]> gcc.gnu.org Git - gcc.git/blame - gcc/function.c
c-decl.c (store_parm_decls_oldstyle): Let diagnostic machinery decide if the warning...
[gcc.git] / gcc / function.c
CommitLineData
5e6908ea 1/* Expands front end tree to back end RTL for GCC.
af841dbd 2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
bfc45551
AM
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6f086dfc 5
1322177d 6This file is part of GCC.
6f086dfc 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
6f086dfc 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
6f086dfc
RS
17
18You should have received a copy of the GNU General Public License
1322177d
LB
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
6f086dfc 22
6f086dfc
RS
23/* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
31
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
8fff4fc1 35 not get a hard register. */
6f086dfc
RS
36
37#include "config.h"
670ee920 38#include "system.h"
4977bab6
ZW
39#include "coretypes.h"
40#include "tm.h"
6f086dfc
RS
41#include "rtl.h"
42#include "tree.h"
43#include "flags.h"
1ef08c63 44#include "except.h"
6f086dfc 45#include "function.h"
6f086dfc 46#include "expr.h"
c6b97fac 47#include "optabs.h"
e78d8e51 48#include "libfuncs.h"
6f086dfc
RS
49#include "regs.h"
50#include "hard-reg-set.h"
51#include "insn-config.h"
52#include "recog.h"
53#include "output.h"
bdac5f58 54#include "basic-block.h"
10f0ad3d 55#include "toplev.h"
e2500fed 56#include "hashtab.h"
87ff9c8e 57#include "ggc.h"
b1474bb7 58#include "tm_p.h"
c0e7830f 59#include "integrate.h"
7afff7cf 60#include "langhooks.h"
61f71b34 61#include "target.h"
623a66fa 62#include "cfglayout.h"
4744afba 63#include "tree-gimple.h"
6f086dfc 64
d16790f2
JW
65#ifndef LOCAL_ALIGNMENT
66#define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
67#endif
68
95f3f59e
JDA
69#ifndef STACK_ALIGNMENT_NEEDED
70#define STACK_ALIGNMENT_NEEDED 1
71#endif
72
975f3818
RS
73#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
74
293e3de4
RS
75/* Some systems use __main in a way incompatible with its use in gcc, in these
76 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
77 give the same symbol without quotes for an alternative entry point. You
0f41302f 78 must define both, or neither. */
293e3de4
RS
79#ifndef NAME__MAIN
80#define NAME__MAIN "__main"
293e3de4
RS
81#endif
82
6f086dfc
RS
83/* Round a value to the lowest integer less than it that is a multiple of
84 the required alignment. Avoid using division in case the value is
85 negative. Assume the alignment is a power of two. */
86#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
87
88/* Similar, but round to the next highest integer that meets the
89 alignment. */
90#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
91
54ff41b7
JW
92/* Nonzero if function being compiled doesn't contain any calls
93 (ignoring the prologue and epilogue). This is set prior to
94 local register allocation and is valid for the remaining
718fe406 95 compiler passes. */
54ff41b7
JW
96int current_function_is_leaf;
97
fdb8a883
JW
98/* Nonzero if function being compiled doesn't modify the stack pointer
99 (ignoring the prologue and epilogue). This is only valid after
718fe406 100 life_analysis has run. */
fdb8a883
JW
101int current_function_sp_is_unchanging;
102
54ff41b7
JW
103/* Nonzero if the function being compiled is a leaf function which only
104 uses leaf registers. This is valid after reload (specifically after
105 sched2) and is useful only if the port defines LEAF_REGISTERS. */
54ff41b7
JW
106int current_function_uses_only_leaf_regs;
107
6f086dfc 108/* Nonzero once virtual register instantiation has been done.
c39ada04
DD
109 assign_stack_local uses frame_pointer_rtx when this is nonzero.
110 calls.c:emit_library_call_value_1 uses it to set up
111 post-instantiation libcalls. */
112int virtuals_instantiated;
6f086dfc 113
df696a75 114/* Assign unique numbers to labels generated for profiling, debugging, etc. */
17211ab5 115static GTY(()) int funcdef_no;
f6f315fe 116
414c4dc4
NC
117/* These variables hold pointers to functions to create and destroy
118 target specific, per-function data structures. */
fa8db1f7 119struct machine_function * (*init_machine_status) (void);
46766466 120
b384405b 121/* The currently compiled function. */
01d939e8 122struct function *cfun = 0;
b384405b 123
5c7675e9 124/* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
e2500fed
GK
125static GTY(()) varray_type prologue;
126static GTY(()) varray_type epilogue;
0a1c58a2
JL
127
128/* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
129 in this function. */
e2500fed 130static GTY(()) varray_type sibcall_epilogue;
6f086dfc
RS
131\f
132/* In order to evaluate some expressions, such as function calls returning
133 structures in memory, we need to temporarily allocate stack locations.
134 We record each allocated temporary in the following structure.
135
136 Associated with each temporary slot is a nesting level. When we pop up
137 one level, all temporaries associated with the previous level are freed.
138 Normally, all temporaries are freed after the execution of the statement
139 in which they were created. However, if we are inside a ({...}) grouping,
140 the result may be in a temporary and hence must be preserved. If the
141 result could be in a temporary, we preserve it if we can determine which
142 one it is in. If we cannot determine which temporary may contain the
143 result, all temporaries are preserved. A temporary is preserved by
144 pretending it was allocated at the previous nesting level.
145
146 Automatic variables are also assigned temporary slots, at the nesting
147 level where they are defined. They are marked a "kept" so that
148 free_temp_slots will not free them. */
149
e2500fed 150struct temp_slot GTY(())
6f086dfc
RS
151{
152 /* Points to next temporary slot. */
153 struct temp_slot *next;
0aea6467
ZD
154 /* Points to previous temporary slot. */
155 struct temp_slot *prev;
156
0f41302f 157 /* The rtx to used to reference the slot. */
6f086dfc 158 rtx slot;
e5e76139
RK
159 /* The rtx used to represent the address if not the address of the
160 slot above. May be an EXPR_LIST if multiple addresses exist. */
161 rtx address;
718fe406 162 /* The alignment (in bits) of the slot. */
b5c02bff 163 unsigned int align;
6f086dfc 164 /* The size, in units, of the slot. */
e5e809f4 165 HOST_WIDE_INT size;
1da68f56
RK
166 /* The type of the object in the slot, or zero if it doesn't correspond
167 to a type. We use this to determine whether a slot can be reused.
168 It can be reused if objects of the type of the new slot will always
169 conflict with objects of the type of the old slot. */
170 tree type;
cc2902df 171 /* Nonzero if this temporary is currently in use. */
6f086dfc 172 char in_use;
cc2902df 173 /* Nonzero if this temporary has its address taken. */
a25d4ba2 174 char addr_taken;
6f086dfc
RS
175 /* Nesting level at which this slot is being used. */
176 int level;
cc2902df 177 /* Nonzero if this should survive a call to free_temp_slots. */
6f086dfc 178 int keep;
fc91b0d0
RK
179 /* The offset of the slot from the frame_pointer, including extra space
180 for alignment. This info is for combine_temp_slots. */
e5e809f4 181 HOST_WIDE_INT base_offset;
fc91b0d0
RK
182 /* The size of the slot, including extra space for alignment. This
183 info is for combine_temp_slots. */
e5e809f4 184 HOST_WIDE_INT full_size;
6f086dfc 185};
6f086dfc 186\f
e15679f8
RK
187/* Forward declarations. */
188
fa8db1f7
AJ
189static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
190 struct function *);
191static struct temp_slot *find_temp_slot_from_address (rtx);
fa8db1f7
AJ
192static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
193static void pad_below (struct args_size *, enum machine_mode, tree);
2c217442 194static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
fa8db1f7 195static void reorder_fix_fragments (tree);
fa8db1f7
AJ
196static int all_blocks (tree, tree *);
197static tree *get_block_vector (tree, int *);
198extern tree debug_find_var_in_block_tree (tree, tree);
1f52178b 199/* We always define `record_insns' even if it's not used so that we
ec97b83a 200 can always export `prologue_epilogue_contains'. */
fa8db1f7
AJ
201static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
202static int contains (rtx, varray_type);
73ef99fb 203#ifdef HAVE_return
fa8db1f7 204static void emit_return_into_block (basic_block, rtx);
73ef99fb 205#endif
3258e996 206#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
fa8db1f7 207static rtx keep_stack_depressed (rtx);
7393c642 208#endif
3a70d621 209static void prepare_function_start (tree);
fa8db1f7
AJ
210static void do_clobber_return_reg (rtx, void *);
211static void do_use_return_reg (rtx, void *);
4c4d143a 212static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
c20bf1f3 213\f
6f086dfc 214/* Pointer to chain of `struct function' for containing functions. */
1be4cd1f 215struct function *outer_function_chain;
6f086dfc
RS
216
217/* Given a function decl for a containing function,
218 return the `struct function' for it. */
219
220struct function *
fa8db1f7 221find_function_data (tree decl)
6f086dfc
RS
222{
223 struct function *p;
e5e809f4 224
eb3ae3e1 225 for (p = outer_function_chain; p; p = p->outer)
6f086dfc
RS
226 if (p->decl == decl)
227 return p;
e5e809f4 228
0bccc606 229 gcc_unreachable ();
6f086dfc
RS
230}
231
232/* Save the current context for compilation of a nested function.
8c5666b4 233 This is called from language-specific code. The caller should use
b03e38e1 234 the enter_nested langhook to save any language-specific state,
8c5666b4
BS
235 since this function knows only about language-independent
236 variables. */
6f086dfc
RS
237
238void
5acbdd12 239push_function_context_to (tree context ATTRIBUTE_UNUSED)
6f086dfc 240{
eb3ae3e1 241 struct function *p;
36edd3cc 242
01d939e8 243 if (cfun == 0)
b384405b 244 init_dummy_function_start ();
01d939e8 245 p = cfun;
6f086dfc 246
eb3ae3e1 247 p->outer = outer_function_chain;
6f086dfc 248 outer_function_chain = p;
6f086dfc 249
ae2bcd98 250 lang_hooks.function.enter_nested (p);
b384405b 251
01d939e8 252 cfun = 0;
6f086dfc
RS
253}
254
e4a4639e 255void
fa8db1f7 256push_function_context (void)
e4a4639e 257{
a0dabda5 258 push_function_context_to (current_function_decl);
e4a4639e
JM
259}
260
6f086dfc
RS
261/* Restore the last saved context, at the end of a nested function.
262 This function is called from language-specific code. */
263
264void
fa8db1f7 265pop_function_context_from (tree context ATTRIBUTE_UNUSED)
6f086dfc
RS
266{
267 struct function *p = outer_function_chain;
268
01d939e8 269 cfun = p;
eb3ae3e1 270 outer_function_chain = p->outer;
6f086dfc 271
6f086dfc 272 current_function_decl = p->decl;
6f086dfc 273
ae2bcd98 274 lang_hooks.function.leave_nested (p);
46766466 275
6f086dfc 276 /* Reset variables that have known state during rtx generation. */
6f086dfc 277 virtuals_instantiated = 0;
1b3d8f8a 278 generating_concat_p = 1;
6f086dfc 279}
e4a4639e 280
36edd3cc 281void
fa8db1f7 282pop_function_context (void)
e4a4639e 283{
a0dabda5 284 pop_function_context_from (current_function_decl);
e4a4639e 285}
e2ecd91c 286
fa51b01b
RH
287/* Clear out all parts of the state in F that can safely be discarded
288 after the function has been parsed, but not compiled, to let
289 garbage collection reclaim the memory. */
290
291void
fa8db1f7 292free_after_parsing (struct function *f)
fa51b01b
RH
293{
294 /* f->expr->forced_labels is used by code generation. */
295 /* f->emit->regno_reg_rtx is used by code generation. */
296 /* f->varasm is used by code generation. */
297 /* f->eh->eh_return_stub_label is used by code generation. */
298
ae2bcd98 299 lang_hooks.function.final (f);
fa51b01b
RH
300}
301
e2ecd91c
BS
302/* Clear out all parts of the state in F that can safely be discarded
303 after the function has been compiled, to let garbage collection
0a8a198c 304 reclaim the memory. */
21cd906e 305
e2ecd91c 306void
fa8db1f7 307free_after_compilation (struct function *f)
e2ecd91c 308{
e2500fed
GK
309 f->eh = NULL;
310 f->expr = NULL;
311 f->emit = NULL;
312 f->varasm = NULL;
313 f->machine = NULL;
997de8ed 314 f->cfg = NULL;
fa51b01b 315
0aea6467
ZD
316 f->x_avail_temp_slots = NULL;
317 f->x_used_temp_slots = NULL;
fa51b01b
RH
318 f->arg_offset_rtx = NULL;
319 f->return_rtx = NULL;
320 f->internal_arg_pointer = NULL;
fa51b01b 321 f->x_nonlocal_goto_handler_labels = NULL;
fa51b01b 322 f->x_return_label = NULL;
6e3077c6 323 f->x_naked_return_label = NULL;
fa51b01b 324 f->x_stack_slot_list = NULL;
fa51b01b
RH
325 f->x_tail_recursion_reentry = NULL;
326 f->x_arg_pointer_save_area = NULL;
fa51b01b 327 f->x_parm_birth_insn = NULL;
fa51b01b
RH
328 f->original_arg_vector = NULL;
329 f->original_decl_initial = NULL;
fa51b01b 330 f->epilogue_delay_list = NULL;
e2ecd91c 331}
6f086dfc
RS
332\f
333/* Allocate fixed slots in the stack frame of the current function. */
334
49ad7cfa
BS
335/* Return size needed for stack frame based on slots so far allocated in
336 function F.
c795bca9 337 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
6f086dfc
RS
338 the caller may have to do that. */
339
7b25e663 340static HOST_WIDE_INT
fa8db1f7 341get_func_frame_size (struct function *f)
6f086dfc
RS
342{
343#ifdef FRAME_GROWS_DOWNWARD
49ad7cfa 344 return -f->x_frame_offset;
6f086dfc 345#else
49ad7cfa 346 return f->x_frame_offset;
6f086dfc
RS
347#endif
348}
349
49ad7cfa
BS
350/* Return size needed for stack frame based on slots so far allocated.
351 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
352 the caller may have to do that. */
353HOST_WIDE_INT
fa8db1f7 354get_frame_size (void)
49ad7cfa 355{
01d939e8 356 return get_func_frame_size (cfun);
49ad7cfa
BS
357}
358
6f086dfc
RS
359/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
360 with machine mode MODE.
718fe406 361
6f086dfc
RS
362 ALIGN controls the amount of alignment for the address of the slot:
363 0 means according to MODE,
364 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
cfa29a4c 365 -2 means use BITS_PER_UNIT,
6f086dfc
RS
366 positive specifies alignment boundary in bits.
367
e2ecd91c 368 We do not round to stack_boundary here.
6f086dfc 369
e2ecd91c
BS
370 FUNCTION specifies the function to allocate in. */
371
372static rtx
fa8db1f7
AJ
373assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
374 struct function *function)
6f086dfc 375{
b3694847 376 rtx x, addr;
6f086dfc 377 int bigend_correction = 0;
95899b34 378 unsigned int alignment;
58dbcf05 379 int frame_off, frame_alignment, frame_phase;
6f086dfc
RS
380
381 if (align == 0)
382 {
d16790f2
JW
383 tree type;
384
6f086dfc 385 if (mode == BLKmode)
d16790f2 386 alignment = BIGGEST_ALIGNMENT;
dbab7b72 387 else
718fe406 388 alignment = GET_MODE_ALIGNMENT (mode);
d16790f2
JW
389
390 /* Allow the target to (possibly) increase the alignment of this
391 stack slot. */
ae2bcd98 392 type = lang_hooks.types.type_for_mode (mode, 0);
d16790f2
JW
393 if (type)
394 alignment = LOCAL_ALIGNMENT (type, alignment);
395
396 alignment /= BITS_PER_UNIT;
6f086dfc
RS
397 }
398 else if (align == -1)
399 {
400 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
401 size = CEIL_ROUND (size, alignment);
402 }
cfa29a4c
EB
403 else if (align == -2)
404 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
6f086dfc
RS
405 else
406 alignment = align / BITS_PER_UNIT;
407
1474e303 408#ifdef FRAME_GROWS_DOWNWARD
e2ecd91c 409 function->x_frame_offset -= size;
1474e303
JL
410#endif
411
a0871656
JH
412 /* Ignore alignment we can't do with expected alignment of the boundary. */
413 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
414 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
415
416 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
417 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
418
58dbcf05
AH
419 /* Calculate how many bytes the start of local variables is off from
420 stack alignment. */
421 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
422 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
423 frame_phase = frame_off ? frame_alignment - frame_off : 0;
424
95f3f59e
JDA
425 /* Round the frame offset to the specified alignment. The default is
426 to always honor requests to align the stack but a port may choose to
427 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
428 if (STACK_ALIGNMENT_NEEDED
429 || mode != BLKmode
430 || size != 0)
431 {
432 /* We must be careful here, since FRAME_OFFSET might be negative and
433 division with a negative dividend isn't as well defined as we might
434 like. So we instead assume that ALIGNMENT is a power of two and
435 use logical operations which are unambiguous. */
6f086dfc 436#ifdef FRAME_GROWS_DOWNWARD
95f3f59e 437 function->x_frame_offset
e140e27d
RH
438 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
439 (unsigned HOST_WIDE_INT) alignment)
95f3f59e 440 + frame_phase);
6f086dfc 441#else
95f3f59e 442 function->x_frame_offset
e140e27d
RH
443 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
444 (unsigned HOST_WIDE_INT) alignment)
95f3f59e 445 + frame_phase);
6f086dfc 446#endif
95f3f59e 447 }
6f086dfc
RS
448
449 /* On a big-endian machine, if we are allocating more space than we will use,
450 use the least significant bytes of those that are allocated. */
f76b9db2 451 if (BYTES_BIG_ENDIAN && mode != BLKmode)
6f086dfc 452 bigend_correction = size - GET_MODE_SIZE (mode);
6f086dfc 453
6f086dfc
RS
454 /* If we have already instantiated virtual registers, return the actual
455 address relative to the frame pointer. */
01d939e8 456 if (function == cfun && virtuals_instantiated)
6f086dfc 457 addr = plus_constant (frame_pointer_rtx,
c41536f5 458 trunc_int_for_mode
6f086dfc 459 (frame_offset + bigend_correction
c41536f5 460 + STARTING_FRAME_OFFSET, Pmode));
6f086dfc
RS
461 else
462 addr = plus_constant (virtual_stack_vars_rtx,
c41536f5
AO
463 trunc_int_for_mode
464 (function->x_frame_offset + bigend_correction,
465 Pmode));
6f086dfc
RS
466
467#ifndef FRAME_GROWS_DOWNWARD
e2ecd91c 468 function->x_frame_offset += size;
6f086dfc
RS
469#endif
470
38a448ca 471 x = gen_rtx_MEM (mode, addr);
6f086dfc 472
e2ecd91c
BS
473 function->x_stack_slot_list
474 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
475
6f086dfc
RS
476 return x;
477}
478
e2ecd91c
BS
479/* Wrapper around assign_stack_local_1; assign a local stack slot for the
480 current function. */
3bdf5ad1 481
e2ecd91c 482rtx
fa8db1f7 483assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
6f086dfc 484{
01d939e8 485 return assign_stack_local_1 (mode, size, align, cfun);
6f086dfc 486}
0aea6467
ZD
487
488\f
489/* Removes temporary slot TEMP from LIST. */
490
491static void
492cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
493{
494 if (temp->next)
495 temp->next->prev = temp->prev;
496 if (temp->prev)
497 temp->prev->next = temp->next;
498 else
499 *list = temp->next;
500
501 temp->prev = temp->next = NULL;
502}
503
504/* Inserts temporary slot TEMP to LIST. */
505
506static void
507insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
508{
509 temp->next = *list;
510 if (*list)
511 (*list)->prev = temp;
512 temp->prev = NULL;
513 *list = temp;
514}
515
516/* Returns the list of used temp slots at LEVEL. */
517
518static struct temp_slot **
519temp_slots_at_level (int level)
520{
0aea6467
ZD
521
522 if (!used_temp_slots)
523 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
524
525 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
526 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
527
528 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
529}
530
531/* Returns the maximal temporary slot level. */
532
533static int
534max_slot_level (void)
535{
536 if (!used_temp_slots)
537 return -1;
538
539 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
540}
541
542/* Moves temporary slot TEMP to LEVEL. */
543
544static void
545move_slot_to_level (struct temp_slot *temp, int level)
546{
547 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
548 insert_slot_to_list (temp, temp_slots_at_level (level));
549 temp->level = level;
550}
551
552/* Make temporary slot TEMP available. */
553
554static void
555make_slot_available (struct temp_slot *temp)
556{
557 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
558 insert_slot_to_list (temp, &avail_temp_slots);
559 temp->in_use = 0;
560 temp->level = -1;
561}
6f086dfc
RS
562\f
563/* Allocate a temporary stack slot and record it for possible later
564 reuse.
565
566 MODE is the machine mode to be given to the returned rtx.
567
568 SIZE is the size in units of the space required. We do no rounding here
569 since assign_stack_local will do any required rounding.
570
d93d4205
MS
571 KEEP is 1 if this slot is to be retained after a call to
572 free_temp_slots. Automatic variables for a block are allocated
7efcb746
PB
573 with this flag. KEEP values of 2 or 3 were needed respectively
574 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
535a42b1 575 or for SAVE_EXPRs, but they are now unused.
a4c6502a
MM
576
577 TYPE is the type that will be used for the stack slot. */
6f086dfc 578
a06ef755 579rtx
535a42b1
NS
580assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
581 int keep, tree type)
6f086dfc 582{
74e2819c 583 unsigned int align;
0aea6467 584 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
faa964e5 585 rtx slot;
6f086dfc 586
303ec2aa
RK
587 /* If SIZE is -1 it means that somebody tried to allocate a temporary
588 of a variable size. */
0bccc606 589 gcc_assert (size != -1);
303ec2aa 590
7efcb746 591 /* These are now unused. */
0bccc606 592 gcc_assert (keep <= 1);
7efcb746 593
d16790f2
JW
594 if (mode == BLKmode)
595 align = BIGGEST_ALIGNMENT;
dbab7b72
JH
596 else
597 align = GET_MODE_ALIGNMENT (mode);
6f086dfc 598
d16790f2 599 if (! type)
ae2bcd98 600 type = lang_hooks.types.type_for_mode (mode, 0);
3bdf5ad1 601
d16790f2
JW
602 if (type)
603 align = LOCAL_ALIGNMENT (type, align);
604
605 /* Try to find an available, already-allocated temporary of the proper
606 mode which meets the size and alignment requirements. Choose the
607 smallest one with the closest alignment. */
0aea6467
ZD
608 for (p = avail_temp_slots; p; p = p->next)
609 {
610 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
611 && objects_must_conflict_p (p->type, type)
612 && (best_p == 0 || best_p->size > p->size
613 || (best_p->size == p->size && best_p->align > p->align)))
614 {
615 if (p->align == align && p->size == size)
616 {
617 selected = p;
618 cut_slot_from_list (selected, &avail_temp_slots);
619 best_p = 0;
620 break;
621 }
622 best_p = p;
623 }
624 }
6f086dfc
RS
625
626 /* Make our best, if any, the one to use. */
627 if (best_p)
a45035b6 628 {
0aea6467
ZD
629 selected = best_p;
630 cut_slot_from_list (selected, &avail_temp_slots);
631
a45035b6
JW
632 /* If there are enough aligned bytes left over, make them into a new
633 temp_slot so that the extra bytes don't get wasted. Do this only
634 for BLKmode slots, so that we can be sure of the alignment. */
3bdf5ad1 635 if (GET_MODE (best_p->slot) == BLKmode)
a45035b6 636 {
d16790f2 637 int alignment = best_p->align / BITS_PER_UNIT;
e5e809f4 638 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
a45035b6
JW
639
640 if (best_p->size - rounded_size >= alignment)
641 {
703ad42b 642 p = ggc_alloc (sizeof (struct temp_slot));
a25d4ba2 643 p->in_use = p->addr_taken = 0;
a45035b6 644 p->size = best_p->size - rounded_size;
307d8cd6
RK
645 p->base_offset = best_p->base_offset + rounded_size;
646 p->full_size = best_p->full_size - rounded_size;
38a448ca
RH
647 p->slot = gen_rtx_MEM (BLKmode,
648 plus_constant (XEXP (best_p->slot, 0),
649 rounded_size));
d16790f2 650 p->align = best_p->align;
e5e76139 651 p->address = 0;
1da68f56 652 p->type = best_p->type;
0aea6467 653 insert_slot_to_list (p, &avail_temp_slots);
a45035b6 654
38a448ca
RH
655 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
656 stack_slot_list);
a45035b6
JW
657
658 best_p->size = rounded_size;
291dde90 659 best_p->full_size = rounded_size;
a45035b6
JW
660 }
661 }
a45035b6 662 }
718fe406 663
6f086dfc 664 /* If we still didn't find one, make a new temporary. */
0aea6467 665 if (selected == 0)
6f086dfc 666 {
e5e809f4
JL
667 HOST_WIDE_INT frame_offset_old = frame_offset;
668
703ad42b 669 p = ggc_alloc (sizeof (struct temp_slot));
e5e809f4 670
c87a0a39
JL
671 /* We are passing an explicit alignment request to assign_stack_local.
672 One side effect of that is assign_stack_local will not round SIZE
673 to ensure the frame offset remains suitably aligned.
674
675 So for requests which depended on the rounding of SIZE, we go ahead
676 and round it now. We also make sure ALIGNMENT is at least
677 BIGGEST_ALIGNMENT. */
0bccc606 678 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
6f67a30d 679 p->slot = assign_stack_local (mode,
010529e5 680 (mode == BLKmode
fc555370 681 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
010529e5 682 : size),
6f67a30d 683 align);
d16790f2
JW
684
685 p->align = align;
e5e809f4 686
b2a80c0d
DE
687 /* The following slot size computation is necessary because we don't
688 know the actual size of the temporary slot until assign_stack_local
689 has performed all the frame alignment and size rounding for the
fc91b0d0
RK
690 requested temporary. Note that extra space added for alignment
691 can be either above or below this stack slot depending on which
692 way the frame grows. We include the extra space if and only if it
693 is above this slot. */
b2a80c0d
DE
694#ifdef FRAME_GROWS_DOWNWARD
695 p->size = frame_offset_old - frame_offset;
696#else
fc91b0d0
RK
697 p->size = size;
698#endif
e5e809f4 699
fc91b0d0
RK
700 /* Now define the fields used by combine_temp_slots. */
701#ifdef FRAME_GROWS_DOWNWARD
702 p->base_offset = frame_offset;
703 p->full_size = frame_offset_old - frame_offset;
704#else
705 p->base_offset = frame_offset_old;
706 p->full_size = frame_offset - frame_offset_old;
b2a80c0d 707#endif
e5e76139 708 p->address = 0;
0aea6467
ZD
709
710 selected = p;
6f086dfc
RS
711 }
712
0aea6467 713 p = selected;
6f086dfc 714 p->in_use = 1;
a25d4ba2 715 p->addr_taken = 0;
1da68f56 716 p->type = type;
7efcb746
PB
717 p->level = temp_slot_level;
718 p->keep = keep;
1995f267 719
0aea6467
ZD
720 pp = temp_slots_at_level (p->level);
721 insert_slot_to_list (p, pp);
faa964e5
UW
722
723 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
724 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
725 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
3bdf5ad1 726
1da68f56
RK
727 /* If we know the alias set for the memory that will be used, use
728 it. If there's no TYPE, then we don't know anything about the
729 alias set for the memory. */
faa964e5
UW
730 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
731 set_mem_align (slot, align);
1da68f56 732
30f7a378 733 /* If a type is specified, set the relevant flags. */
3bdf5ad1 734 if (type != 0)
1da68f56 735 {
faa964e5
UW
736 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
737 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
1da68f56 738 }
3bdf5ad1 739
faa964e5 740 return slot;
6f086dfc 741}
d16790f2
JW
742
743/* Allocate a temporary stack slot and record it for possible later
744 reuse. First three arguments are same as in preceding function. */
745
746rtx
fa8db1f7 747assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
d16790f2
JW
748{
749 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
750}
638141a6 751\f
9432c136
EB
752/* Assign a temporary.
753 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
754 and so that should be used in error messages. In either case, we
755 allocate of the given type.
230f21b4
PB
756 KEEP is as for assign_stack_temp.
757 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
b55d9ff8
RK
758 it is 0 if a register is OK.
759 DONT_PROMOTE is 1 if we should not promote values in register
760 to wider modes. */
230f21b4
PB
761
762rtx
fa8db1f7
AJ
763assign_temp (tree type_or_decl, int keep, int memory_required,
764 int dont_promote ATTRIBUTE_UNUSED)
230f21b4 765{
9432c136
EB
766 tree type, decl;
767 enum machine_mode mode;
9e1622ed 768#ifdef PROMOTE_MODE
9432c136
EB
769 int unsignedp;
770#endif
771
772 if (DECL_P (type_or_decl))
773 decl = type_or_decl, type = TREE_TYPE (decl);
774 else
775 decl = NULL, type = type_or_decl;
776
777 mode = TYPE_MODE (type);
9e1622ed 778#ifdef PROMOTE_MODE
8df83eae 779 unsignedp = TYPE_UNSIGNED (type);
0ce8a59c 780#endif
638141a6 781
230f21b4
PB
782 if (mode == BLKmode || memory_required)
783 {
e5e809f4 784 HOST_WIDE_INT size = int_size_in_bytes (type);
e30bb772 785 tree size_tree;
230f21b4
PB
786 rtx tmp;
787
44affdae
JH
788 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
789 problems with allocating the stack space. */
790 if (size == 0)
791 size = 1;
792
230f21b4
PB
793 /* Unfortunately, we don't yet know how to allocate variable-sized
794 temporaries. However, sometimes we have a fixed upper limit on
795 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
0f41302f 796 instead. This is the case for Chill variable-sized strings. */
230f21b4
PB
797 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
798 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
3bdf5ad1
RK
799 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
800 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
230f21b4 801
e30bb772
RK
802 /* If we still haven't been able to get a size, see if the language
803 can compute a maximum size. */
804 if (size == -1
8963a517 805 && (size_tree = lang_hooks.types.max_size (type)) != 0
e30bb772
RK
806 && host_integerp (size_tree, 1))
807 size = tree_low_cst (size_tree, 1);
808
9432c136
EB
809 /* The size of the temporary may be too large to fit into an integer. */
810 /* ??? Not sure this should happen except for user silliness, so limit
797a6ac1 811 this to things that aren't compiler-generated temporaries. The
535a42b1 812 rest of the time we'll die in assign_stack_temp_for_type. */
9432c136
EB
813 if (decl && size == -1
814 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
815 {
971801ff 816 error ("%Jsize of variable %qD is too large", decl, decl);
9432c136
EB
817 size = 1;
818 }
819
d16790f2 820 tmp = assign_stack_temp_for_type (mode, size, keep, type);
230f21b4
PB
821 return tmp;
822 }
638141a6 823
9e1622ed 824#ifdef PROMOTE_MODE
b55d9ff8
RK
825 if (! dont_promote)
826 mode = promote_mode (type, mode, &unsignedp, 0);
230f21b4 827#endif
638141a6 828
230f21b4
PB
829 return gen_reg_rtx (mode);
830}
638141a6 831\f
a45035b6
JW
832/* Combine temporary stack slots which are adjacent on the stack.
833
834 This allows for better use of already allocated stack space. This is only
835 done for BLKmode slots because we can be sure that we won't have alignment
836 problems in this case. */
837
6fe79279 838static void
fa8db1f7 839combine_temp_slots (void)
a45035b6 840{
0aea6467 841 struct temp_slot *p, *q, *next, *next_q;
e5e809f4
JL
842 int num_slots;
843
a4c6502a
MM
844 /* We can't combine slots, because the information about which slot
845 is in which alias set will be lost. */
846 if (flag_strict_aliasing)
847 return;
848
718fe406 849 /* If there are a lot of temp slots, don't do anything unless
d6a7951f 850 high levels of optimization. */
e5e809f4 851 if (! flag_expensive_optimizations)
0aea6467 852 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
e5e809f4
JL
853 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
854 return;
a45035b6 855
0aea6467 856 for (p = avail_temp_slots; p; p = next)
e9b7093a
RS
857 {
858 int delete_p = 0;
e5e809f4 859
0aea6467
ZD
860 next = p->next;
861
862 if (GET_MODE (p->slot) != BLKmode)
863 continue;
864
865 for (q = p->next; q; q = next_q)
e9b7093a 866 {
0aea6467
ZD
867 int delete_q = 0;
868
869 next_q = q->next;
870
871 if (GET_MODE (q->slot) != BLKmode)
872 continue;
873
874 if (p->base_offset + p->full_size == q->base_offset)
875 {
876 /* Q comes after P; combine Q into P. */
877 p->size += q->size;
878 p->full_size += q->full_size;
879 delete_q = 1;
880 }
881 else if (q->base_offset + q->full_size == p->base_offset)
882 {
883 /* P comes after Q; combine P into Q. */
884 q->size += p->size;
885 q->full_size += p->full_size;
886 delete_p = 1;
887 break;
888 }
889 if (delete_q)
890 cut_slot_from_list (q, &avail_temp_slots);
e9b7093a 891 }
0aea6467
ZD
892
893 /* Either delete P or advance past it. */
894 if (delete_p)
895 cut_slot_from_list (p, &avail_temp_slots);
e9b7093a 896 }
a45035b6 897}
6f086dfc 898\f
e5e76139
RK
899/* Find the temp slot corresponding to the object at address X. */
900
901static struct temp_slot *
fa8db1f7 902find_temp_slot_from_address (rtx x)
e5e76139
RK
903{
904 struct temp_slot *p;
905 rtx next;
0aea6467 906 int i;
e5e76139 907
0aea6467
ZD
908 for (i = max_slot_level (); i >= 0; i--)
909 for (p = *temp_slots_at_level (i); p; p = p->next)
910 {
911 if (XEXP (p->slot, 0) == x
912 || p->address == x
913 || (GET_CODE (x) == PLUS
914 && XEXP (x, 0) == virtual_stack_vars_rtx
915 && GET_CODE (XEXP (x, 1)) == CONST_INT
916 && INTVAL (XEXP (x, 1)) >= p->base_offset
917 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
918 return p;
919
920 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
921 for (next = p->address; next; next = XEXP (next, 1))
922 if (XEXP (next, 0) == x)
923 return p;
924 }
e5e76139 925
14a774a9
RK
926 /* If we have a sum involving a register, see if it points to a temp
927 slot. */
f8cfc6aa 928 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
14a774a9
RK
929 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
930 return p;
f8cfc6aa 931 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
14a774a9
RK
932 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
933 return p;
934
e5e76139
RK
935 return 0;
936}
718fe406 937
9faa82d8 938/* Indicate that NEW is an alternate way of referring to the temp slot
e5e809f4 939 that previously was known by OLD. */
e5e76139
RK
940
941void
fa8db1f7 942update_temp_slot_address (rtx old, rtx new)
e5e76139 943{
14a774a9 944 struct temp_slot *p;
e5e76139 945
14a774a9 946 if (rtx_equal_p (old, new))
e5e76139 947 return;
14a774a9
RK
948
949 p = find_temp_slot_from_address (old);
950
700f19f0
RK
951 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
952 is a register, see if one operand of the PLUS is a temporary
953 location. If so, NEW points into it. Otherwise, if both OLD and
954 NEW are a PLUS and if there is a register in common between them.
955 If so, try a recursive call on those values. */
14a774a9
RK
956 if (p == 0)
957 {
700f19f0
RK
958 if (GET_CODE (old) != PLUS)
959 return;
960
f8cfc6aa 961 if (REG_P (new))
700f19f0
RK
962 {
963 update_temp_slot_address (XEXP (old, 0), new);
964 update_temp_slot_address (XEXP (old, 1), new);
965 return;
966 }
967 else if (GET_CODE (new) != PLUS)
14a774a9
RK
968 return;
969
970 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
971 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
972 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
973 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
974 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
975 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
976 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
977 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
978
979 return;
980 }
981
718fe406 982 /* Otherwise add an alias for the temp's address. */
e5e76139
RK
983 else if (p->address == 0)
984 p->address = new;
985 else
986 {
987 if (GET_CODE (p->address) != EXPR_LIST)
38a448ca 988 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
e5e76139 989
38a448ca 990 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
e5e76139
RK
991 }
992}
993
a25d4ba2 994/* If X could be a reference to a temporary slot, mark the fact that its
9faa82d8 995 address was taken. */
a25d4ba2
RK
996
997void
fa8db1f7 998mark_temp_addr_taken (rtx x)
a25d4ba2
RK
999{
1000 struct temp_slot *p;
1001
1002 if (x == 0)
1003 return;
1004
1005 /* If X is not in memory or is at a constant address, it cannot be in
1006 a temporary slot. */
3c0cb5de 1007 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
a25d4ba2
RK
1008 return;
1009
1010 p = find_temp_slot_from_address (XEXP (x, 0));
1011 if (p != 0)
1012 p->addr_taken = 1;
1013}
1014
9cca6a99
MS
1015/* If X could be a reference to a temporary slot, mark that slot as
1016 belonging to the to one level higher than the current level. If X
1017 matched one of our slots, just mark that one. Otherwise, we can't
1018 easily predict which it is, so upgrade all of them. Kept slots
1019 need not be touched.
6f086dfc
RS
1020
1021 This is called when an ({...}) construct occurs and a statement
1022 returns a value in memory. */
1023
1024void
fa8db1f7 1025preserve_temp_slots (rtx x)
6f086dfc 1026{
0aea6467 1027 struct temp_slot *p = 0, *next;
6f086dfc 1028
73620b82
RK
1029 /* If there is no result, we still might have some objects whose address
1030 were taken, so we need to make sure they stay around. */
e3a77161 1031 if (x == 0)
73620b82 1032 {
0aea6467
ZD
1033 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1034 {
1035 next = p->next;
1036
1037 if (p->addr_taken)
1038 move_slot_to_level (p, temp_slot_level - 1);
1039 }
73620b82 1040
8fff4fc1
RH
1041 return;
1042 }
f7b6d104 1043
8fff4fc1
RH
1044 /* If X is a register that is being used as a pointer, see if we have
1045 a temporary slot we know it points to. To be consistent with
1046 the code below, we really should preserve all non-kept slots
1047 if we can't find a match, but that seems to be much too costly. */
1048 if (REG_P (x) && REG_POINTER (x))
1049 p = find_temp_slot_from_address (x);
f7b6d104 1050
8fff4fc1
RH
1051 /* If X is not in memory or is at a constant address, it cannot be in
1052 a temporary slot, but it can contain something whose address was
1053 taken. */
1054 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1055 {
1056 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1057 {
1058 next = p->next;
b5bd3b3c 1059
8fff4fc1
RH
1060 if (p->addr_taken)
1061 move_slot_to_level (p, temp_slot_level - 1);
e9a25f70 1062 }
c5c76735 1063
8fff4fc1
RH
1064 return;
1065 }
1066
1067 /* First see if we can find a match. */
1068 if (p == 0)
1069 p = find_temp_slot_from_address (XEXP (x, 0));
1070
1071 if (p != 0)
1072 {
1073 /* Move everything at our level whose address was taken to our new
1074 level in case we used its address. */
1075 struct temp_slot *q;
1076
1077 if (p->level == temp_slot_level)
fbdfe39c 1078 {
8fff4fc1 1079 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
8b04083b 1080 {
8fff4fc1 1081 next = q->next;
8b04083b 1082
8fff4fc1
RH
1083 if (p != q && q->addr_taken)
1084 move_slot_to_level (q, temp_slot_level - 1);
8b04083b 1085 }
8fff4fc1
RH
1086
1087 move_slot_to_level (p, temp_slot_level - 1);
1088 p->addr_taken = 0;
fbdfe39c 1089 }
8fff4fc1 1090 return;
f7b6d104 1091 }
e9a25f70 1092
8fff4fc1
RH
1093 /* Otherwise, preserve all non-kept slots at this level. */
1094 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
e9a25f70 1095 {
8fff4fc1 1096 next = p->next;
fe9b4957 1097
8fff4fc1
RH
1098 if (!p->keep)
1099 move_slot_to_level (p, temp_slot_level - 1);
1100 }
fe9b4957
MM
1101}
1102
8fff4fc1
RH
1103/* Free all temporaries used so far. This is normally called at the
1104 end of generating code for a statement. */
fe9b4957 1105
8fff4fc1
RH
1106void
1107free_temp_slots (void)
fe9b4957 1108{
8fff4fc1 1109 struct temp_slot *p, *next;
fe9b4957 1110
8fff4fc1
RH
1111 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1112 {
1113 next = p->next;
fe9b4957 1114
8fff4fc1
RH
1115 if (!p->keep)
1116 make_slot_available (p);
1117 }
fe9b4957 1118
8fff4fc1
RH
1119 combine_temp_slots ();
1120}
fe9b4957 1121
8fff4fc1 1122/* Push deeper into the nesting level for stack temporaries. */
fe9b4957 1123
8fff4fc1
RH
1124void
1125push_temp_slots (void)
fe9b4957 1126{
8fff4fc1 1127 temp_slot_level++;
fe9b4957
MM
1128}
1129
8fff4fc1
RH
1130/* Pop a temporary nesting level. All slots in use in the current level
1131 are freed. */
fe9b4957 1132
8fff4fc1
RH
1133void
1134pop_temp_slots (void)
fe9b4957 1135{
8fff4fc1 1136 struct temp_slot *p, *next;
fe9b4957 1137
8fff4fc1
RH
1138 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1139 {
1140 next = p->next;
1141 make_slot_available (p);
1142 }
e9a25f70 1143
8fff4fc1 1144 combine_temp_slots ();
b987f237 1145
8fff4fc1 1146 temp_slot_level--;
8c36698e
NC
1147}
1148
8fff4fc1 1149/* Initialize temporary slots. */
e9a25f70
JL
1150
1151void
8fff4fc1 1152init_temp_slots (void)
e9a25f70 1153{
8fff4fc1
RH
1154 /* We have not allocated any temporaries yet. */
1155 avail_temp_slots = 0;
1156 used_temp_slots = 0;
1157 temp_slot_level = 0;
8fff4fc1
RH
1158}
1159\f
1160/* These routines are responsible for converting virtual register references
1161 to the actual hard register references once RTL generation is complete.
718fe406 1162
8fff4fc1
RH
1163 The following four variables are used for communication between the
1164 routines. They contain the offsets of the virtual registers from their
1165 respective hard registers. */
fe9b4957 1166
8fff4fc1
RH
1167static int in_arg_offset;
1168static int var_offset;
1169static int dynamic_offset;
1170static int out_arg_offset;
1171static int cfa_offset;
8a5275eb 1172
8fff4fc1
RH
1173/* In most machines, the stack pointer register is equivalent to the bottom
1174 of the stack. */
718fe406 1175
8fff4fc1
RH
1176#ifndef STACK_POINTER_OFFSET
1177#define STACK_POINTER_OFFSET 0
1178#endif
8c36698e 1179
8fff4fc1
RH
1180/* If not defined, pick an appropriate default for the offset of dynamically
1181 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1182 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
fe9b4957 1183
8fff4fc1 1184#ifndef STACK_DYNAMIC_OFFSET
8a5275eb 1185
8fff4fc1
RH
1186/* The bottom of the stack points to the actual arguments. If
1187 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1188 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1189 stack space for register parameters is not pushed by the caller, but
1190 rather part of the fixed stack areas and hence not included in
1191 `current_function_outgoing_args_size'. Nevertheless, we must allow
1192 for it when allocating stack dynamic objects. */
8a5275eb 1193
8fff4fc1
RH
1194#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1195#define STACK_DYNAMIC_OFFSET(FNDECL) \
1196((ACCUMULATE_OUTGOING_ARGS \
1197 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1198 + (STACK_POINTER_OFFSET)) \
4fa48eae 1199
8fff4fc1
RH
1200#else
1201#define STACK_DYNAMIC_OFFSET(FNDECL) \
1202((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1203 + (STACK_POINTER_OFFSET))
1204#endif
1205#endif
4fa48eae 1206
8fff4fc1 1207/* On most machines, the CFA coincides with the first incoming parm. */
4fa48eae 1208
8fff4fc1
RH
1209#ifndef ARG_POINTER_CFA_OFFSET
1210#define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1211#endif
4fa48eae 1212
659e47fb 1213\f
bbf9b913
RH
1214/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1215 is a virtual register, return the equivalent hard register and set the
1216 offset indirectly through the pointer. Otherwise, return 0. */
6f086dfc 1217
bbf9b913
RH
1218static rtx
1219instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
6f086dfc 1220{
bbf9b913
RH
1221 rtx new;
1222 HOST_WIDE_INT offset;
6f086dfc 1223
bbf9b913
RH
1224 if (x == virtual_incoming_args_rtx)
1225 new = arg_pointer_rtx, offset = in_arg_offset;
1226 else if (x == virtual_stack_vars_rtx)
1227 new = frame_pointer_rtx, offset = var_offset;
1228 else if (x == virtual_stack_dynamic_rtx)
1229 new = stack_pointer_rtx, offset = dynamic_offset;
1230 else if (x == virtual_outgoing_args_rtx)
1231 new = stack_pointer_rtx, offset = out_arg_offset;
1232 else if (x == virtual_cfa_rtx)
1233 new = arg_pointer_rtx, offset = cfa_offset;
1234 else
1235 return NULL_RTX;
6f086dfc 1236
bbf9b913
RH
1237 *poffset = offset;
1238 return new;
6f086dfc
RS
1239}
1240
bbf9b913
RH
1241/* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1242 Instantiate any virtual registers present inside of *LOC. The expression
1243 is simplified, as much as possible, but is not to be considered "valid"
1244 in any sense implied by the target. If any change is made, set CHANGED
1245 to true. */
6f086dfc 1246
bbf9b913
RH
1247static int
1248instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
6f086dfc 1249{
bbf9b913
RH
1250 HOST_WIDE_INT offset;
1251 bool *changed = (bool *) data;
1252 rtx x, new;
6f086dfc 1253
bbf9b913
RH
1254 x = *loc;
1255 if (x == 0)
1256 return 0;
1257
1258 switch (GET_CODE (x))
6f086dfc 1259 {
bbf9b913
RH
1260 case REG:
1261 new = instantiate_new_reg (x, &offset);
1262 if (new)
1263 {
1264 *loc = plus_constant (new, offset);
1265 if (changed)
1266 *changed = true;
1267 }
1268 return -1;
1269
1270 case PLUS:
1271 new = instantiate_new_reg (XEXP (x, 0), &offset);
1272 if (new)
1273 {
1274 new = plus_constant (new, offset);
1275 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1276 if (changed)
1277 *changed = true;
1278 return -1;
1279 }
e5e809f4 1280
bbf9b913
RH
1281 /* FIXME -- from old code */
1282 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1283 we can commute the PLUS and SUBREG because pointers into the
1284 frame are well-behaved. */
1285 break;
ce717ce4 1286
bbf9b913
RH
1287 default:
1288 break;
6f086dfc
RS
1289 }
1290
bbf9b913 1291 return 0;
6f086dfc
RS
1292}
1293
bbf9b913
RH
1294/* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1295 matches the predicate for insn CODE operand OPERAND. */
6f086dfc 1296
bbf9b913
RH
1297static int
1298safe_insn_predicate (int code, int operand, rtx x)
6f086dfc 1299{
bbf9b913 1300 const struct insn_operand_data *op_data;
6f086dfc 1301
bbf9b913
RH
1302 if (code < 0)
1303 return true;
6f086dfc 1304
bbf9b913
RH
1305 op_data = &insn_data[code].operand[operand];
1306 if (op_data->predicate == NULL)
1307 return true;
5a73491b 1308
bbf9b913
RH
1309 return op_data->predicate (x, op_data->mode);
1310}
5a73491b 1311
bbf9b913
RH
1312/* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1313 registers present inside of insn. The result will be a valid insn. */
5a73491b
RK
1314
1315static void
bbf9b913 1316instantiate_virtual_regs_in_insn (rtx insn)
5a73491b 1317{
bbf9b913
RH
1318 HOST_WIDE_INT offset;
1319 int insn_code, i;
1320 bool any_change;
1321 rtx set, new, x, seq;
32e66afd 1322
bbf9b913
RH
1323 /* There are some special cases to be handled first. */
1324 set = single_set (insn);
1325 if (set)
32e66afd 1326 {
bbf9b913
RH
1327 /* We're allowed to assign to a virtual register. This is interpreted
1328 to mean that the underlying register gets assigned the inverse
1329 transformation. This is used, for example, in the handling of
1330 non-local gotos. */
1331 new = instantiate_new_reg (SET_DEST (set), &offset);
1332 if (new)
1333 {
1334 start_sequence ();
32e66afd 1335
bbf9b913
RH
1336 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1337 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1338 GEN_INT (-offset));
1339 x = force_operand (x, new);
1340 if (x != new)
1341 emit_move_insn (new, x);
5a73491b 1342
bbf9b913
RH
1343 seq = get_insns ();
1344 end_sequence ();
5a73491b 1345
bbf9b913
RH
1346 emit_insn_before (seq, insn);
1347 delete_insn (insn);
1348 return;
1349 }
5a73491b 1350
bbf9b913
RH
1351 /* Handle a straight copy from a virtual register by generating a
1352 new add insn. The difference between this and falling through
1353 to the generic case is avoiding a new pseudo and eliminating a
1354 move insn in the initial rtl stream. */
1355 new = instantiate_new_reg (SET_SRC (set), &offset);
1356 if (new && offset != 0
1357 && REG_P (SET_DEST (set))
1358 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1359 {
1360 start_sequence ();
5a73491b 1361
bbf9b913
RH
1362 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1363 new, GEN_INT (offset), SET_DEST (set),
1364 1, OPTAB_LIB_WIDEN);
1365 if (x != SET_DEST (set))
1366 emit_move_insn (SET_DEST (set), x);
770ae6cc 1367
bbf9b913
RH
1368 seq = get_insns ();
1369 end_sequence ();
87ce34d6 1370
bbf9b913
RH
1371 emit_insn_before (seq, insn);
1372 delete_insn (insn);
87ce34d6 1373 return;
bbf9b913 1374 }
5a73491b 1375
bbf9b913 1376 extract_insn (insn);
5a73491b 1377
bbf9b913
RH
1378 /* Handle a plus involving a virtual register by determining if the
1379 operands remain valid if they're modified in place. */
1380 if (GET_CODE (SET_SRC (set)) == PLUS
1381 && recog_data.n_operands >= 3
1382 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1383 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1384 && GET_CODE (recog_data.operand[2]) == CONST_INT
1385 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1386 {
1387 offset += INTVAL (recog_data.operand[2]);
5a73491b 1388
bbf9b913
RH
1389 /* If the sum is zero, then replace with a plain move. */
1390 if (offset == 0)
1391 {
1392 start_sequence ();
1393 emit_move_insn (SET_DEST (set), new);
1394 seq = get_insns ();
1395 end_sequence ();
d1405722 1396
bbf9b913
RH
1397 emit_insn_before (seq, insn);
1398 delete_insn (insn);
1399 return;
1400 }
d1405722 1401
bbf9b913
RH
1402 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1403 insn_code = INSN_CODE (insn);
1404
1405 /* Using validate_change and apply_change_group here leaves
1406 recog_data in an invalid state. Since we know exactly what
1407 we want to check, do those two by hand. */
1408 if (safe_insn_predicate (insn_code, 1, new)
1409 && safe_insn_predicate (insn_code, 2, x))
1410 {
1411 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1412 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1413 any_change = true;
1414 goto verify;
1415 }
1416 }
1417 }
d1405722 1418 else
bbf9b913 1419 extract_insn (insn);
d1405722 1420
bbf9b913
RH
1421 insn_code = INSN_CODE (insn);
1422 any_change = false;
5dc96d60 1423
bbf9b913
RH
1424 /* In the general case, we expect virtual registers to appear only in
1425 operands, and then only as either bare registers or inside memories. */
1426 for (i = 0; i < recog_data.n_operands; ++i)
1427 {
1428 x = recog_data.operand[i];
1429 switch (GET_CODE (x))
1430 {
1431 case MEM:
1432 {
1433 rtx addr = XEXP (x, 0);
1434 bool changed = false;
1435
1436 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1437 if (!changed)
1438 continue;
1439
1440 start_sequence ();
1441 x = replace_equiv_address (x, addr);
1442 seq = get_insns ();
1443 end_sequence ();
1444 if (seq)
1445 emit_insn_before (seq, insn);
1446 }
1447 break;
1448
1449 case REG:
1450 new = instantiate_new_reg (x, &offset);
1451 if (new == NULL)
1452 continue;
1453 if (offset == 0)
1454 x = new;
1455 else
1456 {
1457 start_sequence ();
6f086dfc 1458
bbf9b913
RH
1459 /* Careful, special mode predicates may have stuff in
1460 insn_data[insn_code].operand[i].mode that isn't useful
1461 to us for computing a new value. */
1462 /* ??? Recognize address_operand and/or "p" constraints
1463 to see if (plus new offset) is a valid before we put
1464 this through expand_simple_binop. */
1465 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1466 GEN_INT (offset), NULL_RTX,
1467 1, OPTAB_LIB_WIDEN);
1468 seq = get_insns ();
1469 end_sequence ();
1470 emit_insn_before (seq, insn);
1471 }
1472 break;
6f086dfc 1473
bbf9b913
RH
1474 case SUBREG:
1475 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1476 if (new == NULL)
1477 continue;
1478 if (offset != 0)
1479 {
1480 start_sequence ();
1481 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1482 GEN_INT (offset), NULL_RTX,
1483 1, OPTAB_LIB_WIDEN);
1484 seq = get_insns ();
1485 end_sequence ();
1486 emit_insn_before (seq, insn);
1487 }
1488 x = simplify_gen_subreg (insn_data[insn_code].operand[i].mode,
1489 new, GET_MODE (new), SUBREG_BYTE (x));
1490 break;
6f086dfc 1491
bbf9b913
RH
1492 default:
1493 continue;
1494 }
6f086dfc 1495
bbf9b913
RH
1496 /* At this point, X contains the new value for the operand.
1497 Validate the new value vs the insn predicate. Note that
1498 asm insns will have insn_code -1 here. */
1499 if (!safe_insn_predicate (insn_code, i, x))
1500 x = force_reg (insn_data[insn_code].operand[i].mode, x);
6f086dfc 1501
bbf9b913
RH
1502 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1503 any_change = true;
1504 }
6f086dfc 1505
bbf9b913
RH
1506 verify:
1507 if (any_change)
1508 {
1509 /* Propagate operand changes into the duplicates. */
1510 for (i = 0; i < recog_data.n_dups; ++i)
1511 *recog_data.dup_loc[i]
1512 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
5dc96d60 1513
bbf9b913
RH
1514 /* Force re-recognition of the instruction for validation. */
1515 INSN_CODE (insn) = -1;
1516 }
6f086dfc 1517
bbf9b913 1518 if (asm_noperands (PATTERN (insn)) >= 0)
6f086dfc 1519 {
bbf9b913 1520 if (!check_asm_operands (PATTERN (insn)))
6f086dfc 1521 {
bbf9b913
RH
1522 error_for_asm (insn, "impossible constraint in %<asm%>");
1523 delete_insn (insn);
1524 }
1525 }
1526 else
1527 {
1528 if (recog_memoized (insn) < 0)
1529 fatal_insn_not_found (insn);
1530 }
1531}
14a774a9 1532
bbf9b913
RH
1533/* Subroutine of instantiate_decls. Given RTL representing a decl,
1534 do any instantiation required. */
14a774a9 1535
bbf9b913
RH
1536static void
1537instantiate_decl (rtx x)
1538{
1539 rtx addr;
6f086dfc 1540
bbf9b913
RH
1541 if (x == 0)
1542 return;
6f086dfc 1543
bbf9b913
RH
1544 /* If this is a CONCAT, recurse for the pieces. */
1545 if (GET_CODE (x) == CONCAT)
1546 {
1547 instantiate_decl (XEXP (x, 0));
1548 instantiate_decl (XEXP (x, 1));
1549 return;
1550 }
6f086dfc 1551
bbf9b913
RH
1552 /* If this is not a MEM, no need to do anything. Similarly if the
1553 address is a constant or a register that is not a virtual register. */
1554 if (!MEM_P (x))
1555 return;
6f086dfc 1556
bbf9b913
RH
1557 addr = XEXP (x, 0);
1558 if (CONSTANT_P (addr)
1559 || (REG_P (addr)
1560 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1561 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1562 return;
6f086dfc 1563
bbf9b913
RH
1564 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1565}
6f086dfc 1566
bbf9b913
RH
1567/* Subroutine of instantiate_decls: Process all decls in the given
1568 BLOCK node and all its subblocks. */
6f086dfc 1569
bbf9b913
RH
1570static void
1571instantiate_decls_1 (tree let)
1572{
1573 tree t;
6f086dfc 1574
bbf9b913
RH
1575 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1576 if (DECL_RTL_SET_P (t))
1577 instantiate_decl (DECL_RTL (t));
6f086dfc 1578
bbf9b913
RH
1579 /* Process all subblocks. */
1580 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1581 instantiate_decls_1 (t);
1582}
6f086dfc 1583
bbf9b913
RH
1584/* Scan all decls in FNDECL (both variables and parameters) and instantiate
1585 all virtual registers in their DECL_RTL's. */
6f086dfc 1586
bbf9b913
RH
1587static void
1588instantiate_decls (tree fndecl)
1589{
1590 tree decl;
6f086dfc 1591
bbf9b913
RH
1592 /* Process all parameters of the function. */
1593 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1594 {
1595 instantiate_decl (DECL_RTL (decl));
1596 instantiate_decl (DECL_INCOMING_RTL (decl));
1597 }
4fd796bb 1598
bbf9b913
RH
1599 /* Now process all variables defined in the function or its subblocks. */
1600 instantiate_decls_1 (DECL_INITIAL (fndecl));
1601}
6f086dfc 1602
bbf9b913
RH
1603/* Pass through the INSNS of function FNDECL and convert virtual register
1604 references to hard register references. */
6f086dfc 1605
bbf9b913
RH
1606void
1607instantiate_virtual_regs (void)
1608{
1609 rtx insn;
6f086dfc 1610
bbf9b913
RH
1611 /* Compute the offsets to use for this function. */
1612 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1613 var_offset = STARTING_FRAME_OFFSET;
1614 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1615 out_arg_offset = STACK_POINTER_OFFSET;
1616 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
e9a25f70 1617
bbf9b913
RH
1618 /* Initialize recognition, indicating that volatile is OK. */
1619 init_recog ();
6f086dfc 1620
bbf9b913
RH
1621 /* Scan through all the insns, instantiating every virtual register still
1622 present. */
1623 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1624 if (INSN_P (insn))
6f086dfc 1625 {
bbf9b913
RH
1626 /* These patterns in the instruction stream can never be recognized.
1627 Fortunately, they shouldn't contain virtual registers either. */
1628 if (GET_CODE (PATTERN (insn)) == USE
1629 || GET_CODE (PATTERN (insn)) == CLOBBER
1630 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1631 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1632 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1633 continue;
1634
1635 instantiate_virtual_regs_in_insn (insn);
1636
1637 if (INSN_DELETED_P (insn))
1638 continue;
1639
1640 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1641
1642 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1643 if (GET_CODE (insn) == CALL_INSN)
1644 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1645 instantiate_virtual_regs_in_rtx, NULL);
6f086dfc 1646 }
6f086dfc 1647
bbf9b913
RH
1648 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1649 instantiate_decls (current_function_decl);
1650
1651 /* Indicate that, from now on, assign_stack_local should use
1652 frame_pointer_rtx. */
1653 virtuals_instantiated = 1;
6f086dfc
RS
1654}
1655\f
d181c154
RS
1656/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1657 This means a type for which function calls must pass an address to the
1658 function or get an address back from the function.
1659 EXP may be a type node or an expression (whose type is tested). */
6f086dfc
RS
1660
1661int
61f71b34 1662aggregate_value_p (tree exp, tree fntype)
6f086dfc 1663{
9d790a4f
RS
1664 int i, regno, nregs;
1665 rtx reg;
2f939d94
TP
1666
1667 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
d181c154 1668
61f71b34
DD
1669 if (fntype)
1670 switch (TREE_CODE (fntype))
1671 {
1672 case CALL_EXPR:
1673 fntype = get_callee_fndecl (fntype);
1674 fntype = fntype ? TREE_TYPE (fntype) : 0;
1675 break;
1676 case FUNCTION_DECL:
1677 fntype = TREE_TYPE (fntype);
1678 break;
1679 case FUNCTION_TYPE:
1680 case METHOD_TYPE:
1681 break;
1682 case IDENTIFIER_NODE:
1683 fntype = 0;
1684 break;
1685 default:
1686 /* We don't expect other rtl types here. */
0bccc606 1687 gcc_unreachable ();
61f71b34
DD
1688 }
1689
d7bf8ada
MM
1690 if (TREE_CODE (type) == VOID_TYPE)
1691 return 0;
cc77ae10
JM
1692 /* If the front end has decided that this needs to be passed by
1693 reference, do so. */
1694 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1695 && DECL_BY_REFERENCE (exp))
1696 return 1;
61f71b34 1697 if (targetm.calls.return_in_memory (type, fntype))
6f086dfc 1698 return 1;
956d6950 1699 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
49a2e5b2
DE
1700 and thus can't be returned in registers. */
1701 if (TREE_ADDRESSABLE (type))
1702 return 1;
05e3bdb9 1703 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
6f086dfc 1704 return 1;
9d790a4f
RS
1705 /* Make sure we have suitable call-clobbered regs to return
1706 the value in; if not, we must return it in memory. */
4dc07bd7 1707 reg = hard_function_value (type, 0, 0);
e71f7aa5
JW
1708
1709 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1710 it is OK. */
f8cfc6aa 1711 if (!REG_P (reg))
e71f7aa5
JW
1712 return 0;
1713
9d790a4f 1714 regno = REGNO (reg);
66fd46b6 1715 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
9d790a4f
RS
1716 for (i = 0; i < nregs; i++)
1717 if (! call_used_regs[regno + i])
1718 return 1;
6f086dfc
RS
1719 return 0;
1720}
1721\f
8fff4fc1
RH
1722/* Return true if we should assign DECL a pseudo register; false if it
1723 should live on the local stack. */
1724
1725bool
1726use_register_for_decl (tree decl)
1727{
1728 /* Honor volatile. */
1729 if (TREE_SIDE_EFFECTS (decl))
1730 return false;
1731
1732 /* Honor addressability. */
1733 if (TREE_ADDRESSABLE (decl))
1734 return false;
1735
1736 /* Only register-like things go in registers. */
1737 if (DECL_MODE (decl) == BLKmode)
1738 return false;
1739
1740 /* If -ffloat-store specified, don't put explicit float variables
1741 into registers. */
1742 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1743 propagates values across these stores, and it probably shouldn't. */
1744 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1745 return false;
1746
78e0d62b
RH
1747 /* If we're not interested in tracking debugging information for
1748 this decl, then we can certainly put it in a register. */
1749 if (DECL_IGNORED_P (decl))
8fff4fc1
RH
1750 return true;
1751
8fff4fc1
RH
1752 return (optimize || DECL_REGISTER (decl));
1753}
1754
0976078c
RH
1755/* Return true if TYPE should be passed by invisible reference. */
1756
1757bool
8cd5a4e0
RH
1758pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1759 tree type, bool named_arg)
0976078c
RH
1760{
1761 if (type)
1762 {
1763 /* If this type contains non-trivial constructors, then it is
1764 forbidden for the middle-end to create any new copies. */
1765 if (TREE_ADDRESSABLE (type))
1766 return true;
1767
d58247a3
RH
1768 /* GCC post 3.4 passes *all* variable sized types by reference. */
1769 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
0976078c
RH
1770 return true;
1771 }
1772
8cd5a4e0 1773 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
0976078c
RH
1774}
1775
6cdd5672
RH
1776/* Return true if TYPE, which is passed by reference, should be callee
1777 copied instead of caller copied. */
1778
1779bool
1780reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1781 tree type, bool named_arg)
1782{
1783 if (type && TREE_ADDRESSABLE (type))
1784 return false;
1785 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1786}
1787
6071dc7f
RH
1788/* Structures to communicate between the subroutines of assign_parms.
1789 The first holds data persistent across all parameters, the second
1790 is cleared out for each parameter. */
6f086dfc 1791
6071dc7f 1792struct assign_parm_data_all
6f086dfc 1793{
6f086dfc 1794 CUMULATIVE_ARGS args_so_far;
6f086dfc 1795 struct args_size stack_args_size;
6071dc7f
RH
1796 tree function_result_decl;
1797 tree orig_fnargs;
1798 rtx conversion_insns;
1799 HOST_WIDE_INT pretend_args_size;
1800 HOST_WIDE_INT extra_pretend_bytes;
1801 int reg_parm_stack_space;
1802};
6f086dfc 1803
6071dc7f
RH
1804struct assign_parm_data_one
1805{
1806 tree nominal_type;
1807 tree passed_type;
1808 rtx entry_parm;
1809 rtx stack_parm;
1810 enum machine_mode nominal_mode;
1811 enum machine_mode passed_mode;
1812 enum machine_mode promoted_mode;
1813 struct locate_and_pad_arg_data locate;
1814 int partial;
1815 BOOL_BITFIELD named_arg : 1;
6071dc7f
RH
1816 BOOL_BITFIELD passed_pointer : 1;
1817 BOOL_BITFIELD on_stack : 1;
1818 BOOL_BITFIELD loaded_in_reg : 1;
1819};
ebb904cb 1820
6071dc7f 1821/* A subroutine of assign_parms. Initialize ALL. */
6f086dfc 1822
6071dc7f
RH
1823static void
1824assign_parms_initialize_all (struct assign_parm_data_all *all)
1825{
1826 tree fntype;
6f086dfc 1827
6071dc7f
RH
1828 memset (all, 0, sizeof (*all));
1829
1830 fntype = TREE_TYPE (current_function_decl);
1831
1832#ifdef INIT_CUMULATIVE_INCOMING_ARGS
1833 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1834#else
1835 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1836 current_function_decl, -1);
1837#endif
1838
1839#ifdef REG_PARM_STACK_SPACE
1840 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1841#endif
1842}
6f086dfc 1843
6071dc7f
RH
1844/* If ARGS contains entries with complex types, split the entry into two
1845 entries of the component type. Return a new list of substitutions are
1846 needed, else the old list. */
1847
1848static tree
1849split_complex_args (tree args)
1850{
1851 tree p;
1852
1853 /* Before allocating memory, check for the common case of no complex. */
1854 for (p = args; p; p = TREE_CHAIN (p))
1855 {
1856 tree type = TREE_TYPE (p);
1857 if (TREE_CODE (type) == COMPLEX_TYPE
1858 && targetm.calls.split_complex_arg (type))
1859 goto found;
1860 }
1861 return args;
1862
1863 found:
1864 args = copy_list (args);
1865
1866 for (p = args; p; p = TREE_CHAIN (p))
1867 {
1868 tree type = TREE_TYPE (p);
1869 if (TREE_CODE (type) == COMPLEX_TYPE
1870 && targetm.calls.split_complex_arg (type))
1871 {
1872 tree decl;
1873 tree subtype = TREE_TYPE (type);
6ccd356e 1874 bool addressable = TREE_ADDRESSABLE (p);
6071dc7f
RH
1875
1876 /* Rewrite the PARM_DECL's type with its component. */
1877 TREE_TYPE (p) = subtype;
1878 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1879 DECL_MODE (p) = VOIDmode;
1880 DECL_SIZE (p) = NULL;
1881 DECL_SIZE_UNIT (p) = NULL;
6ccd356e
AM
1882 /* If this arg must go in memory, put it in a pseudo here.
1883 We can't allow it to go in memory as per normal parms,
1884 because the usual place might not have the imag part
1885 adjacent to the real part. */
1886 DECL_ARTIFICIAL (p) = addressable;
1887 DECL_IGNORED_P (p) = addressable;
1888 TREE_ADDRESSABLE (p) = 0;
6071dc7f
RH
1889 layout_decl (p, 0);
1890
1891 /* Build a second synthetic decl. */
1892 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1893 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
6ccd356e
AM
1894 DECL_ARTIFICIAL (decl) = addressable;
1895 DECL_IGNORED_P (decl) = addressable;
6071dc7f
RH
1896 layout_decl (decl, 0);
1897
1898 /* Splice it in; skip the new decl. */
1899 TREE_CHAIN (decl) = TREE_CHAIN (p);
1900 TREE_CHAIN (p) = decl;
1901 p = decl;
1902 }
1903 }
1904
1905 return args;
1906}
1907
1908/* A subroutine of assign_parms. Adjust the parameter list to incorporate
1909 the hidden struct return argument, and (abi willing) complex args.
1910 Return the new parameter list. */
1911
1912static tree
1913assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1914{
1915 tree fndecl = current_function_decl;
1916 tree fntype = TREE_TYPE (fndecl);
1917 tree fnargs = DECL_ARGUMENTS (fndecl);
6f086dfc
RS
1918
1919 /* If struct value address is treated as the first argument, make it so. */
61f71b34 1920 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
6f086dfc 1921 && ! current_function_returns_pcc_struct
61f71b34 1922 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
6f086dfc 1923 {
f9f29478 1924 tree type = build_pointer_type (TREE_TYPE (fntype));
6071dc7f 1925 tree decl;
6f086dfc 1926
6071dc7f
RH
1927 decl = build_decl (PARM_DECL, NULL_TREE, type);
1928 DECL_ARG_TYPE (decl) = type;
1929 DECL_ARTIFICIAL (decl) = 1;
78e0d62b 1930 DECL_IGNORED_P (decl) = 1;
6f086dfc 1931
6071dc7f
RH
1932 TREE_CHAIN (decl) = fnargs;
1933 fnargs = decl;
1934 all->function_result_decl = decl;
6f086dfc 1935 }
718fe406 1936
6071dc7f 1937 all->orig_fnargs = fnargs;
ded9bf77 1938
42ba5130
RH
1939 /* If the target wants to split complex arguments into scalars, do so. */
1940 if (targetm.calls.split_complex_arg)
ded9bf77
AH
1941 fnargs = split_complex_args (fnargs);
1942
6071dc7f
RH
1943 return fnargs;
1944}
e7949876 1945
6071dc7f
RH
1946/* A subroutine of assign_parms. Examine PARM and pull out type and mode
1947 data for the parameter. Incorporate ABI specifics such as pass-by-
1948 reference and type promotion. */
6f086dfc 1949
6071dc7f
RH
1950static void
1951assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
1952 struct assign_parm_data_one *data)
1953{
1954 tree nominal_type, passed_type;
1955 enum machine_mode nominal_mode, passed_mode, promoted_mode;
6f086dfc 1956
6071dc7f
RH
1957 memset (data, 0, sizeof (*data));
1958
8117c488
NS
1959 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
1960 if (!current_function_stdarg)
1961 data->named_arg = 1; /* No varadic parms. */
1962 else if (TREE_CHAIN (parm))
1963 data->named_arg = 1; /* Not the last non-varadic parm. */
1964 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
1965 data->named_arg = 1; /* Only varadic ones are unnamed. */
6071dc7f 1966 else
8117c488 1967 data->named_arg = 0; /* Treat as varadic. */
6071dc7f
RH
1968
1969 nominal_type = TREE_TYPE (parm);
1970 passed_type = DECL_ARG_TYPE (parm);
1971
1972 /* Look out for errors propagating this far. Also, if the parameter's
1973 type is void then its value doesn't matter. */
1974 if (TREE_TYPE (parm) == error_mark_node
1975 /* This can happen after weird syntax errors
1976 or if an enum type is defined among the parms. */
1977 || TREE_CODE (parm) != PARM_DECL
1978 || passed_type == NULL
1979 || VOID_TYPE_P (nominal_type))
1980 {
1981 nominal_type = passed_type = void_type_node;
1982 nominal_mode = passed_mode = promoted_mode = VOIDmode;
1983 goto egress;
1984 }
108b7d3d 1985
6071dc7f
RH
1986 /* Find mode of arg as it is passed, and mode of arg as it should be
1987 during execution of this function. */
1988 passed_mode = TYPE_MODE (passed_type);
1989 nominal_mode = TYPE_MODE (nominal_type);
1990
1991 /* If the parm is to be passed as a transparent union, use the type of
1992 the first field for the tests below. We have already verified that
1993 the modes are the same. */
1994 if (DECL_TRANSPARENT_UNION (parm)
1995 || (TREE_CODE (passed_type) == UNION_TYPE
1996 && TYPE_TRANSPARENT_UNION (passed_type)))
1997 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
1998
0976078c
RH
1999 /* See if this arg was passed by invisible reference. */
2000 if (pass_by_reference (&all->args_so_far, passed_mode,
2001 passed_type, data->named_arg))
6071dc7f
RH
2002 {
2003 passed_type = nominal_type = build_pointer_type (passed_type);
2004 data->passed_pointer = true;
2005 passed_mode = nominal_mode = Pmode;
2006 }
6f086dfc 2007
6071dc7f
RH
2008 /* Find mode as it is passed by the ABI. */
2009 promoted_mode = passed_mode;
2010 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2011 {
2012 int unsignedp = TYPE_UNSIGNED (passed_type);
2013 promoted_mode = promote_mode (passed_type, promoted_mode,
2014 &unsignedp, 1);
2015 }
6f086dfc 2016
6071dc7f
RH
2017 egress:
2018 data->nominal_type = nominal_type;
2019 data->passed_type = passed_type;
2020 data->nominal_mode = nominal_mode;
2021 data->passed_mode = passed_mode;
2022 data->promoted_mode = promoted_mode;
2023}
16bae307 2024
6071dc7f 2025/* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
6f086dfc 2026
6071dc7f
RH
2027static void
2028assign_parms_setup_varargs (struct assign_parm_data_all *all,
2029 struct assign_parm_data_one *data, bool no_rtl)
2030{
2031 int varargs_pretend_bytes = 0;
2032
2033 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2034 data->promoted_mode,
2035 data->passed_type,
2036 &varargs_pretend_bytes, no_rtl);
2037
2038 /* If the back-end has requested extra stack space, record how much is
2039 needed. Do not change pretend_args_size otherwise since it may be
2040 nonzero from an earlier partial argument. */
2041 if (varargs_pretend_bytes > 0)
2042 all->pretend_args_size = varargs_pretend_bytes;
2043}
a53e14c0 2044
6071dc7f
RH
2045/* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2046 the incoming location of the current parameter. */
2047
2048static void
2049assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2050 struct assign_parm_data_one *data)
2051{
2052 HOST_WIDE_INT pretend_bytes = 0;
2053 rtx entry_parm;
2054 bool in_regs;
2055
2056 if (data->promoted_mode == VOIDmode)
2057 {
2058 data->entry_parm = data->stack_parm = const0_rtx;
2059 return;
2060 }
a53e14c0 2061
6f086dfc 2062#ifdef FUNCTION_INCOMING_ARG
6071dc7f
RH
2063 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2064 data->passed_type, data->named_arg);
6f086dfc 2065#else
6071dc7f
RH
2066 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2067 data->passed_type, data->named_arg);
6f086dfc
RS
2068#endif
2069
6071dc7f
RH
2070 if (entry_parm == 0)
2071 data->promoted_mode = data->passed_mode;
6f086dfc 2072
6071dc7f
RH
2073 /* Determine parm's home in the stack, in case it arrives in the stack
2074 or we should pretend it did. Compute the stack position and rtx where
2075 the argument arrives and its size.
6f086dfc 2076
6071dc7f
RH
2077 There is one complexity here: If this was a parameter that would
2078 have been passed in registers, but wasn't only because it is
2079 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2080 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2081 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2082 as it was the previous time. */
2083 in_regs = entry_parm != 0;
6f086dfc 2084#ifdef STACK_PARMS_IN_REG_PARM_AREA
6071dc7f 2085 in_regs = true;
e7949876 2086#endif
6071dc7f
RH
2087 if (!in_regs && !data->named_arg)
2088 {
2089 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
e7949876 2090 {
6071dc7f 2091 rtx tem;
6f086dfc 2092#ifdef FUNCTION_INCOMING_ARG
6071dc7f
RH
2093 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2094 data->passed_type, true);
6f086dfc 2095#else
6071dc7f
RH
2096 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2097 data->passed_type, true);
6f086dfc 2098#endif
6071dc7f 2099 in_regs = tem != NULL;
e7949876 2100 }
6071dc7f 2101 }
e7949876 2102
6071dc7f
RH
2103 /* If this parameter was passed both in registers and in the stack, use
2104 the copy on the stack. */
fe984136
RH
2105 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2106 data->passed_type))
6071dc7f 2107 entry_parm = 0;
e7949876 2108
6071dc7f
RH
2109 if (entry_parm)
2110 {
2111 int partial;
2112
78a52f11
RH
2113 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2114 data->promoted_mode,
2115 data->passed_type,
2116 data->named_arg);
6071dc7f
RH
2117 data->partial = partial;
2118
2119 /* The caller might already have allocated stack space for the
2120 register parameters. */
2121 if (partial != 0 && all->reg_parm_stack_space == 0)
975f3818 2122 {
6071dc7f
RH
2123 /* Part of this argument is passed in registers and part
2124 is passed on the stack. Ask the prologue code to extend
2125 the stack part so that we can recreate the full value.
2126
2127 PRETEND_BYTES is the size of the registers we need to store.
2128 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2129 stack space that the prologue should allocate.
2130
2131 Internally, gcc assumes that the argument pointer is aligned
2132 to STACK_BOUNDARY bits. This is used both for alignment
2133 optimizations (see init_emit) and to locate arguments that are
2134 aligned to more than PARM_BOUNDARY bits. We must preserve this
2135 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2136 a stack boundary. */
2137
2138 /* We assume at most one partial arg, and it must be the first
2139 argument on the stack. */
0bccc606 2140 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
6071dc7f 2141
78a52f11 2142 pretend_bytes = partial;
6071dc7f
RH
2143 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2144
2145 /* We want to align relative to the actual stack pointer, so
2146 don't include this in the stack size until later. */
2147 all->extra_pretend_bytes = all->pretend_args_size;
975f3818 2148 }
6071dc7f 2149 }
e7949876 2150
6071dc7f
RH
2151 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2152 entry_parm ? data->partial : 0, current_function_decl,
2153 &all->stack_args_size, &data->locate);
6f086dfc 2154
6071dc7f
RH
2155 /* Adjust offsets to include the pretend args. */
2156 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2157 data->locate.slot_offset.constant += pretend_bytes;
2158 data->locate.offset.constant += pretend_bytes;
ebca59c3 2159
6071dc7f
RH
2160 data->entry_parm = entry_parm;
2161}
6f086dfc 2162
6071dc7f
RH
2163/* A subroutine of assign_parms. If there is actually space on the stack
2164 for this parm, count it in stack_args_size and return true. */
6f086dfc 2165
6071dc7f
RH
2166static bool
2167assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2168 struct assign_parm_data_one *data)
2169{
2e6ae27f 2170 /* Trivially true if we've no incoming register. */
6071dc7f
RH
2171 if (data->entry_parm == NULL)
2172 ;
2173 /* Also true if we're partially in registers and partially not,
2174 since we've arranged to drop the entire argument on the stack. */
2175 else if (data->partial != 0)
2176 ;
2177 /* Also true if the target says that it's passed in both registers
2178 and on the stack. */
2179 else if (GET_CODE (data->entry_parm) == PARALLEL
2180 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2181 ;
2182 /* Also true if the target says that there's stack allocated for
2183 all register parameters. */
2184 else if (all->reg_parm_stack_space > 0)
2185 ;
2186 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2187 else
2188 return false;
6f086dfc 2189
6071dc7f
RH
2190 all->stack_args_size.constant += data->locate.size.constant;
2191 if (data->locate.size.var)
2192 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
718fe406 2193
6071dc7f
RH
2194 return true;
2195}
0d1416c6 2196
6071dc7f
RH
2197/* A subroutine of assign_parms. Given that this parameter is allocated
2198 stack space by the ABI, find it. */
6f086dfc 2199
6071dc7f
RH
2200static void
2201assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2202{
2203 rtx offset_rtx, stack_parm;
2204 unsigned int align, boundary;
6f086dfc 2205
6071dc7f
RH
2206 /* If we're passing this arg using a reg, make its stack home the
2207 aligned stack slot. */
2208 if (data->entry_parm)
2209 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2210 else
2211 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2212
2213 stack_parm = current_function_internal_arg_pointer;
2214 if (offset_rtx != const0_rtx)
2215 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2216 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2217
2218 set_mem_attributes (stack_parm, parm, 1);
2219
bfc45551
AM
2220 boundary = data->locate.boundary;
2221 align = BITS_PER_UNIT;
6071dc7f
RH
2222
2223 /* If we're padding upward, we know that the alignment of the slot
2224 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2225 intentionally forcing upward padding. Otherwise we have to come
2226 up with a guess at the alignment based on OFFSET_RTX. */
bfc45551 2227 if (data->locate.where_pad != downward || data->entry_parm)
6071dc7f
RH
2228 align = boundary;
2229 else if (GET_CODE (offset_rtx) == CONST_INT)
2230 {
2231 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2232 align = align & -align;
2233 }
bfc45551 2234 set_mem_align (stack_parm, align);
6071dc7f
RH
2235
2236 if (data->entry_parm)
2237 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2238
2239 data->stack_parm = stack_parm;
2240}
2241
2242/* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2243 always valid and contiguous. */
2244
2245static void
2246assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2247{
2248 rtx entry_parm = data->entry_parm;
2249 rtx stack_parm = data->stack_parm;
2250
2251 /* If this parm was passed part in regs and part in memory, pretend it
2252 arrived entirely in memory by pushing the register-part onto the stack.
2253 In the special case of a DImode or DFmode that is split, we could put
2254 it together in a pseudoreg directly, but for now that's not worth
2255 bothering with. */
2256 if (data->partial != 0)
2257 {
2258 /* Handle calls that pass values in multiple non-contiguous
2259 locations. The Irix 6 ABI has examples of this. */
2260 if (GET_CODE (entry_parm) == PARALLEL)
2261 emit_group_store (validize_mem (stack_parm), entry_parm,
2262 data->passed_type,
2263 int_size_in_bytes (data->passed_type));
6f086dfc 2264 else
78a52f11
RH
2265 {
2266 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2267 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2268 data->partial / UNITS_PER_WORD);
2269 }
6f086dfc 2270
6071dc7f
RH
2271 entry_parm = stack_parm;
2272 }
6f086dfc 2273
6071dc7f
RH
2274 /* If we didn't decide this parm came in a register, by default it came
2275 on the stack. */
2276 else if (entry_parm == NULL)
2277 entry_parm = stack_parm;
2278
2279 /* When an argument is passed in multiple locations, we can't make use
2280 of this information, but we can save some copying if the whole argument
2281 is passed in a single register. */
2282 else if (GET_CODE (entry_parm) == PARALLEL
2283 && data->nominal_mode != BLKmode
2284 && data->passed_mode != BLKmode)
2285 {
2286 size_t i, len = XVECLEN (entry_parm, 0);
2287
2288 for (i = 0; i < len; i++)
2289 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2290 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2291 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2292 == data->passed_mode)
2293 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2294 {
2295 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2296 break;
2297 }
2298 }
e68a6ce1 2299
6071dc7f
RH
2300 data->entry_parm = entry_parm;
2301}
6f086dfc 2302
6071dc7f
RH
2303/* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2304 always valid and properly aligned. */
6f086dfc 2305
6071dc7f
RH
2306static void
2307assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2308{
2309 rtx stack_parm = data->stack_parm;
2310
2311 /* If we can't trust the parm stack slot to be aligned enough for its
2312 ultimate type, don't use that slot after entry. We'll make another
2313 stack slot, if we need one. */
bfc45551
AM
2314 if (stack_parm
2315 && ((STRICT_ALIGNMENT
2316 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2317 || (data->nominal_type
2318 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2319 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
6071dc7f
RH
2320 stack_parm = NULL;
2321
2322 /* If parm was passed in memory, and we need to convert it on entry,
2323 don't store it back in that same slot. */
2324 else if (data->entry_parm == stack_parm
2325 && data->nominal_mode != BLKmode
2326 && data->nominal_mode != data->passed_mode)
2327 stack_parm = NULL;
2328
2329 data->stack_parm = stack_parm;
2330}
a0506b54 2331
6071dc7f
RH
2332/* A subroutine of assign_parms. Return true if the current parameter
2333 should be stored as a BLKmode in the current frame. */
2334
2335static bool
2336assign_parm_setup_block_p (struct assign_parm_data_one *data)
2337{
2338 if (data->nominal_mode == BLKmode)
2339 return true;
2340 if (GET_CODE (data->entry_parm) == PARALLEL)
2341 return true;
531547e9 2342
6e985040 2343#ifdef BLOCK_REG_PADDING
ae8c9754
RS
2344 /* Only assign_parm_setup_block knows how to deal with register arguments
2345 that are padded at the least significant end. */
2346 if (REG_P (data->entry_parm)
2347 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2348 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2349 == (BYTES_BIG_ENDIAN ? upward : downward)))
6071dc7f 2350 return true;
6e985040 2351#endif
6071dc7f
RH
2352
2353 return false;
2354}
2355
2356/* A subroutine of assign_parms. Arrange for the parameter to be
2357 present and valid in DATA->STACK_RTL. */
2358
2359static void
27e29549
RH
2360assign_parm_setup_block (struct assign_parm_data_all *all,
2361 tree parm, struct assign_parm_data_one *data)
6071dc7f
RH
2362{
2363 rtx entry_parm = data->entry_parm;
2364 rtx stack_parm = data->stack_parm;
bfc45551
AM
2365 HOST_WIDE_INT size;
2366 HOST_WIDE_INT size_stored;
17284759 2367 rtx orig_entry_parm = entry_parm;
6071dc7f 2368
27e29549
RH
2369 if (GET_CODE (entry_parm) == PARALLEL)
2370 entry_parm = emit_group_move_into_temps (entry_parm);
2371
6071dc7f
RH
2372 /* If we've a non-block object that's nevertheless passed in parts,
2373 reconstitute it in register operations rather than on the stack. */
2374 if (GET_CODE (entry_parm) == PARALLEL
640019aa 2375 && data->nominal_mode != BLKmode)
6071dc7f 2376 {
17284759 2377 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
6071dc7f 2378
640019aa
AH
2379 if ((XVECLEN (entry_parm, 0) > 1
2380 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2381 && use_register_for_decl (parm))
2382 {
2383 rtx parmreg = gen_reg_rtx (data->nominal_mode);
27e29549 2384
640019aa 2385 push_to_sequence (all->conversion_insns);
4af46a32 2386
640019aa
AH
2387 /* For values returned in multiple registers, handle possible
2388 incompatible calls to emit_group_store.
4af46a32 2389
640019aa
AH
2390 For example, the following would be invalid, and would have to
2391 be fixed by the conditional below:
4af46a32 2392
640019aa
AH
2393 emit_group_store ((reg:SF), (parallel:DF))
2394 emit_group_store ((reg:SI), (parallel:DI))
2395
2396 An example of this are doubles in e500 v2:
2397 (parallel:DF (expr_list (reg:SI) (const_int 0))
2398 (expr_list (reg:SI) (const_int 4))). */
2399 if (data->nominal_mode != data->passed_mode)
2400 {
2401 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2402 emit_group_store (t, entry_parm, NULL_TREE,
2403 GET_MODE_SIZE (GET_MODE (entry_parm)));
2404 convert_move (parmreg, t, 0);
2405 }
2406 else
2407 emit_group_store (parmreg, entry_parm, data->nominal_type,
2408 int_size_in_bytes (data->nominal_type));
27e29549 2409
640019aa
AH
2410 all->conversion_insns = get_insns ();
2411 end_sequence ();
27e29549 2412
640019aa
AH
2413 SET_DECL_RTL (parm, parmreg);
2414 return;
2415 }
6071dc7f
RH
2416 }
2417
bfc45551
AM
2418 size = int_size_in_bytes (data->passed_type);
2419 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2420 if (stack_parm == 0)
2421 {
a561d88b 2422 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
bfc45551 2423 stack_parm = assign_stack_local (BLKmode, size_stored,
a561d88b 2424 DECL_ALIGN (parm));
bfc45551
AM
2425 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2426 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2427 set_mem_attributes (stack_parm, parm, 1);
2428 }
2429
6071dc7f
RH
2430 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2431 calls that pass values in multiple non-contiguous locations. */
2432 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2433 {
6071dc7f
RH
2434 rtx mem;
2435
2436 /* Note that we will be storing an integral number of words.
2437 So we have to be careful to ensure that we allocate an
bfc45551 2438 integral number of words. We do this above when we call
6071dc7f
RH
2439 assign_stack_local if space was not allocated in the argument
2440 list. If it was, this will not work if PARM_BOUNDARY is not
2441 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2442 if it becomes a problem. Exception is when BLKmode arrives
2443 with arguments not conforming to word_mode. */
2444
bfc45551
AM
2445 if (data->stack_parm == 0)
2446 ;
6071dc7f
RH
2447 else if (GET_CODE (entry_parm) == PARALLEL)
2448 ;
0bccc606
NS
2449 else
2450 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
6f086dfc 2451
6071dc7f 2452 mem = validize_mem (stack_parm);
c6b97fac 2453
6071dc7f
RH
2454 /* Handle values in multiple non-contiguous locations. */
2455 if (GET_CODE (entry_parm) == PARALLEL)
27e29549
RH
2456 {
2457 push_to_sequence (all->conversion_insns);
2458 emit_group_store (mem, entry_parm, data->passed_type, size);
2459 all->conversion_insns = get_insns ();
2460 end_sequence ();
2461 }
c6b97fac 2462
6071dc7f
RH
2463 else if (size == 0)
2464 ;
5c07bd7a 2465
6071dc7f
RH
2466 /* If SIZE is that of a mode no bigger than a word, just use
2467 that mode's store operation. */
2468 else if (size <= UNITS_PER_WORD)
2469 {
2470 enum machine_mode mode
2471 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
c6b97fac 2472
6071dc7f 2473 if (mode != BLKmode
6e985040 2474#ifdef BLOCK_REG_PADDING
6071dc7f
RH
2475 && (size == UNITS_PER_WORD
2476 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2477 != (BYTES_BIG_ENDIAN ? upward : downward)))
6e985040 2478#endif
6071dc7f
RH
2479 )
2480 {
2481 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2482 emit_move_insn (change_address (mem, mode, 0), reg);
2483 }
c6b97fac 2484
6071dc7f
RH
2485 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2486 machine must be aligned to the left before storing
2487 to memory. Note that the previous test doesn't
2488 handle all cases (e.g. SIZE == 3). */
2489 else if (size != UNITS_PER_WORD
6e985040 2490#ifdef BLOCK_REG_PADDING
6071dc7f
RH
2491 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2492 == downward)
6e985040 2493#else
6071dc7f 2494 && BYTES_BIG_ENDIAN
6e985040 2495#endif
6071dc7f
RH
2496 )
2497 {
2498 rtx tem, x;
2499 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
65c844e2 2500 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
6071dc7f 2501
09b52670 2502 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
7d60be94 2503 build_int_cst (NULL_TREE, by),
4a90aeeb 2504 NULL_RTX, 1);
6071dc7f
RH
2505 tem = change_address (mem, word_mode, 0);
2506 emit_move_insn (tem, x);
6f086dfc 2507 }
6071dc7f 2508 else
27e29549 2509 move_block_from_reg (REGNO (entry_parm), mem,
6071dc7f 2510 size_stored / UNITS_PER_WORD);
6f086dfc 2511 }
6071dc7f 2512 else
27e29549 2513 move_block_from_reg (REGNO (entry_parm), mem,
6071dc7f
RH
2514 size_stored / UNITS_PER_WORD);
2515 }
bfc45551
AM
2516 else if (data->stack_parm == 0)
2517 {
2518 push_to_sequence (all->conversion_insns);
2519 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2520 BLOCK_OP_NORMAL);
2521 all->conversion_insns = get_insns ();
2522 end_sequence ();
2523 }
6071dc7f 2524
bfc45551 2525 data->stack_parm = stack_parm;
6071dc7f
RH
2526 SET_DECL_RTL (parm, stack_parm);
2527}
2528
2529/* A subroutine of assign_parms. Allocate a pseudo to hold the current
2530 parameter. Get it there. Perform all ABI specified conversions. */
2531
2532static void
2533assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2534 struct assign_parm_data_one *data)
2535{
2536 rtx parmreg;
2537 enum machine_mode promoted_nominal_mode;
2538 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2539 bool did_conversion = false;
2540
2541 /* Store the parm in a pseudoregister during the function, but we may
2542 need to do it in a wider mode. */
2543
2544 promoted_nominal_mode
2545 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2546
2547 parmreg = gen_reg_rtx (promoted_nominal_mode);
2548
2549 if (!DECL_ARTIFICIAL (parm))
2550 mark_user_reg (parmreg);
2551
2552 /* If this was an item that we received a pointer to,
2553 set DECL_RTL appropriately. */
2554 if (data->passed_pointer)
2555 {
2556 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2557 set_mem_attributes (x, parm, 1);
2558 SET_DECL_RTL (parm, x);
2559 }
2560 else
389fdba0 2561 SET_DECL_RTL (parm, parmreg);
6071dc7f
RH
2562
2563 /* Copy the value into the register. */
2564 if (data->nominal_mode != data->passed_mode
2565 || promoted_nominal_mode != data->promoted_mode)
2566 {
2567 int save_tree_used;
2568
2569 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2570 mode, by the caller. We now have to convert it to
2571 NOMINAL_MODE, if different. However, PARMREG may be in
2572 a different mode than NOMINAL_MODE if it is being stored
2573 promoted.
2574
2575 If ENTRY_PARM is a hard register, it might be in a register
2576 not valid for operating in its mode (e.g., an odd-numbered
2577 register for a DFmode). In that case, moves are the only
2578 thing valid, so we can't do a convert from there. This
2579 occurs when the calling sequence allow such misaligned
2580 usages.
2581
2582 In addition, the conversion may involve a call, which could
2583 clobber parameters which haven't been copied to pseudo
2584 registers yet. Therefore, we must first copy the parm to
2585 a pseudo reg here, and save the conversion until after all
2586 parameters have been moved. */
2587
2588 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2589
2590 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2591
2592 push_to_sequence (all->conversion_insns);
2593 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2594
2595 if (GET_CODE (tempreg) == SUBREG
2596 && GET_MODE (tempreg) == data->nominal_mode
2597 && REG_P (SUBREG_REG (tempreg))
2598 && data->nominal_mode == data->passed_mode
2599 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2600 && GET_MODE_SIZE (GET_MODE (tempreg))
2601 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
6f086dfc 2602 {
6071dc7f
RH
2603 /* The argument is already sign/zero extended, so note it
2604 into the subreg. */
2605 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2606 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2607 }
00d8a4c1 2608
6071dc7f
RH
2609 /* TREE_USED gets set erroneously during expand_assignment. */
2610 save_tree_used = TREE_USED (parm);
e836a5a2 2611 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
6071dc7f
RH
2612 TREE_USED (parm) = save_tree_used;
2613 all->conversion_insns = get_insns ();
2614 end_sequence ();
00d8a4c1 2615
6071dc7f
RH
2616 did_conversion = true;
2617 }
2618 else
2619 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2620
2621 /* If we were passed a pointer but the actual value can safely live
2622 in a register, put it in one. */
2623 if (data->passed_pointer
2624 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2625 /* If by-reference argument was promoted, demote it. */
2626 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2627 || use_register_for_decl (parm)))
2628 {
2629 /* We can't use nominal_mode, because it will have been set to
2630 Pmode above. We must use the actual mode of the parm. */
2631 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2632 mark_user_reg (parmreg);
cd5b3469 2633
6071dc7f
RH
2634 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2635 {
2636 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2637 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2638
2639 push_to_sequence (all->conversion_insns);
2640 emit_move_insn (tempreg, DECL_RTL (parm));
2641 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2642 emit_move_insn (parmreg, tempreg);
27e29549 2643 all->conversion_insns = get_insns ();
6071dc7f 2644 end_sequence ();
6f086dfc 2645
6071dc7f
RH
2646 did_conversion = true;
2647 }
2648 else
2649 emit_move_insn (parmreg, DECL_RTL (parm));
6f086dfc 2650
6071dc7f 2651 SET_DECL_RTL (parm, parmreg);
797a6ac1 2652
6071dc7f
RH
2653 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2654 now the parm. */
2655 data->stack_parm = NULL;
2656 }
ddef6bc7 2657
6071dc7f
RH
2658 /* Mark the register as eliminable if we did no conversion and it was
2659 copied from memory at a fixed offset, and the arg pointer was not
2660 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2661 offset formed an invalid address, such memory-equivalences as we
2662 make here would screw up life analysis for it. */
2663 if (data->nominal_mode == data->passed_mode
2664 && !did_conversion
2665 && data->stack_parm != 0
2666 && MEM_P (data->stack_parm)
2667 && data->locate.offset.var == 0
2668 && reg_mentioned_p (virtual_incoming_args_rtx,
2669 XEXP (data->stack_parm, 0)))
2670 {
2671 rtx linsn = get_last_insn ();
2672 rtx sinsn, set;
a03caf76 2673
6071dc7f
RH
2674 /* Mark complex types separately. */
2675 if (GET_CODE (parmreg) == CONCAT)
2676 {
2677 enum machine_mode submode
2678 = GET_MODE_INNER (GET_MODE (parmreg));
1466e387
RH
2679 int regnor = REGNO (XEXP (parmreg, 0));
2680 int regnoi = REGNO (XEXP (parmreg, 1));
2681 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2682 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2683 GET_MODE_SIZE (submode));
6071dc7f
RH
2684
2685 /* Scan backwards for the set of the real and
2686 imaginary parts. */
2687 for (sinsn = linsn; sinsn != 0;
2688 sinsn = prev_nonnote_insn (sinsn))
2689 {
2690 set = single_set (sinsn);
2691 if (set == 0)
2692 continue;
2693
2694 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2695 REG_NOTES (sinsn)
2696 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2697 REG_NOTES (sinsn));
2698 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2699 REG_NOTES (sinsn)
2700 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2701 REG_NOTES (sinsn));
a03caf76 2702 }
6071dc7f
RH
2703 }
2704 else if ((set = single_set (linsn)) != 0
2705 && SET_DEST (set) == parmreg)
2706 REG_NOTES (linsn)
2707 = gen_rtx_EXPR_LIST (REG_EQUIV,
2708 data->stack_parm, REG_NOTES (linsn));
2709 }
2710
2711 /* For pointer data type, suggest pointer register. */
2712 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2713 mark_reg_pointer (parmreg,
2714 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2715}
2716
2717/* A subroutine of assign_parms. Allocate stack space to hold the current
2718 parameter. Get it there. Perform all ABI specified conversions. */
2719
2720static void
2721assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2722 struct assign_parm_data_one *data)
2723{
2724 /* Value must be stored in the stack slot STACK_PARM during function
2725 execution. */
bfc45551 2726 bool to_conversion = false;
6071dc7f
RH
2727
2728 if (data->promoted_mode != data->nominal_mode)
2729 {
2730 /* Conversion is required. */
2731 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
6f086dfc 2732
6071dc7f
RH
2733 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2734
2735 push_to_sequence (all->conversion_insns);
bfc45551
AM
2736 to_conversion = true;
2737
6071dc7f
RH
2738 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2739 TYPE_UNSIGNED (TREE_TYPE (parm)));
2740
2741 if (data->stack_parm)
2742 /* ??? This may need a big-endian conversion on sparc64. */
2743 data->stack_parm
2744 = adjust_address (data->stack_parm, data->nominal_mode, 0);
6071dc7f
RH
2745 }
2746
2747 if (data->entry_parm != data->stack_parm)
2748 {
bfc45551
AM
2749 rtx src, dest;
2750
6071dc7f
RH
2751 if (data->stack_parm == 0)
2752 {
2753 data->stack_parm
2754 = assign_stack_local (GET_MODE (data->entry_parm),
2755 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
bfc45551 2756 TYPE_ALIGN (data->passed_type));
6071dc7f 2757 set_mem_attributes (data->stack_parm, parm, 1);
6f086dfc 2758 }
6071dc7f 2759
bfc45551
AM
2760 dest = validize_mem (data->stack_parm);
2761 src = validize_mem (data->entry_parm);
2762
2763 if (MEM_P (src))
6f086dfc 2764 {
bfc45551
AM
2765 /* Use a block move to handle potentially misaligned entry_parm. */
2766 if (!to_conversion)
2767 push_to_sequence (all->conversion_insns);
2768 to_conversion = true;
2769
2770 emit_block_move (dest, src,
2771 GEN_INT (int_size_in_bytes (data->passed_type)),
2772 BLOCK_OP_NORMAL);
6071dc7f
RH
2773 }
2774 else
bfc45551
AM
2775 emit_move_insn (dest, src);
2776 }
2777
2778 if (to_conversion)
2779 {
2780 all->conversion_insns = get_insns ();
2781 end_sequence ();
6071dc7f 2782 }
6f086dfc 2783
6071dc7f
RH
2784 SET_DECL_RTL (parm, data->stack_parm);
2785}
3412b298 2786
6071dc7f
RH
2787/* A subroutine of assign_parms. If the ABI splits complex arguments, then
2788 undo the frobbing that we did in assign_parms_augmented_arg_list. */
86f8eff3 2789
6071dc7f 2790static void
6ccd356e 2791assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
6071dc7f
RH
2792{
2793 tree parm;
6ccd356e 2794 tree orig_fnargs = all->orig_fnargs;
f4ef873c 2795
6071dc7f
RH
2796 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2797 {
2798 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2799 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2800 {
2801 rtx tmp, real, imag;
2802 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
6f086dfc 2803
6071dc7f
RH
2804 real = DECL_RTL (fnargs);
2805 imag = DECL_RTL (TREE_CHAIN (fnargs));
2806 if (inner != GET_MODE (real))
6f086dfc 2807 {
6071dc7f
RH
2808 real = gen_lowpart_SUBREG (inner, real);
2809 imag = gen_lowpart_SUBREG (inner, imag);
2810 }
6ccd356e
AM
2811
2812 if (TREE_ADDRESSABLE (parm))
2813 {
2814 rtx rmem, imem;
2815 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2816
2817 /* split_complex_arg put the real and imag parts in
2818 pseudos. Move them to memory. */
bfc45551
AM
2819 tmp = assign_stack_local (DECL_MODE (parm), size,
2820 TYPE_ALIGN (TREE_TYPE (parm)));
6ccd356e
AM
2821 set_mem_attributes (tmp, parm, 1);
2822 rmem = adjust_address_nv (tmp, inner, 0);
2823 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2824 push_to_sequence (all->conversion_insns);
2825 emit_move_insn (rmem, real);
2826 emit_move_insn (imem, imag);
2827 all->conversion_insns = get_insns ();
2828 end_sequence ();
2829 }
2830 else
2831 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
6071dc7f 2832 SET_DECL_RTL (parm, tmp);
7e41ffa2 2833
6071dc7f
RH
2834 real = DECL_INCOMING_RTL (fnargs);
2835 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2836 if (inner != GET_MODE (real))
2837 {
2838 real = gen_lowpart_SUBREG (inner, real);
2839 imag = gen_lowpart_SUBREG (inner, imag);
6f086dfc 2840 }
6071dc7f
RH
2841 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2842 set_decl_incoming_rtl (parm, tmp);
2843 fnargs = TREE_CHAIN (fnargs);
2844 }
2845 else
2846 {
2847 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2848 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
6f086dfc 2849
6071dc7f
RH
2850 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2851 instead of the copy of decl, i.e. FNARGS. */
2852 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2853 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
6f086dfc 2854 }
6071dc7f
RH
2855
2856 fnargs = TREE_CHAIN (fnargs);
6f086dfc 2857 }
6071dc7f
RH
2858}
2859
2860/* Assign RTL expressions to the function's parameters. This may involve
2861 copying them into registers and using those registers as the DECL_RTL. */
2862
6fe79279 2863static void
6071dc7f
RH
2864assign_parms (tree fndecl)
2865{
2866 struct assign_parm_data_all all;
2867 tree fnargs, parm;
2868 rtx internal_arg_pointer;
6f086dfc 2869
6071dc7f
RH
2870 /* If the reg that the virtual arg pointer will be translated into is
2871 not a fixed reg or is the stack pointer, make a copy of the virtual
2872 arg pointer, and address parms via the copy. The frame pointer is
2873 considered fixed even though it is not marked as such.
2874
2875 The second time through, simply use ap to avoid generating rtx. */
2876
2877 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
2878 || ! (fixed_regs[ARG_POINTER_REGNUM]
2879 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
2880 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
2881 else
2882 internal_arg_pointer = virtual_incoming_args_rtx;
2883 current_function_internal_arg_pointer = internal_arg_pointer;
2884
2885 assign_parms_initialize_all (&all);
2886 fnargs = assign_parms_augmented_arg_list (&all);
2887
2888 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
ded9bf77 2889 {
6071dc7f
RH
2890 struct assign_parm_data_one data;
2891
2892 /* Extract the type of PARM; adjust it according to ABI. */
2893 assign_parm_find_data_types (&all, parm, &data);
2894
2895 /* Early out for errors and void parameters. */
2896 if (data.passed_mode == VOIDmode)
ded9bf77 2897 {
6071dc7f
RH
2898 SET_DECL_RTL (parm, const0_rtx);
2899 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2900 continue;
2901 }
196c42cd 2902
8117c488
NS
2903 if (current_function_stdarg && !TREE_CHAIN (parm))
2904 assign_parms_setup_varargs (&all, &data, false);
196c42cd 2905
6071dc7f
RH
2906 /* Find out where the parameter arrives in this function. */
2907 assign_parm_find_entry_rtl (&all, &data);
2908
2909 /* Find out where stack space for this parameter might be. */
2910 if (assign_parm_is_stack_parm (&all, &data))
2911 {
2912 assign_parm_find_stack_rtl (parm, &data);
2913 assign_parm_adjust_entry_rtl (&data);
ded9bf77 2914 }
6071dc7f
RH
2915
2916 /* Record permanently how this parm was passed. */
2917 set_decl_incoming_rtl (parm, data.entry_parm);
2918
2919 /* Update info on where next arg arrives in registers. */
2920 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2921 data.passed_type, data.named_arg);
2922
2923 assign_parm_adjust_stack_rtl (&data);
2924
2925 if (assign_parm_setup_block_p (&data))
27e29549 2926 assign_parm_setup_block (&all, parm, &data);
6071dc7f
RH
2927 else if (data.passed_pointer || use_register_for_decl (parm))
2928 assign_parm_setup_reg (&all, parm, &data);
2929 else
2930 assign_parm_setup_stack (&all, parm, &data);
ded9bf77
AH
2931 }
2932
6071dc7f 2933 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
6ccd356e 2934 assign_parms_unsplit_complex (&all, fnargs);
6071dc7f 2935
3412b298
JW
2936 /* Output all parameter conversion instructions (possibly including calls)
2937 now that all parameters have been copied out of hard registers. */
6071dc7f 2938 emit_insn (all.conversion_insns);
3412b298 2939
b36a8cc2
OH
2940 /* If we are receiving a struct value address as the first argument, set up
2941 the RTL for the function result. As this might require code to convert
2942 the transmitted address to Pmode, we do this here to ensure that possible
2943 preliminary conversions of the address have been emitted already. */
6071dc7f 2944 if (all.function_result_decl)
b36a8cc2 2945 {
6071dc7f
RH
2946 tree result = DECL_RESULT (current_function_decl);
2947 rtx addr = DECL_RTL (all.function_result_decl);
b36a8cc2 2948 rtx x;
fa8db1f7 2949
cc77ae10
JM
2950 if (DECL_BY_REFERENCE (result))
2951 x = addr;
2952 else
2953 {
2954 addr = convert_memory_address (Pmode, addr);
2955 x = gen_rtx_MEM (DECL_MODE (result), addr);
2956 set_mem_attributes (x, result, 1);
2957 }
b36a8cc2
OH
2958 SET_DECL_RTL (result, x);
2959 }
2960
53c428d0 2961 /* We have aligned all the args, so add space for the pretend args. */
6071dc7f
RH
2962 current_function_pretend_args_size = all.pretend_args_size;
2963 all.stack_args_size.constant += all.extra_pretend_bytes;
2964 current_function_args_size = all.stack_args_size.constant;
6f086dfc
RS
2965
2966 /* Adjust function incoming argument size for alignment and
2967 minimum length. */
2968
2969#ifdef REG_PARM_STACK_SPACE
2970 current_function_args_size = MAX (current_function_args_size,
2971 REG_PARM_STACK_SPACE (fndecl));
6f90e075 2972#endif
6f086dfc 2973
4433e339
RH
2974 current_function_args_size
2975 = ((current_function_args_size + STACK_BYTES - 1)
2976 / STACK_BYTES) * STACK_BYTES;
4433e339 2977
6f086dfc
RS
2978#ifdef ARGS_GROW_DOWNWARD
2979 current_function_arg_offset_rtx
477eff96 2980 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
6071dc7f
RH
2981 : expand_expr (size_diffop (all.stack_args_size.var,
2982 size_int (-all.stack_args_size.constant)),
a57263bc 2983 NULL_RTX, VOIDmode, 0));
6f086dfc 2984#else
6071dc7f 2985 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
6f086dfc
RS
2986#endif
2987
2988 /* See how many bytes, if any, of its args a function should try to pop
2989 on return. */
2990
64e6d9cc 2991 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
6f086dfc
RS
2992 current_function_args_size);
2993
3b69d50e
RK
2994 /* For stdarg.h function, save info about
2995 regs and stack space used by the named args. */
6f086dfc 2996
6071dc7f 2997 current_function_args_info = all.args_so_far;
6f086dfc
RS
2998
2999 /* Set the rtx used for the function return value. Put this in its
3000 own variable so any optimizers that need this information don't have
3001 to include tree.h. Do this here so it gets done when an inlined
3002 function gets output. */
3003
19e7881c
MM
3004 current_function_return_rtx
3005 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3006 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
ce5e43d0
JJ
3007
3008 /* If scalar return value was computed in a pseudo-reg, or was a named
3009 return value that got dumped to the stack, copy that to the hard
3010 return register. */
3011 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3012 {
3013 tree decl_result = DECL_RESULT (fndecl);
3014 rtx decl_rtl = DECL_RTL (decl_result);
3015
3016 if (REG_P (decl_rtl)
3017 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3018 : DECL_REGISTER (decl_result))
3019 {
3020 rtx real_decl_rtl;
3021
3022#ifdef FUNCTION_OUTGOING_VALUE
3023 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3024 fndecl);
3025#else
3026 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3027 fndecl);
3028#endif
3029 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3030 /* The delay slot scheduler assumes that current_function_return_rtx
3031 holds the hard register containing the return value, not a
3032 temporary pseudo. */
3033 current_function_return_rtx = real_decl_rtl;
3034 }
3035 }
6f086dfc 3036}
4744afba
RH
3037
3038/* A subroutine of gimplify_parameters, invoked via walk_tree.
3039 For all seen types, gimplify their sizes. */
3040
3041static tree
3042gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3043{
3044 tree t = *tp;
3045
3046 *walk_subtrees = 0;
3047 if (TYPE_P (t))
3048 {
3049 if (POINTER_TYPE_P (t))
3050 *walk_subtrees = 1;
ad50bc8d
RH
3051 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3052 && !TYPE_SIZES_GIMPLIFIED (t))
4744afba
RH
3053 {
3054 gimplify_type_sizes (t, (tree *) data);
3055 *walk_subtrees = 1;
3056 }
3057 }
3058
3059 return NULL;
3060}
3061
3062/* Gimplify the parameter list for current_function_decl. This involves
3063 evaluating SAVE_EXPRs of variable sized parameters and generating code
3064 to implement callee-copies reference parameters. Returns a list of
3065 statements to add to the beginning of the function, or NULL if nothing
3066 to do. */
3067
3068tree
3069gimplify_parameters (void)
3070{
3071 struct assign_parm_data_all all;
3072 tree fnargs, parm, stmts = NULL;
3073
3074 assign_parms_initialize_all (&all);
3075 fnargs = assign_parms_augmented_arg_list (&all);
3076
3077 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3078 {
3079 struct assign_parm_data_one data;
3080
3081 /* Extract the type of PARM; adjust it according to ABI. */
3082 assign_parm_find_data_types (&all, parm, &data);
3083
3084 /* Early out for errors and void parameters. */
3085 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3086 continue;
3087
3088 /* Update info on where next arg arrives in registers. */
3089 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3090 data.passed_type, data.named_arg);
3091
3092 /* ??? Once upon a time variable_size stuffed parameter list
3093 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3094 turned out to be less than manageable in the gimple world.
3095 Now we have to hunt them down ourselves. */
3096 walk_tree_without_duplicates (&data.passed_type,
3097 gimplify_parm_type, &stmts);
3098
3099 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3100 {
3101 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3102 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3103 }
3104
3105 if (data.passed_pointer)
3106 {
3107 tree type = TREE_TYPE (data.passed_type);
3108 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3109 type, data.named_arg))
3110 {
3111 tree local, t;
3112
3113 /* For constant sized objects, this is trivial; for
3114 variable-sized objects, we have to play games. */
3115 if (TREE_CONSTANT (DECL_SIZE (parm)))
3116 {
3117 local = create_tmp_var (type, get_name (parm));
3118 DECL_IGNORED_P (local) = 0;
3119 }
3120 else
3121 {
3122 tree ptr_type, addr, args;
3123
3124 ptr_type = build_pointer_type (type);
3125 addr = create_tmp_var (ptr_type, get_name (parm));
3126 DECL_IGNORED_P (addr) = 0;
3127 local = build_fold_indirect_ref (addr);
3128
3129 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3130 t = built_in_decls[BUILT_IN_ALLOCA];
3131 t = build_function_call_expr (t, args);
3132 t = fold_convert (ptr_type, t);
3133 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3134 gimplify_and_add (t, &stmts);
3135 }
3136
3137 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3138 gimplify_and_add (t, &stmts);
3139
3140 DECL_VALUE_EXPR (parm) = local;
3141 }
3142 }
3143 }
3144
3145 return stmts;
3146}
6f086dfc 3147\f
75dc3319
RK
3148/* Indicate whether REGNO is an incoming argument to the current function
3149 that was promoted to a wider mode. If so, return the RTX for the
3150 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3151 that REGNO is promoted from and whether the promotion was signed or
3152 unsigned. */
3153
75dc3319 3154rtx
fa8db1f7 3155promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
75dc3319
RK
3156{
3157 tree arg;
3158
3159 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3160 arg = TREE_CHAIN (arg))
f8cfc6aa 3161 if (REG_P (DECL_INCOMING_RTL (arg))
621061f4
RK
3162 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3163 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
75dc3319
RK
3164 {
3165 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
8df83eae 3166 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
75dc3319 3167
a5a52dbc 3168 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
75dc3319
RK
3169 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3170 && mode != DECL_MODE (arg))
3171 {
3172 *pmode = DECL_MODE (arg);
3173 *punsignedp = unsignedp;
3174 return DECL_INCOMING_RTL (arg);
3175 }
3176 }
3177
3178 return 0;
3179}
3180
75dc3319 3181\f
6f086dfc
RS
3182/* Compute the size and offset from the start of the stacked arguments for a
3183 parm passed in mode PASSED_MODE and with type TYPE.
3184
3185 INITIAL_OFFSET_PTR points to the current offset into the stacked
3186 arguments.
3187
e7949876
AM
3188 The starting offset and size for this parm are returned in
3189 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3190 nonzero, the offset is that of stack slot, which is returned in
3191 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3192 padding required from the initial offset ptr to the stack slot.
6f086dfc 3193
cc2902df 3194 IN_REGS is nonzero if the argument will be passed in registers. It will
6f086dfc
RS
3195 never be set if REG_PARM_STACK_SPACE is not defined.
3196
3197 FNDECL is the function in which the argument was defined.
3198
3199 There are two types of rounding that are done. The first, controlled by
3200 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3201 list to be aligned to the specific boundary (in bits). This rounding
3202 affects the initial and starting offsets, but not the argument size.
3203
3204 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3205 optionally rounds the size of the parm to PARM_BOUNDARY. The
3206 initial offset is not affected by this rounding, while the size always
3207 is and the starting offset may be. */
3208
e7949876
AM
3209/* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3210 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
6f086dfc 3211 callers pass in the total size of args so far as
e7949876 3212 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
6f086dfc 3213
6f086dfc 3214void
fa8db1f7
AJ
3215locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3216 int partial, tree fndecl ATTRIBUTE_UNUSED,
3217 struct args_size *initial_offset_ptr,
3218 struct locate_and_pad_arg_data *locate)
6f086dfc 3219{
e7949876
AM
3220 tree sizetree;
3221 enum direction where_pad;
3222 int boundary;
3223 int reg_parm_stack_space = 0;
3224 int part_size_in_regs;
6f086dfc
RS
3225
3226#ifdef REG_PARM_STACK_SPACE
e7949876 3227 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
e7949876 3228
6f086dfc
RS
3229 /* If we have found a stack parm before we reach the end of the
3230 area reserved for registers, skip that area. */
3231 if (! in_regs)
3232 {
6f086dfc
RS
3233 if (reg_parm_stack_space > 0)
3234 {
3235 if (initial_offset_ptr->var)
3236 {
3237 initial_offset_ptr->var
3238 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
fed3cef0 3239 ssize_int (reg_parm_stack_space));
6f086dfc
RS
3240 initial_offset_ptr->constant = 0;
3241 }
3242 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3243 initial_offset_ptr->constant = reg_parm_stack_space;
3244 }
3245 }
3246#endif /* REG_PARM_STACK_SPACE */
3247
78a52f11 3248 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
e7949876
AM
3249
3250 sizetree
3251 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3252 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3253 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
6e985040 3254 locate->where_pad = where_pad;
bfc45551 3255 locate->boundary = boundary;
6f086dfc
RS
3256
3257#ifdef ARGS_GROW_DOWNWARD
e7949876 3258 locate->slot_offset.constant = -initial_offset_ptr->constant;
6f086dfc 3259 if (initial_offset_ptr->var)
e7949876
AM
3260 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3261 initial_offset_ptr->var);
9dff28ab 3262
e7949876
AM
3263 {
3264 tree s2 = sizetree;
3265 if (where_pad != none
3266 && (!host_integerp (sizetree, 1)
3267 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3268 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3269 SUB_PARM_SIZE (locate->slot_offset, s2);
3270 }
3271
3272 locate->slot_offset.constant += part_size_in_regs;
9dff28ab
JDA
3273
3274 if (!in_regs
3275#ifdef REG_PARM_STACK_SPACE
3276 || REG_PARM_STACK_SPACE (fndecl) > 0
3277#endif
3278 )
e7949876
AM
3279 pad_to_arg_alignment (&locate->slot_offset, boundary,
3280 &locate->alignment_pad);
9dff28ab 3281
e7949876
AM
3282 locate->size.constant = (-initial_offset_ptr->constant
3283 - locate->slot_offset.constant);
6f086dfc 3284 if (initial_offset_ptr->var)
e7949876
AM
3285 locate->size.var = size_binop (MINUS_EXPR,
3286 size_binop (MINUS_EXPR,
3287 ssize_int (0),
3288 initial_offset_ptr->var),
3289 locate->slot_offset.var);
3290
3291 /* Pad_below needs the pre-rounded size to know how much to pad
3292 below. */
3293 locate->offset = locate->slot_offset;
3294 if (where_pad == downward)
3295 pad_below (&locate->offset, passed_mode, sizetree);
9dff28ab 3296
6f086dfc 3297#else /* !ARGS_GROW_DOWNWARD */
832ea3b3
FS
3298 if (!in_regs
3299#ifdef REG_PARM_STACK_SPACE
3300 || REG_PARM_STACK_SPACE (fndecl) > 0
3301#endif
3302 )
e7949876
AM
3303 pad_to_arg_alignment (initial_offset_ptr, boundary,
3304 &locate->alignment_pad);
3305 locate->slot_offset = *initial_offset_ptr;
6f086dfc
RS
3306
3307#ifdef PUSH_ROUNDING
3308 if (passed_mode != BLKmode)
3309 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3310#endif
3311
d4b0a7a0
DE
3312 /* Pad_below needs the pre-rounded size to know how much to pad below
3313 so this must be done before rounding up. */
e7949876
AM
3314 locate->offset = locate->slot_offset;
3315 if (where_pad == downward)
3316 pad_below (&locate->offset, passed_mode, sizetree);
d4b0a7a0 3317
6f086dfc 3318 if (where_pad != none
1468899d
RK
3319 && (!host_integerp (sizetree, 1)
3320 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
6f086dfc
RS
3321 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3322
e7949876
AM
3323 ADD_PARM_SIZE (locate->size, sizetree);
3324
3325 locate->size.constant -= part_size_in_regs;
6f086dfc
RS
3326#endif /* ARGS_GROW_DOWNWARD */
3327}
3328
e16c591a
RS
3329/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3330 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3331
6f086dfc 3332static void
fa8db1f7
AJ
3333pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3334 struct args_size *alignment_pad)
6f086dfc 3335{
a544cfd2
KG
3336 tree save_var = NULL_TREE;
3337 HOST_WIDE_INT save_constant = 0;
a751cd5b 3338 int boundary_in_bytes = boundary / BITS_PER_UNIT;
a594a19c
GK
3339 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3340
3341#ifdef SPARC_STACK_BOUNDARY_HACK
3342 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3343 higher than the real alignment of %sp. However, when it does this,
3344 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3345 This is a temporary hack while the sparc port is fixed. */
3346 if (SPARC_STACK_BOUNDARY_HACK)
3347 sp_offset = 0;
3348#endif
4fc026cd 3349
9399d5c6 3350 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
4fc026cd
CM
3351 {
3352 save_var = offset_ptr->var;
3353 save_constant = offset_ptr->constant;
3354 }
3355
3356 alignment_pad->var = NULL_TREE;
3357 alignment_pad->constant = 0;
4fc026cd 3358
6f086dfc
RS
3359 if (boundary > BITS_PER_UNIT)
3360 {
3361 if (offset_ptr->var)
3362 {
a594a19c
GK
3363 tree sp_offset_tree = ssize_int (sp_offset);
3364 tree offset = size_binop (PLUS_EXPR,
3365 ARGS_SIZE_TREE (*offset_ptr),
3366 sp_offset_tree);
6f086dfc 3367#ifdef ARGS_GROW_DOWNWARD
a594a19c 3368 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
6f086dfc 3369#else
a594a19c 3370 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
6f086dfc 3371#endif
a594a19c
GK
3372
3373 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
e7949876
AM
3374 /* ARGS_SIZE_TREE includes constant term. */
3375 offset_ptr->constant = 0;
dd3f0101
KH
3376 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3377 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
fed3cef0 3378 save_var);
6f086dfc
RS
3379 }
3380 else
718fe406 3381 {
a594a19c 3382 offset_ptr->constant = -sp_offset +
6f086dfc 3383#ifdef ARGS_GROW_DOWNWARD
a594a19c 3384 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
6f086dfc 3385#else
a594a19c 3386 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
6f086dfc 3387#endif
718fe406
KH
3388 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3389 alignment_pad->constant = offset_ptr->constant - save_constant;
3390 }
6f086dfc
RS
3391 }
3392}
3393
3394static void
fa8db1f7 3395pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
6f086dfc
RS
3396{
3397 if (passed_mode != BLKmode)
3398 {
3399 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3400 offset_ptr->constant
3401 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3402 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3403 - GET_MODE_SIZE (passed_mode));
3404 }
3405 else
3406 {
3407 if (TREE_CODE (sizetree) != INTEGER_CST
3408 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3409 {
3410 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3411 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3412 /* Add it in. */
3413 ADD_PARM_SIZE (*offset_ptr, s2);
3414 SUB_PARM_SIZE (*offset_ptr, sizetree);
3415 }
3416 }
3417}
6f086dfc
RS
3418\f
3419/* Walk the tree of blocks describing the binding levels within a function
6de9cd9a 3420 and warn about variables the might be killed by setjmp or vfork.
6f086dfc
RS
3421 This is done after calling flow_analysis and before global_alloc
3422 clobbers the pseudo-regs to hard regs. */
3423
3424void
6de9cd9a 3425setjmp_vars_warning (tree block)
6f086dfc 3426{
b3694847 3427 tree decl, sub;
6de9cd9a 3428
6f086dfc
RS
3429 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3430 {
6de9cd9a 3431 if (TREE_CODE (decl) == VAR_DECL
bc41842b 3432 && DECL_RTL_SET_P (decl)
f8cfc6aa 3433 && REG_P (DECL_RTL (decl))
6f086dfc 3434 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
d4ee4d25 3435 warning (0, "%Jvariable %qD might be clobbered by %<longjmp%>"
971801ff 3436 " or %<vfork%>",
ddd2d57e 3437 decl, decl);
6f086dfc 3438 }
6de9cd9a 3439
6f086dfc 3440 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
6de9cd9a 3441 setjmp_vars_warning (sub);
6f086dfc
RS
3442}
3443
6de9cd9a 3444/* Do the appropriate part of setjmp_vars_warning
6f086dfc
RS
3445 but for arguments instead of local variables. */
3446
3447void
fa8db1f7 3448setjmp_args_warning (void)
6f086dfc 3449{
b3694847 3450 tree decl;
6f086dfc
RS
3451 for (decl = DECL_ARGUMENTS (current_function_decl);
3452 decl; decl = TREE_CHAIN (decl))
3453 if (DECL_RTL (decl) != 0
f8cfc6aa 3454 && REG_P (DECL_RTL (decl))
6f086dfc 3455 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
d4ee4d25 3456 warning (0, "%Jargument %qD might be clobbered by %<longjmp%> or %<vfork%>",
ddd2d57e 3457 decl, decl);
6f086dfc
RS
3458}
3459
6f086dfc 3460\f
a20612aa
RH
3461/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3462 and create duplicate blocks. */
3463/* ??? Need an option to either create block fragments or to create
3464 abstract origin duplicates of a source block. It really depends
3465 on what optimization has been performed. */
467456d0 3466
116eebd6 3467void
fa8db1f7 3468reorder_blocks (void)
467456d0 3469{
116eebd6 3470 tree block = DECL_INITIAL (current_function_decl);
2c217442 3471 VEC(tree,heap) *block_stack;
467456d0 3472
1a4450c7 3473 if (block == NULL_TREE)
116eebd6 3474 return;
fc289cd1 3475
2c217442 3476 block_stack = VEC_alloc (tree, heap, 10);
18c038b9 3477
a20612aa 3478 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
6de9cd9a 3479 clear_block_marks (block);
a20612aa 3480
116eebd6
MM
3481 /* Prune the old trees away, so that they don't get in the way. */
3482 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3483 BLOCK_CHAIN (block) = NULL_TREE;
fc289cd1 3484
a20612aa 3485 /* Recreate the block tree from the note nesting. */
116eebd6 3486 reorder_blocks_1 (get_insns (), block, &block_stack);
718fe406 3487 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
18c038b9 3488
a20612aa
RH
3489 /* Remove deleted blocks from the block fragment chains. */
3490 reorder_fix_fragments (block);
2c217442
KH
3491
3492 VEC_free (tree, heap, block_stack);
467456d0
RS
3493}
3494
a20612aa 3495/* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
0a1c58a2 3496
6de9cd9a
DN
3497void
3498clear_block_marks (tree block)
cc1fe44f 3499{
a20612aa 3500 while (block)
cc1fe44f 3501 {
a20612aa 3502 TREE_ASM_WRITTEN (block) = 0;
6de9cd9a 3503 clear_block_marks (BLOCK_SUBBLOCKS (block));
a20612aa 3504 block = BLOCK_CHAIN (block);
cc1fe44f
DD
3505 }
3506}
3507
0a1c58a2 3508static void
2c217442 3509reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
0a1c58a2
JL
3510{
3511 rtx insn;
3512
3513 for (insn = insns; insn; insn = NEXT_INSN (insn))
3514 {
4b4bf941 3515 if (NOTE_P (insn))
0a1c58a2
JL
3516 {
3517 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3518 {
3519 tree block = NOTE_BLOCK (insn);
a20612aa
RH
3520
3521 /* If we have seen this block before, that means it now
3522 spans multiple address regions. Create a new fragment. */
0a1c58a2
JL
3523 if (TREE_ASM_WRITTEN (block))
3524 {
a20612aa
RH
3525 tree new_block = copy_node (block);
3526 tree origin;
3527
3528 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3529 ? BLOCK_FRAGMENT_ORIGIN (block)
3530 : block);
3531 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3532 BLOCK_FRAGMENT_CHAIN (new_block)
3533 = BLOCK_FRAGMENT_CHAIN (origin);
3534 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3535
3536 NOTE_BLOCK (insn) = new_block;
3537 block = new_block;
0a1c58a2 3538 }
a20612aa 3539
0a1c58a2
JL
3540 BLOCK_SUBBLOCKS (block) = 0;
3541 TREE_ASM_WRITTEN (block) = 1;
339a28b9
ZW
3542 /* When there's only one block for the entire function,
3543 current_block == block and we mustn't do this, it
3544 will cause infinite recursion. */
3545 if (block != current_block)
3546 {
3547 BLOCK_SUPERCONTEXT (block) = current_block;
3548 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3549 BLOCK_SUBBLOCKS (current_block) = block;
3550 current_block = block;
3551 }
2c217442 3552 VEC_safe_push (tree, heap, *p_block_stack, block);
0a1c58a2
JL
3553 }
3554 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3555 {
2c217442 3556 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
0a1c58a2
JL
3557 BLOCK_SUBBLOCKS (current_block)
3558 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3559 current_block = BLOCK_SUPERCONTEXT (current_block);
3560 }
3561 }
0a1c58a2
JL
3562 }
3563}
3564
a20612aa
RH
3565/* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3566 appears in the block tree, select one of the fragments to become
3567 the new origin block. */
3568
3569static void
fa8db1f7 3570reorder_fix_fragments (tree block)
a20612aa
RH
3571{
3572 while (block)
3573 {
3574 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3575 tree new_origin = NULL_TREE;
3576
3577 if (dup_origin)
3578 {
3579 if (! TREE_ASM_WRITTEN (dup_origin))
3580 {
3581 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
797a6ac1 3582
a20612aa
RH
3583 /* Find the first of the remaining fragments. There must
3584 be at least one -- the current block. */
3585 while (! TREE_ASM_WRITTEN (new_origin))
3586 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3587 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3588 }
3589 }
3590 else if (! dup_origin)
3591 new_origin = block;
3592
3593 /* Re-root the rest of the fragments to the new origin. In the
3594 case that DUP_ORIGIN was null, that means BLOCK was the origin
3595 of a chain of fragments and we want to remove those fragments
3596 that didn't make it to the output. */
3597 if (new_origin)
3598 {
3599 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3600 tree chain = *pp;
3601
3602 while (chain)
3603 {
3604 if (TREE_ASM_WRITTEN (chain))
3605 {
3606 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3607 *pp = chain;
3608 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3609 }
3610 chain = BLOCK_FRAGMENT_CHAIN (chain);
3611 }
3612 *pp = NULL_TREE;
3613 }
3614
3615 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3616 block = BLOCK_CHAIN (block);
3617 }
3618}
3619
467456d0
RS
3620/* Reverse the order of elements in the chain T of blocks,
3621 and return the new head of the chain (old last element). */
3622
6de9cd9a 3623tree
fa8db1f7 3624blocks_nreverse (tree t)
467456d0 3625{
b3694847 3626 tree prev = 0, decl, next;
467456d0
RS
3627 for (decl = t; decl; decl = next)
3628 {
3629 next = BLOCK_CHAIN (decl);
3630 BLOCK_CHAIN (decl) = prev;
3631 prev = decl;
3632 }
3633 return prev;
3634}
3635
18c038b9
MM
3636/* Count the subblocks of the list starting with BLOCK. If VECTOR is
3637 non-NULL, list them all into VECTOR, in a depth-first preorder
3638 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
b2a59b15 3639 blocks. */
467456d0
RS
3640
3641static int
fa8db1f7 3642all_blocks (tree block, tree *vector)
467456d0 3643{
b2a59b15
MS
3644 int n_blocks = 0;
3645
a84efb51
JO
3646 while (block)
3647 {
3648 TREE_ASM_WRITTEN (block) = 0;
b2a59b15 3649
a84efb51
JO
3650 /* Record this block. */
3651 if (vector)
3652 vector[n_blocks] = block;
b2a59b15 3653
a84efb51 3654 ++n_blocks;
718fe406 3655
a84efb51
JO
3656 /* Record the subblocks, and their subblocks... */
3657 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3658 vector ? vector + n_blocks : 0);
3659 block = BLOCK_CHAIN (block);
3660 }
467456d0
RS
3661
3662 return n_blocks;
3663}
18c038b9
MM
3664
3665/* Return a vector containing all the blocks rooted at BLOCK. The
3666 number of elements in the vector is stored in N_BLOCKS_P. The
3667 vector is dynamically allocated; it is the caller's responsibility
3668 to call `free' on the pointer returned. */
718fe406 3669
18c038b9 3670static tree *
fa8db1f7 3671get_block_vector (tree block, int *n_blocks_p)
18c038b9
MM
3672{
3673 tree *block_vector;
3674
3675 *n_blocks_p = all_blocks (block, NULL);
703ad42b 3676 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
18c038b9
MM
3677 all_blocks (block, block_vector);
3678
3679 return block_vector;
3680}
3681
f83b236e 3682static GTY(()) int next_block_index = 2;
18c038b9
MM
3683
3684/* Set BLOCK_NUMBER for all the blocks in FN. */
3685
3686void
fa8db1f7 3687number_blocks (tree fn)
18c038b9
MM
3688{
3689 int i;
3690 int n_blocks;
3691 tree *block_vector;
3692
3693 /* For SDB and XCOFF debugging output, we start numbering the blocks
3694 from 1 within each function, rather than keeping a running
3695 count. */
3696#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
b0e3a658
RK
3697 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3698 next_block_index = 1;
18c038b9
MM
3699#endif
3700
3701 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3702
3703 /* The top-level BLOCK isn't numbered at all. */
3704 for (i = 1; i < n_blocks; ++i)
3705 /* We number the blocks from two. */
3706 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3707
3708 free (block_vector);
3709
3710 return;
3711}
df8992f8
RH
3712
3713/* If VAR is present in a subblock of BLOCK, return the subblock. */
3714
3715tree
fa8db1f7 3716debug_find_var_in_block_tree (tree var, tree block)
df8992f8
RH
3717{
3718 tree t;
3719
3720 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3721 if (t == var)
3722 return block;
3723
3724 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3725 {
3726 tree ret = debug_find_var_in_block_tree (var, t);
3727 if (ret)
3728 return ret;
3729 }
3730
3731 return NULL_TREE;
3732}
467456d0 3733\f
3a70d621
RH
3734/* Allocate a function structure for FNDECL and set its contents
3735 to the defaults. */
7a80cf9a 3736
3a70d621
RH
3737void
3738allocate_struct_function (tree fndecl)
6f086dfc 3739{
3a70d621 3740 tree result;
6de9cd9a 3741 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
6f086dfc 3742
3a70d621 3743 cfun = ggc_alloc_cleared (sizeof (struct function));
997de8ed
SB
3744 cfun->cfg = ggc_alloc_cleared (sizeof (struct control_flow_graph));
3745
3746 n_edges = 0;
b384405b 3747
3a70d621
RH
3748 cfun->stack_alignment_needed = STACK_BOUNDARY;
3749 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6f086dfc 3750
3a70d621 3751 current_function_funcdef_no = funcdef_no++;
6f086dfc 3752
3a70d621 3753 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6f086dfc 3754
3a70d621 3755 init_eh_for_function ();
6f086dfc 3756
ae2bcd98 3757 lang_hooks.function.init (cfun);
3a70d621
RH
3758 if (init_machine_status)
3759 cfun->machine = (*init_machine_status) ();
e2ecd91c 3760
3a70d621
RH
3761 if (fndecl == NULL)
3762 return;
a0871656 3763
1da326c3 3764 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3a70d621 3765 cfun->decl = fndecl;
6f086dfc 3766
3a70d621 3767 result = DECL_RESULT (fndecl);
61f71b34 3768 if (aggregate_value_p (result, fndecl))
3a70d621
RH
3769 {
3770#ifdef PCC_STATIC_STRUCT_RETURN
3771 current_function_returns_pcc_struct = 1;
3772#endif
3773 current_function_returns_struct = 1;
3774 }
6f086dfc 3775
3a70d621 3776 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
6f086dfc 3777
6de9cd9a
DN
3778 current_function_stdarg
3779 = (fntype
3780 && TYPE_ARG_TYPES (fntype) != 0
3781 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3782 != void_type_node));
9d30f3c1
JJ
3783
3784 /* Assume all registers in stdarg functions need to be saved. */
3785 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3786 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3a70d621 3787}
6f086dfc 3788
3a70d621 3789/* Reset cfun, and other non-struct-function variables to defaults as
2067c116 3790 appropriate for emitting rtl at the start of a function. */
6f086dfc 3791
3a70d621
RH
3792static void
3793prepare_function_start (tree fndecl)
3794{
1da326c3
SB
3795 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3796 cfun = DECL_STRUCT_FUNCTION (fndecl);
3a70d621
RH
3797 else
3798 allocate_struct_function (fndecl);
0de456a5
JH
3799 init_emit ();
3800 init_varasm_status (cfun);
3801 init_expr ();
6f086dfc 3802
3a70d621 3803 cse_not_expected = ! optimize;
6f086dfc 3804
3a70d621
RH
3805 /* Caller save not needed yet. */
3806 caller_save_needed = 0;
6f086dfc 3807
3a70d621
RH
3808 /* We haven't done register allocation yet. */
3809 reg_renumber = 0;
6f086dfc 3810
b384405b
BS
3811 /* Indicate that we have not instantiated virtual registers yet. */
3812 virtuals_instantiated = 0;
3813
1b3d8f8a
GK
3814 /* Indicate that we want CONCATs now. */
3815 generating_concat_p = 1;
3816
b384405b
BS
3817 /* Indicate we have no need of a frame pointer yet. */
3818 frame_pointer_needed = 0;
b384405b
BS
3819}
3820
3821/* Initialize the rtl expansion mechanism so that we can do simple things
3822 like generate sequences. This is used to provide a context during global
3823 initialization of some passes. */
3824void
fa8db1f7 3825init_dummy_function_start (void)
b384405b 3826{
3a70d621 3827 prepare_function_start (NULL);
b384405b
BS
3828}
3829
3830/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3831 and initialize static variables for generating RTL for the statements
3832 of the function. */
3833
3834void
fa8db1f7 3835init_function_start (tree subr)
b384405b 3836{
3a70d621 3837 prepare_function_start (subr);
b384405b 3838
ee6b0296
NS
3839 /* Prevent ever trying to delete the first instruction of a
3840 function. Also tell final how to output a linenum before the
3841 function prologue. Note linenums could be missing, e.g. when
3842 compiling a Java .class file. */
3c20847b 3843 if (! DECL_IS_BUILTIN (subr))
f31686a3 3844 emit_line_note (DECL_SOURCE_LOCATION (subr));
6f086dfc
RS
3845
3846 /* Make sure first insn is a note even if we don't want linenums.
3847 This makes sure the first insn will never be deleted.
3848 Also, final expects a note to appear there. */
2e040219 3849 emit_note (NOTE_INSN_DELETED);
6f086dfc 3850
6f086dfc
RS
3851 /* Warn if this value is an aggregate type,
3852 regardless of which calling convention we are using for it. */
ccf08a6e
DD
3853 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3854 warning (OPT_Waggregate_return, "function returns an aggregate");
49ad7cfa 3855}
5c7675e9 3856
49ad7cfa
BS
3857/* Make sure all values used by the optimization passes have sane
3858 defaults. */
3859void
fa8db1f7 3860init_function_for_compilation (void)
49ad7cfa
BS
3861{
3862 reg_renumber = 0;
0a1c58a2 3863
5c7675e9 3864 /* No prologue/epilogue insns yet. */
0a1c58a2
JL
3865 VARRAY_GROW (prologue, 0);
3866 VARRAY_GROW (epilogue, 0);
3867 VARRAY_GROW (sibcall_epilogue, 0);
6f086dfc
RS
3868}
3869
6f086dfc 3870void
fa8db1f7 3871expand_main_function (void)
6f086dfc 3872{
1d482056
RH
3873#ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3874 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3875 {
3876 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
8a723db2 3877 rtx tmp, seq;
1d482056 3878
8a723db2 3879 start_sequence ();
ef89d648 3880 /* Forcibly align the stack. */
1d482056 3881#ifdef STACK_GROWS_DOWNWARD
ef89d648
ZW
3882 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3883 stack_pointer_rtx, 1, OPTAB_WIDEN);
1d482056 3884#else
ef89d648
ZW
3885 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3886 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3887 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3888 stack_pointer_rtx, 1, OPTAB_WIDEN);
1d482056
RH
3889#endif
3890 if (tmp != stack_pointer_rtx)
3891 emit_move_insn (stack_pointer_rtx, tmp);
797a6ac1 3892
1d482056
RH
3893 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3894 tmp = force_reg (Pmode, const0_rtx);
3895 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
2f937369 3896 seq = get_insns ();
8a723db2
DD
3897 end_sequence ();
3898
3899 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3900 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3901 break;
3902 if (tmp)
3903 emit_insn_before (seq, tmp);
3904 else
3905 emit_insn (seq);
1d482056
RH
3906 }
3907#endif
3908
3a57c6cb
MM
3909#if (defined(INVOKE__main) \
3910 || (!defined(HAS_INIT_SECTION) \
3911 && !defined(INIT_SECTION_ASM_OP) \
3912 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
68d28100 3913 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
1d482056 3914#endif
6f086dfc
RS
3915}
3916\f
3917/* Start the RTL for a new function, and set variables used for
3918 emitting RTL.
3919 SUBR is the FUNCTION_DECL node.
3920 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
3921 the function's parameters, which must be run at any return statement. */
3922
3923void
b79c5284 3924expand_function_start (tree subr)
6f086dfc 3925{
6f086dfc
RS
3926 /* Make sure volatile mem refs aren't considered
3927 valid operands of arithmetic insns. */
3928 init_recog_no_volatile ();
3929
70f4f91c
WC
3930 current_function_profile
3931 = (profile_flag
3932 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
3933
a157febd
GK
3934 current_function_limit_stack
3935 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
3936
52a11cbf
RH
3937 /* Make the label for return statements to jump to. Do not special
3938 case machines with special return instructions -- they will be
3939 handled later during jump, ifcvt, or epilogue creation. */
6f086dfc 3940 return_label = gen_label_rtx ();
6f086dfc
RS
3941
3942 /* Initialize rtx used to return the value. */
3943 /* Do this before assign_parms so that we copy the struct value address
3944 before any library calls that assign parms might generate. */
3945
3946 /* Decide whether to return the value in memory or in a register. */
61f71b34 3947 if (aggregate_value_p (DECL_RESULT (subr), subr))
6f086dfc
RS
3948 {
3949 /* Returning something that won't go in a register. */
b3694847 3950 rtx value_address = 0;
6f086dfc
RS
3951
3952#ifdef PCC_STATIC_STRUCT_RETURN
3953 if (current_function_returns_pcc_struct)
3954 {
3955 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
3956 value_address = assemble_static_space (size);
3957 }
3958 else
3959#endif
3960 {
61f71b34 3961 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
6f086dfc
RS
3962 /* Expect to be passed the address of a place to store the value.
3963 If it is passed as an argument, assign_parms will take care of
3964 it. */
61f71b34 3965 if (sv)
6f086dfc
RS
3966 {
3967 value_address = gen_reg_rtx (Pmode);
61f71b34 3968 emit_move_insn (value_address, sv);
6f086dfc
RS
3969 }
3970 }
3971 if (value_address)
ccdecf58 3972 {
01c98570
JM
3973 rtx x = value_address;
3974 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
3975 {
3976 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
3977 set_mem_attributes (x, DECL_RESULT (subr), 1);
3978 }
abde42f7 3979 SET_DECL_RTL (DECL_RESULT (subr), x);
ccdecf58 3980 }
6f086dfc
RS
3981 }
3982 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
3983 /* If return mode is void, this decl rtl should not be used. */
19e7881c 3984 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
d5bf1143 3985 else
a53e14c0 3986 {
d5bf1143
RH
3987 /* Compute the return values into a pseudo reg, which we will copy
3988 into the true return register after the cleanups are done. */
bef5d8b6
RS
3989 tree return_type = TREE_TYPE (DECL_RESULT (subr));
3990 if (TYPE_MODE (return_type) != BLKmode
3991 && targetm.calls.return_in_msb (return_type))
3992 /* expand_function_end will insert the appropriate padding in
3993 this case. Use the return value's natural (unpadded) mode
3994 within the function proper. */
3995 SET_DECL_RTL (DECL_RESULT (subr),
3996 gen_reg_rtx (TYPE_MODE (return_type)));
80a480ca 3997 else
0bccc606 3998 {
bef5d8b6
RS
3999 /* In order to figure out what mode to use for the pseudo, we
4000 figure out what the mode of the eventual return register will
4001 actually be, and use that. */
4002 rtx hard_reg = hard_function_value (return_type, subr, 1);
4003
4004 /* Structures that are returned in registers are not
4005 aggregate_value_p, so we may see a PARALLEL or a REG. */
4006 if (REG_P (hard_reg))
4007 SET_DECL_RTL (DECL_RESULT (subr),
4008 gen_reg_rtx (GET_MODE (hard_reg)));
4009 else
4010 {
4011 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4012 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4013 }
0bccc606 4014 }
a53e14c0 4015
084a1106
JDA
4016 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4017 result to the real return register(s). */
4018 DECL_REGISTER (DECL_RESULT (subr)) = 1;
a53e14c0 4019 }
6f086dfc
RS
4020
4021 /* Initialize rtx for parameters and local variables.
4022 In some cases this requires emitting insns. */
0d1416c6 4023 assign_parms (subr);
6f086dfc 4024
6de9cd9a
DN
4025 /* If function gets a static chain arg, store it. */
4026 if (cfun->static_chain_decl)
4027 {
7e140280
RH
4028 tree parm = cfun->static_chain_decl;
4029 rtx local = gen_reg_rtx (Pmode);
4030
4031 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4032 SET_DECL_RTL (parm, local);
7e140280 4033 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
6de9cd9a 4034
7e140280 4035 emit_move_insn (local, static_chain_incoming_rtx);
6de9cd9a
DN
4036 }
4037
4038 /* If the function receives a non-local goto, then store the
4039 bits we need to restore the frame pointer. */
4040 if (cfun->nonlocal_goto_save_area)
4041 {
4042 tree t_save;
4043 rtx r_save;
4044
4045 /* ??? We need to do this save early. Unfortunately here is
4046 before the frame variable gets declared. Help out... */
4047 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4048
3244e67d
RS
4049 t_save = build4 (ARRAY_REF, ptr_type_node,
4050 cfun->nonlocal_goto_save_area,
4051 integer_zero_node, NULL_TREE, NULL_TREE);
6de9cd9a 4052 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5e89a381 4053 r_save = convert_memory_address (Pmode, r_save);
f0c51a1e 4054
6de9cd9a
DN
4055 emit_move_insn (r_save, virtual_stack_vars_rtx);
4056 update_nonlocal_goto_save_area ();
4057 }
f0c51a1e 4058
6f086dfc
RS
4059 /* The following was moved from init_function_start.
4060 The move is supposed to make sdb output more accurate. */
4061 /* Indicate the beginning of the function body,
4062 as opposed to parm setup. */
2e040219 4063 emit_note (NOTE_INSN_FUNCTION_BEG);
6f086dfc 4064
4b4bf941 4065 if (!NOTE_P (get_last_insn ()))
2e040219 4066 emit_note (NOTE_INSN_DELETED);
6f086dfc
RS
4067 parm_birth_insn = get_last_insn ();
4068
70f4f91c 4069 if (current_function_profile)
f6f315fe 4070 {
f6f315fe 4071#ifdef PROFILE_HOOK
df696a75 4072 PROFILE_HOOK (current_function_funcdef_no);
411707f4 4073#endif
f6f315fe 4074 }
411707f4 4075
6f086dfc
RS
4076 /* After the display initializations is where the tail-recursion label
4077 should go, if we end up needing one. Ensure we have a NOTE here
4078 since some things (like trampolines) get placed before this. */
2e040219 4079 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
6f086dfc 4080
6f086dfc
RS
4081 /* Make sure there is a line number after the function entry setup code. */
4082 force_next_line_note ();
4083}
4084\f
49ad7cfa
BS
4085/* Undo the effects of init_dummy_function_start. */
4086void
fa8db1f7 4087expand_dummy_function_end (void)
49ad7cfa
BS
4088{
4089 /* End any sequences that failed to be closed due to syntax errors. */
4090 while (in_sequence_p ())
4091 end_sequence ();
4092
4093 /* Outside function body, can't compute type's actual size
4094 until next function's body starts. */
fa51b01b 4095
01d939e8
BS
4096 free_after_parsing (cfun);
4097 free_after_compilation (cfun);
01d939e8 4098 cfun = 0;
49ad7cfa
BS
4099}
4100
c13fde05
RH
4101/* Call DOIT for each hard register used as a return value from
4102 the current function. */
bd695e1e
RH
4103
4104void
fa8db1f7 4105diddle_return_value (void (*doit) (rtx, void *), void *arg)
bd695e1e 4106{
c13fde05
RH
4107 rtx outgoing = current_function_return_rtx;
4108
4109 if (! outgoing)
4110 return;
bd695e1e 4111
f8cfc6aa 4112 if (REG_P (outgoing))
c13fde05
RH
4113 (*doit) (outgoing, arg);
4114 else if (GET_CODE (outgoing) == PARALLEL)
4115 {
4116 int i;
bd695e1e 4117
c13fde05
RH
4118 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4119 {
4120 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4121
f8cfc6aa 4122 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
c13fde05 4123 (*doit) (x, arg);
bd695e1e
RH
4124 }
4125 }
4126}
4127
c13fde05 4128static void
fa8db1f7 4129do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
c13fde05
RH
4130{
4131 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4132}
4133
4134void
fa8db1f7 4135clobber_return_register (void)
c13fde05
RH
4136{
4137 diddle_return_value (do_clobber_return_reg, NULL);
9c65bbf4
JH
4138
4139 /* In case we do use pseudo to return value, clobber it too. */
4140 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4141 {
4142 tree decl_result = DECL_RESULT (current_function_decl);
4143 rtx decl_rtl = DECL_RTL (decl_result);
4144 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4145 {
4146 do_clobber_return_reg (decl_rtl, NULL);
4147 }
4148 }
c13fde05
RH
4149}
4150
4151static void
fa8db1f7 4152do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
c13fde05
RH
4153{
4154 emit_insn (gen_rtx_USE (VOIDmode, reg));
4155}
4156
4157void
fa8db1f7 4158use_return_register (void)
c13fde05
RH
4159{
4160 diddle_return_value (do_use_return_reg, NULL);
4161}
4162
902edd36
JH
4163/* Possibly warn about unused parameters. */
4164void
4165do_warn_unused_parameter (tree fn)
4166{
4167 tree decl;
4168
4169 for (decl = DECL_ARGUMENTS (fn);
4170 decl; decl = TREE_CHAIN (decl))
4171 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4172 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
d4ee4d25 4173 warning (0, "%Junused parameter %qD", decl, decl);
902edd36
JH
4174}
4175
e2500fed
GK
4176static GTY(()) rtx initial_trampoline;
4177
71c0e7fc 4178/* Generate RTL for the end of the current function. */
6f086dfc
RS
4179
4180void
fa8db1f7 4181expand_function_end (void)
6f086dfc 4182{
932f0847 4183 rtx clobber_after;
6f086dfc 4184
964be02f
RH
4185 /* If arg_pointer_save_area was referenced only from a nested
4186 function, we will not have initialized it yet. Do that now. */
4187 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4188 get_arg_pointer_save_area (cfun);
4189
11044f66
RK
4190 /* If we are doing stack checking and this function makes calls,
4191 do a stack probe at the start of the function to ensure we have enough
4192 space for another stack frame. */
4193 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4194 {
4195 rtx insn, seq;
4196
4197 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4b4bf941 4198 if (CALL_P (insn))
11044f66
RK
4199 {
4200 start_sequence ();
4201 probe_stack_range (STACK_CHECK_PROTECT,
4202 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4203 seq = get_insns ();
4204 end_sequence ();
2f937369 4205 emit_insn_before (seq, tail_recursion_reentry);
11044f66
RK
4206 break;
4207 }
4208 }
4209
902edd36
JH
4210 /* Possibly warn about unused parameters.
4211 When frontend does unit-at-a-time, the warning is already
4212 issued at finalization time. */
4213 if (warn_unused_parameter
4214 && !lang_hooks.callgraph.expand_function)
4215 do_warn_unused_parameter (current_function_decl);
6f086dfc 4216
6f086dfc
RS
4217 /* End any sequences that failed to be closed due to syntax errors. */
4218 while (in_sequence_p ())
5f4f0e22 4219 end_sequence ();
6f086dfc 4220
6f086dfc
RS
4221 clear_pending_stack_adjust ();
4222 do_pending_stack_adjust ();
4223
ffad84cd
AH
4224 /* @@@ This is a kludge. We want to ensure that instructions that
4225 may trap are not moved into the epilogue by scheduling, because
4226 we don't always emit unwind information for the epilogue.
4227 However, not all machine descriptions define a blockage insn, so
4228 emit an ASM_INPUT to act as one. */
4229 if (flag_non_call_exceptions)
4230 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4231
6f086dfc
RS
4232 /* Mark the end of the function body.
4233 If control reaches this insn, the function can drop through
4234 without returning a value. */
2e040219 4235 emit_note (NOTE_INSN_FUNCTION_END);
6f086dfc 4236
82e415a3
DE
4237 /* Must mark the last line number note in the function, so that the test
4238 coverage code can avoid counting the last line twice. This just tells
4239 the code to ignore the immediately following line note, since there
4240 already exists a copy of this note somewhere above. This line number
4241 note is still needed for debugging though, so we can't delete it. */
4242 if (flag_test_coverage)
2e040219 4243 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
82e415a3 4244
6f086dfc
RS
4245 /* Output a linenumber for the end of the function.
4246 SDB depends on this. */
0cea056b
NS
4247 force_next_line_note ();
4248 emit_line_note (input_location);
6f086dfc 4249
fbffc70a 4250 /* Before the return label (if any), clobber the return
a1f300c0 4251 registers so that they are not propagated live to the rest of
fbffc70a
GK
4252 the function. This can only happen with functions that drop
4253 through; if there had been a return statement, there would
932f0847
JH
4254 have either been a return rtx, or a jump to the return label.
4255
4256 We delay actual code generation after the current_function_value_rtx
4257 is computed. */
4258 clobber_after = get_last_insn ();
fbffc70a 4259
526c334b
KH
4260 /* Output the label for the actual return from the function. */
4261 emit_label (return_label);
6f086dfc 4262
52a11cbf
RH
4263 /* Let except.c know where it should emit the call to unregister
4264 the function context for sjlj exceptions. */
4265 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4266 sjlj_emit_function_exit_after (get_last_insn ());
4267
3e4eac3f
RH
4268 /* If scalar return value was computed in a pseudo-reg, or was a named
4269 return value that got dumped to the stack, copy that to the hard
4270 return register. */
19e7881c 4271 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6f086dfc 4272 {
3e4eac3f
RH
4273 tree decl_result = DECL_RESULT (current_function_decl);
4274 rtx decl_rtl = DECL_RTL (decl_result);
4275
4276 if (REG_P (decl_rtl)
4277 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4278 : DECL_REGISTER (decl_result))
4279 {
ce5e43d0 4280 rtx real_decl_rtl = current_function_return_rtx;
6f086dfc 4281
ce5e43d0 4282 /* This should be set in assign_parms. */
0bccc606 4283 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
3e4eac3f
RH
4284
4285 /* If this is a BLKmode structure being returned in registers,
4286 then use the mode computed in expand_return. Note that if
797a6ac1 4287 decl_rtl is memory, then its mode may have been changed,
3e4eac3f
RH
4288 but that current_function_return_rtx has not. */
4289 if (GET_MODE (real_decl_rtl) == BLKmode)
ce5e43d0 4290 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
3e4eac3f 4291
bef5d8b6
RS
4292 /* If a non-BLKmode return value should be padded at the least
4293 significant end of the register, shift it left by the appropriate
4294 amount. BLKmode results are handled using the group load/store
4295 machinery. */
4296 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4297 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4298 {
4299 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4300 REGNO (real_decl_rtl)),
4301 decl_rtl);
4302 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4303 }
3e4eac3f 4304 /* If a named return value dumped decl_return to memory, then
797a6ac1 4305 we may need to re-do the PROMOTE_MODE signed/unsigned
3e4eac3f 4306 extension. */
bef5d8b6 4307 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
3e4eac3f 4308 {
8df83eae 4309 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
3e4eac3f 4310
61f71b34
DD
4311 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4312 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4313 &unsignedp, 1);
3e4eac3f
RH
4314
4315 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4316 }
aa570f54 4317 else if (GET_CODE (real_decl_rtl) == PARALLEL)
084a1106
JDA
4318 {
4319 /* If expand_function_start has created a PARALLEL for decl_rtl,
4320 move the result to the real return registers. Otherwise, do
4321 a group load from decl_rtl for a named return. */
4322 if (GET_CODE (decl_rtl) == PARALLEL)
4323 emit_group_move (real_decl_rtl, decl_rtl);
4324 else
4325 emit_group_load (real_decl_rtl, decl_rtl,
6e985040 4326 TREE_TYPE (decl_result),
084a1106
JDA
4327 int_size_in_bytes (TREE_TYPE (decl_result)));
4328 }
3e4eac3f
RH
4329 else
4330 emit_move_insn (real_decl_rtl, decl_rtl);
3e4eac3f 4331 }
6f086dfc
RS
4332 }
4333
4334 /* If returning a structure, arrange to return the address of the value
4335 in a place where debuggers expect to find it.
4336
4337 If returning a structure PCC style,
4338 the caller also depends on this value.
4339 And current_function_returns_pcc_struct is not necessarily set. */
4340 if (current_function_returns_struct
4341 || current_function_returns_pcc_struct)
4342 {
cc77ae10 4343 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
6f086dfc 4344 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
cc77ae10
JM
4345 rtx outgoing;
4346
4347 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4348 type = TREE_TYPE (type);
4349 else
4350 value_address = XEXP (value_address, 0);
4351
6f086dfc 4352#ifdef FUNCTION_OUTGOING_VALUE
cc77ae10
JM
4353 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4354 current_function_decl);
6f086dfc 4355#else
cc77ae10
JM
4356 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4357 current_function_decl);
4358#endif
6f086dfc
RS
4359
4360 /* Mark this as a function return value so integrate will delete the
4361 assignment and USE below when inlining this function. */
4362 REG_FUNCTION_VALUE_P (outgoing) = 1;
4363
d1608933 4364 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5ae6cd0d
MM
4365 value_address = convert_memory_address (GET_MODE (outgoing),
4366 value_address);
d1608933 4367
6f086dfc 4368 emit_move_insn (outgoing, value_address);
d1608933
RK
4369
4370 /* Show return register used to hold result (in this case the address
4371 of the result. */
4372 current_function_return_rtx = outgoing;
6f086dfc
RS
4373 }
4374
52a11cbf
RH
4375 /* If this is an implementation of throw, do what's necessary to
4376 communicate between __builtin_eh_return and the epilogue. */
4377 expand_eh_return ();
4378
932f0847
JH
4379 /* Emit the actual code to clobber return register. */
4380 {
609c3937 4381 rtx seq;
797a6ac1 4382
932f0847
JH
4383 start_sequence ();
4384 clobber_return_register ();
609c3937 4385 expand_naked_return ();
2f937369 4386 seq = get_insns ();
932f0847
JH
4387 end_sequence ();
4388
609c3937 4389 emit_insn_after (seq, clobber_after);
932f0847
JH
4390 }
4391
609c3937
RH
4392 /* Output the label for the naked return from the function. */
4393 emit_label (naked_return_label);
6e3077c6 4394
40184445
BS
4395 /* If we had calls to alloca, and this machine needs
4396 an accurate stack pointer to exit the function,
4397 insert some code to save and restore the stack pointer. */
4398 if (! EXIT_IGNORE_STACK
4399 && current_function_calls_alloca)
4400 {
4401 rtx tem = 0;
4402
4403 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4404 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4405 }
4406
c13fde05
RH
4407 /* ??? This should no longer be necessary since stupid is no longer with
4408 us, but there are some parts of the compiler (eg reload_combine, and
4409 sh mach_dep_reorg) that still try and compute their own lifetime info
4410 instead of using the general framework. */
4411 use_return_register ();
6f086dfc 4412}
278ed218
RH
4413
4414rtx
fa8db1f7 4415get_arg_pointer_save_area (struct function *f)
278ed218
RH
4416{
4417 rtx ret = f->x_arg_pointer_save_area;
4418
4419 if (! ret)
4420 {
278ed218
RH
4421 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4422 f->x_arg_pointer_save_area = ret;
964be02f
RH
4423 }
4424
4425 if (f == cfun && ! f->arg_pointer_save_area_init)
4426 {
4427 rtx seq;
278ed218 4428
797a6ac1 4429 /* Save the arg pointer at the beginning of the function. The
964be02f 4430 generated stack slot may not be a valid memory address, so we
278ed218
RH
4431 have to check it and fix it if necessary. */
4432 start_sequence ();
4433 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
2f937369 4434 seq = get_insns ();
278ed218
RH
4435 end_sequence ();
4436
964be02f 4437 push_topmost_sequence ();
1cb2fc7b 4438 emit_insn_after (seq, entry_of_function ());
964be02f 4439 pop_topmost_sequence ();
278ed218
RH
4440 }
4441
4442 return ret;
4443}
bdac5f58 4444\f
2f937369
DM
4445/* Extend a vector that records the INSN_UIDs of INSNS
4446 (a list of one or more insns). */
bdac5f58 4447
0a1c58a2 4448static void
fa8db1f7 4449record_insns (rtx insns, varray_type *vecp)
bdac5f58 4450{
2f937369
DM
4451 int i, len;
4452 rtx tmp;
0a1c58a2 4453
2f937369
DM
4454 tmp = insns;
4455 len = 0;
4456 while (tmp != NULL_RTX)
4457 {
4458 len++;
4459 tmp = NEXT_INSN (tmp);
bdac5f58 4460 }
2f937369
DM
4461
4462 i = VARRAY_SIZE (*vecp);
4463 VARRAY_GROW (*vecp, i + len);
4464 tmp = insns;
4465 while (tmp != NULL_RTX)
bdac5f58 4466 {
2f937369
DM
4467 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4468 i++;
4469 tmp = NEXT_INSN (tmp);
bdac5f58 4470 }
bdac5f58
TW
4471}
4472
589fe865 4473/* Set the locator of the insn chain starting at INSN to LOC. */
0435312e 4474static void
fa8db1f7 4475set_insn_locators (rtx insn, int loc)
0435312e
JH
4476{
4477 while (insn != NULL_RTX)
4478 {
4479 if (INSN_P (insn))
4480 INSN_LOCATOR (insn) = loc;
4481 insn = NEXT_INSN (insn);
4482 }
4483}
4484
2f937369
DM
4485/* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4486 be running after reorg, SEQUENCE rtl is possible. */
bdac5f58 4487
10914065 4488static int
fa8db1f7 4489contains (rtx insn, varray_type vec)
bdac5f58 4490{
b3694847 4491 int i, j;
bdac5f58 4492
4b4bf941 4493 if (NONJUMP_INSN_P (insn)
bdac5f58
TW
4494 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4495 {
10914065 4496 int count = 0;
bdac5f58 4497 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
0a1c58a2
JL
4498 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4499 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
10914065
TW
4500 count++;
4501 return count;
bdac5f58
TW
4502 }
4503 else
4504 {
0a1c58a2
JL
4505 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4506 if (INSN_UID (insn) == VARRAY_INT (vec, j))
10914065 4507 return 1;
bdac5f58
TW
4508 }
4509 return 0;
4510}
5c7675e9
RH
4511
4512int
fa8db1f7 4513prologue_epilogue_contains (rtx insn)
5c7675e9 4514{
0a1c58a2 4515 if (contains (insn, prologue))
5c7675e9 4516 return 1;
0a1c58a2 4517 if (contains (insn, epilogue))
5c7675e9
RH
4518 return 1;
4519 return 0;
4520}
bdac5f58 4521
0a1c58a2 4522int
fa8db1f7 4523sibcall_epilogue_contains (rtx insn)
0a1c58a2
JL
4524{
4525 if (sibcall_epilogue)
4526 return contains (insn, sibcall_epilogue);
4527 return 0;
4528}
4529
73ef99fb 4530#ifdef HAVE_return
69732dcb
RH
4531/* Insert gen_return at the end of block BB. This also means updating
4532 block_for_insn appropriately. */
4533
4534static void
fa8db1f7 4535emit_return_into_block (basic_block bb, rtx line_note)
69732dcb 4536{
a813c111 4537 emit_jump_insn_after (gen_return (), BB_END (bb));
86c82654 4538 if (line_note)
a813c111 4539 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
69732dcb 4540}
73ef99fb 4541#endif /* HAVE_return */
69732dcb 4542
3258e996
RK
4543#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4544
535a42b1
NS
4545/* These functions convert the epilogue into a variant that does not
4546 modify the stack pointer. This is used in cases where a function
4547 returns an object whose size is not known until it is computed.
4548 The called function leaves the object on the stack, leaves the
4549 stack depressed, and returns a pointer to the object.
4550
4551 What we need to do is track all modifications and references to the
4552 stack pointer, deleting the modifications and changing the
4553 references to point to the location the stack pointer would have
4554 pointed to had the modifications taken place.
4555
4556 These functions need to be portable so we need to make as few
4557 assumptions about the epilogue as we can. However, the epilogue
4558 basically contains three things: instructions to reset the stack
4559 pointer, instructions to reload registers, possibly including the
4560 frame pointer, and an instruction to return to the caller.
4561
4562 We must be sure of what a relevant epilogue insn is doing. We also
4563 make no attempt to validate the insns we make since if they are
4564 invalid, we probably can't do anything valid. The intent is that
4565 these routines get "smarter" as more and more machines start to use
4566 them and they try operating on different epilogues.
4567
4568 We use the following structure to track what the part of the
4569 epilogue that we've already processed has done. We keep two copies
4570 of the SP equivalence, one for use during the insn we are
4571 processing and one for use in the next insn. The difference is
4572 because one part of a PARALLEL may adjust SP and the other may use
4573 it. */
3258e996
RK
4574
4575struct epi_info
4576{
4577 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4578 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
3ef42a0c 4579 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
3258e996
RK
4580 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4581 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4582 should be set to once we no longer need
4583 its value. */
f285d67b
RK
4584 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4585 for registers. */
3258e996
RK
4586};
4587
fa8db1f7 4588static void handle_epilogue_set (rtx, struct epi_info *);
80fcc7bc 4589static void update_epilogue_consts (rtx, rtx, void *);
fa8db1f7 4590static void emit_equiv_load (struct epi_info *);
7393c642 4591
2f937369
DM
4592/* Modify INSN, a list of one or more insns that is part of the epilogue, to
4593 no modifications to the stack pointer. Return the new list of insns. */
7393c642 4594
3258e996 4595static rtx
fa8db1f7 4596keep_stack_depressed (rtx insns)
7393c642 4597{
2f937369 4598 int j;
3258e996 4599 struct epi_info info;
2f937369 4600 rtx insn, next;
7393c642 4601
f285d67b 4602 /* If the epilogue is just a single instruction, it must be OK as is. */
2f937369
DM
4603 if (NEXT_INSN (insns) == NULL_RTX)
4604 return insns;
7393c642 4605
3258e996
RK
4606 /* Otherwise, start a sequence, initialize the information we have, and
4607 process all the insns we were given. */
4608 start_sequence ();
4609
4610 info.sp_equiv_reg = stack_pointer_rtx;
4611 info.sp_offset = 0;
4612 info.equiv_reg_src = 0;
7393c642 4613
f285d67b
RK
4614 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4615 info.const_equiv[j] = 0;
4616
2f937369
DM
4617 insn = insns;
4618 next = NULL_RTX;
4619 while (insn != NULL_RTX)
7393c642 4620 {
2f937369 4621 next = NEXT_INSN (insn);
7393c642 4622
3258e996
RK
4623 if (!INSN_P (insn))
4624 {
4625 add_insn (insn);
2f937369 4626 insn = next;
3258e996
RK
4627 continue;
4628 }
7393c642 4629
3258e996
RK
4630 /* If this insn references the register that SP is equivalent to and
4631 we have a pending load to that register, we must force out the load
4632 first and then indicate we no longer know what SP's equivalent is. */
4633 if (info.equiv_reg_src != 0
4634 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7393c642 4635 {
3258e996
RK
4636 emit_equiv_load (&info);
4637 info.sp_equiv_reg = 0;
4638 }
7393c642 4639
3258e996
RK
4640 info.new_sp_equiv_reg = info.sp_equiv_reg;
4641 info.new_sp_offset = info.sp_offset;
7393c642 4642
3258e996
RK
4643 /* If this is a (RETURN) and the return address is on the stack,
4644 update the address and change to an indirect jump. */
4645 if (GET_CODE (PATTERN (insn)) == RETURN
4646 || (GET_CODE (PATTERN (insn)) == PARALLEL
4647 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4648 {
4649 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4650 rtx base = 0;
4651 HOST_WIDE_INT offset = 0;
4652 rtx jump_insn, jump_set;
4653
4654 /* If the return address is in a register, we can emit the insn
4655 unchanged. Otherwise, it must be a MEM and we see what the
4656 base register and offset are. In any case, we have to emit any
4657 pending load to the equivalent reg of SP, if any. */
f8cfc6aa 4658 if (REG_P (retaddr))
3258e996
RK
4659 {
4660 emit_equiv_load (&info);
4661 add_insn (insn);
2f937369 4662 insn = next;
3258e996
RK
4663 continue;
4664 }
0bccc606 4665 else
3258e996 4666 {
0bccc606
NS
4667 rtx ret_ptr;
4668 gcc_assert (MEM_P (retaddr));
4669
4670 ret_ptr = XEXP (retaddr, 0);
4671
4672 if (REG_P (ret_ptr))
4673 {
4674 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4675 offset = 0;
4676 }
4677 else
4678 {
4679 gcc_assert (GET_CODE (ret_ptr) == PLUS
4680 && REG_P (XEXP (ret_ptr, 0))
4681 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4682 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4683 offset = INTVAL (XEXP (ret_ptr, 1));
4684 }
3258e996 4685 }
3258e996
RK
4686
4687 /* If the base of the location containing the return pointer
4688 is SP, we must update it with the replacement address. Otherwise,
4689 just build the necessary MEM. */
4690 retaddr = plus_constant (base, offset);
4691 if (base == stack_pointer_rtx)
4692 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4693 plus_constant (info.sp_equiv_reg,
4694 info.sp_offset));
4695
4696 retaddr = gen_rtx_MEM (Pmode, retaddr);
4697
4698 /* If there is a pending load to the equivalent register for SP
4699 and we reference that register, we must load our address into
4700 a scratch register and then do that load. */
4701 if (info.equiv_reg_src
4702 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4703 {
4704 unsigned int regno;
4705 rtx reg;
4706
4707 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4708 if (HARD_REGNO_MODE_OK (regno, Pmode)
53b6fb26
RK
4709 && !fixed_regs[regno]
4710 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
b5ed05aa
RK
4711 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4712 regno)
4713 && !refers_to_regno_p (regno,
66fd46b6
JH
4714 regno + hard_regno_nregs[regno]
4715 [Pmode],
f285d67b
RK
4716 info.equiv_reg_src, NULL)
4717 && info.const_equiv[regno] == 0)
3258e996
RK
4718 break;
4719
0bccc606 4720 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7393c642 4721
3258e996
RK
4722 reg = gen_rtx_REG (Pmode, regno);
4723 emit_move_insn (reg, retaddr);
4724 retaddr = reg;
4725 }
4726
4727 emit_equiv_load (&info);
4728 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4729
4730 /* Show the SET in the above insn is a RETURN. */
4731 jump_set = single_set (jump_insn);
0bccc606
NS
4732 gcc_assert (jump_set);
4733 SET_IS_RETURN_P (jump_set) = 1;
7393c642 4734 }
3258e996
RK
4735
4736 /* If SP is not mentioned in the pattern and its equivalent register, if
4737 any, is not modified, just emit it. Otherwise, if neither is set,
4738 replace the reference to SP and emit the insn. If none of those are
4739 true, handle each SET individually. */
4740 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4741 && (info.sp_equiv_reg == stack_pointer_rtx
4742 || !reg_set_p (info.sp_equiv_reg, insn)))
4743 add_insn (insn);
4744 else if (! reg_set_p (stack_pointer_rtx, insn)
4745 && (info.sp_equiv_reg == stack_pointer_rtx
4746 || !reg_set_p (info.sp_equiv_reg, insn)))
7393c642 4747 {
0bccc606
NS
4748 int changed;
4749
4750 changed = validate_replace_rtx (stack_pointer_rtx,
4751 plus_constant (info.sp_equiv_reg,
4752 info.sp_offset),
4753 insn);
4754 gcc_assert (changed);
7393c642 4755
3258e996
RK
4756 add_insn (insn);
4757 }
4758 else if (GET_CODE (PATTERN (insn)) == SET)
4759 handle_epilogue_set (PATTERN (insn), &info);
4760 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4761 {
4762 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4763 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4764 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4765 }
4766 else
4767 add_insn (insn);
4768
4769 info.sp_equiv_reg = info.new_sp_equiv_reg;
4770 info.sp_offset = info.new_sp_offset;
2f937369 4771
f285d67b
RK
4772 /* Now update any constants this insn sets. */
4773 note_stores (PATTERN (insn), update_epilogue_consts, &info);
2f937369 4774 insn = next;
3258e996
RK
4775 }
4776
2f937369 4777 insns = get_insns ();
3258e996 4778 end_sequence ();
2f937369 4779 return insns;
3258e996
RK
4780}
4781
d6a7951f 4782/* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
3258e996 4783 structure that contains information about what we've seen so far. We
797a6ac1 4784 process this SET by either updating that data or by emitting one or
3258e996
RK
4785 more insns. */
4786
4787static void
fa8db1f7 4788handle_epilogue_set (rtx set, struct epi_info *p)
3258e996
RK
4789{
4790 /* First handle the case where we are setting SP. Record what it is being
535a42b1 4791 set from, which we must be able to determine */
3258e996
RK
4792 if (reg_set_p (stack_pointer_rtx, set))
4793 {
0bccc606 4794 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
3258e996 4795
f285d67b 4796 if (GET_CODE (SET_SRC (set)) == PLUS)
3258e996
RK
4797 {
4798 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
f285d67b
RK
4799 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4800 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
f285d67b 4801 else
0bccc606
NS
4802 {
4803 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4804 && (REGNO (XEXP (SET_SRC (set), 1))
4805 < FIRST_PSEUDO_REGISTER)
4806 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4807 p->new_sp_offset
4808 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4809 }
7393c642 4810 }
3258e996
RK
4811 else
4812 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4813
4814 /* If we are adjusting SP, we adjust from the old data. */
4815 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4816 {
4817 p->new_sp_equiv_reg = p->sp_equiv_reg;
4818 p->new_sp_offset += p->sp_offset;
4819 }
4820
0bccc606 4821 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
3258e996
RK
4822
4823 return;
4824 }
4825
535a42b1
NS
4826 /* Next handle the case where we are setting SP's equivalent
4827 register. We must not already have a value to set it to. We
4828 could update, but there seems little point in handling that case.
4829 Note that we have to allow for the case where we are setting the
4830 register set in the previous part of a PARALLEL inside a single
4831 insn. But use the old offset for any updates within this insn.
4832 We must allow for the case where the register is being set in a
4833 different (usually wider) mode than Pmode). */
f189c7ca 4834 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
3258e996 4835 {
0bccc606
NS
4836 gcc_assert (!p->equiv_reg_src
4837 && REG_P (p->new_sp_equiv_reg)
4838 && REG_P (SET_DEST (set))
4839 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4840 <= BITS_PER_WORD)
4841 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4842 p->equiv_reg_src
4843 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4844 plus_constant (p->sp_equiv_reg,
4845 p->sp_offset));
3258e996
RK
4846 }
4847
4848 /* Otherwise, replace any references to SP in the insn to its new value
4849 and emit the insn. */
4850 else
4851 {
4852 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4853 plus_constant (p->sp_equiv_reg,
4854 p->sp_offset));
4855 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4856 plus_constant (p->sp_equiv_reg,
4857 p->sp_offset));
4858 emit_insn (set);
7393c642
RK
4859 }
4860}
3258e996 4861
f285d67b
RK
4862/* Update the tracking information for registers set to constants. */
4863
4864static void
4865update_epilogue_consts (rtx dest, rtx x, void *data)
4866{
4867 struct epi_info *p = (struct epi_info *) data;
8fbc67c0 4868 rtx new;
f285d67b 4869
f8cfc6aa 4870 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
f285d67b 4871 return;
8fbc67c0
RK
4872
4873 /* If we are either clobbering a register or doing a partial set,
4874 show we don't know the value. */
4875 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
f285d67b 4876 p->const_equiv[REGNO (dest)] = 0;
8fbc67c0
RK
4877
4878 /* If we are setting it to a constant, record that constant. */
4879 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
f285d67b 4880 p->const_equiv[REGNO (dest)] = SET_SRC (x);
8fbc67c0
RK
4881
4882 /* If this is a binary operation between a register we have been tracking
4883 and a constant, see if we can compute a new constant value. */
ec8e098d 4884 else if (ARITHMETIC_P (SET_SRC (x))
f8cfc6aa 4885 && REG_P (XEXP (SET_SRC (x), 0))
8fbc67c0
RK
4886 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4887 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4888 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4889 && 0 != (new = simplify_binary_operation
4890 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4891 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4892 XEXP (SET_SRC (x), 1)))
4893 && GET_CODE (new) == CONST_INT)
4894 p->const_equiv[REGNO (dest)] = new;
4895
4896 /* Otherwise, we can't do anything with this value. */
4897 else
4898 p->const_equiv[REGNO (dest)] = 0;
f285d67b
RK
4899}
4900
3258e996
RK
4901/* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4902
4903static void
fa8db1f7 4904emit_equiv_load (struct epi_info *p)
3258e996
RK
4905{
4906 if (p->equiv_reg_src != 0)
f285d67b
RK
4907 {
4908 rtx dest = p->sp_equiv_reg;
4909
4910 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
4911 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
4912 REGNO (p->sp_equiv_reg));
3258e996 4913
f285d67b
RK
4914 emit_move_insn (dest, p->equiv_reg_src);
4915 p->equiv_reg_src = 0;
4916 }
3258e996 4917}
7393c642
RK
4918#endif
4919
9faa82d8 4920/* Generate the prologue and epilogue RTL if the machine supports it. Thread
bdac5f58
TW
4921 this into place with notes indicating where the prologue ends and where
4922 the epilogue begins. Update the basic block information when possible. */
4923
4924void
fa8db1f7 4925thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
bdac5f58 4926{
ca1117cc 4927 int inserted = 0;
19d3c25c 4928 edge e;
91ea4f8d 4929#if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
19d3c25c 4930 rtx seq;
91ea4f8d 4931#endif
ca1117cc
RH
4932#ifdef HAVE_prologue
4933 rtx prologue_end = NULL_RTX;
4934#endif
86c82654
RH
4935#if defined (HAVE_epilogue) || defined(HAVE_return)
4936 rtx epilogue_end = NULL_RTX;
4937#endif
628f6a4e 4938 edge_iterator ei;
e881bb1b 4939
bdac5f58
TW
4940#ifdef HAVE_prologue
4941 if (HAVE_prologue)
4942 {
e881bb1b 4943 start_sequence ();
718fe406 4944 seq = gen_prologue ();
e881bb1b 4945 emit_insn (seq);
bdac5f58
TW
4946
4947 /* Retain a map of the prologue insns. */
0a1c58a2 4948 record_insns (seq, &prologue);
2e040219 4949 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
9185a8d5 4950
2f937369 4951 seq = get_insns ();
e881bb1b 4952 end_sequence ();
0435312e 4953 set_insn_locators (seq, prologue_locator);
e881bb1b 4954
d6a7951f 4955 /* Can't deal with multiple successors of the entry block
75540af0
JH
4956 at the moment. Function should always have at least one
4957 entry point. */
c5cbcccf 4958 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
e881bb1b 4959
c5cbcccf 4960 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
75540af0 4961 inserted = 1;
bdac5f58 4962 }
bdac5f58 4963#endif
bdac5f58 4964
19d3c25c
RH
4965 /* If the exit block has no non-fake predecessors, we don't need
4966 an epilogue. */
628f6a4e 4967 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
19d3c25c
RH
4968 if ((e->flags & EDGE_FAKE) == 0)
4969 break;
4970 if (e == NULL)
4971 goto epilogue_done;
4972
69732dcb
RH
4973#ifdef HAVE_return
4974 if (optimize && HAVE_return)
4975 {
4976 /* If we're allowed to generate a simple return instruction,
4977 then by definition we don't need a full epilogue. Examine
718fe406
KH
4978 the block that falls through to EXIT. If it does not
4979 contain any code, examine its predecessors and try to
69732dcb
RH
4980 emit (conditional) return instructions. */
4981
4982 basic_block last;
69732dcb
RH
4983 rtx label;
4984
628f6a4e 4985 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
69732dcb
RH
4986 if (e->flags & EDGE_FALLTHRU)
4987 break;
4988 if (e == NULL)
4989 goto epilogue_done;
4990 last = e->src;
4991
4992 /* Verify that there are no active instructions in the last block. */
a813c111 4993 label = BB_END (last);
4b4bf941 4994 while (label && !LABEL_P (label))
69732dcb
RH
4995 {
4996 if (active_insn_p (label))
4997 break;
4998 label = PREV_INSN (label);
4999 }
5000
4b4bf941 5001 if (BB_HEAD (last) == label && LABEL_P (label))
69732dcb 5002 {
628f6a4e 5003 edge_iterator ei2;
718fe406 5004 rtx epilogue_line_note = NULL_RTX;
86c82654
RH
5005
5006 /* Locate the line number associated with the closing brace,
5007 if we can find one. */
5008 for (seq = get_last_insn ();
5009 seq && ! active_insn_p (seq);
5010 seq = PREV_INSN (seq))
4b4bf941 5011 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
86c82654
RH
5012 {
5013 epilogue_line_note = seq;
5014 break;
5015 }
5016
628f6a4e 5017 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
69732dcb
RH
5018 {
5019 basic_block bb = e->src;
5020 rtx jump;
5021
69732dcb 5022 if (bb == ENTRY_BLOCK_PTR)
628f6a4e
BE
5023 {
5024 ei_next (&ei2);
5025 continue;
5026 }
69732dcb 5027
a813c111 5028 jump = BB_END (bb);
4b4bf941 5029 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
628f6a4e
BE
5030 {
5031 ei_next (&ei2);
5032 continue;
5033 }
69732dcb
RH
5034
5035 /* If we have an unconditional jump, we can replace that
5036 with a simple return instruction. */
5037 if (simplejump_p (jump))
5038 {
86c82654 5039 emit_return_into_block (bb, epilogue_line_note);
53c17031 5040 delete_insn (jump);
69732dcb
RH
5041 }
5042
5043 /* If we have a conditional jump, we can try to replace
5044 that with a conditional return instruction. */
5045 else if (condjump_p (jump))
5046 {
47009d11 5047 if (! redirect_jump (jump, 0, 0))
628f6a4e
BE
5048 {
5049 ei_next (&ei2);
5050 continue;
5051 }
718fe406 5052
3a75e42e
CP
5053 /* If this block has only one successor, it both jumps
5054 and falls through to the fallthru block, so we can't
5055 delete the edge. */
c5cbcccf 5056 if (single_succ_p (bb))
628f6a4e
BE
5057 {
5058 ei_next (&ei2);
5059 continue;
5060 }
69732dcb
RH
5061 }
5062 else
628f6a4e
BE
5063 {
5064 ei_next (&ei2);
5065 continue;
5066 }
69732dcb
RH
5067
5068 /* Fix up the CFG for the successful change we just made. */
86c82654 5069 redirect_edge_succ (e, EXIT_BLOCK_PTR);
69732dcb 5070 }
69732dcb 5071
2dd8bc01
GK
5072 /* Emit a return insn for the exit fallthru block. Whether
5073 this is still reachable will be determined later. */
69732dcb 5074
a813c111 5075 emit_barrier_after (BB_END (last));
86c82654 5076 emit_return_into_block (last, epilogue_line_note);
a813c111 5077 epilogue_end = BB_END (last);
c5cbcccf 5078 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
718fe406 5079 goto epilogue_done;
2dd8bc01 5080 }
69732dcb
RH
5081 }
5082#endif
623a66fa
R
5083 /* Find the edge that falls through to EXIT. Other edges may exist
5084 due to RETURN instructions, but those don't need epilogues.
5085 There really shouldn't be a mixture -- either all should have
5086 been converted or none, however... */
5087
628f6a4e 5088 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
623a66fa
R
5089 if (e->flags & EDGE_FALLTHRU)
5090 break;
5091 if (e == NULL)
5092 goto epilogue_done;
5093
bdac5f58
TW
5094#ifdef HAVE_epilogue
5095 if (HAVE_epilogue)
5096 {
19d3c25c 5097 start_sequence ();
2e040219 5098 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
a78bdb38 5099
19d3c25c 5100 seq = gen_epilogue ();
7393c642 5101
3258e996
RK
5102#ifdef INCOMING_RETURN_ADDR_RTX
5103 /* If this function returns with the stack depressed and we can support
5104 it, massage the epilogue to actually do that. */
43db0363
RK
5105 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5106 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
3258e996
RK
5107 seq = keep_stack_depressed (seq);
5108#endif
7393c642 5109
19d3c25c 5110 emit_jump_insn (seq);
bdac5f58 5111
19d3c25c 5112 /* Retain a map of the epilogue insns. */
0a1c58a2 5113 record_insns (seq, &epilogue);
0435312e 5114 set_insn_locators (seq, epilogue_locator);
bdac5f58 5115
2f937369 5116 seq = get_insns ();
718fe406 5117 end_sequence ();
e881bb1b 5118
19d3c25c 5119 insert_insn_on_edge (seq, e);
ca1117cc 5120 inserted = 1;
bdac5f58 5121 }
623a66fa 5122 else
bdac5f58 5123#endif
623a66fa
R
5124 {
5125 basic_block cur_bb;
5126
5127 if (! next_active_insn (BB_END (e->src)))
5128 goto epilogue_done;
5129 /* We have a fall-through edge to the exit block, the source is not
5130 at the end of the function, and there will be an assembler epilogue
5131 at the end of the function.
5132 We can't use force_nonfallthru here, because that would try to
5133 use return. Inserting a jump 'by hand' is extremely messy, so
5134 we take advantage of cfg_layout_finalize using
5135 fixup_fallthru_exit_predecessor. */
35b6b437 5136 cfg_layout_initialize (0);
623a66fa
R
5137 FOR_EACH_BB (cur_bb)
5138 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5139 cur_bb->rbi->next = cur_bb->next_bb;
5140 cfg_layout_finalize ();
5141 }
19d3c25c 5142epilogue_done:
e881bb1b 5143
ca1117cc 5144 if (inserted)
e881bb1b 5145 commit_edge_insertions ();
0a1c58a2
JL
5146
5147#ifdef HAVE_sibcall_epilogue
5148 /* Emit sibling epilogues before any sibling call sites. */
628f6a4e 5149 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
0a1c58a2
JL
5150 {
5151 basic_block bb = e->src;
a813c111 5152 rtx insn = BB_END (bb);
0a1c58a2 5153
4b4bf941 5154 if (!CALL_P (insn)
0a1c58a2 5155 || ! SIBLING_CALL_P (insn))
628f6a4e
BE
5156 {
5157 ei_next (&ei);
5158 continue;
5159 }
0a1c58a2
JL
5160
5161 start_sequence ();
0af5c896
RE
5162 emit_insn (gen_sibcall_epilogue ());
5163 seq = get_insns ();
0a1c58a2
JL
5164 end_sequence ();
5165
2f937369
DM
5166 /* Retain a map of the epilogue insns. Used in life analysis to
5167 avoid getting rid of sibcall epilogue insns. Do this before we
5168 actually emit the sequence. */
5169 record_insns (seq, &sibcall_epilogue);
0435312e 5170 set_insn_locators (seq, epilogue_locator);
2f937369 5171
5e35992a 5172 emit_insn_before (seq, insn);
628f6a4e 5173 ei_next (&ei);
0a1c58a2
JL
5174 }
5175#endif
ca1117cc
RH
5176
5177#ifdef HAVE_prologue
589fe865 5178 /* This is probably all useless now that we use locators. */
ca1117cc
RH
5179 if (prologue_end)
5180 {
5181 rtx insn, prev;
5182
5183 /* GDB handles `break f' by setting a breakpoint on the first
30196c1f 5184 line note after the prologue. Which means (1) that if
ca1117cc 5185 there are line number notes before where we inserted the
30196c1f
RH
5186 prologue we should move them, and (2) we should generate a
5187 note before the end of the first basic block, if there isn't
016030fe
JH
5188 one already there.
5189
8d9afc4e 5190 ??? This behavior is completely broken when dealing with
016030fe
JH
5191 multiple entry functions. We simply place the note always
5192 into first basic block and let alternate entry points
5193 to be missed.
5194 */
ca1117cc 5195
718fe406 5196 for (insn = prologue_end; insn; insn = prev)
ca1117cc
RH
5197 {
5198 prev = PREV_INSN (insn);
4b4bf941 5199 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
ca1117cc
RH
5200 {
5201 /* Note that we cannot reorder the first insn in the
5202 chain, since rest_of_compilation relies on that
30196c1f 5203 remaining constant. */
ca1117cc 5204 if (prev == NULL)
30196c1f
RH
5205 break;
5206 reorder_insns (insn, insn, prologue_end);
ca1117cc
RH
5207 }
5208 }
5209
30196c1f 5210 /* Find the last line number note in the first block. */
a813c111 5211 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
016030fe 5212 insn != prologue_end && insn;
30196c1f 5213 insn = PREV_INSN (insn))
4b4bf941 5214 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
30196c1f
RH
5215 break;
5216
5217 /* If we didn't find one, make a copy of the first line number
5218 we run across. */
5219 if (! insn)
ca1117cc 5220 {
30196c1f
RH
5221 for (insn = next_active_insn (prologue_end);
5222 insn;
5223 insn = PREV_INSN (insn))
4b4bf941 5224 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
30196c1f 5225 {
5f2fc772 5226 emit_note_copy_after (insn, prologue_end);
30196c1f
RH
5227 break;
5228 }
ca1117cc
RH
5229 }
5230 }
5231#endif
86c82654
RH
5232#ifdef HAVE_epilogue
5233 if (epilogue_end)
5234 {
5235 rtx insn, next;
5236
5237 /* Similarly, move any line notes that appear after the epilogue.
ff7cc307 5238 There is no need, however, to be quite so anal about the existence
84c1fa24
UW
5239 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5240 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5241 info generation. */
718fe406 5242 for (insn = epilogue_end; insn; insn = next)
86c82654
RH
5243 {
5244 next = NEXT_INSN (insn);
4b4bf941 5245 if (NOTE_P (insn)
84c1fa24
UW
5246 && (NOTE_LINE_NUMBER (insn) > 0
5247 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5248 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
86c82654
RH
5249 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5250 }
5251 }
5252#endif
bdac5f58
TW
5253}
5254
5255/* Reposition the prologue-end and epilogue-begin notes after instruction
5256 scheduling and delayed branch scheduling. */
5257
5258void
fa8db1f7 5259reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
bdac5f58
TW
5260{
5261#if defined (HAVE_prologue) || defined (HAVE_epilogue)
9f53e965 5262 rtx insn, last, note;
0a1c58a2
JL
5263 int len;
5264
5265 if ((len = VARRAY_SIZE (prologue)) > 0)
bdac5f58 5266 {
9f53e965 5267 last = 0, note = 0;
bdac5f58 5268
0a1c58a2
JL
5269 /* Scan from the beginning until we reach the last prologue insn.
5270 We apparently can't depend on basic_block_{head,end} after
5271 reorg has run. */
9f53e965 5272 for (insn = f; insn; insn = NEXT_INSN (insn))
bdac5f58 5273 {
4b4bf941 5274 if (NOTE_P (insn))
9392c110 5275 {
0a1c58a2
JL
5276 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5277 note = insn;
5278 }
9f53e965 5279 else if (contains (insn, prologue))
0a1c58a2 5280 {
9f53e965
RH
5281 last = insn;
5282 if (--len == 0)
5283 break;
5284 }
5285 }
797a6ac1 5286
9f53e965
RH
5287 if (last)
5288 {
9f53e965
RH
5289 /* Find the prologue-end note if we haven't already, and
5290 move it to just after the last prologue insn. */
5291 if (note == 0)
5292 {
5293 for (note = last; (note = NEXT_INSN (note));)
4b4bf941 5294 if (NOTE_P (note)
9f53e965
RH
5295 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5296 break;
5297 }
c93b03c2 5298
9f53e965 5299 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
4b4bf941 5300 if (LABEL_P (last))
9f53e965
RH
5301 last = NEXT_INSN (last);
5302 reorder_insns (note, note, last);
bdac5f58 5303 }
0a1c58a2
JL
5304 }
5305
5306 if ((len = VARRAY_SIZE (epilogue)) > 0)
5307 {
9f53e965 5308 last = 0, note = 0;
bdac5f58 5309
0a1c58a2
JL
5310 /* Scan from the end until we reach the first epilogue insn.
5311 We apparently can't depend on basic_block_{head,end} after
5312 reorg has run. */
9f53e965 5313 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
bdac5f58 5314 {
4b4bf941 5315 if (NOTE_P (insn))
9392c110 5316 {
0a1c58a2
JL
5317 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5318 note = insn;
5319 }
9f53e965 5320 else if (contains (insn, epilogue))
0a1c58a2 5321 {
9f53e965
RH
5322 last = insn;
5323 if (--len == 0)
5324 break;
5325 }
5326 }
c93b03c2 5327
9f53e965
RH
5328 if (last)
5329 {
5330 /* Find the epilogue-begin note if we haven't already, and
5331 move it to just before the first epilogue insn. */
5332 if (note == 0)
5333 {
5334 for (note = insn; (note = PREV_INSN (note));)
4b4bf941 5335 if (NOTE_P (note)
9f53e965
RH
5336 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5337 break;
9392c110 5338 }
9f53e965
RH
5339
5340 if (PREV_INSN (last) != note)
5341 reorder_insns (note, note, PREV_INSN (last));
bdac5f58
TW
5342 }
5343 }
5344#endif /* HAVE_prologue or HAVE_epilogue */
5345}
87ff9c8e 5346
87ff9c8e
RH
5347/* Called once, at initialization, to initialize function.c. */
5348
5349void
fa8db1f7 5350init_function_once (void)
87ff9c8e 5351{
0a1c58a2
JL
5352 VARRAY_INT_INIT (prologue, 0, "prologue");
5353 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5354 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
87ff9c8e 5355}
e2500fed 5356
6de9cd9a
DN
5357/* Resets insn_block_boundaries array. */
5358
5359void
5360reset_block_changes (void)
5361{
5362 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5363 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5364}
5365
5366/* Record the boundary for BLOCK. */
5367void
5368record_block_change (tree block)
5369{
5370 int i, n;
5371 tree last_block;
5372
5373 if (!block)
5374 return;
5375
5376 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5377 VARRAY_POP (cfun->ib_boundaries_block);
5378 n = get_max_uid ();
5379 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5380 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5381
5382 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5383}
5384
5385/* Finishes record of boundaries. */
5386void finalize_block_changes (void)
5387{
5388 record_block_change (DECL_INITIAL (current_function_decl));
5389}
5390
5391/* For INSN return the BLOCK it belongs to. */
5392void
5393check_block_change (rtx insn, tree *block)
5394{
5395 unsigned uid = INSN_UID (insn);
5396
5397 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5398 return;
5399
5400 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5401}
5402
5403/* Releases the ib_boundaries_block records. */
5404void
5405free_block_changes (void)
5406{
5407 cfun->ib_boundaries_block = NULL;
5408}
5409
faed5cc3
SB
5410/* Returns the name of the current function. */
5411const char *
5412current_function_name (void)
5413{
ae2bcd98 5414 return lang_hooks.decl_printable_name (cfun->decl, 2);
faed5cc3
SB
5415}
5416
e2500fed 5417#include "gt-function.h"
This page took 3.832645 seconds and 5 git commands to generate.