/* Nonzero for expressions that are locally anticipatable in the block. */
1635static sbitmap *antloc;
7506f491 1636
a65f3558
JL
1637/* Nonzero for expressions where this block is an optimal computation
1638 point. */
1639static sbitmap *pre_optimal;
5c35539b 1640
a65f3558
JL
1641/* Nonzero for expressions which are redundant in a particular block. */
1642static sbitmap *pre_redundant;
7506f491 1643
a42cd965
AM
1644/* Nonzero for expressions which should be inserted on a specific edge. */
1645static sbitmap *pre_insert_map;
1646
1647/* Nonzero for expressions which should be deleted in a specific block. */
1648static sbitmap *pre_delete_map;
1649
a65f3558 1650/* Allocate vars used for PRE analysis. */
7506f491
DE
1651
1652static void
1d088dee 1653alloc_pre_mem (int n_blocks, int n_exprs)
7506f491 1654{
a65f3558
JL
1655 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1656 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1657 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5faf03ae 1658
a42cd965
AM
1659 pre_optimal = NULL;
1660 pre_redundant = NULL;
1661 pre_insert_map = NULL;
1662 pre_delete_map = NULL;
a42cd965 1663 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
c4c81601 1664
a42cd965 1665 /* pre_insert and pre_delete are allocated later. */
7506f491
DE
1666}
1667
a65f3558 1668/* Free vars used for PRE analysis. */
7506f491
DE
1669
1670static void
1d088dee 1671free_pre_mem (void)
7506f491 1672{
5a660bff
DB
1673 sbitmap_vector_free (transp);
1674 sbitmap_vector_free (comp);
bd3675fc
JL
1675
1676 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
7506f491 1677
a42cd965 1678 if (pre_optimal)
5a660bff 1679 sbitmap_vector_free (pre_optimal);
a42cd965 1680 if (pre_redundant)
5a660bff 1681 sbitmap_vector_free (pre_redundant);
a42cd965 1682 if (pre_insert_map)
5a660bff 1683 sbitmap_vector_free (pre_insert_map);
a42cd965 1684 if (pre_delete_map)
5a660bff 1685 sbitmap_vector_free (pre_delete_map);
a42cd965 1686
bd3675fc 1687 transp = comp = NULL;
a42cd965 1688 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
7506f491
DE
1689}
1690
9b774782
JL
1691/* Remove certain expressions from anticipatable and transparent
1692 sets of basic blocks that have incoming abnormal edge.
1693 For PRE remove potentially trapping expressions to avoid placing
1694 them on abnormal edges. For hoisting remove memory references that
1695 can be clobbered by calls. */
7506f491
DE
1696
1697static void
9b774782 1698prune_expressions (bool pre_p)
7506f491 1699{
11478306 1700 struct gcse_expr *expr;
b614171e 1701 unsigned int ui;
9b774782 1702 basic_block bb;
c66e8ae9 1703
7ba9e72d 1704 auto_sbitmap prune_exprs (expr_hash_table.n_elems);
f61e445a 1705 bitmap_clear (prune_exprs);
02280659 1706 for (ui = 0; ui < expr_hash_table.size; ui++)
b614171e 1707 {
43c8a043 1708 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
9b774782
JL
1709 {
1710 /* Note potentially trapping expressions. */
43c8a043 1711 if (may_trap_p (expr->expr))
9b774782 1712 {
d7c028c0 1713 bitmap_set_bit (prune_exprs, expr->bitmap_index);
9b774782
JL
1714 continue;
1715 }
b614171e 1716
d80c6d02 1717 if (!pre_p && contains_mem_rtx_p (expr->expr))
9b774782
JL
1718 /* Note memory references that can be clobbered by a call.
1719 We do not split abnormal edges in hoisting, so would
1720 a memory reference get hoisted along an abnormal edge,
1721 it would be placed /before/ the call. Therefore, only
1722 constant memory references can be hoisted along abnormal
1723 edges. */
1724 {
d80c6d02
JL
1725 rtx x = expr->expr;
1726
1727 /* Common cases where we might find the MEM which may allow us
1728 to avoid pruning the expression. */
1729 while (GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1730 x = XEXP (x, 0);
1731
1732 /* If we found the MEM, go ahead and look at it to see if it has
1733 properties that allow us to avoid pruning its expression out
1734 of the tables. */
1735 if (MEM_P (x))
1736 {
1737 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
1738 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
1739 continue;
1740
1741 if (MEM_READONLY_P (x)
1742 && !MEM_VOLATILE_P (x)
1743 && MEM_NOTRAP_P (x))
1744 /* Constant memory reference, e.g., a PIC address. */
1745 continue;
1746 }
9b774782
JL
1747
1748 /* ??? Optimally, we would use interprocedural alias
1749 analysis to determine if this mem is actually killed
1750 by this call. */
1751
d7c028c0 1752 bitmap_set_bit (prune_exprs, expr->bitmap_index);
9b774782
JL
1753 }
1754 }
1755 }
c66e8ae9 1756
11cd3bed 1757 FOR_EACH_BB_FN (bb, cfun)
c66e8ae9 1758 {
b614171e 1759 edge e;
628f6a4e 1760 edge_iterator ei;
b614171e
MM
1761
1762 /* If the current block is the destination of an abnormal edge, we
9b774782
JL
1763 kill all trapping (for PRE) and memory (for hoist) expressions
1764 because we won't be able to properly place the instruction on
1765 the edge. So make them neither anticipatable nor transparent.
1766 This is fairly conservative.
1767
1768 ??? For hoisting it may be necessary to check for set-and-jump
1769 instructions here, not just for abnormal edges. The general problem
1770 is that when an expression cannot not be placed right at the end of
1771 a basic block we should account for any side-effects of a subsequent
1772 jump instructions that could clobber the expression. It would
1773 be best to implement this check along the lines of
b11f0116 1774 should_hoist_expr_to_dom where the target block is already known
9b774782
JL
1775 and, hence, there's no need to conservatively prune expressions on
1776 "intermediate" set-and-jump instructions. */
628f6a4e 1777 FOR_EACH_EDGE (e, ei, bb->preds)
9b774782
JL
1778 if ((e->flags & EDGE_ABNORMAL)
1779 && (pre_p || CALL_P (BB_END (e->src))))
b614171e 1780 {
f61e445a 1781 bitmap_and_compl (antloc[bb->index],
9b774782 1782 antloc[bb->index], prune_exprs);
f61e445a 1783 bitmap_and_compl (transp[bb->index],
9b774782 1784 transp[bb->index], prune_exprs);
b614171e
MM
1785 break;
1786 }
9b774782 1787 }
9b774782
JL
1788}
1789
29fa95ed
JL
1790/* It may be necessary to insert a large number of insns on edges to
1791 make the existing occurrences of expressions fully redundant. This
1792 routine examines the set of insertions and deletions and if the ratio
1793 of insertions to deletions is too high for a particular expression, then
1794 the expression is removed from the insertion/deletion sets.
1795
1796 N_ELEMS is the number of elements in the hash table. */
1797
1798static void
1799prune_insertions_deletions (int n_elems)
1800{
1801 sbitmap_iterator sbi;
29fa95ed
JL
1802
1803 /* We always use I to iterate over blocks/edges and J to iterate over
1804 expressions. */
1805 unsigned int i, j;
1806
1807 /* Counts for the number of times an expression needs to be inserted and
1808 number of times an expression can be removed as a result. */
1809 int *insertions = GCNEWVEC (int, n_elems);
1810 int *deletions = GCNEWVEC (int, n_elems);
1811
1812 /* Set of expressions which require too many insertions relative to
1813 the number of deletions achieved. We will prune these out of the
1814 insertion/deletion sets. */
7ba9e72d 1815 auto_sbitmap prune_exprs (n_elems);
f61e445a 1816 bitmap_clear (prune_exprs);
29fa95ed
JL
1817
1818 /* Iterate over the edges counting the number of times each expression
1819 needs to be inserted. */
dc936fb2 1820 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
29fa95ed 1821 {
d4ac4ce2 1822 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
29fa95ed
JL
1823 insertions[j]++;
1824 }
1825
1826 /* Similarly for deletions, but those occur in blocks rather than on
1827 edges. */
8b1c6fd7 1828 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
29fa95ed 1829 {
d4ac4ce2 1830 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
29fa95ed
JL
1831 deletions[j]++;
1832 }
1833
1834 /* Now that we have accurate counts, iterate over the elements in the
1835 hash table and see if any need too many insertions relative to the
1836 number of evaluations that can be removed. If so, mark them in
1837 PRUNE_EXPRS. */
1838 for (j = 0; j < (unsigned) n_elems; j++)
1839 if (deletions[j]
1840 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
d7c028c0 1841 bitmap_set_bit (prune_exprs, j);
29fa95ed
JL
1842
1843 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
d4ac4ce2 1844 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
29fa95ed 1845 {
dc936fb2 1846 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
d7c028c0 1847 bitmap_clear_bit (pre_insert_map[i], j);
29fa95ed 1848
8b1c6fd7 1849 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
d7c028c0 1850 bitmap_clear_bit (pre_delete_map[i], j);
29fa95ed
JL
1851 }
1852
29fa95ed
JL
1853 free (insertions);
1854 free (deletions);
1855}
1856
9b774782 1857/* Top level routine to do the dataflow analysis needed by PRE. */
b614171e 1858
43c8a043 1859static struct edge_list *
9b774782
JL
1860compute_pre_data (void)
1861{
43c8a043 1862 struct edge_list *edge_list;
9b774782
JL
1863 basic_block bb;
1864
1865 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1866 prune_expressions (true);
8b1c6fd7 1867 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
9b774782
JL
1868
1869 /* Compute ae_kill for each basic block using:
1870
1871 ~(TRANSP | COMP)
1872 */
1873
11cd3bed 1874 FOR_EACH_BB_FN (bb, cfun)
9b774782 1875 {
f61e445a
LC
1876 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1877 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
c66e8ae9
JL
1878 }
1879
10d22567 1880 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
a42cd965 1881 ae_kill, &pre_insert_map, &pre_delete_map);
5a660bff 1882 sbitmap_vector_free (antloc);
bd3675fc 1883 antloc = NULL;
5a660bff 1884 sbitmap_vector_free (ae_kill);
589005ff 1885 ae_kill = NULL;
29fa95ed
JL
1886
1887 prune_insertions_deletions (expr_hash_table.n_elems);
43c8a043
EB
1888
1889 return edge_list;
7506f491
DE
1890}
1891\f
1892/* PRE utilities */
1893
cc2902df 1894/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
a65f3558 1895 block BB.
7506f491
DE
1896
1897 VISITED is a pointer to a working buffer for tracking which BB's have
1898 been visited. It is NULL for the top-level call.
1899
1900 We treat reaching expressions that go through blocks containing the same
1901 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1902 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1903 2 as not reaching. The intent is to improve the probability of finding
1904 only one reaching expression and to reduce register lifetimes by picking
1905 the closest such expression. */
1906
1907static int
11478306 1908pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
43c8a043 1909 basic_block bb, char *visited)
7506f491 1910{
36349f8b 1911 edge pred;
628f6a4e 1912 edge_iterator ei;
b8698a0f 1913
628f6a4e 1914 FOR_EACH_EDGE (pred, ei, bb->preds)
7506f491 1915 {
e2d2ed72 1916 basic_block pred_bb = pred->src;
7506f491 1917
fefa31b5 1918 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
7506f491 1919 /* Has predecessor has already been visited? */
0b17ab2f 1920 || visited[pred_bb->index])
c4c81601
RK
1921 ;/* Nothing to do. */
1922
7506f491 1923 /* Does this predecessor generate this expression? */
d7c028c0 1924 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
7506f491
DE
1925 {
1926 /* Is this the occurrence we're looking for?
1927 Note that there's only one generating occurrence per block
1928 so we just need to check the block number. */
a65f3558 1929 if (occr_bb == pred_bb)
7506f491 1930 return 1;
c4c81601 1931
0b17ab2f 1932 visited[pred_bb->index] = 1;
7506f491
DE
1933 }
1934 /* Ignore this predecessor if it kills the expression. */
d7c028c0 1935 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
0b17ab2f 1936 visited[pred_bb->index] = 1;
c4c81601 1937
7506f491
DE
1938 /* Neither gen nor kill. */
1939 else
ac7c5af5 1940 {
0b17ab2f 1941 visited[pred_bb->index] = 1;
89e606c9 1942 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
7506f491 1943 return 1;
ac7c5af5 1944 }
7506f491
DE
1945 }
1946
1947 /* All paths have been checked. */
1948 return 0;
1949}
283a2545
RL
1950
1951/* The wrapper for pre_expr_reaches_here_work that ensures that any
dc297297 1952 memory allocated for that function is returned. */
283a2545
RL
1953
1954static int
11478306 1955pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
283a2545
RL
1956{
1957 int rval;
8b1c6fd7 1958 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
283a2545 1959
8e42ace1 1960 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
283a2545
RL
1961
1962 free (visited);
c4c81601 1963 return rval;
283a2545 1964}
7506f491 1965\f
43c8a043 1966/* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
a42cd965 1967
cf92a178 1968static rtx_insn *
11478306 1969process_insert_insn (struct gcse_expr *expr)
a42cd965
AM
1970{
1971 rtx reg = expr->reaching_reg;
43c8a043 1972 /* Copy the expression to make sure we don't have any sharing issues. */
fb0c0a12 1973 rtx exp = copy_rtx (expr->expr);
cf92a178 1974 rtx_insn *pat;
a42cd965
AM
1975
1976 start_sequence ();
fb0c0a12
RK
1977
1978 /* If the expression is something that's an operand, like a constant,
1979 just copy it to a register. */
1980 if (general_operand (exp, GET_MODE (reg)))
1981 emit_move_insn (reg, exp);
1982
1983 /* Otherwise, make a new insn to compute this expression and make sure the
43c8a043 1984 insn will be recognized (this also adds any needed CLOBBERs). */
282899df
NS
1985 else
1986 {
f7df4a84 1987 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
282899df 1988
57ac4c34 1989 if (insn_invalid_p (insn, false))
2f021b67 1990 gcc_unreachable ();
282899df 1991 }
b8698a0f 1992
2f937369 1993 pat = get_insns ();
a42cd965
AM
1994 end_sequence ();
1995
1996 return pat;
1997}
589005ff 1998
a65f3558
JL
1999/* Add EXPR to the end of basic block BB.
2000
eae7938e 2001 This is used by both the PRE and code hoisting. */
7506f491
DE
2002
2003static void
11478306 2004insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
7506f491 2005{
dc01c3d1 2006 rtx_insn *insn = BB_END (bb);
cf92a178 2007 rtx_insn *new_insn;
7506f491
DE
2008 rtx reg = expr->reaching_reg;
2009 int regno = REGNO (reg);
cf92a178 2010 rtx_insn *pat, *pat_end;
7506f491 2011
a42cd965 2012 pat = process_insert_insn (expr);
282899df 2013 gcc_assert (pat && INSN_P (pat));
2f937369
DM
2014
2015 pat_end = pat;
2016 while (NEXT_INSN (pat_end) != NULL_RTX)
2017 pat_end = NEXT_INSN (pat_end);
7506f491
DE
2018
2019 /* If the last insn is a jump, insert EXPR in front [taking care to
4d6922ee 2020 handle cc0, etc. properly]. Similarly we need to care trapping
068473ec 2021 instructions in presence of non-call exceptions. */
7506f491 2022
7b1b4aed 2023 if (JUMP_P (insn)
4b4bf941 2024 || (NONJUMP_INSN_P (insn)
c5cbcccf
ZD
2025 && (!single_succ_p (bb)
2026 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
7506f491 2027 {
7506f491
DE
2028 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2029 if cc0 isn't set. */
618f4073 2030 if (HAVE_cc0)
7506f491 2031 {
618f4073
TS
2032 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2033 if (note)
2034 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2035 else
2036 {
2037 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2038 if (maybe_cc0_setter
2039 && INSN_P (maybe_cc0_setter)
2040 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2041 insn = maybe_cc0_setter;
2042 }
7506f491 2043 }
618f4073 2044
7506f491 2045 /* FIXME: What if something in cc0/jump uses value set in new insn? */
6fb5fa3c 2046 new_insn = emit_insn_before_noloc (pat, insn, bb);
3947e2f9 2047 }
c4c81601 2048
3947e2f9
RH
2049 /* Likewise if the last insn is a call, as will happen in the presence
2050 of exception handling. */
7b1b4aed 2051 else if (CALL_P (insn)
c5cbcccf
ZD
2052 && (!single_succ_p (bb)
2053 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
3947e2f9 2054 {
42db504c
SB
2055 /* Keeping in mind targets with small register classes and parameters
2056 in registers, we search backward and place the instructions before
2057 the first parameter is loaded. Do this for everyone for consistency
eae7938e 2058 and a presumption that we'll get better code elsewhere as well. */
3947e2f9
RH
2059
2060 /* Since different machines initialize their parameter registers
2061 in different orders, assume nothing. Collect the set of all
2062 parameter registers. */
a813c111 2063 insn = find_first_parameter_load (insn, BB_HEAD (bb));
3947e2f9 2064
b1d26727
JL
2065 /* If we found all the parameter loads, then we want to insert
2066 before the first parameter load.
2067
2068 If we did not find all the parameter loads, then we might have
2069 stopped on the head of the block, which could be a CODE_LABEL.
2070 If we inserted before the CODE_LABEL, then we would be putting
2071 the insn in the wrong basic block. In that case, put the insn
b5229628 2072 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
7b1b4aed 2073 while (LABEL_P (insn)
589ca5cb 2074 || NOTE_INSN_BASIC_BLOCK_P (insn))
b5229628 2075 insn = NEXT_INSN (insn);
c4c81601 2076
6fb5fa3c 2077 new_insn = emit_insn_before_noloc (pat, insn, bb);
7506f491
DE
2078 }
2079 else
6fb5fa3c 2080 new_insn = emit_insn_after_noloc (pat, insn, bb);
7506f491 2081
2f937369 2082 while (1)
a65f3558 2083 {
2f937369 2084 if (INSN_P (pat))
4a81774c 2085 add_label_notes (PATTERN (pat), new_insn);
2f937369
DM
2086 if (pat == pat_end)
2087 break;
2088 pat = NEXT_INSN (pat);
a65f3558 2089 }
3947e2f9 2090
7506f491
DE
2091 gcse_create_count++;
2092
10d22567 2093 if (dump_file)
7506f491 2094 {
10d22567 2095 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
0b17ab2f 2096 bb->index, INSN_UID (new_insn));
10d22567 2097 fprintf (dump_file, "copying expression %d to reg %d\n",
c4c81601 2098 expr->bitmap_index, regno);
7506f491
DE
2099 }
2100}
2101
a42cd965
AM
2102/* Insert partially redundant expressions on edges in the CFG to make
2103 the expressions fully redundant. */
7506f491 2104
a42cd965 2105static int
11478306 2106pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
7506f491 2107{
c4c81601 2108 int e, i, j, num_edges, set_size, did_insert = 0;
a65f3558
JL
2109 sbitmap *inserted;
2110
a42cd965
AM
2111 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2112 if it reaches any of the deleted expressions. */
7506f491 2113
a42cd965
AM
2114 set_size = pre_insert_map[0]->size;
2115 num_edges = NUM_EDGES (edge_list);
02280659 2116 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
f61e445a 2117 bitmap_vector_clear (inserted, num_edges);
7506f491 2118
a42cd965 2119 for (e = 0; e < num_edges; e++)
7506f491
DE
2120 {
2121 int indx;
e2d2ed72 2122 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
a65f3558 2123
a65f3558 2124 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
7506f491 2125 {
a42cd965 2126 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
7506f491 2127
43c8a043
EB
2128 for (j = indx;
2129 insert && j < (int) expr_hash_table.n_elems;
2130 j++, insert >>= 1)
c4c81601
RK
2131 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2132 {
11478306
JH
2133 struct gcse_expr *expr = index_map[j];
2134 struct gcse_occr *occr;
a65f3558 2135
ff7cc307 2136 /* Now look at each deleted occurrence of this expression. */
c4c81601
RK
2137 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2138 {
2139 if (! occr->deleted_p)
2140 continue;
2141
3f117656 2142 /* Insert this expression on this edge if it would
ff7cc307 2143 reach the deleted occurrence in BB. */
d7c028c0 2144 if (!bitmap_bit_p (inserted[e], j))
c4c81601 2145 {
cf92a178 2146 rtx_insn *insn;
c4c81601
RK
2147 edge eg = INDEX_EDGE (edge_list, e);
2148
2149 /* We can't insert anything on an abnormal and
2150 critical edge, so we insert the insn at the end of
2151 the previous block. There are several alternatives
2152 detailed in Morgans book P277 (sec 10.5) for
2153 handling this situation. This one is easiest for
2154 now. */
2155
b16aa8a5 2156 if (eg->flags & EDGE_ABNORMAL)
eae7938e 2157 insert_insn_end_basic_block (index_map[j], bb);
c4c81601
RK
2158 else
2159 {
2160 insn = process_insert_insn (index_map[j]);
2161 insert_insn_on_edge (insn, eg);
2162 }
2163
10d22567 2164 if (dump_file)
c4c81601 2165 {
5f39ad47 2166 fprintf (dump_file, "PRE: edge (%d,%d), ",
0b17ab2f
RH
2167 bb->index,
2168 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
10d22567 2169 fprintf (dump_file, "copy expression %d\n",
c4c81601
RK
2170 expr->bitmap_index);
2171 }
2172
a13d4ebf 2173 update_ld_motion_stores (expr);
d7c028c0 2174 bitmap_set_bit (inserted[e], j);
c4c81601
RK
2175 did_insert = 1;
2176 gcse_create_count++;
2177 }
2178 }
2179 }
7506f491
DE
2180 }
2181 }
5faf03ae 2182
5a660bff 2183 sbitmap_vector_free (inserted);
a42cd965 2184 return did_insert;
7506f491
DE
2185}
2186
073089a7 2187/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
b885908b
MH
2188 Given "old_reg <- expr" (INSN), instead of adding after it
2189 reaching_reg <- old_reg
2190 it's better to do the following:
2191 reaching_reg <- expr
2192 old_reg <- reaching_reg
2193 because this way copy propagation can discover additional PRE
f5f2e3cd
MH
2194 opportunities. But if this fails, we try the old way.
2195 When "expr" is a store, i.e.
2196 given "MEM <- old_reg", instead of adding after it
2197 reaching_reg <- old_reg
2198 it's better to add it before as follows:
2199 reaching_reg <- old_reg
2200 MEM <- reaching_reg. */
7506f491
DE
2201
2202static void
11478306 2203pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
7506f491
DE
2204{
2205 rtx reg = expr->reaching_reg;
2206 int regno = REGNO (reg);
2207 int indx = expr->bitmap_index;
073089a7 2208 rtx pat = PATTERN (insn);
1476d1bd
MM
2209 rtx set, first_set;
2210 rtx_insn *new_insn;
b885908b 2211 rtx old_reg;
073089a7 2212 int i;
7506f491 2213
073089a7 2214 /* This block matches the logic in hash_scan_insn. */
282899df 2215 switch (GET_CODE (pat))
073089a7 2216 {
282899df
NS
2217 case SET:
2218 set = pat;
2219 break;
2220
2221 case PARALLEL:
073089a7
RS
2222 /* Search through the parallel looking for the set whose
2223 source was the expression that we're interested in. */
64068ca2 2224 first_set = NULL_RTX;
073089a7
RS
2225 set = NULL_RTX;
2226 for (i = 0; i < XVECLEN (pat, 0); i++)
2227 {
2228 rtx x = XVECEXP (pat, 0, i);
64068ca2 2229 if (GET_CODE (x) == SET)
073089a7 2230 {
64068ca2
RS
2231 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2232 may not find an equivalent expression, but in this
2233 case the PARALLEL will have a single set. */
2234 if (first_set == NULL_RTX)
2235 first_set = x;
2236 if (expr_equiv_p (SET_SRC (x), expr->expr))
2237 {
2238 set = x;
2239 break;
2240 }
073089a7
RS
2241 }
2242 }
64068ca2
RS
2243
2244 gcc_assert (first_set);
2245 if (set == NULL_RTX)
2246 set = first_set;
282899df
NS
2247 break;
2248
2249 default:
2250 gcc_unreachable ();
073089a7 2251 }
c4c81601 2252
7b1b4aed 2253 if (REG_P (SET_DEST (set)))
073089a7 2254 {
f5f2e3cd
MH
2255 old_reg = SET_DEST (set);
2256 /* Check if we can modify the set destination in the original insn. */
2257 if (validate_change (insn, &SET_DEST (set), reg, 0))
2258 {
2259 new_insn = gen_move_insn (old_reg, reg);
2260 new_insn = emit_insn_after (new_insn, insn);
f5f2e3cd
MH
2261 }
2262 else
2263 {
2264 new_insn = gen_move_insn (reg, old_reg);
2265 new_insn = emit_insn_after (new_insn, insn);
f5f2e3cd 2266 }
073089a7 2267 }
f5f2e3cd 2268 else /* This is possible only in case of a store to memory. */
073089a7 2269 {
f5f2e3cd 2270 old_reg = SET_SRC (set);
073089a7 2271 new_insn = gen_move_insn (reg, old_reg);
f5f2e3cd
MH
2272
2273 /* Check if we can modify the set source in the original insn. */
2274 if (validate_change (insn, &SET_SRC (set), reg, 0))
2275 new_insn = emit_insn_before (new_insn, insn);
2276 else
2277 new_insn = emit_insn_after (new_insn, insn);
073089a7 2278 }
7506f491
DE
2279
2280 gcse_create_count++;
2281
10d22567
ZD
2282 if (dump_file)
2283 fprintf (dump_file,
a42cd965 2284 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
b0de17ef 2285 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
a42cd965 2286 INSN_UID (insn), regno);
7506f491
DE
2287}
2288
2289/* Copy available expressions that reach the redundant expression
2290 to `reaching_reg'. */
2291
2292static void
1d088dee 2293pre_insert_copies (void)
7506f491 2294{
f5f2e3cd 2295 unsigned int i, added_copy;
11478306
JH
2296 struct gcse_expr *expr;
2297 struct gcse_occr *occr;
2298 struct gcse_occr *avail;
a65f3558 2299
7506f491
DE
2300 /* For each available expression in the table, copy the result to
2301 `reaching_reg' if the expression reaches a deleted one.
2302
2303 ??? The current algorithm is rather brute force.
2304 Need to do some profiling. */
2305
02280659 2306 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2307 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601
RK
2308 {
2309 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2310 we don't want to insert a copy here because the expression may not
2311 really be redundant. So only insert an insn if the expression was
2312 deleted. This test also avoids further processing if the
2313 expression wasn't deleted anywhere. */
2314 if (expr->reaching_reg == NULL)
2315 continue;
7b1b4aed 2316
f5f2e3cd 2317 /* Set when we add a copy for that expression. */
7b1b4aed 2318 added_copy = 0;
c4c81601
RK
2319
2320 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2321 {
2322 if (! occr->deleted_p)
2323 continue;
7506f491 2324
c4c81601
RK
2325 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2326 {
cf92a178 2327 rtx_insn *insn = avail->insn;
7506f491 2328
c4c81601
RK
2329 /* No need to handle this one if handled already. */
2330 if (avail->copied_p)
2331 continue;
7506f491 2332
c4c81601 2333 /* Don't handle this one if it's a redundant one. */
4654c0cf 2334 if (insn->deleted ())
c4c81601 2335 continue;
7506f491 2336
c4c81601 2337 /* Or if the expression doesn't reach the deleted one. */
589005ff 2338 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
e2d2ed72
AM
2339 expr,
2340 BLOCK_FOR_INSN (occr->insn)))
c4c81601 2341 continue;
7506f491 2342
f5f2e3cd
MH
2343 added_copy = 1;
2344
c4c81601
RK
2345 /* Copy the result of avail to reaching_reg. */
2346 pre_insert_copy_insn (expr, insn);
2347 avail->copied_p = 1;
2348 }
2349 }
f5f2e3cd 2350
7b1b4aed 2351 if (added_copy)
f5f2e3cd 2352 update_ld_motion_stores (expr);
c4c81601 2353 }
7506f491
DE
2354}
2355
b6808818
JDA
2356struct set_data
2357{
cf92a178 2358 rtx_insn *insn;
b6808818
JDA
2359 const_rtx set;
2360 int nsets;
2361};
2362
2363/* Increment number of sets and record set in DATA. */
2364
2365static void
2366record_set_data (rtx dest, const_rtx set, void *data)
2367{
2368 struct set_data *s = (struct set_data *)data;
2369
2370 if (GET_CODE (set) == SET)
2371 {
2372 /* We allow insns having multiple sets, where all but one are
2373 dead as single set insns. In the common case only a single
2374 set is present, so we want to avoid checking for REG_UNUSED
2375 notes unless necessary. */
2376 if (s->nsets == 1
2377 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2378 && !side_effects_p (s->set))
2379 s->nsets = 0;
2380
2381 if (!s->nsets)
2382 {
2383 /* Record this set. */
2384 s->nsets += 1;
2385 s->set = set;
2386 }
2387 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2388 || side_effects_p (set))
2389 s->nsets += 1;
2390 }
2391}
2392
2393static const_rtx
cf92a178 2394single_set_gcse (rtx_insn *insn)
b6808818
JDA
2395{
2396 struct set_data s;
2397 rtx pattern;
2398
2399 gcc_assert (INSN_P (insn));
2400
2401 /* Optimize common case. */
2402 pattern = PATTERN (insn);
2403 if (GET_CODE (pattern) == SET)
2404 return pattern;
2405
2406 s.insn = insn;
2407 s.nsets = 0;
2408 note_stores (pattern, record_set_data, &s);
2409
2410 /* Considered invariant insns have exactly one set. */
2411 gcc_assert (s.nsets == 1);
2412 return s.set;
2413}
2414
10d1bb36
JH
2415/* Emit move from SRC to DEST noting the equivalence with expression computed
2416 in INSN. */
43c8a043 2417
e67d1102 2418static rtx_insn *
cf92a178 2419gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
10d1bb36 2420{
e8a54173 2421 rtx_insn *new_rtx;
b6808818
JDA
2422 const_rtx set = single_set_gcse (insn);
2423 rtx set2;
10d1bb36 2424 rtx note;
dca3da7a 2425 rtx eqv = NULL_RTX;
10d1bb36
JH
2426
2427 /* This should never fail since we're creating a reg->reg copy
2428 we've verified to be valid. */
2429
60564289 2430 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
285464d0 2431
dca3da7a
SB
2432 /* Note the equivalence for local CSE pass. Take the note from the old
2433 set if there was one. Otherwise record the SET_SRC from the old set
2434 unless DEST is also an operand of the SET_SRC. */
60564289 2435 set2 = single_set (new_rtx);
6bdb8dd6 2436 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
60564289 2437 return new_rtx;
10d1bb36
JH
2438 if ((note = find_reg_equal_equiv_note (insn)))
2439 eqv = XEXP (note, 0);
dca3da7a
SB
2440 else if (! REG_P (dest)
2441 || ! reg_mentioned_p (dest, SET_SRC (set)))
10d1bb36
JH
2442 eqv = SET_SRC (set);
2443
dca3da7a
SB
2444 if (eqv != NULL_RTX)
2445 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
10d1bb36 2446
60564289 2447 return new_rtx;
10d1bb36
JH
2448}
2449
7506f491 2450/* Delete redundant computations.
7506f491
DE
2451 Deletion is done by changing the insn to copy the `reaching_reg' of
2452 the expression into the result of the SET. It is left to later passes
337405fd 2453 to propagate the copy or eliminate it.
7506f491 2454
43c8a043 2455 Return nonzero if a change is made. */
7506f491
DE
2456
2457static int
1d088dee 2458pre_delete (void)
7506f491 2459{
2e653e39 2460 unsigned int i;
63bc1d05 2461 int changed;
11478306
JH
2462 struct gcse_expr *expr;
2463 struct gcse_occr *occr;
a65f3558 2464
7506f491 2465 changed = 0;
02280659 2466 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2467 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601
RK
2468 {
2469 int indx = expr->bitmap_index;
7506f491 2470
43c8a043 2471 /* We only need to search antic_occr since we require ANTLOC != 0. */
c4c81601
RK
2472 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2473 {
cf92a178 2474 rtx_insn *insn = occr->insn;
c4c81601 2475 rtx set;
e2d2ed72 2476 basic_block bb = BLOCK_FOR_INSN (insn);
7506f491 2477
073089a7 2478 /* We only delete insns that have a single_set. */
d7c028c0 2479 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
6fb5fa3c
DB
2480 && (set = single_set (insn)) != 0
2481 && dbg_cnt (pre_insn))
c4c81601 2482 {
c4c81601
RK
2483 /* Create a pseudo-reg to store the result of reaching
2484 expressions into. Get the mode for the new pseudo from
2485 the mode of the original destination pseudo. */
2486 if (expr->reaching_reg == NULL)
46b71b03 2487 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
c4c81601 2488
43c8a043 2489 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
10d1bb36
JH
2490 delete_insn (insn);
2491 occr->deleted_p = 1;
10d1bb36
JH
2492 changed = 1;
2493 gcse_subst_count++;
7506f491 2494
10d22567 2495 if (dump_file)
c4c81601 2496 {
10d22567 2497 fprintf (dump_file,
c4c81601
RK
2498 "PRE: redundant insn %d (expression %d) in ",
2499 INSN_UID (insn), indx);
10d22567 2500 fprintf (dump_file, "bb %d, reaching reg is %d\n",
0b17ab2f 2501 bb->index, REGNO (expr->reaching_reg));
c4c81601
RK
2502 }
2503 }
2504 }
2505 }
7506f491
DE
2506
2507 return changed;
2508}
2509
2510/* Perform GCSE optimizations using PRE.
2511 This is called by one_pre_gcse_pass after all the dataflow analysis
2512 has been done.
2513
c4c81601
RK
2514 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2515 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2516 Compiler Design and Implementation.
7506f491 2517
c4c81601
RK
2518 ??? A new pseudo reg is created to hold the reaching expression. The nice
2519 thing about the classical approach is that it would try to use an existing
2520 reg. If the register can't be adequately optimized [i.e. we introduce
2521 reload problems], one could add a pass here to propagate the new register
2522 through the block.
7506f491 2523
c4c81601
RK
2524 ??? We don't handle single sets in PARALLELs because we're [currently] not
2525 able to copy the rest of the parallel when we insert copies to create full
2526 redundancies from partial redundancies. However, there's no reason why we
2527 can't handle PARALLELs in the cases where there are no partial
7506f491
DE
2528 redundancies. */
2529
2530static int
43c8a043 2531pre_gcse (struct edge_list *edge_list)
7506f491 2532{
2e653e39
RK
2533 unsigned int i;
2534 int did_insert, changed;
11478306
JH
2535 struct gcse_expr **index_map;
2536 struct gcse_expr *expr;
7506f491
DE
2537
2538 /* Compute a mapping from expression number (`bitmap_index') to
2539 hash table entry. */
2540
11478306 2541 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
02280659 2542 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2543 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601 2544 index_map[expr->bitmap_index] = expr;
7506f491 2545
7506f491
DE
2546 /* Delete the redundant insns first so that
2547 - we know what register to use for the new insns and for the other
2548 ones with reaching expressions
2549 - we know which insns are redundant when we go to create copies */
c4c81601 2550
7506f491 2551 changed = pre_delete ();
a42cd965 2552 did_insert = pre_edge_insert (edge_list, index_map);
c4c81601 2553
7506f491 2554 /* In other places with reaching expressions, copy the expression to the
a42cd965 2555 specially allocated pseudo-reg that reaches the redundant expr. */
7506f491 2556 pre_insert_copies ();
a42cd965
AM
2557 if (did_insert)
2558 {
2559 commit_edge_insertions ();
2560 changed = 1;
2561 }
7506f491 2562
283a2545 2563 free (index_map);
7506f491
DE
2564 return changed;
2565}
2566
2567/* Top level routine to perform one PRE GCSE pass.
2568
cc2902df 2569 Return nonzero if a change was made. */
7506f491
DE
2570
2571static int
5f39ad47 2572one_pre_gcse_pass (void)
7506f491
DE
2573{
2574 int changed = 0;
2575
2576 gcse_subst_count = 0;
2577 gcse_create_count = 0;
2578
5f39ad47 2579 /* Return if there's nothing to do, or it is too expensive. */
0cae8d31 2580 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
87d8dd6c 2581 || gcse_or_cprop_is_too_expensive (_("PRE disabled")))
5f39ad47
SB
2582 return 0;
2583
2584 /* We need alias. */
2585 init_alias_analysis ();
2586
2587 bytes_used = 0;
2588 gcc_obstack_init (&gcse_obstack);
2589 alloc_gcse_mem ();
2590
e45425ec 2591 alloc_hash_table (&expr_hash_table);
a42cd965 2592 add_noreturn_fake_exit_edges ();
a13d4ebf
AM
2593 if (flag_gcse_lm)
2594 compute_ld_motion_mems ();
2595
02280659 2596 compute_hash_table (&expr_hash_table);
43c8a043
EB
2597 if (flag_gcse_lm)
2598 trim_ld_motion_mems ();
10d22567
ZD
2599 if (dump_file)
2600 dump_hash_table (dump_file, "Expression", &expr_hash_table);
c4c81601 2601
02280659 2602 if (expr_hash_table.n_elems > 0)
7506f491 2603 {
43c8a043 2604 struct edge_list *edge_list;
8b1c6fd7 2605 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
43c8a043
EB
2606 edge_list = compute_pre_data ();
2607 changed |= pre_gcse (edge_list);
a42cd965 2608 free_edge_list (edge_list);
7506f491
DE
2609 free_pre_mem ();
2610 }
c4c81601 2611
43c8a043
EB
2612 if (flag_gcse_lm)
2613 free_ld_motion_mems ();
6809cbf9 2614 remove_fake_exit_edges ();
02280659 2615 free_hash_table (&expr_hash_table);
7506f491 2616
5f39ad47
SB
2617 free_gcse_mem ();
2618 obstack_free (&gcse_obstack, NULL);
2619
2620 /* We are finished with alias. */
2621 end_alias_analysis ();
2622
10d22567 2623 if (dump_file)
7506f491 2624 {
5f39ad47 2625 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
0cae8d31
DM
2626 current_function_name (), n_basic_blocks_for_fn (cfun),
2627 bytes_used);
10d22567 2628 fprintf (dump_file, "%d substs, %d insns created\n",
c4c81601 2629 gcse_subst_count, gcse_create_count);
7506f491
DE
2630 }
2631
2632 return changed;
2633}
aeb2f500 2634\f
cf7c4aa6
HPN
2635/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2636 to INSN. If such notes are added to an insn which references a
2637 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2638 that note, because the following loop optimization pass requires
2639 them. */
aeb2f500 2640
aeb2f500
JW
2641/* ??? If there was a jump optimization pass after gcse and before loop,
2642 then we would not need to do this here, because jump would add the
cf7c4aa6 2643 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
aeb2f500
JW
2644
2645static void
170065c9 2646add_label_notes (rtx x, rtx_insn *insn)
aeb2f500
JW
2647{
2648 enum rtx_code code = GET_CODE (x);
2649 int i, j;
6f7d635c 2650 const char *fmt;
aeb2f500
JW
2651
2652 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2653 {
6b3603c2 2654 /* This code used to ignore labels that referred to dispatch tables to
e0bb17a8 2655 avoid flow generating (slightly) worse code.
6b3603c2 2656
ac7c5af5
JL
2657 We no longer ignore such label references (see LABEL_REF handling in
2658 mark_jump_label for additional information). */
c4c81601 2659
cb2f563b
HPN
2660 /* There's no reason for current users to emit jump-insns with
2661 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2662 notes. */
2663 gcc_assert (!JUMP_P (insn));
04a121a7 2664 add_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x));
65c5f2a6 2665
04a121a7
TS
2666 if (LABEL_P (label_ref_label (x)))
2667 LABEL_NUSES (label_ref_label (x))++;
cb2f563b 2668
aeb2f500
JW
2669 return;
2670 }
2671
c4c81601 2672 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
aeb2f500
JW
2673 {
2674 if (fmt[i] == 'e')
2675 add_label_notes (XEXP (x, i), insn);
2676 else if (fmt[i] == 'E')
2677 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2678 add_label_notes (XVECEXP (x, i, j), insn);
2679 }
2680}
a65f3558 2681
bb457bd9
JL
2682/* Code Hoisting variables and subroutines. */
2683
2684/* Very busy expressions. */
2685static sbitmap *hoist_vbein;
2686static sbitmap *hoist_vbeout;
2687
bb457bd9 2688/* ??? We could compute post dominators and run this algorithm in
68e82b83 2689 reverse to perform tail merging, doing so would probably be
bb457bd9
JL
2690 more effective than the tail merging code in jump.c.
2691
2692 It's unclear if tail merging could be run in parallel with
2693 code hoisting. It would be nice. */
2694
2695/* Allocate vars used for code hoisting analysis. */
2696
2697static void
1d088dee 2698alloc_code_hoist_mem (int n_blocks, int n_exprs)
bb457bd9
JL
2699{
2700 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2701 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2702 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2703
2704 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2705 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
bb457bd9
JL
2706}
2707
2708/* Free vars used for code hoisting analysis. */
2709
2710static void
1d088dee 2711free_code_hoist_mem (void)
bb457bd9 2712{
5a660bff
DB
2713 sbitmap_vector_free (antloc);
2714 sbitmap_vector_free (transp);
2715 sbitmap_vector_free (comp);
bb457bd9 2716
5a660bff
DB
2717 sbitmap_vector_free (hoist_vbein);
2718 sbitmap_vector_free (hoist_vbeout);
bb457bd9 2719
d47cc544 2720 free_dominance_info (CDI_DOMINATORS);
bb457bd9
JL
2721}
2722
2723/* Compute the very busy expressions at entry/exit from each block.
2724
2725 An expression is very busy if all paths from a given point
2726 compute the expression. */
2727
2728static void
1d088dee 2729compute_code_hoist_vbeinout (void)
bb457bd9 2730{
e0082a72
ZD
2731 int changed, passes;
2732 basic_block bb;
bb457bd9 2733
8b1c6fd7
DM
2734 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2735 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
bb457bd9
JL
2736
2737 passes = 0;
2738 changed = 1;
c4c81601 2739
bb457bd9
JL
2740 while (changed)
2741 {
2742 changed = 0;
c4c81601 2743
bb457bd9
JL
2744 /* We scan the blocks in the reverse order to speed up
2745 the convergence. */
4f42035e 2746 FOR_EACH_BB_REVERSE_FN (bb, cfun)
bb457bd9 2747 {
fefa31b5 2748 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
ce4c0015 2749 {
d7c028c0
LC
2750 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2751 hoist_vbein, bb);
ce4c0015
MK
2752
2753 /* Include expressions in VBEout that are calculated
2754 in BB and available at its end. */
f61e445a 2755 bitmap_ior (hoist_vbeout[bb->index],
ce4c0015
MK
2756 hoist_vbeout[bb->index], comp[bb->index]);
2757 }
f8423fea 2758
f61e445a 2759 changed |= bitmap_or_and (hoist_vbein[bb->index],
f8423fea
SB
2760 antloc[bb->index],
2761 hoist_vbeout[bb->index],
2762 transp[bb->index]);
bb457bd9 2763 }
c4c81601 2764
bb457bd9
JL
2765 passes++;
2766 }
2767
10d22567 2768 if (dump_file)
cad9aa15
MK
2769 {
2770 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2771
11cd3bed 2772 FOR_EACH_BB_FN (bb, cfun)
cad9aa15
MK
2773 {
2774 fprintf (dump_file, "vbein (%d): ", bb->index);
f61e445a 2775 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
cad9aa15 2776 fprintf (dump_file, "vbeout(%d): ", bb->index);
f61e445a 2777 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
cad9aa15
MK
2778 }
2779 }
bb457bd9
JL
2780}
2781
2782/* Top level routine to do the dataflow analysis needed by code hoisting. */
2783
2784static void
1d088dee 2785compute_code_hoist_data (void)
bb457bd9 2786{
02280659 2787 compute_local_properties (transp, comp, antloc, &expr_hash_table);
9b774782 2788 prune_expressions (false);
bb457bd9 2789 compute_code_hoist_vbeinout ();
d47cc544 2790 calculate_dominance_info (CDI_DOMINATORS);
10d22567
ZD
2791 if (dump_file)
2792 fprintf (dump_file, "\n");
bb457bd9
JL
2793}
2794
4b8181c5
BC
2795/* Update register pressure for BB when hoisting an expression from
2796 instruction FROM, if live ranges of inputs are shrunk. Also
2797 maintain live_in information if live range of register referred
2798 in FROM is shrunk.
2799
2800 Return 0 if register pressure doesn't change, otherwise return
2801 the number by which register pressure is decreased.
2802
2803 NOTE: Register pressure won't be increased in this function. */
2804
2805static int
cf92a178 2806update_bb_reg_pressure (basic_block bb, rtx_insn *from)
4b8181c5 2807{
cf92a178
DM
2808 rtx dreg;
2809 rtx_insn *insn;
4b8181c5 2810 basic_block succ_bb;
bfac633a 2811 df_ref use, op_ref;
4b8181c5
BC
2812 edge succ;
2813 edge_iterator ei;
2814 int decreased_pressure = 0;
2815 int nregs;
2816 enum reg_class pressure_class;
bfac633a
RS
2817
2818 FOR_EACH_INSN_USE (use, from)
4b8181c5 2819 {
bfac633a 2820 dreg = DF_REF_REAL_REG (use);
4b8181c5
BC
2821 /* The live range of register is shrunk only if it isn't:
2822 1. referred on any path from the end of this block to EXIT, or
2823 2. referred by insns other than FROM in this block. */
2824 FOR_EACH_EDGE (succ, ei, bb->succs)
2825 {
2826 succ_bb = succ->dest;
fefa31b5 2827 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4b8181c5
BC
2828 continue;
2829
2830 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2831 break;
2832 }
2833 if (succ != NULL)
2834 continue;
2835
2836 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2837 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2838 {
2839 if (!DF_REF_INSN_INFO (op_ref))
2840 continue;
2841
2842 insn = DF_REF_INSN (op_ref);
2843 if (BLOCK_FOR_INSN (insn) == bb
2844 && NONDEBUG_INSN_P (insn) && insn != from)
2845 break;
2846 }
2847
2848 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2849 /* Decrease register pressure and update live_in information for
2850 this block. */
2851 if (!op_ref && pressure_class != NO_REGS)
2852 {
2853 decreased_pressure += nregs;
2854 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2855 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2856 }
2857 }
2858 return decreased_pressure;
2859}
2860
b11f0116
BC
2861/* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2862 flow graph, if it can reach BB unimpared. Stop the search if the
2863 expression would need to be moved more than DISTANCE instructions.
2864
2865 DISTANCE is the number of instructions through which EXPR can be
2866 hoisted up in flow graph.
2867
2868 BB_SIZE points to an array which contains the number of instructions
2869 for each basic block.
2870
2871 PRESSURE_CLASS and NREGS are register class and number of hard registers
2872 for storing EXPR.
2873
2874 HOISTED_BBS points to a bitmap indicating basic blocks through which
2875 EXPR is hoisted.
bb457bd9 2876
4b8181c5
BC
2877 FROM is the instruction from which EXPR is hoisted.
2878
bb457bd9
JL
2879 It's unclear exactly what Muchnick meant by "unimpared". It seems
2880 to me that the expression must either be computed or transparent in
2881 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2882 would allow the expression to be hoisted out of loops, even if
2883 the expression wasn't a loop invariant.
2884
2885 Contrast this to reachability for PRE where an expression is
2886 considered reachable if *any* path reaches instead of *all*
2887 paths. */
2888
2889static int
11478306 2890should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
ec7f796e
ML
2891 basic_block bb, sbitmap visited,
2892 HOST_WIDE_INT distance,
b11f0116 2893 int *bb_size, enum reg_class pressure_class,
cf92a178 2894 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
bb457bd9 2895{
b11f0116 2896 unsigned int i;
bb457bd9 2897 edge pred;
628f6a4e 2898 edge_iterator ei;
b11f0116 2899 sbitmap_iterator sbi;
283a2545 2900 int visited_allocated_locally = 0;
4b8181c5 2901 int decreased_pressure = 0;
589005ff 2902
4b8181c5
BC
2903 if (flag_ira_hoist_pressure)
2904 {
2905 /* Record old information of basic block BB when it is visited
2906 at the first time. */
2907 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2908 {
2909 struct bb_data *data = BB_DATA (bb);
2910 bitmap_copy (data->backup, data->live_in);
2911 data->old_pressure = data->max_reg_pressure[pressure_class];
2912 }
2913 decreased_pressure = update_bb_reg_pressure (bb, from);
2914 }
20160347
MK
2915 /* Terminate the search if distance, for which EXPR is allowed to move,
2916 is exhausted. */
2917 if (distance > 0)
2918 {
4b8181c5
BC
2919 if (flag_ira_hoist_pressure)
2920 {
2921 /* Prefer to hoist EXPR if register pressure is decreased. */
2922 if (decreased_pressure > *nregs)
2923 distance += bb_size[bb->index];
2924 /* Let EXPR be hoisted through basic block at no cost if one
2925 of following conditions is satisfied:
2926
2927 1. The basic block has low register pressure.
2928 2. Register pressure won't be increases after hoisting EXPR.
2929
2930 Constant expressions is handled conservatively, because
2931 hoisting constant expression aggressively results in worse
2932 code. This decision is made by the observation of CSiBE
2933 on ARM target, while it has no obvious effect on other
2934 targets like x86, x86_64, mips and powerpc. */
2935 else if (CONST_INT_P (expr->expr)
2936 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2937 >= ira_class_hard_regs_num[pressure_class]
2938 && decreased_pressure < *nregs))
2939 distance -= bb_size[bb->index];
2940 }
2941 else
b11f0116 2942 distance -= bb_size[bb->index];
20160347
MK
2943
2944 if (distance <= 0)
2945 return 0;
2946 }
2947 else
2948 gcc_assert (distance == 0);
bb457bd9
JL
2949
2950 if (visited == NULL)
2951 {
8e42ace1 2952 visited_allocated_locally = 1;
8b1c6fd7 2953 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
f61e445a 2954 bitmap_clear (visited);
bb457bd9
JL
2955 }
2956
628f6a4e 2957 FOR_EACH_EDGE (pred, ei, bb->preds)
bb457bd9 2958 {
e2d2ed72 2959 basic_block pred_bb = pred->src;
bb457bd9 2960
fefa31b5 2961 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
bb457bd9 2962 break;
f305679f
JH
2963 else if (pred_bb == expr_bb)
2964 continue;
d7c028c0 2965 else if (bitmap_bit_p (visited, pred_bb->index))
bb457bd9 2966 continue;
d7c028c0 2967 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
bb457bd9
JL
2968 break;
2969 /* Not killed. */
2970 else
2971 {
d7c028c0 2972 bitmap_set_bit (visited, pred_bb->index);
b11f0116
BC
2973 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2974 visited, distance, bb_size,
4b8181c5
BC
2975 pressure_class, nregs,
2976 hoisted_bbs, from))
bb457bd9
JL
2977 break;
2978 }
2979 }
589005ff 2980 if (visited_allocated_locally)
b11f0116
BC
2981 {
2982 /* If EXPR can be hoisted to expr_bb, record basic blocks through
4b8181c5 2983 which EXPR is hoisted in hoisted_bbs. */
b11f0116
BC
2984 if (flag_ira_hoist_pressure && !pred)
2985 {
4b8181c5
BC
2986 /* Record the basic block from which EXPR is hoisted. */
2987 bitmap_set_bit (visited, bb->index);
d4ac4ce2 2988 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
4b8181c5 2989 bitmap_set_bit (hoisted_bbs, i);
b11f0116
BC
2990 }
2991 sbitmap_free (visited);
2992 }
c4c81601 2993
bb457bd9
JL
2994 return (pred == NULL);
2995}
2996\f
073a8998 2997/* Find occurrence in BB. */
43c8a043 2998
11478306
JH
2999static struct gcse_occr *
3000find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
20160347
MK
3001{
3002 /* Find the right occurrence of this expression. */
3003 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3004 occr = occr->next;
3005
3006 return occr;
3007}
3008
b11f0116
BC
3009/* Actually perform code hoisting.
3010
3011 The code hoisting pass can hoist multiple computations of the same
3012 expression along dominated path to a dominating basic block, like
3013 from b2/b3 to b1 as depicted below:
3014
3015 b1 ------
3016 /\ |
3017 / \ |
3018 bx by distance
3019 / \ |
3020 / \ |
3021 b2 b3 ------
3022
3023 Unfortunately code hoisting generally extends the live range of an
3024 output pseudo register, which increases register pressure and hurts
3025 register allocation. To address this issue, an attribute MAX_DISTANCE
3026 is computed and attached to each expression. The attribute is computed
3027 from rtx cost of the corresponding expression and it's used to control
3028 how long the expression can be hoisted up in flow graph. As the
3029 expression is hoisted up in flow graph, GCC decreases its DISTANCE
4b8181c5
BC
3030 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3031 register pressure if live ranges of inputs are shrunk.
b11f0116
BC
3032
3033 Option "-fira-hoist-pressure" implements register pressure directed
3034 hoist based on upper method. The rationale is:
3035 1. Calculate register pressure for each basic block by reusing IRA
3036 facility.
3037 2. When expression is hoisted through one basic block, GCC checks
4b8181c5
BC
3038 the change of live ranges for inputs/output. The basic block's
3039 register pressure will be increased because of extended live
3040 range of output. However, register pressure will be decreased
3041 if the live ranges of inputs are shrunk.
3042 3. After knowing how hoisting affects register pressure, GCC prefers
3043 to hoist the expression if it can decrease register pressure, by
3044 increasing DISTANCE of the corresponding expression.
3045 4. If hoisting the expression increases register pressure, GCC checks
3046 register pressure of the basic block and decrease DISTANCE only if
3047 the register pressure is high. In other words, expression will be
3048 hoisted through at no cost if the basic block has low register
3049 pressure.
3050 5. Update register pressure information for basic blocks through
3051 which expression is hoisted. */
c4c81601 3052
5f39ad47 3053static int
1d088dee 3054hoist_code (void)
bb457bd9 3055{
e0082a72 3056 basic_block bb, dominated;
9771b263 3057 vec<basic_block> dom_tree_walk;
cad9aa15 3058 unsigned int dom_tree_walk_index;
9771b263 3059 vec<basic_block> domby;
b11f0116 3060 unsigned int i, j, k;
11478306
JH
3061 struct gcse_expr **index_map;
3062 struct gcse_expr *expr;
20160347
MK
3063 int *to_bb_head;
3064 int *bb_size;
5f39ad47 3065 int changed = 0;
b11f0116
BC
3066 struct bb_data *data;
3067 /* Basic blocks that have occurrences reachable from BB. */
3068 bitmap from_bbs;
3069 /* Basic blocks through which expr is hoisted. */
3070 bitmap hoisted_bbs = NULL;
3071 bitmap_iterator bi;
bb457bd9 3072
bb457bd9
JL
3073 /* Compute a mapping from expression number (`bitmap_index') to
3074 hash table entry. */
3075
11478306 3076 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
02280659 3077 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 3078 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601 3079 index_map[expr->bitmap_index] = expr;
bb457bd9 3080
20160347
MK
3081 /* Calculate sizes of basic blocks and note how far
3082 each instruction is from the start of its block. We then use this
3083 data to restrict distance an expression can travel. */
3084
3085 to_bb_head = XCNEWVEC (int, get_max_uid ());
8b1c6fd7 3086 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
20160347 3087
11cd3bed 3088 FOR_EACH_BB_FN (bb, cfun)
20160347 3089 {
cf92a178 3090 rtx_insn *insn;
20160347
MK
3091 int to_head;
3092
20160347 3093 to_head = 0;
05b5ea34 3094 FOR_BB_INSNS (bb, insn)
20160347
MK
3095 {
3096 /* Don't count debug instructions to avoid them affecting
3097 decision choices. */
3098 if (NONDEBUG_INSN_P (insn))
3099 to_bb_head[INSN_UID (insn)] = to_head++;
20160347
MK
3100 }
3101
3102 bb_size[bb->index] = to_head;
3103 }
3104
fefa31b5
DM
3105 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3106 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3107 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
cad9aa15 3108
b11f0116
BC
3109 from_bbs = BITMAP_ALLOC (NULL);
3110 if (flag_ira_hoist_pressure)
3111 hoisted_bbs = BITMAP_ALLOC (NULL);
3112
cad9aa15 3113 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
fefa31b5 3114 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
cad9aa15 3115
bb457bd9
JL
3116 /* Walk over each basic block looking for potentially hoistable
3117 expressions, nothing gets hoisted from the entry block. */
9771b263 3118 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
bb457bd9 3119 {
cad9aa15
MK
3120 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3121
9771b263 3122 if (domby.length () == 0)
cad9aa15 3123 continue;
bb457bd9
JL
3124
3125 /* Examine each expression that is very busy at the exit of this
3126 block. These are the potentially hoistable expressions. */
5829cc0f 3127 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
bb457bd9 3128 {
d7c028c0 3129 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
bb457bd9 3130 {
b11f0116
BC
3131 int nregs = 0;
3132 enum reg_class pressure_class = NO_REGS;
cad9aa15 3133 /* Current expression. */
11478306 3134 struct gcse_expr *expr = index_map[i];
073a8998 3135 /* Number of occurrences of EXPR that can be hoisted to BB. */
cad9aa15 3136 int hoistable = 0;
073a8998 3137 /* Occurrences reachable from BB. */
6e1aa848 3138 vec<occr_t> occrs_to_hoist = vNULL;
cad9aa15
MK
3139 /* We want to insert the expression into BB only once, so
3140 note when we've inserted it. */
3141 int insn_inserted_p;
3142 occr_t occr;
3143
ce4c0015 3144 /* If an expression is computed in BB and is available at end of
073a8998 3145 BB, hoist all occurrences dominated by BB to BB. */
d7c028c0 3146 if (bitmap_bit_p (comp[bb->index], i))
cad9aa15
MK
3147 {
3148 occr = find_occr_in_bb (expr->antic_occr, bb);
3149
3150 if (occr)
3151 {
073a8998 3152 /* An occurrence might've been already deleted
cad9aa15 3153 while processing a dominator of BB. */
2d36b47f 3154 if (!occr->deleted_p)
cad9aa15
MK
3155 {
3156 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3157 hoistable++;
3158 }
3159 }
3160 else
3161 hoistable++;
3162 }
ce4c0015 3163
bb457bd9
JL
3164 /* We've found a potentially hoistable expression, now
3165 we look at every block BB dominates to see if it
3166 computes the expression. */
9771b263 3167 FOR_EACH_VEC_ELT (domby, j, dominated)
bb457bd9 3168 {
ec7f796e 3169 HOST_WIDE_INT max_distance;
20160347 3170
bb457bd9 3171 /* Ignore self dominance. */
c635a1ec 3172 if (bb == dominated)
bb457bd9 3173 continue;
bb457bd9
JL
3174 /* We've found a dominated block, now see if it computes
3175 the busy expression and whether or not moving that
3176 expression to the "beginning" of that block is safe. */
d7c028c0 3177 if (!bitmap_bit_p (antloc[dominated->index], i))
bb457bd9
JL
3178 continue;
3179
cad9aa15
MK
3180 occr = find_occr_in_bb (expr->antic_occr, dominated);
3181 gcc_assert (occr);
20160347 3182
073a8998 3183 /* An occurrence might've been already deleted
cad9aa15
MK
3184 while processing a dominator of BB. */
3185 if (occr->deleted_p)
2d36b47f 3186 continue;
cad9aa15
MK
3187 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3188
3189 max_distance = expr->max_distance;
3190 if (max_distance > 0)
3191 /* Adjust MAX_DISTANCE to account for the fact that
3192 OCCR won't have to travel all of DOMINATED, but
3193 only part of it. */
3194 max_distance += (bb_size[dominated->index]
3195 - to_bb_head[INSN_UID (occr->insn)]);
20160347 3196
b11f0116
BC
3197 pressure_class = get_pressure_class_and_nregs (occr->insn,
3198 &nregs);
3199
3200 /* Note if the expression should be hoisted from the dominated
3201 block to BB if it can reach DOMINATED unimpared.
bb457bd9
JL
3202
3203 Keep track of how many times this expression is hoistable
3204 from a dominated block into BB. */
b11f0116
BC
3205 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3206 max_distance, bb_size,
3207 pressure_class, &nregs,
4b8181c5 3208 hoisted_bbs, occr->insn))
cad9aa15
MK
3209 {
3210 hoistable++;
9771b263 3211 occrs_to_hoist.safe_push (occr);
cad9aa15
MK
3212 bitmap_set_bit (from_bbs, dominated->index);
3213 }
bb457bd9
JL
3214 }
3215
ff7cc307 3216 /* If we found more than one hoistable occurrence of this
cad9aa15 3217 expression, then note it in the vector of expressions to
bb457bd9
JL
3218 hoist. It makes no sense to hoist things which are computed
3219 in only one BB, and doing so tends to pessimize register
3220 allocation. One could increase this value to try harder
3221 to avoid any possible code expansion due to register
3222 allocation issues; however experiments have shown that
3223 the vast majority of hoistable expressions are only movable
e0bb17a8 3224 from two successors, so raising this threshold is likely
bb457bd9 3225 to nullify any benefit we get from code hoisting. */
62a3f636 3226 if (hoistable > 1 && dbg_cnt (hoist_insn))
bb457bd9 3227 {
9771b263 3228 /* If (hoistable != vec::length), then there is
073a8998 3229 an occurrence of EXPR in BB itself. Don't waste
cad9aa15 3230 time looking for LCA in this case. */
9771b263 3231 if ((unsigned) hoistable == occrs_to_hoist.length ())
cad9aa15
MK
3232 {
3233 basic_block lca;
3234
3235 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3236 from_bbs);
3237 if (lca != bb)
073a8998 3238 /* Punt, it's better to hoist these occurrences to
cad9aa15 3239 LCA. */
9771b263 3240 occrs_to_hoist.release ();
cad9aa15 3241 }
bb457bd9 3242 }
cad9aa15 3243 else
688010ba 3244 /* Punt, no point hoisting a single occurrence. */
9771b263 3245 occrs_to_hoist.release ();
bb457bd9 3246
b11f0116 3247 if (flag_ira_hoist_pressure
9771b263 3248 && !occrs_to_hoist.is_empty ())
b11f0116 3249 {
4b8181c5
BC
3250 /* Increase register pressure of basic blocks to which
3251 expr is hoisted because of extended live range of
3252 output. */
b11f0116
BC
3253 data = BB_DATA (bb);
3254 data->max_reg_pressure[pressure_class] += nregs;
4b8181c5
BC
3255 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3256 {
06e28de2 3257 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
4b8181c5
BC
3258 data->max_reg_pressure[pressure_class] += nregs;
3259 }
b11f0116
BC
3260 }
3261 else if (flag_ira_hoist_pressure)
3262 {
4b8181c5
BC
3263 /* Restore register pressure and live_in info for basic
3264 blocks recorded in hoisted_bbs when expr will not be
3265 hoisted. */
b11f0116
BC
3266 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3267 {
06e28de2 3268 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
4b8181c5
BC
3269 bitmap_copy (data->live_in, data->backup);
3270 data->max_reg_pressure[pressure_class]
3271 = data->old_pressure;
b11f0116
BC
3272 }
3273 }
3274
3275 if (flag_ira_hoist_pressure)
3276 bitmap_clear (hoisted_bbs);
3277
cad9aa15 3278 insn_inserted_p = 0;
bb457bd9 3279
073a8998 3280 /* Walk through occurrences of I'th expressions we want
cad9aa15 3281 to hoist to BB and make the transformations. */
9771b263 3282 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
bb457bd9 3283 {
cf92a178 3284 rtx_insn *insn;
b6808818 3285 const_rtx set;
cad9aa15
MK
3286
3287 gcc_assert (!occr->deleted_p);
3288
3289 insn = occr->insn;
b6808818 3290 set = single_set_gcse (insn);
cad9aa15
MK
3291
3292 /* Create a pseudo-reg to store the result of reaching
3293 expressions into. Get the mode for the new pseudo
3294 from the mode of the original destination pseudo.
3295
3296 It is important to use new pseudos whenever we
3297 emit a set. This will allow reload to use
3298 rematerialization for such registers. */
3299 if (!insn_inserted_p)
3300 expr->reaching_reg
3301 = gen_reg_rtx_and_attrs (SET_DEST (set));
3302
43c8a043 3303 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
cad9aa15
MK
3304 insn);
3305 delete_insn (insn);
3306 occr->deleted_p = 1;
3307 changed = 1;
3308 gcse_subst_count++;
3309
3310 if (!insn_inserted_p)
bb457bd9 3311 {
cad9aa15
MK
3312 insert_insn_end_basic_block (expr, bb);
3313 insn_inserted_p = 1;
bb457bd9
JL
3314 }
3315 }
cad9aa15 3316
9771b263 3317 occrs_to_hoist.release ();
cad9aa15 3318 bitmap_clear (from_bbs);
bb457bd9
JL
3319 }
3320 }
9771b263 3321 domby.release ();
bb457bd9 3322 }
c4c81601 3323
9771b263 3324 dom_tree_walk.release ();
b11f0116
BC
3325 BITMAP_FREE (from_bbs);
3326 if (flag_ira_hoist_pressure)
3327 BITMAP_FREE (hoisted_bbs);
3328
20160347
MK
3329 free (bb_size);
3330 free (to_bb_head);
8e42ace1 3331 free (index_map);
5f39ad47
SB
3332
3333 return changed;
bb457bd9
JL
3334}
3335
b11f0116
BC
3336/* Return pressure class and number of needed hard registers (through
3337 *NREGS) of register REGNO. */
3338static enum reg_class
3339get_regno_pressure_class (int regno, int *nregs)
3340{
3341 if (regno >= FIRST_PSEUDO_REGISTER)
3342 {
3343 enum reg_class pressure_class;
3344
3345 pressure_class = reg_allocno_class (regno);
3346 pressure_class = ira_pressure_class_translate[pressure_class];
3347 *nregs
3348 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3349 return pressure_class;
3350 }
3351 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3352 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3353 {
3354 *nregs = 1;
3355 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3356 }
3357 else
3358 {
3359 *nregs = 0;
3360 return NO_REGS;
3361 }
3362}
3363
3364/* Return pressure class and number of hard registers (through *NREGS)
3365 for destination of INSN. */
3366static enum reg_class
cf92a178 3367get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
b11f0116
BC
3368{
3369 rtx reg;
3370 enum reg_class pressure_class;
b6808818 3371 const_rtx set = single_set_gcse (insn);
b11f0116 3372
b11f0116
BC
3373 reg = SET_DEST (set);
3374 if (GET_CODE (reg) == SUBREG)
3375 reg = SUBREG_REG (reg);
3376 if (MEM_P (reg))
3377 {
3378 *nregs = 0;
3379 pressure_class = NO_REGS;
3380 }
3381 else
3382 {
3383 gcc_assert (REG_P (reg));
3384 pressure_class = reg_allocno_class (REGNO (reg));
3385 pressure_class = ira_pressure_class_translate[pressure_class];
3386 *nregs
3387 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3388 }
3389 return pressure_class;
3390}
3391
3392/* Increase (if INCR_P) or decrease current register pressure for
3393 register REGNO. */
3394static void
3395change_pressure (int regno, bool incr_p)
3396{
3397 int nregs;
3398 enum reg_class pressure_class;
3399
3400 pressure_class = get_regno_pressure_class (regno, &nregs);
3401 if (! incr_p)
3402 curr_reg_pressure[pressure_class] -= nregs;
3403 else
3404 {
3405 curr_reg_pressure[pressure_class] += nregs;
3406 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3407 < curr_reg_pressure[pressure_class])
3408 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3409 = curr_reg_pressure[pressure_class];
3410 }
3411}
3412
3413/* Calculate register pressure for each basic block by walking insns
3414 from last to first. */
3415static void
3416calculate_bb_reg_pressure (void)
3417{
3418 int i;
3419 unsigned int j;
cf92a178 3420 rtx_insn *insn;
b11f0116
BC
3421 basic_block bb;
3422 bitmap curr_regs_live;
3423 bitmap_iterator bi;
3424
3425
8d49e7ef 3426 ira_setup_eliminable_regset ();
b11f0116 3427 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
11cd3bed 3428 FOR_EACH_BB_FN (bb, cfun)
b11f0116
BC
3429 {
3430 curr_bb = bb;
4b8181c5
BC
3431 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3432 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3433 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3434 bitmap_copy (curr_regs_live, df_get_live_out (bb));
b11f0116
BC
3435 for (i = 0; i < ira_pressure_classes_num; i++)
3436 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3437 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3438 change_pressure (j, true);
3439
3440 FOR_BB_INSNS_REVERSE (bb, insn)
3441 {
3442 rtx dreg;
3443 int regno;
bfac633a 3444 df_ref def, use;
b11f0116
BC
3445
3446 if (! NONDEBUG_INSN_P (insn))
3447 continue;
3448
bfac633a 3449 FOR_EACH_INSN_DEF (def, insn)
b11f0116 3450 {
bfac633a 3451 dreg = DF_REF_REAL_REG (def);
b11f0116
BC
3452 gcc_assert (REG_P (dreg));
3453 regno = REGNO (dreg);
bfac633a 3454 if (!(DF_REF_FLAGS (def)
b11f0116
BC
3455 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3456 {
3457 if (bitmap_clear_bit (curr_regs_live, regno))
3458 change_pressure (regno, false);
3459 }
3460 }
3461
bfac633a 3462 FOR_EACH_INSN_USE (use, insn)
b11f0116 3463 {
bfac633a 3464 dreg = DF_REF_REAL_REG (use);
b11f0116
BC
3465 gcc_assert (REG_P (dreg));
3466 regno = REGNO (dreg);
3467 if (bitmap_set_bit (curr_regs_live, regno))
3468 change_pressure (regno, true);
3469 }
3470 }
3471 }
3472 BITMAP_FREE (curr_regs_live);
3473
3474 if (dump_file == NULL)
3475 return;
3476
3477 fprintf (dump_file, "\nRegister Pressure: \n");
11cd3bed 3478 FOR_EACH_BB_FN (bb, cfun)
b11f0116
BC
3479 {
3480 fprintf (dump_file, " Basic block %d: \n", bb->index);
3481 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3482 {
3483 enum reg_class pressure_class;
3484
3485 pressure_class = ira_pressure_classes[i];
3486 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3487 continue;
3488
3489 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3490 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3491 }
3492 }
3493 fprintf (dump_file, "\n");
3494}
3495
bb457bd9
JL
3496/* Top level routine to perform one code hoisting (aka unification) pass
3497
cc2902df 3498 Return nonzero if a change was made. */
bb457bd9
JL
3499
3500static int
1d088dee 3501one_code_hoisting_pass (void)
bb457bd9
JL
3502{
3503 int changed = 0;
3504
5f39ad47
SB
3505 gcse_subst_count = 0;
3506 gcse_create_count = 0;
3507
3508 /* Return if there's nothing to do, or it is too expensive. */
0cae8d31 3509 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
87d8dd6c 3510 || gcse_or_cprop_is_too_expensive (_("GCSE disabled")))
5f39ad47
SB
3511 return 0;
3512
20160347
MK
3513 doing_code_hoisting_p = true;
3514
b11f0116
BC
3515 /* Calculate register pressure for each basic block. */
3516 if (flag_ira_hoist_pressure)
3517 {
3518 regstat_init_n_sets_and_refs ();
3519 ira_set_pseudo_classes (false, dump_file);
3520 alloc_aux_for_blocks (sizeof (struct bb_data));
3521 calculate_bb_reg_pressure ();
3522 regstat_free_n_sets_and_refs ();
3523 }
3524
5f39ad47
SB
3525 /* We need alias. */
3526 init_alias_analysis ();
3527
3528 bytes_used = 0;
3529 gcc_obstack_init (&gcse_obstack);
3530 alloc_gcse_mem ();
3531
e45425ec 3532 alloc_hash_table (&expr_hash_table);
02280659 3533 compute_hash_table (&expr_hash_table);
10d22567
ZD
3534 if (dump_file)
3535 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
c4c81601 3536
02280659 3537 if (expr_hash_table.n_elems > 0)
bb457bd9 3538 {
8b1c6fd7
DM
3539 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3540 expr_hash_table.n_elems);
bb457bd9 3541 compute_code_hoist_data ();
5f39ad47 3542 changed = hoist_code ();
bb457bd9
JL
3543 free_code_hoist_mem ();
3544 }
c4c81601 3545
b11f0116
BC
3546 if (flag_ira_hoist_pressure)
3547 {
3548 free_aux_for_blocks ();
3549 free_reg_info ();
3550 }
02280659 3551 free_hash_table (&expr_hash_table);
5f39ad47
SB
3552 free_gcse_mem ();
3553 obstack_free (&gcse_obstack, NULL);
3554
3555 /* We are finished with alias. */
3556 end_alias_analysis ();
3557
3558 if (dump_file)
3559 {
3560 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
0cae8d31
DM
3561 current_function_name (), n_basic_blocks_for_fn (cfun),
3562 bytes_used);
5f39ad47
SB
3563 fprintf (dump_file, "%d substs, %d insns created\n",
3564 gcse_subst_count, gcse_create_count);
3565 }
bb457bd9 3566
20160347
MK
3567 doing_code_hoisting_p = false;
3568
bb457bd9
JL
3569 return changed;
3570}
a13d4ebf 3571\f
43c8a043
EB
3572/* Here we provide the things required to do store motion towards the exit.
3573 In order for this to be effective, gcse also needed to be taught how to
3574 move a load when it is killed only by a store to itself.
a13d4ebf
AM
3575
3576 int i;
3577 float a[10];
3578
3579 void foo(float scale)
3580 {
3581 for (i=0; i<10; i++)
3582 a[i] *= scale;
3583 }
3584
3585 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
589005ff
KH
3586 the load out since its live around the loop, and stored at the bottom
3587 of the loop.
a13d4ebf 3588
589005ff 3589 The 'Load Motion' referred to and implemented in this file is
43c8a043 3590 an enhancement to gcse which when using edge based LCM, recognizes
a13d4ebf
AM
3591 this situation and allows gcse to move the load out of the loop.
3592
3593 Once gcse has hoisted the load, store motion can then push this
3594 load towards the exit, and we end up with no loads or stores of 'i'
3595 in the loop. */
3596
ff7cc307 3597/* This will search the ldst list for a matching expression. If it
a13d4ebf
AM
3598 doesn't find one, we create one and initialize it. */
3599
3600static struct ls_expr *
1d088dee 3601ldst_entry (rtx x)
a13d4ebf 3602{
b58b21d5 3603 int do_not_record_p = 0;
a13d4ebf 3604 struct ls_expr * ptr;
b58b21d5 3605 unsigned int hash;
4a8fb1a1 3606 ls_expr **slot;
9727e468 3607 struct ls_expr e;
a13d4ebf 3608
0516f6fe
SB
3609 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3610 NULL, /*have_reg_qty=*/false);
a13d4ebf 3611
9727e468 3612 e.pattern = x;
c203e8a7 3613 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
9727e468 3614 if (*slot)
4a8fb1a1 3615 return *slot;
b58b21d5 3616
5ed6ace5 3617 ptr = XNEW (struct ls_expr);
b58b21d5
RS
3618
3619 ptr->next = pre_ldst_mems;
3620 ptr->expr = NULL;
3621 ptr->pattern = x;
3622 ptr->pattern_regs = NULL_RTX;
0777c850 3623 ptr->stores.create (0);
b58b21d5
RS
3624 ptr->reaching_reg = NULL_RTX;
3625 ptr->invalid = 0;
3626 ptr->index = 0;
3627 ptr->hash_index = hash;
3628 pre_ldst_mems = ptr;
9727e468 3629 *slot = ptr;
589005ff 3630
a13d4ebf
AM
3631 return ptr;
3632}
3633
3634/* Free up an individual ldst entry. */
3635
589005ff 3636static void
1d088dee 3637free_ldst_entry (struct ls_expr * ptr)
a13d4ebf 3638{
0777c850 3639 ptr->stores.release ();
a13d4ebf
AM
3640
3641 free (ptr);
3642}
3643
3644/* Free up all memory associated with the ldst list. */
3645
3646static void
43c8a043 3647free_ld_motion_mems (void)
a13d4ebf 3648{
c203e8a7
TS
3649 delete pre_ldst_table;
3650 pre_ldst_table = NULL;
9727e468 3651
589005ff 3652 while (pre_ldst_mems)
a13d4ebf
AM
3653 {
3654 struct ls_expr * tmp = pre_ldst_mems;
3655
3656 pre_ldst_mems = pre_ldst_mems->next;
3657
3658 free_ldst_entry (tmp);
3659 }
3660
3661 pre_ldst_mems = NULL;
3662}
3663
3664/* Dump debugging info about the ldst list. */
3665
3666static void
1d088dee 3667print_ldst_list (FILE * file)
a13d4ebf
AM
3668{
3669 struct ls_expr * ptr;
3670
3671 fprintf (file, "LDST list: \n");
3672
43c8a043 3673 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
a13d4ebf
AM
3674 {
3675 fprintf (file, " Pattern (%3d): ", ptr->index);
3676
3677 print_rtl (file, ptr->pattern);
3678
a13d4ebf 3679 fprintf (file, "\n Stores : ");
0777c850 3680 print_rtx_insn_vec (file, ptr->stores);
a13d4ebf
AM
3681
3682 fprintf (file, "\n\n");
3683 }
3684
3685 fprintf (file, "\n");
3686}
3687
3688/* Returns 1 if X is in the list of ldst only expressions. */
3689
3690static struct ls_expr *
1d088dee 3691find_rtx_in_ldst (rtx x)
a13d4ebf 3692{
9727e468 3693 struct ls_expr e;
4a8fb1a1 3694 ls_expr **slot;
c203e8a7 3695 if (!pre_ldst_table)
6375779a 3696 return NULL;
9727e468 3697 e.pattern = x;
c203e8a7 3698 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
4a8fb1a1 3699 if (!slot || (*slot)->invalid)
9727e468 3700 return NULL;
4a8fb1a1 3701 return *slot;
a13d4ebf 3702}
a13d4ebf
AM
3703\f
3704/* Load Motion for loads which only kill themselves. */
3705
43c8a043
EB
3706/* Return true if x, a MEM, is a simple access with no side effects.
3707 These are the types of loads we consider for the ld_motion list,
3708 otherwise we let the usual aliasing take care of it. */
a13d4ebf 3709
589005ff 3710static int
ed7a4b4b 3711simple_mem (const_rtx x)
a13d4ebf 3712{
a13d4ebf
AM
3713 if (MEM_VOLATILE_P (x))
3714 return 0;
589005ff 3715
a13d4ebf
AM
3716 if (GET_MODE (x) == BLKmode)
3717 return 0;
aaa4ca30 3718
47a3dae1 3719 /* If we are handling exceptions, we must be careful with memory references
8f4f502f 3720 that may trap. If we are not, the behavior is undefined, so we may just
47a3dae1 3721 continue. */
8f4f502f 3722 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
98d3d336
RS
3723 return 0;
3724
47a3dae1
ZD
3725 if (side_effects_p (x))
3726 return 0;
589005ff 3727
47a3dae1
ZD
3728 /* Do not consider function arguments passed on stack. */
3729 if (reg_mentioned_p (stack_pointer_rtx, x))
3730 return 0;
3731
3732 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3733 return 0;
3734
3735 return 1;
a13d4ebf
AM
3736}
3737
589005ff
KH
3738/* Make sure there isn't a buried reference in this pattern anywhere.
3739 If there is, invalidate the entry for it since we're not capable
3740 of fixing it up just yet.. We have to be sure we know about ALL
a13d4ebf
AM
3741 loads since the aliasing code will allow all entries in the
3742 ld_motion list to not-alias itself. If we miss a load, we will get
589005ff 3743 the wrong value since gcse might common it and we won't know to
a13d4ebf
AM
3744 fix it up. */
3745
3746static void
1d088dee 3747invalidate_any_buried_refs (rtx x)
a13d4ebf
AM
3748{
3749 const char * fmt;
8e42ace1 3750 int i, j;
a13d4ebf
AM
3751 struct ls_expr * ptr;
3752
3753 /* Invalidate it in the list. */
7b1b4aed 3754 if (MEM_P (x) && simple_mem (x))
a13d4ebf
AM
3755 {
3756 ptr = ldst_entry (x);
3757 ptr->invalid = 1;
3758 }
3759
3760 /* Recursively process the insn. */
3761 fmt = GET_RTX_FORMAT (GET_CODE (x));
589005ff 3762
a13d4ebf
AM
3763 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3764 {
3765 if (fmt[i] == 'e')
3766 invalidate_any_buried_refs (XEXP (x, i));
3767 else if (fmt[i] == 'E')
3768 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3769 invalidate_any_buried_refs (XVECEXP (x, i, j));
3770 }
3771}
3772
4d3eb89a
HPN
3773/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3774 being defined as MEM loads and stores to symbols, with no side effects
3775 and no registers in the expression. For a MEM destination, we also
3776 check that the insn is still valid if we replace the destination with a
3777 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3778 which don't match this criteria, they are invalidated and trimmed out
3779 later. */
a13d4ebf 3780
589005ff 3781static void
1d088dee 3782compute_ld_motion_mems (void)
a13d4ebf
AM
3783{
3784 struct ls_expr * ptr;
e0082a72 3785 basic_block bb;
cf92a178 3786 rtx_insn *insn;
589005ff 3787
a13d4ebf 3788 pre_ldst_mems = NULL;
c203e8a7 3789 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
a13d4ebf 3790
11cd3bed 3791 FOR_EACH_BB_FN (bb, cfun)
a13d4ebf 3792 {
eb232f4e 3793 FOR_BB_INSNS (bb, insn)
a13d4ebf 3794 {
b5b8b0ac 3795 if (NONDEBUG_INSN_P (insn))
a13d4ebf
AM
3796 {
3797 if (GET_CODE (PATTERN (insn)) == SET)
3798 {
3799 rtx src = SET_SRC (PATTERN (insn));
3800 rtx dest = SET_DEST (PATTERN (insn));
3801
0bca04b8 3802 /* Check for a simple load. */
7b1b4aed 3803 if (MEM_P (src) && simple_mem (src))
a13d4ebf
AM
3804 {
3805 ptr = ldst_entry (src);
5c576429 3806 if (!REG_P (dest))
a13d4ebf
AM
3807 ptr->invalid = 1;
3808 }
3809 else
3810 {
3811 /* Make sure there isn't a buried load somewhere. */
3812 invalidate_any_buried_refs (src);
3813 }
589005ff 3814
0bca04b8
EB
3815 /* Check for a simple load through a REG_EQUAL note. */
3816 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3817 if (note
3818 && REG_NOTE_KIND (note) == REG_EQUAL
3819 && (src_eq = XEXP (note, 0))
2df013f3
JB
3820 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3821 invalidate_any_buried_refs (src_eq);
3822
a13d4ebf
AM
3823 /* Check for stores. Don't worry about aliased ones, they
3824 will block any movement we might do later. We only care
3825 about this exact pattern since those are the only
3826 circumstance that we will ignore the aliasing info. */
7b1b4aed 3827 if (MEM_P (dest) && simple_mem (dest))
a13d4ebf
AM
3828 {
3829 ptr = ldst_entry (dest);
0683fd27 3830 machine_mode src_mode = GET_MODE (src);
7b1b4aed 3831 if (! MEM_P (src)
4d3eb89a
HPN
3832 && GET_CODE (src) != ASM_OPERANDS
3833 /* Check for REG manually since want_to_gcse_p
3834 returns 0 for all REGs. */
0683fd27
KT
3835 && can_assign_to_reg_without_clobbers_p (src,
3836 src_mode))
0777c850 3837 ptr->stores.safe_push (insn);
a13d4ebf
AM
3838 else
3839 ptr->invalid = 1;
3840 }
3841 }
3842 else
0bca04b8
EB
3843 {
3844 /* Invalidate all MEMs in the pattern and... */
3845 invalidate_any_buried_refs (PATTERN (insn));
3846
3847 /* ...in REG_EQUAL notes for PARALLELs with single SET. */
3848 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3849 if (note
3850 && REG_NOTE_KIND (note) == REG_EQUAL
3851 && (src_eq = XEXP (note, 0)))
3852 invalidate_any_buried_refs (src_eq);
3853 }
a13d4ebf
AM
3854 }
3855 }
3856 }
3857}
3858
589005ff 3859/* Remove any references that have been either invalidated or are not in the
a13d4ebf
AM
3860 expression list for pre gcse. */
3861
3862static void
1d088dee 3863trim_ld_motion_mems (void)
a13d4ebf 3864{
b58b21d5
RS
3865 struct ls_expr * * last = & pre_ldst_mems;
3866 struct ls_expr * ptr = pre_ldst_mems;
a13d4ebf
AM
3867
3868 while (ptr != NULL)
3869 {
11478306 3870 struct gcse_expr * expr;
589005ff 3871
a13d4ebf 3872 /* Delete if entry has been made invalid. */
b58b21d5 3873 if (! ptr->invalid)
a13d4ebf 3874 {
a13d4ebf 3875 /* Delete if we cannot find this mem in the expression list. */
b58b21d5 3876 unsigned int hash = ptr->hash_index % expr_hash_table.size;
589005ff 3877
b58b21d5
RS
3878 for (expr = expr_hash_table.table[hash];
3879 expr != NULL;
3880 expr = expr->next_same_hash)
3881 if (expr_equiv_p (expr->expr, ptr->pattern))
3882 break;
a13d4ebf
AM
3883 }
3884 else
11478306 3885 expr = (struct gcse_expr *) 0;
b58b21d5
RS
3886
3887 if (expr)
a13d4ebf
AM
3888 {
3889 /* Set the expression field if we are keeping it. */
a13d4ebf 3890 ptr->expr = expr;
b58b21d5 3891 last = & ptr->next;
a13d4ebf
AM
3892 ptr = ptr->next;
3893 }
b58b21d5
RS
3894 else
3895 {
3896 *last = ptr->next;
c203e8a7 3897 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
b58b21d5
RS
3898 free_ldst_entry (ptr);
3899 ptr = * last;
3900 }
a13d4ebf
AM
3901 }
3902
3903 /* Show the world what we've found. */
10d22567
ZD
3904 if (dump_file && pre_ldst_mems != NULL)
3905 print_ldst_list (dump_file);
a13d4ebf
AM
3906}
3907
3908/* This routine will take an expression which we are replacing with
3909 a reaching register, and update any stores that are needed if
3910 that expression is in the ld_motion list. Stores are updated by
a98ebe2e 3911 copying their SRC to the reaching register, and then storing
a13d4ebf
AM
3912 the reaching register into the store location. These keeps the
3913 correct value in the reaching register for the loads. */
3914
3915static void
11478306 3916update_ld_motion_stores (struct gcse_expr * expr)
a13d4ebf
AM
3917{
3918 struct ls_expr * mem_ptr;
3919
3920 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3921 {
589005ff
KH
3922 /* We can try to find just the REACHED stores, but is shouldn't
3923 matter to set the reaching reg everywhere... some might be
a13d4ebf
AM
3924 dead and should be eliminated later. */
3925
4d3eb89a
HPN
3926 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3927 where reg is the reaching reg used in the load. We checked in
3928 compute_ld_motion_mems that we can replace (set mem expr) with
3929 (set reg expr) in that insn. */
0777c850
TS
3930 rtx_insn *insn;
3931 unsigned int i;
3932 FOR_EACH_VEC_ELT_REVERSE (mem_ptr->stores, i, insn)
a13d4ebf 3933 {
a13d4ebf
AM
3934 rtx pat = PATTERN (insn);
3935 rtx src = SET_SRC (pat);
3936 rtx reg = expr->reaching_reg;
a13d4ebf
AM
3937
3938 /* If we've already copied it, continue. */
3939 if (expr->reaching_reg == src)
3940 continue;
589005ff 3941
10d22567 3942 if (dump_file)
a13d4ebf 3943 {
10d22567 3944 fprintf (dump_file, "PRE: store updated with reaching reg ");
43c8a043 3945 print_rtl (dump_file, reg);
10d22567
ZD
3946 fprintf (dump_file, ":\n ");
3947 print_inline_rtx (dump_file, insn, 8);
3948 fprintf (dump_file, "\n");
a13d4ebf 3949 }
589005ff 3950
e67d1102 3951 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
038dc49a 3952 emit_insn_before (copy, insn);
a13d4ebf 3953 SET_SRC (pat) = reg;
6fb5fa3c 3954 df_insn_rescan (insn);
a13d4ebf
AM
3955
3956 /* un-recognize this pattern since it's probably different now. */
3957 INSN_CODE (insn) = -1;
3958 gcse_create_count++;
3959 }
3960 }
3961}
3962\f
df35c271
SB
3963/* Return true if the graph is too expensive to optimize. PASS is the
3964 optimization about to be performed. */
47a3dae1 3965
87d8dd6c
BL
3966bool
3967gcse_or_cprop_is_too_expensive (const char *pass)
df35c271 3968{
87d8dd6c
BL
3969 unsigned int memory_request = (n_basic_blocks_for_fn (cfun)
3970 * SBITMAP_SET_SIZE (max_reg_num ())
3971 * sizeof (SBITMAP_ELT_TYPE));
3972
df35c271
SB
3973 /* Trying to perform global optimizations on flow graphs which have
3974 a high connectivity will take a long time and is unlikely to be
3975 particularly useful.
aaa4ca30 3976
df35c271
SB
3977 In normal circumstances a cfg should have about twice as many
3978 edges as blocks. But we do not want to punish small functions
3979 which have a couple switch statements. Rather than simply
3980 threshold the number of blocks, uses something with a more
3981 graceful degradation. */
dc936fb2 3982 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
df35c271
SB
3983 {
3984 warning (OPT_Wdisabled_optimization,
3985 "%s: %d basic blocks and %d edges/basic block",
0cae8d31 3986 pass, n_basic_blocks_for_fn (cfun),
dc936fb2 3987 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
a13d4ebf 3988
df35c271
SB
3989 return true;
3990 }
a13d4ebf 3991
e45425ec 3992 /* If allocating memory for the dataflow bitmaps would take up too much
df35c271 3993 storage it's better just to disable the optimization. */
87d8dd6c 3994 if (memory_request > MAX_GCSE_MEMORY)
df35c271
SB
3995 {
3996 warning (OPT_Wdisabled_optimization,
87d8dd6c
BL
3997 "%s: %d basic blocks and %d registers; increase --param max-gcse-memory above %d",
3998 pass, n_basic_blocks_for_fn (cfun), max_reg_num (),
3999 memory_request);
a13d4ebf 4000
df35c271
SB
4001 return true;
4002 }
adfcce61 4003
df35c271 4004 return false;
01c43039 4005}
df35c271 4006\f
df35c271
SB
4007static unsigned int
4008execute_rtl_pre (void)
4009{
f2b01cfb 4010 int changed;
df35c271 4011 delete_unreachable_blocks ();
df35c271 4012 df_analyze ();
f2b01cfb
RG
4013 changed = one_pre_gcse_pass ();
4014 flag_rerun_cse_after_global_opts |= changed;
4015 if (changed)
4016 cleanup_cfg (0);
df35c271
SB
4017 return 0;
4018}
aaa4ca30 4019
df35c271
SB
4020static unsigned int
4021execute_rtl_hoist (void)
4022{
f2b01cfb 4023 int changed;
df35c271 4024 delete_unreachable_blocks ();
df35c271 4025 df_analyze ();
f2b01cfb
RG
4026 changed = one_code_hoisting_pass ();
4027 flag_rerun_cse_after_global_opts |= changed;
4028 if (changed)
4029 cleanup_cfg (0);
df35c271
SB
4030 return 0;
4031}
ef330312 4032
27a4cd48
DM
4033namespace {
4034
4035const pass_data pass_data_rtl_pre =
ef330312 4036{
27a4cd48
DM
4037 RTL_PASS, /* type */
4038 "rtl pre", /* name */
4039 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
4040 TV_PRE, /* tv_id */
4041 PROP_cfglayout, /* properties_required */
4042 0, /* properties_provided */
4043 0, /* properties_destroyed */
4044 0, /* todo_flags_start */
3bea341f 4045 TODO_df_finish, /* todo_flags_finish */
5f39ad47 4046};
ef330312 4047
27a4cd48
DM
4048class pass_rtl_pre : public rtl_opt_pass
4049{
4050public:
c3284718
RS
4051 pass_rtl_pre (gcc::context *ctxt)
4052 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
27a4cd48
DM
4053 {}
4054
4055 /* opt_pass methods: */
1a3d085c 4056 virtual bool gate (function *);
be55bfe6 4057 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
27a4cd48
DM
4058
4059}; // class pass_rtl_pre
4060
1a3d085c
TS
4061/* We do not construct an accurate cfg in functions which call
4062 setjmp, so none of these passes runs if the function calls
4063 setjmp.
4064 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4065
4066bool
4067pass_rtl_pre::gate (function *fun)
4068{
4069 return optimize > 0 && flag_gcse
4070 && !fun->calls_setjmp
4071 && optimize_function_for_speed_p (fun)
4072 && dbg_cnt (pre);
4073}
4074
27a4cd48
DM
4075} // anon namespace
4076
4077rtl_opt_pass *
4078make_pass_rtl_pre (gcc::context *ctxt)
4079{
4080 return new pass_rtl_pre (ctxt);
4081}
4082
4083namespace {
4084
4085const pass_data pass_data_rtl_hoist =
ef330312 4086{
27a4cd48
DM
4087 RTL_PASS, /* type */
4088 "hoist", /* name */
4089 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
4090 TV_HOIST, /* tv_id */
4091 PROP_cfglayout, /* properties_required */
4092 0, /* properties_provided */
4093 0, /* properties_destroyed */
4094 0, /* todo_flags_start */
3bea341f 4095 TODO_df_finish, /* todo_flags_finish */
ef330312
PB
4096};
4097
27a4cd48
DM
4098class pass_rtl_hoist : public rtl_opt_pass
4099{
4100public:
c3284718
RS
4101 pass_rtl_hoist (gcc::context *ctxt)
4102 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
27a4cd48
DM
4103 {}
4104
4105 /* opt_pass methods: */
1a3d085c 4106 virtual bool gate (function *);
be55bfe6 4107 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
27a4cd48
DM
4108
4109}; // class pass_rtl_hoist
4110
1a3d085c
TS
4111bool
4112pass_rtl_hoist::gate (function *)
4113{
4114 return optimize > 0 && flag_gcse
4115 && !cfun->calls_setjmp
4116 /* It does not make sense to run code hoisting unless we are optimizing
4117 for code size -- it rarely makes programs faster, and can make then
4118 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4119 && optimize_function_for_size_p (cfun)
4120 && dbg_cnt (hoist);
4121}
4122
27a4cd48
DM
4123} // anon namespace
4124
4125rtl_opt_pass *
4126make_pass_rtl_hoist (gcc::context *ctxt)
4127{
4128 return new pass_rtl_hoist (ctxt);
4129}
4130
3edf64aa
DM
4131/* Reset all state within gcse.c so that we can rerun the compiler
4132 within the same process. For use by toplev::finalize. */
4133
4134void
4135gcse_c_finalize (void)
4136{
4137 test_insn = NULL;
4138}
4139
e2500fed 4140#include "gt-gcse.h"
This page took 6.929504 seconds and 5 git commands to generate.