]> gcc.gnu.org Git - gcc.git/blame - gcc/function.c
(POPSTACK): Pop discarded elts off all the stacks as we go.
[gcc.git] / gcc / function.c
CommitLineData
6f086dfc 1/* Expands front end tree to back end RTL for GNU C-Compiler
1b2ac438 2 Copyright (C) 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
6f086dfc
RS
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This file handles the generation of rtl code from tree structure
22 at the level of the function as a whole.
23 It creates the rtl expressions for parameters and auto variables
24 and has full responsibility for allocating stack slots.
25
26 `expand_function_start' is called at the beginning of a function,
27 before the function body is parsed, and `expand_function_end' is
28 called after parsing the body.
29
30 Call `assign_stack_local' to allocate a stack slot for a local variable.
31 This is usually done during the RTL generation for the function body,
32 but it can also be done in the reload pass when a pseudo-register does
33 not get a hard register.
34
35 Call `put_var_into_stack' when you learn, belatedly, that a variable
36 previously given a pseudo-register must in fact go in the stack.
37 This function changes the DECL_RTL to be a stack slot instead of a reg
38 then scans all the RTL instructions so far generated to correct them. */
39
40#include "config.h"
41
42#include <stdio.h>
43
44#include "rtl.h"
45#include "tree.h"
46#include "flags.h"
47#include "function.h"
48#include "insn-flags.h"
49#include "expr.h"
50#include "insn-codes.h"
51#include "regs.h"
52#include "hard-reg-set.h"
53#include "insn-config.h"
54#include "recog.h"
55#include "output.h"
bdac5f58 56#include "basic-block.h"
6f086dfc
RS
57
58/* Round a value to the lowest integer less than it that is a multiple of
59 the required alignment. Avoid using division in case the value is
60 negative. Assume the alignment is a power of two. */
61#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
62
63/* Similar, but round to the next highest integer that meets the
64 alignment. */
65#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
66
67/* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
68 during rtl generation. If they are different register numbers, this is
69 always true. It may also be true if
70 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
71 generation. See fix_lexical_addr for details. */
72
73#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
74#define NEED_SEPARATE_AP
75#endif
76
77/* Number of bytes of args popped by function being compiled on its return.
78 Zero if no bytes are to be popped.
79 May affect compilation of return insn or of function epilogue. */
80
81int current_function_pops_args;
82
83/* Nonzero if function being compiled needs to be given an address
84 where the value should be stored. */
85
86int current_function_returns_struct;
87
88/* Nonzero if function being compiled needs to
89 return the address of where it has put a structure value. */
90
91int current_function_returns_pcc_struct;
92
93/* Nonzero if function being compiled needs to be passed a static chain. */
94
95int current_function_needs_context;
96
97/* Nonzero if function being compiled can call setjmp. */
98
99int current_function_calls_setjmp;
100
101/* Nonzero if function being compiled can call longjmp. */
102
103int current_function_calls_longjmp;
104
105/* Nonzero if function being compiled receives nonlocal gotos
106 from nested functions. */
107
108int current_function_has_nonlocal_label;
109
110/* Nonzero if function being compiled contains nested functions. */
111
112int current_function_contains_functions;
113
114/* Nonzero if function being compiled can call alloca,
115 either as a subroutine or builtin. */
116
117int current_function_calls_alloca;
118
119/* Nonzero if the current function returns a pointer type */
120
121int current_function_returns_pointer;
122
123/* If some insns can be deferred to the delay slots of the epilogue, the
124 delay list for them is recorded here. */
125
126rtx current_function_epilogue_delay_list;
127
128/* If function's args have a fixed size, this is that size, in bytes.
129 Otherwise, it is -1.
130 May affect compilation of return insn or of function epilogue. */
131
132int current_function_args_size;
133
134/* # bytes the prologue should push and pretend that the caller pushed them.
135 The prologue must do this, but only if parms can be passed in registers. */
136
137int current_function_pretend_args_size;
138
139/* # of bytes of outgoing arguments required to be pushed by the prologue.
140 If this is non-zero, it means that ACCUMULATE_OUTGOING_ARGS was defined
141 and no stack adjusts will be done on function calls. */
142
143int current_function_outgoing_args_size;
144
145/* This is the offset from the arg pointer to the place where the first
146 anonymous arg can be found, if there is one. */
147
148rtx current_function_arg_offset_rtx;
149
150/* Nonzero if current function uses varargs.h or equivalent.
151 Zero for functions that use stdarg.h. */
152
153int current_function_varargs;
154
155/* Quantities of various kinds of registers
156 used for the current function's args. */
157
158CUMULATIVE_ARGS current_function_args_info;
159
160/* Name of function now being compiled. */
161
162char *current_function_name;
163
164/* If non-zero, an RTL expression for that location at which the current
165 function returns its result. Always equal to
166 DECL_RTL (DECL_RESULT (current_function_decl)), but provided
167 independently of the tree structures. */
168
169rtx current_function_return_rtx;
170
171/* Nonzero if the current function uses the constant pool. */
172
173int current_function_uses_const_pool;
174
175/* Nonzero if the current function uses pic_offset_table_rtx. */
176int current_function_uses_pic_offset_table;
177
178/* The arg pointer hard register, or the pseudo into which it was copied. */
179rtx current_function_internal_arg_pointer;
180
181/* The FUNCTION_DECL for an inline function currently being expanded. */
182tree inline_function_decl;
183
184/* Number of function calls seen so far in current function. */
185
186int function_call_count;
187
188/* List (chain of TREE_LIST) of LABEL_DECLs for all nonlocal labels
189 (labels to which there can be nonlocal gotos from nested functions)
190 in this function. */
191
192tree nonlocal_labels;
193
194/* RTX for stack slot that holds the current handler for nonlocal gotos.
195 Zero when function does not have nonlocal labels. */
196
197rtx nonlocal_goto_handler_slot;
198
199/* RTX for stack slot that holds the stack pointer value to restore
200 for a nonlocal goto.
201 Zero when function does not have nonlocal labels. */
202
203rtx nonlocal_goto_stack_level;
204
205/* Label that will go on parm cleanup code, if any.
206 Jumping to this label runs cleanup code for parameters, if
207 such code must be run. Following this code is the logical return label. */
208
209rtx cleanup_label;
210
211/* Label that will go on function epilogue.
212 Jumping to this label serves as a "return" instruction
213 on machines which require execution of the epilogue on all returns. */
214
215rtx return_label;
216
217/* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs.
218 So we can mark them all live at the end of the function, if nonopt. */
219rtx save_expr_regs;
220
221/* List (chain of EXPR_LISTs) of all stack slots in this function.
222 Made for the sake of unshare_all_rtl. */
223rtx stack_slot_list;
224
225/* Chain of all RTL_EXPRs that have insns in them. */
226tree rtl_expr_chain;
227
228/* Label to jump back to for tail recursion, or 0 if we have
229 not yet needed one for this function. */
230rtx tail_recursion_label;
231
232/* Place after which to insert the tail_recursion_label if we need one. */
233rtx tail_recursion_reentry;
234
235/* Location at which to save the argument pointer if it will need to be
236 referenced. There are two cases where this is done: if nonlocal gotos
237 exist, or if vars stored at an offset from the argument pointer will be
238 needed by inner routines. */
239
240rtx arg_pointer_save_area;
241
242/* Offset to end of allocated area of stack frame.
243 If stack grows down, this is the address of the last stack slot allocated.
244 If stack grows up, this is the address for the next slot. */
245int frame_offset;
246
247/* List (chain of TREE_LISTs) of static chains for containing functions.
248 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
249 in an RTL_EXPR in the TREE_VALUE. */
250static tree context_display;
251
252/* List (chain of TREE_LISTs) of trampolines for nested functions.
253 The trampoline sets up the static chain and jumps to the function.
254 We supply the trampoline's address when the function's address is requested.
255
256 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
257 in an RTL_EXPR in the TREE_VALUE. */
258static tree trampoline_list;
259
260/* Insn after which register parms and SAVE_EXPRs are born, if nonopt. */
261static rtx parm_birth_insn;
262
263#if 0
264/* Nonzero if a stack slot has been generated whose address is not
265 actually valid. It means that the generated rtl must all be scanned
266 to detect and correct the invalid addresses where they occur. */
267static int invalid_stack_slot;
268#endif
269
270/* Last insn of those whose job was to put parms into their nominal homes. */
271static rtx last_parm_insn;
272
273/* 1 + last pseudo register number used for loading a copy
274 of a parameter of this function. */
275static int max_parm_reg;
276
277/* Vector indexed by REGNO, containing location on stack in which
278 to put the parm which is nominally in pseudo register REGNO,
279 if we discover that that parm must go in the stack. */
280static rtx *parm_reg_stack_loc;
281
282#if 0 /* Turned off because 0 seems to work just as well. */
283/* Cleanup lists are required for binding levels regardless of whether
284 that binding level has cleanups or not. This node serves as the
285 cleanup list whenever an empty list is required. */
286static tree empty_cleanup_list;
287#endif
288
289/* Nonzero once virtual register instantiation has been done.
290 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
291static int virtuals_instantiated;
292
293/* Nonzero if we need to distinguish between the return value of this function
294 and the return value of a function called by this function. This helps
295 integrate.c */
296
297extern int rtx_equal_function_value_matters;
298
299void fixup_gotos ();
300
301static tree round_down ();
302static rtx round_trampoline_addr ();
303static rtx fixup_stack_1 ();
304static void fixup_var_refs ();
305static void fixup_var_refs_insns ();
306static void fixup_var_refs_1 ();
307static void optimize_bit_field ();
308static void instantiate_decls ();
309static void instantiate_decls_1 ();
5a73491b 310static void instantiate_decl ();
6f086dfc
RS
311static int instantiate_virtual_regs_1 ();
312static rtx fixup_memory_subreg ();
313static rtx walk_fixup_memory_subreg ();
314\f
315/* In order to evaluate some expressions, such as function calls returning
316 structures in memory, we need to temporarily allocate stack locations.
317 We record each allocated temporary in the following structure.
318
319 Associated with each temporary slot is a nesting level. When we pop up
320 one level, all temporaries associated with the previous level are freed.
321 Normally, all temporaries are freed after the execution of the statement
322 in which they were created. However, if we are inside a ({...}) grouping,
323 the result may be in a temporary and hence must be preserved. If the
324 result could be in a temporary, we preserve it if we can determine which
325 one it is in. If we cannot determine which temporary may contain the
326 result, all temporaries are preserved. A temporary is preserved by
327 pretending it was allocated at the previous nesting level.
328
329 Automatic variables are also assigned temporary slots, at the nesting
330 level where they are defined. They are marked a "kept" so that
331 free_temp_slots will not free them. */
332
333struct temp_slot
334{
335 /* Points to next temporary slot. */
336 struct temp_slot *next;
337 /* The rtx to used to reference the slot. */
338 rtx slot;
339 /* The size, in units, of the slot. */
340 int size;
341 /* Non-zero if this temporary is currently in use. */
342 char in_use;
343 /* Nesting level at which this slot is being used. */
344 int level;
345 /* Non-zero if this should survive a call to free_temp_slots. */
346 int keep;
347};
348
349/* List of all temporaries allocated, both available and in use. */
350
351struct temp_slot *temp_slots;
352
353/* Current nesting level for temporaries. */
354
355int temp_slot_level;
356\f
357/* Pointer to chain of `struct function' for containing functions. */
358struct function *outer_function_chain;
359
360/* Given a function decl for a containing function,
361 return the `struct function' for it. */
362
363struct function *
364find_function_data (decl)
365 tree decl;
366{
367 struct function *p;
368 for (p = outer_function_chain; p; p = p->next)
369 if (p->decl == decl)
370 return p;
371 abort ();
372}
373
374/* Save the current context for compilation of a nested function.
375 This is called from language-specific code.
376 The caller is responsible for saving any language-specific status,
6dc42e49 377 since this function knows only about language-independent variables. */
6f086dfc
RS
378
379void
380push_function_context ()
381{
382 struct function *p = (struct function *) xmalloc (sizeof (struct function));
383
384 p->next = outer_function_chain;
385 outer_function_chain = p;
386
387 p->name = current_function_name;
388 p->decl = current_function_decl;
389 p->pops_args = current_function_pops_args;
390 p->returns_struct = current_function_returns_struct;
391 p->returns_pcc_struct = current_function_returns_pcc_struct;
392 p->needs_context = current_function_needs_context;
393 p->calls_setjmp = current_function_calls_setjmp;
394 p->calls_longjmp = current_function_calls_longjmp;
395 p->calls_alloca = current_function_calls_alloca;
396 p->has_nonlocal_label = current_function_has_nonlocal_label;
397 p->args_size = current_function_args_size;
398 p->pretend_args_size = current_function_pretend_args_size;
399 p->arg_offset_rtx = current_function_arg_offset_rtx;
400 p->uses_const_pool = current_function_uses_const_pool;
401 p->uses_pic_offset_table = current_function_uses_pic_offset_table;
402 p->internal_arg_pointer = current_function_internal_arg_pointer;
403 p->max_parm_reg = max_parm_reg;
404 p->parm_reg_stack_loc = parm_reg_stack_loc;
405 p->outgoing_args_size = current_function_outgoing_args_size;
406 p->return_rtx = current_function_return_rtx;
407 p->nonlocal_goto_handler_slot = nonlocal_goto_handler_slot;
408 p->nonlocal_goto_stack_level = nonlocal_goto_stack_level;
409 p->nonlocal_labels = nonlocal_labels;
410 p->cleanup_label = cleanup_label;
411 p->return_label = return_label;
412 p->save_expr_regs = save_expr_regs;
413 p->stack_slot_list = stack_slot_list;
414 p->parm_birth_insn = parm_birth_insn;
415 p->frame_offset = frame_offset;
416 p->tail_recursion_label = tail_recursion_label;
417 p->tail_recursion_reentry = tail_recursion_reentry;
418 p->arg_pointer_save_area = arg_pointer_save_area;
419 p->rtl_expr_chain = rtl_expr_chain;
420 p->last_parm_insn = last_parm_insn;
421 p->context_display = context_display;
422 p->trampoline_list = trampoline_list;
423 p->function_call_count = function_call_count;
424 p->temp_slots = temp_slots;
425 p->temp_slot_level = temp_slot_level;
426 p->fixup_var_refs_queue = 0;
f979c996 427 p->epilogue_delay_list = current_function_epilogue_delay_list;
6f086dfc
RS
428
429 save_tree_status (p);
430 save_storage_status (p);
431 save_emit_status (p);
432 init_emit ();
433 save_expr_status (p);
434 save_stmt_status (p);
435}
436
437/* Restore the last saved context, at the end of a nested function.
438 This function is called from language-specific code. */
439
440void
441pop_function_context ()
442{
443 struct function *p = outer_function_chain;
444
445 outer_function_chain = p->next;
446
447 current_function_name = p->name;
448 current_function_decl = p->decl;
449 current_function_pops_args = p->pops_args;
450 current_function_returns_struct = p->returns_struct;
451 current_function_returns_pcc_struct = p->returns_pcc_struct;
452 current_function_needs_context = p->needs_context;
453 current_function_calls_setjmp = p->calls_setjmp;
454 current_function_calls_longjmp = p->calls_longjmp;
455 current_function_calls_alloca = p->calls_alloca;
456 current_function_has_nonlocal_label = p->has_nonlocal_label;
457 current_function_contains_functions = 1;
458 current_function_args_size = p->args_size;
459 current_function_pretend_args_size = p->pretend_args_size;
460 current_function_arg_offset_rtx = p->arg_offset_rtx;
461 current_function_uses_const_pool = p->uses_const_pool;
462 current_function_uses_pic_offset_table = p->uses_pic_offset_table;
463 current_function_internal_arg_pointer = p->internal_arg_pointer;
464 max_parm_reg = p->max_parm_reg;
465 parm_reg_stack_loc = p->parm_reg_stack_loc;
466 current_function_outgoing_args_size = p->outgoing_args_size;
467 current_function_return_rtx = p->return_rtx;
468 nonlocal_goto_handler_slot = p->nonlocal_goto_handler_slot;
469 nonlocal_goto_stack_level = p->nonlocal_goto_stack_level;
470 nonlocal_labels = p->nonlocal_labels;
471 cleanup_label = p->cleanup_label;
472 return_label = p->return_label;
473 save_expr_regs = p->save_expr_regs;
474 stack_slot_list = p->stack_slot_list;
475 parm_birth_insn = p->parm_birth_insn;
476 frame_offset = p->frame_offset;
477 tail_recursion_label = p->tail_recursion_label;
478 tail_recursion_reentry = p->tail_recursion_reentry;
479 arg_pointer_save_area = p->arg_pointer_save_area;
480 rtl_expr_chain = p->rtl_expr_chain;
481 last_parm_insn = p->last_parm_insn;
482 context_display = p->context_display;
483 trampoline_list = p->trampoline_list;
484 function_call_count = p->function_call_count;
485 temp_slots = p->temp_slots;
486 temp_slot_level = p->temp_slot_level;
f979c996 487 current_function_epilogue_delay_list = p->epilogue_delay_list;
6f086dfc
RS
488
489 restore_tree_status (p);
490 restore_storage_status (p);
491 restore_expr_status (p);
492 restore_emit_status (p);
493 restore_stmt_status (p);
494
495 /* Finish doing put_var_into_stack for any of our variables
496 which became addressable during the nested function. */
497 {
498 struct var_refs_queue *queue = p->fixup_var_refs_queue;
499 for (; queue; queue = queue->next)
00d8a4c1 500 fixup_var_refs (queue->modified, queue->promoted_mode, queue->unsignedp);
6f086dfc
RS
501 }
502
503 free (p);
504
505 /* Reset variables that have known state during rtx generation. */
506 rtx_equal_function_value_matters = 1;
507 virtuals_instantiated = 0;
508}
509\f
510/* Allocate fixed slots in the stack frame of the current function. */
511
512/* Return size needed for stack frame based on slots so far allocated.
513 This size counts from zero. It is not rounded to STACK_BOUNDARY;
514 the caller may have to do that. */
515
516int
517get_frame_size ()
518{
519#ifdef FRAME_GROWS_DOWNWARD
520 return -frame_offset;
521#else
522 return frame_offset;
523#endif
524}
525
526/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
527 with machine mode MODE.
528
529 ALIGN controls the amount of alignment for the address of the slot:
530 0 means according to MODE,
531 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
532 positive specifies alignment boundary in bits.
533
534 We do not round to stack_boundary here. */
535
536rtx
537assign_stack_local (mode, size, align)
538 enum machine_mode mode;
539 int size;
540 int align;
541{
542 register rtx x, addr;
543 int bigend_correction = 0;
544 int alignment;
545
546 if (align == 0)
547 {
548 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
549 if (mode == BLKmode)
550 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
551 }
552 else if (align == -1)
553 {
554 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
555 size = CEIL_ROUND (size, alignment);
556 }
557 else
558 alignment = align / BITS_PER_UNIT;
559
6f086dfc
RS
560 /* Round frame offset to that alignment.
561 We must be careful here, since FRAME_OFFSET might be negative and
562 division with a negative dividend isn't as well defined as we might
563 like. So we instead assume that ALIGNMENT is a power of two and
564 use logical operations which are unambiguous. */
565#ifdef FRAME_GROWS_DOWNWARD
566 frame_offset = FLOOR_ROUND (frame_offset, alignment);
567#else
568 frame_offset = CEIL_ROUND (frame_offset, alignment);
569#endif
570
571 /* On a big-endian machine, if we are allocating more space than we will use,
572 use the least significant bytes of those that are allocated. */
573#if BYTES_BIG_ENDIAN
574 if (mode != BLKmode)
575 bigend_correction = size - GET_MODE_SIZE (mode);
576#endif
577
578#ifdef FRAME_GROWS_DOWNWARD
579 frame_offset -= size;
580#endif
581
582 /* If we have already instantiated virtual registers, return the actual
583 address relative to the frame pointer. */
584 if (virtuals_instantiated)
585 addr = plus_constant (frame_pointer_rtx,
586 (frame_offset + bigend_correction
587 + STARTING_FRAME_OFFSET));
588 else
589 addr = plus_constant (virtual_stack_vars_rtx,
590 frame_offset + bigend_correction);
591
592#ifndef FRAME_GROWS_DOWNWARD
593 frame_offset += size;
594#endif
595
596 x = gen_rtx (MEM, mode, addr);
597
598 stack_slot_list = gen_rtx (EXPR_LIST, VOIDmode, x, stack_slot_list);
599
600 return x;
601}
602
603/* Assign a stack slot in a containing function.
604 First three arguments are same as in preceding function.
605 The last argument specifies the function to allocate in. */
606
607rtx
608assign_outer_stack_local (mode, size, align, function)
609 enum machine_mode mode;
610 int size;
611 int align;
612 struct function *function;
613{
614 register rtx x, addr;
615 int bigend_correction = 0;
616 int alignment;
617
618 /* Allocate in the memory associated with the function in whose frame
619 we are assigning. */
620 push_obstacks (function->function_obstack,
621 function->function_maybepermanent_obstack);
622
623 if (align == 0)
624 {
625 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
626 if (mode == BLKmode)
627 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
628 }
629 else if (align == -1)
630 {
631 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
632 size = CEIL_ROUND (size, alignment);
633 }
634 else
635 alignment = align / BITS_PER_UNIT;
636
6f086dfc
RS
637 /* Round frame offset to that alignment. */
638#ifdef FRAME_GROWS_DOWNWARD
639 frame_offset = FLOOR_ROUND (frame_offset, alignment);
640#else
641 frame_offset = CEIL_ROUND (frame_offset, alignment);
642#endif
643
644 /* On a big-endian machine, if we are allocating more space than we will use,
645 use the least significant bytes of those that are allocated. */
646#if BYTES_BIG_ENDIAN
647 if (mode != BLKmode)
648 bigend_correction = size - GET_MODE_SIZE (mode);
649#endif
650
651#ifdef FRAME_GROWS_DOWNWARD
652 function->frame_offset -= size;
653#endif
654 addr = plus_constant (virtual_stack_vars_rtx,
655 function->frame_offset + bigend_correction);
656#ifndef FRAME_GROWS_DOWNWARD
657 function->frame_offset += size;
658#endif
659
660 x = gen_rtx (MEM, mode, addr);
661
662 function->stack_slot_list
663 = gen_rtx (EXPR_LIST, VOIDmode, x, function->stack_slot_list);
664
665 pop_obstacks ();
666
667 return x;
668}
669\f
670/* Allocate a temporary stack slot and record it for possible later
671 reuse.
672
673 MODE is the machine mode to be given to the returned rtx.
674
675 SIZE is the size in units of the space required. We do no rounding here
676 since assign_stack_local will do any required rounding.
677
678 KEEP is non-zero if this slot is to be retained after a call to
679 free_temp_slots. Automatic variables for a block are allocated with this
680 flag. */
681
682rtx
683assign_stack_temp (mode, size, keep)
684 enum machine_mode mode;
685 int size;
686 int keep;
687{
688 struct temp_slot *p, *best_p = 0;
689
690 /* First try to find an available, already-allocated temporary that is the
691 exact size we require. */
692 for (p = temp_slots; p; p = p->next)
693 if (p->size == size && GET_MODE (p->slot) == mode && ! p->in_use)
694 break;
695
696 /* If we didn't find, one, try one that is larger than what we want. We
697 find the smallest such. */
698 if (p == 0)
699 for (p = temp_slots; p; p = p->next)
700 if (p->size > size && GET_MODE (p->slot) == mode && ! p->in_use
701 && (best_p == 0 || best_p->size > p->size))
702 best_p = p;
703
704 /* Make our best, if any, the one to use. */
705 if (best_p)
706 p = best_p;
707
708 /* If we still didn't find one, make a new temporary. */
709 if (p == 0)
710 {
711 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
712 p->size = size;
713 /* If the temp slot mode doesn't indicate the alignment,
714 use the largest possible, so no one will be disappointed. */
715 p->slot = assign_stack_local (mode, size, mode == BLKmode ? -1 : 0);
716 p->next = temp_slots;
717 temp_slots = p;
718 }
719
720 p->in_use = 1;
721 p->level = temp_slot_level;
722 p->keep = keep;
723 return p->slot;
724}
725\f
726/* If X could be a reference to a temporary slot, mark that slot as belonging
727 to the to one level higher. If X matched one of our slots, just mark that
728 one. Otherwise, we can't easily predict which it is, so upgrade all of
729 them. Kept slots need not be touched.
730
731 This is called when an ({...}) construct occurs and a statement
732 returns a value in memory. */
733
734void
735preserve_temp_slots (x)
736 rtx x;
737{
738 struct temp_slot *p;
739
740 /* If X is not in memory or is at a constant address, it cannot be in
741 a temporary slot. */
742 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
743 return;
744
745 /* First see if we can find a match. */
746 for (p = temp_slots; p; p = p->next)
747 if (p->in_use && x == p->slot)
748 {
749 p->level--;
750 return;
751 }
752
753 /* Otherwise, preserve all non-kept slots at this level. */
754 for (p = temp_slots; p; p = p->next)
755 if (p->in_use && p->level == temp_slot_level && ! p->keep)
756 p->level--;
757}
758
759/* Free all temporaries used so far. This is normally called at the end
760 of generating code for a statement. */
761
762void
763free_temp_slots ()
764{
765 struct temp_slot *p;
766
767 for (p = temp_slots; p; p = p->next)
768 if (p->in_use && p->level == temp_slot_level && ! p->keep)
769 p->in_use = 0;
770}
771
772/* Push deeper into the nesting level for stack temporaries. */
773
774void
775push_temp_slots ()
776{
777 /* For GNU C++, we must allow a sequence to be emitted anywhere in
778 the level where the sequence was started. By not changing levels
779 when the compiler is inside a sequence, the temporaries for the
780 sequence and the temporaries will not unwittingly conflict with
781 the temporaries for other sequences and/or code at that level. */
782 if (in_sequence_p ())
783 return;
784
785 temp_slot_level++;
786}
787
788/* Pop a temporary nesting level. All slots in use in the current level
789 are freed. */
790
791void
792pop_temp_slots ()
793{
794 struct temp_slot *p;
795
796 /* See comment in push_temp_slots about why we don't change levels
797 in sequences. */
798 if (in_sequence_p ())
799 return;
800
801 for (p = temp_slots; p; p = p->next)
802 if (p->in_use && p->level == temp_slot_level)
803 p->in_use = 0;
804
805 temp_slot_level--;
806}
807\f
808/* Retroactively move an auto variable from a register to a stack slot.
809 This is done when an address-reference to the variable is seen. */
810
811void
812put_var_into_stack (decl)
813 tree decl;
814{
815 register rtx reg;
816 register rtx new = 0;
00d8a4c1 817 enum machine_mode promoted_mode, decl_mode;
6f086dfc
RS
818 struct function *function = 0;
819 tree context = decl_function_context (decl);
820
00d8a4c1 821 /* Get the current rtl used for this object and it's original mode. */
6f086dfc 822 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
2baccce2
RS
823
824 /* No need to do anything if decl has no rtx yet
825 since in that case caller is setting TREE_ADDRESSABLE
826 and a stack slot will be assigned when the rtl is made. */
827 if (reg == 0)
828 return;
00d8a4c1
RK
829
830 /* Get the declared mode for this object. */
831 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
832 : DECL_MODE (decl));
2baccce2
RS
833 /* Get the mode it's actually stored in. */
834 promoted_mode = GET_MODE (reg);
6f086dfc
RS
835
836 /* If this variable comes from an outer function,
837 find that function's saved context. */
838 if (context != current_function_decl)
839 for (function = outer_function_chain; function; function = function->next)
840 if (function->decl == context)
841 break;
842
6f086dfc
RS
843 /* If this is a variable-size object with a pseudo to address it,
844 put that pseudo into the stack, if the var is nonlocal. */
a82ad570 845 if (DECL_NONLOCAL (decl)
6f086dfc
RS
846 && GET_CODE (reg) == MEM
847 && GET_CODE (XEXP (reg, 0)) == REG
848 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
849 reg = XEXP (reg, 0);
850 if (GET_CODE (reg) != REG)
851 return;
852
853 if (function)
854 {
855 if (REGNO (reg) < function->max_parm_reg)
856 new = function->parm_reg_stack_loc[REGNO (reg)];
857 if (new == 0)
858 new = assign_outer_stack_local (GET_MODE (reg),
00d8a4c1 859 GET_MODE_SIZE (decl_mode),
6f086dfc
RS
860 0, function);
861 }
862 else
863 {
864 if (REGNO (reg) < max_parm_reg)
865 new = parm_reg_stack_loc[REGNO (reg)];
866 if (new == 0)
867 new = assign_stack_local (GET_MODE (reg),
00d8a4c1 868 GET_MODE_SIZE (decl_mode), 0);
6f086dfc
RS
869 }
870
871 XEXP (reg, 0) = XEXP (new, 0);
872 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
873 REG_USERVAR_P (reg) = 0;
874 PUT_CODE (reg, MEM);
00d8a4c1 875 PUT_MODE (reg, decl_mode);
6f086dfc
RS
876
877 /* If this is a memory ref that contains aggregate components,
878 mark it as such for cse and loop optimize. */
879 MEM_IN_STRUCT_P (reg)
880 = (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
881 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
882 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE);
883
884 /* Now make sure that all refs to the variable, previously made
885 when it was a register, are fixed up to be valid again. */
886 if (function)
887 {
888 struct var_refs_queue *temp;
889
890 /* Variable is inherited; fix it up when we get back to its function. */
891 push_obstacks (function->function_obstack,
892 function->function_maybepermanent_obstack);
893 temp
894 = (struct var_refs_queue *) oballoc (sizeof (struct var_refs_queue));
895 temp->modified = reg;
00d8a4c1
RK
896 temp->promoted_mode = promoted_mode;
897 temp->unsignedp = TREE_UNSIGNED (TREE_TYPE (decl));
6f086dfc
RS
898 temp->next = function->fixup_var_refs_queue;
899 function->fixup_var_refs_queue = temp;
900 pop_obstacks ();
901 }
902 else
903 /* Variable is local; fix it up now. */
00d8a4c1 904 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (TREE_TYPE (decl)));
6f086dfc
RS
905}
906\f
907static void
00d8a4c1 908fixup_var_refs (var, promoted_mode, unsignedp)
6f086dfc 909 rtx var;
00d8a4c1
RK
910 enum machine_mode promoted_mode;
911 int unsignedp;
6f086dfc
RS
912{
913 tree pending;
914 rtx first_insn = get_insns ();
915 struct sequence_stack *stack = sequence_stack;
916 tree rtl_exps = rtl_expr_chain;
917
918 /* Must scan all insns for stack-refs that exceed the limit. */
00d8a4c1 919 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn, stack == 0);
6f086dfc
RS
920
921 /* Scan all pending sequences too. */
922 for (; stack; stack = stack->next)
923 {
924 push_to_sequence (stack->first);
00d8a4c1
RK
925 fixup_var_refs_insns (var, promoted_mode, unsignedp,
926 stack->first, stack->next != 0);
6f086dfc
RS
927 /* Update remembered end of sequence
928 in case we added an insn at the end. */
929 stack->last = get_last_insn ();
930 end_sequence ();
931 }
932
933 /* Scan all waiting RTL_EXPRs too. */
934 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
935 {
936 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
937 if (seq != const0_rtx && seq != 0)
938 {
939 push_to_sequence (seq);
00d8a4c1 940 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0);
6f086dfc
RS
941 end_sequence ();
942 }
943 }
944}
945\f
946/* This structure is used by the following two functions to record MEMs or
947 pseudos used to replace VAR, any SUBREGs of VAR, and any MEMs containing
948 VAR as an address. We need to maintain this list in case two operands of
949 an insn were required to match; in that case we must ensure we use the
950 same replacement. */
951
952struct fixup_replacement
953{
954 rtx old;
955 rtx new;
956 struct fixup_replacement *next;
957};
958
959/* REPLACEMENTS is a pointer to a list of the above structures and X is
960 some part of an insn. Return a struct fixup_replacement whose OLD
961 value is equal to X. Allocate a new structure if no such entry exists. */
962
963static struct fixup_replacement *
964find_replacement (replacements, x)
965 struct fixup_replacement **replacements;
966 rtx x;
967{
968 struct fixup_replacement *p;
969
970 /* See if we have already replaced this. */
971 for (p = *replacements; p && p->old != x; p = p->next)
972 ;
973
974 if (p == 0)
975 {
976 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
977 p->old = x;
978 p->new = 0;
979 p->next = *replacements;
980 *replacements = p;
981 }
982
983 return p;
984}
985
986/* Scan the insn-chain starting with INSN for refs to VAR
987 and fix them up. TOPLEVEL is nonzero if this chain is the
988 main chain of insns for the current function. */
989
990static void
00d8a4c1 991fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel)
6f086dfc 992 rtx var;
00d8a4c1
RK
993 enum machine_mode promoted_mode;
994 int unsignedp;
6f086dfc
RS
995 rtx insn;
996 int toplevel;
997{
998 while (insn)
999 {
1000 rtx next = NEXT_INSN (insn);
1001 rtx note;
1002 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
1003 || GET_CODE (insn) == JUMP_INSN)
1004 {
1005 /* The insn to load VAR from a home in the arglist
1006 is now a no-op. When we see it, just delete it. */
1007 if (toplevel
1008 && GET_CODE (PATTERN (insn)) == SET
1009 && SET_DEST (PATTERN (insn)) == var
1010 && rtx_equal_p (SET_SRC (PATTERN (insn)), var))
1011 {
1012 next = delete_insn (insn);
1013 if (insn == last_parm_insn)
1014 last_parm_insn = PREV_INSN (next);
1015 }
1016 else
1017 {
1018 /* See if we have to do anything to INSN now that VAR is in
1019 memory. If it needs to be loaded into a pseudo, use a single
1020 pseudo for the entire insn in case there is a MATCH_DUP
1021 between two operands. We pass a pointer to the head of
1022 a list of struct fixup_replacements. If fixup_var_refs_1
1023 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1024 it will record them in this list.
1025
1026 If it allocated a pseudo for any replacement, we copy into
1027 it here. */
1028
1029 struct fixup_replacement *replacements = 0;
1030
00d8a4c1
RK
1031 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1032 &replacements);
6f086dfc
RS
1033
1034 while (replacements)
1035 {
1036 if (GET_CODE (replacements->new) == REG)
1037 {
1038 rtx insert_before;
00d8a4c1 1039 rtx seq;
6f086dfc
RS
1040
1041 /* OLD might be a (subreg (mem)). */
1042 if (GET_CODE (replacements->old) == SUBREG)
1043 replacements->old
1044 = fixup_memory_subreg (replacements->old, insn, 0);
1045 else
1046 replacements->old
1047 = fixup_stack_1 (replacements->old, insn);
1048
1049 /* We can not separate USE insns from the CALL_INSN
1050 that they belong to. If this is a CALL_INSN, insert
b335c2cc 1051 the move insn before the USE insns preceding it
6f086dfc
RS
1052 instead of immediately before the insn. */
1053 if (GET_CODE (insn) == CALL_INSN)
1054 {
1055 insert_before = insn;
1056 while (GET_CODE (PREV_INSN (insert_before)) == INSN
1057 && GET_CODE (PATTERN (PREV_INSN (insert_before))) == USE)
1058 insert_before = PREV_INSN (insert_before);
1059 }
1060 else
1061 insert_before = insn;
1062
00d8a4c1
RK
1063 /* If we are changing the mode, do a conversion.
1064 This might be wasteful, but combine.c will
1065 eliminate much of the waste. */
1066
1067 if (GET_MODE (replacements->new)
1068 != GET_MODE (replacements->old))
1069 {
1070 start_sequence ();
1071 convert_move (replacements->new,
1072 replacements->old, unsignedp);
1073 seq = gen_sequence ();
1074 end_sequence ();
1075 }
1076 else
1077 seq = gen_move_insn (replacements->new,
1078 replacements->old);
1079
1080 emit_insn_before (seq, insert_before);
6f086dfc
RS
1081 }
1082
1083 replacements = replacements->next;
1084 }
1085 }
1086
1087 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1088 But don't touch other insns referred to by reg-notes;
1089 we will get them elsewhere. */
1090 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1091 if (GET_CODE (note) != INSN_LIST)
1092 XEXP (note, 0) = walk_fixup_memory_subreg (XEXP (note, 0), insn);
1093 }
1094 insn = next;
1095 }
1096}
1097\f
00d8a4c1
RK
1098/* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1099 See if the rtx expression at *LOC in INSN needs to be changed.
6f086dfc
RS
1100
1101 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1102 contain a list of original rtx's and replacements. If we find that we need
1103 to modify this insn by replacing a memory reference with a pseudo or by
1104 making a new MEM to implement a SUBREG, we consult that list to see if
1105 we have already chosen a replacement. If none has already been allocated,
1106 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1107 or the SUBREG, as appropriate, to the pseudo. */
1108
1109static void
00d8a4c1 1110fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
6f086dfc 1111 register rtx var;
00d8a4c1 1112 enum machine_mode promoted_mode;
6f086dfc
RS
1113 register rtx *loc;
1114 rtx insn;
1115 struct fixup_replacement **replacements;
1116{
1117 register int i;
1118 register rtx x = *loc;
1119 RTX_CODE code = GET_CODE (x);
1120 register char *fmt;
1121 register rtx tem, tem1;
1122 struct fixup_replacement *replacement;
1123
1124 switch (code)
1125 {
1126 case MEM:
1127 if (var == x)
1128 {
1129 /* If we already have a replacement, use it. Otherwise,
1130 try to fix up this address in case it is invalid. */
1131
1132 replacement = find_replacement (replacements, var);
1133 if (replacement->new)
1134 {
1135 *loc = replacement->new;
1136 return;
1137 }
1138
1139 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1140
00d8a4c1
RK
1141 /* Unless we are forcing memory to register or we changed the mode,
1142 we can leave things the way they are if the insn is valid. */
6f086dfc
RS
1143
1144 INSN_CODE (insn) = -1;
00d8a4c1
RK
1145 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1146 && recog_memoized (insn) >= 0)
6f086dfc
RS
1147 return;
1148
00d8a4c1 1149 *loc = replacement->new = gen_reg_rtx (promoted_mode);
6f086dfc
RS
1150 return;
1151 }
1152
1153 /* If X contains VAR, we need to unshare it here so that we update
1154 each occurrence separately. But all identical MEMs in one insn
1155 must be replaced with the same rtx because of the possibility of
1156 MATCH_DUPs. */
1157
1158 if (reg_mentioned_p (var, x))
1159 {
1160 replacement = find_replacement (replacements, x);
1161 if (replacement->new == 0)
1162 replacement->new = copy_most_rtx (x, var);
1163
1164 *loc = x = replacement->new;
1165 }
1166 break;
1167
1168 case REG:
1169 case CC0:
1170 case PC:
1171 case CONST_INT:
1172 case CONST:
1173 case SYMBOL_REF:
1174 case LABEL_REF:
1175 case CONST_DOUBLE:
1176 return;
1177
1178 case SIGN_EXTRACT:
1179 case ZERO_EXTRACT:
1180 /* Note that in some cases those types of expressions are altered
1181 by optimize_bit_field, and do not survive to get here. */
1182 if (XEXP (x, 0) == var
1183 || (GET_CODE (XEXP (x, 0)) == SUBREG
1184 && SUBREG_REG (XEXP (x, 0)) == var))
1185 {
1186 /* Get TEM as a valid MEM in the mode presently in the insn.
1187
1188 We don't worry about the possibility of MATCH_DUP here; it
1189 is highly unlikely and would be tricky to handle. */
1190
1191 tem = XEXP (x, 0);
1192 if (GET_CODE (tem) == SUBREG)
1193 tem = fixup_memory_subreg (tem, insn, 1);
1194 tem = fixup_stack_1 (tem, insn);
1195
1196 /* Unless we want to load from memory, get TEM into the proper mode
1197 for an extract from memory. This can only be done if the
1198 extract is at a constant position and length. */
1199
1200 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1201 && GET_CODE (XEXP (x, 2)) == CONST_INT
1202 && ! mode_dependent_address_p (XEXP (tem, 0))
1203 && ! MEM_VOLATILE_P (tem))
1204 {
1205 enum machine_mode wanted_mode = VOIDmode;
1206 enum machine_mode is_mode = GET_MODE (tem);
1207 int width = INTVAL (XEXP (x, 1));
1208 int pos = INTVAL (XEXP (x, 2));
1209
1210#ifdef HAVE_extzv
1211 if (GET_CODE (x) == ZERO_EXTRACT)
1212 wanted_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
1213#endif
1214#ifdef HAVE_extv
1215 if (GET_CODE (x) == SIGN_EXTRACT)
1216 wanted_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
1217#endif
6dc42e49 1218 /* If we have a narrower mode, we can do something. */
6f086dfc
RS
1219 if (wanted_mode != VOIDmode
1220 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
1221 {
1222 int offset = pos / BITS_PER_UNIT;
1223 rtx old_pos = XEXP (x, 2);
1224 rtx newmem;
1225
1226 /* If the bytes and bits are counted differently, we
1227 must adjust the offset. */
1228#if BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
1229 offset = (GET_MODE_SIZE (is_mode)
1230 - GET_MODE_SIZE (wanted_mode) - offset);
1231#endif
1232
1233 pos %= GET_MODE_BITSIZE (wanted_mode);
1234
1235 newmem = gen_rtx (MEM, wanted_mode,
1236 plus_constant (XEXP (tem, 0), offset));
1237 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
1238 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
1239 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
1240
1241 /* Make the change and see if the insn remains valid. */
1242 INSN_CODE (insn) = -1;
1243 XEXP (x, 0) = newmem;
5f4f0e22 1244 XEXP (x, 2) = GEN_INT (pos);
6f086dfc
RS
1245
1246 if (recog_memoized (insn) >= 0)
1247 return;
1248
1249 /* Otherwise, restore old position. XEXP (x, 0) will be
1250 restored later. */
1251 XEXP (x, 2) = old_pos;
1252 }
1253 }
1254
1255 /* If we get here, the bitfield extract insn can't accept a memory
1256 reference. Copy the input into a register. */
1257
1258 tem1 = gen_reg_rtx (GET_MODE (tem));
1259 emit_insn_before (gen_move_insn (tem1, tem), insn);
1260 XEXP (x, 0) = tem1;
1261 return;
1262 }
1263 break;
1264
1265 case SUBREG:
1266 if (SUBREG_REG (x) == var)
1267 {
00d8a4c1
RK
1268 /* If this is a special SUBREG made because VAR was promoted
1269 from a wider mode, replace it with VAR and call ourself
1270 recursively, this time saying that the object previously
1271 had its current mode (by virtue of the SUBREG). */
1272
1273 if (SUBREG_PROMOTED_VAR_P (x))
1274 {
1275 *loc = var;
1276 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
1277 return;
1278 }
1279
6f086dfc
RS
1280 /* If this SUBREG makes VAR wider, it has become a paradoxical
1281 SUBREG with VAR in memory, but these aren't allowed at this
1282 stage of the compilation. So load VAR into a pseudo and take
1283 a SUBREG of that pseudo. */
1284 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
1285 {
1286 replacement = find_replacement (replacements, var);
1287 if (replacement->new == 0)
1288 replacement->new = gen_reg_rtx (GET_MODE (var));
1289 SUBREG_REG (x) = replacement->new;
1290 return;
1291 }
1292
1293 /* See if we have already found a replacement for this SUBREG.
1294 If so, use it. Otherwise, make a MEM and see if the insn
1295 is recognized. If not, or if we should force MEM into a register,
1296 make a pseudo for this SUBREG. */
1297 replacement = find_replacement (replacements, x);
1298 if (replacement->new)
1299 {
1300 *loc = replacement->new;
1301 return;
1302 }
1303
1304 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
1305
1306 if (! flag_force_mem && recog_memoized (insn) >= 0)
1307 return;
1308
1309 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
1310 return;
1311 }
1312 break;
1313
1314 case SET:
1315 /* First do special simplification of bit-field references. */
1316 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
1317 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
1318 optimize_bit_field (x, insn, 0);
1319 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
1320 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
5f4f0e22 1321 optimize_bit_field (x, insn, NULL_PTR);
6f086dfc
RS
1322
1323 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
1324 insn into a pseudo and store the low part of the pseudo into VAR. */
1325 if (GET_CODE (SET_DEST (x)) == SUBREG
1326 && SUBREG_REG (SET_DEST (x)) == var
1327 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
1328 > GET_MODE_SIZE (GET_MODE (var))))
1329 {
1330 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
1331 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
1332 tem)),
1333 insn);
1334 break;
1335 }
1336
1337 {
1338 rtx dest = SET_DEST (x);
1339 rtx src = SET_SRC (x);
1340 rtx outerdest = dest;
1341
1342 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1343 || GET_CODE (dest) == SIGN_EXTRACT
1344 || GET_CODE (dest) == ZERO_EXTRACT)
1345 dest = XEXP (dest, 0);
1346
1347 if (GET_CODE (src) == SUBREG)
1348 src = XEXP (src, 0);
1349
1350 /* If VAR does not appear at the top level of the SET
1351 just scan the lower levels of the tree. */
1352
1353 if (src != var && dest != var)
1354 break;
1355
1356 /* We will need to rerecognize this insn. */
1357 INSN_CODE (insn) = -1;
1358
1359#ifdef HAVE_insv
1360 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
1361 {
1362 /* Since this case will return, ensure we fixup all the
1363 operands here. */
00d8a4c1
RK
1364 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
1365 insn, replacements);
1366 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
1367 insn, replacements);
1368 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
1369 insn, replacements);
6f086dfc
RS
1370
1371 tem = XEXP (outerdest, 0);
1372
1373 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
1374 that may appear inside a ZERO_EXTRACT.
1375 This was legitimate when the MEM was a REG. */
1376 if (GET_CODE (tem) == SUBREG
1377 && SUBREG_REG (tem) == var)
1378 tem = fixup_memory_subreg (tem, insn, 1);
1379 else
1380 tem = fixup_stack_1 (tem, insn);
1381
1382 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
1383 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
1384 && ! mode_dependent_address_p (XEXP (tem, 0))
1385 && ! MEM_VOLATILE_P (tem))
1386 {
1387 enum machine_mode wanted_mode
1388 = insn_operand_mode[(int) CODE_FOR_insv][0];
1389 enum machine_mode is_mode = GET_MODE (tem);
1390 int width = INTVAL (XEXP (outerdest, 1));
1391 int pos = INTVAL (XEXP (outerdest, 2));
1392
6dc42e49 1393 /* If we have a narrower mode, we can do something. */
6f086dfc
RS
1394 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
1395 {
1396 int offset = pos / BITS_PER_UNIT;
1397 rtx old_pos = XEXP (outerdest, 2);
1398 rtx newmem;
1399
1400#if BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
1401 offset = (GET_MODE_SIZE (is_mode)
1402 - GET_MODE_SIZE (wanted_mode) - offset);
1403#endif
1404
1405 pos %= GET_MODE_BITSIZE (wanted_mode);
1406
1407 newmem = gen_rtx (MEM, wanted_mode,
1408 plus_constant (XEXP (tem, 0), offset));
1409 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
1410 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
1411 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
1412
1413 /* Make the change and see if the insn remains valid. */
1414 INSN_CODE (insn) = -1;
1415 XEXP (outerdest, 0) = newmem;
5f4f0e22 1416 XEXP (outerdest, 2) = GEN_INT (pos);
6f086dfc
RS
1417
1418 if (recog_memoized (insn) >= 0)
1419 return;
1420
1421 /* Otherwise, restore old position. XEXP (x, 0) will be
1422 restored later. */
1423 XEXP (outerdest, 2) = old_pos;
1424 }
1425 }
1426
1427 /* If we get here, the bit-field store doesn't allow memory
1428 or isn't located at a constant position. Load the value into
1429 a register, do the store, and put it back into memory. */
1430
1431 tem1 = gen_reg_rtx (GET_MODE (tem));
1432 emit_insn_before (gen_move_insn (tem1, tem), insn);
1433 emit_insn_after (gen_move_insn (tem, tem1), insn);
1434 XEXP (outerdest, 0) = tem1;
1435 return;
1436 }
1437#endif
1438
1439 /* STRICT_LOW_PART is a no-op on memory references
1440 and it can cause combinations to be unrecognizable,
1441 so eliminate it. */
1442
1443 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
1444 SET_DEST (x) = XEXP (SET_DEST (x), 0);
1445
1446 /* A valid insn to copy VAR into or out of a register
1447 must be left alone, to avoid an infinite loop here.
1448 If the reference to VAR is by a subreg, fix that up,
1449 since SUBREG is not valid for a memref.
1450 Also fix up the address of the stack slot. */
1451
1452 if ((SET_SRC (x) == var
1453 || (GET_CODE (SET_SRC (x)) == SUBREG
1454 && SUBREG_REG (SET_SRC (x)) == var))
1455 && (GET_CODE (SET_DEST (x)) == REG
1456 || (GET_CODE (SET_DEST (x)) == SUBREG
1457 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
1458 && recog_memoized (insn) >= 0)
1459 {
1460 replacement = find_replacement (replacements, SET_SRC (x));
1461 if (replacement->new)
1462 {
1463 SET_SRC (x) = replacement->new;
1464 return;
1465 }
1466 else if (GET_CODE (SET_SRC (x)) == SUBREG)
1467 SET_SRC (x) = replacement->new
1468 = fixup_memory_subreg (SET_SRC (x), insn, 0);
1469 else
1470 SET_SRC (x) = replacement->new
1471 = fixup_stack_1 (SET_SRC (x), insn);
1472 return;
1473 }
1474
1475 if ((SET_DEST (x) == var
1476 || (GET_CODE (SET_DEST (x)) == SUBREG
1477 && SUBREG_REG (SET_DEST (x)) == var))
1478 && (GET_CODE (SET_SRC (x)) == REG
1479 || (GET_CODE (SET_SRC (x)) == SUBREG
1480 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
1481 && recog_memoized (insn) >= 0)
1482 {
1483 if (GET_CODE (SET_DEST (x)) == SUBREG)
1484 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
1485 else
1486 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
1487 return;
1488 }
1489
1490 /* Otherwise, storing into VAR must be handled specially
1491 by storing into a temporary and copying that into VAR
00d8a4c1
RK
1492 with a new insn after this one. Note that this case
1493 will be used when storing into a promoted scalar since
1494 the insn will now have different modes on the input
1495 and output and hence will be invalid (except for the case
1496 of setting it to a constant, which does not need any
1497 change if it is valid). We generate extra code in that case,
1498 but combine.c will eliminate it. */
6f086dfc
RS
1499
1500 if (dest == var)
1501 {
1502 rtx temp;
00d8a4c1
RK
1503 rtx fixeddest = SET_DEST (x);
1504
6f086dfc 1505 /* STRICT_LOW_PART can be discarded, around a MEM. */
00d8a4c1
RK
1506 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
1507 fixeddest = XEXP (fixeddest, 0);
6f086dfc 1508 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
00d8a4c1
RK
1509 if (GET_CODE (fixeddest) == SUBREG)
1510 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
6f086dfc 1511 else
00d8a4c1
RK
1512 fixeddest = fixup_stack_1 (fixeddest, insn);
1513
1514 temp = gen_reg_rtx (GET_MODE (SET_SRC (x)) == VOIDmode
1515 ? GET_MODE (fixeddest)
1516 : GET_MODE (SET_SRC (x)));
1517
1518 emit_insn_after (gen_move_insn (fixeddest,
1519 gen_lowpart (GET_MODE (fixeddest),
1520 temp)),
1521 insn);
6f086dfc 1522
6f086dfc
RS
1523 SET_DEST (x) = temp;
1524 }
1525 }
1526 }
1527
1528 /* Nothing special about this RTX; fix its operands. */
1529
1530 fmt = GET_RTX_FORMAT (code);
1531 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1532 {
1533 if (fmt[i] == 'e')
00d8a4c1 1534 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
6f086dfc
RS
1535 if (fmt[i] == 'E')
1536 {
1537 register int j;
1538 for (j = 0; j < XVECLEN (x, i); j++)
00d8a4c1
RK
1539 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
1540 insn, replacements);
6f086dfc
RS
1541 }
1542 }
1543}
1544\f
1545/* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
1546 return an rtx (MEM:m1 newaddr) which is equivalent.
1547 If any insns must be emitted to compute NEWADDR, put them before INSN.
1548
1549 UNCRITICAL nonzero means accept paradoxical subregs.
1550 This is used for subregs found inside of ZERO_EXTRACTs. */
1551
1552static rtx
1553fixup_memory_subreg (x, insn, uncritical)
1554 rtx x;
1555 rtx insn;
1556 int uncritical;
1557{
1558 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
1559 rtx addr = XEXP (SUBREG_REG (x), 0);
1560 enum machine_mode mode = GET_MODE (x);
1561 rtx saved, result;
1562
1563 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
1564 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
1565 && ! uncritical)
1566 abort ();
1567
1568#if BYTES_BIG_ENDIAN
1569 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
1570 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
1571#endif
1572 addr = plus_constant (addr, offset);
1573 if (!flag_force_addr && memory_address_p (mode, addr))
1574 /* Shortcut if no insns need be emitted. */
1575 return change_address (SUBREG_REG (x), mode, addr);
1576 start_sequence ();
1577 result = change_address (SUBREG_REG (x), mode, addr);
1578 emit_insn_before (gen_sequence (), insn);
1579 end_sequence ();
1580 return result;
1581}
1582
1583/* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
1584 Replace subexpressions of X in place.
1585 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
1586 Otherwise return X, with its contents possibly altered.
1587
1588 If any insns must be emitted to compute NEWADDR, put them before INSN. */
1589
1590static rtx
1591walk_fixup_memory_subreg (x, insn)
1592 register rtx x;
1593 rtx insn;
1594{
1595 register enum rtx_code code;
1596 register char *fmt;
1597 register int i;
1598
1599 if (x == 0)
1600 return 0;
1601
1602 code = GET_CODE (x);
1603
1604 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
1605 return fixup_memory_subreg (x, insn, 0);
1606
1607 /* Nothing special about this RTX; fix its operands. */
1608
1609 fmt = GET_RTX_FORMAT (code);
1610 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1611 {
1612 if (fmt[i] == 'e')
1613 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn);
1614 if (fmt[i] == 'E')
1615 {
1616 register int j;
1617 for (j = 0; j < XVECLEN (x, i); j++)
1618 XVECEXP (x, i, j)
1619 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn);
1620 }
1621 }
1622 return x;
1623}
1624\f
1625#if 0
1626/* Fix up any references to stack slots that are invalid memory addresses
1627 because they exceed the maximum range of a displacement. */
1628
1629void
1630fixup_stack_slots ()
1631{
1632 register rtx insn;
1633
1634 /* Did we generate a stack slot that is out of range
1635 or otherwise has an invalid address? */
1636 if (invalid_stack_slot)
1637 {
1638 /* Yes. Must scan all insns for stack-refs that exceed the limit. */
1639 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1640 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
1641 || GET_CODE (insn) == JUMP_INSN)
1642 fixup_stack_1 (PATTERN (insn), insn);
1643 }
1644}
1645#endif
1646
1647/* For each memory ref within X, if it refers to a stack slot
1648 with an out of range displacement, put the address in a temp register
1649 (emitting new insns before INSN to load these registers)
1650 and alter the memory ref to use that register.
1651 Replace each such MEM rtx with a copy, to avoid clobberage. */
1652
1653static rtx
1654fixup_stack_1 (x, insn)
1655 rtx x;
1656 rtx insn;
1657{
1658 register int i;
1659 register RTX_CODE code = GET_CODE (x);
1660 register char *fmt;
1661
1662 if (code == MEM)
1663 {
1664 register rtx ad = XEXP (x, 0);
1665 /* If we have address of a stack slot but it's not valid
1666 (displacement is too large), compute the sum in a register. */
1667 if (GET_CODE (ad) == PLUS
1668 && GET_CODE (XEXP (ad, 0)) == REG
1669 && REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
1670 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER
1671 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
1672 {
1673 rtx temp, seq;
1674 if (memory_address_p (GET_MODE (x), ad))
1675 return x;
1676
1677 start_sequence ();
1678 temp = copy_to_reg (ad);
1679 seq = gen_sequence ();
1680 end_sequence ();
1681 emit_insn_before (seq, insn);
1682 return change_address (x, VOIDmode, temp);
1683 }
1684 return x;
1685 }
1686
1687 fmt = GET_RTX_FORMAT (code);
1688 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1689 {
1690 if (fmt[i] == 'e')
1691 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
1692 if (fmt[i] == 'E')
1693 {
1694 register int j;
1695 for (j = 0; j < XVECLEN (x, i); j++)
1696 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
1697 }
1698 }
1699 return x;
1700}
1701\f
1702/* Optimization: a bit-field instruction whose field
1703 happens to be a byte or halfword in memory
1704 can be changed to a move instruction.
1705
1706 We call here when INSN is an insn to examine or store into a bit-field.
1707 BODY is the SET-rtx to be altered.
1708
1709 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
1710 (Currently this is called only from function.c, and EQUIV_MEM
1711 is always 0.) */
1712
1713static void
1714optimize_bit_field (body, insn, equiv_mem)
1715 rtx body;
1716 rtx insn;
1717 rtx *equiv_mem;
1718{
1719 register rtx bitfield;
1720 int destflag;
1721 rtx seq = 0;
1722 enum machine_mode mode;
1723
1724 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
1725 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
1726 bitfield = SET_DEST (body), destflag = 1;
1727 else
1728 bitfield = SET_SRC (body), destflag = 0;
1729
1730 /* First check that the field being stored has constant size and position
1731 and is in fact a byte or halfword suitably aligned. */
1732
1733 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
1734 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
1735 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
1736 != BLKmode)
1737 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
1738 {
1739 register rtx memref = 0;
1740
1741 /* Now check that the containing word is memory, not a register,
1742 and that it is safe to change the machine mode. */
1743
1744 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
1745 memref = XEXP (bitfield, 0);
1746 else if (GET_CODE (XEXP (bitfield, 0)) == REG
1747 && equiv_mem != 0)
1748 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
1749 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
1750 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
1751 memref = SUBREG_REG (XEXP (bitfield, 0));
1752 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
1753 && equiv_mem != 0
1754 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
1755 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
1756
1757 if (memref
1758 && ! mode_dependent_address_p (XEXP (memref, 0))
1759 && ! MEM_VOLATILE_P (memref))
1760 {
1761 /* Now adjust the address, first for any subreg'ing
1762 that we are now getting rid of,
1763 and then for which byte of the word is wanted. */
1764
1765 register int offset = INTVAL (XEXP (bitfield, 2));
1766 /* Adjust OFFSET to count bits from low-address byte. */
1767#if BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN
1768 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
1769 - offset - INTVAL (XEXP (bitfield, 1)));
1770#endif
1771 /* Adjust OFFSET to count bytes from low-address byte. */
1772 offset /= BITS_PER_UNIT;
1773 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
1774 {
1775 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
1776#if BYTES_BIG_ENDIAN
1777 offset -= (MIN (UNITS_PER_WORD,
1778 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
1779 - MIN (UNITS_PER_WORD,
1780 GET_MODE_SIZE (GET_MODE (memref))));
1781#endif
1782 }
1783
1784 memref = change_address (memref, mode,
1785 plus_constant (XEXP (memref, 0), offset));
1786
1787 /* Store this memory reference where
1788 we found the bit field reference. */
1789
1790 if (destflag)
1791 {
1792 validate_change (insn, &SET_DEST (body), memref, 1);
1793 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
1794 {
1795 rtx src = SET_SRC (body);
1796 while (GET_CODE (src) == SUBREG
1797 && SUBREG_WORD (src) == 0)
1798 src = SUBREG_REG (src);
1799 if (GET_MODE (src) != GET_MODE (memref))
1800 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
1801 validate_change (insn, &SET_SRC (body), src, 1);
1802 }
1803 else if (GET_MODE (SET_SRC (body)) != VOIDmode
1804 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
1805 /* This shouldn't happen because anything that didn't have
1806 one of these modes should have got converted explicitly
1807 and then referenced through a subreg.
1808 This is so because the original bit-field was
1809 handled by agg_mode and so its tree structure had
1810 the same mode that memref now has. */
1811 abort ();
1812 }
1813 else
1814 {
1815 rtx dest = SET_DEST (body);
1816
1817 while (GET_CODE (dest) == SUBREG
1818 && SUBREG_WORD (dest) == 0)
1819 dest = SUBREG_REG (dest);
1820
1821 validate_change (insn, &SET_DEST (body), dest, 1);
1822
1823 if (GET_MODE (dest) == GET_MODE (memref))
1824 validate_change (insn, &SET_SRC (body), memref, 1);
1825 else
1826 {
1827 /* Convert the mem ref to the destination mode. */
1828 rtx newreg = gen_reg_rtx (GET_MODE (dest));
1829
1830 start_sequence ();
1831 convert_move (newreg, memref,
1832 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
1833 seq = get_insns ();
1834 end_sequence ();
1835
1836 validate_change (insn, &SET_SRC (body), newreg, 1);
1837 }
1838 }
1839
1840 /* See if we can convert this extraction or insertion into
1841 a simple move insn. We might not be able to do so if this
1842 was, for example, part of a PARALLEL.
1843
1844 If we succeed, write out any needed conversions. If we fail,
1845 it is hard to guess why we failed, so don't do anything
1846 special; just let the optimization be suppressed. */
1847
1848 if (apply_change_group () && seq)
1849 emit_insns_before (seq, insn);
1850 }
1851 }
1852}
1853\f
1854/* These routines are responsible for converting virtual register references
1855 to the actual hard register references once RTL generation is complete.
1856
1857 The following four variables are used for communication between the
1858 routines. They contain the offsets of the virtual registers from their
1859 respective hard registers. */
1860
1861static int in_arg_offset;
1862static int var_offset;
1863static int dynamic_offset;
1864static int out_arg_offset;
1865
1866/* In most machines, the stack pointer register is equivalent to the bottom
1867 of the stack. */
1868
1869#ifndef STACK_POINTER_OFFSET
1870#define STACK_POINTER_OFFSET 0
1871#endif
1872
1873/* If not defined, pick an appropriate default for the offset of dynamically
1874 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1875 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1876
1877#ifndef STACK_DYNAMIC_OFFSET
1878
1879#ifdef ACCUMULATE_OUTGOING_ARGS
1880/* The bottom of the stack points to the actual arguments. If
1881 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1882 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1883 stack space for register parameters is not pushed by the caller, but
1884 rather part of the fixed stack areas and hence not included in
1885 `current_function_outgoing_args_size'. Nevertheless, we must allow
1886 for it when allocating stack dynamic objects. */
1887
1888#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1889#define STACK_DYNAMIC_OFFSET(FNDECL) \
1890(current_function_outgoing_args_size \
1891 + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET))
1892
1893#else
1894#define STACK_DYNAMIC_OFFSET(FNDECL) \
1895(current_function_outgoing_args_size + (STACK_POINTER_OFFSET))
1896#endif
1897
1898#else
1899#define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET
1900#endif
1901#endif
1902
1903/* Pass through the INSNS of function FNDECL and convert virtual register
1904 references to hard register references. */
1905
1906void
1907instantiate_virtual_regs (fndecl, insns)
1908 tree fndecl;
1909 rtx insns;
1910{
1911 rtx insn;
1912
1913 /* Compute the offsets to use for this function. */
1914 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
1915 var_offset = STARTING_FRAME_OFFSET;
1916 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
1917 out_arg_offset = STACK_POINTER_OFFSET;
1918
1919 /* Scan all variables and parameters of this function. For each that is
1920 in memory, instantiate all virtual registers if the result is a valid
1921 address. If not, we do it later. That will handle most uses of virtual
1922 regs on many machines. */
1923 instantiate_decls (fndecl, 1);
1924
1925 /* Initialize recognition, indicating that volatile is OK. */
1926 init_recog ();
1927
1928 /* Scan through all the insns, instantiating every virtual register still
1929 present. */
1930 for (insn = insns; insn; insn = NEXT_INSN (insn))
1931 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1932 || GET_CODE (insn) == CALL_INSN)
1933 {
1934 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
5f4f0e22 1935 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
6f086dfc
RS
1936 }
1937
1938 /* Now instantiate the remaining register equivalences for debugging info.
1939 These will not be valid addresses. */
1940 instantiate_decls (fndecl, 0);
1941
1942 /* Indicate that, from now on, assign_stack_local should use
1943 frame_pointer_rtx. */
1944 virtuals_instantiated = 1;
1945}
1946
1947/* Scan all decls in FNDECL (both variables and parameters) and instantiate
1948 all virtual registers in their DECL_RTL's.
1949
1950 If VALID_ONLY, do this only if the resulting address is still valid.
1951 Otherwise, always do it. */
1952
1953static void
1954instantiate_decls (fndecl, valid_only)
1955 tree fndecl;
1956 int valid_only;
1957{
1958 tree decl;
1959
a82ad570 1960 if (DECL_INLINE (fndecl))
6f086dfc
RS
1961 /* When compiling an inline function, the obstack used for
1962 rtl allocation is the maybepermanent_obstack. Calling
1963 `resume_temporary_allocation' switches us back to that
1964 obstack while we process this function's parameters. */
1965 resume_temporary_allocation ();
1966
1967 /* Process all parameters of the function. */
1968 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1969 {
5a73491b
RK
1970 instantiate_decl (DECL_RTL (decl), int_size_in_bytes (TREE_TYPE (decl)),
1971 valid_only);
1972 instantiate_decl (DECL_INCOMING_RTL (decl),
1973 int_size_in_bytes (TREE_TYPE (decl)), valid_only);
6f086dfc
RS
1974 }
1975
1976 /* Now process all variables defined in the function or its subblocks. */
1977 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1978
a82ad570 1979 if (DECL_INLINE (fndecl))
6f086dfc
RS
1980 {
1981 /* Save all rtl allocated for this function by raising the
1982 high-water mark on the maybepermanent_obstack. */
1983 preserve_data ();
1984 /* All further rtl allocation is now done in the current_obstack. */
1985 rtl_in_current_obstack ();
1986 }
1987}
1988
1989/* Subroutine of instantiate_decls: Process all decls in the given
1990 BLOCK node and all its subblocks. */
1991
1992static void
1993instantiate_decls_1 (let, valid_only)
1994 tree let;
1995 int valid_only;
1996{
1997 tree t;
1998
1999 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
5a73491b
RK
2000 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
2001 valid_only);
6f086dfc
RS
2002
2003 /* Process all subblocks. */
2004 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
2005 instantiate_decls_1 (t, valid_only);
2006}
5a73491b
RK
2007
2008/* Subroutine of the preceeding procedures: Given RTL representing a
2009 decl and the size of the object, do any instantiation required.
2010
2011 If VALID_ONLY is non-zero, it means that the RTL should only be
2012 changed if the new address is valid. */
2013
2014static void
2015instantiate_decl (x, size, valid_only)
2016 rtx x;
2017 int size;
2018 int valid_only;
2019{
2020 enum machine_mode mode;
2021 rtx addr;
2022
2023 /* If this is not a MEM, no need to do anything. Similarly if the
2024 address is a constant or a register that is not a virtual register. */
2025
2026 if (x == 0 || GET_CODE (x) != MEM)
2027 return;
2028
2029 addr = XEXP (x, 0);
2030 if (CONSTANT_P (addr)
2031 || (GET_CODE (addr) == REG
2032 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
2033 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
2034 return;
2035
2036 /* If we should only do this if the address is valid, copy the address.
2037 We need to do this so we can undo any changes that might make the
2038 address invalid. This copy is unfortunate, but probably can't be
2039 avoided. */
2040
2041 if (valid_only)
2042 addr = copy_rtx (addr);
2043
2044 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
2045
2046 if (! valid_only)
2047 return;
2048
2049 /* Now verify that the resulting address is valid for every integer or
2050 floating-point mode up to and including SIZE bytes long. We do this
2051 since the object might be accessed in any mode and frame addresses
2052 are shared. */
2053
2054 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2055 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
2056 mode = GET_MODE_WIDER_MODE (mode))
2057 if (! memory_address_p (mode, addr))
2058 return;
2059
2060 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
2061 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
2062 mode = GET_MODE_WIDER_MODE (mode))
2063 if (! memory_address_p (mode, addr))
2064 return;
2065
2066 /* Otherwise, put back the address, now that we have updated it and we
2067 know it is valid. */
2068
2069 XEXP (x, 0) = addr;
2070}
6f086dfc
RS
2071\f
2072/* Given a pointer to a piece of rtx and an optional pointer to the
2073 containing object, instantiate any virtual registers present in it.
2074
2075 If EXTRA_INSNS, we always do the replacement and generate
2076 any extra insns before OBJECT. If it zero, we do nothing if replacement
2077 is not valid.
2078
2079 Return 1 if we either had nothing to do or if we were able to do the
2080 needed replacement. Return 0 otherwise; we only return zero if
2081 EXTRA_INSNS is zero.
2082
2083 We first try some simple transformations to avoid the creation of extra
2084 pseudos. */
2085
2086static int
2087instantiate_virtual_regs_1 (loc, object, extra_insns)
2088 rtx *loc;
2089 rtx object;
2090 int extra_insns;
2091{
2092 rtx x;
2093 RTX_CODE code;
2094 rtx new = 0;
2095 int offset;
2096 rtx temp;
2097 rtx seq;
2098 int i, j;
2099 char *fmt;
2100
2101 /* Re-start here to avoid recursion in common cases. */
2102 restart:
2103
2104 x = *loc;
2105 if (x == 0)
2106 return 1;
2107
2108 code = GET_CODE (x);
2109
2110 /* Check for some special cases. */
2111 switch (code)
2112 {
2113 case CONST_INT:
2114 case CONST_DOUBLE:
2115 case CONST:
2116 case SYMBOL_REF:
2117 case CODE_LABEL:
2118 case PC:
2119 case CC0:
2120 case ASM_INPUT:
2121 case ADDR_VEC:
2122 case ADDR_DIFF_VEC:
2123 case RETURN:
2124 return 1;
2125
2126 case SET:
2127 /* We are allowed to set the virtual registers. This means that
2128 that the actual register should receive the source minus the
2129 appropriate offset. This is used, for example, in the handling
2130 of non-local gotos. */
2131 if (SET_DEST (x) == virtual_incoming_args_rtx)
2132 new = arg_pointer_rtx, offset = - in_arg_offset;
2133 else if (SET_DEST (x) == virtual_stack_vars_rtx)
2134 new = frame_pointer_rtx, offset = - var_offset;
2135 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
2136 new = stack_pointer_rtx, offset = - dynamic_offset;
2137 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
2138 new = stack_pointer_rtx, offset = - out_arg_offset;
2139
2140 if (new)
2141 {
2142 /* The only valid sources here are PLUS or REG. Just do
2143 the simplest possible thing to handle them. */
2144 if (GET_CODE (SET_SRC (x)) != REG
2145 && GET_CODE (SET_SRC (x)) != PLUS)
2146 abort ();
2147
2148 start_sequence ();
2149 if (GET_CODE (SET_SRC (x)) != REG)
5f4f0e22 2150 temp = force_operand (SET_SRC (x), NULL_RTX);
6f086dfc
RS
2151 else
2152 temp = SET_SRC (x);
5f4f0e22 2153 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
6f086dfc
RS
2154 seq = get_insns ();
2155 end_sequence ();
2156
2157 emit_insns_before (seq, object);
2158 SET_DEST (x) = new;
2159
2160 if (!validate_change (object, &SET_SRC (x), temp, 0)
2161 || ! extra_insns)
2162 abort ();
2163
2164 return 1;
2165 }
2166
2167 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
2168 loc = &SET_SRC (x);
2169 goto restart;
2170
2171 case PLUS:
2172 /* Handle special case of virtual register plus constant. */
2173 if (CONSTANT_P (XEXP (x, 1)))
2174 {
2175 rtx old;
2176
2177 /* Check for (plus (plus VIRT foo) (const_int)) first. */
2178 if (GET_CODE (XEXP (x, 0)) == PLUS)
2179 {
2180 rtx inner = XEXP (XEXP (x, 0), 0);
2181
2182 if (inner == virtual_incoming_args_rtx)
2183 new = arg_pointer_rtx, offset = in_arg_offset;
2184 else if (inner == virtual_stack_vars_rtx)
2185 new = frame_pointer_rtx, offset = var_offset;
2186 else if (inner == virtual_stack_dynamic_rtx)
2187 new = stack_pointer_rtx, offset = dynamic_offset;
2188 else if (inner == virtual_outgoing_args_rtx)
2189 new = stack_pointer_rtx, offset = out_arg_offset;
2190 else
2191 {
2192 loc = &XEXP (x, 0);
2193 goto restart;
2194 }
2195
2196 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
2197 extra_insns);
2198 new = gen_rtx (PLUS, Pmode, new, XEXP (XEXP (x, 0), 1));
2199 }
2200
2201 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
2202 new = arg_pointer_rtx, offset = in_arg_offset;
2203 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
2204 new = frame_pointer_rtx, offset = var_offset;
2205 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
2206 new = stack_pointer_rtx, offset = dynamic_offset;
2207 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
2208 new = stack_pointer_rtx, offset = out_arg_offset;
2209 else
2210 {
2211 /* We know the second operand is a constant. Unless the
2212 first operand is a REG (which has been already checked),
2213 it needs to be checked. */
2214 if (GET_CODE (XEXP (x, 0)) != REG)
2215 {
2216 loc = &XEXP (x, 0);
2217 goto restart;
2218 }
2219 return 1;
2220 }
2221
2222 old = XEXP (x, 0);
2223 XEXP (x, 0) = new;
2224 new = plus_constant (XEXP (x, 1), offset);
2225
2226 /* If the new constant is zero, try to replace the sum with its
2227 first operand. */
2228 if (new == const0_rtx
2229 && validate_change (object, loc, XEXP (x, 0), 0))
2230 return 1;
2231
2232 /* Next try to replace constant with new one. */
2233 if (!validate_change (object, &XEXP (x, 1), new, 0))
2234 {
2235 if (! extra_insns)
2236 {
2237 XEXP (x, 0) = old;
2238 return 0;
2239 }
2240
2241 /* Otherwise copy the new constant into a register and replace
2242 constant with that register. */
2243 temp = gen_reg_rtx (Pmode);
2244 if (validate_change (object, &XEXP (x, 1), temp, 0))
2245 emit_insn_before (gen_move_insn (temp, new), object);
2246 else
2247 {
2248 /* If that didn't work, replace this expression with a
2249 register containing the sum. */
2250
2251 new = gen_rtx (PLUS, Pmode, XEXP (x, 0), new);
2252 XEXP (x, 0) = old;
2253
2254 start_sequence ();
5f4f0e22 2255 temp = force_operand (new, NULL_RTX);
6f086dfc
RS
2256 seq = get_insns ();
2257 end_sequence ();
2258
2259 emit_insns_before (seq, object);
2260 if (! validate_change (object, loc, temp, 0)
2261 && ! validate_replace_rtx (x, temp, object))
2262 abort ();
2263 }
2264 }
2265
2266 return 1;
2267 }
2268
2269 /* Fall through to generic two-operand expression case. */
2270 case EXPR_LIST:
2271 case CALL:
2272 case COMPARE:
2273 case MINUS:
2274 case MULT:
2275 case DIV: case UDIV:
2276 case MOD: case UMOD:
2277 case AND: case IOR: case XOR:
2278 case LSHIFT: case ASHIFT: case ROTATE:
2279 case ASHIFTRT: case LSHIFTRT: case ROTATERT:
2280 case NE: case EQ:
2281 case GE: case GT: case GEU: case GTU:
2282 case LE: case LT: case LEU: case LTU:
2283 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
2284 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
2285 loc = &XEXP (x, 0);
2286 goto restart;
2287
2288 case MEM:
2289 /* Most cases of MEM that convert to valid addresses have already been
2290 handled by our scan of regno_reg_rtx. The only special handling we
2291 need here is to make a copy of the rtx to ensure it isn't being
b335c2cc 2292 shared if we have to change it to a pseudo.
6f086dfc
RS
2293
2294 If the rtx is a simple reference to an address via a virtual register,
2295 it can potentially be shared. In such cases, first try to make it
2296 a valid address, which can also be shared. Otherwise, copy it and
2297 proceed normally.
2298
2299 First check for common cases that need no processing. These are
2300 usually due to instantiation already being done on a previous instance
2301 of a shared rtx. */
2302
2303 temp = XEXP (x, 0);
2304 if (CONSTANT_ADDRESS_P (temp)
2305#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2306 || temp == arg_pointer_rtx
2307#endif
2308 || temp == frame_pointer_rtx)
2309 return 1;
2310
2311 if (GET_CODE (temp) == PLUS
2312 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
2313 && (XEXP (temp, 0) == frame_pointer_rtx
2314#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2315 || XEXP (temp, 0) == arg_pointer_rtx
2316#endif
2317 ))
2318 return 1;
2319
2320 if (temp == virtual_stack_vars_rtx
2321 || temp == virtual_incoming_args_rtx
2322 || (GET_CODE (temp) == PLUS
2323 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
2324 && (XEXP (temp, 0) == virtual_stack_vars_rtx
2325 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
2326 {
2327 /* This MEM may be shared. If the substitution can be done without
2328 the need to generate new pseudos, we want to do it in place
2329 so all copies of the shared rtx benefit. The call below will
2330 only make substitutions if the resulting address is still
2331 valid.
2332
2333 Note that we cannot pass X as the object in the recursive call
2334 since the insn being processed may not allow all valid
6461be14
RS
2335 addresses. However, if we were not passed on object, we can
2336 only modify X without copying it if X will have a valid
2337 address.
6f086dfc 2338
6461be14
RS
2339 ??? Also note that this can still lose if OBJECT is an insn that
2340 has less restrictions on an address that some other insn.
2341 In that case, we will modify the shared address. This case
2342 doesn't seem very likely, though. */
2343
2344 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
2345 object ? object : x, 0))
6f086dfc
RS
2346 return 1;
2347
2348 /* Otherwise make a copy and process that copy. We copy the entire
2349 RTL expression since it might be a PLUS which could also be
2350 shared. */
2351 *loc = x = copy_rtx (x);
2352 }
2353
2354 /* Fall through to generic unary operation case. */
2355 case USE:
2356 case CLOBBER:
2357 case SUBREG:
2358 case STRICT_LOW_PART:
2359 case NEG: case NOT:
2360 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
2361 case SIGN_EXTEND: case ZERO_EXTEND:
2362 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2363 case FLOAT: case FIX:
2364 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2365 case ABS:
2366 case SQRT:
2367 case FFS:
2368 /* These case either have just one operand or we know that we need not
2369 check the rest of the operands. */
2370 loc = &XEXP (x, 0);
2371 goto restart;
2372
2373 case REG:
2374 /* Try to replace with a PLUS. If that doesn't work, compute the sum
2375 in front of this insn and substitute the temporary. */
2376 if (x == virtual_incoming_args_rtx)
2377 new = arg_pointer_rtx, offset = in_arg_offset;
2378 else if (x == virtual_stack_vars_rtx)
2379 new = frame_pointer_rtx, offset = var_offset;
2380 else if (x == virtual_stack_dynamic_rtx)
2381 new = stack_pointer_rtx, offset = dynamic_offset;
2382 else if (x == virtual_outgoing_args_rtx)
2383 new = stack_pointer_rtx, offset = out_arg_offset;
2384
2385 if (new)
2386 {
2387 temp = plus_constant (new, offset);
2388 if (!validate_change (object, loc, temp, 0))
2389 {
2390 if (! extra_insns)
2391 return 0;
2392
2393 start_sequence ();
5f4f0e22 2394 temp = force_operand (temp, NULL_RTX);
6f086dfc
RS
2395 seq = get_insns ();
2396 end_sequence ();
2397
2398 emit_insns_before (seq, object);
2399 if (! validate_change (object, loc, temp, 0)
2400 && ! validate_replace_rtx (x, temp, object))
2401 abort ();
2402 }
2403 }
2404
2405 return 1;
2406 }
2407
2408 /* Scan all subexpressions. */
2409 fmt = GET_RTX_FORMAT (code);
2410 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2411 if (*fmt == 'e')
2412 {
2413 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
2414 return 0;
2415 }
2416 else if (*fmt == 'E')
2417 for (j = 0; j < XVECLEN (x, i); j++)
2418 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
2419 extra_insns))
2420 return 0;
2421
2422 return 1;
2423}
2424\f
2425/* Optimization: assuming this function does not receive nonlocal gotos,
2426 delete the handlers for such, as well as the insns to establish
2427 and disestablish them. */
2428
2429static void
2430delete_handlers ()
2431{
2432 rtx insn;
2433 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2434 {
2435 /* Delete the handler by turning off the flag that would
2436 prevent jump_optimize from deleting it.
2437 Also permit deletion of the nonlocal labels themselves
2438 if nothing local refers to them. */
2439 if (GET_CODE (insn) == CODE_LABEL)
2440 LABEL_PRESERVE_P (insn) = 0;
2441 if (GET_CODE (insn) == INSN
59257ff7
RK
2442 && ((nonlocal_goto_handler_slot != 0
2443 && reg_mentioned_p (nonlocal_goto_handler_slot, PATTERN (insn)))
2444 || (nonlocal_goto_stack_level != 0
2445 && reg_mentioned_p (nonlocal_goto_stack_level,
2446 PATTERN (insn)))))
6f086dfc
RS
2447 delete_insn (insn);
2448 }
2449}
2450
2451/* Return a list (chain of EXPR_LIST nodes) for the nonlocal labels
2452 of the current function. */
2453
2454rtx
2455nonlocal_label_rtx_list ()
2456{
2457 tree t;
2458 rtx x = 0;
2459
2460 for (t = nonlocal_labels; t; t = TREE_CHAIN (t))
2461 x = gen_rtx (EXPR_LIST, VOIDmode, label_rtx (TREE_VALUE (t)), x);
2462
2463 return x;
2464}
2465\f
2466/* Output a USE for any register use in RTL.
2467 This is used with -noreg to mark the extent of lifespan
2468 of any registers used in a user-visible variable's DECL_RTL. */
2469
2470void
2471use_variable (rtl)
2472 rtx rtl;
2473{
2474 if (GET_CODE (rtl) == REG)
2475 /* This is a register variable. */
2476 emit_insn (gen_rtx (USE, VOIDmode, rtl));
2477 else if (GET_CODE (rtl) == MEM
2478 && GET_CODE (XEXP (rtl, 0)) == REG
2479 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
2480 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
2481 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
2482 /* This is a variable-sized structure. */
2483 emit_insn (gen_rtx (USE, VOIDmode, XEXP (rtl, 0)));
2484}
2485
2486/* Like use_variable except that it outputs the USEs after INSN
2487 instead of at the end of the insn-chain. */
2488
2489void
2490use_variable_after (rtl, insn)
2491 rtx rtl, insn;
2492{
2493 if (GET_CODE (rtl) == REG)
2494 /* This is a register variable. */
2495 emit_insn_after (gen_rtx (USE, VOIDmode, rtl), insn);
2496 else if (GET_CODE (rtl) == MEM
2497 && GET_CODE (XEXP (rtl, 0)) == REG
2498 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
2499 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
2500 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
2501 /* This is a variable-sized structure. */
2502 emit_insn_after (gen_rtx (USE, VOIDmode, XEXP (rtl, 0)), insn);
2503}
2504\f
2505int
2506max_parm_reg_num ()
2507{
2508 return max_parm_reg;
2509}
2510
2511/* Return the first insn following those generated by `assign_parms'. */
2512
2513rtx
2514get_first_nonparm_insn ()
2515{
2516 if (last_parm_insn)
2517 return NEXT_INSN (last_parm_insn);
2518 return get_insns ();
2519}
2520
5378192b
RS
2521/* Return the first NOTE_INSN_BLOCK_BEG note in the function.
2522 Crash if there is none. */
2523
2524rtx
2525get_first_block_beg ()
2526{
2527 register rtx searcher;
2528 register rtx insn = get_first_nonparm_insn ();
2529
2530 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
2531 if (GET_CODE (searcher) == NOTE
2532 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
2533 return searcher;
2534
2535 abort (); /* Invalid call to this function. (See comments above.) */
2536 return NULL_RTX;
2537}
2538
6f086dfc
RS
2539/* Return 1 if EXP returns an aggregate value, for which an address
2540 must be passed to the function or returned by the function. */
2541
2542int
2543aggregate_value_p (exp)
2544 tree exp;
2545{
2546 if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
2547 return 1;
2548 if (RETURN_IN_MEMORY (TREE_TYPE (exp)))
2549 return 1;
2550 if (flag_pcc_struct_return
2551 && (TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
2552 || TREE_CODE (TREE_TYPE (exp)) == UNION_TYPE))
2553 return 1;
2554 return 0;
2555}
2556\f
2557/* Assign RTL expressions to the function's parameters.
2558 This may involve copying them into registers and using
2559 those registers as the RTL for them.
2560
2561 If SECOND_TIME is non-zero it means that this function is being
2562 called a second time. This is done by integrate.c when a function's
2563 compilation is deferred. We need to come back here in case the
2564 FUNCTION_ARG macro computes items needed for the rest of the compilation
2565 (such as changing which registers are fixed or caller-saved). But suppress
2566 writing any insns or setting DECL_RTL of anything in this case. */
2567
2568void
2569assign_parms (fndecl, second_time)
2570 tree fndecl;
2571 int second_time;
2572{
2573 register tree parm;
2574 register rtx entry_parm = 0;
2575 register rtx stack_parm = 0;
2576 CUMULATIVE_ARGS args_so_far;
a53e14c0 2577 enum machine_mode promoted_mode, passed_mode, nominal_mode;
00d8a4c1 2578 int unsignedp;
6f086dfc
RS
2579 /* Total space needed so far for args on the stack,
2580 given as a constant and a tree-expression. */
2581 struct args_size stack_args_size;
2582 tree fntype = TREE_TYPE (fndecl);
2583 tree fnargs = DECL_ARGUMENTS (fndecl);
2584 /* This is used for the arg pointer when referring to stack args. */
2585 rtx internal_arg_pointer;
2586 /* This is a dummy PARM_DECL that we used for the function result if
2587 the function returns a structure. */
2588 tree function_result_decl = 0;
2589 int nparmregs = list_length (fnargs) + LAST_VIRTUAL_REGISTER + 1;
2590 int varargs_setup = 0;
2591
2592 /* Nonzero if the last arg is named `__builtin_va_alist',
2593 which is used on some machines for old-fashioned non-ANSI varargs.h;
2594 this should be stuck onto the stack as if it had arrived there. */
2595 int vararg
2596 = (fnargs
2597 && (parm = tree_last (fnargs)) != 0
2598 && DECL_NAME (parm)
2599 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
2600 "__builtin_va_alist")));
2601
2602 /* Nonzero if function takes extra anonymous args.
2603 This means the last named arg must be on the stack
2604 right before the anonymous ones. */
2605 int stdarg
2606 = (TYPE_ARG_TYPES (fntype) != 0
2607 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
2608 != void_type_node));
2609
2610 /* If the reg that the virtual arg pointer will be translated into is
2611 not a fixed reg or is the stack pointer, make a copy of the virtual
2612 arg pointer, and address parms via the copy. The frame pointer is
2613 considered fixed even though it is not marked as such.
2614
2615 The second time through, simply use ap to avoid generating rtx. */
2616
2617 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
2618 || ! (fixed_regs[ARG_POINTER_REGNUM]
2619 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM))
2620 && ! second_time)
2621 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
2622 else
2623 internal_arg_pointer = virtual_incoming_args_rtx;
2624 current_function_internal_arg_pointer = internal_arg_pointer;
2625
2626 stack_args_size.constant = 0;
2627 stack_args_size.var = 0;
2628
2629 /* If struct value address is treated as the first argument, make it so. */
2630 if (aggregate_value_p (DECL_RESULT (fndecl))
2631 && ! current_function_returns_pcc_struct
2632 && struct_value_incoming_rtx == 0)
2633 {
2634 tree type = build_pointer_type (fntype);
2635
5f4f0e22 2636 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
6f086dfc
RS
2637
2638 DECL_ARG_TYPE (function_result_decl) = type;
2639 TREE_CHAIN (function_result_decl) = fnargs;
2640 fnargs = function_result_decl;
2641 }
2642
2643 parm_reg_stack_loc = (rtx *) oballoc (nparmregs * sizeof (rtx));
2644 bzero (parm_reg_stack_loc, nparmregs * sizeof (rtx));
2645
2646#ifdef INIT_CUMULATIVE_INCOMING_ARGS
5f4f0e22 2647 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_PTR);
6f086dfc 2648#else
5f4f0e22 2649 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_PTR);
6f086dfc
RS
2650#endif
2651
2652 /* We haven't yet found an argument that we must push and pretend the
2653 caller did. */
2654 current_function_pretend_args_size = 0;
2655
2656 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2657 {
2658 int aggregate
2659 = (TREE_CODE (TREE_TYPE (parm)) == ARRAY_TYPE
2660 || TREE_CODE (TREE_TYPE (parm)) == RECORD_TYPE
2661 || TREE_CODE (TREE_TYPE (parm)) == UNION_TYPE);
2662 struct args_size stack_offset;
2663 struct args_size arg_size;
2664 int passed_pointer = 0;
2665 tree passed_type = DECL_ARG_TYPE (parm);
2666
2667 /* Set LAST_NAMED if this is last named arg before some
2668 anonymous args. We treat it as if it were anonymous too. */
2669 int last_named = ((TREE_CHAIN (parm) == 0
2670 || DECL_NAME (TREE_CHAIN (parm)) == 0)
2671 && (vararg || stdarg));
2672
2673 if (TREE_TYPE (parm) == error_mark_node
2674 /* This can happen after weird syntax errors
2675 or if an enum type is defined among the parms. */
2676 || TREE_CODE (parm) != PARM_DECL
2677 || passed_type == NULL)
2678 {
587cb682
TW
2679 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = gen_rtx (MEM, BLKmode,
2680 const0_rtx);
6f086dfc
RS
2681 TREE_USED (parm) = 1;
2682 continue;
2683 }
2684
2685 /* For varargs.h function, save info about regs and stack space
2686 used by the individual args, not including the va_alist arg. */
2687 if (vararg && last_named)
2688 current_function_args_info = args_so_far;
2689
2690 /* Find mode of arg as it is passed, and mode of arg
2691 as it should be during execution of this function. */
2692 passed_mode = TYPE_MODE (passed_type);
2693 nominal_mode = TYPE_MODE (TREE_TYPE (parm));
2694
16bae307
RS
2695 /* If the parm's mode is VOID, its value doesn't matter,
2696 and avoid the usual things like emit_move_insn that could crash. */
2697 if (nominal_mode == VOIDmode)
2698 {
2699 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
2700 continue;
2701 }
2702
6f086dfc
RS
2703#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
2704 /* See if this arg was passed by invisible reference. */
2705 if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
2706 passed_type, ! last_named))
2707 {
2708 passed_type = build_pointer_type (passed_type);
2709 passed_pointer = 1;
2710 passed_mode = nominal_mode = Pmode;
2711 }
2712#endif
2713
a53e14c0
RK
2714 promoted_mode = passed_mode;
2715
2716#ifdef PROMOTE_FUNCTION_ARGS
2717 /* Compute the mode in which the arg is actually extended to. */
2718 if (TREE_CODE (passed_type) == INTEGER_TYPE
2719 || TREE_CODE (passed_type) == ENUMERAL_TYPE
2720 || TREE_CODE (passed_type) == BOOLEAN_TYPE
2721 || TREE_CODE (passed_type) == CHAR_TYPE
2722 || TREE_CODE (passed_type) == REAL_TYPE
2723 || TREE_CODE (passed_type) == POINTER_TYPE
2724 || TREE_CODE (passed_type) == OFFSET_TYPE)
2725 {
2726 unsignedp = TREE_UNSIGNED (passed_type);
2727 PROMOTE_MODE (promoted_mode, unsignedp, passed_type);
2728 }
2729#endif
2730
6f086dfc
RS
2731 /* Let machine desc say which reg (if any) the parm arrives in.
2732 0 means it arrives on the stack. */
2733#ifdef FUNCTION_INCOMING_ARG
a53e14c0 2734 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
6f086dfc
RS
2735 passed_type, ! last_named);
2736#else
a53e14c0 2737 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
6f086dfc
RS
2738 passed_type, ! last_named);
2739#endif
2740
a53e14c0
RK
2741 if (entry_parm)
2742 passed_mode = promoted_mode;
2743
6f086dfc
RS
2744#ifdef SETUP_INCOMING_VARARGS
2745 /* If this is the last named parameter, do any required setup for
2746 varargs or stdargs. We need to know about the case of this being an
2747 addressable type, in which case we skip the registers it
2748 would have arrived in.
2749
2750 For stdargs, LAST_NAMED will be set for two parameters, the one that
2751 is actually the last named, and the dummy parameter. We only
2752 want to do this action once.
2753
2754 Also, indicate when RTL generation is to be suppressed. */
2755 if (last_named && !varargs_setup)
2756 {
2757 SETUP_INCOMING_VARARGS (args_so_far, passed_mode, passed_type,
2758 current_function_pretend_args_size,
2759 second_time);
2760 varargs_setup = 1;
2761 }
2762#endif
2763
2764 /* Determine parm's home in the stack,
2765 in case it arrives in the stack or we should pretend it did.
2766
2767 Compute the stack position and rtx where the argument arrives
2768 and its size.
2769
2770 There is one complexity here: If this was a parameter that would
2771 have been passed in registers, but wasn't only because it is
2772 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2773 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2774 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
2775 0 as it was the previous time. */
2776
2777 locate_and_pad_parm (passed_mode, passed_type,
2778#ifdef STACK_PARMS_IN_REG_PARM_AREA
2779 1,
2780#else
2781#ifdef FUNCTION_INCOMING_ARG
2782 FUNCTION_INCOMING_ARG (args_so_far, passed_mode,
2783 passed_type,
2784 (! last_named
2785 || varargs_setup)) != 0,
2786#else
2787 FUNCTION_ARG (args_so_far, passed_mode,
2788 passed_type,
2789 ! last_named || varargs_setup) != 0,
2790#endif
2791#endif
2792 fndecl, &stack_args_size, &stack_offset, &arg_size);
2793
2794 if (! second_time)
2795 {
2796 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
2797
2798 if (offset_rtx == const0_rtx)
2799 stack_parm = gen_rtx (MEM, passed_mode, internal_arg_pointer);
2800 else
2801 stack_parm = gen_rtx (MEM, passed_mode,
2802 gen_rtx (PLUS, Pmode,
2803 internal_arg_pointer, offset_rtx));
2804
2805 /* If this is a memory ref that contains aggregate components,
2806 mark it as such for cse and loop optimize. */
2807 MEM_IN_STRUCT_P (stack_parm) = aggregate;
2808 }
2809
2810 /* If this parameter was passed both in registers and in the stack,
2811 use the copy on the stack. */
2812 if (MUST_PASS_IN_STACK (passed_mode, passed_type))
2813 entry_parm = 0;
2814
2815 /* If this parm was passed part in regs and part in memory,
2816 pretend it arrived entirely in memory
2817 by pushing the register-part onto the stack.
2818
2819 In the special case of a DImode or DFmode that is split,
2820 we could put it together in a pseudoreg directly,
2821 but for now that's not worth bothering with. */
2822
2823 if (entry_parm)
2824 {
2825 int nregs = 0;
2826#ifdef FUNCTION_ARG_PARTIAL_NREGS
2827 nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, passed_mode,
2828 passed_type, ! last_named);
2829#endif
2830
2831 if (nregs > 0)
2832 {
2833 current_function_pretend_args_size
2834 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
2835 / (PARM_BOUNDARY / BITS_PER_UNIT)
2836 * (PARM_BOUNDARY / BITS_PER_UNIT));
2837
2838 if (! second_time)
2839 move_block_from_reg (REGNO (entry_parm),
2840 validize_mem (stack_parm), nregs);
2841 entry_parm = stack_parm;
2842 }
2843 }
2844
2845 /* If we didn't decide this parm came in a register,
2846 by default it came on the stack. */
2847 if (entry_parm == 0)
2848 entry_parm = stack_parm;
2849
2850 /* Record permanently how this parm was passed. */
2851 if (! second_time)
2852 DECL_INCOMING_RTL (parm) = entry_parm;
2853
2854 /* If there is actually space on the stack for this parm,
2855 count it in stack_args_size; otherwise set stack_parm to 0
2856 to indicate there is no preallocated stack slot for the parm. */
2857
2858 if (entry_parm == stack_parm
d9ca49d5 2859#if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
6f086dfc 2860 /* On some machines, even if a parm value arrives in a register
d9ca49d5
JW
2861 there is still an (uninitialized) stack slot allocated for it.
2862
2863 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
2864 whether this parameter already has a stack slot allocated,
2865 because an arg block exists only if current_function_args_size
2866 is larger than some threshhold, and we haven't calculated that
2867 yet. So, for now, we just assume that stack slots never exist
2868 in this case. */
6f086dfc
RS
2869 || REG_PARM_STACK_SPACE (fndecl) > 0
2870#endif
2871 )
2872 {
2873 stack_args_size.constant += arg_size.constant;
2874 if (arg_size.var)
2875 ADD_PARM_SIZE (stack_args_size, arg_size.var);
2876 }
2877 else
2878 /* No stack slot was pushed for this parm. */
2879 stack_parm = 0;
2880
2881 /* Update info on where next arg arrives in registers. */
2882
2883 FUNCTION_ARG_ADVANCE (args_so_far, passed_mode,
2884 passed_type, ! last_named);
2885
2886 /* If this is our second time through, we are done with this parm. */
2887 if (second_time)
2888 continue;
2889
e16c591a
RS
2890 /* If we can't trust the parm stack slot to be aligned enough
2891 for its ultimate type, don't use that slot after entry.
2892 We'll make another stack slot, if we need one. */
2893 {
2894#ifdef FUNCTION_ARG_BOUNDARY
2895 int thisparm_boundary
2896 = FUNCTION_ARG_BOUNDARY (passed_mode, passed_type);
2897#else
2898 int thisparm_boundary = PARM_BOUNDARY;
2899#endif
2900
2901 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
2902 stack_parm = 0;
2903 }
2904
6f086dfc
RS
2905 /* Now adjust STACK_PARM to the mode and precise location
2906 where this parameter should live during execution,
2907 if we discover that it must live in the stack during execution.
2908 To make debuggers happier on big-endian machines, we store
2909 the value in the last bytes of the space available. */
2910
2911 if (nominal_mode != BLKmode && nominal_mode != passed_mode
2912 && stack_parm != 0)
2913 {
2914 rtx offset_rtx;
2915
2916#if BYTES_BIG_ENDIAN
2917 if (GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
2918 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
2919 - GET_MODE_SIZE (nominal_mode));
2920#endif
2921
2922 offset_rtx = ARGS_SIZE_RTX (stack_offset);
2923 if (offset_rtx == const0_rtx)
2924 stack_parm = gen_rtx (MEM, nominal_mode, internal_arg_pointer);
2925 else
2926 stack_parm = gen_rtx (MEM, nominal_mode,
2927 gen_rtx (PLUS, Pmode,
2928 internal_arg_pointer, offset_rtx));
2929
2930 /* If this is a memory ref that contains aggregate components,
2931 mark it as such for cse and loop optimize. */
2932 MEM_IN_STRUCT_P (stack_parm) = aggregate;
2933 }
2934
2935 /* ENTRY_PARM is an RTX for the parameter as it arrives,
2936 in the mode in which it arrives.
2937 STACK_PARM is an RTX for a stack slot where the parameter can live
2938 during the function (in case we want to put it there).
2939 STACK_PARM is 0 if no stack slot was pushed for it.
2940
2941 Now output code if necessary to convert ENTRY_PARM to
2942 the type in which this function declares it,
2943 and store that result in an appropriate place,
2944 which may be a pseudo reg, may be STACK_PARM,
2945 or may be a local stack slot if STACK_PARM is 0.
2946
2947 Set DECL_RTL to that place. */
2948
2949 if (nominal_mode == BLKmode)
2950 {
2951 /* If a BLKmode arrives in registers, copy it to a stack slot. */
2952 if (GET_CODE (entry_parm) == REG)
2953 {
2954 int size_stored = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
2955 UNITS_PER_WORD);
2956
2957 /* Note that we will be storing an integral number of words.
2958 So we have to be careful to ensure that we allocate an
2959 integral number of words. We do this below in the
2960 assign_stack_local if space was not allocated in the argument
2961 list. If it was, this will not work if PARM_BOUNDARY is not
2962 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2963 if it becomes a problem. */
2964
2965 if (stack_parm == 0)
7e41ffa2
RS
2966 {
2967 stack_parm
2968 = assign_stack_local (GET_MODE (entry_parm), size_stored, 0);
2969 /* If this is a memory ref that contains aggregate components,
2970 mark it as such for cse and loop optimize. */
2971 MEM_IN_STRUCT_P (stack_parm) = aggregate;
2972 }
2973
6f086dfc
RS
2974 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
2975 abort ();
2976
2977 move_block_from_reg (REGNO (entry_parm),
2978 validize_mem (stack_parm),
2979 size_stored / UNITS_PER_WORD);
2980 }
2981 DECL_RTL (parm) = stack_parm;
2982 }
74bd77a8 2983 else if (! ((obey_regdecls && ! DECL_REGISTER (parm)
a82ad570 2984 && ! DECL_INLINE (fndecl))
6f086dfc
RS
2985 /* layout_decl may set this. */
2986 || TREE_ADDRESSABLE (parm)
2987 || TREE_SIDE_EFFECTS (parm)
2988 /* If -ffloat-store specified, don't put explicit
2989 float variables into registers. */
2990 || (flag_float_store
2991 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
2992 /* Always assign pseudo to structure return or item passed
2993 by invisible reference. */
2994 || passed_pointer || parm == function_result_decl)
2995 {
00d8a4c1
RK
2996 /* Store the parm in a pseudoregister during the function, but we
2997 may need to do it in a wider mode. */
2998
2999 register rtx parmreg;
3000
3001 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
3002 if (TREE_CODE (TREE_TYPE (parm)) == INTEGER_TYPE
3003 || TREE_CODE (TREE_TYPE (parm)) == ENUMERAL_TYPE
3004 || TREE_CODE (TREE_TYPE (parm)) == BOOLEAN_TYPE
3005 || TREE_CODE (TREE_TYPE (parm)) == CHAR_TYPE
3006 || TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE
3007 || TREE_CODE (TREE_TYPE (parm)) == POINTER_TYPE
3008 || TREE_CODE (TREE_TYPE (parm)) == OFFSET_TYPE)
3009 {
3010 PROMOTE_MODE (nominal_mode, unsignedp, TREE_TYPE (parm));
3011 }
6f086dfc 3012
00d8a4c1 3013 parmreg = gen_reg_rtx (nominal_mode);
6f086dfc
RS
3014 REG_USERVAR_P (parmreg) = 1;
3015
3016 /* If this was an item that we received a pointer to, set DECL_RTL
3017 appropriately. */
3018 if (passed_pointer)
3019 {
3020 DECL_RTL (parm) = gen_rtx (MEM, TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
3021 MEM_IN_STRUCT_P (DECL_RTL (parm)) = aggregate;
3022 }
3023 else
3024 DECL_RTL (parm) = parmreg;
3025
3026 /* Copy the value into the register. */
3027 if (GET_MODE (parmreg) != GET_MODE (entry_parm))
86f8eff3
RK
3028 {
3029 /* If ENTRY_PARM is a hard register, it might be in a register
3030 not valid for operating in its mode (e.g., an odd-numbered
3031 register for a DFmode). In that case, moves are the only
3032 thing valid, so we can't do a convert from there. This
3033 occurs when the calling sequence allow such misaligned
3034 usages. */
3035 if (GET_CODE (entry_parm) == REG
3036 && REGNO (entry_parm) < FIRST_PSEUDO_REGISTER
3037 && ! HARD_REGNO_MODE_OK (REGNO (entry_parm),
3038 GET_MODE (entry_parm)))
00d8a4c1 3039 convert_move (parmreg, copy_to_reg (entry_parm), unsignedp);
86f8eff3 3040 else
00d8a4c1 3041 convert_move (parmreg, validize_mem (entry_parm), unsignedp);
86f8eff3 3042 }
6f086dfc
RS
3043 else
3044 emit_move_insn (parmreg, validize_mem (entry_parm));
3045
74bd77a8
RS
3046 /* If we were passed a pointer but the actual value
3047 can safely live in a register, put it in one. */
16bae307 3048 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
74bd77a8
RS
3049 && ! ((obey_regdecls && ! DECL_REGISTER (parm)
3050 && ! DECL_INLINE (fndecl))
3051 /* layout_decl may set this. */
3052 || TREE_ADDRESSABLE (parm)
3053 || TREE_SIDE_EFFECTS (parm)
3054 /* If -ffloat-store specified, don't put explicit
3055 float variables into registers. */
3056 || (flag_float_store
3057 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
3058 {
2654605a
JW
3059 /* We can't use nominal_mode, because it will have been set to
3060 Pmode above. We must use the actual mode of the parm. */
3061 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
74bd77a8
RS
3062 emit_move_insn (parmreg, DECL_RTL (parm));
3063 DECL_RTL (parm) = parmreg;
3064 }
3065
6f086dfc
RS
3066 /* In any case, record the parm's desired stack location
3067 in case we later discover it must live in the stack. */
3068 if (REGNO (parmreg) >= nparmregs)
3069 {
3070 rtx *new;
3071 nparmregs = REGNO (parmreg) + 5;
3072 new = (rtx *) oballoc (nparmregs * sizeof (rtx));
3073 bcopy (parm_reg_stack_loc, new, nparmregs * sizeof (rtx));
3074 parm_reg_stack_loc = new;
3075 }
3076 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
3077
3078 /* Mark the register as eliminable if we did no conversion
3079 and it was copied from memory at a fixed offset,
3080 and the arg pointer was not copied to a pseudo-reg.
3081 If the arg pointer is a pseudo reg or the offset formed
3082 an invalid address, such memory-equivalences
3083 as we make here would screw up life analysis for it. */
3084 if (nominal_mode == passed_mode
3085 && GET_CODE (entry_parm) == MEM
e16c591a 3086 && entry_parm == stack_parm
6f086dfc
RS
3087 && stack_offset.var == 0
3088 && reg_mentioned_p (virtual_incoming_args_rtx,
3089 XEXP (entry_parm, 0)))
3090 REG_NOTES (get_last_insn ())
3091 = gen_rtx (EXPR_LIST, REG_EQUIV,
3092 entry_parm, REG_NOTES (get_last_insn ()));
3093
3094 /* For pointer data type, suggest pointer register. */
3095 if (TREE_CODE (TREE_TYPE (parm)) == POINTER_TYPE)
3096 mark_reg_pointer (parmreg);
3097 }
3098 else
3099 {
3100 /* Value must be stored in the stack slot STACK_PARM
3101 during function execution. */
3102
3103 if (passed_mode != nominal_mode)
86f8eff3
RK
3104 {
3105 /* Conversion is required. */
3106 if (GET_CODE (entry_parm) == REG
3107 && REGNO (entry_parm) < FIRST_PSEUDO_REGISTER
3108 && ! HARD_REGNO_MODE_OK (REGNO (entry_parm), passed_mode))
3109 entry_parm = copy_to_reg (entry_parm);
3110
a53e14c0
RK
3111 entry_parm = convert_to_mode (nominal_mode, entry_parm,
3112 TREE_UNSIGNED (TREE_TYPE (parm)));
86f8eff3 3113 }
6f086dfc
RS
3114
3115 if (entry_parm != stack_parm)
3116 {
3117 if (stack_parm == 0)
7e41ffa2
RS
3118 {
3119 stack_parm
3120 = assign_stack_local (GET_MODE (entry_parm),
3121 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
3122 /* If this is a memory ref that contains aggregate components,
3123 mark it as such for cse and loop optimize. */
3124 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3125 }
3126
6f086dfc
RS
3127 emit_move_insn (validize_mem (stack_parm),
3128 validize_mem (entry_parm));
3129 }
3130
3131 DECL_RTL (parm) = stack_parm;
3132 }
3133
3134 /* If this "parameter" was the place where we are receiving the
3135 function's incoming structure pointer, set up the result. */
3136 if (parm == function_result_decl)
3137 DECL_RTL (DECL_RESULT (fndecl))
3138 = gen_rtx (MEM, DECL_MODE (DECL_RESULT (fndecl)), DECL_RTL (parm));
3139
3140 if (TREE_THIS_VOLATILE (parm))
3141 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
3142 if (TREE_READONLY (parm))
3143 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
3144 }
3145
3146 max_parm_reg = max_reg_num ();
3147 last_parm_insn = get_last_insn ();
3148
3149 current_function_args_size = stack_args_size.constant;
3150
3151 /* Adjust function incoming argument size for alignment and
3152 minimum length. */
3153
3154#ifdef REG_PARM_STACK_SPACE
6f90e075 3155#ifndef MAYBE_REG_PARM_STACK_SPACE
6f086dfc
RS
3156 current_function_args_size = MAX (current_function_args_size,
3157 REG_PARM_STACK_SPACE (fndecl));
3158#endif
6f90e075 3159#endif
6f086dfc
RS
3160
3161#ifdef STACK_BOUNDARY
3162#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
3163
3164 current_function_args_size
3165 = ((current_function_args_size + STACK_BYTES - 1)
3166 / STACK_BYTES) * STACK_BYTES;
3167#endif
3168
3169#ifdef ARGS_GROW_DOWNWARD
3170 current_function_arg_offset_rtx
5f4f0e22 3171 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
6f086dfc
RS
3172 : expand_expr (size_binop (MINUS_EXPR, stack_args_size.var,
3173 size_int (-stack_args_size.constant)),
5f4f0e22 3174 NULL_RTX, VOIDmode, 0));
6f086dfc
RS
3175#else
3176 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
3177#endif
3178
3179 /* See how many bytes, if any, of its args a function should try to pop
3180 on return. */
3181
3182 current_function_pops_args = RETURN_POPS_ARGS (TREE_TYPE (fndecl),
3183 current_function_args_size);
3184
3185 /* For stdarg.h function, save info about regs and stack space
3186 used by the named args. */
3187
3188 if (stdarg)
3189 current_function_args_info = args_so_far;
3190
3191 /* Set the rtx used for the function return value. Put this in its
3192 own variable so any optimizers that need this information don't have
3193 to include tree.h. Do this here so it gets done when an inlined
3194 function gets output. */
3195
3196 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
3197}
3198\f
3199/* Compute the size and offset from the start of the stacked arguments for a
3200 parm passed in mode PASSED_MODE and with type TYPE.
3201
3202 INITIAL_OFFSET_PTR points to the current offset into the stacked
3203 arguments.
3204
3205 The starting offset and size for this parm are returned in *OFFSET_PTR
3206 and *ARG_SIZE_PTR, respectively.
3207
3208 IN_REGS is non-zero if the argument will be passed in registers. It will
3209 never be set if REG_PARM_STACK_SPACE is not defined.
3210
3211 FNDECL is the function in which the argument was defined.
3212
3213 There are two types of rounding that are done. The first, controlled by
3214 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3215 list to be aligned to the specific boundary (in bits). This rounding
3216 affects the initial and starting offsets, but not the argument size.
3217
3218 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3219 optionally rounds the size of the parm to PARM_BOUNDARY. The
3220 initial offset is not affected by this rounding, while the size always
3221 is and the starting offset may be. */
3222
3223/* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
3224 initial_offset_ptr is positive because locate_and_pad_parm's
3225 callers pass in the total size of args so far as
3226 initial_offset_ptr. arg_size_ptr is always positive.*/
3227
3228static void pad_to_arg_alignment (), pad_below ();
3229
3230void
3231locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
3232 initial_offset_ptr, offset_ptr, arg_size_ptr)
3233 enum machine_mode passed_mode;
3234 tree type;
3235 int in_regs;
3236 tree fndecl;
3237 struct args_size *initial_offset_ptr;
3238 struct args_size *offset_ptr;
3239 struct args_size *arg_size_ptr;
3240{
3241 tree sizetree
3242 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3243 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3244 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3245 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3246 int reg_parm_stack_space = 0;
3247
3248#ifdef REG_PARM_STACK_SPACE
3249 /* If we have found a stack parm before we reach the end of the
3250 area reserved for registers, skip that area. */
3251 if (! in_regs)
3252 {
29008b51
JW
3253#ifdef MAYBE_REG_PARM_STACK_SPACE
3254 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
3255#else
6f086dfc 3256 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
29008b51 3257#endif
6f086dfc
RS
3258 if (reg_parm_stack_space > 0)
3259 {
3260 if (initial_offset_ptr->var)
3261 {
3262 initial_offset_ptr->var
3263 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3264 size_int (reg_parm_stack_space));
3265 initial_offset_ptr->constant = 0;
3266 }
3267 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3268 initial_offset_ptr->constant = reg_parm_stack_space;
3269 }
3270 }
3271#endif /* REG_PARM_STACK_SPACE */
3272
3273 arg_size_ptr->var = 0;
3274 arg_size_ptr->constant = 0;
3275
3276#ifdef ARGS_GROW_DOWNWARD
3277 if (initial_offset_ptr->var)
3278 {
3279 offset_ptr->constant = 0;
3280 offset_ptr->var = size_binop (MINUS_EXPR, integer_zero_node,
3281 initial_offset_ptr->var);
3282 }
3283 else
3284 {
3285 offset_ptr->constant = - initial_offset_ptr->constant;
3286 offset_ptr->var = 0;
3287 }
3288 if (where_pad == upward
3289 && (TREE_CODE (sizetree) != INTEGER_CST
3290 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
3291 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3292 SUB_PARM_SIZE (*offset_ptr, sizetree);
3293 pad_to_arg_alignment (offset_ptr, boundary);
3294 if (initial_offset_ptr->var)
3295 {
3296 arg_size_ptr->var = size_binop (MINUS_EXPR,
3297 size_binop (MINUS_EXPR,
3298 integer_zero_node,
3299 initial_offset_ptr->var),
3300 offset_ptr->var);
3301 }
3302 else
3303 {
3304 arg_size_ptr->constant = (- initial_offset_ptr->constant -
3305 offset_ptr->constant);
3306 }
3307/* ADD_PARM_SIZE (*arg_size_ptr, sizetree); */
3308 if (where_pad == downward)
3309 pad_below (arg_size_ptr, passed_mode, sizetree);
3310#else /* !ARGS_GROW_DOWNWARD */
3311 pad_to_arg_alignment (initial_offset_ptr, boundary);
3312 *offset_ptr = *initial_offset_ptr;
3313 if (where_pad == downward)
3314 pad_below (offset_ptr, passed_mode, sizetree);
3315
3316#ifdef PUSH_ROUNDING
3317 if (passed_mode != BLKmode)
3318 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3319#endif
3320
3321 if (where_pad != none
3322 && (TREE_CODE (sizetree) != INTEGER_CST
3323 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
3324 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3325
3326 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
3327#endif /* ARGS_GROW_DOWNWARD */
3328}
3329
e16c591a
RS
3330/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3331 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3332
6f086dfc
RS
3333static void
3334pad_to_arg_alignment (offset_ptr, boundary)
3335 struct args_size *offset_ptr;
3336 int boundary;
3337{
3338 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3339
3340 if (boundary > BITS_PER_UNIT)
3341 {
3342 if (offset_ptr->var)
3343 {
3344 offset_ptr->var =
3345#ifdef ARGS_GROW_DOWNWARD
3346 round_down
3347#else
3348 round_up
3349#endif
3350 (ARGS_SIZE_TREE (*offset_ptr),
3351 boundary / BITS_PER_UNIT);
3352 offset_ptr->constant = 0; /*?*/
3353 }
3354 else
3355 offset_ptr->constant =
3356#ifdef ARGS_GROW_DOWNWARD
3357 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
3358#else
3359 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
3360#endif
3361 }
3362}
3363
3364static void
3365pad_below (offset_ptr, passed_mode, sizetree)
3366 struct args_size *offset_ptr;
3367 enum machine_mode passed_mode;
3368 tree sizetree;
3369{
3370 if (passed_mode != BLKmode)
3371 {
3372 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3373 offset_ptr->constant
3374 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3375 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3376 - GET_MODE_SIZE (passed_mode));
3377 }
3378 else
3379 {
3380 if (TREE_CODE (sizetree) != INTEGER_CST
3381 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3382 {
3383 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3384 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3385 /* Add it in. */
3386 ADD_PARM_SIZE (*offset_ptr, s2);
3387 SUB_PARM_SIZE (*offset_ptr, sizetree);
3388 }
3389 }
3390}
3391
3392static tree
3393round_down (value, divisor)
3394 tree value;
3395 int divisor;
3396{
3397 return size_binop (MULT_EXPR,
3398 size_binop (FLOOR_DIV_EXPR, value, size_int (divisor)),
3399 size_int (divisor));
3400}
3401\f
3402/* Walk the tree of blocks describing the binding levels within a function
3403 and warn about uninitialized variables.
3404 This is done after calling flow_analysis and before global_alloc
3405 clobbers the pseudo-regs to hard regs. */
3406
3407void
3408uninitialized_vars_warning (block)
3409 tree block;
3410{
3411 register tree decl, sub;
3412 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3413 {
3414 if (TREE_CODE (decl) == VAR_DECL
3415 /* These warnings are unreliable for and aggregates
3416 because assigning the fields one by one can fail to convince
3417 flow.c that the entire aggregate was initialized.
3418 Unions are troublesome because members may be shorter. */
3419 && TREE_CODE (TREE_TYPE (decl)) != RECORD_TYPE
3420 && TREE_CODE (TREE_TYPE (decl)) != UNION_TYPE
3421 && TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE
3422 && DECL_RTL (decl) != 0
3423 && GET_CODE (DECL_RTL (decl)) == REG
3424 && regno_uninitialized (REGNO (DECL_RTL (decl))))
3425 warning_with_decl (decl,
3426 "`%s' may be used uninitialized in this function");
3427 if (TREE_CODE (decl) == VAR_DECL
3428 && DECL_RTL (decl) != 0
3429 && GET_CODE (DECL_RTL (decl)) == REG
3430 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3431 warning_with_decl (decl,
3432 "variable `%s' may be clobbered by `longjmp'");
3433 }
3434 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3435 uninitialized_vars_warning (sub);
3436}
3437
3438/* Do the appropriate part of uninitialized_vars_warning
3439 but for arguments instead of local variables. */
3440
3441void
3442setjmp_args_warning (block)
3443 tree block;
3444{
3445 register tree decl;
3446 for (decl = DECL_ARGUMENTS (current_function_decl);
3447 decl; decl = TREE_CHAIN (decl))
3448 if (DECL_RTL (decl) != 0
3449 && GET_CODE (DECL_RTL (decl)) == REG
3450 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3451 warning_with_decl (decl, "argument `%s' may be clobbered by `longjmp'");
3452}
3453
3454/* If this function call setjmp, put all vars into the stack
3455 unless they were declared `register'. */
3456
3457void
3458setjmp_protect (block)
3459 tree block;
3460{
3461 register tree decl, sub;
3462 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3463 if ((TREE_CODE (decl) == VAR_DECL
3464 || TREE_CODE (decl) == PARM_DECL)
3465 && DECL_RTL (decl) != 0
3466 && GET_CODE (DECL_RTL (decl)) == REG
b335c2cc
TW
3467 /* If this variable came from an inline function, it must be
3468 that it's life doesn't overlap the setjmp. If there was a
3469 setjmp in the function, it would already be in memory. We
3470 must exclude such variable because their DECL_RTL might be
3471 set to strange things such as virtual_stack_vars_rtx. */
3472 && ! DECL_FROM_INLINE (decl)
6f086dfc
RS
3473 && (
3474#ifdef NON_SAVING_SETJMP
3475 /* If longjmp doesn't restore the registers,
3476 don't put anything in them. */
3477 NON_SAVING_SETJMP
3478 ||
3479#endif
a82ad570 3480 ! DECL_REGISTER (decl)))
6f086dfc
RS
3481 put_var_into_stack (decl);
3482 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3483 setjmp_protect (sub);
3484}
3485\f
3486/* Like the previous function, but for args instead of local variables. */
3487
3488void
3489setjmp_protect_args ()
3490{
3491 register tree decl, sub;
3492 for (decl = DECL_ARGUMENTS (current_function_decl);
3493 decl; decl = TREE_CHAIN (decl))
3494 if ((TREE_CODE (decl) == VAR_DECL
3495 || TREE_CODE (decl) == PARM_DECL)
3496 && DECL_RTL (decl) != 0
3497 && GET_CODE (DECL_RTL (decl)) == REG
3498 && (
3499 /* If longjmp doesn't restore the registers,
3500 don't put anything in them. */
3501#ifdef NON_SAVING_SETJMP
3502 NON_SAVING_SETJMP
3503 ||
3504#endif
a82ad570 3505 ! DECL_REGISTER (decl)))
6f086dfc
RS
3506 put_var_into_stack (decl);
3507}
3508\f
3509/* Return the context-pointer register corresponding to DECL,
3510 or 0 if it does not need one. */
3511
3512rtx
3513lookup_static_chain (decl)
3514 tree decl;
3515{
3516 tree context = decl_function_context (decl);
3517 tree link;
3518
3519 if (context == 0)
3520 return 0;
3521
3522 /* We treat inline_function_decl as an alias for the current function
3523 because that is the inline function whose vars, types, etc.
3524 are being merged into the current function.
3525 See expand_inline_function. */
3526 if (context == current_function_decl || context == inline_function_decl)
3527 return virtual_stack_vars_rtx;
3528
3529 for (link = context_display; link; link = TREE_CHAIN (link))
3530 if (TREE_PURPOSE (link) == context)
3531 return RTL_EXPR_RTL (TREE_VALUE (link));
3532
3533 abort ();
3534}
3535\f
3536/* Convert a stack slot address ADDR for variable VAR
3537 (from a containing function)
3538 into an address valid in this function (using a static chain). */
3539
3540rtx
3541fix_lexical_addr (addr, var)
3542 rtx addr;
3543 tree var;
3544{
3545 rtx basereg;
3546 int displacement;
3547 tree context = decl_function_context (var);
3548 struct function *fp;
3549 rtx base = 0;
3550
3551 /* If this is the present function, we need not do anything. */
3552 if (context == current_function_decl || context == inline_function_decl)
3553 return addr;
3554
3555 for (fp = outer_function_chain; fp; fp = fp->next)
3556 if (fp->decl == context)
3557 break;
3558
3559 if (fp == 0)
3560 abort ();
3561
3562 /* Decode given address as base reg plus displacement. */
3563 if (GET_CODE (addr) == REG)
3564 basereg = addr, displacement = 0;
3565 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3566 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
3567 else
3568 abort ();
3569
3570 /* We accept vars reached via the containing function's
3571 incoming arg pointer and via its stack variables pointer. */
3572 if (basereg == fp->internal_arg_pointer)
3573 {
3574 /* If reached via arg pointer, get the arg pointer value
3575 out of that function's stack frame.
3576
3577 There are two cases: If a separate ap is needed, allocate a
3578 slot in the outer function for it and dereference it that way.
3579 This is correct even if the real ap is actually a pseudo.
3580 Otherwise, just adjust the offset from the frame pointer to
3581 compensate. */
3582
3583#ifdef NEED_SEPARATE_AP
3584 rtx addr;
3585
3586 if (fp->arg_pointer_save_area == 0)
3587 fp->arg_pointer_save_area
3588 = assign_outer_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
3589
3590 addr = fix_lexical_addr (XEXP (fp->arg_pointer_save_area, 0), var);
3591 addr = memory_address (Pmode, addr);
3592
3593 base = copy_to_reg (gen_rtx (MEM, Pmode, addr));
3594#else
3595 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
86f8eff3 3596 base = lookup_static_chain (var);
6f086dfc
RS
3597#endif
3598 }
3599
3600 else if (basereg == virtual_stack_vars_rtx)
3601 {
3602 /* This is the same code as lookup_static_chain, duplicated here to
3603 avoid an extra call to decl_function_context. */
3604 tree link;
3605
3606 for (link = context_display; link; link = TREE_CHAIN (link))
3607 if (TREE_PURPOSE (link) == context)
3608 {
3609 base = RTL_EXPR_RTL (TREE_VALUE (link));
3610 break;
3611 }
3612 }
3613
3614 if (base == 0)
3615 abort ();
3616
3617 /* Use same offset, relative to appropriate static chain or argument
3618 pointer. */
3619 return plus_constant (base, displacement);
3620}
3621\f
3622/* Return the address of the trampoline for entering nested fn FUNCTION.
3623 If necessary, allocate a trampoline (in the stack frame)
3624 and emit rtl to initialize its contents (at entry to this function). */
3625
3626rtx
3627trampoline_address (function)
3628 tree function;
3629{
3630 tree link;
3631 tree rtlexp;
3632 rtx tramp;
3633 struct function *fp;
3634 tree fn_context;
3635
3636 /* Find an existing trampoline and return it. */
3637 for (link = trampoline_list; link; link = TREE_CHAIN (link))
3638 if (TREE_PURPOSE (link) == function)
3639 return XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0);
3640 for (fp = outer_function_chain; fp; fp = fp->next)
3641 for (link = fp->trampoline_list; link; link = TREE_CHAIN (link))
3642 if (TREE_PURPOSE (link) == function)
3643 {
3644 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
3645 function);
3646 return round_trampoline_addr (tramp);
3647 }
3648
3649 /* None exists; we must make one. */
3650
3651 /* Find the `struct function' for the function containing FUNCTION. */
3652 fp = 0;
3653 fn_context = decl_function_context (function);
3654 if (fn_context != current_function_decl)
3655 for (fp = outer_function_chain; fp; fp = fp->next)
3656 if (fp->decl == fn_context)
3657 break;
3658
3659 /* Allocate run-time space for this trampoline
3660 (usually in the defining function's stack frame). */
3661#ifdef ALLOCATE_TRAMPOLINE
3662 tramp = ALLOCATE_TRAMPOLINE (fp);
3663#else
3664 /* If rounding needed, allocate extra space
3665 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
3666#ifdef TRAMPOLINE_ALIGNMENT
3667#define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE + TRAMPOLINE_ALIGNMENT - 1)
3668#else
3669#define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
3670#endif
3671 if (fp != 0)
3672 tramp = assign_outer_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0, fp);
3673 else
3674 tramp = assign_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0);
3675#endif
3676
3677 /* Record the trampoline for reuse and note it for later initialization
3678 by expand_function_end. */
3679 if (fp != 0)
3680 {
3681 push_obstacks (fp->current_obstack, fp->function_maybepermanent_obstack);
3682 rtlexp = make_node (RTL_EXPR);
3683 RTL_EXPR_RTL (rtlexp) = tramp;
3684 fp->trampoline_list = tree_cons (function, rtlexp, fp->trampoline_list);
3685 pop_obstacks ();
3686 }
3687 else
3688 {
3689 /* Make the RTL_EXPR node temporary, not momentary, so that the
3690 trampoline_list doesn't become garbage. */
3691 int momentary = suspend_momentary ();
3692 rtlexp = make_node (RTL_EXPR);
3693 resume_momentary (momentary);
3694
3695 RTL_EXPR_RTL (rtlexp) = tramp;
3696 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
3697 }
3698
3699 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
3700 return round_trampoline_addr (tramp);
3701}
3702
3703/* Given a trampoline address,
3704 round it to multiple of TRAMPOLINE_ALIGNMENT. */
3705
3706static rtx
3707round_trampoline_addr (tramp)
3708 rtx tramp;
3709{
3710#ifdef TRAMPOLINE_ALIGNMENT
3711 /* Round address up to desired boundary. */
3712 rtx temp = gen_reg_rtx (Pmode);
3713 temp = expand_binop (Pmode, add_optab, tramp,
5f4f0e22 3714 GEN_INT (TRAMPOLINE_ALIGNMENT - 1),
6f086dfc
RS
3715 temp, 0, OPTAB_LIB_WIDEN);
3716 tramp = expand_binop (Pmode, and_optab, temp,
5f4f0e22 3717 GEN_INT (- TRAMPOLINE_ALIGNMENT),
6f086dfc
RS
3718 temp, 0, OPTAB_LIB_WIDEN);
3719#endif
3720 return tramp;
3721}
3722\f
467456d0
RS
3723/* The functions identify_blocks and reorder_blocks provide a way to
3724 reorder the tree of BLOCK nodes, for optimizers that reshuffle or
3725 duplicate portions of the RTL code. Call identify_blocks before
3726 changing the RTL, and call reorder_blocks after. */
3727
3728static int all_blocks ();
3729static tree blocks_nreverse ();
3730
3731/* Put all this function's BLOCK nodes into a vector, and return it.
3732 Also store in each NOTE for the beginning or end of a block
3733 the index of that block in the vector.
3734 The arguments are TOP_BLOCK, the top-level block of the function,
3735 and INSNS, the insn chain of the function. */
3736
3737tree *
3738identify_blocks (top_block, insns)
3739 tree top_block;
3740 rtx insns;
3741{
fc289cd1
JW
3742 int n_blocks;
3743 tree *block_vector;
3744 int *block_stack;
467456d0
RS
3745 int depth = 0;
3746 int next_block_number = 0;
3747 int current_block_number = 0;
3748 rtx insn;
3749
fc289cd1
JW
3750 if (top_block == 0)
3751 return 0;
3752
3753 n_blocks = all_blocks (top_block, 0);
3754 block_vector = (tree *) xmalloc (n_blocks * sizeof (tree));
3755 block_stack = (int *) alloca (n_blocks * sizeof (int));
3756
467456d0
RS
3757 all_blocks (top_block, block_vector);
3758
3759 for (insn = insns; insn; insn = NEXT_INSN (insn))
3760 if (GET_CODE (insn) == NOTE)
3761 {
3762 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3763 {
3764 block_stack[depth++] = current_block_number;
3765 current_block_number = next_block_number;
1b2ac438 3766 NOTE_BLOCK_NUMBER (insn) = next_block_number++;
467456d0
RS
3767 }
3768 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3769 {
3770 current_block_number = block_stack[--depth];
1b2ac438 3771 NOTE_BLOCK_NUMBER (insn) = current_block_number;
467456d0
RS
3772 }
3773 }
3774
3775 return block_vector;
3776}
3777
3778/* Given BLOCK_VECTOR which was returned by identify_blocks,
3779 and a revised instruction chain, rebuild the tree structure
3780 of BLOCK nodes to correspond to the new order of RTL.
fc289cd1 3781 The new block tree is inserted below TOP_BLOCK.
467456d0
RS
3782 Returns the current top-level block. */
3783
3784tree
fc289cd1 3785reorder_blocks (block_vector, top_block, insns)
467456d0 3786 tree *block_vector;
fc289cd1 3787 tree top_block;
467456d0
RS
3788 rtx insns;
3789{
fc289cd1 3790 tree current_block = top_block;
467456d0
RS
3791 rtx insn;
3792
fc289cd1
JW
3793 if (block_vector == 0)
3794 return top_block;
3795
3796 /* Prune the old tree away, so that it doesn't get in the way. */
3797 BLOCK_SUBBLOCKS (current_block) = 0;
3798
467456d0
RS
3799 for (insn = insns; insn; insn = NEXT_INSN (insn))
3800 if (GET_CODE (insn) == NOTE)
3801 {
3802 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3803 {
3804 tree block = block_vector[NOTE_BLOCK_NUMBER (insn)];
3805 /* If we have seen this block before, copy it. */
3806 if (TREE_ASM_WRITTEN (block))
3807 block = copy_node (block);
fc289cd1 3808 BLOCK_SUBBLOCKS (block) = 0;
467456d0
RS
3809 TREE_ASM_WRITTEN (block) = 1;
3810 BLOCK_SUPERCONTEXT (block) = current_block;
3811 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3812 BLOCK_SUBBLOCKS (current_block) = block;
3813 current_block = block;
1b2ac438 3814 NOTE_SOURCE_FILE (insn) = 0;
467456d0
RS
3815 }
3816 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3817 {
3818 BLOCK_SUBBLOCKS (current_block)
3819 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3820 current_block = BLOCK_SUPERCONTEXT (current_block);
1b2ac438 3821 NOTE_SOURCE_FILE (insn) = 0;
467456d0
RS
3822 }
3823 }
3824
3825 return current_block;
3826}
3827
3828/* Reverse the order of elements in the chain T of blocks,
3829 and return the new head of the chain (old last element). */
3830
3831static tree
3832blocks_nreverse (t)
3833 tree t;
3834{
3835 register tree prev = 0, decl, next;
3836 for (decl = t; decl; decl = next)
3837 {
3838 next = BLOCK_CHAIN (decl);
3839 BLOCK_CHAIN (decl) = prev;
3840 prev = decl;
3841 }
3842 return prev;
3843}
3844
3845/* Count the subblocks of BLOCK, and list them all into the vector VECTOR.
3846 Also clear TREE_ASM_WRITTEN in all blocks. */
3847
3848static int
3849all_blocks (block, vector)
3850 tree block;
3851 tree *vector;
3852{
3853 int n_blocks = 1;
3854 tree subblocks;
3855
3856 TREE_ASM_WRITTEN (block) = 0;
3857 /* Record this block. */
fc289cd1
JW
3858 if (vector)
3859 vector[0] = block;
467456d0
RS
3860
3861 /* Record the subblocks, and their subblocks. */
3862 for (subblocks = BLOCK_SUBBLOCKS (block);
3863 subblocks; subblocks = BLOCK_CHAIN (subblocks))
fc289cd1 3864 n_blocks += all_blocks (subblocks, vector ? vector + n_blocks : 0);
467456d0
RS
3865
3866 return n_blocks;
3867}
3868\f
6f086dfc
RS
3869/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3870 and initialize static variables for generating RTL for the statements
3871 of the function. */
3872
3873void
3874init_function_start (subr, filename, line)
3875 tree subr;
3876 char *filename;
3877 int line;
3878{
3879 char *junk;
3880
3881 init_stmt_for_function ();
3882
3883 cse_not_expected = ! optimize;
3884
3885 /* Caller save not needed yet. */
3886 caller_save_needed = 0;
3887
3888 /* No stack slots have been made yet. */
3889 stack_slot_list = 0;
3890
3891 /* There is no stack slot for handling nonlocal gotos. */
3892 nonlocal_goto_handler_slot = 0;
3893 nonlocal_goto_stack_level = 0;
3894
3895 /* No labels have been declared for nonlocal use. */
3896 nonlocal_labels = 0;
3897
3898 /* No function calls so far in this function. */
3899 function_call_count = 0;
3900
3901 /* No parm regs have been allocated.
3902 (This is important for output_inline_function.) */
3903 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
3904
3905 /* Initialize the RTL mechanism. */
3906 init_emit ();
3907
3908 /* Initialize the queue of pending postincrement and postdecrements,
3909 and some other info in expr.c. */
3910 init_expr ();
3911
3912 /* We haven't done register allocation yet. */
3913 reg_renumber = 0;
3914
3915 init_const_rtx_hash_table ();
3916
3917 current_function_name = (*decl_printable_name) (subr, &junk);
3918
3919 /* Nonzero if this is a nested function that uses a static chain. */
3920
3921 current_function_needs_context
3922 = (decl_function_context (current_function_decl) != 0);
3923
3924 /* Set if a call to setjmp is seen. */
3925 current_function_calls_setjmp = 0;
3926
3927 /* Set if a call to longjmp is seen. */
3928 current_function_calls_longjmp = 0;
3929
3930 current_function_calls_alloca = 0;
3931 current_function_has_nonlocal_label = 0;
3932 current_function_contains_functions = 0;
3933
3934 current_function_returns_pcc_struct = 0;
3935 current_function_returns_struct = 0;
3936 current_function_epilogue_delay_list = 0;
3937 current_function_uses_const_pool = 0;
3938 current_function_uses_pic_offset_table = 0;
3939
3940 /* We have not yet needed to make a label to jump to for tail-recursion. */
3941 tail_recursion_label = 0;
3942
3943 /* We haven't had a need to make a save area for ap yet. */
3944
3945 arg_pointer_save_area = 0;
3946
3947 /* No stack slots allocated yet. */
3948 frame_offset = 0;
3949
3950 /* No SAVE_EXPRs in this function yet. */
3951 save_expr_regs = 0;
3952
3953 /* No RTL_EXPRs in this function yet. */
3954 rtl_expr_chain = 0;
3955
3956 /* We have not allocated any temporaries yet. */
3957 temp_slots = 0;
3958 temp_slot_level = 0;
3959
3960 /* Within function body, compute a type's size as soon it is laid out. */
3961 immediate_size_expand++;
3962
3963 init_pending_stack_adjust ();
3964 inhibit_defer_pop = 0;
3965
3966 current_function_outgoing_args_size = 0;
3967
3968 /* Initialize the insn lengths. */
3969 init_insn_lengths ();
3970
3971 /* Prevent ever trying to delete the first instruction of a function.
3972 Also tell final how to output a linenum before the function prologue. */
3973 emit_line_note (filename, line);
3974
3975 /* Make sure first insn is a note even if we don't want linenums.
3976 This makes sure the first insn will never be deleted.
3977 Also, final expects a note to appear there. */
5f4f0e22 3978 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6f086dfc
RS
3979
3980 /* Set flags used by final.c. */
3981 if (aggregate_value_p (DECL_RESULT (subr)))
3982 {
3983#ifdef PCC_STATIC_STRUCT_RETURN
3984 if (flag_pcc_struct_return)
3985 current_function_returns_pcc_struct = 1;
3986 else
3987#endif
3988 current_function_returns_struct = 1;
3989 }
3990
3991 /* Warn if this value is an aggregate type,
3992 regardless of which calling convention we are using for it. */
3993 if (warn_aggregate_return
3994 && (TREE_CODE (TREE_TYPE (DECL_RESULT (subr))) == RECORD_TYPE
3995 || TREE_CODE (TREE_TYPE (DECL_RESULT (subr))) == UNION_TYPE
3996 || TREE_CODE (TREE_TYPE (DECL_RESULT (subr))) == ARRAY_TYPE))
3997 warning ("function returns an aggregate");
3998
3999 current_function_returns_pointer
4000 = (TREE_CODE (TREE_TYPE (DECL_RESULT (subr))) == POINTER_TYPE);
4001
4002 /* Indicate that we need to distinguish between the return value of the
4003 present function and the return value of a function being called. */
4004 rtx_equal_function_value_matters = 1;
4005
4006 /* Indicate that we have not instantiated virtual registers yet. */
4007 virtuals_instantiated = 0;
4008
4009 /* Indicate we have no need of a frame pointer yet. */
4010 frame_pointer_needed = 0;
4011
4012 /* By default assume not varargs. */
4013 current_function_varargs = 0;
4014}
4015
4016/* Indicate that the current function uses extra args
4017 not explicitly mentioned in the argument list in any fashion. */
4018
4019void
4020mark_varargs ()
4021{
4022 current_function_varargs = 1;
4023}
4024
4025/* Expand a call to __main at the beginning of a possible main function. */
4026
4027void
4028expand_main_function ()
4029{
b335c2cc 4030#if !defined (INIT_SECTION_ASM_OP) || defined (INVOKE__main)
6f086dfc
RS
4031 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__main"), 0,
4032 VOIDmode, 0);
b335c2cc 4033#endif /* not INIT_SECTION_ASM_OP or INVOKE__main */
6f086dfc
RS
4034}
4035\f
4036/* Start the RTL for a new function, and set variables used for
4037 emitting RTL.
4038 SUBR is the FUNCTION_DECL node.
4039 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4040 the function's parameters, which must be run at any return statement. */
4041
4042void
4043expand_function_start (subr, parms_have_cleanups)
4044 tree subr;
4045 int parms_have_cleanups;
4046{
4047 register int i;
4048 tree tem;
4049 rtx last_ptr;
4050
4051 /* Make sure volatile mem refs aren't considered
4052 valid operands of arithmetic insns. */
4053 init_recog_no_volatile ();
4054
4055 /* If function gets a static chain arg, store it in the stack frame.
4056 Do this first, so it gets the first stack slot offset. */
4057 if (current_function_needs_context)
3e2481e9
JW
4058 {
4059 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4060 emit_move_insn (last_ptr, static_chain_incoming_rtx);
4061 }
6f086dfc
RS
4062
4063 /* If the parameters of this function need cleaning up, get a label
4064 for the beginning of the code which executes those cleanups. This must
4065 be done before doing anything with return_label. */
4066 if (parms_have_cleanups)
4067 cleanup_label = gen_label_rtx ();
4068 else
4069 cleanup_label = 0;
4070
4071 /* Make the label for return statements to jump to, if this machine
4072 does not have a one-instruction return and uses an epilogue,
4073 or if it returns a structure, or if it has parm cleanups. */
4074#ifdef HAVE_return
4075 if (cleanup_label == 0 && HAVE_return
4076 && ! current_function_returns_pcc_struct
4077 && ! (current_function_returns_struct && ! optimize))
4078 return_label = 0;
4079 else
4080 return_label = gen_label_rtx ();
4081#else
4082 return_label = gen_label_rtx ();
4083#endif
4084
4085 /* Initialize rtx used to return the value. */
4086 /* Do this before assign_parms so that we copy the struct value address
4087 before any library calls that assign parms might generate. */
4088
4089 /* Decide whether to return the value in memory or in a register. */
4090 if (aggregate_value_p (DECL_RESULT (subr)))
4091 {
4092 /* Returning something that won't go in a register. */
4093 register rtx value_address;
4094
4095#ifdef PCC_STATIC_STRUCT_RETURN
4096 if (current_function_returns_pcc_struct)
4097 {
4098 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4099 value_address = assemble_static_space (size);
4100 }
4101 else
4102#endif
4103 {
4104 /* Expect to be passed the address of a place to store the value.
4105 If it is passed as an argument, assign_parms will take care of
4106 it. */
4107 if (struct_value_incoming_rtx)
4108 {
4109 value_address = gen_reg_rtx (Pmode);
4110 emit_move_insn (value_address, struct_value_incoming_rtx);
4111 }
4112 }
4113 if (value_address)
4114 DECL_RTL (DECL_RESULT (subr))
4115 = gen_rtx (MEM, DECL_MODE (DECL_RESULT (subr)),
4116 value_address);
4117 }
4118 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4119 /* If return mode is void, this decl rtl should not be used. */
4120 DECL_RTL (DECL_RESULT (subr)) = 0;
4121 else if (parms_have_cleanups)
a53e14c0
RK
4122 {
4123 /* If function will end with cleanup code for parms,
4124 compute the return values into a pseudo reg,
4125 which we will copy into the true return register
4126 after the cleanups are done. */
4127
4128 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
4129#ifdef PROMOTE_FUNCTION_RETURN
4130 tree type = TREE_TYPE (DECL_RESULT (subr));
4131 int unsignedp = TREE_UNSIGNED (type);
4132
4133 if (TREE_CODE (type) == INTEGER_TYPE || TREE_CODE (type) == ENUMERAL_TYPE
4134 || TREE_CODE (type) == BOOLEAN_TYPE || TREE_CODE (type) == CHAR_TYPE
4135 || TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == POINTER_TYPE
4136 || TREE_CODE (type) == OFFSET_TYPE)
4137 {
4138 PROMOTE_MODE (mode, unsignedp, type);
4139 }
4140#endif
4141
4142 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
4143 }
6f086dfc
RS
4144 else
4145 /* Scalar, returned in a register. */
4146 {
4147#ifdef FUNCTION_OUTGOING_VALUE
4148 DECL_RTL (DECL_RESULT (subr))
4149 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
4150#else
4151 DECL_RTL (DECL_RESULT (subr))
4152 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
4153#endif
4154
4155 /* Mark this reg as the function's return value. */
4156 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
4157 {
4158 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
4159 /* Needed because we may need to move this to memory
4160 in case it's a named return value whose address is taken. */
a82ad570 4161 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6f086dfc
RS
4162 }
4163 }
4164
4165 /* Initialize rtx for parameters and local variables.
4166 In some cases this requires emitting insns. */
4167
4168 assign_parms (subr, 0);
4169
4170 /* The following was moved from init_function_start.
4171 The move is supposed to make sdb output more accurate. */
4172 /* Indicate the beginning of the function body,
4173 as opposed to parm setup. */
5f4f0e22 4174 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6f086dfc
RS
4175
4176 /* If doing stupid allocation, mark parms as born here. */
4177
4178 if (GET_CODE (get_last_insn ()) != NOTE)
5f4f0e22 4179 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6f086dfc
RS
4180 parm_birth_insn = get_last_insn ();
4181
4182 if (obey_regdecls)
4183 {
4184 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
4185 use_variable (regno_reg_rtx[i]);
4186
4187 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
4188 use_variable (current_function_internal_arg_pointer);
4189 }
4190
4191 /* Fetch static chain values for containing functions. */
4192 tem = decl_function_context (current_function_decl);
3e2481e9
JW
4193 /* If not doing stupid register allocation, then start off with the static
4194 chain pointer in a pseudo register. Otherwise, we use the stack
4195 address that was generated above. */
4196 if (tem && ! obey_regdecls)
6f086dfc
RS
4197 last_ptr = copy_to_reg (static_chain_incoming_rtx);
4198 context_display = 0;
4199 while (tem)
4200 {
4201 tree rtlexp = make_node (RTL_EXPR);
4202
4203 RTL_EXPR_RTL (rtlexp) = last_ptr;
4204 context_display = tree_cons (tem, rtlexp, context_display);
4205 tem = decl_function_context (tem);
4206 if (tem == 0)
4207 break;
4208 /* Chain thru stack frames, assuming pointer to next lexical frame
4209 is found at the place we always store it. */
4210#ifdef FRAME_GROWS_DOWNWARD
4211 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
4212#endif
4213 last_ptr = copy_to_reg (gen_rtx (MEM, Pmode,
4214 memory_address (Pmode, last_ptr)));
4215 }
4216
4217 /* After the display initializations is where the tail-recursion label
4218 should go, if we end up needing one. Ensure we have a NOTE here
4219 since some things (like trampolines) get placed before this. */
5f4f0e22 4220 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6f086dfc
RS
4221
4222 /* Evaluate now the sizes of any types declared among the arguments. */
4223 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
5f4f0e22 4224 expand_expr (TREE_VALUE (tem), NULL_RTX, VOIDmode, 0);
6f086dfc
RS
4225
4226 /* Make sure there is a line number after the function entry setup code. */
4227 force_next_line_note ();
4228}
4229\f
4230/* Generate RTL for the end of the current function.
4231 FILENAME and LINE are the current position in the source file. */
4232
4233/* It is up to language-specific callers to do cleanups for parameters. */
4234
4235void
4236expand_function_end (filename, line)
4237 char *filename;
4238 int line;
4239{
4240 register int i;
4241 tree link;
4242
4243 static rtx initial_trampoline;
4244
4245#ifdef NON_SAVING_SETJMP
4246 /* Don't put any variables in registers if we call setjmp
4247 on a machine that fails to restore the registers. */
4248 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
4249 {
4250 setjmp_protect (DECL_INITIAL (current_function_decl));
4251 setjmp_protect_args ();
4252 }
4253#endif
4254
4255 /* Save the argument pointer if a save area was made for it. */
4256 if (arg_pointer_save_area)
4257 {
4258 rtx x = gen_move_insn (arg_pointer_save_area, virtual_incoming_args_rtx);
4259 emit_insn_before (x, tail_recursion_reentry);
4260 }
4261
4262 /* Initialize any trampolines required by this function. */
4263 for (link = trampoline_list; link; link = TREE_CHAIN (link))
4264 {
4265 tree function = TREE_PURPOSE (link);
4266 rtx context = lookup_static_chain (function);
4267 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
4268 rtx seq;
4269
4270 /* First make sure this compilation has a template for
4271 initializing trampolines. */
4272 if (initial_trampoline == 0)
86f8eff3
RK
4273 {
4274 end_temporary_allocation ();
4275 initial_trampoline
4276 = gen_rtx (MEM, BLKmode, assemble_trampoline_template ());
4277 resume_temporary_allocation ();
4278 }
6f086dfc
RS
4279
4280 /* Generate insns to initialize the trampoline. */
4281 start_sequence ();
4282 tramp = change_address (initial_trampoline, BLKmode,
4283 round_trampoline_addr (XEXP (tramp, 0)));
5f4f0e22 4284 emit_block_move (tramp, initial_trampoline, GEN_INT (TRAMPOLINE_SIZE),
6f086dfc
RS
4285 FUNCTION_BOUNDARY / BITS_PER_UNIT);
4286 INITIALIZE_TRAMPOLINE (XEXP (tramp, 0),
4287 XEXP (DECL_RTL (function), 0), context);
4288 seq = get_insns ();
4289 end_sequence ();
4290
4291 /* Put those insns at entry to the containing function (this one). */
4292 emit_insns_before (seq, tail_recursion_reentry);
4293 }
4294 /* Clear the trampoline_list for the next function. */
4295 trampoline_list = 0;
4296
4297#if 0 /* I think unused parms are legitimate enough. */
4298 /* Warn about unused parms. */
4299 if (warn_unused)
4300 {
4301 rtx decl;
4302
4303 for (decl = DECL_ARGUMENTS (current_function_decl);
4304 decl; decl = TREE_CHAIN (decl))
4305 if (! TREE_USED (decl) && TREE_CODE (decl) == VAR_DECL)
4306 warning_with_decl (decl, "unused parameter `%s'");
4307 }
4308#endif
4309
4310 /* Delete handlers for nonlocal gotos if nothing uses them. */
4311 if (nonlocal_goto_handler_slot != 0 && !current_function_has_nonlocal_label)
4312 delete_handlers ();
4313
4314 /* End any sequences that failed to be closed due to syntax errors. */
4315 while (in_sequence_p ())
5f4f0e22 4316 end_sequence ();
6f086dfc
RS
4317
4318 /* Outside function body, can't compute type's actual size
4319 until next function's body starts. */
4320 immediate_size_expand--;
4321
4322 /* If doing stupid register allocation,
4323 mark register parms as dying here. */
4324
4325 if (obey_regdecls)
4326 {
4327 rtx tem;
4328 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
4329 use_variable (regno_reg_rtx[i]);
4330
4331 /* Likewise for the regs of all the SAVE_EXPRs in the function. */
4332
4333 for (tem = save_expr_regs; tem; tem = XEXP (tem, 1))
4334 {
4335 use_variable (XEXP (tem, 0));
4336 use_variable_after (XEXP (tem, 0), parm_birth_insn);
4337 }
4338
4339 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
4340 use_variable (current_function_internal_arg_pointer);
4341 }
4342
4343 clear_pending_stack_adjust ();
4344 do_pending_stack_adjust ();
4345
4346 /* Mark the end of the function body.
4347 If control reaches this insn, the function can drop through
4348 without returning a value. */
5f4f0e22 4349 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6f086dfc
RS
4350
4351 /* Output a linenumber for the end of the function.
4352 SDB depends on this. */
4353 emit_line_note_force (filename, line);
4354
4355 /* Output the label for the actual return from the function,
4356 if one is expected. This happens either because a function epilogue
4357 is used instead of a return instruction, or because a return was done
4358 with a goto in order to run local cleanups, or because of pcc-style
4359 structure returning. */
4360
4361 if (return_label)
4362 emit_label (return_label);
4363
4364 /* If we had calls to alloca, and this machine needs
4365 an accurate stack pointer to exit the function,
4366 insert some code to save and restore the stack pointer. */
4367#ifdef EXIT_IGNORE_STACK
4368 if (! EXIT_IGNORE_STACK)
4369#endif
4370 if (current_function_calls_alloca)
4371 {
59257ff7
RK
4372 rtx tem = 0;
4373
4374 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
5f4f0e22 4375 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6f086dfc
RS
4376 }
4377
4378 /* If scalar return value was computed in a pseudo-reg,
4379 copy that to the hard return register. */
4380 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
4381 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
4382 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
4383 >= FIRST_PSEUDO_REGISTER))
4384 {
4385 rtx real_decl_result;
4386
4387#ifdef FUNCTION_OUTGOING_VALUE
4388 real_decl_result
4389 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
4390 current_function_decl);
4391#else
4392 real_decl_result
4393 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
4394 current_function_decl);
4395#endif
4396 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
4397 emit_move_insn (real_decl_result,
4398 DECL_RTL (DECL_RESULT (current_function_decl)));
4399 emit_insn (gen_rtx (USE, VOIDmode, real_decl_result));
4400 }
4401
4402 /* If returning a structure, arrange to return the address of the value
4403 in a place where debuggers expect to find it.
4404
4405 If returning a structure PCC style,
4406 the caller also depends on this value.
4407 And current_function_returns_pcc_struct is not necessarily set. */
4408 if (current_function_returns_struct
4409 || current_function_returns_pcc_struct)
4410 {
4411 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
4412 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4413#ifdef FUNCTION_OUTGOING_VALUE
4414 rtx outgoing
4415 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4416 current_function_decl);
4417#else
4418 rtx outgoing
4419 = FUNCTION_VALUE (build_pointer_type (type),
4420 current_function_decl);
4421#endif
4422
4423 /* Mark this as a function return value so integrate will delete the
4424 assignment and USE below when inlining this function. */
4425 REG_FUNCTION_VALUE_P (outgoing) = 1;
4426
4427 emit_move_insn (outgoing, value_address);
4428 use_variable (outgoing);
4429 }
4430
4431 /* Output a return insn if we are using one.
4432 Otherwise, let the rtl chain end here, to drop through
4433 into the epilogue. */
4434
4435#ifdef HAVE_return
4436 if (HAVE_return)
4437 {
4438 emit_jump_insn (gen_return ());
4439 emit_barrier ();
4440 }
4441#endif
4442
4443 /* Fix up any gotos that jumped out to the outermost
4444 binding level of the function.
4445 Must follow emitting RETURN_LABEL. */
4446
4447 /* If you have any cleanups to do at this point,
4448 and they need to create temporary variables,
4449 then you will lose. */
5f4f0e22 4450 fixup_gotos (NULL_PTR, NULL_RTX, NULL_TREE, get_insns (), 0);
6f086dfc 4451}
bdac5f58
TW
4452\f
4453/* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
4454
4455static int *prologue;
4456static int *epilogue;
4457
4458/* Create an array that records the INSN_UIDs of INSNS (either a sequence
4459 or a single insn). */
4460
4461static int *
4462record_insns (insns)
4463 rtx insns;
4464{
4465 int *vec;
4466
4467 if (GET_CODE (insns) == SEQUENCE)
4468 {
4469 int len = XVECLEN (insns, 0);
4470 vec = (int *) oballoc ((len + 1) * sizeof (int));
4471 vec[len] = 0;
4472 while (--len >= 0)
4473 vec[len] = INSN_UID (XVECEXP (insns, 0, len));
4474 }
4475 else
4476 {
4477 vec = (int *) oballoc (2 * sizeof (int));
4478 vec[0] = INSN_UID (insns);
4479 vec[1] = 0;
4480 }
4481 return vec;
4482}
4483
10914065 4484/* Determine how many INSN_UIDs in VEC are part of INSN. */
bdac5f58 4485
10914065 4486static int
bdac5f58
TW
4487contains (insn, vec)
4488 rtx insn;
4489 int *vec;
4490{
4491 register int i, j;
4492
4493 if (GET_CODE (insn) == INSN
4494 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4495 {
10914065 4496 int count = 0;
bdac5f58
TW
4497 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4498 for (j = 0; vec[j]; j++)
4499 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == vec[j])
10914065
TW
4500 count++;
4501 return count;
bdac5f58
TW
4502 }
4503 else
4504 {
4505 for (j = 0; vec[j]; j++)
4506 if (INSN_UID (insn) == vec[j])
10914065 4507 return 1;
bdac5f58
TW
4508 }
4509 return 0;
4510}
4511
4512/* Generate the prologe and epilogue RTL if the machine supports it. Thread
4513 this into place with notes indicating where the prologue ends and where
4514 the epilogue begins. Update the basic block information when possible. */
4515
4516void
4517thread_prologue_and_epilogue_insns (f)
4518 rtx f;
4519{
4520#ifdef HAVE_prologue
4521 if (HAVE_prologue)
4522 {
4523 rtx head, seq, insn;
4524
4525 /* The first insn (a NOTE_INSN_DELETED) is followed by zero or more
4526 prologue insns and a NOTE_INSN_PROLOGUE_END. */
4527 emit_note_after (NOTE_INSN_PROLOGUE_END, f);
4528 seq = gen_prologue ();
4529 head = emit_insn_after (seq, f);
4530
4531 /* Include the new prologue insns in the first block. Ignore them
4532 if they form a basic block unto themselves. */
4533 if (basic_block_head && n_basic_blocks
4534 && GET_CODE (basic_block_head[0]) != CODE_LABEL)
4535 basic_block_head[0] = NEXT_INSN (f);
4536
4537 /* Retain a map of the prologue insns. */
4538 prologue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : head);
4539 }
4540 else
4541#endif
4542 prologue = 0;
4543
4544#ifdef HAVE_epilogue
4545 if (HAVE_epilogue)
4546 {
4547 rtx insn = get_last_insn ();
4548 rtx prev = prev_nonnote_insn (insn);
4549
4550 /* If we end with a BARRIER, we don't need an epilogue. */
4551 if (! (prev && GET_CODE (prev) == BARRIER))
4552 {
4553 rtx tail, seq;
4554
4555 /* The last basic block ends with a NOTE_INSN_EPILOGUE_BEG,
4556 the epilogue insns (this must include the jump insn that
4557 returns), USE insns ad the end of a function, and a BARRIER. */
4558
4559 emit_barrier_after (insn);
4560
4561 /* Place the epilogue before the USE insns at the end of a
4562 function. */
4563 while (prev
4564 && GET_CODE (prev) == INSN
4565 && GET_CODE (PATTERN (prev)) == USE)
4566 {
4567 insn = PREV_INSN (prev);
4568 prev = prev_nonnote_insn (prev);
4569 }
4570
4571 seq = gen_epilogue ();
4572 tail = emit_jump_insn_after (seq, insn);
4573 emit_note_after (NOTE_INSN_EPILOGUE_BEG, insn);
4574
4575 /* Include the new epilogue insns in the last block. Ignore
4576 them if they form a basic block unto themselves. */
4577 if (basic_block_end && n_basic_blocks
4578 && GET_CODE (basic_block_end[n_basic_blocks - 1]) != JUMP_INSN)
4579 basic_block_end[n_basic_blocks - 1] = tail;
4580
4581 /* Retain a map of the epilogue insns. */
4582 epilogue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : tail);
4583 return;
4584 }
4585 }
4586#endif
4587 epilogue = 0;
4588}
4589
4590/* Reposition the prologue-end and epilogue-begin notes after instruction
4591 scheduling and delayed branch scheduling. */
4592
4593void
4594reposition_prologue_and_epilogue_notes (f)
4595 rtx f;
4596{
4597#if defined (HAVE_prologue) || defined (HAVE_epilogue)
4598 /* Reposition the prologue and epilogue notes. */
4599 if (n_basic_blocks)
4600 {
4601 rtx next, prev;
bf526252 4602 int len;
bdac5f58
TW
4603
4604 if (prologue)
4605 {
bf526252
RK
4606 register rtx insn, note = 0;
4607
4608 /* Scan from the beginning until we reach the last prologue insn.
4609 We apparently can't depend on basic_block_{head,end} after
4610 reorg has run. */
4611 for (len = 0; prologue[len]; len++)
4612 ;
4613 for (insn = f; insn; insn = NEXT_INSN (insn))
4614 if (GET_CODE (insn) == NOTE)
4615 {
4616 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
4617 note = insn;
4618 }
10914065 4619 else if ((len -= contains (insn, prologue)) == 0)
bdac5f58 4620 {
bf526252
RK
4621 /* Find the prologue-end note if we haven't already, and
4622 move it to just after the last prologue insn. */
4623 if (note == 0)
4624 for (note = insn; note = NEXT_INSN (note);)
4625 if (GET_CODE (note) == NOTE
4626 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
4627 break;
4628 next = NEXT_INSN (note);
4629 prev = PREV_INSN (note);
bdac5f58
TW
4630 if (prev)
4631 NEXT_INSN (prev) = next;
4632 if (next)
4633 PREV_INSN (next) = prev;
bf526252 4634 add_insn_after (note, insn);
bdac5f58
TW
4635 break;
4636 }
4637 }
4638
4639 if (epilogue)
4640 {
bf526252
RK
4641 register rtx insn, note = 0;
4642
4643 /* Scan from the end until we reach the first epilogue insn.
4644 We apparently can't depend on basic_block_{head,end} after
4645 reorg has run. */
4646 for (len = 0; epilogue[len]; len++)
4647 ;
4648 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
4649 if (GET_CODE (insn) == NOTE)
4650 {
4651 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
4652 note = insn;
4653 }
10914065 4654 else if ((len -= contains (insn, epilogue)) == 0)
bdac5f58 4655 {
bf526252
RK
4656 /* Find the epilogue-begin note if we haven't already, and
4657 move it to just before the first epilogue insn. */
4658 if (note == 0)
4659 for (note = insn; note = PREV_INSN (note);)
4660 if (GET_CODE (note) == NOTE
4661 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
4662 break;
4663 next = NEXT_INSN (note);
4664 prev = PREV_INSN (note);
bdac5f58
TW
4665 if (prev)
4666 NEXT_INSN (prev) = next;
4667 if (next)
4668 PREV_INSN (next) = prev;
bf526252 4669 add_insn_after (note, PREV_INSN (insn));
bdac5f58
TW
4670 break;
4671 }
4672 }
4673 }
4674#endif /* HAVE_prologue or HAVE_epilogue */
4675}
This page took 0.728763 seconds and 5 git commands to generate.