]> gcc.gnu.org Git - gcc.git/blame - gcc/function.c
(convert_for_assignment): Allow conversion to union type
[gcc.git] / gcc / function.c
CommitLineData
6f086dfc 1/* Expands front end tree to back end RTL for GNU C-Compiler
c51d911a 2 Copyright (C) 1987, 88, 89, 91, 92, 1993 Free Software Foundation, Inc.
6f086dfc
RS
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This file handles the generation of rtl code from tree structure
22 at the level of the function as a whole.
23 It creates the rtl expressions for parameters and auto variables
24 and has full responsibility for allocating stack slots.
25
26 `expand_function_start' is called at the beginning of a function,
27 before the function body is parsed, and `expand_function_end' is
28 called after parsing the body.
29
30 Call `assign_stack_local' to allocate a stack slot for a local variable.
31 This is usually done during the RTL generation for the function body,
32 but it can also be done in the reload pass when a pseudo-register does
33 not get a hard register.
34
35 Call `put_var_into_stack' when you learn, belatedly, that a variable
36 previously given a pseudo-register must in fact go in the stack.
37 This function changes the DECL_RTL to be a stack slot instead of a reg
38 then scans all the RTL instructions so far generated to correct them. */
39
40#include "config.h"
41
42#include <stdio.h>
43
44#include "rtl.h"
45#include "tree.h"
46#include "flags.h"
47#include "function.h"
48#include "insn-flags.h"
49#include "expr.h"
50#include "insn-codes.h"
51#include "regs.h"
52#include "hard-reg-set.h"
53#include "insn-config.h"
54#include "recog.h"
55#include "output.h"
bdac5f58 56#include "basic-block.h"
6f086dfc
RS
57
58/* Round a value to the lowest integer less than it that is a multiple of
59 the required alignment. Avoid using division in case the value is
60 negative. Assume the alignment is a power of two. */
61#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
62
63/* Similar, but round to the next highest integer that meets the
64 alignment. */
65#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
66
67/* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
68 during rtl generation. If they are different register numbers, this is
69 always true. It may also be true if
70 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
71 generation. See fix_lexical_addr for details. */
72
73#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
74#define NEED_SEPARATE_AP
75#endif
76
77/* Number of bytes of args popped by function being compiled on its return.
78 Zero if no bytes are to be popped.
79 May affect compilation of return insn or of function epilogue. */
80
81int current_function_pops_args;
82
83/* Nonzero if function being compiled needs to be given an address
84 where the value should be stored. */
85
86int current_function_returns_struct;
87
88/* Nonzero if function being compiled needs to
89 return the address of where it has put a structure value. */
90
91int current_function_returns_pcc_struct;
92
93/* Nonzero if function being compiled needs to be passed a static chain. */
94
95int current_function_needs_context;
96
97/* Nonzero if function being compiled can call setjmp. */
98
99int current_function_calls_setjmp;
100
101/* Nonzero if function being compiled can call longjmp. */
102
103int current_function_calls_longjmp;
104
105/* Nonzero if function being compiled receives nonlocal gotos
106 from nested functions. */
107
108int current_function_has_nonlocal_label;
109
110/* Nonzero if function being compiled contains nested functions. */
111
112int current_function_contains_functions;
113
114/* Nonzero if function being compiled can call alloca,
115 either as a subroutine or builtin. */
116
117int current_function_calls_alloca;
118
119/* Nonzero if the current function returns a pointer type */
120
121int current_function_returns_pointer;
122
123/* If some insns can be deferred to the delay slots of the epilogue, the
124 delay list for them is recorded here. */
125
126rtx current_function_epilogue_delay_list;
127
128/* If function's args have a fixed size, this is that size, in bytes.
129 Otherwise, it is -1.
130 May affect compilation of return insn or of function epilogue. */
131
132int current_function_args_size;
133
134/* # bytes the prologue should push and pretend that the caller pushed them.
135 The prologue must do this, but only if parms can be passed in registers. */
136
137int current_function_pretend_args_size;
138
139/* # of bytes of outgoing arguments required to be pushed by the prologue.
140 If this is non-zero, it means that ACCUMULATE_OUTGOING_ARGS was defined
141 and no stack adjusts will be done on function calls. */
142
143int current_function_outgoing_args_size;
144
145/* This is the offset from the arg pointer to the place where the first
146 anonymous arg can be found, if there is one. */
147
148rtx current_function_arg_offset_rtx;
149
150/* Nonzero if current function uses varargs.h or equivalent.
151 Zero for functions that use stdarg.h. */
152
153int current_function_varargs;
154
155/* Quantities of various kinds of registers
156 used for the current function's args. */
157
158CUMULATIVE_ARGS current_function_args_info;
159
160/* Name of function now being compiled. */
161
162char *current_function_name;
163
164/* If non-zero, an RTL expression for that location at which the current
165 function returns its result. Always equal to
166 DECL_RTL (DECL_RESULT (current_function_decl)), but provided
167 independently of the tree structures. */
168
169rtx current_function_return_rtx;
170
171/* Nonzero if the current function uses the constant pool. */
172
173int current_function_uses_const_pool;
174
175/* Nonzero if the current function uses pic_offset_table_rtx. */
176int current_function_uses_pic_offset_table;
177
178/* The arg pointer hard register, or the pseudo into which it was copied. */
179rtx current_function_internal_arg_pointer;
180
181/* The FUNCTION_DECL for an inline function currently being expanded. */
182tree inline_function_decl;
183
184/* Number of function calls seen so far in current function. */
185
186int function_call_count;
187
188/* List (chain of TREE_LIST) of LABEL_DECLs for all nonlocal labels
189 (labels to which there can be nonlocal gotos from nested functions)
190 in this function. */
191
192tree nonlocal_labels;
193
194/* RTX for stack slot that holds the current handler for nonlocal gotos.
195 Zero when function does not have nonlocal labels. */
196
197rtx nonlocal_goto_handler_slot;
198
199/* RTX for stack slot that holds the stack pointer value to restore
200 for a nonlocal goto.
201 Zero when function does not have nonlocal labels. */
202
203rtx nonlocal_goto_stack_level;
204
205/* Label that will go on parm cleanup code, if any.
206 Jumping to this label runs cleanup code for parameters, if
207 such code must be run. Following this code is the logical return label. */
208
209rtx cleanup_label;
210
211/* Label that will go on function epilogue.
212 Jumping to this label serves as a "return" instruction
213 on machines which require execution of the epilogue on all returns. */
214
215rtx return_label;
216
217/* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs.
218 So we can mark them all live at the end of the function, if nonopt. */
219rtx save_expr_regs;
220
221/* List (chain of EXPR_LISTs) of all stack slots in this function.
222 Made for the sake of unshare_all_rtl. */
223rtx stack_slot_list;
224
225/* Chain of all RTL_EXPRs that have insns in them. */
226tree rtl_expr_chain;
227
228/* Label to jump back to for tail recursion, or 0 if we have
229 not yet needed one for this function. */
230rtx tail_recursion_label;
231
232/* Place after which to insert the tail_recursion_label if we need one. */
233rtx tail_recursion_reentry;
234
235/* Location at which to save the argument pointer if it will need to be
236 referenced. There are two cases where this is done: if nonlocal gotos
237 exist, or if vars stored at an offset from the argument pointer will be
238 needed by inner routines. */
239
240rtx arg_pointer_save_area;
241
242/* Offset to end of allocated area of stack frame.
243 If stack grows down, this is the address of the last stack slot allocated.
244 If stack grows up, this is the address for the next slot. */
245int frame_offset;
246
247/* List (chain of TREE_LISTs) of static chains for containing functions.
248 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
249 in an RTL_EXPR in the TREE_VALUE. */
250static tree context_display;
251
252/* List (chain of TREE_LISTs) of trampolines for nested functions.
253 The trampoline sets up the static chain and jumps to the function.
254 We supply the trampoline's address when the function's address is requested.
255
256 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
257 in an RTL_EXPR in the TREE_VALUE. */
258static tree trampoline_list;
259
260/* Insn after which register parms and SAVE_EXPRs are born, if nonopt. */
261static rtx parm_birth_insn;
262
263#if 0
264/* Nonzero if a stack slot has been generated whose address is not
265 actually valid. It means that the generated rtl must all be scanned
266 to detect and correct the invalid addresses where they occur. */
267static int invalid_stack_slot;
268#endif
269
270/* Last insn of those whose job was to put parms into their nominal homes. */
271static rtx last_parm_insn;
272
273/* 1 + last pseudo register number used for loading a copy
274 of a parameter of this function. */
275static int max_parm_reg;
276
277/* Vector indexed by REGNO, containing location on stack in which
278 to put the parm which is nominally in pseudo register REGNO,
279 if we discover that that parm must go in the stack. */
280static rtx *parm_reg_stack_loc;
281
282#if 0 /* Turned off because 0 seems to work just as well. */
283/* Cleanup lists are required for binding levels regardless of whether
284 that binding level has cleanups or not. This node serves as the
285 cleanup list whenever an empty list is required. */
286static tree empty_cleanup_list;
287#endif
288
289/* Nonzero once virtual register instantiation has been done.
290 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
291static int virtuals_instantiated;
292
293/* Nonzero if we need to distinguish between the return value of this function
294 and the return value of a function called by this function. This helps
295 integrate.c */
296
297extern int rtx_equal_function_value_matters;
298
299void fixup_gotos ();
300
301static tree round_down ();
302static rtx round_trampoline_addr ();
303static rtx fixup_stack_1 ();
304static void fixup_var_refs ();
305static void fixup_var_refs_insns ();
306static void fixup_var_refs_1 ();
307static void optimize_bit_field ();
308static void instantiate_decls ();
309static void instantiate_decls_1 ();
5a73491b 310static void instantiate_decl ();
6f086dfc
RS
311static int instantiate_virtual_regs_1 ();
312static rtx fixup_memory_subreg ();
313static rtx walk_fixup_memory_subreg ();
314\f
315/* In order to evaluate some expressions, such as function calls returning
316 structures in memory, we need to temporarily allocate stack locations.
317 We record each allocated temporary in the following structure.
318
319 Associated with each temporary slot is a nesting level. When we pop up
320 one level, all temporaries associated with the previous level are freed.
321 Normally, all temporaries are freed after the execution of the statement
322 in which they were created. However, if we are inside a ({...}) grouping,
323 the result may be in a temporary and hence must be preserved. If the
324 result could be in a temporary, we preserve it if we can determine which
325 one it is in. If we cannot determine which temporary may contain the
326 result, all temporaries are preserved. A temporary is preserved by
327 pretending it was allocated at the previous nesting level.
328
329 Automatic variables are also assigned temporary slots, at the nesting
330 level where they are defined. They are marked a "kept" so that
331 free_temp_slots will not free them. */
332
333struct temp_slot
334{
335 /* Points to next temporary slot. */
336 struct temp_slot *next;
337 /* The rtx to used to reference the slot. */
338 rtx slot;
339 /* The size, in units, of the slot. */
340 int size;
341 /* Non-zero if this temporary is currently in use. */
342 char in_use;
343 /* Nesting level at which this slot is being used. */
344 int level;
345 /* Non-zero if this should survive a call to free_temp_slots. */
346 int keep;
347};
348
349/* List of all temporaries allocated, both available and in use. */
350
351struct temp_slot *temp_slots;
352
353/* Current nesting level for temporaries. */
354
355int temp_slot_level;
356\f
357/* Pointer to chain of `struct function' for containing functions. */
358struct function *outer_function_chain;
359
360/* Given a function decl for a containing function,
361 return the `struct function' for it. */
362
363struct function *
364find_function_data (decl)
365 tree decl;
366{
367 struct function *p;
368 for (p = outer_function_chain; p; p = p->next)
369 if (p->decl == decl)
370 return p;
371 abort ();
372}
373
374/* Save the current context for compilation of a nested function.
375 This is called from language-specific code.
376 The caller is responsible for saving any language-specific status,
6dc42e49 377 since this function knows only about language-independent variables. */
6f086dfc
RS
378
379void
380push_function_context ()
381{
382 struct function *p = (struct function *) xmalloc (sizeof (struct function));
383
384 p->next = outer_function_chain;
385 outer_function_chain = p;
386
387 p->name = current_function_name;
388 p->decl = current_function_decl;
389 p->pops_args = current_function_pops_args;
390 p->returns_struct = current_function_returns_struct;
391 p->returns_pcc_struct = current_function_returns_pcc_struct;
392 p->needs_context = current_function_needs_context;
393 p->calls_setjmp = current_function_calls_setjmp;
394 p->calls_longjmp = current_function_calls_longjmp;
395 p->calls_alloca = current_function_calls_alloca;
396 p->has_nonlocal_label = current_function_has_nonlocal_label;
397 p->args_size = current_function_args_size;
398 p->pretend_args_size = current_function_pretend_args_size;
399 p->arg_offset_rtx = current_function_arg_offset_rtx;
400 p->uses_const_pool = current_function_uses_const_pool;
401 p->uses_pic_offset_table = current_function_uses_pic_offset_table;
402 p->internal_arg_pointer = current_function_internal_arg_pointer;
403 p->max_parm_reg = max_parm_reg;
404 p->parm_reg_stack_loc = parm_reg_stack_loc;
405 p->outgoing_args_size = current_function_outgoing_args_size;
406 p->return_rtx = current_function_return_rtx;
407 p->nonlocal_goto_handler_slot = nonlocal_goto_handler_slot;
408 p->nonlocal_goto_stack_level = nonlocal_goto_stack_level;
409 p->nonlocal_labels = nonlocal_labels;
410 p->cleanup_label = cleanup_label;
411 p->return_label = return_label;
412 p->save_expr_regs = save_expr_regs;
413 p->stack_slot_list = stack_slot_list;
414 p->parm_birth_insn = parm_birth_insn;
415 p->frame_offset = frame_offset;
416 p->tail_recursion_label = tail_recursion_label;
417 p->tail_recursion_reentry = tail_recursion_reentry;
418 p->arg_pointer_save_area = arg_pointer_save_area;
419 p->rtl_expr_chain = rtl_expr_chain;
420 p->last_parm_insn = last_parm_insn;
421 p->context_display = context_display;
422 p->trampoline_list = trampoline_list;
423 p->function_call_count = function_call_count;
424 p->temp_slots = temp_slots;
425 p->temp_slot_level = temp_slot_level;
426 p->fixup_var_refs_queue = 0;
f979c996 427 p->epilogue_delay_list = current_function_epilogue_delay_list;
6f086dfc
RS
428
429 save_tree_status (p);
430 save_storage_status (p);
431 save_emit_status (p);
432 init_emit ();
433 save_expr_status (p);
434 save_stmt_status (p);
a506307a 435 save_varasm_status (p);
6f086dfc
RS
436}
437
438/* Restore the last saved context, at the end of a nested function.
439 This function is called from language-specific code. */
440
441void
442pop_function_context ()
443{
444 struct function *p = outer_function_chain;
445
446 outer_function_chain = p->next;
447
448 current_function_name = p->name;
449 current_function_decl = p->decl;
450 current_function_pops_args = p->pops_args;
451 current_function_returns_struct = p->returns_struct;
452 current_function_returns_pcc_struct = p->returns_pcc_struct;
453 current_function_needs_context = p->needs_context;
454 current_function_calls_setjmp = p->calls_setjmp;
455 current_function_calls_longjmp = p->calls_longjmp;
456 current_function_calls_alloca = p->calls_alloca;
457 current_function_has_nonlocal_label = p->has_nonlocal_label;
458 current_function_contains_functions = 1;
459 current_function_args_size = p->args_size;
460 current_function_pretend_args_size = p->pretend_args_size;
461 current_function_arg_offset_rtx = p->arg_offset_rtx;
462 current_function_uses_const_pool = p->uses_const_pool;
463 current_function_uses_pic_offset_table = p->uses_pic_offset_table;
464 current_function_internal_arg_pointer = p->internal_arg_pointer;
465 max_parm_reg = p->max_parm_reg;
466 parm_reg_stack_loc = p->parm_reg_stack_loc;
467 current_function_outgoing_args_size = p->outgoing_args_size;
468 current_function_return_rtx = p->return_rtx;
469 nonlocal_goto_handler_slot = p->nonlocal_goto_handler_slot;
470 nonlocal_goto_stack_level = p->nonlocal_goto_stack_level;
471 nonlocal_labels = p->nonlocal_labels;
472 cleanup_label = p->cleanup_label;
473 return_label = p->return_label;
474 save_expr_regs = p->save_expr_regs;
475 stack_slot_list = p->stack_slot_list;
476 parm_birth_insn = p->parm_birth_insn;
477 frame_offset = p->frame_offset;
478 tail_recursion_label = p->tail_recursion_label;
479 tail_recursion_reentry = p->tail_recursion_reentry;
480 arg_pointer_save_area = p->arg_pointer_save_area;
481 rtl_expr_chain = p->rtl_expr_chain;
482 last_parm_insn = p->last_parm_insn;
483 context_display = p->context_display;
484 trampoline_list = p->trampoline_list;
485 function_call_count = p->function_call_count;
486 temp_slots = p->temp_slots;
487 temp_slot_level = p->temp_slot_level;
f979c996 488 current_function_epilogue_delay_list = p->epilogue_delay_list;
6f086dfc
RS
489
490 restore_tree_status (p);
491 restore_storage_status (p);
492 restore_expr_status (p);
493 restore_emit_status (p);
494 restore_stmt_status (p);
a506307a 495 restore_varasm_status (p);
6f086dfc
RS
496
497 /* Finish doing put_var_into_stack for any of our variables
498 which became addressable during the nested function. */
499 {
500 struct var_refs_queue *queue = p->fixup_var_refs_queue;
501 for (; queue; queue = queue->next)
00d8a4c1 502 fixup_var_refs (queue->modified, queue->promoted_mode, queue->unsignedp);
6f086dfc
RS
503 }
504
505 free (p);
506
507 /* Reset variables that have known state during rtx generation. */
508 rtx_equal_function_value_matters = 1;
509 virtuals_instantiated = 0;
510}
511\f
512/* Allocate fixed slots in the stack frame of the current function. */
513
514/* Return size needed for stack frame based on slots so far allocated.
515 This size counts from zero. It is not rounded to STACK_BOUNDARY;
516 the caller may have to do that. */
517
518int
519get_frame_size ()
520{
521#ifdef FRAME_GROWS_DOWNWARD
522 return -frame_offset;
523#else
524 return frame_offset;
525#endif
526}
527
528/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
529 with machine mode MODE.
530
531 ALIGN controls the amount of alignment for the address of the slot:
532 0 means according to MODE,
533 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
534 positive specifies alignment boundary in bits.
535
536 We do not round to stack_boundary here. */
537
538rtx
539assign_stack_local (mode, size, align)
540 enum machine_mode mode;
541 int size;
542 int align;
543{
544 register rtx x, addr;
545 int bigend_correction = 0;
546 int alignment;
547
548 if (align == 0)
549 {
550 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
551 if (mode == BLKmode)
552 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
553 }
554 else if (align == -1)
555 {
556 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
557 size = CEIL_ROUND (size, alignment);
558 }
559 else
560 alignment = align / BITS_PER_UNIT;
561
6f086dfc
RS
562 /* Round frame offset to that alignment.
563 We must be careful here, since FRAME_OFFSET might be negative and
564 division with a negative dividend isn't as well defined as we might
565 like. So we instead assume that ALIGNMENT is a power of two and
566 use logical operations which are unambiguous. */
567#ifdef FRAME_GROWS_DOWNWARD
568 frame_offset = FLOOR_ROUND (frame_offset, alignment);
569#else
570 frame_offset = CEIL_ROUND (frame_offset, alignment);
571#endif
572
573 /* On a big-endian machine, if we are allocating more space than we will use,
574 use the least significant bytes of those that are allocated. */
575#if BYTES_BIG_ENDIAN
576 if (mode != BLKmode)
577 bigend_correction = size - GET_MODE_SIZE (mode);
578#endif
579
580#ifdef FRAME_GROWS_DOWNWARD
581 frame_offset -= size;
582#endif
583
584 /* If we have already instantiated virtual registers, return the actual
585 address relative to the frame pointer. */
586 if (virtuals_instantiated)
587 addr = plus_constant (frame_pointer_rtx,
588 (frame_offset + bigend_correction
589 + STARTING_FRAME_OFFSET));
590 else
591 addr = plus_constant (virtual_stack_vars_rtx,
592 frame_offset + bigend_correction);
593
594#ifndef FRAME_GROWS_DOWNWARD
595 frame_offset += size;
596#endif
597
598 x = gen_rtx (MEM, mode, addr);
599
600 stack_slot_list = gen_rtx (EXPR_LIST, VOIDmode, x, stack_slot_list);
601
602 return x;
603}
604
605/* Assign a stack slot in a containing function.
606 First three arguments are same as in preceding function.
607 The last argument specifies the function to allocate in. */
608
609rtx
610assign_outer_stack_local (mode, size, align, function)
611 enum machine_mode mode;
612 int size;
613 int align;
614 struct function *function;
615{
616 register rtx x, addr;
617 int bigend_correction = 0;
618 int alignment;
619
620 /* Allocate in the memory associated with the function in whose frame
621 we are assigning. */
622 push_obstacks (function->function_obstack,
623 function->function_maybepermanent_obstack);
624
625 if (align == 0)
626 {
627 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
628 if (mode == BLKmode)
629 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
630 }
631 else if (align == -1)
632 {
633 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
634 size = CEIL_ROUND (size, alignment);
635 }
636 else
637 alignment = align / BITS_PER_UNIT;
638
6f086dfc
RS
639 /* Round frame offset to that alignment. */
640#ifdef FRAME_GROWS_DOWNWARD
2af69b62 641 function->frame_offset = FLOOR_ROUND (function->frame_offset, alignment);
6f086dfc 642#else
2af69b62 643 function->frame_offset = CEIL_ROUND (function->frame_offset, alignment);
6f086dfc
RS
644#endif
645
646 /* On a big-endian machine, if we are allocating more space than we will use,
647 use the least significant bytes of those that are allocated. */
648#if BYTES_BIG_ENDIAN
649 if (mode != BLKmode)
650 bigend_correction = size - GET_MODE_SIZE (mode);
651#endif
652
653#ifdef FRAME_GROWS_DOWNWARD
654 function->frame_offset -= size;
655#endif
656 addr = plus_constant (virtual_stack_vars_rtx,
657 function->frame_offset + bigend_correction);
658#ifndef FRAME_GROWS_DOWNWARD
659 function->frame_offset += size;
660#endif
661
662 x = gen_rtx (MEM, mode, addr);
663
664 function->stack_slot_list
665 = gen_rtx (EXPR_LIST, VOIDmode, x, function->stack_slot_list);
666
667 pop_obstacks ();
668
669 return x;
670}
671\f
672/* Allocate a temporary stack slot and record it for possible later
673 reuse.
674
675 MODE is the machine mode to be given to the returned rtx.
676
677 SIZE is the size in units of the space required. We do no rounding here
678 since assign_stack_local will do any required rounding.
679
680 KEEP is non-zero if this slot is to be retained after a call to
681 free_temp_slots. Automatic variables for a block are allocated with this
682 flag. */
683
684rtx
685assign_stack_temp (mode, size, keep)
686 enum machine_mode mode;
687 int size;
688 int keep;
689{
690 struct temp_slot *p, *best_p = 0;
691
692 /* First try to find an available, already-allocated temporary that is the
693 exact size we require. */
694 for (p = temp_slots; p; p = p->next)
695 if (p->size == size && GET_MODE (p->slot) == mode && ! p->in_use)
696 break;
697
698 /* If we didn't find, one, try one that is larger than what we want. We
699 find the smallest such. */
700 if (p == 0)
701 for (p = temp_slots; p; p = p->next)
702 if (p->size > size && GET_MODE (p->slot) == mode && ! p->in_use
703 && (best_p == 0 || best_p->size > p->size))
704 best_p = p;
705
706 /* Make our best, if any, the one to use. */
707 if (best_p)
708 p = best_p;
709
710 /* If we still didn't find one, make a new temporary. */
711 if (p == 0)
712 {
713 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
714 p->size = size;
715 /* If the temp slot mode doesn't indicate the alignment,
716 use the largest possible, so no one will be disappointed. */
717 p->slot = assign_stack_local (mode, size, mode == BLKmode ? -1 : 0);
718 p->next = temp_slots;
719 temp_slots = p;
720 }
721
722 p->in_use = 1;
723 p->level = temp_slot_level;
724 p->keep = keep;
725 return p->slot;
726}
727\f
728/* If X could be a reference to a temporary slot, mark that slot as belonging
729 to the to one level higher. If X matched one of our slots, just mark that
730 one. Otherwise, we can't easily predict which it is, so upgrade all of
731 them. Kept slots need not be touched.
732
733 This is called when an ({...}) construct occurs and a statement
734 returns a value in memory. */
735
736void
737preserve_temp_slots (x)
738 rtx x;
739{
740 struct temp_slot *p;
741
742 /* If X is not in memory or is at a constant address, it cannot be in
743 a temporary slot. */
744 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
745 return;
746
747 /* First see if we can find a match. */
748 for (p = temp_slots; p; p = p->next)
749 if (p->in_use && x == p->slot)
750 {
751 p->level--;
752 return;
753 }
754
755 /* Otherwise, preserve all non-kept slots at this level. */
756 for (p = temp_slots; p; p = p->next)
757 if (p->in_use && p->level == temp_slot_level && ! p->keep)
758 p->level--;
759}
760
761/* Free all temporaries used so far. This is normally called at the end
762 of generating code for a statement. */
763
764void
765free_temp_slots ()
766{
767 struct temp_slot *p;
768
769 for (p = temp_slots; p; p = p->next)
770 if (p->in_use && p->level == temp_slot_level && ! p->keep)
771 p->in_use = 0;
772}
773
774/* Push deeper into the nesting level for stack temporaries. */
775
776void
777push_temp_slots ()
778{
779 /* For GNU C++, we must allow a sequence to be emitted anywhere in
780 the level where the sequence was started. By not changing levels
781 when the compiler is inside a sequence, the temporaries for the
782 sequence and the temporaries will not unwittingly conflict with
783 the temporaries for other sequences and/or code at that level. */
784 if (in_sequence_p ())
785 return;
786
787 temp_slot_level++;
788}
789
790/* Pop a temporary nesting level. All slots in use in the current level
791 are freed. */
792
793void
794pop_temp_slots ()
795{
796 struct temp_slot *p;
797
798 /* See comment in push_temp_slots about why we don't change levels
799 in sequences. */
800 if (in_sequence_p ())
801 return;
802
803 for (p = temp_slots; p; p = p->next)
804 if (p->in_use && p->level == temp_slot_level)
805 p->in_use = 0;
806
807 temp_slot_level--;
808}
809\f
810/* Retroactively move an auto variable from a register to a stack slot.
811 This is done when an address-reference to the variable is seen. */
812
813void
814put_var_into_stack (decl)
815 tree decl;
816{
817 register rtx reg;
818 register rtx new = 0;
00d8a4c1 819 enum machine_mode promoted_mode, decl_mode;
6f086dfc
RS
820 struct function *function = 0;
821 tree context = decl_function_context (decl);
822
00d8a4c1 823 /* Get the current rtl used for this object and it's original mode. */
6f086dfc 824 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
2baccce2
RS
825
826 /* No need to do anything if decl has no rtx yet
827 since in that case caller is setting TREE_ADDRESSABLE
828 and a stack slot will be assigned when the rtl is made. */
829 if (reg == 0)
830 return;
00d8a4c1
RK
831
832 /* Get the declared mode for this object. */
833 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
834 : DECL_MODE (decl));
2baccce2
RS
835 /* Get the mode it's actually stored in. */
836 promoted_mode = GET_MODE (reg);
6f086dfc
RS
837
838 /* If this variable comes from an outer function,
839 find that function's saved context. */
840 if (context != current_function_decl)
841 for (function = outer_function_chain; function; function = function->next)
842 if (function->decl == context)
843 break;
844
6f086dfc
RS
845 /* If this is a variable-size object with a pseudo to address it,
846 put that pseudo into the stack, if the var is nonlocal. */
a82ad570 847 if (DECL_NONLOCAL (decl)
6f086dfc
RS
848 && GET_CODE (reg) == MEM
849 && GET_CODE (XEXP (reg, 0)) == REG
850 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
4cdb3e78
RS
851 {
852 reg = XEXP (reg, 0);
853 decl_mode = promoted_mode = GET_MODE (reg);
854 }
e15762df 855
6f086dfc
RS
856 if (GET_CODE (reg) != REG)
857 return;
858
859 if (function)
860 {
861 if (REGNO (reg) < function->max_parm_reg)
862 new = function->parm_reg_stack_loc[REGNO (reg)];
863 if (new == 0)
e15762df 864 new = assign_outer_stack_local (decl_mode, GET_MODE_SIZE (decl_mode),
6f086dfc
RS
865 0, function);
866 }
867 else
868 {
869 if (REGNO (reg) < max_parm_reg)
870 new = parm_reg_stack_loc[REGNO (reg)];
871 if (new == 0)
e15762df 872 new = assign_stack_local (decl_mode, GET_MODE_SIZE (decl_mode), 0);
6f086dfc
RS
873 }
874
875 XEXP (reg, 0) = XEXP (new, 0);
876 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
877 REG_USERVAR_P (reg) = 0;
878 PUT_CODE (reg, MEM);
00d8a4c1 879 PUT_MODE (reg, decl_mode);
6f086dfc
RS
880
881 /* If this is a memory ref that contains aggregate components,
882 mark it as such for cse and loop optimize. */
883 MEM_IN_STRUCT_P (reg)
884 = (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
885 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
c1b98a95
RK
886 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
887 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE);
6f086dfc
RS
888
889 /* Now make sure that all refs to the variable, previously made
890 when it was a register, are fixed up to be valid again. */
891 if (function)
892 {
893 struct var_refs_queue *temp;
894
895 /* Variable is inherited; fix it up when we get back to its function. */
896 push_obstacks (function->function_obstack,
897 function->function_maybepermanent_obstack);
898 temp
899 = (struct var_refs_queue *) oballoc (sizeof (struct var_refs_queue));
900 temp->modified = reg;
00d8a4c1
RK
901 temp->promoted_mode = promoted_mode;
902 temp->unsignedp = TREE_UNSIGNED (TREE_TYPE (decl));
6f086dfc
RS
903 temp->next = function->fixup_var_refs_queue;
904 function->fixup_var_refs_queue = temp;
905 pop_obstacks ();
906 }
907 else
908 /* Variable is local; fix it up now. */
00d8a4c1 909 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (TREE_TYPE (decl)));
6f086dfc
RS
910}
911\f
912static void
00d8a4c1 913fixup_var_refs (var, promoted_mode, unsignedp)
6f086dfc 914 rtx var;
00d8a4c1
RK
915 enum machine_mode promoted_mode;
916 int unsignedp;
6f086dfc
RS
917{
918 tree pending;
919 rtx first_insn = get_insns ();
920 struct sequence_stack *stack = sequence_stack;
921 tree rtl_exps = rtl_expr_chain;
922
923 /* Must scan all insns for stack-refs that exceed the limit. */
00d8a4c1 924 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn, stack == 0);
6f086dfc
RS
925
926 /* Scan all pending sequences too. */
927 for (; stack; stack = stack->next)
928 {
929 push_to_sequence (stack->first);
00d8a4c1
RK
930 fixup_var_refs_insns (var, promoted_mode, unsignedp,
931 stack->first, stack->next != 0);
6f086dfc
RS
932 /* Update remembered end of sequence
933 in case we added an insn at the end. */
934 stack->last = get_last_insn ();
935 end_sequence ();
936 }
937
938 /* Scan all waiting RTL_EXPRs too. */
939 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
940 {
941 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
942 if (seq != const0_rtx && seq != 0)
943 {
944 push_to_sequence (seq);
00d8a4c1 945 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0);
6f086dfc
RS
946 end_sequence ();
947 }
948 }
949}
950\f
951/* This structure is used by the following two functions to record MEMs or
952 pseudos used to replace VAR, any SUBREGs of VAR, and any MEMs containing
953 VAR as an address. We need to maintain this list in case two operands of
954 an insn were required to match; in that case we must ensure we use the
955 same replacement. */
956
957struct fixup_replacement
958{
959 rtx old;
960 rtx new;
961 struct fixup_replacement *next;
962};
963
964/* REPLACEMENTS is a pointer to a list of the above structures and X is
965 some part of an insn. Return a struct fixup_replacement whose OLD
966 value is equal to X. Allocate a new structure if no such entry exists. */
967
968static struct fixup_replacement *
2740a678 969find_fixup_replacement (replacements, x)
6f086dfc
RS
970 struct fixup_replacement **replacements;
971 rtx x;
972{
973 struct fixup_replacement *p;
974
975 /* See if we have already replaced this. */
976 for (p = *replacements; p && p->old != x; p = p->next)
977 ;
978
979 if (p == 0)
980 {
981 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
982 p->old = x;
983 p->new = 0;
984 p->next = *replacements;
985 *replacements = p;
986 }
987
988 return p;
989}
990
991/* Scan the insn-chain starting with INSN for refs to VAR
992 and fix them up. TOPLEVEL is nonzero if this chain is the
993 main chain of insns for the current function. */
994
995static void
00d8a4c1 996fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel)
6f086dfc 997 rtx var;
00d8a4c1
RK
998 enum machine_mode promoted_mode;
999 int unsignedp;
6f086dfc
RS
1000 rtx insn;
1001 int toplevel;
1002{
02a10449
RK
1003 rtx call_dest = 0;
1004
6f086dfc
RS
1005 while (insn)
1006 {
1007 rtx next = NEXT_INSN (insn);
1008 rtx note;
e15762df 1009 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
6f086dfc
RS
1010 {
1011 /* The insn to load VAR from a home in the arglist
1012 is now a no-op. When we see it, just delete it. */
1013 if (toplevel
1014 && GET_CODE (PATTERN (insn)) == SET
1015 && SET_DEST (PATTERN (insn)) == var
d1e37dc7
RS
1016 /* If this represents the result of an insn group,
1017 don't delete the insn. */
1018 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
6f086dfc
RS
1019 && rtx_equal_p (SET_SRC (PATTERN (insn)), var))
1020 {
b4ff474c
RS
1021 /* In unoptimized compilation, we shouldn't call delete_insn
1022 except in jump.c doing warnings. */
1023 PUT_CODE (insn, NOTE);
1024 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1025 NOTE_SOURCE_FILE (insn) = 0;
6f086dfc
RS
1026 if (insn == last_parm_insn)
1027 last_parm_insn = PREV_INSN (next);
1028 }
1029 else
1030 {
02a10449
RK
1031 struct fixup_replacement *replacements = 0;
1032 rtx next_insn = NEXT_INSN (insn);
1033
1034#ifdef SMALL_REGISTER_CLASSES
1035 /* If the insn that copies the results of a CALL_INSN
1036 into a pseudo now references VAR, we have to use an
1037 intermediate pseudo since we want the life of the
1038 return value register to be only a single insn.
1039
1040 If we don't use an intermediate pseudo, such things as
1041 address computations to make the address of VAR valid
1042 if it is not can be placed beween the CALL_INSN and INSN.
1043
1044 To make sure this doesn't happen, we record the destination
1045 of the CALL_INSN and see if the next insn uses both that
1046 and VAR. */
1047
1048 if (call_dest != 0 && GET_CODE (insn) == INSN
1049 && reg_mentioned_p (var, PATTERN (insn))
1050 && reg_mentioned_p (call_dest, PATTERN (insn)))
1051 {
1052 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1053
1054 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1055
1056 PATTERN (insn) = replace_rtx (PATTERN (insn),
1057 call_dest, temp);
1058 }
1059
1060 if (GET_CODE (insn) == CALL_INSN
1061 && GET_CODE (PATTERN (insn)) == SET)
1062 call_dest = SET_DEST (PATTERN (insn));
1063 else if (GET_CODE (insn) == CALL_INSN
1064 && GET_CODE (PATTERN (insn)) == PARALLEL
1065 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1066 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1067 else
1068 call_dest = 0;
1069#endif
1070
6f086dfc
RS
1071 /* See if we have to do anything to INSN now that VAR is in
1072 memory. If it needs to be loaded into a pseudo, use a single
1073 pseudo for the entire insn in case there is a MATCH_DUP
1074 between two operands. We pass a pointer to the head of
1075 a list of struct fixup_replacements. If fixup_var_refs_1
1076 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1077 it will record them in this list.
1078
1079 If it allocated a pseudo for any replacement, we copy into
1080 it here. */
1081
00d8a4c1
RK
1082 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1083 &replacements);
6f086dfc 1084
77121fee
JW
1085 /* If this is last_parm_insn, and any instructions were output
1086 after it to fix it up, then we must set last_parm_insn to
1087 the last such instruction emitted. */
1088 if (insn == last_parm_insn)
1089 last_parm_insn = PREV_INSN (next_insn);
1090
6f086dfc
RS
1091 while (replacements)
1092 {
1093 if (GET_CODE (replacements->new) == REG)
1094 {
1095 rtx insert_before;
00d8a4c1 1096 rtx seq;
6f086dfc
RS
1097
1098 /* OLD might be a (subreg (mem)). */
1099 if (GET_CODE (replacements->old) == SUBREG)
1100 replacements->old
1101 = fixup_memory_subreg (replacements->old, insn, 0);
1102 else
1103 replacements->old
1104 = fixup_stack_1 (replacements->old, insn);
1105
1106 /* We can not separate USE insns from the CALL_INSN
1107 that they belong to. If this is a CALL_INSN, insert
b335c2cc 1108 the move insn before the USE insns preceding it
6f086dfc
RS
1109 instead of immediately before the insn. */
1110 if (GET_CODE (insn) == CALL_INSN)
1111 {
1112 insert_before = insn;
1113 while (GET_CODE (PREV_INSN (insert_before)) == INSN
1114 && GET_CODE (PATTERN (PREV_INSN (insert_before))) == USE)
1115 insert_before = PREV_INSN (insert_before);
1116 }
1117 else
1118 insert_before = insn;
1119
00d8a4c1
RK
1120 /* If we are changing the mode, do a conversion.
1121 This might be wasteful, but combine.c will
1122 eliminate much of the waste. */
1123
1124 if (GET_MODE (replacements->new)
1125 != GET_MODE (replacements->old))
1126 {
1127 start_sequence ();
1128 convert_move (replacements->new,
1129 replacements->old, unsignedp);
1130 seq = gen_sequence ();
1131 end_sequence ();
1132 }
1133 else
1134 seq = gen_move_insn (replacements->new,
1135 replacements->old);
1136
1137 emit_insn_before (seq, insert_before);
6f086dfc
RS
1138 }
1139
1140 replacements = replacements->next;
1141 }
1142 }
1143
1144 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1145 But don't touch other insns referred to by reg-notes;
1146 we will get them elsewhere. */
1147 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1148 if (GET_CODE (note) != INSN_LIST)
ab6155b7
RK
1149 XEXP (note, 0)
1150 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
6f086dfc
RS
1151 }
1152 insn = next;
1153 }
1154}
1155\f
00d8a4c1
RK
1156/* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1157 See if the rtx expression at *LOC in INSN needs to be changed.
6f086dfc
RS
1158
1159 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1160 contain a list of original rtx's and replacements. If we find that we need
1161 to modify this insn by replacing a memory reference with a pseudo or by
1162 making a new MEM to implement a SUBREG, we consult that list to see if
1163 we have already chosen a replacement. If none has already been allocated,
1164 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1165 or the SUBREG, as appropriate, to the pseudo. */
1166
1167static void
00d8a4c1 1168fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
6f086dfc 1169 register rtx var;
00d8a4c1 1170 enum machine_mode promoted_mode;
6f086dfc
RS
1171 register rtx *loc;
1172 rtx insn;
1173 struct fixup_replacement **replacements;
1174{
1175 register int i;
1176 register rtx x = *loc;
1177 RTX_CODE code = GET_CODE (x);
1178 register char *fmt;
1179 register rtx tem, tem1;
1180 struct fixup_replacement *replacement;
1181
1182 switch (code)
1183 {
1184 case MEM:
1185 if (var == x)
1186 {
1187 /* If we already have a replacement, use it. Otherwise,
1188 try to fix up this address in case it is invalid. */
1189
2740a678 1190 replacement = find_fixup_replacement (replacements, var);
6f086dfc
RS
1191 if (replacement->new)
1192 {
1193 *loc = replacement->new;
1194 return;
1195 }
1196
1197 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1198
00d8a4c1
RK
1199 /* Unless we are forcing memory to register or we changed the mode,
1200 we can leave things the way they are if the insn is valid. */
6f086dfc
RS
1201
1202 INSN_CODE (insn) = -1;
00d8a4c1
RK
1203 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1204 && recog_memoized (insn) >= 0)
6f086dfc
RS
1205 return;
1206
00d8a4c1 1207 *loc = replacement->new = gen_reg_rtx (promoted_mode);
6f086dfc
RS
1208 return;
1209 }
1210
1211 /* If X contains VAR, we need to unshare it here so that we update
1212 each occurrence separately. But all identical MEMs in one insn
1213 must be replaced with the same rtx because of the possibility of
1214 MATCH_DUPs. */
1215
1216 if (reg_mentioned_p (var, x))
1217 {
2740a678 1218 replacement = find_fixup_replacement (replacements, x);
6f086dfc
RS
1219 if (replacement->new == 0)
1220 replacement->new = copy_most_rtx (x, var);
1221
1222 *loc = x = replacement->new;
1223 }
1224 break;
1225
1226 case REG:
1227 case CC0:
1228 case PC:
1229 case CONST_INT:
1230 case CONST:
1231 case SYMBOL_REF:
1232 case LABEL_REF:
1233 case CONST_DOUBLE:
1234 return;
1235
1236 case SIGN_EXTRACT:
1237 case ZERO_EXTRACT:
1238 /* Note that in some cases those types of expressions are altered
1239 by optimize_bit_field, and do not survive to get here. */
1240 if (XEXP (x, 0) == var
1241 || (GET_CODE (XEXP (x, 0)) == SUBREG
1242 && SUBREG_REG (XEXP (x, 0)) == var))
1243 {
1244 /* Get TEM as a valid MEM in the mode presently in the insn.
1245
1246 We don't worry about the possibility of MATCH_DUP here; it
1247 is highly unlikely and would be tricky to handle. */
1248
1249 tem = XEXP (x, 0);
1250 if (GET_CODE (tem) == SUBREG)
1251 tem = fixup_memory_subreg (tem, insn, 1);
1252 tem = fixup_stack_1 (tem, insn);
1253
1254 /* Unless we want to load from memory, get TEM into the proper mode
1255 for an extract from memory. This can only be done if the
1256 extract is at a constant position and length. */
1257
1258 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1259 && GET_CODE (XEXP (x, 2)) == CONST_INT
1260 && ! mode_dependent_address_p (XEXP (tem, 0))
1261 && ! MEM_VOLATILE_P (tem))
1262 {
1263 enum machine_mode wanted_mode = VOIDmode;
1264 enum machine_mode is_mode = GET_MODE (tem);
1265 int width = INTVAL (XEXP (x, 1));
1266 int pos = INTVAL (XEXP (x, 2));
1267
1268#ifdef HAVE_extzv
1269 if (GET_CODE (x) == ZERO_EXTRACT)
1270 wanted_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
1271#endif
1272#ifdef HAVE_extv
1273 if (GET_CODE (x) == SIGN_EXTRACT)
1274 wanted_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
1275#endif
6dc42e49 1276 /* If we have a narrower mode, we can do something. */
6f086dfc
RS
1277 if (wanted_mode != VOIDmode
1278 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
1279 {
1280 int offset = pos / BITS_PER_UNIT;
1281 rtx old_pos = XEXP (x, 2);
1282 rtx newmem;
1283
1284 /* If the bytes and bits are counted differently, we
1285 must adjust the offset. */
1286#if BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
1287 offset = (GET_MODE_SIZE (is_mode)
1288 - GET_MODE_SIZE (wanted_mode) - offset);
1289#endif
1290
1291 pos %= GET_MODE_BITSIZE (wanted_mode);
1292
1293 newmem = gen_rtx (MEM, wanted_mode,
1294 plus_constant (XEXP (tem, 0), offset));
1295 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
1296 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
1297 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
1298
1299 /* Make the change and see if the insn remains valid. */
1300 INSN_CODE (insn) = -1;
1301 XEXP (x, 0) = newmem;
5f4f0e22 1302 XEXP (x, 2) = GEN_INT (pos);
6f086dfc
RS
1303
1304 if (recog_memoized (insn) >= 0)
1305 return;
1306
1307 /* Otherwise, restore old position. XEXP (x, 0) will be
1308 restored later. */
1309 XEXP (x, 2) = old_pos;
1310 }
1311 }
1312
1313 /* If we get here, the bitfield extract insn can't accept a memory
1314 reference. Copy the input into a register. */
1315
1316 tem1 = gen_reg_rtx (GET_MODE (tem));
1317 emit_insn_before (gen_move_insn (tem1, tem), insn);
1318 XEXP (x, 0) = tem1;
1319 return;
1320 }
1321 break;
1322
1323 case SUBREG:
1324 if (SUBREG_REG (x) == var)
1325 {
00d8a4c1
RK
1326 /* If this is a special SUBREG made because VAR was promoted
1327 from a wider mode, replace it with VAR and call ourself
1328 recursively, this time saying that the object previously
1329 had its current mode (by virtue of the SUBREG). */
1330
1331 if (SUBREG_PROMOTED_VAR_P (x))
1332 {
1333 *loc = var;
1334 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
1335 return;
1336 }
1337
6f086dfc
RS
1338 /* If this SUBREG makes VAR wider, it has become a paradoxical
1339 SUBREG with VAR in memory, but these aren't allowed at this
1340 stage of the compilation. So load VAR into a pseudo and take
1341 a SUBREG of that pseudo. */
1342 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
1343 {
2740a678 1344 replacement = find_fixup_replacement (replacements, var);
6f086dfc
RS
1345 if (replacement->new == 0)
1346 replacement->new = gen_reg_rtx (GET_MODE (var));
1347 SUBREG_REG (x) = replacement->new;
1348 return;
1349 }
1350
1351 /* See if we have already found a replacement for this SUBREG.
1352 If so, use it. Otherwise, make a MEM and see if the insn
1353 is recognized. If not, or if we should force MEM into a register,
1354 make a pseudo for this SUBREG. */
2740a678 1355 replacement = find_fixup_replacement (replacements, x);
6f086dfc
RS
1356 if (replacement->new)
1357 {
1358 *loc = replacement->new;
1359 return;
1360 }
1361
1362 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
1363
f898f031 1364 INSN_CODE (insn) = -1;
6f086dfc
RS
1365 if (! flag_force_mem && recog_memoized (insn) >= 0)
1366 return;
1367
1368 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
1369 return;
1370 }
1371 break;
1372
1373 case SET:
1374 /* First do special simplification of bit-field references. */
1375 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
1376 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
1377 optimize_bit_field (x, insn, 0);
1378 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
1379 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
5f4f0e22 1380 optimize_bit_field (x, insn, NULL_PTR);
6f086dfc
RS
1381
1382 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
1383 insn into a pseudo and store the low part of the pseudo into VAR. */
1384 if (GET_CODE (SET_DEST (x)) == SUBREG
1385 && SUBREG_REG (SET_DEST (x)) == var
1386 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
1387 > GET_MODE_SIZE (GET_MODE (var))))
1388 {
1389 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
1390 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
1391 tem)),
1392 insn);
1393 break;
1394 }
1395
1396 {
1397 rtx dest = SET_DEST (x);
1398 rtx src = SET_SRC (x);
1399 rtx outerdest = dest;
1400
1401 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1402 || GET_CODE (dest) == SIGN_EXTRACT
1403 || GET_CODE (dest) == ZERO_EXTRACT)
1404 dest = XEXP (dest, 0);
1405
1406 if (GET_CODE (src) == SUBREG)
1407 src = XEXP (src, 0);
1408
1409 /* If VAR does not appear at the top level of the SET
1410 just scan the lower levels of the tree. */
1411
1412 if (src != var && dest != var)
1413 break;
1414
1415 /* We will need to rerecognize this insn. */
1416 INSN_CODE (insn) = -1;
1417
1418#ifdef HAVE_insv
1419 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
1420 {
1421 /* Since this case will return, ensure we fixup all the
1422 operands here. */
00d8a4c1
RK
1423 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
1424 insn, replacements);
1425 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
1426 insn, replacements);
1427 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
1428 insn, replacements);
6f086dfc
RS
1429
1430 tem = XEXP (outerdest, 0);
1431
1432 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
1433 that may appear inside a ZERO_EXTRACT.
1434 This was legitimate when the MEM was a REG. */
1435 if (GET_CODE (tem) == SUBREG
1436 && SUBREG_REG (tem) == var)
1437 tem = fixup_memory_subreg (tem, insn, 1);
1438 else
1439 tem = fixup_stack_1 (tem, insn);
1440
1441 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
1442 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
1443 && ! mode_dependent_address_p (XEXP (tem, 0))
1444 && ! MEM_VOLATILE_P (tem))
1445 {
1446 enum machine_mode wanted_mode
1447 = insn_operand_mode[(int) CODE_FOR_insv][0];
1448 enum machine_mode is_mode = GET_MODE (tem);
1449 int width = INTVAL (XEXP (outerdest, 1));
1450 int pos = INTVAL (XEXP (outerdest, 2));
1451
6dc42e49 1452 /* If we have a narrower mode, we can do something. */
6f086dfc
RS
1453 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
1454 {
1455 int offset = pos / BITS_PER_UNIT;
1456 rtx old_pos = XEXP (outerdest, 2);
1457 rtx newmem;
1458
1459#if BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
1460 offset = (GET_MODE_SIZE (is_mode)
1461 - GET_MODE_SIZE (wanted_mode) - offset);
1462#endif
1463
1464 pos %= GET_MODE_BITSIZE (wanted_mode);
1465
1466 newmem = gen_rtx (MEM, wanted_mode,
1467 plus_constant (XEXP (tem, 0), offset));
1468 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
1469 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
1470 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
1471
1472 /* Make the change and see if the insn remains valid. */
1473 INSN_CODE (insn) = -1;
1474 XEXP (outerdest, 0) = newmem;
5f4f0e22 1475 XEXP (outerdest, 2) = GEN_INT (pos);
6f086dfc
RS
1476
1477 if (recog_memoized (insn) >= 0)
1478 return;
1479
1480 /* Otherwise, restore old position. XEXP (x, 0) will be
1481 restored later. */
1482 XEXP (outerdest, 2) = old_pos;
1483 }
1484 }
1485
1486 /* If we get here, the bit-field store doesn't allow memory
1487 or isn't located at a constant position. Load the value into
1488 a register, do the store, and put it back into memory. */
1489
1490 tem1 = gen_reg_rtx (GET_MODE (tem));
1491 emit_insn_before (gen_move_insn (tem1, tem), insn);
1492 emit_insn_after (gen_move_insn (tem, tem1), insn);
1493 XEXP (outerdest, 0) = tem1;
1494 return;
1495 }
1496#endif
1497
1498 /* STRICT_LOW_PART is a no-op on memory references
1499 and it can cause combinations to be unrecognizable,
1500 so eliminate it. */
1501
1502 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
1503 SET_DEST (x) = XEXP (SET_DEST (x), 0);
1504
1505 /* A valid insn to copy VAR into or out of a register
1506 must be left alone, to avoid an infinite loop here.
1507 If the reference to VAR is by a subreg, fix that up,
1508 since SUBREG is not valid for a memref.
e15762df
RK
1509 Also fix up the address of the stack slot.
1510
1511 Note that we must not try to recognize the insn until
1512 after we know that we have valid addresses and no
1513 (subreg (mem ...) ...) constructs, since these interfere
1514 with determining the validity of the insn. */
6f086dfc
RS
1515
1516 if ((SET_SRC (x) == var
1517 || (GET_CODE (SET_SRC (x)) == SUBREG
1518 && SUBREG_REG (SET_SRC (x)) == var))
1519 && (GET_CODE (SET_DEST (x)) == REG
1520 || (GET_CODE (SET_DEST (x)) == SUBREG
1521 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
e15762df 1522 && x == single_set (PATTERN (insn)))
6f086dfc 1523 {
e15762df
RK
1524 rtx pat;
1525
2740a678 1526 replacement = find_fixup_replacement (replacements, SET_SRC (x));
6f086dfc 1527 if (replacement->new)
6f086dfc 1528 SET_SRC (x) = replacement->new;
6f086dfc
RS
1529 else if (GET_CODE (SET_SRC (x)) == SUBREG)
1530 SET_SRC (x) = replacement->new
1531 = fixup_memory_subreg (SET_SRC (x), insn, 0);
1532 else
1533 SET_SRC (x) = replacement->new
1534 = fixup_stack_1 (SET_SRC (x), insn);
e15762df
RK
1535
1536 if (recog_memoized (insn) >= 0)
1537 return;
1538
1539 /* INSN is not valid, but we know that we want to
1540 copy SET_SRC (x) to SET_DEST (x) in some way. So
1541 we generate the move and see whether it requires more
1542 than one insn. If it does, we emit those insns and
1543 delete INSN. Otherwise, we an just replace the pattern
1544 of INSN; we have already verified above that INSN has
1545 no other function that to do X. */
1546
1547 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
1548 if (GET_CODE (pat) == SEQUENCE)
1549 {
1550 emit_insn_after (pat, insn);
1551 PUT_CODE (insn, NOTE);
1552 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1553 NOTE_SOURCE_FILE (insn) = 0;
1554 }
1555 else
1556 PATTERN (insn) = pat;
1557
6f086dfc
RS
1558 return;
1559 }
1560
1561 if ((SET_DEST (x) == var
1562 || (GET_CODE (SET_DEST (x)) == SUBREG
1563 && SUBREG_REG (SET_DEST (x)) == var))
1564 && (GET_CODE (SET_SRC (x)) == REG
1565 || (GET_CODE (SET_SRC (x)) == SUBREG
1566 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
e15762df 1567 && x == single_set (PATTERN (insn)))
6f086dfc 1568 {
e15762df
RK
1569 rtx pat;
1570
6f086dfc
RS
1571 if (GET_CODE (SET_DEST (x)) == SUBREG)
1572 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
1573 else
1574 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
e15762df
RK
1575
1576 if (recog_memoized (insn) >= 0)
1577 return;
1578
1579 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
1580 if (GET_CODE (pat) == SEQUENCE)
1581 {
1582 emit_insn_after (pat, insn);
1583 PUT_CODE (insn, NOTE);
1584 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1585 NOTE_SOURCE_FILE (insn) = 0;
1586 }
1587 else
1588 PATTERN (insn) = pat;
1589
6f086dfc
RS
1590 return;
1591 }
1592
1593 /* Otherwise, storing into VAR must be handled specially
1594 by storing into a temporary and copying that into VAR
00d8a4c1
RK
1595 with a new insn after this one. Note that this case
1596 will be used when storing into a promoted scalar since
1597 the insn will now have different modes on the input
1598 and output and hence will be invalid (except for the case
1599 of setting it to a constant, which does not need any
1600 change if it is valid). We generate extra code in that case,
1601 but combine.c will eliminate it. */
6f086dfc
RS
1602
1603 if (dest == var)
1604 {
1605 rtx temp;
00d8a4c1
RK
1606 rtx fixeddest = SET_DEST (x);
1607
6f086dfc 1608 /* STRICT_LOW_PART can be discarded, around a MEM. */
00d8a4c1
RK
1609 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
1610 fixeddest = XEXP (fixeddest, 0);
6f086dfc 1611 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
00d8a4c1
RK
1612 if (GET_CODE (fixeddest) == SUBREG)
1613 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
6f086dfc 1614 else
00d8a4c1
RK
1615 fixeddest = fixup_stack_1 (fixeddest, insn);
1616
1617 temp = gen_reg_rtx (GET_MODE (SET_SRC (x)) == VOIDmode
1618 ? GET_MODE (fixeddest)
1619 : GET_MODE (SET_SRC (x)));
1620
1621 emit_insn_after (gen_move_insn (fixeddest,
1622 gen_lowpart (GET_MODE (fixeddest),
1623 temp)),
1624 insn);
6f086dfc 1625
6f086dfc
RS
1626 SET_DEST (x) = temp;
1627 }
1628 }
1629 }
1630
1631 /* Nothing special about this RTX; fix its operands. */
1632
1633 fmt = GET_RTX_FORMAT (code);
1634 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1635 {
1636 if (fmt[i] == 'e')
00d8a4c1 1637 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
6f086dfc
RS
1638 if (fmt[i] == 'E')
1639 {
1640 register int j;
1641 for (j = 0; j < XVECLEN (x, i); j++)
00d8a4c1
RK
1642 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
1643 insn, replacements);
6f086dfc
RS
1644 }
1645 }
1646}
1647\f
1648/* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
1649 return an rtx (MEM:m1 newaddr) which is equivalent.
1650 If any insns must be emitted to compute NEWADDR, put them before INSN.
1651
1652 UNCRITICAL nonzero means accept paradoxical subregs.
ab6155b7 1653 This is used for subregs found inside of ZERO_EXTRACTs and in REG_NOTES. */
6f086dfc
RS
1654
1655static rtx
1656fixup_memory_subreg (x, insn, uncritical)
1657 rtx x;
1658 rtx insn;
1659 int uncritical;
1660{
1661 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
1662 rtx addr = XEXP (SUBREG_REG (x), 0);
1663 enum machine_mode mode = GET_MODE (x);
1664 rtx saved, result;
1665
1666 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
1667 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
1668 && ! uncritical)
1669 abort ();
1670
1671#if BYTES_BIG_ENDIAN
1672 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
1673 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
1674#endif
1675 addr = plus_constant (addr, offset);
1676 if (!flag_force_addr && memory_address_p (mode, addr))
1677 /* Shortcut if no insns need be emitted. */
1678 return change_address (SUBREG_REG (x), mode, addr);
1679 start_sequence ();
1680 result = change_address (SUBREG_REG (x), mode, addr);
1681 emit_insn_before (gen_sequence (), insn);
1682 end_sequence ();
1683 return result;
1684}
1685
1686/* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
1687 Replace subexpressions of X in place.
1688 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
1689 Otherwise return X, with its contents possibly altered.
1690
ab6155b7
RK
1691 If any insns must be emitted to compute NEWADDR, put them before INSN.
1692
1693 UNCRITICAL is as in fixup_memory_subreg. */
6f086dfc
RS
1694
1695static rtx
ab6155b7 1696walk_fixup_memory_subreg (x, insn, uncritical)
6f086dfc
RS
1697 register rtx x;
1698 rtx insn;
ab6155b7 1699 int uncritical;
6f086dfc
RS
1700{
1701 register enum rtx_code code;
1702 register char *fmt;
1703 register int i;
1704
1705 if (x == 0)
1706 return 0;
1707
1708 code = GET_CODE (x);
1709
1710 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
ab6155b7 1711 return fixup_memory_subreg (x, insn, uncritical);
6f086dfc
RS
1712
1713 /* Nothing special about this RTX; fix its operands. */
1714
1715 fmt = GET_RTX_FORMAT (code);
1716 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1717 {
1718 if (fmt[i] == 'e')
ab6155b7 1719 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
6f086dfc
RS
1720 if (fmt[i] == 'E')
1721 {
1722 register int j;
1723 for (j = 0; j < XVECLEN (x, i); j++)
1724 XVECEXP (x, i, j)
ab6155b7 1725 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
6f086dfc
RS
1726 }
1727 }
1728 return x;
1729}
1730\f
1731#if 0
1732/* Fix up any references to stack slots that are invalid memory addresses
1733 because they exceed the maximum range of a displacement. */
1734
1735void
1736fixup_stack_slots ()
1737{
1738 register rtx insn;
1739
1740 /* Did we generate a stack slot that is out of range
1741 or otherwise has an invalid address? */
1742 if (invalid_stack_slot)
1743 {
1744 /* Yes. Must scan all insns for stack-refs that exceed the limit. */
1745 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1746 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
1747 || GET_CODE (insn) == JUMP_INSN)
1748 fixup_stack_1 (PATTERN (insn), insn);
1749 }
1750}
1751#endif
1752
1753/* For each memory ref within X, if it refers to a stack slot
1754 with an out of range displacement, put the address in a temp register
1755 (emitting new insns before INSN to load these registers)
1756 and alter the memory ref to use that register.
1757 Replace each such MEM rtx with a copy, to avoid clobberage. */
1758
1759static rtx
1760fixup_stack_1 (x, insn)
1761 rtx x;
1762 rtx insn;
1763{
1764 register int i;
1765 register RTX_CODE code = GET_CODE (x);
1766 register char *fmt;
1767
1768 if (code == MEM)
1769 {
1770 register rtx ad = XEXP (x, 0);
1771 /* If we have address of a stack slot but it's not valid
1772 (displacement is too large), compute the sum in a register. */
1773 if (GET_CODE (ad) == PLUS
1774 && GET_CODE (XEXP (ad, 0)) == REG
1775 && REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
1776 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER
1777 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
1778 {
1779 rtx temp, seq;
1780 if (memory_address_p (GET_MODE (x), ad))
1781 return x;
1782
1783 start_sequence ();
1784 temp = copy_to_reg (ad);
1785 seq = gen_sequence ();
1786 end_sequence ();
1787 emit_insn_before (seq, insn);
1788 return change_address (x, VOIDmode, temp);
1789 }
1790 return x;
1791 }
1792
1793 fmt = GET_RTX_FORMAT (code);
1794 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1795 {
1796 if (fmt[i] == 'e')
1797 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
1798 if (fmt[i] == 'E')
1799 {
1800 register int j;
1801 for (j = 0; j < XVECLEN (x, i); j++)
1802 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
1803 }
1804 }
1805 return x;
1806}
1807\f
1808/* Optimization: a bit-field instruction whose field
1809 happens to be a byte or halfword in memory
1810 can be changed to a move instruction.
1811
1812 We call here when INSN is an insn to examine or store into a bit-field.
1813 BODY is the SET-rtx to be altered.
1814
1815 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
1816 (Currently this is called only from function.c, and EQUIV_MEM
1817 is always 0.) */
1818
1819static void
1820optimize_bit_field (body, insn, equiv_mem)
1821 rtx body;
1822 rtx insn;
1823 rtx *equiv_mem;
1824{
1825 register rtx bitfield;
1826 int destflag;
1827 rtx seq = 0;
1828 enum machine_mode mode;
1829
1830 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
1831 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
1832 bitfield = SET_DEST (body), destflag = 1;
1833 else
1834 bitfield = SET_SRC (body), destflag = 0;
1835
1836 /* First check that the field being stored has constant size and position
1837 and is in fact a byte or halfword suitably aligned. */
1838
1839 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
1840 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
1841 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
1842 != BLKmode)
1843 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
1844 {
1845 register rtx memref = 0;
1846
1847 /* Now check that the containing word is memory, not a register,
1848 and that it is safe to change the machine mode. */
1849
1850 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
1851 memref = XEXP (bitfield, 0);
1852 else if (GET_CODE (XEXP (bitfield, 0)) == REG
1853 && equiv_mem != 0)
1854 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
1855 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
1856 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
1857 memref = SUBREG_REG (XEXP (bitfield, 0));
1858 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
1859 && equiv_mem != 0
1860 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
1861 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
1862
1863 if (memref
1864 && ! mode_dependent_address_p (XEXP (memref, 0))
1865 && ! MEM_VOLATILE_P (memref))
1866 {
1867 /* Now adjust the address, first for any subreg'ing
1868 that we are now getting rid of,
1869 and then for which byte of the word is wanted. */
1870
1871 register int offset = INTVAL (XEXP (bitfield, 2));
1872 /* Adjust OFFSET to count bits from low-address byte. */
1873#if BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN
1874 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
1875 - offset - INTVAL (XEXP (bitfield, 1)));
1876#endif
1877 /* Adjust OFFSET to count bytes from low-address byte. */
1878 offset /= BITS_PER_UNIT;
1879 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
1880 {
1881 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
1882#if BYTES_BIG_ENDIAN
1883 offset -= (MIN (UNITS_PER_WORD,
1884 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
1885 - MIN (UNITS_PER_WORD,
1886 GET_MODE_SIZE (GET_MODE (memref))));
1887#endif
1888 }
1889
1890 memref = change_address (memref, mode,
1891 plus_constant (XEXP (memref, 0), offset));
1892
1893 /* Store this memory reference where
1894 we found the bit field reference. */
1895
1896 if (destflag)
1897 {
1898 validate_change (insn, &SET_DEST (body), memref, 1);
1899 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
1900 {
1901 rtx src = SET_SRC (body);
1902 while (GET_CODE (src) == SUBREG
1903 && SUBREG_WORD (src) == 0)
1904 src = SUBREG_REG (src);
1905 if (GET_MODE (src) != GET_MODE (memref))
1906 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
1907 validate_change (insn, &SET_SRC (body), src, 1);
1908 }
1909 else if (GET_MODE (SET_SRC (body)) != VOIDmode
1910 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
1911 /* This shouldn't happen because anything that didn't have
1912 one of these modes should have got converted explicitly
1913 and then referenced through a subreg.
1914 This is so because the original bit-field was
1915 handled by agg_mode and so its tree structure had
1916 the same mode that memref now has. */
1917 abort ();
1918 }
1919 else
1920 {
1921 rtx dest = SET_DEST (body);
1922
1923 while (GET_CODE (dest) == SUBREG
1924 && SUBREG_WORD (dest) == 0)
1925 dest = SUBREG_REG (dest);
1926
1927 validate_change (insn, &SET_DEST (body), dest, 1);
1928
1929 if (GET_MODE (dest) == GET_MODE (memref))
1930 validate_change (insn, &SET_SRC (body), memref, 1);
1931 else
1932 {
1933 /* Convert the mem ref to the destination mode. */
1934 rtx newreg = gen_reg_rtx (GET_MODE (dest));
1935
1936 start_sequence ();
1937 convert_move (newreg, memref,
1938 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
1939 seq = get_insns ();
1940 end_sequence ();
1941
1942 validate_change (insn, &SET_SRC (body), newreg, 1);
1943 }
1944 }
1945
1946 /* See if we can convert this extraction or insertion into
1947 a simple move insn. We might not be able to do so if this
1948 was, for example, part of a PARALLEL.
1949
1950 If we succeed, write out any needed conversions. If we fail,
1951 it is hard to guess why we failed, so don't do anything
1952 special; just let the optimization be suppressed. */
1953
1954 if (apply_change_group () && seq)
1955 emit_insns_before (seq, insn);
1956 }
1957 }
1958}
1959\f
1960/* These routines are responsible for converting virtual register references
1961 to the actual hard register references once RTL generation is complete.
1962
1963 The following four variables are used for communication between the
1964 routines. They contain the offsets of the virtual registers from their
1965 respective hard registers. */
1966
1967static int in_arg_offset;
1968static int var_offset;
1969static int dynamic_offset;
1970static int out_arg_offset;
1971
1972/* In most machines, the stack pointer register is equivalent to the bottom
1973 of the stack. */
1974
1975#ifndef STACK_POINTER_OFFSET
1976#define STACK_POINTER_OFFSET 0
1977#endif
1978
1979/* If not defined, pick an appropriate default for the offset of dynamically
1980 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1981 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1982
1983#ifndef STACK_DYNAMIC_OFFSET
1984
1985#ifdef ACCUMULATE_OUTGOING_ARGS
1986/* The bottom of the stack points to the actual arguments. If
1987 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1988 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1989 stack space for register parameters is not pushed by the caller, but
1990 rather part of the fixed stack areas and hence not included in
1991 `current_function_outgoing_args_size'. Nevertheless, we must allow
1992 for it when allocating stack dynamic objects. */
1993
1994#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1995#define STACK_DYNAMIC_OFFSET(FNDECL) \
1996(current_function_outgoing_args_size \
1997 + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET))
1998
1999#else
2000#define STACK_DYNAMIC_OFFSET(FNDECL) \
2001(current_function_outgoing_args_size + (STACK_POINTER_OFFSET))
2002#endif
2003
2004#else
2005#define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET
2006#endif
2007#endif
2008
2009/* Pass through the INSNS of function FNDECL and convert virtual register
2010 references to hard register references. */
2011
2012void
2013instantiate_virtual_regs (fndecl, insns)
2014 tree fndecl;
2015 rtx insns;
2016{
2017 rtx insn;
2018
2019 /* Compute the offsets to use for this function. */
2020 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
2021 var_offset = STARTING_FRAME_OFFSET;
2022 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
2023 out_arg_offset = STACK_POINTER_OFFSET;
2024
2025 /* Scan all variables and parameters of this function. For each that is
2026 in memory, instantiate all virtual registers if the result is a valid
2027 address. If not, we do it later. That will handle most uses of virtual
2028 regs on many machines. */
2029 instantiate_decls (fndecl, 1);
2030
2031 /* Initialize recognition, indicating that volatile is OK. */
2032 init_recog ();
2033
2034 /* Scan through all the insns, instantiating every virtual register still
2035 present. */
2036 for (insn = insns; insn; insn = NEXT_INSN (insn))
2037 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2038 || GET_CODE (insn) == CALL_INSN)
2039 {
2040 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
5f4f0e22 2041 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
6f086dfc
RS
2042 }
2043
2044 /* Now instantiate the remaining register equivalences for debugging info.
2045 These will not be valid addresses. */
2046 instantiate_decls (fndecl, 0);
2047
2048 /* Indicate that, from now on, assign_stack_local should use
2049 frame_pointer_rtx. */
2050 virtuals_instantiated = 1;
2051}
2052
2053/* Scan all decls in FNDECL (both variables and parameters) and instantiate
2054 all virtual registers in their DECL_RTL's.
2055
2056 If VALID_ONLY, do this only if the resulting address is still valid.
2057 Otherwise, always do it. */
2058
2059static void
2060instantiate_decls (fndecl, valid_only)
2061 tree fndecl;
2062 int valid_only;
2063{
2064 tree decl;
2065
a82ad570 2066 if (DECL_INLINE (fndecl))
6f086dfc
RS
2067 /* When compiling an inline function, the obstack used for
2068 rtl allocation is the maybepermanent_obstack. Calling
2069 `resume_temporary_allocation' switches us back to that
2070 obstack while we process this function's parameters. */
2071 resume_temporary_allocation ();
2072
2073 /* Process all parameters of the function. */
2074 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2075 {
5a73491b
RK
2076 instantiate_decl (DECL_RTL (decl), int_size_in_bytes (TREE_TYPE (decl)),
2077 valid_only);
2078 instantiate_decl (DECL_INCOMING_RTL (decl),
2079 int_size_in_bytes (TREE_TYPE (decl)), valid_only);
6f086dfc
RS
2080 }
2081
2082 /* Now process all variables defined in the function or its subblocks. */
2083 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
2084
a82ad570 2085 if (DECL_INLINE (fndecl))
6f086dfc
RS
2086 {
2087 /* Save all rtl allocated for this function by raising the
2088 high-water mark on the maybepermanent_obstack. */
2089 preserve_data ();
2090 /* All further rtl allocation is now done in the current_obstack. */
2091 rtl_in_current_obstack ();
2092 }
2093}
2094
2095/* Subroutine of instantiate_decls: Process all decls in the given
2096 BLOCK node and all its subblocks. */
2097
2098static void
2099instantiate_decls_1 (let, valid_only)
2100 tree let;
2101 int valid_only;
2102{
2103 tree t;
2104
2105 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
5a73491b
RK
2106 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
2107 valid_only);
6f086dfc
RS
2108
2109 /* Process all subblocks. */
2110 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
2111 instantiate_decls_1 (t, valid_only);
2112}
5a73491b 2113
8008b228 2114/* Subroutine of the preceding procedures: Given RTL representing a
5a73491b
RK
2115 decl and the size of the object, do any instantiation required.
2116
2117 If VALID_ONLY is non-zero, it means that the RTL should only be
2118 changed if the new address is valid. */
2119
2120static void
2121instantiate_decl (x, size, valid_only)
2122 rtx x;
2123 int size;
2124 int valid_only;
2125{
2126 enum machine_mode mode;
2127 rtx addr;
2128
2129 /* If this is not a MEM, no need to do anything. Similarly if the
2130 address is a constant or a register that is not a virtual register. */
2131
2132 if (x == 0 || GET_CODE (x) != MEM)
2133 return;
2134
2135 addr = XEXP (x, 0);
2136 if (CONSTANT_P (addr)
2137 || (GET_CODE (addr) == REG
2138 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
2139 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
2140 return;
2141
2142 /* If we should only do this if the address is valid, copy the address.
2143 We need to do this so we can undo any changes that might make the
2144 address invalid. This copy is unfortunate, but probably can't be
2145 avoided. */
2146
2147 if (valid_only)
2148 addr = copy_rtx (addr);
2149
2150 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
2151
2152 if (! valid_only)
2153 return;
2154
2155 /* Now verify that the resulting address is valid for every integer or
2156 floating-point mode up to and including SIZE bytes long. We do this
2157 since the object might be accessed in any mode and frame addresses
2158 are shared. */
2159
2160 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2161 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
2162 mode = GET_MODE_WIDER_MODE (mode))
2163 if (! memory_address_p (mode, addr))
2164 return;
2165
2166 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
2167 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
2168 mode = GET_MODE_WIDER_MODE (mode))
2169 if (! memory_address_p (mode, addr))
2170 return;
2171
2172 /* Otherwise, put back the address, now that we have updated it and we
2173 know it is valid. */
2174
2175 XEXP (x, 0) = addr;
2176}
6f086dfc
RS
2177\f
2178/* Given a pointer to a piece of rtx and an optional pointer to the
2179 containing object, instantiate any virtual registers present in it.
2180
2181 If EXTRA_INSNS, we always do the replacement and generate
2182 any extra insns before OBJECT. If it zero, we do nothing if replacement
2183 is not valid.
2184
2185 Return 1 if we either had nothing to do or if we were able to do the
2186 needed replacement. Return 0 otherwise; we only return zero if
2187 EXTRA_INSNS is zero.
2188
2189 We first try some simple transformations to avoid the creation of extra
2190 pseudos. */
2191
2192static int
2193instantiate_virtual_regs_1 (loc, object, extra_insns)
2194 rtx *loc;
2195 rtx object;
2196 int extra_insns;
2197{
2198 rtx x;
2199 RTX_CODE code;
2200 rtx new = 0;
2201 int offset;
2202 rtx temp;
2203 rtx seq;
2204 int i, j;
2205 char *fmt;
2206
2207 /* Re-start here to avoid recursion in common cases. */
2208 restart:
2209
2210 x = *loc;
2211 if (x == 0)
2212 return 1;
2213
2214 code = GET_CODE (x);
2215
2216 /* Check for some special cases. */
2217 switch (code)
2218 {
2219 case CONST_INT:
2220 case CONST_DOUBLE:
2221 case CONST:
2222 case SYMBOL_REF:
2223 case CODE_LABEL:
2224 case PC:
2225 case CC0:
2226 case ASM_INPUT:
2227 case ADDR_VEC:
2228 case ADDR_DIFF_VEC:
2229 case RETURN:
2230 return 1;
2231
2232 case SET:
2233 /* We are allowed to set the virtual registers. This means that
2234 that the actual register should receive the source minus the
2235 appropriate offset. This is used, for example, in the handling
2236 of non-local gotos. */
2237 if (SET_DEST (x) == virtual_incoming_args_rtx)
2238 new = arg_pointer_rtx, offset = - in_arg_offset;
2239 else if (SET_DEST (x) == virtual_stack_vars_rtx)
2240 new = frame_pointer_rtx, offset = - var_offset;
2241 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
2242 new = stack_pointer_rtx, offset = - dynamic_offset;
2243 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
2244 new = stack_pointer_rtx, offset = - out_arg_offset;
2245
2246 if (new)
2247 {
2248 /* The only valid sources here are PLUS or REG. Just do
2249 the simplest possible thing to handle them. */
2250 if (GET_CODE (SET_SRC (x)) != REG
2251 && GET_CODE (SET_SRC (x)) != PLUS)
2252 abort ();
2253
2254 start_sequence ();
2255 if (GET_CODE (SET_SRC (x)) != REG)
5f4f0e22 2256 temp = force_operand (SET_SRC (x), NULL_RTX);
6f086dfc
RS
2257 else
2258 temp = SET_SRC (x);
5f4f0e22 2259 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
6f086dfc
RS
2260 seq = get_insns ();
2261 end_sequence ();
2262
2263 emit_insns_before (seq, object);
2264 SET_DEST (x) = new;
2265
2266 if (!validate_change (object, &SET_SRC (x), temp, 0)
2267 || ! extra_insns)
2268 abort ();
2269
2270 return 1;
2271 }
2272
2273 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
2274 loc = &SET_SRC (x);
2275 goto restart;
2276
2277 case PLUS:
2278 /* Handle special case of virtual register plus constant. */
2279 if (CONSTANT_P (XEXP (x, 1)))
2280 {
2281 rtx old;
2282
2283 /* Check for (plus (plus VIRT foo) (const_int)) first. */
2284 if (GET_CODE (XEXP (x, 0)) == PLUS)
2285 {
2286 rtx inner = XEXP (XEXP (x, 0), 0);
2287
2288 if (inner == virtual_incoming_args_rtx)
2289 new = arg_pointer_rtx, offset = in_arg_offset;
2290 else if (inner == virtual_stack_vars_rtx)
2291 new = frame_pointer_rtx, offset = var_offset;
2292 else if (inner == virtual_stack_dynamic_rtx)
2293 new = stack_pointer_rtx, offset = dynamic_offset;
2294 else if (inner == virtual_outgoing_args_rtx)
2295 new = stack_pointer_rtx, offset = out_arg_offset;
2296 else
2297 {
2298 loc = &XEXP (x, 0);
2299 goto restart;
2300 }
2301
2302 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
2303 extra_insns);
2304 new = gen_rtx (PLUS, Pmode, new, XEXP (XEXP (x, 0), 1));
2305 }
2306
2307 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
2308 new = arg_pointer_rtx, offset = in_arg_offset;
2309 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
2310 new = frame_pointer_rtx, offset = var_offset;
2311 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
2312 new = stack_pointer_rtx, offset = dynamic_offset;
2313 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
2314 new = stack_pointer_rtx, offset = out_arg_offset;
2315 else
2316 {
2317 /* We know the second operand is a constant. Unless the
2318 first operand is a REG (which has been already checked),
2319 it needs to be checked. */
2320 if (GET_CODE (XEXP (x, 0)) != REG)
2321 {
2322 loc = &XEXP (x, 0);
2323 goto restart;
2324 }
2325 return 1;
2326 }
2327
2328 old = XEXP (x, 0);
2329 XEXP (x, 0) = new;
2330 new = plus_constant (XEXP (x, 1), offset);
2331
2332 /* If the new constant is zero, try to replace the sum with its
2333 first operand. */
2334 if (new == const0_rtx
2335 && validate_change (object, loc, XEXP (x, 0), 0))
2336 return 1;
2337
2338 /* Next try to replace constant with new one. */
2339 if (!validate_change (object, &XEXP (x, 1), new, 0))
2340 {
2341 if (! extra_insns)
2342 {
2343 XEXP (x, 0) = old;
2344 return 0;
2345 }
2346
2347 /* Otherwise copy the new constant into a register and replace
2348 constant with that register. */
2349 temp = gen_reg_rtx (Pmode);
2350 if (validate_change (object, &XEXP (x, 1), temp, 0))
2351 emit_insn_before (gen_move_insn (temp, new), object);
2352 else
2353 {
2354 /* If that didn't work, replace this expression with a
2355 register containing the sum. */
2356
2357 new = gen_rtx (PLUS, Pmode, XEXP (x, 0), new);
2358 XEXP (x, 0) = old;
2359
2360 start_sequence ();
5f4f0e22 2361 temp = force_operand (new, NULL_RTX);
6f086dfc
RS
2362 seq = get_insns ();
2363 end_sequence ();
2364
2365 emit_insns_before (seq, object);
2366 if (! validate_change (object, loc, temp, 0)
2367 && ! validate_replace_rtx (x, temp, object))
2368 abort ();
2369 }
2370 }
2371
2372 return 1;
2373 }
2374
2375 /* Fall through to generic two-operand expression case. */
2376 case EXPR_LIST:
2377 case CALL:
2378 case COMPARE:
2379 case MINUS:
2380 case MULT:
2381 case DIV: case UDIV:
2382 case MOD: case UMOD:
2383 case AND: case IOR: case XOR:
2384 case LSHIFT: case ASHIFT: case ROTATE:
2385 case ASHIFTRT: case LSHIFTRT: case ROTATERT:
2386 case NE: case EQ:
2387 case GE: case GT: case GEU: case GTU:
2388 case LE: case LT: case LEU: case LTU:
2389 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
2390 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
2391 loc = &XEXP (x, 0);
2392 goto restart;
2393
2394 case MEM:
2395 /* Most cases of MEM that convert to valid addresses have already been
2396 handled by our scan of regno_reg_rtx. The only special handling we
2397 need here is to make a copy of the rtx to ensure it isn't being
b335c2cc 2398 shared if we have to change it to a pseudo.
6f086dfc
RS
2399
2400 If the rtx is a simple reference to an address via a virtual register,
2401 it can potentially be shared. In such cases, first try to make it
2402 a valid address, which can also be shared. Otherwise, copy it and
2403 proceed normally.
2404
2405 First check for common cases that need no processing. These are
2406 usually due to instantiation already being done on a previous instance
2407 of a shared rtx. */
2408
2409 temp = XEXP (x, 0);
2410 if (CONSTANT_ADDRESS_P (temp)
2411#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2412 || temp == arg_pointer_rtx
2413#endif
2414 || temp == frame_pointer_rtx)
2415 return 1;
2416
2417 if (GET_CODE (temp) == PLUS
2418 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
2419 && (XEXP (temp, 0) == frame_pointer_rtx
2420#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2421 || XEXP (temp, 0) == arg_pointer_rtx
2422#endif
2423 ))
2424 return 1;
2425
2426 if (temp == virtual_stack_vars_rtx
2427 || temp == virtual_incoming_args_rtx
2428 || (GET_CODE (temp) == PLUS
2429 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
2430 && (XEXP (temp, 0) == virtual_stack_vars_rtx
2431 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
2432 {
2433 /* This MEM may be shared. If the substitution can be done without
2434 the need to generate new pseudos, we want to do it in place
2435 so all copies of the shared rtx benefit. The call below will
2436 only make substitutions if the resulting address is still
2437 valid.
2438
2439 Note that we cannot pass X as the object in the recursive call
2440 since the insn being processed may not allow all valid
6461be14
RS
2441 addresses. However, if we were not passed on object, we can
2442 only modify X without copying it if X will have a valid
2443 address.
6f086dfc 2444
6461be14
RS
2445 ??? Also note that this can still lose if OBJECT is an insn that
2446 has less restrictions on an address that some other insn.
2447 In that case, we will modify the shared address. This case
2448 doesn't seem very likely, though. */
2449
2450 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
2451 object ? object : x, 0))
6f086dfc
RS
2452 return 1;
2453
2454 /* Otherwise make a copy and process that copy. We copy the entire
2455 RTL expression since it might be a PLUS which could also be
2456 shared. */
2457 *loc = x = copy_rtx (x);
2458 }
2459
2460 /* Fall through to generic unary operation case. */
2461 case USE:
2462 case CLOBBER:
2463 case SUBREG:
2464 case STRICT_LOW_PART:
2465 case NEG: case NOT:
2466 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
2467 case SIGN_EXTEND: case ZERO_EXTEND:
2468 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2469 case FLOAT: case FIX:
2470 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2471 case ABS:
2472 case SQRT:
2473 case FFS:
2474 /* These case either have just one operand or we know that we need not
2475 check the rest of the operands. */
2476 loc = &XEXP (x, 0);
2477 goto restart;
2478
2479 case REG:
2480 /* Try to replace with a PLUS. If that doesn't work, compute the sum
2481 in front of this insn and substitute the temporary. */
2482 if (x == virtual_incoming_args_rtx)
2483 new = arg_pointer_rtx, offset = in_arg_offset;
2484 else if (x == virtual_stack_vars_rtx)
2485 new = frame_pointer_rtx, offset = var_offset;
2486 else if (x == virtual_stack_dynamic_rtx)
2487 new = stack_pointer_rtx, offset = dynamic_offset;
2488 else if (x == virtual_outgoing_args_rtx)
2489 new = stack_pointer_rtx, offset = out_arg_offset;
2490
2491 if (new)
2492 {
2493 temp = plus_constant (new, offset);
2494 if (!validate_change (object, loc, temp, 0))
2495 {
2496 if (! extra_insns)
2497 return 0;
2498
2499 start_sequence ();
5f4f0e22 2500 temp = force_operand (temp, NULL_RTX);
6f086dfc
RS
2501 seq = get_insns ();
2502 end_sequence ();
2503
2504 emit_insns_before (seq, object);
2505 if (! validate_change (object, loc, temp, 0)
2506 && ! validate_replace_rtx (x, temp, object))
2507 abort ();
2508 }
2509 }
2510
2511 return 1;
2512 }
2513
2514 /* Scan all subexpressions. */
2515 fmt = GET_RTX_FORMAT (code);
2516 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2517 if (*fmt == 'e')
2518 {
2519 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
2520 return 0;
2521 }
2522 else if (*fmt == 'E')
2523 for (j = 0; j < XVECLEN (x, i); j++)
2524 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
2525 extra_insns))
2526 return 0;
2527
2528 return 1;
2529}
2530\f
2531/* Optimization: assuming this function does not receive nonlocal gotos,
2532 delete the handlers for such, as well as the insns to establish
2533 and disestablish them. */
2534
2535static void
2536delete_handlers ()
2537{
2538 rtx insn;
2539 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2540 {
2541 /* Delete the handler by turning off the flag that would
2542 prevent jump_optimize from deleting it.
2543 Also permit deletion of the nonlocal labels themselves
2544 if nothing local refers to them. */
2545 if (GET_CODE (insn) == CODE_LABEL)
2546 LABEL_PRESERVE_P (insn) = 0;
2547 if (GET_CODE (insn) == INSN
59257ff7
RK
2548 && ((nonlocal_goto_handler_slot != 0
2549 && reg_mentioned_p (nonlocal_goto_handler_slot, PATTERN (insn)))
2550 || (nonlocal_goto_stack_level != 0
2551 && reg_mentioned_p (nonlocal_goto_stack_level,
2552 PATTERN (insn)))))
6f086dfc
RS
2553 delete_insn (insn);
2554 }
2555}
2556
2557/* Return a list (chain of EXPR_LIST nodes) for the nonlocal labels
2558 of the current function. */
2559
2560rtx
2561nonlocal_label_rtx_list ()
2562{
2563 tree t;
2564 rtx x = 0;
2565
2566 for (t = nonlocal_labels; t; t = TREE_CHAIN (t))
2567 x = gen_rtx (EXPR_LIST, VOIDmode, label_rtx (TREE_VALUE (t)), x);
2568
2569 return x;
2570}
2571\f
2572/* Output a USE for any register use in RTL.
2573 This is used with -noreg to mark the extent of lifespan
2574 of any registers used in a user-visible variable's DECL_RTL. */
2575
2576void
2577use_variable (rtl)
2578 rtx rtl;
2579{
2580 if (GET_CODE (rtl) == REG)
2581 /* This is a register variable. */
2582 emit_insn (gen_rtx (USE, VOIDmode, rtl));
2583 else if (GET_CODE (rtl) == MEM
2584 && GET_CODE (XEXP (rtl, 0)) == REG
2585 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
2586 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
2587 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
2588 /* This is a variable-sized structure. */
2589 emit_insn (gen_rtx (USE, VOIDmode, XEXP (rtl, 0)));
2590}
2591
2592/* Like use_variable except that it outputs the USEs after INSN
2593 instead of at the end of the insn-chain. */
2594
2595void
2596use_variable_after (rtl, insn)
2597 rtx rtl, insn;
2598{
2599 if (GET_CODE (rtl) == REG)
2600 /* This is a register variable. */
2601 emit_insn_after (gen_rtx (USE, VOIDmode, rtl), insn);
2602 else if (GET_CODE (rtl) == MEM
2603 && GET_CODE (XEXP (rtl, 0)) == REG
2604 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
2605 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
2606 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
2607 /* This is a variable-sized structure. */
2608 emit_insn_after (gen_rtx (USE, VOIDmode, XEXP (rtl, 0)), insn);
2609}
2610\f
2611int
2612max_parm_reg_num ()
2613{
2614 return max_parm_reg;
2615}
2616
2617/* Return the first insn following those generated by `assign_parms'. */
2618
2619rtx
2620get_first_nonparm_insn ()
2621{
2622 if (last_parm_insn)
2623 return NEXT_INSN (last_parm_insn);
2624 return get_insns ();
2625}
2626
5378192b
RS
2627/* Return the first NOTE_INSN_BLOCK_BEG note in the function.
2628 Crash if there is none. */
2629
2630rtx
2631get_first_block_beg ()
2632{
2633 register rtx searcher;
2634 register rtx insn = get_first_nonparm_insn ();
2635
2636 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
2637 if (GET_CODE (searcher) == NOTE
2638 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
2639 return searcher;
2640
2641 abort (); /* Invalid call to this function. (See comments above.) */
2642 return NULL_RTX;
2643}
2644
6f086dfc
RS
2645/* Return 1 if EXP returns an aggregate value, for which an address
2646 must be passed to the function or returned by the function. */
2647
2648int
2649aggregate_value_p (exp)
2650 tree exp;
2651{
9d790a4f
RS
2652 int i, regno, nregs;
2653 rtx reg;
6f086dfc
RS
2654 if (RETURN_IN_MEMORY (TREE_TYPE (exp)))
2655 return 1;
2656 if (flag_pcc_struct_return
2657 && (TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
c1b98a95
RK
2658 || TREE_CODE (TREE_TYPE (exp)) == UNION_TYPE
2659 || TREE_CODE (TREE_TYPE (exp)) == QUAL_UNION_TYPE))
6f086dfc 2660 return 1;
9d790a4f
RS
2661 /* Make sure we have suitable call-clobbered regs to return
2662 the value in; if not, we must return it in memory. */
2663 reg = hard_function_value (TREE_TYPE (exp), 0);
2664 regno = REGNO (reg);
2665 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (TREE_TYPE (exp)));
2666 for (i = 0; i < nregs; i++)
2667 if (! call_used_regs[regno + i])
2668 return 1;
6f086dfc
RS
2669 return 0;
2670}
2671\f
2672/* Assign RTL expressions to the function's parameters.
2673 This may involve copying them into registers and using
2674 those registers as the RTL for them.
2675
2676 If SECOND_TIME is non-zero it means that this function is being
2677 called a second time. This is done by integrate.c when a function's
2678 compilation is deferred. We need to come back here in case the
2679 FUNCTION_ARG macro computes items needed for the rest of the compilation
2680 (such as changing which registers are fixed or caller-saved). But suppress
2681 writing any insns or setting DECL_RTL of anything in this case. */
2682
2683void
2684assign_parms (fndecl, second_time)
2685 tree fndecl;
2686 int second_time;
2687{
2688 register tree parm;
2689 register rtx entry_parm = 0;
2690 register rtx stack_parm = 0;
2691 CUMULATIVE_ARGS args_so_far;
a53e14c0 2692 enum machine_mode promoted_mode, passed_mode, nominal_mode;
00d8a4c1 2693 int unsignedp;
6f086dfc
RS
2694 /* Total space needed so far for args on the stack,
2695 given as a constant and a tree-expression. */
2696 struct args_size stack_args_size;
2697 tree fntype = TREE_TYPE (fndecl);
2698 tree fnargs = DECL_ARGUMENTS (fndecl);
2699 /* This is used for the arg pointer when referring to stack args. */
2700 rtx internal_arg_pointer;
2701 /* This is a dummy PARM_DECL that we used for the function result if
2702 the function returns a structure. */
2703 tree function_result_decl = 0;
2704 int nparmregs = list_length (fnargs) + LAST_VIRTUAL_REGISTER + 1;
2705 int varargs_setup = 0;
3412b298 2706 rtx conversion_insns = 0;
de3ab9df
RS
2707 /* FUNCTION_ARG may look at this variable. Since this is not
2708 expanding a call it will always be zero in this function. */
2709 int current_call_is_indirect = 0;
6f086dfc
RS
2710
2711 /* Nonzero if the last arg is named `__builtin_va_alist',
2712 which is used on some machines for old-fashioned non-ANSI varargs.h;
2713 this should be stuck onto the stack as if it had arrived there. */
2714 int vararg
2715 = (fnargs
2716 && (parm = tree_last (fnargs)) != 0
2717 && DECL_NAME (parm)
2718 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
2719 "__builtin_va_alist")));
2720
2721 /* Nonzero if function takes extra anonymous args.
2722 This means the last named arg must be on the stack
2723 right before the anonymous ones. */
2724 int stdarg
2725 = (TYPE_ARG_TYPES (fntype) != 0
2726 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
2727 != void_type_node));
2728
2729 /* If the reg that the virtual arg pointer will be translated into is
2730 not a fixed reg or is the stack pointer, make a copy of the virtual
2731 arg pointer, and address parms via the copy. The frame pointer is
2732 considered fixed even though it is not marked as such.
2733
2734 The second time through, simply use ap to avoid generating rtx. */
2735
2736 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
2737 || ! (fixed_regs[ARG_POINTER_REGNUM]
2738 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM))
2739 && ! second_time)
2740 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
2741 else
2742 internal_arg_pointer = virtual_incoming_args_rtx;
2743 current_function_internal_arg_pointer = internal_arg_pointer;
2744
2745 stack_args_size.constant = 0;
2746 stack_args_size.var = 0;
2747
2748 /* If struct value address is treated as the first argument, make it so. */
2749 if (aggregate_value_p (DECL_RESULT (fndecl))
2750 && ! current_function_returns_pcc_struct
2751 && struct_value_incoming_rtx == 0)
2752 {
2753 tree type = build_pointer_type (fntype);
2754
5f4f0e22 2755 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
6f086dfc
RS
2756
2757 DECL_ARG_TYPE (function_result_decl) = type;
2758 TREE_CHAIN (function_result_decl) = fnargs;
2759 fnargs = function_result_decl;
2760 }
2761
2762 parm_reg_stack_loc = (rtx *) oballoc (nparmregs * sizeof (rtx));
2763 bzero (parm_reg_stack_loc, nparmregs * sizeof (rtx));
2764
2765#ifdef INIT_CUMULATIVE_INCOMING_ARGS
ea0d4c4b 2766 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
6f086dfc 2767#else
ea0d4c4b 2768 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX);
6f086dfc
RS
2769#endif
2770
2771 /* We haven't yet found an argument that we must push and pretend the
2772 caller did. */
2773 current_function_pretend_args_size = 0;
2774
2775 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2776 {
2777 int aggregate
2778 = (TREE_CODE (TREE_TYPE (parm)) == ARRAY_TYPE
2779 || TREE_CODE (TREE_TYPE (parm)) == RECORD_TYPE
c1b98a95
RK
2780 || TREE_CODE (TREE_TYPE (parm)) == UNION_TYPE
2781 || TREE_CODE (TREE_TYPE (parm)) == QUAL_UNION_TYPE);
6f086dfc
RS
2782 struct args_size stack_offset;
2783 struct args_size arg_size;
2784 int passed_pointer = 0;
2785 tree passed_type = DECL_ARG_TYPE (parm);
2786
2787 /* Set LAST_NAMED if this is last named arg before some
2788 anonymous args. We treat it as if it were anonymous too. */
2789 int last_named = ((TREE_CHAIN (parm) == 0
2790 || DECL_NAME (TREE_CHAIN (parm)) == 0)
2791 && (vararg || stdarg));
2792
2793 if (TREE_TYPE (parm) == error_mark_node
2794 /* This can happen after weird syntax errors
2795 or if an enum type is defined among the parms. */
2796 || TREE_CODE (parm) != PARM_DECL
2797 || passed_type == NULL)
2798 {
587cb682
TW
2799 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = gen_rtx (MEM, BLKmode,
2800 const0_rtx);
6f086dfc
RS
2801 TREE_USED (parm) = 1;
2802 continue;
2803 }
2804
2805 /* For varargs.h function, save info about regs and stack space
2806 used by the individual args, not including the va_alist arg. */
2807 if (vararg && last_named)
2808 current_function_args_info = args_so_far;
2809
2810 /* Find mode of arg as it is passed, and mode of arg
2811 as it should be during execution of this function. */
2812 passed_mode = TYPE_MODE (passed_type);
2813 nominal_mode = TYPE_MODE (TREE_TYPE (parm));
2814
16bae307
RS
2815 /* If the parm's mode is VOID, its value doesn't matter,
2816 and avoid the usual things like emit_move_insn that could crash. */
2817 if (nominal_mode == VOIDmode)
2818 {
2819 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
2820 continue;
2821 }
2822
6f086dfc
RS
2823#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
2824 /* See if this arg was passed by invisible reference. */
2825 if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
2826 passed_type, ! last_named))
2827 {
2828 passed_type = build_pointer_type (passed_type);
2829 passed_pointer = 1;
2830 passed_mode = nominal_mode = Pmode;
2831 }
2832#endif
2833
a53e14c0
RK
2834 promoted_mode = passed_mode;
2835
2836#ifdef PROMOTE_FUNCTION_ARGS
2837 /* Compute the mode in which the arg is actually extended to. */
2838 if (TREE_CODE (passed_type) == INTEGER_TYPE
2839 || TREE_CODE (passed_type) == ENUMERAL_TYPE
2840 || TREE_CODE (passed_type) == BOOLEAN_TYPE
2841 || TREE_CODE (passed_type) == CHAR_TYPE
2842 || TREE_CODE (passed_type) == REAL_TYPE
2843 || TREE_CODE (passed_type) == POINTER_TYPE
2844 || TREE_CODE (passed_type) == OFFSET_TYPE)
2845 {
2846 unsignedp = TREE_UNSIGNED (passed_type);
2847 PROMOTE_MODE (promoted_mode, unsignedp, passed_type);
2848 }
2849#endif
2850
6f086dfc
RS
2851 /* Let machine desc say which reg (if any) the parm arrives in.
2852 0 means it arrives on the stack. */
2853#ifdef FUNCTION_INCOMING_ARG
a53e14c0 2854 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
6f086dfc
RS
2855 passed_type, ! last_named);
2856#else
a53e14c0 2857 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
6f086dfc
RS
2858 passed_type, ! last_named);
2859#endif
2860
a53e14c0
RK
2861 if (entry_parm)
2862 passed_mode = promoted_mode;
2863
6f086dfc
RS
2864#ifdef SETUP_INCOMING_VARARGS
2865 /* If this is the last named parameter, do any required setup for
2866 varargs or stdargs. We need to know about the case of this being an
2867 addressable type, in which case we skip the registers it
2868 would have arrived in.
2869
2870 For stdargs, LAST_NAMED will be set for two parameters, the one that
2871 is actually the last named, and the dummy parameter. We only
2872 want to do this action once.
2873
2874 Also, indicate when RTL generation is to be suppressed. */
2875 if (last_named && !varargs_setup)
2876 {
2877 SETUP_INCOMING_VARARGS (args_so_far, passed_mode, passed_type,
2878 current_function_pretend_args_size,
2879 second_time);
2880 varargs_setup = 1;
2881 }
2882#endif
2883
2884 /* Determine parm's home in the stack,
2885 in case it arrives in the stack or we should pretend it did.
2886
2887 Compute the stack position and rtx where the argument arrives
2888 and its size.
2889
2890 There is one complexity here: If this was a parameter that would
2891 have been passed in registers, but wasn't only because it is
2892 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2893 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2894 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
2895 0 as it was the previous time. */
2896
2897 locate_and_pad_parm (passed_mode, passed_type,
2898#ifdef STACK_PARMS_IN_REG_PARM_AREA
2899 1,
2900#else
2901#ifdef FUNCTION_INCOMING_ARG
2902 FUNCTION_INCOMING_ARG (args_so_far, passed_mode,
2903 passed_type,
2904 (! last_named
2905 || varargs_setup)) != 0,
2906#else
2907 FUNCTION_ARG (args_so_far, passed_mode,
2908 passed_type,
2909 ! last_named || varargs_setup) != 0,
2910#endif
2911#endif
2912 fndecl, &stack_args_size, &stack_offset, &arg_size);
2913
2914 if (! second_time)
2915 {
2916 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
2917
2918 if (offset_rtx == const0_rtx)
2919 stack_parm = gen_rtx (MEM, passed_mode, internal_arg_pointer);
2920 else
2921 stack_parm = gen_rtx (MEM, passed_mode,
2922 gen_rtx (PLUS, Pmode,
2923 internal_arg_pointer, offset_rtx));
2924
2925 /* If this is a memory ref that contains aggregate components,
2926 mark it as such for cse and loop optimize. */
2927 MEM_IN_STRUCT_P (stack_parm) = aggregate;
2928 }
2929
2930 /* If this parameter was passed both in registers and in the stack,
2931 use the copy on the stack. */
2932 if (MUST_PASS_IN_STACK (passed_mode, passed_type))
2933 entry_parm = 0;
2934
461beb10 2935#ifdef FUNCTION_ARG_PARTIAL_NREGS
6f086dfc
RS
2936 /* If this parm was passed part in regs and part in memory,
2937 pretend it arrived entirely in memory
2938 by pushing the register-part onto the stack.
2939
2940 In the special case of a DImode or DFmode that is split,
2941 we could put it together in a pseudoreg directly,
2942 but for now that's not worth bothering with. */
2943
2944 if (entry_parm)
2945 {
461beb10
DE
2946 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, passed_mode,
2947 passed_type, ! last_named);
6f086dfc
RS
2948
2949 if (nregs > 0)
2950 {
2951 current_function_pretend_args_size
2952 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
2953 / (PARM_BOUNDARY / BITS_PER_UNIT)
2954 * (PARM_BOUNDARY / BITS_PER_UNIT));
2955
2956 if (! second_time)
2957 move_block_from_reg (REGNO (entry_parm),
2958 validize_mem (stack_parm), nregs);
2959 entry_parm = stack_parm;
2960 }
2961 }
461beb10 2962#endif
6f086dfc
RS
2963
2964 /* If we didn't decide this parm came in a register,
2965 by default it came on the stack. */
2966 if (entry_parm == 0)
2967 entry_parm = stack_parm;
2968
2969 /* Record permanently how this parm was passed. */
2970 if (! second_time)
2971 DECL_INCOMING_RTL (parm) = entry_parm;
2972
2973 /* If there is actually space on the stack for this parm,
2974 count it in stack_args_size; otherwise set stack_parm to 0
2975 to indicate there is no preallocated stack slot for the parm. */
2976
2977 if (entry_parm == stack_parm
d9ca49d5 2978#if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
6f086dfc 2979 /* On some machines, even if a parm value arrives in a register
d9ca49d5
JW
2980 there is still an (uninitialized) stack slot allocated for it.
2981
2982 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
2983 whether this parameter already has a stack slot allocated,
2984 because an arg block exists only if current_function_args_size
2985 is larger than some threshhold, and we haven't calculated that
2986 yet. So, for now, we just assume that stack slots never exist
2987 in this case. */
6f086dfc
RS
2988 || REG_PARM_STACK_SPACE (fndecl) > 0
2989#endif
2990 )
2991 {
2992 stack_args_size.constant += arg_size.constant;
2993 if (arg_size.var)
2994 ADD_PARM_SIZE (stack_args_size, arg_size.var);
2995 }
2996 else
2997 /* No stack slot was pushed for this parm. */
2998 stack_parm = 0;
2999
3000 /* Update info on where next arg arrives in registers. */
3001
3002 FUNCTION_ARG_ADVANCE (args_so_far, passed_mode,
3003 passed_type, ! last_named);
3004
3005 /* If this is our second time through, we are done with this parm. */
3006 if (second_time)
3007 continue;
3008
e16c591a
RS
3009 /* If we can't trust the parm stack slot to be aligned enough
3010 for its ultimate type, don't use that slot after entry.
3011 We'll make another stack slot, if we need one. */
3012 {
e16c591a
RS
3013 int thisparm_boundary
3014 = FUNCTION_ARG_BOUNDARY (passed_mode, passed_type);
e16c591a
RS
3015
3016 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
3017 stack_parm = 0;
3018 }
3019
6f086dfc
RS
3020 /* Now adjust STACK_PARM to the mode and precise location
3021 where this parameter should live during execution,
3022 if we discover that it must live in the stack during execution.
3023 To make debuggers happier on big-endian machines, we store
3024 the value in the last bytes of the space available. */
3025
3026 if (nominal_mode != BLKmode && nominal_mode != passed_mode
3027 && stack_parm != 0)
3028 {
3029 rtx offset_rtx;
3030
3031#if BYTES_BIG_ENDIAN
3032 if (GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
3033 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
3034 - GET_MODE_SIZE (nominal_mode));
3035#endif
3036
3037 offset_rtx = ARGS_SIZE_RTX (stack_offset);
3038 if (offset_rtx == const0_rtx)
3039 stack_parm = gen_rtx (MEM, nominal_mode, internal_arg_pointer);
3040 else
3041 stack_parm = gen_rtx (MEM, nominal_mode,
3042 gen_rtx (PLUS, Pmode,
3043 internal_arg_pointer, offset_rtx));
3044
3045 /* If this is a memory ref that contains aggregate components,
3046 mark it as such for cse and loop optimize. */
3047 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3048 }
3049
3050 /* ENTRY_PARM is an RTX for the parameter as it arrives,
3051 in the mode in which it arrives.
3052 STACK_PARM is an RTX for a stack slot where the parameter can live
3053 during the function (in case we want to put it there).
3054 STACK_PARM is 0 if no stack slot was pushed for it.
3055
3056 Now output code if necessary to convert ENTRY_PARM to
3057 the type in which this function declares it,
3058 and store that result in an appropriate place,
3059 which may be a pseudo reg, may be STACK_PARM,
3060 or may be a local stack slot if STACK_PARM is 0.
3061
3062 Set DECL_RTL to that place. */
3063
3064 if (nominal_mode == BLKmode)
3065 {
3066 /* If a BLKmode arrives in registers, copy it to a stack slot. */
3067 if (GET_CODE (entry_parm) == REG)
3068 {
3069 int size_stored = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
3070 UNITS_PER_WORD);
3071
3072 /* Note that we will be storing an integral number of words.
3073 So we have to be careful to ensure that we allocate an
3074 integral number of words. We do this below in the
3075 assign_stack_local if space was not allocated in the argument
3076 list. If it was, this will not work if PARM_BOUNDARY is not
3077 a multiple of BITS_PER_WORD. It isn't clear how to fix this
3078 if it becomes a problem. */
3079
3080 if (stack_parm == 0)
7e41ffa2
RS
3081 {
3082 stack_parm
3083 = assign_stack_local (GET_MODE (entry_parm), size_stored, 0);
3084 /* If this is a memory ref that contains aggregate components,
3085 mark it as such for cse and loop optimize. */
3086 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3087 }
3088
6f086dfc
RS
3089 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
3090 abort ();
3091
3092 move_block_from_reg (REGNO (entry_parm),
3093 validize_mem (stack_parm),
3094 size_stored / UNITS_PER_WORD);
3095 }
3096 DECL_RTL (parm) = stack_parm;
3097 }
74bd77a8 3098 else if (! ((obey_regdecls && ! DECL_REGISTER (parm)
a82ad570 3099 && ! DECL_INLINE (fndecl))
6f086dfc
RS
3100 /* layout_decl may set this. */
3101 || TREE_ADDRESSABLE (parm)
3102 || TREE_SIDE_EFFECTS (parm)
3103 /* If -ffloat-store specified, don't put explicit
3104 float variables into registers. */
3105 || (flag_float_store
3106 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
3107 /* Always assign pseudo to structure return or item passed
3108 by invisible reference. */
3109 || passed_pointer || parm == function_result_decl)
3110 {
00d8a4c1
RK
3111 /* Store the parm in a pseudoregister during the function, but we
3112 may need to do it in a wider mode. */
3113
3114 register rtx parmreg;
3115
3116 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
3117 if (TREE_CODE (TREE_TYPE (parm)) == INTEGER_TYPE
3118 || TREE_CODE (TREE_TYPE (parm)) == ENUMERAL_TYPE
3119 || TREE_CODE (TREE_TYPE (parm)) == BOOLEAN_TYPE
3120 || TREE_CODE (TREE_TYPE (parm)) == CHAR_TYPE
3121 || TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE
3122 || TREE_CODE (TREE_TYPE (parm)) == POINTER_TYPE
3123 || TREE_CODE (TREE_TYPE (parm)) == OFFSET_TYPE)
3124 {
3125 PROMOTE_MODE (nominal_mode, unsignedp, TREE_TYPE (parm));
3126 }
6f086dfc 3127
00d8a4c1 3128 parmreg = gen_reg_rtx (nominal_mode);
6f086dfc
RS
3129 REG_USERVAR_P (parmreg) = 1;
3130
3131 /* If this was an item that we received a pointer to, set DECL_RTL
3132 appropriately. */
3133 if (passed_pointer)
3134 {
3135 DECL_RTL (parm) = gen_rtx (MEM, TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
3136 MEM_IN_STRUCT_P (DECL_RTL (parm)) = aggregate;
3137 }
3138 else
3139 DECL_RTL (parm) = parmreg;
3140
3141 /* Copy the value into the register. */
3142 if (GET_MODE (parmreg) != GET_MODE (entry_parm))
86f8eff3
RK
3143 {
3144 /* If ENTRY_PARM is a hard register, it might be in a register
3145 not valid for operating in its mode (e.g., an odd-numbered
3146 register for a DFmode). In that case, moves are the only
3147 thing valid, so we can't do a convert from there. This
3148 occurs when the calling sequence allow such misaligned
3412b298
JW
3149 usages.
3150
3151 In addition, the conversion may involve a call, which could
3152 clobber parameters which haven't been copied to pseudo
3153 registers yet. Therefore, we must first copy the parm to
3154 a pseudo reg here, and save the conversion until after all
3155 parameters have been moved. */
3156
3157 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
3158
3159 emit_move_insn (tempreg, validize_mem (entry_parm));
3160
3161 push_to_sequence (conversion_insns);
8c394878 3162 convert_move (parmreg, tempreg, unsignedp);
3412b298
JW
3163 conversion_insns = get_insns ();
3164 end_sequence ();
86f8eff3 3165 }
6f086dfc
RS
3166 else
3167 emit_move_insn (parmreg, validize_mem (entry_parm));
3168
74bd77a8
RS
3169 /* If we were passed a pointer but the actual value
3170 can safely live in a register, put it in one. */
16bae307 3171 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
74bd77a8
RS
3172 && ! ((obey_regdecls && ! DECL_REGISTER (parm)
3173 && ! DECL_INLINE (fndecl))
3174 /* layout_decl may set this. */
3175 || TREE_ADDRESSABLE (parm)
3176 || TREE_SIDE_EFFECTS (parm)
3177 /* If -ffloat-store specified, don't put explicit
3178 float variables into registers. */
3179 || (flag_float_store
3180 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
3181 {
2654605a
JW
3182 /* We can't use nominal_mode, because it will have been set to
3183 Pmode above. We must use the actual mode of the parm. */
3184 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
74bd77a8
RS
3185 emit_move_insn (parmreg, DECL_RTL (parm));
3186 DECL_RTL (parm) = parmreg;
3187 }
137a2a7b
DE
3188#ifdef FUNCTION_ARG_CALLEE_COPIES
3189 /* If we are passed an arg by reference and it is our responsibility
3190 to make a copy, do it now.
3191 PASSED_TYPE and PASSED mode now refer to the pointer, not the
3192 original argument, so we must recreate them in the call to
3193 FUNCTION_ARG_CALLEE_COPIES. */
3194 /* ??? Later add code to handle the case that if the argument isn't
3195 modified, don't do the copy. */
3196
3197 else if (passed_pointer
3198 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
3199 TYPE_MODE (DECL_ARG_TYPE (parm)),
3200 DECL_ARG_TYPE (parm),
3201 ! last_named))
3202 {
3203 rtx copy;
3204 tree type = DECL_ARG_TYPE (parm);
3205
3206 /* This sequence may involve a library call perhaps clobbering
3207 registers that haven't been copied to pseudos yet. */
3208
3209 push_to_sequence (conversion_insns);
3210
3211 if (TYPE_SIZE (type) == 0
3212 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
3213 {
3214 /* This is a variable sized object. */
3215 /* ??? Can we use expr_size here? */
3216 rtx size_rtx = expand_expr (size_in_bytes (type), NULL_RTX,
49640f91 3217 TYPE_MODE (sizetype), 0);
137a2a7b
DE
3218
3219 copy = gen_rtx (MEM, BLKmode,
3220 allocate_dynamic_stack_space (size_rtx, NULL_RTX,
3221 TYPE_ALIGN (type)));
3222 }
3223 else
3224 {
3225 int size = int_size_in_bytes (type);
0b2187a9 3226 copy = assign_stack_temp (TYPE_MODE (type), size, 1);
137a2a7b
DE
3227 }
3228
3229 store_expr (parm, copy, 0);
3230 emit_move_insn (parmreg, XEXP (copy, 0));
3231 conversion_insns = get_insns ();
3232 end_sequence ();
3233 }
3234#endif /* FUNCTION_ARG_CALLEE_COPIES */
74bd77a8 3235
6f086dfc
RS
3236 /* In any case, record the parm's desired stack location
3237 in case we later discover it must live in the stack. */
3238 if (REGNO (parmreg) >= nparmregs)
3239 {
3240 rtx *new;
3241 nparmregs = REGNO (parmreg) + 5;
3242 new = (rtx *) oballoc (nparmregs * sizeof (rtx));
3243 bcopy (parm_reg_stack_loc, new, nparmregs * sizeof (rtx));
3244 parm_reg_stack_loc = new;
3245 }
3246 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
3247
3248 /* Mark the register as eliminable if we did no conversion
3249 and it was copied from memory at a fixed offset,
3250 and the arg pointer was not copied to a pseudo-reg.
3251 If the arg pointer is a pseudo reg or the offset formed
3252 an invalid address, such memory-equivalences
3253 as we make here would screw up life analysis for it. */
3254 if (nominal_mode == passed_mode
3255 && GET_CODE (entry_parm) == MEM
e16c591a 3256 && entry_parm == stack_parm
6f086dfc
RS
3257 && stack_offset.var == 0
3258 && reg_mentioned_p (virtual_incoming_args_rtx,
3259 XEXP (entry_parm, 0)))
3260 REG_NOTES (get_last_insn ())
3261 = gen_rtx (EXPR_LIST, REG_EQUIV,
3262 entry_parm, REG_NOTES (get_last_insn ()));
3263
3264 /* For pointer data type, suggest pointer register. */
3265 if (TREE_CODE (TREE_TYPE (parm)) == POINTER_TYPE)
3266 mark_reg_pointer (parmreg);
3267 }
3268 else
3269 {
3270 /* Value must be stored in the stack slot STACK_PARM
3271 during function execution. */
3272
3273 if (passed_mode != nominal_mode)
86f8eff3
RK
3274 {
3275 /* Conversion is required. */
3412b298
JW
3276 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
3277
3278 emit_move_insn (tempreg, validize_mem (entry_parm));
86f8eff3 3279
3412b298
JW
3280 push_to_sequence (conversion_insns);
3281 entry_parm = convert_to_mode (nominal_mode, tempreg,
a53e14c0 3282 TREE_UNSIGNED (TREE_TYPE (parm)));
3412b298
JW
3283 conversion_insns = get_insns ();
3284 end_sequence ();
86f8eff3 3285 }
6f086dfc
RS
3286
3287 if (entry_parm != stack_parm)
3288 {
3289 if (stack_parm == 0)
7e41ffa2
RS
3290 {
3291 stack_parm
3292 = assign_stack_local (GET_MODE (entry_parm),
3293 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
3294 /* If this is a memory ref that contains aggregate components,
3295 mark it as such for cse and loop optimize. */
3296 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3297 }
3298
3412b298
JW
3299 if (passed_mode != nominal_mode)
3300 {
3301 push_to_sequence (conversion_insns);
3302 emit_move_insn (validize_mem (stack_parm),
3303 validize_mem (entry_parm));
3304 conversion_insns = get_insns ();
3305 end_sequence ();
3306 }
3307 else
3308 emit_move_insn (validize_mem (stack_parm),
3309 validize_mem (entry_parm));
6f086dfc
RS
3310 }
3311
3312 DECL_RTL (parm) = stack_parm;
3313 }
3314
3315 /* If this "parameter" was the place where we are receiving the
3316 function's incoming structure pointer, set up the result. */
3317 if (parm == function_result_decl)
3318 DECL_RTL (DECL_RESULT (fndecl))
3319 = gen_rtx (MEM, DECL_MODE (DECL_RESULT (fndecl)), DECL_RTL (parm));
3320
3321 if (TREE_THIS_VOLATILE (parm))
3322 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
3323 if (TREE_READONLY (parm))
3324 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
3325 }
3326
3412b298
JW
3327 /* Output all parameter conversion instructions (possibly including calls)
3328 now that all parameters have been copied out of hard registers. */
3329 emit_insns (conversion_insns);
3330
6f086dfc
RS
3331 max_parm_reg = max_reg_num ();
3332 last_parm_insn = get_last_insn ();
3333
3334 current_function_args_size = stack_args_size.constant;
3335
3336 /* Adjust function incoming argument size for alignment and
3337 minimum length. */
3338
3339#ifdef REG_PARM_STACK_SPACE
6f90e075 3340#ifndef MAYBE_REG_PARM_STACK_SPACE
6f086dfc
RS
3341 current_function_args_size = MAX (current_function_args_size,
3342 REG_PARM_STACK_SPACE (fndecl));
3343#endif
6f90e075 3344#endif
6f086dfc
RS
3345
3346#ifdef STACK_BOUNDARY
3347#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
3348
3349 current_function_args_size
3350 = ((current_function_args_size + STACK_BYTES - 1)
3351 / STACK_BYTES) * STACK_BYTES;
3352#endif
3353
3354#ifdef ARGS_GROW_DOWNWARD
3355 current_function_arg_offset_rtx
5f4f0e22 3356 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
6f086dfc
RS
3357 : expand_expr (size_binop (MINUS_EXPR, stack_args_size.var,
3358 size_int (-stack_args_size.constant)),
5f4f0e22 3359 NULL_RTX, VOIDmode, 0));
6f086dfc
RS
3360#else
3361 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
3362#endif
3363
3364 /* See how many bytes, if any, of its args a function should try to pop
3365 on return. */
3366
3367 current_function_pops_args = RETURN_POPS_ARGS (TREE_TYPE (fndecl),
3368 current_function_args_size);
3369
3370 /* For stdarg.h function, save info about regs and stack space
3371 used by the named args. */
3372
3373 if (stdarg)
3374 current_function_args_info = args_so_far;
3375
3376 /* Set the rtx used for the function return value. Put this in its
3377 own variable so any optimizers that need this information don't have
3378 to include tree.h. Do this here so it gets done when an inlined
3379 function gets output. */
3380
3381 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
3382}
3383\f
75dc3319
RK
3384/* Indicate whether REGNO is an incoming argument to the current function
3385 that was promoted to a wider mode. If so, return the RTX for the
3386 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3387 that REGNO is promoted from and whether the promotion was signed or
3388 unsigned. */
3389
3390#ifdef PROMOTE_FUNCTION_ARGS
3391
3392rtx
3393promoted_input_arg (regno, pmode, punsignedp)
3394 int regno;
3395 enum machine_mode *pmode;
3396 int *punsignedp;
3397{
3398 tree arg;
3399
3400 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3401 arg = TREE_CHAIN (arg))
3402 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
3403 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3404 && (TREE_CODE (TREE_TYPE (arg)) == INTEGER_TYPE
3405 || TREE_CODE (TREE_TYPE (arg)) == ENUMERAL_TYPE
3406 || TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE
3407 || TREE_CODE (TREE_TYPE (arg)) == CHAR_TYPE
3408 || TREE_CODE (TREE_TYPE (arg)) == REAL_TYPE
3409 || TREE_CODE (TREE_TYPE (arg)) == POINTER_TYPE
3410 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE))
3411 {
3412 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3413 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
3414
3415 PROMOTE_MODE (mode, unsignedp, TREE_TYPE (arg));
3416 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3417 && mode != DECL_MODE (arg))
3418 {
3419 *pmode = DECL_MODE (arg);
3420 *punsignedp = unsignedp;
3421 return DECL_INCOMING_RTL (arg);
3422 }
3423 }
3424
3425 return 0;
3426}
3427
3428#endif
3429\f
6f086dfc
RS
3430/* Compute the size and offset from the start of the stacked arguments for a
3431 parm passed in mode PASSED_MODE and with type TYPE.
3432
3433 INITIAL_OFFSET_PTR points to the current offset into the stacked
3434 arguments.
3435
3436 The starting offset and size for this parm are returned in *OFFSET_PTR
3437 and *ARG_SIZE_PTR, respectively.
3438
3439 IN_REGS is non-zero if the argument will be passed in registers. It will
3440 never be set if REG_PARM_STACK_SPACE is not defined.
3441
3442 FNDECL is the function in which the argument was defined.
3443
3444 There are two types of rounding that are done. The first, controlled by
3445 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3446 list to be aligned to the specific boundary (in bits). This rounding
3447 affects the initial and starting offsets, but not the argument size.
3448
3449 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3450 optionally rounds the size of the parm to PARM_BOUNDARY. The
3451 initial offset is not affected by this rounding, while the size always
3452 is and the starting offset may be. */
3453
3454/* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
3455 initial_offset_ptr is positive because locate_and_pad_parm's
3456 callers pass in the total size of args so far as
3457 initial_offset_ptr. arg_size_ptr is always positive.*/
3458
3459static void pad_to_arg_alignment (), pad_below ();
3460
3461void
3462locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
3463 initial_offset_ptr, offset_ptr, arg_size_ptr)
3464 enum machine_mode passed_mode;
3465 tree type;
3466 int in_regs;
3467 tree fndecl;
3468 struct args_size *initial_offset_ptr;
3469 struct args_size *offset_ptr;
3470 struct args_size *arg_size_ptr;
3471{
3472 tree sizetree
3473 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3474 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3475 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3476 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3477 int reg_parm_stack_space = 0;
3478
3479#ifdef REG_PARM_STACK_SPACE
3480 /* If we have found a stack parm before we reach the end of the
3481 area reserved for registers, skip that area. */
3482 if (! in_regs)
3483 {
29008b51
JW
3484#ifdef MAYBE_REG_PARM_STACK_SPACE
3485 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
3486#else
6f086dfc 3487 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
29008b51 3488#endif
6f086dfc
RS
3489 if (reg_parm_stack_space > 0)
3490 {
3491 if (initial_offset_ptr->var)
3492 {
3493 initial_offset_ptr->var
3494 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3495 size_int (reg_parm_stack_space));
3496 initial_offset_ptr->constant = 0;
3497 }
3498 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3499 initial_offset_ptr->constant = reg_parm_stack_space;
3500 }
3501 }
3502#endif /* REG_PARM_STACK_SPACE */
3503
3504 arg_size_ptr->var = 0;
3505 arg_size_ptr->constant = 0;
3506
3507#ifdef ARGS_GROW_DOWNWARD
3508 if (initial_offset_ptr->var)
3509 {
3510 offset_ptr->constant = 0;
3511 offset_ptr->var = size_binop (MINUS_EXPR, integer_zero_node,
3512 initial_offset_ptr->var);
3513 }
3514 else
3515 {
3516 offset_ptr->constant = - initial_offset_ptr->constant;
3517 offset_ptr->var = 0;
3518 }
3519 if (where_pad == upward
3520 && (TREE_CODE (sizetree) != INTEGER_CST
3521 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
3522 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3523 SUB_PARM_SIZE (*offset_ptr, sizetree);
66bcbe19
TG
3524 if (where_pad != downward)
3525 pad_to_arg_alignment (offset_ptr, boundary);
6f086dfc
RS
3526 if (initial_offset_ptr->var)
3527 {
3528 arg_size_ptr->var = size_binop (MINUS_EXPR,
3529 size_binop (MINUS_EXPR,
3530 integer_zero_node,
3531 initial_offset_ptr->var),
3532 offset_ptr->var);
3533 }
3534 else
3535 {
3536 arg_size_ptr->constant = (- initial_offset_ptr->constant -
3537 offset_ptr->constant);
3538 }
3539/* ADD_PARM_SIZE (*arg_size_ptr, sizetree); */
3540 if (where_pad == downward)
3541 pad_below (arg_size_ptr, passed_mode, sizetree);
3542#else /* !ARGS_GROW_DOWNWARD */
3543 pad_to_arg_alignment (initial_offset_ptr, boundary);
3544 *offset_ptr = *initial_offset_ptr;
3545 if (where_pad == downward)
3546 pad_below (offset_ptr, passed_mode, sizetree);
3547
3548#ifdef PUSH_ROUNDING
3549 if (passed_mode != BLKmode)
3550 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3551#endif
3552
3553 if (where_pad != none
3554 && (TREE_CODE (sizetree) != INTEGER_CST
3555 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
3556 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3557
3558 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
3559#endif /* ARGS_GROW_DOWNWARD */
3560}
3561
e16c591a
RS
3562/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3563 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3564
6f086dfc
RS
3565static void
3566pad_to_arg_alignment (offset_ptr, boundary)
3567 struct args_size *offset_ptr;
3568 int boundary;
3569{
3570 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3571
3572 if (boundary > BITS_PER_UNIT)
3573 {
3574 if (offset_ptr->var)
3575 {
3576 offset_ptr->var =
3577#ifdef ARGS_GROW_DOWNWARD
3578 round_down
3579#else
3580 round_up
3581#endif
3582 (ARGS_SIZE_TREE (*offset_ptr),
3583 boundary / BITS_PER_UNIT);
3584 offset_ptr->constant = 0; /*?*/
3585 }
3586 else
3587 offset_ptr->constant =
3588#ifdef ARGS_GROW_DOWNWARD
3589 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
3590#else
3591 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
3592#endif
3593 }
3594}
3595
3596static void
3597pad_below (offset_ptr, passed_mode, sizetree)
3598 struct args_size *offset_ptr;
3599 enum machine_mode passed_mode;
3600 tree sizetree;
3601{
3602 if (passed_mode != BLKmode)
3603 {
3604 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3605 offset_ptr->constant
3606 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3607 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3608 - GET_MODE_SIZE (passed_mode));
3609 }
3610 else
3611 {
3612 if (TREE_CODE (sizetree) != INTEGER_CST
3613 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3614 {
3615 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3616 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3617 /* Add it in. */
3618 ADD_PARM_SIZE (*offset_ptr, s2);
3619 SUB_PARM_SIZE (*offset_ptr, sizetree);
3620 }
3621 }
3622}
3623
3624static tree
3625round_down (value, divisor)
3626 tree value;
3627 int divisor;
3628{
3629 return size_binop (MULT_EXPR,
3630 size_binop (FLOOR_DIV_EXPR, value, size_int (divisor)),
3631 size_int (divisor));
3632}
3633\f
3634/* Walk the tree of blocks describing the binding levels within a function
3635 and warn about uninitialized variables.
3636 This is done after calling flow_analysis and before global_alloc
3637 clobbers the pseudo-regs to hard regs. */
3638
3639void
3640uninitialized_vars_warning (block)
3641 tree block;
3642{
3643 register tree decl, sub;
3644 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3645 {
3646 if (TREE_CODE (decl) == VAR_DECL
3647 /* These warnings are unreliable for and aggregates
3648 because assigning the fields one by one can fail to convince
3649 flow.c that the entire aggregate was initialized.
3650 Unions are troublesome because members may be shorter. */
3651 && TREE_CODE (TREE_TYPE (decl)) != RECORD_TYPE
3652 && TREE_CODE (TREE_TYPE (decl)) != UNION_TYPE
c1b98a95 3653 && TREE_CODE (TREE_TYPE (decl)) != QUAL_UNION_TYPE
6f086dfc
RS
3654 && TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE
3655 && DECL_RTL (decl) != 0
3656 && GET_CODE (DECL_RTL (decl)) == REG
3657 && regno_uninitialized (REGNO (DECL_RTL (decl))))
3658 warning_with_decl (decl,
3659 "`%s' may be used uninitialized in this function");
3660 if (TREE_CODE (decl) == VAR_DECL
3661 && DECL_RTL (decl) != 0
3662 && GET_CODE (DECL_RTL (decl)) == REG
3663 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3664 warning_with_decl (decl,
3665 "variable `%s' may be clobbered by `longjmp'");
3666 }
3667 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3668 uninitialized_vars_warning (sub);
3669}
3670
3671/* Do the appropriate part of uninitialized_vars_warning
3672 but for arguments instead of local variables. */
3673
3674void
3675setjmp_args_warning (block)
3676 tree block;
3677{
3678 register tree decl;
3679 for (decl = DECL_ARGUMENTS (current_function_decl);
3680 decl; decl = TREE_CHAIN (decl))
3681 if (DECL_RTL (decl) != 0
3682 && GET_CODE (DECL_RTL (decl)) == REG
3683 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3684 warning_with_decl (decl, "argument `%s' may be clobbered by `longjmp'");
3685}
3686
3687/* If this function call setjmp, put all vars into the stack
3688 unless they were declared `register'. */
3689
3690void
3691setjmp_protect (block)
3692 tree block;
3693{
3694 register tree decl, sub;
3695 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3696 if ((TREE_CODE (decl) == VAR_DECL
3697 || TREE_CODE (decl) == PARM_DECL)
3698 && DECL_RTL (decl) != 0
3699 && GET_CODE (DECL_RTL (decl)) == REG
b335c2cc
TW
3700 /* If this variable came from an inline function, it must be
3701 that it's life doesn't overlap the setjmp. If there was a
3702 setjmp in the function, it would already be in memory. We
3703 must exclude such variable because their DECL_RTL might be
3704 set to strange things such as virtual_stack_vars_rtx. */
3705 && ! DECL_FROM_INLINE (decl)
6f086dfc
RS
3706 && (
3707#ifdef NON_SAVING_SETJMP
3708 /* If longjmp doesn't restore the registers,
3709 don't put anything in them. */
3710 NON_SAVING_SETJMP
3711 ||
3712#endif
a82ad570 3713 ! DECL_REGISTER (decl)))
6f086dfc
RS
3714 put_var_into_stack (decl);
3715 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3716 setjmp_protect (sub);
3717}
3718\f
3719/* Like the previous function, but for args instead of local variables. */
3720
3721void
3722setjmp_protect_args ()
3723{
3724 register tree decl, sub;
3725 for (decl = DECL_ARGUMENTS (current_function_decl);
3726 decl; decl = TREE_CHAIN (decl))
3727 if ((TREE_CODE (decl) == VAR_DECL
3728 || TREE_CODE (decl) == PARM_DECL)
3729 && DECL_RTL (decl) != 0
3730 && GET_CODE (DECL_RTL (decl)) == REG
3731 && (
3732 /* If longjmp doesn't restore the registers,
3733 don't put anything in them. */
3734#ifdef NON_SAVING_SETJMP
3735 NON_SAVING_SETJMP
3736 ||
3737#endif
a82ad570 3738 ! DECL_REGISTER (decl)))
6f086dfc
RS
3739 put_var_into_stack (decl);
3740}
3741\f
3742/* Return the context-pointer register corresponding to DECL,
3743 or 0 if it does not need one. */
3744
3745rtx
3746lookup_static_chain (decl)
3747 tree decl;
3748{
3749 tree context = decl_function_context (decl);
3750 tree link;
3751
3752 if (context == 0)
3753 return 0;
3754
3755 /* We treat inline_function_decl as an alias for the current function
3756 because that is the inline function whose vars, types, etc.
3757 are being merged into the current function.
3758 See expand_inline_function. */
3759 if (context == current_function_decl || context == inline_function_decl)
3760 return virtual_stack_vars_rtx;
3761
3762 for (link = context_display; link; link = TREE_CHAIN (link))
3763 if (TREE_PURPOSE (link) == context)
3764 return RTL_EXPR_RTL (TREE_VALUE (link));
3765
3766 abort ();
3767}
3768\f
3769/* Convert a stack slot address ADDR for variable VAR
3770 (from a containing function)
3771 into an address valid in this function (using a static chain). */
3772
3773rtx
3774fix_lexical_addr (addr, var)
3775 rtx addr;
3776 tree var;
3777{
3778 rtx basereg;
3779 int displacement;
3780 tree context = decl_function_context (var);
3781 struct function *fp;
3782 rtx base = 0;
3783
3784 /* If this is the present function, we need not do anything. */
3785 if (context == current_function_decl || context == inline_function_decl)
3786 return addr;
3787
3788 for (fp = outer_function_chain; fp; fp = fp->next)
3789 if (fp->decl == context)
3790 break;
3791
3792 if (fp == 0)
3793 abort ();
3794
3795 /* Decode given address as base reg plus displacement. */
3796 if (GET_CODE (addr) == REG)
3797 basereg = addr, displacement = 0;
3798 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3799 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
3800 else
3801 abort ();
3802
3803 /* We accept vars reached via the containing function's
3804 incoming arg pointer and via its stack variables pointer. */
3805 if (basereg == fp->internal_arg_pointer)
3806 {
3807 /* If reached via arg pointer, get the arg pointer value
3808 out of that function's stack frame.
3809
3810 There are two cases: If a separate ap is needed, allocate a
3811 slot in the outer function for it and dereference it that way.
3812 This is correct even if the real ap is actually a pseudo.
3813 Otherwise, just adjust the offset from the frame pointer to
3814 compensate. */
3815
3816#ifdef NEED_SEPARATE_AP
3817 rtx addr;
3818
3819 if (fp->arg_pointer_save_area == 0)
3820 fp->arg_pointer_save_area
3821 = assign_outer_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
3822
3823 addr = fix_lexical_addr (XEXP (fp->arg_pointer_save_area, 0), var);
3824 addr = memory_address (Pmode, addr);
3825
3826 base = copy_to_reg (gen_rtx (MEM, Pmode, addr));
3827#else
3828 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
86f8eff3 3829 base = lookup_static_chain (var);
6f086dfc
RS
3830#endif
3831 }
3832
3833 else if (basereg == virtual_stack_vars_rtx)
3834 {
3835 /* This is the same code as lookup_static_chain, duplicated here to
3836 avoid an extra call to decl_function_context. */
3837 tree link;
3838
3839 for (link = context_display; link; link = TREE_CHAIN (link))
3840 if (TREE_PURPOSE (link) == context)
3841 {
3842 base = RTL_EXPR_RTL (TREE_VALUE (link));
3843 break;
3844 }
3845 }
3846
3847 if (base == 0)
3848 abort ();
3849
3850 /* Use same offset, relative to appropriate static chain or argument
3851 pointer. */
3852 return plus_constant (base, displacement);
3853}
3854\f
3855/* Return the address of the trampoline for entering nested fn FUNCTION.
3856 If necessary, allocate a trampoline (in the stack frame)
3857 and emit rtl to initialize its contents (at entry to this function). */
3858
3859rtx
3860trampoline_address (function)
3861 tree function;
3862{
3863 tree link;
3864 tree rtlexp;
3865 rtx tramp;
3866 struct function *fp;
3867 tree fn_context;
3868
3869 /* Find an existing trampoline and return it. */
3870 for (link = trampoline_list; link; link = TREE_CHAIN (link))
3871 if (TREE_PURPOSE (link) == function)
3872 return XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0);
3873 for (fp = outer_function_chain; fp; fp = fp->next)
3874 for (link = fp->trampoline_list; link; link = TREE_CHAIN (link))
3875 if (TREE_PURPOSE (link) == function)
3876 {
3877 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
3878 function);
3879 return round_trampoline_addr (tramp);
3880 }
3881
3882 /* None exists; we must make one. */
3883
3884 /* Find the `struct function' for the function containing FUNCTION. */
3885 fp = 0;
3886 fn_context = decl_function_context (function);
3887 if (fn_context != current_function_decl)
3888 for (fp = outer_function_chain; fp; fp = fp->next)
3889 if (fp->decl == fn_context)
3890 break;
3891
3892 /* Allocate run-time space for this trampoline
3893 (usually in the defining function's stack frame). */
3894#ifdef ALLOCATE_TRAMPOLINE
3895 tramp = ALLOCATE_TRAMPOLINE (fp);
3896#else
3897 /* If rounding needed, allocate extra space
3898 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
3899#ifdef TRAMPOLINE_ALIGNMENT
3900#define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE + TRAMPOLINE_ALIGNMENT - 1)
3901#else
3902#define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
3903#endif
3904 if (fp != 0)
3905 tramp = assign_outer_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0, fp);
3906 else
3907 tramp = assign_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0);
3908#endif
3909
3910 /* Record the trampoline for reuse and note it for later initialization
3911 by expand_function_end. */
3912 if (fp != 0)
3913 {
3914 push_obstacks (fp->current_obstack, fp->function_maybepermanent_obstack);
3915 rtlexp = make_node (RTL_EXPR);
3916 RTL_EXPR_RTL (rtlexp) = tramp;
3917 fp->trampoline_list = tree_cons (function, rtlexp, fp->trampoline_list);
3918 pop_obstacks ();
3919 }
3920 else
3921 {
3922 /* Make the RTL_EXPR node temporary, not momentary, so that the
3923 trampoline_list doesn't become garbage. */
3924 int momentary = suspend_momentary ();
3925 rtlexp = make_node (RTL_EXPR);
3926 resume_momentary (momentary);
3927
3928 RTL_EXPR_RTL (rtlexp) = tramp;
3929 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
3930 }
3931
3932 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
3933 return round_trampoline_addr (tramp);
3934}
3935
3936/* Given a trampoline address,
3937 round it to multiple of TRAMPOLINE_ALIGNMENT. */
3938
3939static rtx
3940round_trampoline_addr (tramp)
3941 rtx tramp;
3942{
3943#ifdef TRAMPOLINE_ALIGNMENT
3944 /* Round address up to desired boundary. */
3945 rtx temp = gen_reg_rtx (Pmode);
3946 temp = expand_binop (Pmode, add_optab, tramp,
5f4f0e22 3947 GEN_INT (TRAMPOLINE_ALIGNMENT - 1),
6f086dfc
RS
3948 temp, 0, OPTAB_LIB_WIDEN);
3949 tramp = expand_binop (Pmode, and_optab, temp,
5f4f0e22 3950 GEN_INT (- TRAMPOLINE_ALIGNMENT),
6f086dfc
RS
3951 temp, 0, OPTAB_LIB_WIDEN);
3952#endif
3953 return tramp;
3954}
3955\f
467456d0
RS
3956/* The functions identify_blocks and reorder_blocks provide a way to
3957 reorder the tree of BLOCK nodes, for optimizers that reshuffle or
3958 duplicate portions of the RTL code. Call identify_blocks before
3959 changing the RTL, and call reorder_blocks after. */
3960
3961static int all_blocks ();
3962static tree blocks_nreverse ();
3963
3964/* Put all this function's BLOCK nodes into a vector, and return it.
3965 Also store in each NOTE for the beginning or end of a block
3966 the index of that block in the vector.
3967 The arguments are TOP_BLOCK, the top-level block of the function,
3968 and INSNS, the insn chain of the function. */
3969
3970tree *
3971identify_blocks (top_block, insns)
3972 tree top_block;
3973 rtx insns;
3974{
fc289cd1
JW
3975 int n_blocks;
3976 tree *block_vector;
3977 int *block_stack;
467456d0
RS
3978 int depth = 0;
3979 int next_block_number = 0;
3980 int current_block_number = 0;
3981 rtx insn;
3982
fc289cd1
JW
3983 if (top_block == 0)
3984 return 0;
3985
3986 n_blocks = all_blocks (top_block, 0);
3987 block_vector = (tree *) xmalloc (n_blocks * sizeof (tree));
3988 block_stack = (int *) alloca (n_blocks * sizeof (int));
3989
467456d0
RS
3990 all_blocks (top_block, block_vector);
3991
3992 for (insn = insns; insn; insn = NEXT_INSN (insn))
3993 if (GET_CODE (insn) == NOTE)
3994 {
3995 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3996 {
3997 block_stack[depth++] = current_block_number;
3998 current_block_number = next_block_number;
1b2ac438 3999 NOTE_BLOCK_NUMBER (insn) = next_block_number++;
467456d0
RS
4000 }
4001 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
4002 {
4003 current_block_number = block_stack[--depth];
1b2ac438 4004 NOTE_BLOCK_NUMBER (insn) = current_block_number;
467456d0
RS
4005 }
4006 }
4007
4008 return block_vector;
4009}
4010
4011/* Given BLOCK_VECTOR which was returned by identify_blocks,
4012 and a revised instruction chain, rebuild the tree structure
4013 of BLOCK nodes to correspond to the new order of RTL.
fc289cd1 4014 The new block tree is inserted below TOP_BLOCK.
467456d0
RS
4015 Returns the current top-level block. */
4016
4017tree
fc289cd1 4018reorder_blocks (block_vector, top_block, insns)
467456d0 4019 tree *block_vector;
fc289cd1 4020 tree top_block;
467456d0
RS
4021 rtx insns;
4022{
fc289cd1 4023 tree current_block = top_block;
467456d0
RS
4024 rtx insn;
4025
fc289cd1
JW
4026 if (block_vector == 0)
4027 return top_block;
4028
4029 /* Prune the old tree away, so that it doesn't get in the way. */
4030 BLOCK_SUBBLOCKS (current_block) = 0;
4031
467456d0
RS
4032 for (insn = insns; insn; insn = NEXT_INSN (insn))
4033 if (GET_CODE (insn) == NOTE)
4034 {
4035 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
4036 {
4037 tree block = block_vector[NOTE_BLOCK_NUMBER (insn)];
4038 /* If we have seen this block before, copy it. */
4039 if (TREE_ASM_WRITTEN (block))
4040 block = copy_node (block);
fc289cd1 4041 BLOCK_SUBBLOCKS (block) = 0;
467456d0
RS
4042 TREE_ASM_WRITTEN (block) = 1;
4043 BLOCK_SUPERCONTEXT (block) = current_block;
4044 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4045 BLOCK_SUBBLOCKS (current_block) = block;
4046 current_block = block;
1b2ac438 4047 NOTE_SOURCE_FILE (insn) = 0;
467456d0
RS
4048 }
4049 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
4050 {
4051 BLOCK_SUBBLOCKS (current_block)
4052 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
4053 current_block = BLOCK_SUPERCONTEXT (current_block);
1b2ac438 4054 NOTE_SOURCE_FILE (insn) = 0;
467456d0
RS
4055 }
4056 }
4057
4058 return current_block;
4059}
4060
4061/* Reverse the order of elements in the chain T of blocks,
4062 and return the new head of the chain (old last element). */
4063
4064static tree
4065blocks_nreverse (t)
4066 tree t;
4067{
4068 register tree prev = 0, decl, next;
4069 for (decl = t; decl; decl = next)
4070 {
4071 next = BLOCK_CHAIN (decl);
4072 BLOCK_CHAIN (decl) = prev;
4073 prev = decl;
4074 }
4075 return prev;
4076}
4077
4078/* Count the subblocks of BLOCK, and list them all into the vector VECTOR.
4079 Also clear TREE_ASM_WRITTEN in all blocks. */
4080
4081static int
4082all_blocks (block, vector)
4083 tree block;
4084 tree *vector;
4085{
4086 int n_blocks = 1;
4087 tree subblocks;
4088
4089 TREE_ASM_WRITTEN (block) = 0;
4090 /* Record this block. */
fc289cd1
JW
4091 if (vector)
4092 vector[0] = block;
467456d0
RS
4093
4094 /* Record the subblocks, and their subblocks. */
4095 for (subblocks = BLOCK_SUBBLOCKS (block);
4096 subblocks; subblocks = BLOCK_CHAIN (subblocks))
fc289cd1 4097 n_blocks += all_blocks (subblocks, vector ? vector + n_blocks : 0);
467456d0
RS
4098
4099 return n_blocks;
4100}
4101\f
6f086dfc
RS
4102/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4103 and initialize static variables for generating RTL for the statements
4104 of the function. */
4105
4106void
4107init_function_start (subr, filename, line)
4108 tree subr;
4109 char *filename;
4110 int line;
4111{
4112 char *junk;
4113
4114 init_stmt_for_function ();
4115
4116 cse_not_expected = ! optimize;
4117
4118 /* Caller save not needed yet. */
4119 caller_save_needed = 0;
4120
4121 /* No stack slots have been made yet. */
4122 stack_slot_list = 0;
4123
4124 /* There is no stack slot for handling nonlocal gotos. */
4125 nonlocal_goto_handler_slot = 0;
4126 nonlocal_goto_stack_level = 0;
4127
4128 /* No labels have been declared for nonlocal use. */
4129 nonlocal_labels = 0;
4130
4131 /* No function calls so far in this function. */
4132 function_call_count = 0;
4133
4134 /* No parm regs have been allocated.
4135 (This is important for output_inline_function.) */
4136 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4137
4138 /* Initialize the RTL mechanism. */
4139 init_emit ();
4140
4141 /* Initialize the queue of pending postincrement and postdecrements,
4142 and some other info in expr.c. */
4143 init_expr ();
4144
4145 /* We haven't done register allocation yet. */
4146 reg_renumber = 0;
4147
4148 init_const_rtx_hash_table ();
4149
4150 current_function_name = (*decl_printable_name) (subr, &junk);
4151
4152 /* Nonzero if this is a nested function that uses a static chain. */
4153
4154 current_function_needs_context
4155 = (decl_function_context (current_function_decl) != 0);
4156
4157 /* Set if a call to setjmp is seen. */
4158 current_function_calls_setjmp = 0;
4159
4160 /* Set if a call to longjmp is seen. */
4161 current_function_calls_longjmp = 0;
4162
4163 current_function_calls_alloca = 0;
4164 current_function_has_nonlocal_label = 0;
4165 current_function_contains_functions = 0;
4166
4167 current_function_returns_pcc_struct = 0;
4168 current_function_returns_struct = 0;
4169 current_function_epilogue_delay_list = 0;
4170 current_function_uses_const_pool = 0;
4171 current_function_uses_pic_offset_table = 0;
4172
4173 /* We have not yet needed to make a label to jump to for tail-recursion. */
4174 tail_recursion_label = 0;
4175
4176 /* We haven't had a need to make a save area for ap yet. */
4177
4178 arg_pointer_save_area = 0;
4179
4180 /* No stack slots allocated yet. */
4181 frame_offset = 0;
4182
4183 /* No SAVE_EXPRs in this function yet. */
4184 save_expr_regs = 0;
4185
4186 /* No RTL_EXPRs in this function yet. */
4187 rtl_expr_chain = 0;
4188
4189 /* We have not allocated any temporaries yet. */
4190 temp_slots = 0;
4191 temp_slot_level = 0;
4192
4193 /* Within function body, compute a type's size as soon it is laid out. */
4194 immediate_size_expand++;
4195
4196 init_pending_stack_adjust ();
4197 inhibit_defer_pop = 0;
4198
4199 current_function_outgoing_args_size = 0;
4200
4201 /* Initialize the insn lengths. */
4202 init_insn_lengths ();
4203
4204 /* Prevent ever trying to delete the first instruction of a function.
4205 Also tell final how to output a linenum before the function prologue. */
4206 emit_line_note (filename, line);
4207
4208 /* Make sure first insn is a note even if we don't want linenums.
4209 This makes sure the first insn will never be deleted.
4210 Also, final expects a note to appear there. */
5f4f0e22 4211 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6f086dfc
RS
4212
4213 /* Set flags used by final.c. */
4214 if (aggregate_value_p (DECL_RESULT (subr)))
4215 {
4216#ifdef PCC_STATIC_STRUCT_RETURN
1b8297c1 4217 current_function_returns_pcc_struct = 1;
6f086dfc 4218#endif
1b8297c1 4219 current_function_returns_struct = 1;
6f086dfc
RS
4220 }
4221
4222 /* Warn if this value is an aggregate type,
4223 regardless of which calling convention we are using for it. */
4224 if (warn_aggregate_return
4225 && (TREE_CODE (TREE_TYPE (DECL_RESULT (subr))) == RECORD_TYPE
4226 || TREE_CODE (TREE_TYPE (DECL_RESULT (subr))) == UNION_TYPE
c1b98a95 4227 || TREE_CODE (TREE_TYPE (DECL_RESULT (subr))) == QUAL_UNION_TYPE
6f086dfc
RS
4228 || TREE_CODE (TREE_TYPE (DECL_RESULT (subr))) == ARRAY_TYPE))
4229 warning ("function returns an aggregate");
4230
4231 current_function_returns_pointer
4232 = (TREE_CODE (TREE_TYPE (DECL_RESULT (subr))) == POINTER_TYPE);
4233
4234 /* Indicate that we need to distinguish between the return value of the
4235 present function and the return value of a function being called. */
4236 rtx_equal_function_value_matters = 1;
4237
4238 /* Indicate that we have not instantiated virtual registers yet. */
4239 virtuals_instantiated = 0;
4240
4241 /* Indicate we have no need of a frame pointer yet. */
4242 frame_pointer_needed = 0;
4243
4244 /* By default assume not varargs. */
4245 current_function_varargs = 0;
4246}
4247
4248/* Indicate that the current function uses extra args
4249 not explicitly mentioned in the argument list in any fashion. */
4250
4251void
4252mark_varargs ()
4253{
4254 current_function_varargs = 1;
4255}
4256
4257/* Expand a call to __main at the beginning of a possible main function. */
4258
4259void
4260expand_main_function ()
4261{
b335c2cc 4262#if !defined (INIT_SECTION_ASM_OP) || defined (INVOKE__main)
6f086dfc
RS
4263 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__main"), 0,
4264 VOIDmode, 0);
b335c2cc 4265#endif /* not INIT_SECTION_ASM_OP or INVOKE__main */
6f086dfc
RS
4266}
4267\f
4268/* Start the RTL for a new function, and set variables used for
4269 emitting RTL.
4270 SUBR is the FUNCTION_DECL node.
4271 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4272 the function's parameters, which must be run at any return statement. */
4273
4274void
4275expand_function_start (subr, parms_have_cleanups)
4276 tree subr;
4277 int parms_have_cleanups;
4278{
4279 register int i;
4280 tree tem;
4281 rtx last_ptr;
4282
4283 /* Make sure volatile mem refs aren't considered
4284 valid operands of arithmetic insns. */
4285 init_recog_no_volatile ();
4286
4287 /* If function gets a static chain arg, store it in the stack frame.
4288 Do this first, so it gets the first stack slot offset. */
4289 if (current_function_needs_context)
3e2481e9
JW
4290 {
4291 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4292 emit_move_insn (last_ptr, static_chain_incoming_rtx);
4293 }
6f086dfc
RS
4294
4295 /* If the parameters of this function need cleaning up, get a label
4296 for the beginning of the code which executes those cleanups. This must
4297 be done before doing anything with return_label. */
4298 if (parms_have_cleanups)
4299 cleanup_label = gen_label_rtx ();
4300 else
4301 cleanup_label = 0;
4302
4303 /* Make the label for return statements to jump to, if this machine
4304 does not have a one-instruction return and uses an epilogue,
4305 or if it returns a structure, or if it has parm cleanups. */
4306#ifdef HAVE_return
4307 if (cleanup_label == 0 && HAVE_return
4308 && ! current_function_returns_pcc_struct
4309 && ! (current_function_returns_struct && ! optimize))
4310 return_label = 0;
4311 else
4312 return_label = gen_label_rtx ();
4313#else
4314 return_label = gen_label_rtx ();
4315#endif
4316
4317 /* Initialize rtx used to return the value. */
4318 /* Do this before assign_parms so that we copy the struct value address
4319 before any library calls that assign parms might generate. */
4320
4321 /* Decide whether to return the value in memory or in a register. */
4322 if (aggregate_value_p (DECL_RESULT (subr)))
4323 {
4324 /* Returning something that won't go in a register. */
4325 register rtx value_address;
4326
4327#ifdef PCC_STATIC_STRUCT_RETURN
4328 if (current_function_returns_pcc_struct)
4329 {
4330 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4331 value_address = assemble_static_space (size);
4332 }
4333 else
4334#endif
4335 {
4336 /* Expect to be passed the address of a place to store the value.
4337 If it is passed as an argument, assign_parms will take care of
4338 it. */
4339 if (struct_value_incoming_rtx)
4340 {
4341 value_address = gen_reg_rtx (Pmode);
4342 emit_move_insn (value_address, struct_value_incoming_rtx);
4343 }
4344 }
4345 if (value_address)
4346 DECL_RTL (DECL_RESULT (subr))
4347 = gen_rtx (MEM, DECL_MODE (DECL_RESULT (subr)),
4348 value_address);
4349 }
4350 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4351 /* If return mode is void, this decl rtl should not be used. */
4352 DECL_RTL (DECL_RESULT (subr)) = 0;
4353 else if (parms_have_cleanups)
a53e14c0
RK
4354 {
4355 /* If function will end with cleanup code for parms,
4356 compute the return values into a pseudo reg,
4357 which we will copy into the true return register
4358 after the cleanups are done. */
4359
4360 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
4361#ifdef PROMOTE_FUNCTION_RETURN
4362 tree type = TREE_TYPE (DECL_RESULT (subr));
4363 int unsignedp = TREE_UNSIGNED (type);
4364
4365 if (TREE_CODE (type) == INTEGER_TYPE || TREE_CODE (type) == ENUMERAL_TYPE
4366 || TREE_CODE (type) == BOOLEAN_TYPE || TREE_CODE (type) == CHAR_TYPE
4367 || TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == POINTER_TYPE
4368 || TREE_CODE (type) == OFFSET_TYPE)
4369 {
4370 PROMOTE_MODE (mode, unsignedp, type);
4371 }
4372#endif
4373
4374 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
4375 }
6f086dfc
RS
4376 else
4377 /* Scalar, returned in a register. */
4378 {
4379#ifdef FUNCTION_OUTGOING_VALUE
4380 DECL_RTL (DECL_RESULT (subr))
4381 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
4382#else
4383 DECL_RTL (DECL_RESULT (subr))
4384 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
4385#endif
4386
4387 /* Mark this reg as the function's return value. */
4388 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
4389 {
4390 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
4391 /* Needed because we may need to move this to memory
4392 in case it's a named return value whose address is taken. */
a82ad570 4393 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6f086dfc
RS
4394 }
4395 }
4396
4397 /* Initialize rtx for parameters and local variables.
4398 In some cases this requires emitting insns. */
4399
4400 assign_parms (subr, 0);
4401
4402 /* The following was moved from init_function_start.
4403 The move is supposed to make sdb output more accurate. */
4404 /* Indicate the beginning of the function body,
4405 as opposed to parm setup. */
5f4f0e22 4406 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6f086dfc
RS
4407
4408 /* If doing stupid allocation, mark parms as born here. */
4409
4410 if (GET_CODE (get_last_insn ()) != NOTE)
5f4f0e22 4411 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6f086dfc
RS
4412 parm_birth_insn = get_last_insn ();
4413
4414 if (obey_regdecls)
4415 {
4416 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
4417 use_variable (regno_reg_rtx[i]);
4418
4419 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
4420 use_variable (current_function_internal_arg_pointer);
4421 }
4422
4423 /* Fetch static chain values for containing functions. */
4424 tem = decl_function_context (current_function_decl);
3e2481e9
JW
4425 /* If not doing stupid register allocation, then start off with the static
4426 chain pointer in a pseudo register. Otherwise, we use the stack
4427 address that was generated above. */
4428 if (tem && ! obey_regdecls)
6f086dfc
RS
4429 last_ptr = copy_to_reg (static_chain_incoming_rtx);
4430 context_display = 0;
4431 while (tem)
4432 {
4433 tree rtlexp = make_node (RTL_EXPR);
4434
4435 RTL_EXPR_RTL (rtlexp) = last_ptr;
4436 context_display = tree_cons (tem, rtlexp, context_display);
4437 tem = decl_function_context (tem);
4438 if (tem == 0)
4439 break;
4440 /* Chain thru stack frames, assuming pointer to next lexical frame
4441 is found at the place we always store it. */
4442#ifdef FRAME_GROWS_DOWNWARD
4443 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
4444#endif
4445 last_ptr = copy_to_reg (gen_rtx (MEM, Pmode,
4446 memory_address (Pmode, last_ptr)));
4447 }
4448
4449 /* After the display initializations is where the tail-recursion label
4450 should go, if we end up needing one. Ensure we have a NOTE here
4451 since some things (like trampolines) get placed before this. */
5f4f0e22 4452 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6f086dfc
RS
4453
4454 /* Evaluate now the sizes of any types declared among the arguments. */
4455 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
4752d3bc 4456 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6f086dfc
RS
4457
4458 /* Make sure there is a line number after the function entry setup code. */
4459 force_next_line_note ();
4460}
4461\f
4462/* Generate RTL for the end of the current function.
4463 FILENAME and LINE are the current position in the source file. */
4464
4465/* It is up to language-specific callers to do cleanups for parameters. */
4466
4467void
4468expand_function_end (filename, line)
4469 char *filename;
4470 int line;
4471{
4472 register int i;
4473 tree link;
4474
4475 static rtx initial_trampoline;
4476
4477#ifdef NON_SAVING_SETJMP
4478 /* Don't put any variables in registers if we call setjmp
4479 on a machine that fails to restore the registers. */
4480 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
4481 {
4482 setjmp_protect (DECL_INITIAL (current_function_decl));
4483 setjmp_protect_args ();
4484 }
4485#endif
4486
4487 /* Save the argument pointer if a save area was made for it. */
4488 if (arg_pointer_save_area)
4489 {
4490 rtx x = gen_move_insn (arg_pointer_save_area, virtual_incoming_args_rtx);
4491 emit_insn_before (x, tail_recursion_reentry);
4492 }
4493
4494 /* Initialize any trampolines required by this function. */
4495 for (link = trampoline_list; link; link = TREE_CHAIN (link))
4496 {
4497 tree function = TREE_PURPOSE (link);
4498 rtx context = lookup_static_chain (function);
4499 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
4500 rtx seq;
4501
4502 /* First make sure this compilation has a template for
4503 initializing trampolines. */
4504 if (initial_trampoline == 0)
86f8eff3
RK
4505 {
4506 end_temporary_allocation ();
4507 initial_trampoline
4508 = gen_rtx (MEM, BLKmode, assemble_trampoline_template ());
4509 resume_temporary_allocation ();
4510 }
6f086dfc
RS
4511
4512 /* Generate insns to initialize the trampoline. */
4513 start_sequence ();
4514 tramp = change_address (initial_trampoline, BLKmode,
4515 round_trampoline_addr (XEXP (tramp, 0)));
5f4f0e22 4516 emit_block_move (tramp, initial_trampoline, GEN_INT (TRAMPOLINE_SIZE),
6f086dfc
RS
4517 FUNCTION_BOUNDARY / BITS_PER_UNIT);
4518 INITIALIZE_TRAMPOLINE (XEXP (tramp, 0),
4519 XEXP (DECL_RTL (function), 0), context);
4520 seq = get_insns ();
4521 end_sequence ();
4522
4523 /* Put those insns at entry to the containing function (this one). */
4524 emit_insns_before (seq, tail_recursion_reentry);
4525 }
4526 /* Clear the trampoline_list for the next function. */
4527 trampoline_list = 0;
4528
4529#if 0 /* I think unused parms are legitimate enough. */
4530 /* Warn about unused parms. */
4531 if (warn_unused)
4532 {
4533 rtx decl;
4534
4535 for (decl = DECL_ARGUMENTS (current_function_decl);
4536 decl; decl = TREE_CHAIN (decl))
4537 if (! TREE_USED (decl) && TREE_CODE (decl) == VAR_DECL)
4538 warning_with_decl (decl, "unused parameter `%s'");
4539 }
4540#endif
4541
4542 /* Delete handlers for nonlocal gotos if nothing uses them. */
4543 if (nonlocal_goto_handler_slot != 0 && !current_function_has_nonlocal_label)
4544 delete_handlers ();
4545
4546 /* End any sequences that failed to be closed due to syntax errors. */
4547 while (in_sequence_p ())
5f4f0e22 4548 end_sequence ();
6f086dfc
RS
4549
4550 /* Outside function body, can't compute type's actual size
4551 until next function's body starts. */
4552 immediate_size_expand--;
4553
4554 /* If doing stupid register allocation,
4555 mark register parms as dying here. */
4556
4557 if (obey_regdecls)
4558 {
4559 rtx tem;
4560 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
4561 use_variable (regno_reg_rtx[i]);
4562
4563 /* Likewise for the regs of all the SAVE_EXPRs in the function. */
4564
4565 for (tem = save_expr_regs; tem; tem = XEXP (tem, 1))
4566 {
4567 use_variable (XEXP (tem, 0));
4568 use_variable_after (XEXP (tem, 0), parm_birth_insn);
4569 }
4570
4571 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
4572 use_variable (current_function_internal_arg_pointer);
4573 }
4574
4575 clear_pending_stack_adjust ();
4576 do_pending_stack_adjust ();
4577
4578 /* Mark the end of the function body.
4579 If control reaches this insn, the function can drop through
4580 without returning a value. */
5f4f0e22 4581 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6f086dfc
RS
4582
4583 /* Output a linenumber for the end of the function.
4584 SDB depends on this. */
4585 emit_line_note_force (filename, line);
4586
4587 /* Output the label for the actual return from the function,
4588 if one is expected. This happens either because a function epilogue
4589 is used instead of a return instruction, or because a return was done
4590 with a goto in order to run local cleanups, or because of pcc-style
4591 structure returning. */
4592
4593 if (return_label)
4594 emit_label (return_label);
4595
4596 /* If we had calls to alloca, and this machine needs
4597 an accurate stack pointer to exit the function,
4598 insert some code to save and restore the stack pointer. */
4599#ifdef EXIT_IGNORE_STACK
4600 if (! EXIT_IGNORE_STACK)
4601#endif
4602 if (current_function_calls_alloca)
4603 {
59257ff7
RK
4604 rtx tem = 0;
4605
4606 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
5f4f0e22 4607 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6f086dfc
RS
4608 }
4609
4610 /* If scalar return value was computed in a pseudo-reg,
4611 copy that to the hard return register. */
4612 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
4613 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
4614 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
4615 >= FIRST_PSEUDO_REGISTER))
4616 {
4617 rtx real_decl_result;
4618
4619#ifdef FUNCTION_OUTGOING_VALUE
4620 real_decl_result
4621 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
4622 current_function_decl);
4623#else
4624 real_decl_result
4625 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
4626 current_function_decl);
4627#endif
4628 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
4629 emit_move_insn (real_decl_result,
4630 DECL_RTL (DECL_RESULT (current_function_decl)));
4631 emit_insn (gen_rtx (USE, VOIDmode, real_decl_result));
4632 }
4633
4634 /* If returning a structure, arrange to return the address of the value
4635 in a place where debuggers expect to find it.
4636
4637 If returning a structure PCC style,
4638 the caller also depends on this value.
4639 And current_function_returns_pcc_struct is not necessarily set. */
4640 if (current_function_returns_struct
4641 || current_function_returns_pcc_struct)
4642 {
4643 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
4644 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4645#ifdef FUNCTION_OUTGOING_VALUE
4646 rtx outgoing
4647 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4648 current_function_decl);
4649#else
4650 rtx outgoing
4651 = FUNCTION_VALUE (build_pointer_type (type),
4652 current_function_decl);
4653#endif
4654
4655 /* Mark this as a function return value so integrate will delete the
4656 assignment and USE below when inlining this function. */
4657 REG_FUNCTION_VALUE_P (outgoing) = 1;
4658
4659 emit_move_insn (outgoing, value_address);
4660 use_variable (outgoing);
4661 }
4662
4663 /* Output a return insn if we are using one.
4664 Otherwise, let the rtl chain end here, to drop through
4665 into the epilogue. */
4666
4667#ifdef HAVE_return
4668 if (HAVE_return)
4669 {
4670 emit_jump_insn (gen_return ());
4671 emit_barrier ();
4672 }
4673#endif
4674
4675 /* Fix up any gotos that jumped out to the outermost
4676 binding level of the function.
4677 Must follow emitting RETURN_LABEL. */
4678
4679 /* If you have any cleanups to do at this point,
4680 and they need to create temporary variables,
4681 then you will lose. */
5f4f0e22 4682 fixup_gotos (NULL_PTR, NULL_RTX, NULL_TREE, get_insns (), 0);
6f086dfc 4683}
bdac5f58
TW
4684\f
4685/* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
4686
4687static int *prologue;
4688static int *epilogue;
4689
4690/* Create an array that records the INSN_UIDs of INSNS (either a sequence
4691 or a single insn). */
4692
4693static int *
4694record_insns (insns)
4695 rtx insns;
4696{
4697 int *vec;
4698
4699 if (GET_CODE (insns) == SEQUENCE)
4700 {
4701 int len = XVECLEN (insns, 0);
4702 vec = (int *) oballoc ((len + 1) * sizeof (int));
4703 vec[len] = 0;
4704 while (--len >= 0)
4705 vec[len] = INSN_UID (XVECEXP (insns, 0, len));
4706 }
4707 else
4708 {
4709 vec = (int *) oballoc (2 * sizeof (int));
4710 vec[0] = INSN_UID (insns);
4711 vec[1] = 0;
4712 }
4713 return vec;
4714}
4715
10914065 4716/* Determine how many INSN_UIDs in VEC are part of INSN. */
bdac5f58 4717
10914065 4718static int
bdac5f58
TW
4719contains (insn, vec)
4720 rtx insn;
4721 int *vec;
4722{
4723 register int i, j;
4724
4725 if (GET_CODE (insn) == INSN
4726 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4727 {
10914065 4728 int count = 0;
bdac5f58
TW
4729 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4730 for (j = 0; vec[j]; j++)
4731 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == vec[j])
10914065
TW
4732 count++;
4733 return count;
bdac5f58
TW
4734 }
4735 else
4736 {
4737 for (j = 0; vec[j]; j++)
4738 if (INSN_UID (insn) == vec[j])
10914065 4739 return 1;
bdac5f58
TW
4740 }
4741 return 0;
4742}
4743
4744/* Generate the prologe and epilogue RTL if the machine supports it. Thread
4745 this into place with notes indicating where the prologue ends and where
4746 the epilogue begins. Update the basic block information when possible. */
4747
4748void
4749thread_prologue_and_epilogue_insns (f)
4750 rtx f;
4751{
4752#ifdef HAVE_prologue
4753 if (HAVE_prologue)
4754 {
4755 rtx head, seq, insn;
4756
4757 /* The first insn (a NOTE_INSN_DELETED) is followed by zero or more
4758 prologue insns and a NOTE_INSN_PROLOGUE_END. */
4759 emit_note_after (NOTE_INSN_PROLOGUE_END, f);
4760 seq = gen_prologue ();
4761 head = emit_insn_after (seq, f);
4762
4763 /* Include the new prologue insns in the first block. Ignore them
4764 if they form a basic block unto themselves. */
4765 if (basic_block_head && n_basic_blocks
4766 && GET_CODE (basic_block_head[0]) != CODE_LABEL)
4767 basic_block_head[0] = NEXT_INSN (f);
4768
4769 /* Retain a map of the prologue insns. */
4770 prologue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : head);
4771 }
4772 else
4773#endif
4774 prologue = 0;
4775
4776#ifdef HAVE_epilogue
4777 if (HAVE_epilogue)
4778 {
4779 rtx insn = get_last_insn ();
4780 rtx prev = prev_nonnote_insn (insn);
4781
4782 /* If we end with a BARRIER, we don't need an epilogue. */
4783 if (! (prev && GET_CODE (prev) == BARRIER))
4784 {
4785 rtx tail, seq;
4786
4787 /* The last basic block ends with a NOTE_INSN_EPILOGUE_BEG,
4788 the epilogue insns (this must include the jump insn that
4789 returns), USE insns ad the end of a function, and a BARRIER. */
4790
4791 emit_barrier_after (insn);
4792
4793 /* Place the epilogue before the USE insns at the end of a
4794 function. */
4795 while (prev
4796 && GET_CODE (prev) == INSN
4797 && GET_CODE (PATTERN (prev)) == USE)
4798 {
4799 insn = PREV_INSN (prev);
4800 prev = prev_nonnote_insn (prev);
4801 }
4802
4803 seq = gen_epilogue ();
4804 tail = emit_jump_insn_after (seq, insn);
4805 emit_note_after (NOTE_INSN_EPILOGUE_BEG, insn);
4806
4807 /* Include the new epilogue insns in the last block. Ignore
4808 them if they form a basic block unto themselves. */
4809 if (basic_block_end && n_basic_blocks
4810 && GET_CODE (basic_block_end[n_basic_blocks - 1]) != JUMP_INSN)
4811 basic_block_end[n_basic_blocks - 1] = tail;
4812
4813 /* Retain a map of the epilogue insns. */
4814 epilogue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : tail);
4815 return;
4816 }
4817 }
4818#endif
4819 epilogue = 0;
4820}
4821
4822/* Reposition the prologue-end and epilogue-begin notes after instruction
4823 scheduling and delayed branch scheduling. */
4824
4825void
4826reposition_prologue_and_epilogue_notes (f)
4827 rtx f;
4828{
4829#if defined (HAVE_prologue) || defined (HAVE_epilogue)
4830 /* Reposition the prologue and epilogue notes. */
4831 if (n_basic_blocks)
4832 {
4833 rtx next, prev;
bf526252 4834 int len;
bdac5f58
TW
4835
4836 if (prologue)
4837 {
bf526252
RK
4838 register rtx insn, note = 0;
4839
4840 /* Scan from the beginning until we reach the last prologue insn.
4841 We apparently can't depend on basic_block_{head,end} after
4842 reorg has run. */
4843 for (len = 0; prologue[len]; len++)
4844 ;
9392c110
JH
4845 for (insn = f; len && insn; insn = NEXT_INSN (insn))
4846 {
4847 if (GET_CODE (insn) == NOTE)
4848 {
4849 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
4850 note = insn;
4851 }
4852 else if ((len -= contains (insn, prologue)) == 0)
4853 {
4854 /* Find the prologue-end note if we haven't already, and
4855 move it to just after the last prologue insn. */
4856 if (note == 0)
4857 {
4858 for (note = insn; note = NEXT_INSN (note);)
4859 if (GET_CODE (note) == NOTE
4860 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
4861 break;
4862 }
4863 next = NEXT_INSN (note);
4864 prev = PREV_INSN (note);
4865 if (prev)
4866 NEXT_INSN (prev) = next;
4867 if (next)
4868 PREV_INSN (next) = prev;
4869 add_insn_after (note, insn);
4870 }
4871 }
bdac5f58
TW
4872 }
4873
4874 if (epilogue)
4875 {
bf526252
RK
4876 register rtx insn, note = 0;
4877
4878 /* Scan from the end until we reach the first epilogue insn.
4879 We apparently can't depend on basic_block_{head,end} after
4880 reorg has run. */
4881 for (len = 0; epilogue[len]; len++)
4882 ;
9392c110
JH
4883 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
4884 {
4885 if (GET_CODE (insn) == NOTE)
4886 {
4887 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
4888 note = insn;
4889 }
4890 else if ((len -= contains (insn, epilogue)) == 0)
4891 {
4892 /* Find the epilogue-begin note if we haven't already, and
4893 move it to just before the first epilogue insn. */
4894 if (note == 0)
4895 {
4896 for (note = insn; note = PREV_INSN (note);)
4897 if (GET_CODE (note) == NOTE
4898 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
4899 break;
4900 }
4901 next = NEXT_INSN (note);
4902 prev = PREV_INSN (note);
4903 if (prev)
4904 NEXT_INSN (prev) = next;
4905 if (next)
4906 PREV_INSN (next) = prev;
4907 add_insn_after (note, PREV_INSN (insn));
4908 }
4909 }
bdac5f58
TW
4910 }
4911 }
4912#endif /* HAVE_prologue or HAVE_epilogue */
4913}
This page took 0.645601 seconds and 5 git commands to generate.