]> gcc.gnu.org Git - gcc.git/blame - gcc/function.c
decl.c (make_implicit_typename): Rewrite removed code.
[gcc.git] / gcc / function.c
CommitLineData
6f086dfc 1/* Expands front end tree to back end RTL for GNU C-Compiler
c85f7c16 2 Copyright (C) 1987, 88, 89, 91-97, 1998 Free Software Foundation, Inc.
6f086dfc
RS
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
a35311b0
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
6f086dfc
RS
20
21
22/* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
35
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
40
41#include "config.h"
6f086dfc 42#include <stdio.h>
51723711
KG
43#ifdef HAVE_STDLIB_H
44#include <stdlib.h>
45#endif
6f086dfc
RS
46#include "rtl.h"
47#include "tree.h"
48#include "flags.h"
1ef08c63 49#include "except.h"
6f086dfc
RS
50#include "function.h"
51#include "insn-flags.h"
52#include "expr.h"
53#include "insn-codes.h"
54#include "regs.h"
55#include "hard-reg-set.h"
56#include "insn-config.h"
57#include "recog.h"
58#include "output.h"
bdac5f58 59#include "basic-block.h"
c20bf1f3 60#include "obstack.h"
6f086dfc 61
189cc377
RK
62#ifndef TRAMPOLINE_ALIGNMENT
63#define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
64#endif
65
293e3de4
RS
66/* Some systems use __main in a way incompatible with its use in gcc, in these
67 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
68 give the same symbol without quotes for an alternative entry point. You
0f41302f 69 must define both, or neither. */
293e3de4
RS
70#ifndef NAME__MAIN
71#define NAME__MAIN "__main"
72#define SYMBOL__MAIN __main
73#endif
74
6f086dfc
RS
75/* Round a value to the lowest integer less than it that is a multiple of
76 the required alignment. Avoid using division in case the value is
77 negative. Assume the alignment is a power of two. */
78#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
79
80/* Similar, but round to the next highest integer that meets the
81 alignment. */
82#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
83
84/* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
85 during rtl generation. If they are different register numbers, this is
86 always true. It may also be true if
87 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
88 generation. See fix_lexical_addr for details. */
89
90#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
91#define NEED_SEPARATE_AP
92#endif
93
94/* Number of bytes of args popped by function being compiled on its return.
95 Zero if no bytes are to be popped.
96 May affect compilation of return insn or of function epilogue. */
97
98int current_function_pops_args;
99
100/* Nonzero if function being compiled needs to be given an address
101 where the value should be stored. */
102
103int current_function_returns_struct;
104
105/* Nonzero if function being compiled needs to
106 return the address of where it has put a structure value. */
107
108int current_function_returns_pcc_struct;
109
110/* Nonzero if function being compiled needs to be passed a static chain. */
111
112int current_function_needs_context;
113
114/* Nonzero if function being compiled can call setjmp. */
115
116int current_function_calls_setjmp;
117
118/* Nonzero if function being compiled can call longjmp. */
119
120int current_function_calls_longjmp;
121
122/* Nonzero if function being compiled receives nonlocal gotos
123 from nested functions. */
124
125int current_function_has_nonlocal_label;
126
8634413a
JW
127/* Nonzero if function being compiled has nonlocal gotos to parent
128 function. */
129
130int current_function_has_nonlocal_goto;
131
6f086dfc
RS
132/* Nonzero if function being compiled contains nested functions. */
133
134int current_function_contains_functions;
135
173cd503
JM
136/* Nonzero if the current function is a thunk (a lightweight function that
137 just adjusts one of its arguments and forwards to another function), so
138 we should try to cut corners where we can. */
139int current_function_is_thunk;
140
6f086dfc
RS
141/* Nonzero if function being compiled can call alloca,
142 either as a subroutine or builtin. */
143
144int current_function_calls_alloca;
145
146/* Nonzero if the current function returns a pointer type */
147
148int current_function_returns_pointer;
149
150/* If some insns can be deferred to the delay slots of the epilogue, the
151 delay list for them is recorded here. */
152
153rtx current_function_epilogue_delay_list;
154
155/* If function's args have a fixed size, this is that size, in bytes.
156 Otherwise, it is -1.
157 May affect compilation of return insn or of function epilogue. */
158
159int current_function_args_size;
160
161/* # bytes the prologue should push and pretend that the caller pushed them.
162 The prologue must do this, but only if parms can be passed in registers. */
163
164int current_function_pretend_args_size;
165
f7339633 166/* # of bytes of outgoing arguments. If ACCUMULATE_OUTGOING_ARGS is
0f41302f 167 defined, the needed space is pushed by the prologue. */
6f086dfc
RS
168
169int current_function_outgoing_args_size;
170
171/* This is the offset from the arg pointer to the place where the first
172 anonymous arg can be found, if there is one. */
173
174rtx current_function_arg_offset_rtx;
175
176/* Nonzero if current function uses varargs.h or equivalent.
177 Zero for functions that use stdarg.h. */
178
179int current_function_varargs;
180
ebb904cb
RK
181/* Nonzero if current function uses stdarg.h or equivalent.
182 Zero for functions that use varargs.h. */
183
184int current_function_stdarg;
185
6f086dfc
RS
186/* Quantities of various kinds of registers
187 used for the current function's args. */
188
189CUMULATIVE_ARGS current_function_args_info;
190
191/* Name of function now being compiled. */
192
193char *current_function_name;
194
f345de42
JL
195/* If non-zero, an RTL expression for the location at which the current
196 function returns its result. If the current function returns its
197 result in a register, current_function_return_rtx will always be
198 the hard register containing the result. */
6f086dfc
RS
199
200rtx current_function_return_rtx;
201
202/* Nonzero if the current function uses the constant pool. */
203
204int current_function_uses_const_pool;
205
206/* Nonzero if the current function uses pic_offset_table_rtx. */
207int current_function_uses_pic_offset_table;
208
209/* The arg pointer hard register, or the pseudo into which it was copied. */
210rtx current_function_internal_arg_pointer;
211
212/* The FUNCTION_DECL for an inline function currently being expanded. */
213tree inline_function_decl;
214
215/* Number of function calls seen so far in current function. */
216
217int function_call_count;
218
219/* List (chain of TREE_LIST) of LABEL_DECLs for all nonlocal labels
220 (labels to which there can be nonlocal gotos from nested functions)
221 in this function. */
222
223tree nonlocal_labels;
224
225/* RTX for stack slot that holds the current handler for nonlocal gotos.
226 Zero when function does not have nonlocal labels. */
227
228rtx nonlocal_goto_handler_slot;
229
230/* RTX for stack slot that holds the stack pointer value to restore
231 for a nonlocal goto.
232 Zero when function does not have nonlocal labels. */
233
234rtx nonlocal_goto_stack_level;
235
236/* Label that will go on parm cleanup code, if any.
237 Jumping to this label runs cleanup code for parameters, if
238 such code must be run. Following this code is the logical return label. */
239
240rtx cleanup_label;
241
242/* Label that will go on function epilogue.
243 Jumping to this label serves as a "return" instruction
244 on machines which require execution of the epilogue on all returns. */
245
246rtx return_label;
247
248/* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs.
249 So we can mark them all live at the end of the function, if nonopt. */
250rtx save_expr_regs;
251
252/* List (chain of EXPR_LISTs) of all stack slots in this function.
253 Made for the sake of unshare_all_rtl. */
254rtx stack_slot_list;
255
256/* Chain of all RTL_EXPRs that have insns in them. */
257tree rtl_expr_chain;
258
259/* Label to jump back to for tail recursion, or 0 if we have
260 not yet needed one for this function. */
261rtx tail_recursion_label;
262
263/* Place after which to insert the tail_recursion_label if we need one. */
264rtx tail_recursion_reentry;
265
266/* Location at which to save the argument pointer if it will need to be
267 referenced. There are two cases where this is done: if nonlocal gotos
268 exist, or if vars stored at an offset from the argument pointer will be
269 needed by inner routines. */
270
271rtx arg_pointer_save_area;
272
273/* Offset to end of allocated area of stack frame.
274 If stack grows down, this is the address of the last stack slot allocated.
275 If stack grows up, this is the address for the next slot. */
8af5168b 276HOST_WIDE_INT frame_offset;
6f086dfc
RS
277
278/* List (chain of TREE_LISTs) of static chains for containing functions.
279 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
280 in an RTL_EXPR in the TREE_VALUE. */
281static tree context_display;
282
283/* List (chain of TREE_LISTs) of trampolines for nested functions.
284 The trampoline sets up the static chain and jumps to the function.
285 We supply the trampoline's address when the function's address is requested.
286
287 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
288 in an RTL_EXPR in the TREE_VALUE. */
289static tree trampoline_list;
290
291/* Insn after which register parms and SAVE_EXPRs are born, if nonopt. */
292static rtx parm_birth_insn;
293
294#if 0
295/* Nonzero if a stack slot has been generated whose address is not
296 actually valid. It means that the generated rtl must all be scanned
297 to detect and correct the invalid addresses where they occur. */
298static int invalid_stack_slot;
299#endif
300
301/* Last insn of those whose job was to put parms into their nominal homes. */
302static rtx last_parm_insn;
303
e9a25f70
JL
304/* 1 + last pseudo register number possibly used for loading a copy
305 of a parameter of this function. */
306int max_parm_reg;
6f086dfc
RS
307
308/* Vector indexed by REGNO, containing location on stack in which
309 to put the parm which is nominally in pseudo register REGNO,
e9a25f70
JL
310 if we discover that that parm must go in the stack. The highest
311 element in this vector is one less than MAX_PARM_REG, above. */
312rtx *parm_reg_stack_loc;
6f086dfc 313
6f086dfc
RS
314/* Nonzero once virtual register instantiation has been done.
315 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
316static int virtuals_instantiated;
317
46766466
RS
318/* These variables hold pointers to functions to
319 save and restore machine-specific data,
320 in push_function_context and pop_function_context. */
9e014ded
RK
321void (*save_machine_status) PROTO((struct function *));
322void (*restore_machine_status) PROTO((struct function *));
46766466 323
6f086dfc
RS
324/* Nonzero if we need to distinguish between the return value of this function
325 and the return value of a function called by this function. This helps
326 integrate.c */
327
328extern int rtx_equal_function_value_matters;
e7a84011 329extern tree sequence_rtl_expr;
6f086dfc
RS
330\f
331/* In order to evaluate some expressions, such as function calls returning
332 structures in memory, we need to temporarily allocate stack locations.
333 We record each allocated temporary in the following structure.
334
335 Associated with each temporary slot is a nesting level. When we pop up
336 one level, all temporaries associated with the previous level are freed.
337 Normally, all temporaries are freed after the execution of the statement
338 in which they were created. However, if we are inside a ({...}) grouping,
339 the result may be in a temporary and hence must be preserved. If the
340 result could be in a temporary, we preserve it if we can determine which
341 one it is in. If we cannot determine which temporary may contain the
342 result, all temporaries are preserved. A temporary is preserved by
343 pretending it was allocated at the previous nesting level.
344
345 Automatic variables are also assigned temporary slots, at the nesting
346 level where they are defined. They are marked a "kept" so that
347 free_temp_slots will not free them. */
348
349struct temp_slot
350{
351 /* Points to next temporary slot. */
352 struct temp_slot *next;
0f41302f 353 /* The rtx to used to reference the slot. */
6f086dfc 354 rtx slot;
e5e76139
RK
355 /* The rtx used to represent the address if not the address of the
356 slot above. May be an EXPR_LIST if multiple addresses exist. */
357 rtx address;
6f086dfc
RS
358 /* The size, in units, of the slot. */
359 int size;
e7a84011
RK
360 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
361 tree rtl_expr;
6f086dfc
RS
362 /* Non-zero if this temporary is currently in use. */
363 char in_use;
a25d4ba2
RK
364 /* Non-zero if this temporary has its address taken. */
365 char addr_taken;
6f086dfc
RS
366 /* Nesting level at which this slot is being used. */
367 int level;
368 /* Non-zero if this should survive a call to free_temp_slots. */
369 int keep;
fc91b0d0
RK
370 /* The offset of the slot from the frame_pointer, including extra space
371 for alignment. This info is for combine_temp_slots. */
372 int base_offset;
373 /* The size of the slot, including extra space for alignment. This
374 info is for combine_temp_slots. */
375 int full_size;
6f086dfc
RS
376};
377
378/* List of all temporaries allocated, both available and in use. */
379
380struct temp_slot *temp_slots;
381
382/* Current nesting level for temporaries. */
383
384int temp_slot_level;
385\f
e15679f8
RK
386/* This structure is used to record MEMs or pseudos used to replace VAR, any
387 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
388 maintain this list in case two operands of an insn were required to match;
389 in that case we must ensure we use the same replacement. */
390
391struct fixup_replacement
392{
393 rtx old;
394 rtx new;
395 struct fixup_replacement *next;
396};
397
398/* Forward declarations. */
399
400static struct temp_slot *find_temp_slot_from_address PROTO((rtx));
401static void put_reg_into_stack PROTO((struct function *, rtx, tree,
0006e95b 402 enum machine_mode, enum machine_mode,
e9a25f70 403 int, int));
e15679f8
RK
404static void fixup_var_refs PROTO((rtx, enum machine_mode, int));
405static struct fixup_replacement
406 *find_fixup_replacement PROTO((struct fixup_replacement **, rtx));
407static void fixup_var_refs_insns PROTO((rtx, enum machine_mode, int,
408 rtx, int));
409static void fixup_var_refs_1 PROTO((rtx, enum machine_mode, rtx *, rtx,
410 struct fixup_replacement **));
411static rtx fixup_memory_subreg PROTO((rtx, rtx, int));
412static rtx walk_fixup_memory_subreg PROTO((rtx, rtx, int));
413static rtx fixup_stack_1 PROTO((rtx, rtx));
414static void optimize_bit_field PROTO((rtx, rtx, rtx *));
415static void instantiate_decls PROTO((tree, int));
416static void instantiate_decls_1 PROTO((tree, int));
417static void instantiate_decl PROTO((rtx, int, int));
418static int instantiate_virtual_regs_1 PROTO((rtx *, rtx, int));
419static void delete_handlers PROTO((void));
420static void pad_to_arg_alignment PROTO((struct args_size *, int));
51723711 421#ifndef ARGS_GROW_DOWNWARD
e15679f8
RK
422static void pad_below PROTO((struct args_size *, enum machine_mode,
423 tree));
51723711 424#endif
e15679f8
RK
425static tree round_down PROTO((tree, int));
426static rtx round_trampoline_addr PROTO((rtx));
427static tree blocks_nreverse PROTO((tree));
428static int all_blocks PROTO((tree, tree *));
429static int *record_insns PROTO((rtx));
081f5e7e 430#if defined (HAVE_prologue) || defined (HAVE_epilogue)
e15679f8 431static int contains PROTO((rtx, int *));
081f5e7e 432#endif /* HAVE_prologue || HAVE_epilogue */
e9a25f70
JL
433static void put_addressof_into_stack PROTO((rtx));
434static void purge_addressof_1 PROTO((rtx *, rtx, int));
c20bf1f3 435\f
6f086dfc
RS
436/* Pointer to chain of `struct function' for containing functions. */
437struct function *outer_function_chain;
438
439/* Given a function decl for a containing function,
440 return the `struct function' for it. */
441
442struct function *
443find_function_data (decl)
444 tree decl;
445{
446 struct function *p;
447 for (p = outer_function_chain; p; p = p->next)
448 if (p->decl == decl)
449 return p;
450 abort ();
451}
452
453/* Save the current context for compilation of a nested function.
454 This is called from language-specific code.
455 The caller is responsible for saving any language-specific status,
6dc42e49 456 since this function knows only about language-independent variables. */
6f086dfc
RS
457
458void
a0dabda5
JM
459push_function_context_to (context)
460 tree context;
6f086dfc
RS
461{
462 struct function *p = (struct function *) xmalloc (sizeof (struct function));
463
464 p->next = outer_function_chain;
465 outer_function_chain = p;
466
467 p->name = current_function_name;
468 p->decl = current_function_decl;
469 p->pops_args = current_function_pops_args;
470 p->returns_struct = current_function_returns_struct;
471 p->returns_pcc_struct = current_function_returns_pcc_struct;
1651bdfe 472 p->returns_pointer = current_function_returns_pointer;
6f086dfc
RS
473 p->needs_context = current_function_needs_context;
474 p->calls_setjmp = current_function_calls_setjmp;
475 p->calls_longjmp = current_function_calls_longjmp;
476 p->calls_alloca = current_function_calls_alloca;
477 p->has_nonlocal_label = current_function_has_nonlocal_label;
8634413a 478 p->has_nonlocal_goto = current_function_has_nonlocal_goto;
a0dabda5 479 p->contains_functions = current_function_contains_functions;
173cd503 480 p->is_thunk = current_function_is_thunk;
6f086dfc
RS
481 p->args_size = current_function_args_size;
482 p->pretend_args_size = current_function_pretend_args_size;
483 p->arg_offset_rtx = current_function_arg_offset_rtx;
3b69d50e 484 p->varargs = current_function_varargs;
ebb904cb 485 p->stdarg = current_function_stdarg;
6f086dfc
RS
486 p->uses_const_pool = current_function_uses_const_pool;
487 p->uses_pic_offset_table = current_function_uses_pic_offset_table;
488 p->internal_arg_pointer = current_function_internal_arg_pointer;
489 p->max_parm_reg = max_parm_reg;
490 p->parm_reg_stack_loc = parm_reg_stack_loc;
491 p->outgoing_args_size = current_function_outgoing_args_size;
492 p->return_rtx = current_function_return_rtx;
493 p->nonlocal_goto_handler_slot = nonlocal_goto_handler_slot;
494 p->nonlocal_goto_stack_level = nonlocal_goto_stack_level;
495 p->nonlocal_labels = nonlocal_labels;
496 p->cleanup_label = cleanup_label;
497 p->return_label = return_label;
498 p->save_expr_regs = save_expr_regs;
499 p->stack_slot_list = stack_slot_list;
500 p->parm_birth_insn = parm_birth_insn;
501 p->frame_offset = frame_offset;
502 p->tail_recursion_label = tail_recursion_label;
503 p->tail_recursion_reentry = tail_recursion_reentry;
504 p->arg_pointer_save_area = arg_pointer_save_area;
505 p->rtl_expr_chain = rtl_expr_chain;
506 p->last_parm_insn = last_parm_insn;
507 p->context_display = context_display;
508 p->trampoline_list = trampoline_list;
509 p->function_call_count = function_call_count;
510 p->temp_slots = temp_slots;
511 p->temp_slot_level = temp_slot_level;
512 p->fixup_var_refs_queue = 0;
f979c996 513 p->epilogue_delay_list = current_function_epilogue_delay_list;
01c1558a 514 p->args_info = current_function_args_info;
6f086dfc 515
a0dabda5 516 save_tree_status (p, context);
6f086dfc
RS
517 save_storage_status (p);
518 save_emit_status (p);
6f086dfc
RS
519 save_expr_status (p);
520 save_stmt_status (p);
e9a25f70 521 save_varasm_status (p, context);
46766466
RS
522
523 if (save_machine_status)
524 (*save_machine_status) (p);
6f086dfc
RS
525}
526
e4a4639e
JM
527void
528push_function_context ()
529{
a0dabda5 530 push_function_context_to (current_function_decl);
e4a4639e
JM
531}
532
6f086dfc
RS
533/* Restore the last saved context, at the end of a nested function.
534 This function is called from language-specific code. */
535
536void
a0dabda5
JM
537pop_function_context_from (context)
538 tree context;
6f086dfc
RS
539{
540 struct function *p = outer_function_chain;
541
542 outer_function_chain = p->next;
543
49468af2
RK
544 current_function_contains_functions
545 = p->contains_functions || p->inline_obstacks
546 || context == current_function_decl;
6f086dfc
RS
547 current_function_name = p->name;
548 current_function_decl = p->decl;
549 current_function_pops_args = p->pops_args;
550 current_function_returns_struct = p->returns_struct;
551 current_function_returns_pcc_struct = p->returns_pcc_struct;
1651bdfe 552 current_function_returns_pointer = p->returns_pointer;
6f086dfc
RS
553 current_function_needs_context = p->needs_context;
554 current_function_calls_setjmp = p->calls_setjmp;
555 current_function_calls_longjmp = p->calls_longjmp;
556 current_function_calls_alloca = p->calls_alloca;
557 current_function_has_nonlocal_label = p->has_nonlocal_label;
8634413a 558 current_function_has_nonlocal_goto = p->has_nonlocal_goto;
173cd503 559 current_function_is_thunk = p->is_thunk;
6f086dfc
RS
560 current_function_args_size = p->args_size;
561 current_function_pretend_args_size = p->pretend_args_size;
562 current_function_arg_offset_rtx = p->arg_offset_rtx;
3b69d50e 563 current_function_varargs = p->varargs;
ebb904cb 564 current_function_stdarg = p->stdarg;
6f086dfc
RS
565 current_function_uses_const_pool = p->uses_const_pool;
566 current_function_uses_pic_offset_table = p->uses_pic_offset_table;
567 current_function_internal_arg_pointer = p->internal_arg_pointer;
568 max_parm_reg = p->max_parm_reg;
569 parm_reg_stack_loc = p->parm_reg_stack_loc;
570 current_function_outgoing_args_size = p->outgoing_args_size;
571 current_function_return_rtx = p->return_rtx;
572 nonlocal_goto_handler_slot = p->nonlocal_goto_handler_slot;
573 nonlocal_goto_stack_level = p->nonlocal_goto_stack_level;
574 nonlocal_labels = p->nonlocal_labels;
575 cleanup_label = p->cleanup_label;
576 return_label = p->return_label;
577 save_expr_regs = p->save_expr_regs;
578 stack_slot_list = p->stack_slot_list;
579 parm_birth_insn = p->parm_birth_insn;
580 frame_offset = p->frame_offset;
581 tail_recursion_label = p->tail_recursion_label;
582 tail_recursion_reentry = p->tail_recursion_reentry;
583 arg_pointer_save_area = p->arg_pointer_save_area;
584 rtl_expr_chain = p->rtl_expr_chain;
585 last_parm_insn = p->last_parm_insn;
586 context_display = p->context_display;
587 trampoline_list = p->trampoline_list;
588 function_call_count = p->function_call_count;
589 temp_slots = p->temp_slots;
590 temp_slot_level = p->temp_slot_level;
f979c996 591 current_function_epilogue_delay_list = p->epilogue_delay_list;
7cbc7b0c 592 reg_renumber = 0;
01c1558a 593 current_function_args_info = p->args_info;
6f086dfc 594
d1485032 595 restore_tree_status (p, context);
6f086dfc
RS
596 restore_storage_status (p);
597 restore_expr_status (p);
598 restore_emit_status (p);
599 restore_stmt_status (p);
a506307a 600 restore_varasm_status (p);
6f086dfc 601
46766466
RS
602 if (restore_machine_status)
603 (*restore_machine_status) (p);
604
6f086dfc
RS
605 /* Finish doing put_var_into_stack for any of our variables
606 which became addressable during the nested function. */
607 {
608 struct var_refs_queue *queue = p->fixup_var_refs_queue;
609 for (; queue; queue = queue->next)
00d8a4c1 610 fixup_var_refs (queue->modified, queue->promoted_mode, queue->unsignedp);
6f086dfc
RS
611 }
612
613 free (p);
614
615 /* Reset variables that have known state during rtx generation. */
616 rtx_equal_function_value_matters = 1;
617 virtuals_instantiated = 0;
618}
e4a4639e
JM
619
620void pop_function_context ()
621{
a0dabda5 622 pop_function_context_from (current_function_decl);
e4a4639e 623}
6f086dfc
RS
624\f
625/* Allocate fixed slots in the stack frame of the current function. */
626
627/* Return size needed for stack frame based on slots so far allocated.
628 This size counts from zero. It is not rounded to STACK_BOUNDARY;
629 the caller may have to do that. */
630
8af5168b 631HOST_WIDE_INT
6f086dfc
RS
632get_frame_size ()
633{
634#ifdef FRAME_GROWS_DOWNWARD
635 return -frame_offset;
636#else
637 return frame_offset;
638#endif
639}
640
641/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
642 with machine mode MODE.
643
644 ALIGN controls the amount of alignment for the address of the slot:
645 0 means according to MODE,
646 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
647 positive specifies alignment boundary in bits.
648
649 We do not round to stack_boundary here. */
650
651rtx
652assign_stack_local (mode, size, align)
653 enum machine_mode mode;
654 int size;
655 int align;
656{
657 register rtx x, addr;
658 int bigend_correction = 0;
659 int alignment;
660
661 if (align == 0)
662 {
663 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
664 if (mode == BLKmode)
665 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
666 }
667 else if (align == -1)
668 {
669 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
670 size = CEIL_ROUND (size, alignment);
671 }
672 else
673 alignment = align / BITS_PER_UNIT;
674
6f086dfc
RS
675 /* Round frame offset to that alignment.
676 We must be careful here, since FRAME_OFFSET might be negative and
677 division with a negative dividend isn't as well defined as we might
678 like. So we instead assume that ALIGNMENT is a power of two and
679 use logical operations which are unambiguous. */
680#ifdef FRAME_GROWS_DOWNWARD
681 frame_offset = FLOOR_ROUND (frame_offset, alignment);
682#else
683 frame_offset = CEIL_ROUND (frame_offset, alignment);
684#endif
685
686 /* On a big-endian machine, if we are allocating more space than we will use,
687 use the least significant bytes of those that are allocated. */
f76b9db2 688 if (BYTES_BIG_ENDIAN && mode != BLKmode)
6f086dfc 689 bigend_correction = size - GET_MODE_SIZE (mode);
6f086dfc
RS
690
691#ifdef FRAME_GROWS_DOWNWARD
692 frame_offset -= size;
693#endif
694
695 /* If we have already instantiated virtual registers, return the actual
696 address relative to the frame pointer. */
697 if (virtuals_instantiated)
698 addr = plus_constant (frame_pointer_rtx,
699 (frame_offset + bigend_correction
700 + STARTING_FRAME_OFFSET));
701 else
702 addr = plus_constant (virtual_stack_vars_rtx,
703 frame_offset + bigend_correction);
704
705#ifndef FRAME_GROWS_DOWNWARD
706 frame_offset += size;
707#endif
708
38a448ca 709 x = gen_rtx_MEM (mode, addr);
6f086dfc 710
38a448ca 711 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
6f086dfc
RS
712
713 return x;
714}
715
716/* Assign a stack slot in a containing function.
717 First three arguments are same as in preceding function.
718 The last argument specifies the function to allocate in. */
719
720rtx
721assign_outer_stack_local (mode, size, align, function)
722 enum machine_mode mode;
723 int size;
724 int align;
725 struct function *function;
726{
727 register rtx x, addr;
728 int bigend_correction = 0;
729 int alignment;
730
731 /* Allocate in the memory associated with the function in whose frame
732 we are assigning. */
733 push_obstacks (function->function_obstack,
734 function->function_maybepermanent_obstack);
735
736 if (align == 0)
737 {
738 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
739 if (mode == BLKmode)
740 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
741 }
742 else if (align == -1)
743 {
744 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
745 size = CEIL_ROUND (size, alignment);
746 }
747 else
748 alignment = align / BITS_PER_UNIT;
749
6f086dfc
RS
750 /* Round frame offset to that alignment. */
751#ifdef FRAME_GROWS_DOWNWARD
2af69b62 752 function->frame_offset = FLOOR_ROUND (function->frame_offset, alignment);
6f086dfc 753#else
2af69b62 754 function->frame_offset = CEIL_ROUND (function->frame_offset, alignment);
6f086dfc
RS
755#endif
756
757 /* On a big-endian machine, if we are allocating more space than we will use,
758 use the least significant bytes of those that are allocated. */
f76b9db2 759 if (BYTES_BIG_ENDIAN && mode != BLKmode)
6f086dfc 760 bigend_correction = size - GET_MODE_SIZE (mode);
6f086dfc
RS
761
762#ifdef FRAME_GROWS_DOWNWARD
763 function->frame_offset -= size;
764#endif
765 addr = plus_constant (virtual_stack_vars_rtx,
766 function->frame_offset + bigend_correction);
767#ifndef FRAME_GROWS_DOWNWARD
768 function->frame_offset += size;
769#endif
770
38a448ca 771 x = gen_rtx_MEM (mode, addr);
6f086dfc
RS
772
773 function->stack_slot_list
38a448ca 774 = gen_rtx_EXPR_LIST (VOIDmode, x, function->stack_slot_list);
6f086dfc
RS
775
776 pop_obstacks ();
777
778 return x;
779}
780\f
781/* Allocate a temporary stack slot and record it for possible later
782 reuse.
783
784 MODE is the machine mode to be given to the returned rtx.
785
786 SIZE is the size in units of the space required. We do no rounding here
787 since assign_stack_local will do any required rounding.
788
d93d4205
MS
789 KEEP is 1 if this slot is to be retained after a call to
790 free_temp_slots. Automatic variables for a block are allocated
791 with this flag. KEEP is 2, if we allocate a longer term temporary,
792 whose lifetime is controlled by CLEANUP_POINT_EXPRs. */
6f086dfc
RS
793
794rtx
795assign_stack_temp (mode, size, keep)
796 enum machine_mode mode;
797 int size;
798 int keep;
799{
800 struct temp_slot *p, *best_p = 0;
801
303ec2aa
RK
802 /* If SIZE is -1 it means that somebody tried to allocate a temporary
803 of a variable size. */
804 if (size == -1)
805 abort ();
806
6f086dfc
RS
807 /* First try to find an available, already-allocated temporary that is the
808 exact size we require. */
809 for (p = temp_slots; p; p = p->next)
810 if (p->size == size && GET_MODE (p->slot) == mode && ! p->in_use)
811 break;
812
813 /* If we didn't find, one, try one that is larger than what we want. We
814 find the smallest such. */
815 if (p == 0)
816 for (p = temp_slots; p; p = p->next)
817 if (p->size > size && GET_MODE (p->slot) == mode && ! p->in_use
818 && (best_p == 0 || best_p->size > p->size))
819 best_p = p;
820
821 /* Make our best, if any, the one to use. */
822 if (best_p)
a45035b6
JW
823 {
824 /* If there are enough aligned bytes left over, make them into a new
825 temp_slot so that the extra bytes don't get wasted. Do this only
826 for BLKmode slots, so that we can be sure of the alignment. */
827 if (GET_MODE (best_p->slot) == BLKmode)
828 {
829 int alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
830 int rounded_size = CEIL_ROUND (size, alignment);
831
832 if (best_p->size - rounded_size >= alignment)
833 {
834 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
a25d4ba2 835 p->in_use = p->addr_taken = 0;
a45035b6 836 p->size = best_p->size - rounded_size;
307d8cd6
RK
837 p->base_offset = best_p->base_offset + rounded_size;
838 p->full_size = best_p->full_size - rounded_size;
38a448ca
RH
839 p->slot = gen_rtx_MEM (BLKmode,
840 plus_constant (XEXP (best_p->slot, 0),
841 rounded_size));
e5e76139 842 p->address = 0;
84e24c03 843 p->rtl_expr = 0;
a45035b6
JW
844 p->next = temp_slots;
845 temp_slots = p;
846
38a448ca
RH
847 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
848 stack_slot_list);
a45035b6
JW
849
850 best_p->size = rounded_size;
291dde90 851 best_p->full_size = rounded_size;
a45035b6
JW
852 }
853 }
854
855 p = best_p;
856 }
857
6f086dfc
RS
858 /* If we still didn't find one, make a new temporary. */
859 if (p == 0)
860 {
b2a80c0d 861 int frame_offset_old = frame_offset;
6f086dfc 862 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
6f086dfc
RS
863 /* If the temp slot mode doesn't indicate the alignment,
864 use the largest possible, so no one will be disappointed. */
e5e76139 865 p->slot = assign_stack_local (mode, size, mode == BLKmode ? -1 : 0);
b2a80c0d
DE
866 /* The following slot size computation is necessary because we don't
867 know the actual size of the temporary slot until assign_stack_local
868 has performed all the frame alignment and size rounding for the
fc91b0d0
RK
869 requested temporary. Note that extra space added for alignment
870 can be either above or below this stack slot depending on which
871 way the frame grows. We include the extra space if and only if it
872 is above this slot. */
b2a80c0d
DE
873#ifdef FRAME_GROWS_DOWNWARD
874 p->size = frame_offset_old - frame_offset;
875#else
fc91b0d0
RK
876 p->size = size;
877#endif
878 /* Now define the fields used by combine_temp_slots. */
879#ifdef FRAME_GROWS_DOWNWARD
880 p->base_offset = frame_offset;
881 p->full_size = frame_offset_old - frame_offset;
882#else
883 p->base_offset = frame_offset_old;
884 p->full_size = frame_offset - frame_offset_old;
b2a80c0d 885#endif
e5e76139 886 p->address = 0;
6f086dfc
RS
887 p->next = temp_slots;
888 temp_slots = p;
889 }
890
891 p->in_use = 1;
a25d4ba2 892 p->addr_taken = 0;
e7a84011 893 p->rtl_expr = sequence_rtl_expr;
a25d4ba2 894
d93d4205
MS
895 if (keep == 2)
896 {
897 p->level = target_temp_slot_level;
898 p->keep = 0;
899 }
900 else
901 {
902 p->level = temp_slot_level;
903 p->keep = keep;
904 }
1995f267
RK
905
906 /* We may be reusing an old slot, so clear any MEM flags that may have been
907 set from before. */
908 RTX_UNCHANGING_P (p->slot) = 0;
909 MEM_IN_STRUCT_P (p->slot) = 0;
6f086dfc
RS
910 return p->slot;
911}
638141a6 912\f
230f21b4
PB
913/* Assign a temporary of given TYPE.
914 KEEP is as for assign_stack_temp.
915 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
b55d9ff8
RK
916 it is 0 if a register is OK.
917 DONT_PROMOTE is 1 if we should not promote values in register
918 to wider modes. */
230f21b4
PB
919
920rtx
b55d9ff8 921assign_temp (type, keep, memory_required, dont_promote)
230f21b4
PB
922 tree type;
923 int keep;
924 int memory_required;
b55d9ff8 925 int dont_promote;
230f21b4
PB
926{
927 enum machine_mode mode = TYPE_MODE (type);
638141a6
RK
928 int unsignedp = TREE_UNSIGNED (type);
929
230f21b4
PB
930 if (mode == BLKmode || memory_required)
931 {
932 int size = int_size_in_bytes (type);
933 rtx tmp;
934
935 /* Unfortunately, we don't yet know how to allocate variable-sized
936 temporaries. However, sometimes we have a fixed upper limit on
937 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
0f41302f 938 instead. This is the case for Chill variable-sized strings. */
230f21b4
PB
939 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
940 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
941 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
942 size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));
943
944 tmp = assign_stack_temp (mode, size, keep);
945 MEM_IN_STRUCT_P (tmp) = AGGREGATE_TYPE_P (type);
946 return tmp;
947 }
638141a6 948
230f21b4 949#ifndef PROMOTE_FOR_CALL_ONLY
b55d9ff8
RK
950 if (! dont_promote)
951 mode = promote_mode (type, mode, &unsignedp, 0);
230f21b4 952#endif
638141a6 953
230f21b4
PB
954 return gen_reg_rtx (mode);
955}
638141a6 956\f
a45035b6
JW
957/* Combine temporary stack slots which are adjacent on the stack.
958
959 This allows for better use of already allocated stack space. This is only
960 done for BLKmode slots because we can be sure that we won't have alignment
961 problems in this case. */
962
963void
964combine_temp_slots ()
965{
966 struct temp_slot *p, *q;
967 struct temp_slot *prev_p, *prev_q;
e9b7093a
RS
968 /* Determine where to free back to after this function. */
969 rtx free_pointer = rtx_alloc (CONST_INT);
a45035b6 970
e9b7093a
RS
971 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
972 {
973 int delete_p = 0;
974 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
975 for (q = p->next, prev_q = p; q; q = prev_q->next)
a45035b6 976 {
e9b7093a
RS
977 int delete_q = 0;
978 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
a45035b6 979 {
fc91b0d0 980 if (p->base_offset + p->full_size == q->base_offset)
e9b7093a
RS
981 {
982 /* Q comes after P; combine Q into P. */
983 p->size += q->size;
307d8cd6 984 p->full_size += q->full_size;
e9b7093a
RS
985 delete_q = 1;
986 }
fc91b0d0 987 else if (q->base_offset + q->full_size == p->base_offset)
e9b7093a
RS
988 {
989 /* P comes after Q; combine P into Q. */
990 q->size += p->size;
307d8cd6 991 q->full_size += p->full_size;
e9b7093a
RS
992 delete_p = 1;
993 break;
994 }
a45035b6 995 }
e9b7093a
RS
996 /* Either delete Q or advance past it. */
997 if (delete_q)
998 prev_q->next = q->next;
999 else
1000 prev_q = q;
a45035b6 1001 }
e9b7093a
RS
1002 /* Either delete P or advance past it. */
1003 if (delete_p)
1004 {
1005 if (prev_p)
1006 prev_p->next = p->next;
1007 else
1008 temp_slots = p->next;
1009 }
1010 else
1011 prev_p = p;
1012 }
1013
1014 /* Free all the RTL made by plus_constant. */
1015 rtx_free (free_pointer);
a45035b6 1016}
6f086dfc 1017\f
e5e76139
RK
1018/* Find the temp slot corresponding to the object at address X. */
1019
1020static struct temp_slot *
1021find_temp_slot_from_address (x)
1022 rtx x;
1023{
1024 struct temp_slot *p;
1025 rtx next;
1026
1027 for (p = temp_slots; p; p = p->next)
1028 {
1029 if (! p->in_use)
1030 continue;
1031 else if (XEXP (p->slot, 0) == x
abb52246
RK
1032 || p->address == x
1033 || (GET_CODE (x) == PLUS
1034 && XEXP (x, 0) == virtual_stack_vars_rtx
1035 && GET_CODE (XEXP (x, 1)) == CONST_INT
1036 && INTVAL (XEXP (x, 1)) >= p->base_offset
1037 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
e5e76139
RK
1038 return p;
1039
1040 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
1041 for (next = p->address; next; next = XEXP (next, 1))
1042 if (XEXP (next, 0) == x)
1043 return p;
1044 }
1045
1046 return 0;
1047}
1048
9faa82d8 1049/* Indicate that NEW is an alternate way of referring to the temp slot
e5e76139
RK
1050 that previous was known by OLD. */
1051
1052void
1053update_temp_slot_address (old, new)
1054 rtx old, new;
1055{
1056 struct temp_slot *p = find_temp_slot_from_address (old);
1057
1058 /* If none, return. Else add NEW as an alias. */
1059 if (p == 0)
1060 return;
1061 else if (p->address == 0)
1062 p->address = new;
1063 else
1064 {
1065 if (GET_CODE (p->address) != EXPR_LIST)
38a448ca 1066 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
e5e76139 1067
38a448ca 1068 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
e5e76139
RK
1069 }
1070}
1071
a25d4ba2 1072/* If X could be a reference to a temporary slot, mark the fact that its
9faa82d8 1073 address was taken. */
a25d4ba2
RK
1074
1075void
1076mark_temp_addr_taken (x)
1077 rtx x;
1078{
1079 struct temp_slot *p;
1080
1081 if (x == 0)
1082 return;
1083
1084 /* If X is not in memory or is at a constant address, it cannot be in
1085 a temporary slot. */
1086 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1087 return;
1088
1089 p = find_temp_slot_from_address (XEXP (x, 0));
1090 if (p != 0)
1091 p->addr_taken = 1;
1092}
1093
9cca6a99
MS
1094/* If X could be a reference to a temporary slot, mark that slot as
1095 belonging to the to one level higher than the current level. If X
1096 matched one of our slots, just mark that one. Otherwise, we can't
1097 easily predict which it is, so upgrade all of them. Kept slots
1098 need not be touched.
6f086dfc
RS
1099
1100 This is called when an ({...}) construct occurs and a statement
1101 returns a value in memory. */
1102
1103void
1104preserve_temp_slots (x)
1105 rtx x;
1106{
a25d4ba2 1107 struct temp_slot *p = 0;
6f086dfc 1108
73620b82
RK
1109 /* If there is no result, we still might have some objects whose address
1110 were taken, so we need to make sure they stay around. */
e3a77161 1111 if (x == 0)
73620b82
RK
1112 {
1113 for (p = temp_slots; p; p = p->next)
1114 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1115 p->level--;
1116
1117 return;
1118 }
e3a77161
RK
1119
1120 /* If X is a register that is being used as a pointer, see if we have
1121 a temporary slot we know it points to. To be consistent with
1122 the code below, we really should preserve all non-kept slots
1123 if we can't find a match, but that seems to be much too costly. */
a25d4ba2
RK
1124 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1125 p = find_temp_slot_from_address (x);
1126
6f086dfc 1127 /* If X is not in memory or is at a constant address, it cannot be in
e19571db
RK
1128 a temporary slot, but it can contain something whose address was
1129 taken. */
a25d4ba2 1130 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
e19571db
RK
1131 {
1132 for (p = temp_slots; p; p = p->next)
1133 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1134 p->level--;
1135
1136 return;
1137 }
6f086dfc
RS
1138
1139 /* First see if we can find a match. */
73620b82 1140 if (p == 0)
a25d4ba2
RK
1141 p = find_temp_slot_from_address (XEXP (x, 0));
1142
e5e76139
RK
1143 if (p != 0)
1144 {
a25d4ba2
RK
1145 /* Move everything at our level whose address was taken to our new
1146 level in case we used its address. */
1147 struct temp_slot *q;
1148
9cca6a99
MS
1149 if (p->level == temp_slot_level)
1150 {
1151 for (q = temp_slots; q; q = q->next)
1152 if (q != p && q->addr_taken && q->level == p->level)
1153 q->level--;
a25d4ba2 1154
9cca6a99
MS
1155 p->level--;
1156 p->addr_taken = 0;
1157 }
e5e76139
RK
1158 return;
1159 }
6f086dfc
RS
1160
1161 /* Otherwise, preserve all non-kept slots at this level. */
1162 for (p = temp_slots; p; p = p->next)
1163 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1164 p->level--;
1165}
1166
422c8f63
RK
1167/* X is the result of an RTL_EXPR. If it is a temporary slot associated
1168 with that RTL_EXPR, promote it into a temporary slot at the present
1169 level so it will not be freed when we free slots made in the
1170 RTL_EXPR. */
1171
1172void
1173preserve_rtl_expr_result (x)
1174 rtx x;
1175{
1176 struct temp_slot *p;
1177
1178 /* If X is not in memory or is at a constant address, it cannot be in
1179 a temporary slot. */
1180 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1181 return;
1182
199b61d8
RK
1183 /* If we can find a match, move it to our level unless it is already at
1184 an upper level. */
1185 p = find_temp_slot_from_address (XEXP (x, 0));
1186 if (p != 0)
1187 {
1188 p->level = MIN (p->level, temp_slot_level);
1189 p->rtl_expr = 0;
1190 }
422c8f63
RK
1191
1192 return;
1193}
1194
6f086dfc 1195/* Free all temporaries used so far. This is normally called at the end
e7a84011
RK
1196 of generating code for a statement. Don't free any temporaries
1197 currently in use for an RTL_EXPR that hasn't yet been emitted.
1198 We could eventually do better than this since it can be reused while
1199 generating the same RTL_EXPR, but this is complex and probably not
1200 worthwhile. */
6f086dfc
RS
1201
1202void
1203free_temp_slots ()
1204{
1205 struct temp_slot *p;
1206
1207 for (p = temp_slots; p; p = p->next)
e7a84011
RK
1208 if (p->in_use && p->level == temp_slot_level && ! p->keep
1209 && p->rtl_expr == 0)
1210 p->in_use = 0;
1211
1212 combine_temp_slots ();
1213}
1214
1215/* Free all temporary slots used in T, an RTL_EXPR node. */
1216
1217void
1218free_temps_for_rtl_expr (t)
1219 tree t;
1220{
1221 struct temp_slot *p;
1222
1223 for (p = temp_slots; p; p = p->next)
1224 if (p->rtl_expr == t)
6f086dfc 1225 p->in_use = 0;
a45035b6
JW
1226
1227 combine_temp_slots ();
6f086dfc
RS
1228}
1229
956d6950 1230/* Mark all temporaries ever allocated in this function as not suitable
a94e4054
RK
1231 for reuse until the current level is exited. */
1232
1233void
1234mark_all_temps_used ()
1235{
1236 struct temp_slot *p;
1237
1238 for (p = temp_slots; p; p = p->next)
1239 {
85b119d1 1240 p->in_use = p->keep = 1;
27ce006b 1241 p->level = MIN (p->level, temp_slot_level);
a94e4054
RK
1242 }
1243}
1244
6f086dfc
RS
1245/* Push deeper into the nesting level for stack temporaries. */
1246
1247void
1248push_temp_slots ()
1249{
6f086dfc
RS
1250 temp_slot_level++;
1251}
1252
1253/* Pop a temporary nesting level. All slots in use in the current level
1254 are freed. */
1255
1256void
1257pop_temp_slots ()
1258{
1259 struct temp_slot *p;
1260
6f086dfc 1261 for (p = temp_slots; p; p = p->next)
e7a84011 1262 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
6f086dfc
RS
1263 p->in_use = 0;
1264
a45035b6
JW
1265 combine_temp_slots ();
1266
6f086dfc
RS
1267 temp_slot_level--;
1268}
bc0ebdf9
RK
1269
1270/* Initialize temporary slots. */
1271
1272void
1273init_temp_slots ()
1274{
1275 /* We have not allocated any temporaries yet. */
1276 temp_slots = 0;
1277 temp_slot_level = 0;
1278 target_temp_slot_level = 0;
1279}
6f086dfc
RS
1280\f
1281/* Retroactively move an auto variable from a register to a stack slot.
1282 This is done when an address-reference to the variable is seen. */
1283
1284void
1285put_var_into_stack (decl)
1286 tree decl;
1287{
1288 register rtx reg;
00d8a4c1 1289 enum machine_mode promoted_mode, decl_mode;
6f086dfc 1290 struct function *function = 0;
c20bf1f3 1291 tree context;
e9a25f70 1292 int can_use_addressof;
c20bf1f3 1293
c20bf1f3 1294 context = decl_function_context (decl);
6f086dfc 1295
00d8a4c1 1296 /* Get the current rtl used for this object and it's original mode. */
6f086dfc 1297 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
2baccce2
RS
1298
1299 /* No need to do anything if decl has no rtx yet
1300 since in that case caller is setting TREE_ADDRESSABLE
1301 and a stack slot will be assigned when the rtl is made. */
1302 if (reg == 0)
1303 return;
00d8a4c1
RK
1304
1305 /* Get the declared mode for this object. */
1306 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1307 : DECL_MODE (decl));
2baccce2
RS
1308 /* Get the mode it's actually stored in. */
1309 promoted_mode = GET_MODE (reg);
6f086dfc
RS
1310
1311 /* If this variable comes from an outer function,
1312 find that function's saved context. */
4ac74fb8 1313 if (context != current_function_decl && context != inline_function_decl)
6f086dfc
RS
1314 for (function = outer_function_chain; function; function = function->next)
1315 if (function->decl == context)
1316 break;
1317
6f086dfc
RS
1318 /* If this is a variable-size object with a pseudo to address it,
1319 put that pseudo into the stack, if the var is nonlocal. */
a82ad570 1320 if (DECL_NONLOCAL (decl)
6f086dfc
RS
1321 && GET_CODE (reg) == MEM
1322 && GET_CODE (XEXP (reg, 0)) == REG
1323 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
4cdb3e78
RS
1324 {
1325 reg = XEXP (reg, 0);
1326 decl_mode = promoted_mode = GET_MODE (reg);
1327 }
e15762df 1328
e9a25f70
JL
1329 can_use_addressof
1330 = (function == 0
1331 /* FIXME make it work for promoted modes too */
1332 && decl_mode == promoted_mode
1333#ifdef NON_SAVING_SETJMP
1334 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1335#endif
1336 );
1337
1338 /* If we can't use ADDRESSOF, make sure we see through one we already
1339 generated. */
1340 if (! can_use_addressof && GET_CODE (reg) == MEM
1341 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1342 reg = XEXP (XEXP (reg, 0), 0);
1343
293e3de4
RS
1344 /* Now we should have a value that resides in one or more pseudo regs. */
1345
1346 if (GET_CODE (reg) == REG)
e9a25f70
JL
1347 {
1348 /* If this variable lives in the current function and we don't need
1349 to put things in the stack for the sake of setjmp, try to keep it
1350 in a register until we know we actually need the address. */
1351 if (can_use_addressof)
1352 gen_mem_addressof (reg, decl);
1353 else
1354 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1355 promoted_mode, decl_mode,
1356 TREE_SIDE_EFFECTS (decl), 0);
1357 }
293e3de4
RS
1358 else if (GET_CODE (reg) == CONCAT)
1359 {
1360 /* A CONCAT contains two pseudos; put them both in the stack.
1361 We do it so they end up consecutive. */
1362 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1363 tree part_type = TREE_TYPE (TREE_TYPE (decl));
4738c10d 1364#ifdef FRAME_GROWS_DOWNWARD
293e3de4 1365 /* Since part 0 should have a lower address, do it second. */
0006e95b 1366 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
e9a25f70 1367 part_mode, TREE_SIDE_EFFECTS (decl), 0);
0006e95b 1368 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
e9a25f70 1369 part_mode, TREE_SIDE_EFFECTS (decl), 0);
293e3de4 1370#else
0006e95b 1371 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
e9a25f70 1372 part_mode, TREE_SIDE_EFFECTS (decl), 0);
0006e95b 1373 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
e9a25f70 1374 part_mode, TREE_SIDE_EFFECTS (decl), 0);
293e3de4
RS
1375#endif
1376
1377 /* Change the CONCAT into a combined MEM for both parts. */
1378 PUT_CODE (reg, MEM);
0006e95b
RK
1379 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1380
293e3de4
RS
1381 /* The two parts are in memory order already.
1382 Use the lower parts address as ours. */
1383 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1384 /* Prevent sharing of rtl that might lose. */
1385 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1386 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1387 }
86fa911a
RK
1388 else
1389 return;
1390
1391 if (flag_check_memory_usage)
1392 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1393 XEXP (reg, 0), ptr_mode,
1394 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1395 TYPE_MODE (sizetype),
956d6950
JL
1396 GEN_INT (MEMORY_USE_RW),
1397 TYPE_MODE (integer_type_node));
293e3de4
RS
1398}
1399
1400/* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1401 into the stack frame of FUNCTION (0 means the current function).
1402 DECL_MODE is the machine mode of the user-level data type.
0006e95b
RK
1403 PROMOTED_MODE is the machine mode of the register.
1404 VOLATILE_P is nonzero if this is for a "volatile" decl. */
293e3de4
RS
1405
1406static void
e9a25f70
JL
1407put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1408 original_regno)
293e3de4
RS
1409 struct function *function;
1410 rtx reg;
1411 tree type;
1412 enum machine_mode promoted_mode, decl_mode;
0006e95b 1413 int volatile_p;
e9a25f70 1414 int original_regno;
293e3de4
RS
1415{
1416 rtx new = 0;
e9a25f70
JL
1417 int regno = original_regno;
1418
1419 if (regno == 0)
1420 regno = REGNO (reg);
6f086dfc
RS
1421
1422 if (function)
1423 {
e9a25f70
JL
1424 if (regno < function->max_parm_reg)
1425 new = function->parm_reg_stack_loc[regno];
6f086dfc 1426 if (new == 0)
e15762df 1427 new = assign_outer_stack_local (decl_mode, GET_MODE_SIZE (decl_mode),
6f086dfc
RS
1428 0, function);
1429 }
1430 else
1431 {
e9a25f70
JL
1432 if (regno < max_parm_reg)
1433 new = parm_reg_stack_loc[regno];
6f086dfc 1434 if (new == 0)
e15762df 1435 new = assign_stack_local (decl_mode, GET_MODE_SIZE (decl_mode), 0);
6f086dfc
RS
1436 }
1437
0006e95b 1438 PUT_MODE (reg, decl_mode);
6f086dfc
RS
1439 XEXP (reg, 0) = XEXP (new, 0);
1440 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
0006e95b 1441 MEM_VOLATILE_P (reg) = volatile_p;
6f086dfc
RS
1442 PUT_CODE (reg, MEM);
1443
1444 /* If this is a memory ref that contains aggregate components,
bdd3e6ab
JW
1445 mark it as such for cse and loop optimize. If we are reusing a
1446 previously generated stack slot, then we need to copy the bit in
1447 case it was set for other reasons. For instance, it is set for
1448 __builtin_va_alist. */
1449 MEM_IN_STRUCT_P (reg) = AGGREGATE_TYPE_P (type) | MEM_IN_STRUCT_P (new);
6f086dfc
RS
1450
1451 /* Now make sure that all refs to the variable, previously made
1452 when it was a register, are fixed up to be valid again. */
1453 if (function)
1454 {
1455 struct var_refs_queue *temp;
1456
1457 /* Variable is inherited; fix it up when we get back to its function. */
1458 push_obstacks (function->function_obstack,
1459 function->function_maybepermanent_obstack);
4da73fa0
RK
1460
1461 /* See comment in restore_tree_status in tree.c for why this needs to be
1462 on saveable obstack. */
6f086dfc 1463 temp
4da73fa0 1464 = (struct var_refs_queue *) savealloc (sizeof (struct var_refs_queue));
6f086dfc 1465 temp->modified = reg;
00d8a4c1 1466 temp->promoted_mode = promoted_mode;
293e3de4 1467 temp->unsignedp = TREE_UNSIGNED (type);
6f086dfc
RS
1468 temp->next = function->fixup_var_refs_queue;
1469 function->fixup_var_refs_queue = temp;
1470 pop_obstacks ();
1471 }
1472 else
1473 /* Variable is local; fix it up now. */
293e3de4 1474 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type));
6f086dfc
RS
1475}
1476\f
1477static void
00d8a4c1 1478fixup_var_refs (var, promoted_mode, unsignedp)
6f086dfc 1479 rtx var;
00d8a4c1
RK
1480 enum machine_mode promoted_mode;
1481 int unsignedp;
6f086dfc
RS
1482{
1483 tree pending;
1484 rtx first_insn = get_insns ();
1485 struct sequence_stack *stack = sequence_stack;
1486 tree rtl_exps = rtl_expr_chain;
1487
1488 /* Must scan all insns for stack-refs that exceed the limit. */
00d8a4c1 1489 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn, stack == 0);
6f086dfc
RS
1490
1491 /* Scan all pending sequences too. */
1492 for (; stack; stack = stack->next)
1493 {
1494 push_to_sequence (stack->first);
00d8a4c1
RK
1495 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1496 stack->first, stack->next != 0);
6f086dfc
RS
1497 /* Update remembered end of sequence
1498 in case we added an insn at the end. */
1499 stack->last = get_last_insn ();
1500 end_sequence ();
1501 }
1502
1503 /* Scan all waiting RTL_EXPRs too. */
1504 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1505 {
1506 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1507 if (seq != const0_rtx && seq != 0)
1508 {
1509 push_to_sequence (seq);
00d8a4c1 1510 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0);
6f086dfc
RS
1511 end_sequence ();
1512 }
1513 }
1514}
1515\f
e15679f8 1516/* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
6f086dfc 1517 some part of an insn. Return a struct fixup_replacement whose OLD
0f41302f 1518 value is equal to X. Allocate a new structure if no such entry exists. */
6f086dfc
RS
1519
1520static struct fixup_replacement *
2740a678 1521find_fixup_replacement (replacements, x)
6f086dfc
RS
1522 struct fixup_replacement **replacements;
1523 rtx x;
1524{
1525 struct fixup_replacement *p;
1526
1527 /* See if we have already replaced this. */
1528 for (p = *replacements; p && p->old != x; p = p->next)
1529 ;
1530
1531 if (p == 0)
1532 {
1533 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1534 p->old = x;
1535 p->new = 0;
1536 p->next = *replacements;
1537 *replacements = p;
1538 }
1539
1540 return p;
1541}
1542
1543/* Scan the insn-chain starting with INSN for refs to VAR
1544 and fix them up. TOPLEVEL is nonzero if this chain is the
1545 main chain of insns for the current function. */
1546
1547static void
00d8a4c1 1548fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel)
6f086dfc 1549 rtx var;
00d8a4c1
RK
1550 enum machine_mode promoted_mode;
1551 int unsignedp;
6f086dfc
RS
1552 rtx insn;
1553 int toplevel;
1554{
02a10449
RK
1555 rtx call_dest = 0;
1556
6f086dfc
RS
1557 while (insn)
1558 {
1559 rtx next = NEXT_INSN (insn);
1560 rtx note;
e15762df 1561 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
6f086dfc 1562 {
63770d6a
RK
1563 /* If this is a CLOBBER of VAR, delete it.
1564
1565 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1566 and REG_RETVAL notes too. */
926d1ca5 1567 if (GET_CODE (PATTERN (insn)) == CLOBBER
63770d6a
RK
1568 && XEXP (PATTERN (insn), 0) == var)
1569 {
1570 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1571 /* The REG_LIBCALL note will go away since we are going to
1572 turn INSN into a NOTE, so just delete the
1573 corresponding REG_RETVAL note. */
1574 remove_note (XEXP (note, 0),
1575 find_reg_note (XEXP (note, 0), REG_RETVAL,
1576 NULL_RTX));
1577
1578 /* In unoptimized compilation, we shouldn't call delete_insn
1579 except in jump.c doing warnings. */
1580 PUT_CODE (insn, NOTE);
1581 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1582 NOTE_SOURCE_FILE (insn) = 0;
1583 }
1584
6f086dfc
RS
1585 /* The insn to load VAR from a home in the arglist
1586 is now a no-op. When we see it, just delete it. */
63770d6a
RK
1587 else if (toplevel
1588 && GET_CODE (PATTERN (insn)) == SET
1589 && SET_DEST (PATTERN (insn)) == var
1590 /* If this represents the result of an insn group,
1591 don't delete the insn. */
1592 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1593 && rtx_equal_p (SET_SRC (PATTERN (insn)), var))
6f086dfc 1594 {
b4ff474c
RS
1595 /* In unoptimized compilation, we shouldn't call delete_insn
1596 except in jump.c doing warnings. */
1597 PUT_CODE (insn, NOTE);
1598 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1599 NOTE_SOURCE_FILE (insn) = 0;
6f086dfc
RS
1600 if (insn == last_parm_insn)
1601 last_parm_insn = PREV_INSN (next);
1602 }
1603 else
1604 {
02a10449
RK
1605 struct fixup_replacement *replacements = 0;
1606 rtx next_insn = NEXT_INSN (insn);
1607
e9a25f70
JL
1608 if (SMALL_REGISTER_CLASSES)
1609 {
1610 /* If the insn that copies the results of a CALL_INSN
1611 into a pseudo now references VAR, we have to use an
1612 intermediate pseudo since we want the life of the
1613 return value register to be only a single insn.
02a10449 1614
e9a25f70
JL
1615 If we don't use an intermediate pseudo, such things as
1616 address computations to make the address of VAR valid
1617 if it is not can be placed between the CALL_INSN and INSN.
02a10449 1618
e9a25f70
JL
1619 To make sure this doesn't happen, we record the destination
1620 of the CALL_INSN and see if the next insn uses both that
1621 and VAR. */
02a10449 1622
f95182a4
ILT
1623 if (call_dest != 0 && GET_CODE (insn) == INSN
1624 && reg_mentioned_p (var, PATTERN (insn))
1625 && reg_mentioned_p (call_dest, PATTERN (insn)))
1626 {
1627 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
02a10449 1628
f95182a4 1629 emit_insn_before (gen_move_insn (temp, call_dest), insn);
02a10449 1630
f95182a4
ILT
1631 PATTERN (insn) = replace_rtx (PATTERN (insn),
1632 call_dest, temp);
1633 }
02a10449 1634
f95182a4
ILT
1635 if (GET_CODE (insn) == CALL_INSN
1636 && GET_CODE (PATTERN (insn)) == SET)
1637 call_dest = SET_DEST (PATTERN (insn));
1638 else if (GET_CODE (insn) == CALL_INSN
1639 && GET_CODE (PATTERN (insn)) == PARALLEL
1640 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1641 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1642 else
1643 call_dest = 0;
1644 }
02a10449 1645
6f086dfc
RS
1646 /* See if we have to do anything to INSN now that VAR is in
1647 memory. If it needs to be loaded into a pseudo, use a single
1648 pseudo for the entire insn in case there is a MATCH_DUP
1649 between two operands. We pass a pointer to the head of
1650 a list of struct fixup_replacements. If fixup_var_refs_1
1651 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1652 it will record them in this list.
1653
1654 If it allocated a pseudo for any replacement, we copy into
1655 it here. */
1656
00d8a4c1
RK
1657 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1658 &replacements);
6f086dfc 1659
77121fee
JW
1660 /* If this is last_parm_insn, and any instructions were output
1661 after it to fix it up, then we must set last_parm_insn to
1662 the last such instruction emitted. */
1663 if (insn == last_parm_insn)
1664 last_parm_insn = PREV_INSN (next_insn);
1665
6f086dfc
RS
1666 while (replacements)
1667 {
1668 if (GET_CODE (replacements->new) == REG)
1669 {
1670 rtx insert_before;
00d8a4c1 1671 rtx seq;
6f086dfc
RS
1672
1673 /* OLD might be a (subreg (mem)). */
1674 if (GET_CODE (replacements->old) == SUBREG)
1675 replacements->old
1676 = fixup_memory_subreg (replacements->old, insn, 0);
1677 else
1678 replacements->old
1679 = fixup_stack_1 (replacements->old, insn);
1680
5fa7422b 1681 insert_before = insn;
6f086dfc 1682
00d8a4c1
RK
1683 /* If we are changing the mode, do a conversion.
1684 This might be wasteful, but combine.c will
1685 eliminate much of the waste. */
1686
1687 if (GET_MODE (replacements->new)
1688 != GET_MODE (replacements->old))
1689 {
1690 start_sequence ();
1691 convert_move (replacements->new,
1692 replacements->old, unsignedp);
1693 seq = gen_sequence ();
1694 end_sequence ();
1695 }
1696 else
1697 seq = gen_move_insn (replacements->new,
1698 replacements->old);
1699
1700 emit_insn_before (seq, insert_before);
6f086dfc
RS
1701 }
1702
1703 replacements = replacements->next;
1704 }
1705 }
1706
1707 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1708 But don't touch other insns referred to by reg-notes;
1709 we will get them elsewhere. */
1710 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1711 if (GET_CODE (note) != INSN_LIST)
ab6155b7
RK
1712 XEXP (note, 0)
1713 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
6f086dfc
RS
1714 }
1715 insn = next;
1716 }
1717}
1718\f
00d8a4c1
RK
1719/* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1720 See if the rtx expression at *LOC in INSN needs to be changed.
6f086dfc
RS
1721
1722 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1723 contain a list of original rtx's and replacements. If we find that we need
1724 to modify this insn by replacing a memory reference with a pseudo or by
1725 making a new MEM to implement a SUBREG, we consult that list to see if
1726 we have already chosen a replacement. If none has already been allocated,
1727 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1728 or the SUBREG, as appropriate, to the pseudo. */
1729
1730static void
00d8a4c1 1731fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
6f086dfc 1732 register rtx var;
00d8a4c1 1733 enum machine_mode promoted_mode;
6f086dfc
RS
1734 register rtx *loc;
1735 rtx insn;
1736 struct fixup_replacement **replacements;
1737{
1738 register int i;
1739 register rtx x = *loc;
1740 RTX_CODE code = GET_CODE (x);
1741 register char *fmt;
1742 register rtx tem, tem1;
1743 struct fixup_replacement *replacement;
1744
1745 switch (code)
1746 {
e9a25f70
JL
1747 case ADDRESSOF:
1748 if (XEXP (x, 0) == var)
1749 {
956d6950
JL
1750 /* Prevent sharing of rtl that might lose. */
1751 rtx sub = copy_rtx (XEXP (var, 0));
1752
e9a25f70 1753 start_sequence ();
956d6950
JL
1754
1755 if (! validate_change (insn, loc, sub, 0))
1756 {
1757 rtx y = force_operand (sub, NULL_RTX);
1758
1759 if (! validate_change (insn, loc, y, 0))
1760 *loc = copy_to_reg (y);
1761 }
1762
e9a25f70
JL
1763 emit_insn_before (gen_sequence (), insn);
1764 end_sequence ();
1765 }
1766 return;
1767
6f086dfc
RS
1768 case MEM:
1769 if (var == x)
1770 {
1771 /* If we already have a replacement, use it. Otherwise,
1772 try to fix up this address in case it is invalid. */
1773
2740a678 1774 replacement = find_fixup_replacement (replacements, var);
6f086dfc
RS
1775 if (replacement->new)
1776 {
1777 *loc = replacement->new;
1778 return;
1779 }
1780
1781 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1782
00d8a4c1
RK
1783 /* Unless we are forcing memory to register or we changed the mode,
1784 we can leave things the way they are if the insn is valid. */
6f086dfc
RS
1785
1786 INSN_CODE (insn) = -1;
00d8a4c1
RK
1787 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1788 && recog_memoized (insn) >= 0)
6f086dfc
RS
1789 return;
1790
00d8a4c1 1791 *loc = replacement->new = gen_reg_rtx (promoted_mode);
6f086dfc
RS
1792 return;
1793 }
1794
1795 /* If X contains VAR, we need to unshare it here so that we update
1796 each occurrence separately. But all identical MEMs in one insn
1797 must be replaced with the same rtx because of the possibility of
1798 MATCH_DUPs. */
1799
1800 if (reg_mentioned_p (var, x))
1801 {
2740a678 1802 replacement = find_fixup_replacement (replacements, x);
6f086dfc
RS
1803 if (replacement->new == 0)
1804 replacement->new = copy_most_rtx (x, var);
1805
1806 *loc = x = replacement->new;
1807 }
1808 break;
1809
1810 case REG:
1811 case CC0:
1812 case PC:
1813 case CONST_INT:
1814 case CONST:
1815 case SYMBOL_REF:
1816 case LABEL_REF:
1817 case CONST_DOUBLE:
1818 return;
1819
1820 case SIGN_EXTRACT:
1821 case ZERO_EXTRACT:
1822 /* Note that in some cases those types of expressions are altered
1823 by optimize_bit_field, and do not survive to get here. */
1824 if (XEXP (x, 0) == var
1825 || (GET_CODE (XEXP (x, 0)) == SUBREG
1826 && SUBREG_REG (XEXP (x, 0)) == var))
1827 {
1828 /* Get TEM as a valid MEM in the mode presently in the insn.
1829
1830 We don't worry about the possibility of MATCH_DUP here; it
1831 is highly unlikely and would be tricky to handle. */
1832
1833 tem = XEXP (x, 0);
1834 if (GET_CODE (tem) == SUBREG)
0e09cc26
RK
1835 {
1836 if (GET_MODE_BITSIZE (GET_MODE (tem))
1837 > GET_MODE_BITSIZE (GET_MODE (var)))
1838 {
1839 replacement = find_fixup_replacement (replacements, var);
1840 if (replacement->new == 0)
1841 replacement->new = gen_reg_rtx (GET_MODE (var));
1842 SUBREG_REG (tem) = replacement->new;
1843 }
ef933d26
RK
1844 else
1845 tem = fixup_memory_subreg (tem, insn, 0);
0e09cc26
RK
1846 }
1847 else
1848 tem = fixup_stack_1 (tem, insn);
6f086dfc
RS
1849
1850 /* Unless we want to load from memory, get TEM into the proper mode
1851 for an extract from memory. This can only be done if the
1852 extract is at a constant position and length. */
1853
1854 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1855 && GET_CODE (XEXP (x, 2)) == CONST_INT
1856 && ! mode_dependent_address_p (XEXP (tem, 0))
1857 && ! MEM_VOLATILE_P (tem))
1858 {
1859 enum machine_mode wanted_mode = VOIDmode;
1860 enum machine_mode is_mode = GET_MODE (tem);
6f086dfc
RS
1861 int pos = INTVAL (XEXP (x, 2));
1862
1863#ifdef HAVE_extzv
1864 if (GET_CODE (x) == ZERO_EXTRACT)
1865 wanted_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
1866#endif
1867#ifdef HAVE_extv
1868 if (GET_CODE (x) == SIGN_EXTRACT)
1869 wanted_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
1870#endif
6dc42e49 1871 /* If we have a narrower mode, we can do something. */
6f086dfc
RS
1872 if (wanted_mode != VOIDmode
1873 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
1874 {
1875 int offset = pos / BITS_PER_UNIT;
1876 rtx old_pos = XEXP (x, 2);
1877 rtx newmem;
1878
1879 /* If the bytes and bits are counted differently, we
1880 must adjust the offset. */
f76b9db2
ILT
1881 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
1882 offset = (GET_MODE_SIZE (is_mode)
1883 - GET_MODE_SIZE (wanted_mode) - offset);
6f086dfc
RS
1884
1885 pos %= GET_MODE_BITSIZE (wanted_mode);
1886
38a448ca
RH
1887 newmem = gen_rtx_MEM (wanted_mode,
1888 plus_constant (XEXP (tem, 0), offset));
6f086dfc
RS
1889 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
1890 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
1891 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
1892
1893 /* Make the change and see if the insn remains valid. */
1894 INSN_CODE (insn) = -1;
1895 XEXP (x, 0) = newmem;
5f4f0e22 1896 XEXP (x, 2) = GEN_INT (pos);
6f086dfc
RS
1897
1898 if (recog_memoized (insn) >= 0)
1899 return;
1900
1901 /* Otherwise, restore old position. XEXP (x, 0) will be
1902 restored later. */
1903 XEXP (x, 2) = old_pos;
1904 }
1905 }
1906
1907 /* If we get here, the bitfield extract insn can't accept a memory
1908 reference. Copy the input into a register. */
1909
1910 tem1 = gen_reg_rtx (GET_MODE (tem));
1911 emit_insn_before (gen_move_insn (tem1, tem), insn);
1912 XEXP (x, 0) = tem1;
1913 return;
1914 }
1915 break;
1916
1917 case SUBREG:
1918 if (SUBREG_REG (x) == var)
1919 {
00d8a4c1
RK
1920 /* If this is a special SUBREG made because VAR was promoted
1921 from a wider mode, replace it with VAR and call ourself
1922 recursively, this time saying that the object previously
1923 had its current mode (by virtue of the SUBREG). */
1924
1925 if (SUBREG_PROMOTED_VAR_P (x))
1926 {
1927 *loc = var;
1928 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
1929 return;
1930 }
1931
6f086dfc
RS
1932 /* If this SUBREG makes VAR wider, it has become a paradoxical
1933 SUBREG with VAR in memory, but these aren't allowed at this
1934 stage of the compilation. So load VAR into a pseudo and take
1935 a SUBREG of that pseudo. */
1936 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
1937 {
2740a678 1938 replacement = find_fixup_replacement (replacements, var);
6f086dfc
RS
1939 if (replacement->new == 0)
1940 replacement->new = gen_reg_rtx (GET_MODE (var));
1941 SUBREG_REG (x) = replacement->new;
1942 return;
1943 }
1944
1945 /* See if we have already found a replacement for this SUBREG.
1946 If so, use it. Otherwise, make a MEM and see if the insn
1947 is recognized. If not, or if we should force MEM into a register,
1948 make a pseudo for this SUBREG. */
2740a678 1949 replacement = find_fixup_replacement (replacements, x);
6f086dfc
RS
1950 if (replacement->new)
1951 {
1952 *loc = replacement->new;
1953 return;
1954 }
1955
1956 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
1957
f898f031 1958 INSN_CODE (insn) = -1;
6f086dfc
RS
1959 if (! flag_force_mem && recog_memoized (insn) >= 0)
1960 return;
1961
1962 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
1963 return;
1964 }
1965 break;
1966
1967 case SET:
1968 /* First do special simplification of bit-field references. */
1969 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
1970 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
1971 optimize_bit_field (x, insn, 0);
1972 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
1973 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
5f4f0e22 1974 optimize_bit_field (x, insn, NULL_PTR);
6f086dfc 1975
0e09cc26
RK
1976 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
1977 into a register and then store it back out. */
1978 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
1979 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
1980 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
1981 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
1982 > GET_MODE_SIZE (GET_MODE (var))))
1983 {
1984 replacement = find_fixup_replacement (replacements, var);
1985 if (replacement->new == 0)
1986 replacement->new = gen_reg_rtx (GET_MODE (var));
1987
1988 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
1989 emit_insn_after (gen_move_insn (var, replacement->new), insn);
1990 }
1991
6f086dfc 1992 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
0f41302f 1993 insn into a pseudo and store the low part of the pseudo into VAR. */
6f086dfc
RS
1994 if (GET_CODE (SET_DEST (x)) == SUBREG
1995 && SUBREG_REG (SET_DEST (x)) == var
1996 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
1997 > GET_MODE_SIZE (GET_MODE (var))))
1998 {
1999 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2000 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2001 tem)),
2002 insn);
2003 break;
2004 }
2005
2006 {
2007 rtx dest = SET_DEST (x);
2008 rtx src = SET_SRC (x);
29a82058 2009#ifdef HAVE_insv
6f086dfc 2010 rtx outerdest = dest;
29a82058 2011#endif
6f086dfc
RS
2012
2013 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2014 || GET_CODE (dest) == SIGN_EXTRACT
2015 || GET_CODE (dest) == ZERO_EXTRACT)
2016 dest = XEXP (dest, 0);
2017
2018 if (GET_CODE (src) == SUBREG)
2019 src = XEXP (src, 0);
2020
2021 /* If VAR does not appear at the top level of the SET
2022 just scan the lower levels of the tree. */
2023
2024 if (src != var && dest != var)
2025 break;
2026
2027 /* We will need to rerecognize this insn. */
2028 INSN_CODE (insn) = -1;
2029
2030#ifdef HAVE_insv
2031 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2032 {
2033 /* Since this case will return, ensure we fixup all the
2034 operands here. */
00d8a4c1
RK
2035 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2036 insn, replacements);
2037 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2038 insn, replacements);
2039 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2040 insn, replacements);
6f086dfc
RS
2041
2042 tem = XEXP (outerdest, 0);
2043
2044 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2045 that may appear inside a ZERO_EXTRACT.
2046 This was legitimate when the MEM was a REG. */
2047 if (GET_CODE (tem) == SUBREG
2048 && SUBREG_REG (tem) == var)
0e09cc26 2049 tem = fixup_memory_subreg (tem, insn, 0);
6f086dfc
RS
2050 else
2051 tem = fixup_stack_1 (tem, insn);
2052
2053 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2054 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2055 && ! mode_dependent_address_p (XEXP (tem, 0))
2056 && ! MEM_VOLATILE_P (tem))
2057 {
2058 enum machine_mode wanted_mode
2059 = insn_operand_mode[(int) CODE_FOR_insv][0];
2060 enum machine_mode is_mode = GET_MODE (tem);
6f086dfc
RS
2061 int pos = INTVAL (XEXP (outerdest, 2));
2062
6dc42e49 2063 /* If we have a narrower mode, we can do something. */
6f086dfc
RS
2064 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2065 {
2066 int offset = pos / BITS_PER_UNIT;
2067 rtx old_pos = XEXP (outerdest, 2);
2068 rtx newmem;
2069
f76b9db2
ILT
2070 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2071 offset = (GET_MODE_SIZE (is_mode)
2072 - GET_MODE_SIZE (wanted_mode) - offset);
6f086dfc
RS
2073
2074 pos %= GET_MODE_BITSIZE (wanted_mode);
2075
38a448ca
RH
2076 newmem = gen_rtx_MEM (wanted_mode,
2077 plus_constant (XEXP (tem, 0), offset));
6f086dfc
RS
2078 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2079 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
2080 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
2081
2082 /* Make the change and see if the insn remains valid. */
2083 INSN_CODE (insn) = -1;
2084 XEXP (outerdest, 0) = newmem;
5f4f0e22 2085 XEXP (outerdest, 2) = GEN_INT (pos);
6f086dfc
RS
2086
2087 if (recog_memoized (insn) >= 0)
2088 return;
2089
2090 /* Otherwise, restore old position. XEXP (x, 0) will be
2091 restored later. */
2092 XEXP (outerdest, 2) = old_pos;
2093 }
2094 }
2095
2096 /* If we get here, the bit-field store doesn't allow memory
2097 or isn't located at a constant position. Load the value into
2098 a register, do the store, and put it back into memory. */
2099
2100 tem1 = gen_reg_rtx (GET_MODE (tem));
2101 emit_insn_before (gen_move_insn (tem1, tem), insn);
2102 emit_insn_after (gen_move_insn (tem, tem1), insn);
2103 XEXP (outerdest, 0) = tem1;
2104 return;
2105 }
2106#endif
2107
2108 /* STRICT_LOW_PART is a no-op on memory references
2109 and it can cause combinations to be unrecognizable,
2110 so eliminate it. */
2111
2112 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2113 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2114
2115 /* A valid insn to copy VAR into or out of a register
2116 must be left alone, to avoid an infinite loop here.
2117 If the reference to VAR is by a subreg, fix that up,
2118 since SUBREG is not valid for a memref.
e15762df
RK
2119 Also fix up the address of the stack slot.
2120
2121 Note that we must not try to recognize the insn until
2122 after we know that we have valid addresses and no
2123 (subreg (mem ...) ...) constructs, since these interfere
2124 with determining the validity of the insn. */
6f086dfc
RS
2125
2126 if ((SET_SRC (x) == var
2127 || (GET_CODE (SET_SRC (x)) == SUBREG
2128 && SUBREG_REG (SET_SRC (x)) == var))
2129 && (GET_CODE (SET_DEST (x)) == REG
2130 || (GET_CODE (SET_DEST (x)) == SUBREG
2131 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
1d273bf5 2132 && GET_MODE (var) == promoted_mode
c46722a7 2133 && x == single_set (insn))
6f086dfc 2134 {
e15762df
RK
2135 rtx pat;
2136
2740a678 2137 replacement = find_fixup_replacement (replacements, SET_SRC (x));
6f086dfc 2138 if (replacement->new)
6f086dfc 2139 SET_SRC (x) = replacement->new;
6f086dfc
RS
2140 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2141 SET_SRC (x) = replacement->new
2142 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2143 else
2144 SET_SRC (x) = replacement->new
2145 = fixup_stack_1 (SET_SRC (x), insn);
e15762df
RK
2146
2147 if (recog_memoized (insn) >= 0)
2148 return;
2149
2150 /* INSN is not valid, but we know that we want to
2151 copy SET_SRC (x) to SET_DEST (x) in some way. So
2152 we generate the move and see whether it requires more
2153 than one insn. If it does, we emit those insns and
2154 delete INSN. Otherwise, we an just replace the pattern
2155 of INSN; we have already verified above that INSN has
2156 no other function that to do X. */
2157
2158 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2159 if (GET_CODE (pat) == SEQUENCE)
2160 {
2161 emit_insn_after (pat, insn);
2162 PUT_CODE (insn, NOTE);
2163 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2164 NOTE_SOURCE_FILE (insn) = 0;
2165 }
2166 else
2167 PATTERN (insn) = pat;
2168
6f086dfc
RS
2169 return;
2170 }
2171
2172 if ((SET_DEST (x) == var
2173 || (GET_CODE (SET_DEST (x)) == SUBREG
2174 && SUBREG_REG (SET_DEST (x)) == var))
2175 && (GET_CODE (SET_SRC (x)) == REG
2176 || (GET_CODE (SET_SRC (x)) == SUBREG
2177 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
1d273bf5 2178 && GET_MODE (var) == promoted_mode
c46722a7 2179 && x == single_set (insn))
6f086dfc 2180 {
e15762df
RK
2181 rtx pat;
2182
6f086dfc
RS
2183 if (GET_CODE (SET_DEST (x)) == SUBREG)
2184 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2185 else
2186 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
e15762df
RK
2187
2188 if (recog_memoized (insn) >= 0)
2189 return;
2190
2191 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2192 if (GET_CODE (pat) == SEQUENCE)
2193 {
2194 emit_insn_after (pat, insn);
2195 PUT_CODE (insn, NOTE);
2196 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2197 NOTE_SOURCE_FILE (insn) = 0;
2198 }
2199 else
2200 PATTERN (insn) = pat;
2201
6f086dfc
RS
2202 return;
2203 }
2204
2205 /* Otherwise, storing into VAR must be handled specially
2206 by storing into a temporary and copying that into VAR
00d8a4c1
RK
2207 with a new insn after this one. Note that this case
2208 will be used when storing into a promoted scalar since
2209 the insn will now have different modes on the input
2210 and output and hence will be invalid (except for the case
2211 of setting it to a constant, which does not need any
2212 change if it is valid). We generate extra code in that case,
2213 but combine.c will eliminate it. */
6f086dfc
RS
2214
2215 if (dest == var)
2216 {
2217 rtx temp;
00d8a4c1
RK
2218 rtx fixeddest = SET_DEST (x);
2219
6f086dfc 2220 /* STRICT_LOW_PART can be discarded, around a MEM. */
00d8a4c1
RK
2221 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2222 fixeddest = XEXP (fixeddest, 0);
6f086dfc 2223 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
00d8a4c1 2224 if (GET_CODE (fixeddest) == SUBREG)
926d1ca5
RK
2225 {
2226 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2227 promoted_mode = GET_MODE (fixeddest);
2228 }
6f086dfc 2229 else
00d8a4c1
RK
2230 fixeddest = fixup_stack_1 (fixeddest, insn);
2231
926d1ca5 2232 temp = gen_reg_rtx (promoted_mode);
00d8a4c1
RK
2233
2234 emit_insn_after (gen_move_insn (fixeddest,
2235 gen_lowpart (GET_MODE (fixeddest),
2236 temp)),
2237 insn);
6f086dfc 2238
6f086dfc
RS
2239 SET_DEST (x) = temp;
2240 }
2241 }
e9a25f70
JL
2242
2243 default:
2244 break;
6f086dfc
RS
2245 }
2246
2247 /* Nothing special about this RTX; fix its operands. */
2248
2249 fmt = GET_RTX_FORMAT (code);
2250 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2251 {
2252 if (fmt[i] == 'e')
00d8a4c1 2253 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
6f086dfc
RS
2254 if (fmt[i] == 'E')
2255 {
2256 register int j;
2257 for (j = 0; j < XVECLEN (x, i); j++)
00d8a4c1
RK
2258 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2259 insn, replacements);
6f086dfc
RS
2260 }
2261 }
2262}
2263\f
2264/* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2265 return an rtx (MEM:m1 newaddr) which is equivalent.
2266 If any insns must be emitted to compute NEWADDR, put them before INSN.
2267
2268 UNCRITICAL nonzero means accept paradoxical subregs.
0f41302f 2269 This is used for subregs found inside REG_NOTES. */
6f086dfc
RS
2270
2271static rtx
2272fixup_memory_subreg (x, insn, uncritical)
2273 rtx x;
2274 rtx insn;
2275 int uncritical;
2276{
2277 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2278 rtx addr = XEXP (SUBREG_REG (x), 0);
2279 enum machine_mode mode = GET_MODE (x);
29a82058 2280 rtx result;
6f086dfc
RS
2281
2282 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2283 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2284 && ! uncritical)
2285 abort ();
2286
f76b9db2
ILT
2287 if (BYTES_BIG_ENDIAN)
2288 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2289 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
6f086dfc
RS
2290 addr = plus_constant (addr, offset);
2291 if (!flag_force_addr && memory_address_p (mode, addr))
2292 /* Shortcut if no insns need be emitted. */
2293 return change_address (SUBREG_REG (x), mode, addr);
2294 start_sequence ();
2295 result = change_address (SUBREG_REG (x), mode, addr);
2296 emit_insn_before (gen_sequence (), insn);
2297 end_sequence ();
2298 return result;
2299}
2300
2301/* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2302 Replace subexpressions of X in place.
2303 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2304 Otherwise return X, with its contents possibly altered.
2305
ab6155b7
RK
2306 If any insns must be emitted to compute NEWADDR, put them before INSN.
2307
2308 UNCRITICAL is as in fixup_memory_subreg. */
6f086dfc
RS
2309
2310static rtx
ab6155b7 2311walk_fixup_memory_subreg (x, insn, uncritical)
6f086dfc
RS
2312 register rtx x;
2313 rtx insn;
ab6155b7 2314 int uncritical;
6f086dfc
RS
2315{
2316 register enum rtx_code code;
2317 register char *fmt;
2318 register int i;
2319
2320 if (x == 0)
2321 return 0;
2322
2323 code = GET_CODE (x);
2324
2325 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
ab6155b7 2326 return fixup_memory_subreg (x, insn, uncritical);
6f086dfc
RS
2327
2328 /* Nothing special about this RTX; fix its operands. */
2329
2330 fmt = GET_RTX_FORMAT (code);
2331 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2332 {
2333 if (fmt[i] == 'e')
ab6155b7 2334 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
6f086dfc
RS
2335 if (fmt[i] == 'E')
2336 {
2337 register int j;
2338 for (j = 0; j < XVECLEN (x, i); j++)
2339 XVECEXP (x, i, j)
ab6155b7 2340 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
6f086dfc
RS
2341 }
2342 }
2343 return x;
2344}
2345\f
6f086dfc
RS
2346/* For each memory ref within X, if it refers to a stack slot
2347 with an out of range displacement, put the address in a temp register
2348 (emitting new insns before INSN to load these registers)
2349 and alter the memory ref to use that register.
2350 Replace each such MEM rtx with a copy, to avoid clobberage. */
2351
2352static rtx
2353fixup_stack_1 (x, insn)
2354 rtx x;
2355 rtx insn;
2356{
2357 register int i;
2358 register RTX_CODE code = GET_CODE (x);
2359 register char *fmt;
2360
2361 if (code == MEM)
2362 {
2363 register rtx ad = XEXP (x, 0);
2364 /* If we have address of a stack slot but it's not valid
2365 (displacement is too large), compute the sum in a register. */
2366 if (GET_CODE (ad) == PLUS
2367 && GET_CODE (XEXP (ad, 0)) == REG
40d05551
RK
2368 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2369 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
e9a25f70
JL
2370 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2371#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2372 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2373#endif
2374 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
956d6950 2375 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
40d05551 2376 || XEXP (ad, 0) == current_function_internal_arg_pointer)
6f086dfc
RS
2377 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2378 {
2379 rtx temp, seq;
2380 if (memory_address_p (GET_MODE (x), ad))
2381 return x;
2382
2383 start_sequence ();
2384 temp = copy_to_reg (ad);
2385 seq = gen_sequence ();
2386 end_sequence ();
2387 emit_insn_before (seq, insn);
2388 return change_address (x, VOIDmode, temp);
2389 }
2390 return x;
2391 }
2392
2393 fmt = GET_RTX_FORMAT (code);
2394 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2395 {
2396 if (fmt[i] == 'e')
2397 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2398 if (fmt[i] == 'E')
2399 {
2400 register int j;
2401 for (j = 0; j < XVECLEN (x, i); j++)
2402 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2403 }
2404 }
2405 return x;
2406}
2407\f
2408/* Optimization: a bit-field instruction whose field
2409 happens to be a byte or halfword in memory
2410 can be changed to a move instruction.
2411
2412 We call here when INSN is an insn to examine or store into a bit-field.
2413 BODY is the SET-rtx to be altered.
2414
2415 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2416 (Currently this is called only from function.c, and EQUIV_MEM
2417 is always 0.) */
2418
2419static void
2420optimize_bit_field (body, insn, equiv_mem)
2421 rtx body;
2422 rtx insn;
2423 rtx *equiv_mem;
2424{
2425 register rtx bitfield;
2426 int destflag;
2427 rtx seq = 0;
2428 enum machine_mode mode;
2429
2430 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2431 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2432 bitfield = SET_DEST (body), destflag = 1;
2433 else
2434 bitfield = SET_SRC (body), destflag = 0;
2435
2436 /* First check that the field being stored has constant size and position
2437 and is in fact a byte or halfword suitably aligned. */
2438
2439 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2440 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2441 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2442 != BLKmode)
2443 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2444 {
2445 register rtx memref = 0;
2446
2447 /* Now check that the containing word is memory, not a register,
2448 and that it is safe to change the machine mode. */
2449
2450 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2451 memref = XEXP (bitfield, 0);
2452 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2453 && equiv_mem != 0)
2454 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2455 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2456 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2457 memref = SUBREG_REG (XEXP (bitfield, 0));
2458 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2459 && equiv_mem != 0
2460 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2461 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2462
2463 if (memref
2464 && ! mode_dependent_address_p (XEXP (memref, 0))
2465 && ! MEM_VOLATILE_P (memref))
2466 {
2467 /* Now adjust the address, first for any subreg'ing
2468 that we are now getting rid of,
2469 and then for which byte of the word is wanted. */
2470
2471 register int offset = INTVAL (XEXP (bitfield, 2));
b88a3142
RK
2472 rtx insns;
2473
6f086dfc 2474 /* Adjust OFFSET to count bits from low-address byte. */
f76b9db2
ILT
2475 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2476 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2477 - offset - INTVAL (XEXP (bitfield, 1)));
2478
6f086dfc
RS
2479 /* Adjust OFFSET to count bytes from low-address byte. */
2480 offset /= BITS_PER_UNIT;
2481 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2482 {
2483 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
f76b9db2
ILT
2484 if (BYTES_BIG_ENDIAN)
2485 offset -= (MIN (UNITS_PER_WORD,
2486 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2487 - MIN (UNITS_PER_WORD,
2488 GET_MODE_SIZE (GET_MODE (memref))));
6f086dfc
RS
2489 }
2490
b88a3142
RK
2491 start_sequence ();
2492 memref = change_address (memref, mode,
6f086dfc 2493 plus_constant (XEXP (memref, 0), offset));
b88a3142
RK
2494 insns = get_insns ();
2495 end_sequence ();
2496 emit_insns_before (insns, insn);
6f086dfc
RS
2497
2498 /* Store this memory reference where
2499 we found the bit field reference. */
2500
2501 if (destflag)
2502 {
2503 validate_change (insn, &SET_DEST (body), memref, 1);
2504 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2505 {
2506 rtx src = SET_SRC (body);
2507 while (GET_CODE (src) == SUBREG
2508 && SUBREG_WORD (src) == 0)
2509 src = SUBREG_REG (src);
2510 if (GET_MODE (src) != GET_MODE (memref))
2511 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2512 validate_change (insn, &SET_SRC (body), src, 1);
2513 }
2514 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2515 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2516 /* This shouldn't happen because anything that didn't have
2517 one of these modes should have got converted explicitly
2518 and then referenced through a subreg.
2519 This is so because the original bit-field was
2520 handled by agg_mode and so its tree structure had
2521 the same mode that memref now has. */
2522 abort ();
2523 }
2524 else
2525 {
2526 rtx dest = SET_DEST (body);
2527
2528 while (GET_CODE (dest) == SUBREG
4013a709
RK
2529 && SUBREG_WORD (dest) == 0
2530 && (GET_MODE_CLASS (GET_MODE (dest))
2531 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest)))))
6f086dfc
RS
2532 dest = SUBREG_REG (dest);
2533
2534 validate_change (insn, &SET_DEST (body), dest, 1);
2535
2536 if (GET_MODE (dest) == GET_MODE (memref))
2537 validate_change (insn, &SET_SRC (body), memref, 1);
2538 else
2539 {
2540 /* Convert the mem ref to the destination mode. */
2541 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2542
2543 start_sequence ();
2544 convert_move (newreg, memref,
2545 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2546 seq = get_insns ();
2547 end_sequence ();
2548
2549 validate_change (insn, &SET_SRC (body), newreg, 1);
2550 }
2551 }
2552
2553 /* See if we can convert this extraction or insertion into
2554 a simple move insn. We might not be able to do so if this
2555 was, for example, part of a PARALLEL.
2556
2557 If we succeed, write out any needed conversions. If we fail,
2558 it is hard to guess why we failed, so don't do anything
2559 special; just let the optimization be suppressed. */
2560
2561 if (apply_change_group () && seq)
2562 emit_insns_before (seq, insn);
2563 }
2564 }
2565}
2566\f
2567/* These routines are responsible for converting virtual register references
2568 to the actual hard register references once RTL generation is complete.
2569
2570 The following four variables are used for communication between the
2571 routines. They contain the offsets of the virtual registers from their
2572 respective hard registers. */
2573
2574static int in_arg_offset;
2575static int var_offset;
2576static int dynamic_offset;
2577static int out_arg_offset;
2578
2579/* In most machines, the stack pointer register is equivalent to the bottom
2580 of the stack. */
2581
2582#ifndef STACK_POINTER_OFFSET
2583#define STACK_POINTER_OFFSET 0
2584#endif
2585
2586/* If not defined, pick an appropriate default for the offset of dynamically
2587 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2588 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2589
2590#ifndef STACK_DYNAMIC_OFFSET
2591
2592#ifdef ACCUMULATE_OUTGOING_ARGS
2593/* The bottom of the stack points to the actual arguments. If
2594 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2595 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2596 stack space for register parameters is not pushed by the caller, but
2597 rather part of the fixed stack areas and hence not included in
2598 `current_function_outgoing_args_size'. Nevertheless, we must allow
2599 for it when allocating stack dynamic objects. */
2600
2601#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2602#define STACK_DYNAMIC_OFFSET(FNDECL) \
2603(current_function_outgoing_args_size \
2604 + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET))
2605
2606#else
2607#define STACK_DYNAMIC_OFFSET(FNDECL) \
2608(current_function_outgoing_args_size + (STACK_POINTER_OFFSET))
2609#endif
2610
2611#else
2612#define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET
2613#endif
2614#endif
2615
e9a25f70
JL
2616/* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2617 its address taken. DECL is the decl for the object stored in the
2618 register, for later use if we do need to force REG into the stack.
2619 REG is overwritten by the MEM like in put_reg_into_stack. */
2620
2621rtx
2622gen_mem_addressof (reg, decl)
2623 rtx reg;
2624 tree decl;
2625{
2626 tree type = TREE_TYPE (decl);
2627
38a448ca 2628 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)), REGNO (reg));
e9a25f70
JL
2629 SET_ADDRESSOF_DECL (r, decl);
2630
2631 XEXP (reg, 0) = r;
2632 PUT_CODE (reg, MEM);
2633 PUT_MODE (reg, DECL_MODE (decl));
2634 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2635 MEM_IN_STRUCT_P (reg) = AGGREGATE_TYPE_P (type);
2636
2637 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type));
2638 return reg;
2639}
2640
2641/* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2642
2643void
2644flush_addressof (decl)
2645 tree decl;
2646{
2647 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2648 && DECL_RTL (decl) != 0
2649 && GET_CODE (DECL_RTL (decl)) == MEM
2650 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2651 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2652 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0));
2653}
2654
2655/* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2656
2657static void
2658put_addressof_into_stack (r)
2659 rtx r;
2660{
2661 tree decl = ADDRESSOF_DECL (r);
2662 rtx reg = XEXP (r, 0);
2663
2664 if (GET_CODE (reg) != REG)
2665 abort ();
2666
2667 put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
2668 DECL_MODE (decl), TREE_SIDE_EFFECTS (decl),
2669 ADDRESSOF_REGNO (r));
2670}
2671
2672/* Helper function for purge_addressof. See if the rtx expression at *LOC
2673 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2674 the stack. */
2675
2676static void
2677purge_addressof_1 (loc, insn, force)
2678 rtx *loc;
2679 rtx insn;
2680 int force;
2681{
2682 rtx x;
2683 RTX_CODE code;
2684 int i, j;
2685 char *fmt;
2686
2687 /* Re-start here to avoid recursion in common cases. */
2688 restart:
2689
2690 x = *loc;
2691 if (x == 0)
2692 return;
2693
2694 code = GET_CODE (x);
2695
2696 if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2697 {
2698 rtx insns;
956d6950
JL
2699 /* We must create a copy of the rtx because it was created by
2700 overwriting a REG rtx which is always shared. */
2701 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
e9a25f70 2702
956d6950 2703 if (validate_change (insn, loc, sub, 0))
e9a25f70
JL
2704 return;
2705
2706 start_sequence ();
2707 if (! validate_change (insn, loc,
956d6950 2708 force_operand (sub, NULL_RTX),
e9a25f70
JL
2709 0))
2710 abort ();
2711
2712 insns = get_insns ();
2713 end_sequence ();
2714 emit_insns_before (insns, insn);
2715 return;
2716 }
2717 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2718 {
2719 rtx sub = XEXP (XEXP (x, 0), 0);
6d8ccdbb 2720 if (GET_CODE (sub) == MEM)
38a448ca 2721 sub = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
e9a25f70
JL
2722 if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2723 {
2724 if (! BYTES_BIG_ENDIAN && ! WORDS_BIG_ENDIAN)
2725 {
38a448ca 2726 rtx sub2 = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
e9a25f70
JL
2727 if (validate_change (insn, loc, sub2, 0))
2728 goto restart;
2729 }
2730 }
2731 else if (validate_change (insn, loc, sub, 0))
2732 goto restart;
2733 /* else give up and put it into the stack */
2734 }
2735 else if (code == ADDRESSOF)
2736 {
2737 put_addressof_into_stack (x);
2738 return;
2739 }
2740
2741 /* Scan all subexpressions. */
2742 fmt = GET_RTX_FORMAT (code);
2743 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2744 {
2745 if (*fmt == 'e')
2746 purge_addressof_1 (&XEXP (x, i), insn, force);
2747 else if (*fmt == 'E')
2748 for (j = 0; j < XVECLEN (x, i); j++)
2749 purge_addressof_1 (&XVECEXP (x, i, j), insn, force);
2750 }
2751}
2752
2753/* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
2754 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
2755 stack. */
2756
2757void
2758purge_addressof (insns)
2759 rtx insns;
2760{
2761 rtx insn;
2762 for (insn = insns; insn; insn = NEXT_INSN (insn))
2763 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2764 || GET_CODE (insn) == CALL_INSN)
2765 {
2766 purge_addressof_1 (&PATTERN (insn), insn,
2767 asm_noperands (PATTERN (insn)) > 0);
2768 purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0);
2769 }
2770}
2771\f
6f086dfc
RS
2772/* Pass through the INSNS of function FNDECL and convert virtual register
2773 references to hard register references. */
2774
2775void
2776instantiate_virtual_regs (fndecl, insns)
2777 tree fndecl;
2778 rtx insns;
2779{
2780 rtx insn;
e9a25f70 2781 int i;
6f086dfc
RS
2782
2783 /* Compute the offsets to use for this function. */
2784 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
2785 var_offset = STARTING_FRAME_OFFSET;
2786 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
2787 out_arg_offset = STACK_POINTER_OFFSET;
2788
2789 /* Scan all variables and parameters of this function. For each that is
2790 in memory, instantiate all virtual registers if the result is a valid
2791 address. If not, we do it later. That will handle most uses of virtual
2792 regs on many machines. */
2793 instantiate_decls (fndecl, 1);
2794
2795 /* Initialize recognition, indicating that volatile is OK. */
2796 init_recog ();
2797
2798 /* Scan through all the insns, instantiating every virtual register still
2799 present. */
2800 for (insn = insns; insn; insn = NEXT_INSN (insn))
2801 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2802 || GET_CODE (insn) == CALL_INSN)
2803 {
2804 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
5f4f0e22 2805 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
6f086dfc
RS
2806 }
2807
e9a25f70
JL
2808 /* Instantiate the stack slots for the parm registers, for later use in
2809 addressof elimination. */
2810 for (i = 0; i < max_parm_reg; ++i)
2811 if (parm_reg_stack_loc[i])
2812 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
2813
6f086dfc
RS
2814 /* Now instantiate the remaining register equivalences for debugging info.
2815 These will not be valid addresses. */
2816 instantiate_decls (fndecl, 0);
2817
2818 /* Indicate that, from now on, assign_stack_local should use
2819 frame_pointer_rtx. */
2820 virtuals_instantiated = 1;
2821}
2822
2823/* Scan all decls in FNDECL (both variables and parameters) and instantiate
2824 all virtual registers in their DECL_RTL's.
2825
2826 If VALID_ONLY, do this only if the resulting address is still valid.
2827 Otherwise, always do it. */
2828
2829static void
2830instantiate_decls (fndecl, valid_only)
2831 tree fndecl;
2832 int valid_only;
2833{
2834 tree decl;
2835
e1686233 2836 if (DECL_SAVED_INSNS (fndecl))
6f086dfc
RS
2837 /* When compiling an inline function, the obstack used for
2838 rtl allocation is the maybepermanent_obstack. Calling
2839 `resume_temporary_allocation' switches us back to that
2840 obstack while we process this function's parameters. */
2841 resume_temporary_allocation ();
2842
2843 /* Process all parameters of the function. */
2844 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2845 {
ce717ce4
JW
2846 int size = int_size_in_bytes (TREE_TYPE (decl));
2847 instantiate_decl (DECL_RTL (decl), size, valid_only);
2848
2849 /* If the parameter was promoted, then the incoming RTL mode may be
2850 larger than the declared type size. We must use the larger of
2851 the two sizes. */
2852 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
2853 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
6f086dfc
RS
2854 }
2855
0f41302f 2856 /* Now process all variables defined in the function or its subblocks. */
6f086dfc
RS
2857 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
2858
79c0672e 2859 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
6f086dfc
RS
2860 {
2861 /* Save all rtl allocated for this function by raising the
2862 high-water mark on the maybepermanent_obstack. */
2863 preserve_data ();
2864 /* All further rtl allocation is now done in the current_obstack. */
2865 rtl_in_current_obstack ();
2866 }
2867}
2868
2869/* Subroutine of instantiate_decls: Process all decls in the given
2870 BLOCK node and all its subblocks. */
2871
2872static void
2873instantiate_decls_1 (let, valid_only)
2874 tree let;
2875 int valid_only;
2876{
2877 tree t;
2878
2879 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
5a73491b
RK
2880 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
2881 valid_only);
6f086dfc
RS
2882
2883 /* Process all subblocks. */
2884 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
2885 instantiate_decls_1 (t, valid_only);
2886}
5a73491b 2887
8008b228 2888/* Subroutine of the preceding procedures: Given RTL representing a
5a73491b
RK
2889 decl and the size of the object, do any instantiation required.
2890
2891 If VALID_ONLY is non-zero, it means that the RTL should only be
2892 changed if the new address is valid. */
2893
2894static void
2895instantiate_decl (x, size, valid_only)
2896 rtx x;
2897 int size;
2898 int valid_only;
2899{
2900 enum machine_mode mode;
2901 rtx addr;
2902
2903 /* If this is not a MEM, no need to do anything. Similarly if the
2904 address is a constant or a register that is not a virtual register. */
2905
2906 if (x == 0 || GET_CODE (x) != MEM)
2907 return;
2908
2909 addr = XEXP (x, 0);
2910 if (CONSTANT_P (addr)
956d6950 2911 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
5a73491b
RK
2912 || (GET_CODE (addr) == REG
2913 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
2914 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
2915 return;
2916
2917 /* If we should only do this if the address is valid, copy the address.
2918 We need to do this so we can undo any changes that might make the
2919 address invalid. This copy is unfortunate, but probably can't be
2920 avoided. */
2921
2922 if (valid_only)
2923 addr = copy_rtx (addr);
2924
2925 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
2926
87ce34d6
JW
2927 if (valid_only)
2928 {
2929 /* Now verify that the resulting address is valid for every integer or
2930 floating-point mode up to and including SIZE bytes long. We do this
2931 since the object might be accessed in any mode and frame addresses
2932 are shared. */
2933
2934 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2935 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
2936 mode = GET_MODE_WIDER_MODE (mode))
2937 if (! memory_address_p (mode, addr))
2938 return;
5a73491b 2939
87ce34d6
JW
2940 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
2941 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
2942 mode = GET_MODE_WIDER_MODE (mode))
2943 if (! memory_address_p (mode, addr))
2944 return;
2945 }
5a73491b 2946
87ce34d6
JW
2947 /* Put back the address now that we have updated it and we either know
2948 it is valid or we don't care whether it is valid. */
5a73491b
RK
2949
2950 XEXP (x, 0) = addr;
2951}
6f086dfc
RS
2952\f
2953/* Given a pointer to a piece of rtx and an optional pointer to the
2954 containing object, instantiate any virtual registers present in it.
2955
2956 If EXTRA_INSNS, we always do the replacement and generate
2957 any extra insns before OBJECT. If it zero, we do nothing if replacement
2958 is not valid.
2959
2960 Return 1 if we either had nothing to do or if we were able to do the
2961 needed replacement. Return 0 otherwise; we only return zero if
2962 EXTRA_INSNS is zero.
2963
2964 We first try some simple transformations to avoid the creation of extra
2965 pseudos. */
2966
2967static int
2968instantiate_virtual_regs_1 (loc, object, extra_insns)
2969 rtx *loc;
2970 rtx object;
2971 int extra_insns;
2972{
2973 rtx x;
2974 RTX_CODE code;
2975 rtx new = 0;
2976 int offset;
2977 rtx temp;
2978 rtx seq;
2979 int i, j;
2980 char *fmt;
2981
2982 /* Re-start here to avoid recursion in common cases. */
2983 restart:
2984
2985 x = *loc;
2986 if (x == 0)
2987 return 1;
2988
2989 code = GET_CODE (x);
2990
2991 /* Check for some special cases. */
2992 switch (code)
2993 {
2994 case CONST_INT:
2995 case CONST_DOUBLE:
2996 case CONST:
2997 case SYMBOL_REF:
2998 case CODE_LABEL:
2999 case PC:
3000 case CC0:
3001 case ASM_INPUT:
3002 case ADDR_VEC:
3003 case ADDR_DIFF_VEC:
3004 case RETURN:
3005 return 1;
3006
3007 case SET:
3008 /* We are allowed to set the virtual registers. This means that
3009 that the actual register should receive the source minus the
3010 appropriate offset. This is used, for example, in the handling
3011 of non-local gotos. */
3012 if (SET_DEST (x) == virtual_incoming_args_rtx)
3013 new = arg_pointer_rtx, offset = - in_arg_offset;
3014 else if (SET_DEST (x) == virtual_stack_vars_rtx)
dfd3dae6 3015 new = frame_pointer_rtx, offset = - var_offset;
6f086dfc
RS
3016 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3017 new = stack_pointer_rtx, offset = - dynamic_offset;
3018 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3019 new = stack_pointer_rtx, offset = - out_arg_offset;
3020
3021 if (new)
3022 {
3023 /* The only valid sources here are PLUS or REG. Just do
3024 the simplest possible thing to handle them. */
3025 if (GET_CODE (SET_SRC (x)) != REG
3026 && GET_CODE (SET_SRC (x)) != PLUS)
3027 abort ();
3028
3029 start_sequence ();
3030 if (GET_CODE (SET_SRC (x)) != REG)
5f4f0e22 3031 temp = force_operand (SET_SRC (x), NULL_RTX);
6f086dfc
RS
3032 else
3033 temp = SET_SRC (x);
5f4f0e22 3034 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
6f086dfc
RS
3035 seq = get_insns ();
3036 end_sequence ();
3037
3038 emit_insns_before (seq, object);
3039 SET_DEST (x) = new;
3040
e9a25f70 3041 if (! validate_change (object, &SET_SRC (x), temp, 0)
6f086dfc
RS
3042 || ! extra_insns)
3043 abort ();
3044
3045 return 1;
3046 }
3047
3048 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3049 loc = &SET_SRC (x);
3050 goto restart;
3051
3052 case PLUS:
3053 /* Handle special case of virtual register plus constant. */
3054 if (CONSTANT_P (XEXP (x, 1)))
3055 {
b1f82ccf 3056 rtx old, new_offset;
6f086dfc
RS
3057
3058 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3059 if (GET_CODE (XEXP (x, 0)) == PLUS)
3060 {
3061 rtx inner = XEXP (XEXP (x, 0), 0);
3062
3063 if (inner == virtual_incoming_args_rtx)
3064 new = arg_pointer_rtx, offset = in_arg_offset;
3065 else if (inner == virtual_stack_vars_rtx)
3066 new = frame_pointer_rtx, offset = var_offset;
3067 else if (inner == virtual_stack_dynamic_rtx)
3068 new = stack_pointer_rtx, offset = dynamic_offset;
3069 else if (inner == virtual_outgoing_args_rtx)
3070 new = stack_pointer_rtx, offset = out_arg_offset;
3071 else
3072 {
3073 loc = &XEXP (x, 0);
3074 goto restart;
3075 }
3076
3077 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3078 extra_insns);
38a448ca 3079 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
6f086dfc
RS
3080 }
3081
3082 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3083 new = arg_pointer_rtx, offset = in_arg_offset;
3084 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3085 new = frame_pointer_rtx, offset = var_offset;
3086 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3087 new = stack_pointer_rtx, offset = dynamic_offset;
3088 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3089 new = stack_pointer_rtx, offset = out_arg_offset;
3090 else
3091 {
3092 /* We know the second operand is a constant. Unless the
3093 first operand is a REG (which has been already checked),
3094 it needs to be checked. */
3095 if (GET_CODE (XEXP (x, 0)) != REG)
3096 {
3097 loc = &XEXP (x, 0);
3098 goto restart;
3099 }
3100 return 1;
3101 }
3102
b1f82ccf 3103 new_offset = plus_constant (XEXP (x, 1), offset);
6f086dfc 3104
b1f82ccf
DE
3105 /* If the new constant is zero, try to replace the sum with just
3106 the register. */
3107 if (new_offset == const0_rtx
3108 && validate_change (object, loc, new, 0))
6f086dfc
RS
3109 return 1;
3110
b1f82ccf
DE
3111 /* Next try to replace the register and new offset.
3112 There are two changes to validate here and we can't assume that
3113 in the case of old offset equals new just changing the register
3114 will yield a valid insn. In the interests of a little efficiency,
3115 however, we only call validate change once (we don't queue up the
0f41302f 3116 changes and then call apply_change_group). */
b1f82ccf
DE
3117
3118 old = XEXP (x, 0);
3119 if (offset == 0
3120 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3121 : (XEXP (x, 0) = new,
3122 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
6f086dfc
RS
3123 {
3124 if (! extra_insns)
3125 {
3126 XEXP (x, 0) = old;
3127 return 0;
3128 }
3129
3130 /* Otherwise copy the new constant into a register and replace
3131 constant with that register. */
3132 temp = gen_reg_rtx (Pmode);
b1f82ccf 3133 XEXP (x, 0) = new;
6f086dfc 3134 if (validate_change (object, &XEXP (x, 1), temp, 0))
b1f82ccf 3135 emit_insn_before (gen_move_insn (temp, new_offset), object);
6f086dfc
RS
3136 else
3137 {
3138 /* If that didn't work, replace this expression with a
3139 register containing the sum. */
3140
6f086dfc 3141 XEXP (x, 0) = old;
38a448ca 3142 new = gen_rtx_PLUS (Pmode, new, new_offset);
6f086dfc
RS
3143
3144 start_sequence ();
5f4f0e22 3145 temp = force_operand (new, NULL_RTX);
6f086dfc
RS
3146 seq = get_insns ();
3147 end_sequence ();
3148
3149 emit_insns_before (seq, object);
3150 if (! validate_change (object, loc, temp, 0)
3151 && ! validate_replace_rtx (x, temp, object))
3152 abort ();
3153 }
3154 }
3155
3156 return 1;
3157 }
3158
3159 /* Fall through to generic two-operand expression case. */
3160 case EXPR_LIST:
3161 case CALL:
3162 case COMPARE:
3163 case MINUS:
3164 case MULT:
3165 case DIV: case UDIV:
3166 case MOD: case UMOD:
3167 case AND: case IOR: case XOR:
45620ed4
RK
3168 case ROTATERT: case ROTATE:
3169 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
6f086dfc
RS
3170 case NE: case EQ:
3171 case GE: case GT: case GEU: case GTU:
3172 case LE: case LT: case LEU: case LTU:
3173 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3174 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3175 loc = &XEXP (x, 0);
3176 goto restart;
3177
3178 case MEM:
3179 /* Most cases of MEM that convert to valid addresses have already been
4fd796bb 3180 handled by our scan of decls. The only special handling we
6f086dfc 3181 need here is to make a copy of the rtx to ensure it isn't being
b335c2cc 3182 shared if we have to change it to a pseudo.
6f086dfc
RS
3183
3184 If the rtx is a simple reference to an address via a virtual register,
3185 it can potentially be shared. In such cases, first try to make it
3186 a valid address, which can also be shared. Otherwise, copy it and
3187 proceed normally.
3188
3189 First check for common cases that need no processing. These are
3190 usually due to instantiation already being done on a previous instance
3191 of a shared rtx. */
3192
3193 temp = XEXP (x, 0);
3194 if (CONSTANT_ADDRESS_P (temp)
3195#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3196 || temp == arg_pointer_rtx
b37f453b
DE
3197#endif
3198#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3199 || temp == hard_frame_pointer_rtx
6f086dfc
RS
3200#endif
3201 || temp == frame_pointer_rtx)
3202 return 1;
3203
3204 if (GET_CODE (temp) == PLUS
3205 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3206 && (XEXP (temp, 0) == frame_pointer_rtx
b37f453b
DE
3207#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3208 || XEXP (temp, 0) == hard_frame_pointer_rtx
3209#endif
6f086dfc
RS
3210#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3211 || XEXP (temp, 0) == arg_pointer_rtx
3212#endif
3213 ))
3214 return 1;
3215
3216 if (temp == virtual_stack_vars_rtx
3217 || temp == virtual_incoming_args_rtx
3218 || (GET_CODE (temp) == PLUS
3219 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3220 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3221 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3222 {
3223 /* This MEM may be shared. If the substitution can be done without
3224 the need to generate new pseudos, we want to do it in place
3225 so all copies of the shared rtx benefit. The call below will
3226 only make substitutions if the resulting address is still
3227 valid.
3228
3229 Note that we cannot pass X as the object in the recursive call
3230 since the insn being processed may not allow all valid
6461be14
RS
3231 addresses. However, if we were not passed on object, we can
3232 only modify X without copying it if X will have a valid
3233 address.
6f086dfc 3234
6461be14
RS
3235 ??? Also note that this can still lose if OBJECT is an insn that
3236 has less restrictions on an address that some other insn.
3237 In that case, we will modify the shared address. This case
4fd796bb
RK
3238 doesn't seem very likely, though. One case where this could
3239 happen is in the case of a USE or CLOBBER reference, but we
3240 take care of that below. */
6461be14
RS
3241
3242 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3243 object ? object : x, 0))
6f086dfc
RS
3244 return 1;
3245
3246 /* Otherwise make a copy and process that copy. We copy the entire
3247 RTL expression since it might be a PLUS which could also be
3248 shared. */
3249 *loc = x = copy_rtx (x);
3250 }
3251
3252 /* Fall through to generic unary operation case. */
6f086dfc
RS
3253 case SUBREG:
3254 case STRICT_LOW_PART:
3255 case NEG: case NOT:
3256 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3257 case SIGN_EXTEND: case ZERO_EXTEND:
3258 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3259 case FLOAT: case FIX:
3260 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3261 case ABS:
3262 case SQRT:
3263 case FFS:
3264 /* These case either have just one operand or we know that we need not
3265 check the rest of the operands. */
3266 loc = &XEXP (x, 0);
3267 goto restart;
3268
4fd796bb
RK
3269 case USE:
3270 case CLOBBER:
3271 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3272 go ahead and make the invalid one, but do it to a copy. For a REG,
3273 just make the recursive call, since there's no chance of a problem. */
3274
3275 if ((GET_CODE (XEXP (x, 0)) == MEM
3276 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3277 0))
3278 || (GET_CODE (XEXP (x, 0)) == REG
7694ce35 3279 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4fd796bb
RK
3280 return 1;
3281
3282 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3283 loc = &XEXP (x, 0);
3284 goto restart;
3285
6f086dfc
RS
3286 case REG:
3287 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3288 in front of this insn and substitute the temporary. */
3289 if (x == virtual_incoming_args_rtx)
3290 new = arg_pointer_rtx, offset = in_arg_offset;
3291 else if (x == virtual_stack_vars_rtx)
3292 new = frame_pointer_rtx, offset = var_offset;
3293 else if (x == virtual_stack_dynamic_rtx)
3294 new = stack_pointer_rtx, offset = dynamic_offset;
3295 else if (x == virtual_outgoing_args_rtx)
3296 new = stack_pointer_rtx, offset = out_arg_offset;
3297
3298 if (new)
3299 {
3300 temp = plus_constant (new, offset);
3301 if (!validate_change (object, loc, temp, 0))
3302 {
3303 if (! extra_insns)
3304 return 0;
3305
3306 start_sequence ();
5f4f0e22 3307 temp = force_operand (temp, NULL_RTX);
6f086dfc
RS
3308 seq = get_insns ();
3309 end_sequence ();
3310
3311 emit_insns_before (seq, object);
3312 if (! validate_change (object, loc, temp, 0)
3313 && ! validate_replace_rtx (x, temp, object))
3314 abort ();
3315 }
3316 }
3317
3318 return 1;
e9a25f70
JL
3319
3320 case ADDRESSOF:
3321 if (GET_CODE (XEXP (x, 0)) == REG)
3322 return 1;
3323
3324 else if (GET_CODE (XEXP (x, 0)) == MEM)
3325 {
3326 /* If we have a (addressof (mem ..)), do any instantiation inside
3327 since we know we'll be making the inside valid when we finally
3328 remove the ADDRESSOF. */
3329 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3330 return 1;
3331 }
3332 break;
3333
3334 default:
3335 break;
6f086dfc
RS
3336 }
3337
3338 /* Scan all subexpressions. */
3339 fmt = GET_RTX_FORMAT (code);
3340 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3341 if (*fmt == 'e')
3342 {
3343 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3344 return 0;
3345 }
3346 else if (*fmt == 'E')
3347 for (j = 0; j < XVECLEN (x, i); j++)
3348 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3349 extra_insns))
3350 return 0;
3351
3352 return 1;
3353}
3354\f
3355/* Optimization: assuming this function does not receive nonlocal gotos,
3356 delete the handlers for such, as well as the insns to establish
3357 and disestablish them. */
3358
3359static void
3360delete_handlers ()
3361{
3362 rtx insn;
3363 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3364 {
3365 /* Delete the handler by turning off the flag that would
3366 prevent jump_optimize from deleting it.
3367 Also permit deletion of the nonlocal labels themselves
3368 if nothing local refers to them. */
3369 if (GET_CODE (insn) == CODE_LABEL)
71cd4a8d
JW
3370 {
3371 tree t, last_t;
3372
3373 LABEL_PRESERVE_P (insn) = 0;
3374
3375 /* Remove it from the nonlocal_label list, to avoid confusing
3376 flow. */
3377 for (t = nonlocal_labels, last_t = 0; t;
3378 last_t = t, t = TREE_CHAIN (t))
3379 if (DECL_RTL (TREE_VALUE (t)) == insn)
3380 break;
3381 if (t)
3382 {
3383 if (! last_t)
3384 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3385 else
3386 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3387 }
3388 }
6f086dfc 3389 if (GET_CODE (insn) == INSN
59257ff7
RK
3390 && ((nonlocal_goto_handler_slot != 0
3391 && reg_mentioned_p (nonlocal_goto_handler_slot, PATTERN (insn)))
3392 || (nonlocal_goto_stack_level != 0
3393 && reg_mentioned_p (nonlocal_goto_stack_level,
3394 PATTERN (insn)))))
6f086dfc
RS
3395 delete_insn (insn);
3396 }
3397}
3398
3399/* Return a list (chain of EXPR_LIST nodes) for the nonlocal labels
3400 of the current function. */
3401
3402rtx
3403nonlocal_label_rtx_list ()
3404{
3405 tree t;
3406 rtx x = 0;
3407
3408 for (t = nonlocal_labels; t; t = TREE_CHAIN (t))
38a448ca 3409 x = gen_rtx_EXPR_LIST (VOIDmode, label_rtx (TREE_VALUE (t)), x);
6f086dfc
RS
3410
3411 return x;
3412}
3413\f
3414/* Output a USE for any register use in RTL.
3415 This is used with -noreg to mark the extent of lifespan
3416 of any registers used in a user-visible variable's DECL_RTL. */
3417
3418void
3419use_variable (rtl)
3420 rtx rtl;
3421{
3422 if (GET_CODE (rtl) == REG)
3423 /* This is a register variable. */
38a448ca 3424 emit_insn (gen_rtx_USE (VOIDmode, rtl));
6f086dfc
RS
3425 else if (GET_CODE (rtl) == MEM
3426 && GET_CODE (XEXP (rtl, 0)) == REG
3427 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
3428 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
3429 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
3430 /* This is a variable-sized structure. */
38a448ca 3431 emit_insn (gen_rtx_USE (VOIDmode, XEXP (rtl, 0)));
6f086dfc
RS
3432}
3433
3434/* Like use_variable except that it outputs the USEs after INSN
3435 instead of at the end of the insn-chain. */
3436
3437void
3438use_variable_after (rtl, insn)
3439 rtx rtl, insn;
3440{
3441 if (GET_CODE (rtl) == REG)
3442 /* This is a register variable. */
38a448ca 3443 emit_insn_after (gen_rtx_USE (VOIDmode, rtl), insn);
6f086dfc
RS
3444 else if (GET_CODE (rtl) == MEM
3445 && GET_CODE (XEXP (rtl, 0)) == REG
3446 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
3447 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
3448 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
3449 /* This is a variable-sized structure. */
38a448ca 3450 emit_insn_after (gen_rtx_USE (VOIDmode, XEXP (rtl, 0)), insn);
6f086dfc
RS
3451}
3452\f
3453int
3454max_parm_reg_num ()
3455{
3456 return max_parm_reg;
3457}
3458
3459/* Return the first insn following those generated by `assign_parms'. */
3460
3461rtx
3462get_first_nonparm_insn ()
3463{
3464 if (last_parm_insn)
3465 return NEXT_INSN (last_parm_insn);
3466 return get_insns ();
3467}
3468
5378192b
RS
3469/* Return the first NOTE_INSN_BLOCK_BEG note in the function.
3470 Crash if there is none. */
3471
3472rtx
3473get_first_block_beg ()
3474{
3475 register rtx searcher;
3476 register rtx insn = get_first_nonparm_insn ();
3477
3478 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
3479 if (GET_CODE (searcher) == NOTE
3480 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
3481 return searcher;
3482
3483 abort (); /* Invalid call to this function. (See comments above.) */
3484 return NULL_RTX;
3485}
3486
d181c154
RS
3487/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
3488 This means a type for which function calls must pass an address to the
3489 function or get an address back from the function.
3490 EXP may be a type node or an expression (whose type is tested). */
6f086dfc
RS
3491
3492int
3493aggregate_value_p (exp)
3494 tree exp;
3495{
9d790a4f
RS
3496 int i, regno, nregs;
3497 rtx reg;
d181c154
RS
3498 tree type;
3499 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 't')
3500 type = exp;
3501 else
3502 type = TREE_TYPE (exp);
3503
3504 if (RETURN_IN_MEMORY (type))
6f086dfc 3505 return 1;
956d6950 3506 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
49a2e5b2
DE
3507 and thus can't be returned in registers. */
3508 if (TREE_ADDRESSABLE (type))
3509 return 1;
05e3bdb9 3510 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
6f086dfc 3511 return 1;
9d790a4f
RS
3512 /* Make sure we have suitable call-clobbered regs to return
3513 the value in; if not, we must return it in memory. */
d181c154 3514 reg = hard_function_value (type, 0);
e71f7aa5
JW
3515
3516 /* If we have something other than a REG (e.g. a PARALLEL), then assume
3517 it is OK. */
3518 if (GET_CODE (reg) != REG)
3519 return 0;
3520
9d790a4f 3521 regno = REGNO (reg);
d181c154 3522 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
9d790a4f
RS
3523 for (i = 0; i < nregs; i++)
3524 if (! call_used_regs[regno + i])
3525 return 1;
6f086dfc
RS
3526 return 0;
3527}
3528\f
3529/* Assign RTL expressions to the function's parameters.
3530 This may involve copying them into registers and using
3531 those registers as the RTL for them.
3532
3533 If SECOND_TIME is non-zero it means that this function is being
3534 called a second time. This is done by integrate.c when a function's
3535 compilation is deferred. We need to come back here in case the
3536 FUNCTION_ARG macro computes items needed for the rest of the compilation
3537 (such as changing which registers are fixed or caller-saved). But suppress
3538 writing any insns or setting DECL_RTL of anything in this case. */
3539
3540void
3541assign_parms (fndecl, second_time)
3542 tree fndecl;
3543 int second_time;
3544{
3545 register tree parm;
3546 register rtx entry_parm = 0;
3547 register rtx stack_parm = 0;
3548 CUMULATIVE_ARGS args_so_far;
621061f4
RK
3549 enum machine_mode promoted_mode, passed_mode;
3550 enum machine_mode nominal_mode, promoted_nominal_mode;
00d8a4c1 3551 int unsignedp;
6f086dfc
RS
3552 /* Total space needed so far for args on the stack,
3553 given as a constant and a tree-expression. */
3554 struct args_size stack_args_size;
3555 tree fntype = TREE_TYPE (fndecl);
3556 tree fnargs = DECL_ARGUMENTS (fndecl);
3557 /* This is used for the arg pointer when referring to stack args. */
3558 rtx internal_arg_pointer;
3559 /* This is a dummy PARM_DECL that we used for the function result if
3560 the function returns a structure. */
3561 tree function_result_decl = 0;
6f086dfc 3562 int varargs_setup = 0;
3412b298 3563 rtx conversion_insns = 0;
6f086dfc
RS
3564
3565 /* Nonzero if the last arg is named `__builtin_va_alist',
3566 which is used on some machines for old-fashioned non-ANSI varargs.h;
3567 this should be stuck onto the stack as if it had arrived there. */
3b69d50e
RK
3568 int hide_last_arg
3569 = (current_function_varargs
3570 && fnargs
6f086dfc
RS
3571 && (parm = tree_last (fnargs)) != 0
3572 && DECL_NAME (parm)
3573 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
3574 "__builtin_va_alist")));
3575
3576 /* Nonzero if function takes extra anonymous args.
3577 This means the last named arg must be on the stack
0f41302f 3578 right before the anonymous ones. */
6f086dfc
RS
3579 int stdarg
3580 = (TYPE_ARG_TYPES (fntype) != 0
3581 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3582 != void_type_node));
3583
ebb904cb
RK
3584 current_function_stdarg = stdarg;
3585
6f086dfc
RS
3586 /* If the reg that the virtual arg pointer will be translated into is
3587 not a fixed reg or is the stack pointer, make a copy of the virtual
3588 arg pointer, and address parms via the copy. The frame pointer is
3589 considered fixed even though it is not marked as such.
3590
3591 The second time through, simply use ap to avoid generating rtx. */
3592
3593 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3594 || ! (fixed_regs[ARG_POINTER_REGNUM]
3595 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM))
3596 && ! second_time)
3597 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3598 else
3599 internal_arg_pointer = virtual_incoming_args_rtx;
3600 current_function_internal_arg_pointer = internal_arg_pointer;
3601
3602 stack_args_size.constant = 0;
3603 stack_args_size.var = 0;
3604
3605 /* If struct value address is treated as the first argument, make it so. */
3606 if (aggregate_value_p (DECL_RESULT (fndecl))
3607 && ! current_function_returns_pcc_struct
3608 && struct_value_incoming_rtx == 0)
3609 {
f9f29478 3610 tree type = build_pointer_type (TREE_TYPE (fntype));
6f086dfc 3611
5f4f0e22 3612 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
6f086dfc
RS
3613
3614 DECL_ARG_TYPE (function_result_decl) = type;
3615 TREE_CHAIN (function_result_decl) = fnargs;
3616 fnargs = function_result_decl;
3617 }
3618
e9a25f70
JL
3619 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
3620 parm_reg_stack_loc = (rtx *) savealloc (max_parm_reg * sizeof (rtx));
3621 bzero ((char *) parm_reg_stack_loc, max_parm_reg * sizeof (rtx));
6f086dfc
RS
3622
3623#ifdef INIT_CUMULATIVE_INCOMING_ARGS
ea0d4c4b 3624 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
6f086dfc 3625#else
2c7ee1a6 3626 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
6f086dfc
RS
3627#endif
3628
3629 /* We haven't yet found an argument that we must push and pretend the
3630 caller did. */
3631 current_function_pretend_args_size = 0;
3632
3633 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3634 {
05e3bdb9 3635 int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
6f086dfc
RS
3636 struct args_size stack_offset;
3637 struct args_size arg_size;
3638 int passed_pointer = 0;
621061f4 3639 int did_conversion = 0;
6f086dfc 3640 tree passed_type = DECL_ARG_TYPE (parm);
621061f4 3641 tree nominal_type = TREE_TYPE (parm);
6f086dfc
RS
3642
3643 /* Set LAST_NAMED if this is last named arg before some
bf9c83fe 3644 anonymous args. */
6f086dfc
RS
3645 int last_named = ((TREE_CHAIN (parm) == 0
3646 || DECL_NAME (TREE_CHAIN (parm)) == 0)
3b69d50e 3647 && (stdarg || current_function_varargs));
bf9c83fe
JW
3648 /* Set NAMED_ARG if this arg should be treated as a named arg. For
3649 most machines, if this is a varargs/stdarg function, then we treat
3650 the last named arg as if it were anonymous too. */
3651#ifdef STRICT_ARGUMENT_NAMING
3652 int named_arg = 1;
3653#else
b515ab3d 3654 int named_arg = ! last_named;
bf9c83fe 3655#endif
bdd3e6ab
JW
3656 /* If this is a varargs function, then we want to treat the last named
3657 argument as if it was an aggregate, because it might be accessed as
3658 one by the va_arg macros. This is necessary to make the aliasing
3659 code handle this parm correctly. */
3660 if (hide_last_arg && last_named)
3661 aggregate = 1;
6f086dfc
RS
3662
3663 if (TREE_TYPE (parm) == error_mark_node
3664 /* This can happen after weird syntax errors
3665 or if an enum type is defined among the parms. */
3666 || TREE_CODE (parm) != PARM_DECL
3667 || passed_type == NULL)
3668 {
38a448ca
RH
3669 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
3670 = gen_rtx_MEM (BLKmode, const0_rtx);
6f086dfc
RS
3671 TREE_USED (parm) = 1;
3672 continue;
3673 }
3674
3675 /* For varargs.h function, save info about regs and stack space
3676 used by the individual args, not including the va_alist arg. */
3b69d50e 3677 if (hide_last_arg && last_named)
6f086dfc
RS
3678 current_function_args_info = args_so_far;
3679
3680 /* Find mode of arg as it is passed, and mode of arg
3681 as it should be during execution of this function. */
3682 passed_mode = TYPE_MODE (passed_type);
621061f4 3683 nominal_mode = TYPE_MODE (nominal_type);
6f086dfc 3684
16bae307
RS
3685 /* If the parm's mode is VOID, its value doesn't matter,
3686 and avoid the usual things like emit_move_insn that could crash. */
3687 if (nominal_mode == VOIDmode)
3688 {
3689 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
3690 continue;
3691 }
3692
3f46679a
RK
3693 /* If the parm is to be passed as a transparent union, use the
3694 type of the first field for the tests below. We have already
3695 verified that the modes are the same. */
3696 if (DECL_TRANSPARENT_UNION (parm)
3697 || TYPE_TRANSPARENT_UNION (passed_type))
3698 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
3699
a14ae508
RK
3700 /* See if this arg was passed by invisible reference. It is if
3701 it is an object whose size depends on the contents of the
3702 object itself or if the machine requires these objects be passed
3703 that way. */
3704
3705 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
3706 && contains_placeholder_p (TYPE_SIZE (passed_type)))
657bb6dc 3707 || TREE_ADDRESSABLE (passed_type)
6f086dfc 3708#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
a14ae508 3709 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
bf9c83fe 3710 passed_type, named_arg)
a14ae508
RK
3711#endif
3712 )
6f086dfc 3713 {
621061f4 3714 passed_type = nominal_type = build_pointer_type (passed_type);
6f086dfc
RS
3715 passed_pointer = 1;
3716 passed_mode = nominal_mode = Pmode;
3717 }
6f086dfc 3718
a53e14c0
RK
3719 promoted_mode = passed_mode;
3720
3721#ifdef PROMOTE_FUNCTION_ARGS
3722 /* Compute the mode in which the arg is actually extended to. */
a5a52dbc 3723 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
a53e14c0
RK
3724#endif
3725
6f086dfc
RS
3726 /* Let machine desc say which reg (if any) the parm arrives in.
3727 0 means it arrives on the stack. */
3728#ifdef FUNCTION_INCOMING_ARG
a53e14c0 3729 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
bf9c83fe 3730 passed_type, named_arg);
6f086dfc 3731#else
a53e14c0 3732 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
bf9c83fe 3733 passed_type, named_arg);
6f086dfc
RS
3734#endif
3735
621061f4
RK
3736 if (entry_parm == 0)
3737 promoted_mode = passed_mode;
a53e14c0 3738
6f086dfc
RS
3739#ifdef SETUP_INCOMING_VARARGS
3740 /* If this is the last named parameter, do any required setup for
3741 varargs or stdargs. We need to know about the case of this being an
3742 addressable type, in which case we skip the registers it
3743 would have arrived in.
3744
3745 For stdargs, LAST_NAMED will be set for two parameters, the one that
3746 is actually the last named, and the dummy parameter. We only
3747 want to do this action once.
3748
3749 Also, indicate when RTL generation is to be suppressed. */
3750 if (last_named && !varargs_setup)
3751 {
621061f4 3752 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
6f086dfc
RS
3753 current_function_pretend_args_size,
3754 second_time);
3755 varargs_setup = 1;
3756 }
3757#endif
3758
3759 /* Determine parm's home in the stack,
3760 in case it arrives in the stack or we should pretend it did.
3761
3762 Compute the stack position and rtx where the argument arrives
3763 and its size.
3764
3765 There is one complexity here: If this was a parameter that would
3766 have been passed in registers, but wasn't only because it is
3767 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
3768 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
3769 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
3770 0 as it was the previous time. */
3771
621061f4 3772 locate_and_pad_parm (promoted_mode, passed_type,
6f086dfc
RS
3773#ifdef STACK_PARMS_IN_REG_PARM_AREA
3774 1,
3775#else
3776#ifdef FUNCTION_INCOMING_ARG
621061f4 3777 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
6f086dfc 3778 passed_type,
bf9c83fe 3779 (named_arg
6f086dfc
RS
3780 || varargs_setup)) != 0,
3781#else
621061f4 3782 FUNCTION_ARG (args_so_far, promoted_mode,
6f086dfc 3783 passed_type,
bf9c83fe 3784 named_arg || varargs_setup) != 0,
6f086dfc
RS
3785#endif
3786#endif
3787 fndecl, &stack_args_size, &stack_offset, &arg_size);
3788
3789 if (! second_time)
3790 {
3791 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
3792
3793 if (offset_rtx == const0_rtx)
38a448ca 3794 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
6f086dfc 3795 else
38a448ca
RH
3796 stack_parm = gen_rtx_MEM (promoted_mode,
3797 gen_rtx_PLUS (Pmode,
3798 internal_arg_pointer,
3799 offset_rtx));
6f086dfc
RS
3800
3801 /* If this is a memory ref that contains aggregate components,
a00285d0
RK
3802 mark it as such for cse and loop optimize. Likewise if it
3803 is readonly. */
6f086dfc 3804 MEM_IN_STRUCT_P (stack_parm) = aggregate;
a00285d0 3805 RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
6f086dfc
RS
3806 }
3807
3808 /* If this parameter was passed both in registers and in the stack,
3809 use the copy on the stack. */
621061f4 3810 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
6f086dfc
RS
3811 entry_parm = 0;
3812
461beb10 3813#ifdef FUNCTION_ARG_PARTIAL_NREGS
6f086dfc
RS
3814 /* If this parm was passed part in regs and part in memory,
3815 pretend it arrived entirely in memory
3816 by pushing the register-part onto the stack.
3817
3818 In the special case of a DImode or DFmode that is split,
3819 we could put it together in a pseudoreg directly,
3820 but for now that's not worth bothering with. */
3821
3822 if (entry_parm)
3823 {
621061f4 3824 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
bf9c83fe 3825 passed_type, named_arg);
6f086dfc
RS
3826
3827 if (nregs > 0)
3828 {
3829 current_function_pretend_args_size
3830 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
3831 / (PARM_BOUNDARY / BITS_PER_UNIT)
3832 * (PARM_BOUNDARY / BITS_PER_UNIT));
3833
3834 if (! second_time)
5c4cdc9f
JW
3835 {
3836 /* Handle calls that pass values in multiple non-contiguous
3837 locations. The Irix 6 ABI has examples of this. */
3838 if (GET_CODE (entry_parm) == PARALLEL)
3839 emit_group_store (validize_mem (stack_parm),
3840 entry_parm);
3841 else
3842 move_block_from_reg (REGNO (entry_parm),
3843 validize_mem (stack_parm), nregs,
3844 int_size_in_bytes (TREE_TYPE (parm)));
3845 }
6f086dfc
RS
3846 entry_parm = stack_parm;
3847 }
3848 }
461beb10 3849#endif
6f086dfc
RS
3850
3851 /* If we didn't decide this parm came in a register,
3852 by default it came on the stack. */
3853 if (entry_parm == 0)
3854 entry_parm = stack_parm;
3855
3856 /* Record permanently how this parm was passed. */
3857 if (! second_time)
3858 DECL_INCOMING_RTL (parm) = entry_parm;
3859
3860 /* If there is actually space on the stack for this parm,
3861 count it in stack_args_size; otherwise set stack_parm to 0
3862 to indicate there is no preallocated stack slot for the parm. */
3863
3864 if (entry_parm == stack_parm
d9ca49d5 3865#if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
6f086dfc 3866 /* On some machines, even if a parm value arrives in a register
d9ca49d5
JW
3867 there is still an (uninitialized) stack slot allocated for it.
3868
3869 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
3870 whether this parameter already has a stack slot allocated,
3871 because an arg block exists only if current_function_args_size
abc95ed3 3872 is larger than some threshold, and we haven't calculated that
d9ca49d5
JW
3873 yet. So, for now, we just assume that stack slots never exist
3874 in this case. */
6f086dfc
RS
3875 || REG_PARM_STACK_SPACE (fndecl) > 0
3876#endif
3877 )
3878 {
3879 stack_args_size.constant += arg_size.constant;
3880 if (arg_size.var)
3881 ADD_PARM_SIZE (stack_args_size, arg_size.var);
3882 }
3883 else
3884 /* No stack slot was pushed for this parm. */
3885 stack_parm = 0;
3886
3887 /* Update info on where next arg arrives in registers. */
3888
621061f4 3889 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
bf9c83fe 3890 passed_type, named_arg);
6f086dfc 3891
0f41302f 3892 /* If this is our second time through, we are done with this parm. */
6f086dfc
RS
3893 if (second_time)
3894 continue;
3895
e16c591a
RS
3896 /* If we can't trust the parm stack slot to be aligned enough
3897 for its ultimate type, don't use that slot after entry.
3898 We'll make another stack slot, if we need one. */
3899 {
e16c591a 3900 int thisparm_boundary
621061f4 3901 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
e16c591a
RS
3902
3903 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
3904 stack_parm = 0;
3905 }
3906
cb61f66f
RS
3907 /* If parm was passed in memory, and we need to convert it on entry,
3908 don't store it back in that same slot. */
3909 if (entry_parm != 0
3910 && nominal_mode != BLKmode && nominal_mode != passed_mode)
3911 stack_parm = 0;
3912
3913#if 0
6f086dfc
RS
3914 /* Now adjust STACK_PARM to the mode and precise location
3915 where this parameter should live during execution,
3916 if we discover that it must live in the stack during execution.
3917 To make debuggers happier on big-endian machines, we store
3918 the value in the last bytes of the space available. */
3919
3920 if (nominal_mode != BLKmode && nominal_mode != passed_mode
3921 && stack_parm != 0)
3922 {
3923 rtx offset_rtx;
3924
f76b9db2
ILT
3925 if (BYTES_BIG_ENDIAN
3926 && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
6f086dfc
RS
3927 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
3928 - GET_MODE_SIZE (nominal_mode));
6f086dfc
RS
3929
3930 offset_rtx = ARGS_SIZE_RTX (stack_offset);
3931 if (offset_rtx == const0_rtx)
38a448ca 3932 stack_parm = gen_rtx_MEM (nominal_mode, internal_arg_pointer);
6f086dfc 3933 else
38a448ca
RH
3934 stack_parm = gen_rtx_MEM (nominal_mode,
3935 gen_rtx_PLUS (Pmode,
3936 internal_arg_pointer,
3937 offset_rtx));
6f086dfc
RS
3938
3939 /* If this is a memory ref that contains aggregate components,
3940 mark it as such for cse and loop optimize. */
3941 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3942 }
cb61f66f 3943#endif /* 0 */
6f086dfc 3944
9dc0f531
RK
3945#ifdef STACK_REGS
3946 /* We need this "use" info, because the gcc-register->stack-register
3947 converter in reg-stack.c needs to know which registers are active
3948 at the start of the function call. The actual parameter loading
3949 instructions are not always available then anymore, since they might
3950 have been optimised away. */
3951
3952 if (GET_CODE (entry_parm) == REG && !(hide_last_arg && last_named))
38a448ca 3953 emit_insn (gen_rtx_USE (GET_MODE (entry_parm), entry_parm));
9dc0f531
RK
3954#endif
3955
6f086dfc
RS
3956 /* ENTRY_PARM is an RTX for the parameter as it arrives,
3957 in the mode in which it arrives.
3958 STACK_PARM is an RTX for a stack slot where the parameter can live
3959 during the function (in case we want to put it there).
3960 STACK_PARM is 0 if no stack slot was pushed for it.
3961
3962 Now output code if necessary to convert ENTRY_PARM to
3963 the type in which this function declares it,
3964 and store that result in an appropriate place,
3965 which may be a pseudo reg, may be STACK_PARM,
3966 or may be a local stack slot if STACK_PARM is 0.
3967
3968 Set DECL_RTL to that place. */
3969
5c4cdc9f 3970 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
6f086dfc 3971 {
5c4cdc9f
JW
3972 /* If a BLKmode arrives in registers, copy it to a stack slot.
3973 Handle calls that pass values in multiple non-contiguous
3974 locations. The Irix 6 ABI has examples of this. */
3975 if (GET_CODE (entry_parm) == REG
3976 || GET_CODE (entry_parm) == PARALLEL)
6f086dfc 3977 {
621061f4
RK
3978 int size_stored
3979 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
3980 UNITS_PER_WORD);
6f086dfc
RS
3981
3982 /* Note that we will be storing an integral number of words.
3983 So we have to be careful to ensure that we allocate an
3984 integral number of words. We do this below in the
3985 assign_stack_local if space was not allocated in the argument
3986 list. If it was, this will not work if PARM_BOUNDARY is not
3987 a multiple of BITS_PER_WORD. It isn't clear how to fix this
3988 if it becomes a problem. */
3989
3990 if (stack_parm == 0)
7e41ffa2
RS
3991 {
3992 stack_parm
621061f4
RK
3993 = assign_stack_local (GET_MODE (entry_parm),
3994 size_stored, 0);
3995
3996 /* If this is a memory ref that contains aggregate
3997 components, mark it as such for cse and loop optimize. */
7e41ffa2
RS
3998 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3999 }
4000
6f086dfc
RS
4001 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4002 abort ();
4003
7a30f0c4
JW
4004 if (TREE_READONLY (parm))
4005 RTX_UNCHANGING_P (stack_parm) = 1;
4006
5c4cdc9f
JW
4007 /* Handle calls that pass values in multiple non-contiguous
4008 locations. The Irix 6 ABI has examples of this. */
4009 if (GET_CODE (entry_parm) == PARALLEL)
4010 emit_group_store (validize_mem (stack_parm), entry_parm);
4011 else
4012 move_block_from_reg (REGNO (entry_parm),
4013 validize_mem (stack_parm),
4014 size_stored / UNITS_PER_WORD,
4015 int_size_in_bytes (TREE_TYPE (parm)));
6f086dfc
RS
4016 }
4017 DECL_RTL (parm) = stack_parm;
4018 }
74bd77a8 4019 else if (! ((obey_regdecls && ! DECL_REGISTER (parm)
a82ad570 4020 && ! DECL_INLINE (fndecl))
6f086dfc
RS
4021 /* layout_decl may set this. */
4022 || TREE_ADDRESSABLE (parm)
4023 || TREE_SIDE_EFFECTS (parm)
4024 /* If -ffloat-store specified, don't put explicit
4025 float variables into registers. */
4026 || (flag_float_store
4027 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4028 /* Always assign pseudo to structure return or item passed
4029 by invisible reference. */
4030 || passed_pointer || parm == function_result_decl)
4031 {
00d8a4c1
RK
4032 /* Store the parm in a pseudoregister during the function, but we
4033 may need to do it in a wider mode. */
4034
4035 register rtx parmreg;
a03caf76 4036 int regno, regnoi, regnor;
00d8a4c1
RK
4037
4038 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
cd5b3469 4039
621061f4
RK
4040 promoted_nominal_mode
4041 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
6f086dfc 4042
621061f4 4043 parmreg = gen_reg_rtx (promoted_nominal_mode);
ddb7361a 4044 mark_user_reg (parmreg);
6f086dfc
RS
4045
4046 /* If this was an item that we received a pointer to, set DECL_RTL
4047 appropriately. */
4048 if (passed_pointer)
4049 {
621061f4 4050 DECL_RTL (parm)
38a448ca 4051 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
6f086dfc
RS
4052 MEM_IN_STRUCT_P (DECL_RTL (parm)) = aggregate;
4053 }
4054 else
4055 DECL_RTL (parm) = parmreg;
4056
4057 /* Copy the value into the register. */
621061f4
RK
4058 if (nominal_mode != passed_mode
4059 || promoted_nominal_mode != promoted_mode)
86f8eff3 4060 {
621061f4
RK
4061 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4062 mode, by the caller. We now have to convert it to
4063 NOMINAL_MODE, if different. However, PARMREG may be in
956d6950 4064 a different mode than NOMINAL_MODE if it is being stored
621061f4
RK
4065 promoted.
4066
4067 If ENTRY_PARM is a hard register, it might be in a register
86f8eff3
RK
4068 not valid for operating in its mode (e.g., an odd-numbered
4069 register for a DFmode). In that case, moves are the only
4070 thing valid, so we can't do a convert from there. This
4071 occurs when the calling sequence allow such misaligned
3412b298
JW
4072 usages.
4073
4074 In addition, the conversion may involve a call, which could
4075 clobber parameters which haven't been copied to pseudo
4076 registers yet. Therefore, we must first copy the parm to
4077 a pseudo reg here, and save the conversion until after all
4078 parameters have been moved. */
4079
4080 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4081
4082 emit_move_insn (tempreg, validize_mem (entry_parm));
4083
4084 push_to_sequence (conversion_insns);
ad241351
RK
4085 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4086
621061f4
RK
4087 expand_assignment (parm,
4088 make_tree (nominal_type, tempreg), 0, 0);
3412b298 4089 conversion_insns = get_insns ();
621061f4 4090 did_conversion = 1;
3412b298 4091 end_sequence ();
86f8eff3 4092 }
6f086dfc
RS
4093 else
4094 emit_move_insn (parmreg, validize_mem (entry_parm));
4095
74bd77a8
RS
4096 /* If we were passed a pointer but the actual value
4097 can safely live in a register, put it in one. */
16bae307 4098 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
74bd77a8
RS
4099 && ! ((obey_regdecls && ! DECL_REGISTER (parm)
4100 && ! DECL_INLINE (fndecl))
4101 /* layout_decl may set this. */
4102 || TREE_ADDRESSABLE (parm)
4103 || TREE_SIDE_EFFECTS (parm)
4104 /* If -ffloat-store specified, don't put explicit
4105 float variables into registers. */
4106 || (flag_float_store
4107 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4108 {
2654605a
JW
4109 /* We can't use nominal_mode, because it will have been set to
4110 Pmode above. We must use the actual mode of the parm. */
4111 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
ddb7361a 4112 mark_user_reg (parmreg);
74bd77a8
RS
4113 emit_move_insn (parmreg, DECL_RTL (parm));
4114 DECL_RTL (parm) = parmreg;
c110c53d
RS
4115 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4116 now the parm. */
4117 stack_parm = 0;
74bd77a8 4118 }
137a2a7b
DE
4119#ifdef FUNCTION_ARG_CALLEE_COPIES
4120 /* If we are passed an arg by reference and it is our responsibility
4121 to make a copy, do it now.
4122 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4123 original argument, so we must recreate them in the call to
4124 FUNCTION_ARG_CALLEE_COPIES. */
4125 /* ??? Later add code to handle the case that if the argument isn't
4126 modified, don't do the copy. */
4127
4128 else if (passed_pointer
4129 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4130 TYPE_MODE (DECL_ARG_TYPE (parm)),
4131 DECL_ARG_TYPE (parm),
bf9c83fe 4132 named_arg)
926b1b99 4133 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
137a2a7b
DE
4134 {
4135 rtx copy;
4136 tree type = DECL_ARG_TYPE (parm);
4137
4138 /* This sequence may involve a library call perhaps clobbering
4139 registers that haven't been copied to pseudos yet. */
4140
4141 push_to_sequence (conversion_insns);
4142
4143 if (TYPE_SIZE (type) == 0
4144 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1fd3ef7f 4145 /* This is a variable sized object. */
38a448ca
RH
4146 copy = gen_rtx_MEM (BLKmode,
4147 allocate_dynamic_stack_space
4148 (expr_size (parm), NULL_RTX,
4149 TYPE_ALIGN (type)));
137a2a7b 4150 else
1fd3ef7f
RK
4151 copy = assign_stack_temp (TYPE_MODE (type),
4152 int_size_in_bytes (type), 1);
3668e76e 4153 MEM_IN_STRUCT_P (copy) = AGGREGATE_TYPE_P (type);
e9a25f70 4154 RTX_UNCHANGING_P (copy) = TREE_READONLY (parm);
137a2a7b
DE
4155
4156 store_expr (parm, copy, 0);
4157 emit_move_insn (parmreg, XEXP (copy, 0));
86fa911a
RK
4158 if (flag_check_memory_usage)
4159 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4160 XEXP (copy, 0), ptr_mode,
4161 GEN_INT (int_size_in_bytes (type)),
4162 TYPE_MODE (sizetype),
956d6950
JL
4163 GEN_INT (MEMORY_USE_RW),
4164 TYPE_MODE (integer_type_node));
137a2a7b 4165 conversion_insns = get_insns ();
621061f4 4166 did_conversion = 1;
137a2a7b
DE
4167 end_sequence ();
4168 }
4169#endif /* FUNCTION_ARG_CALLEE_COPIES */
74bd77a8 4170
6f086dfc 4171 /* In any case, record the parm's desired stack location
14aceb29
RS
4172 in case we later discover it must live in the stack.
4173
4174 If it is a COMPLEX value, store the stack location for both
4175 halves. */
4176
4177 if (GET_CODE (parmreg) == CONCAT)
4178 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4179 else
4180 regno = REGNO (parmreg);
4181
e9a25f70 4182 if (regno >= max_parm_reg)
6f086dfc
RS
4183 {
4184 rtx *new;
e9a25f70 4185 int old_max_parm_reg = max_parm_reg;
14aceb29 4186
e9a25f70
JL
4187 /* It's slow to expand this one register at a time,
4188 but it's also rare and we need max_parm_reg to be
4189 precisely correct. */
4190 max_parm_reg = regno + 1;
4191 new = (rtx *) savealloc (max_parm_reg * sizeof (rtx));
4c9a05bc 4192 bcopy ((char *) parm_reg_stack_loc, (char *) new,
e9a25f70
JL
4193 old_max_parm_reg * sizeof (rtx));
4194 bzero ((char *) (new + old_max_parm_reg),
4195 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
6f086dfc
RS
4196 parm_reg_stack_loc = new;
4197 }
14aceb29
RS
4198
4199 if (GET_CODE (parmreg) == CONCAT)
4200 {
4201 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4202
a03caf76
RK
4203 regnor = REGNO (gen_realpart (submode, parmreg));
4204 regnoi = REGNO (gen_imagpart (submode, parmreg));
4205
7b1a0c14
RS
4206 if (stack_parm != 0)
4207 {
a03caf76 4208 parm_reg_stack_loc[regnor]
3d329b07 4209 = gen_realpart (submode, stack_parm);
a03caf76 4210 parm_reg_stack_loc[regnoi]
3d329b07 4211 = gen_imagpart (submode, stack_parm);
7b1a0c14
RS
4212 }
4213 else
4214 {
a03caf76
RK
4215 parm_reg_stack_loc[regnor] = 0;
4216 parm_reg_stack_loc[regnoi] = 0;
7b1a0c14 4217 }
14aceb29
RS
4218 }
4219 else
4220 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
6f086dfc
RS
4221
4222 /* Mark the register as eliminable if we did no conversion
4223 and it was copied from memory at a fixed offset,
4224 and the arg pointer was not copied to a pseudo-reg.
4225 If the arg pointer is a pseudo reg or the offset formed
4226 an invalid address, such memory-equivalences
4227 as we make here would screw up life analysis for it. */
4228 if (nominal_mode == passed_mode
621061f4 4229 && ! did_conversion
38b610ed
ILT
4230 && stack_parm != 0
4231 && GET_CODE (stack_parm) == MEM
6f086dfc
RS
4232 && stack_offset.var == 0
4233 && reg_mentioned_p (virtual_incoming_args_rtx,
38b610ed 4234 XEXP (stack_parm, 0)))
a03caf76
RK
4235 {
4236 rtx linsn = get_last_insn ();
69685820 4237 rtx sinsn, set;
a03caf76
RK
4238
4239 /* Mark complex types separately. */
4240 if (GET_CODE (parmreg) == CONCAT)
69685820
RK
4241 /* Scan backwards for the set of the real and
4242 imaginary parts. */
4243 for (sinsn = linsn; sinsn != 0;
4244 sinsn = prev_nonnote_insn (sinsn))
4245 {
4246 set = single_set (sinsn);
4247 if (set != 0
4248 && SET_DEST (set) == regno_reg_rtx [regnoi])
4249 REG_NOTES (sinsn)
38a448ca
RH
4250 = gen_rtx_EXPR_LIST (REG_EQUIV,
4251 parm_reg_stack_loc[regnoi],
4252 REG_NOTES (sinsn));
69685820
RK
4253 else if (set != 0
4254 && SET_DEST (set) == regno_reg_rtx [regnor])
4255 REG_NOTES (sinsn)
38a448ca
RH
4256 = gen_rtx_EXPR_LIST (REG_EQUIV,
4257 parm_reg_stack_loc[regnor],
4258 REG_NOTES (sinsn));
69685820
RK
4259 }
4260 else if ((set = single_set (linsn)) != 0
4261 && SET_DEST (set) == parmreg)
a03caf76 4262 REG_NOTES (linsn)
38a448ca
RH
4263 = gen_rtx_EXPR_LIST (REG_EQUIV,
4264 stack_parm, REG_NOTES (linsn));
a03caf76 4265 }
6f086dfc
RS
4266
4267 /* For pointer data type, suggest pointer register. */
4268 if (TREE_CODE (TREE_TYPE (parm)) == POINTER_TYPE)
6c6166bd
RK
4269 mark_reg_pointer (parmreg,
4270 (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))
4271 / BITS_PER_UNIT));
6f086dfc
RS
4272 }
4273 else
4274 {
4275 /* Value must be stored in the stack slot STACK_PARM
4276 during function execution. */
4277
621061f4 4278 if (promoted_mode != nominal_mode)
86f8eff3
RK
4279 {
4280 /* Conversion is required. */
3412b298
JW
4281 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4282
4283 emit_move_insn (tempreg, validize_mem (entry_parm));
86f8eff3 4284
3412b298
JW
4285 push_to_sequence (conversion_insns);
4286 entry_parm = convert_to_mode (nominal_mode, tempreg,
a53e14c0 4287 TREE_UNSIGNED (TREE_TYPE (parm)));
de957303
DE
4288 if (stack_parm)
4289 {
4290 /* ??? This may need a big-endian conversion on sparc64. */
4291 stack_parm = change_address (stack_parm, nominal_mode,
4292 NULL_RTX);
4293 }
3412b298 4294 conversion_insns = get_insns ();
621061f4 4295 did_conversion = 1;
3412b298 4296 end_sequence ();
86f8eff3 4297 }
6f086dfc
RS
4298
4299 if (entry_parm != stack_parm)
4300 {
4301 if (stack_parm == 0)
7e41ffa2
RS
4302 {
4303 stack_parm
4304 = assign_stack_local (GET_MODE (entry_parm),
4305 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4306 /* If this is a memory ref that contains aggregate components,
4307 mark it as such for cse and loop optimize. */
4308 MEM_IN_STRUCT_P (stack_parm) = aggregate;
4309 }
4310
621061f4 4311 if (promoted_mode != nominal_mode)
3412b298
JW
4312 {
4313 push_to_sequence (conversion_insns);
4314 emit_move_insn (validize_mem (stack_parm),
4315 validize_mem (entry_parm));
4316 conversion_insns = get_insns ();
4317 end_sequence ();
4318 }
4319 else
4320 emit_move_insn (validize_mem (stack_parm),
4321 validize_mem (entry_parm));
6f086dfc 4322 }
c85f7c16
JL
4323 if (flag_check_memory_usage
4324 && entry_parm != stack_parm
4325 && promoted_mode != nominal_mode)
86fa911a
RK
4326 {
4327 push_to_sequence (conversion_insns);
4328 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4329 XEXP (stack_parm, 0), ptr_mode,
4330 GEN_INT (GET_MODE_SIZE (GET_MODE
4331 (entry_parm))),
4332 TYPE_MODE (sizetype),
956d6950
JL
4333 GEN_INT (MEMORY_USE_RW),
4334 TYPE_MODE (integer_type_node));
6f086dfc 4335
86fa911a
RK
4336 conversion_insns = get_insns ();
4337 end_sequence ();
4338 }
6f086dfc
RS
4339 DECL_RTL (parm) = stack_parm;
4340 }
4341
4342 /* If this "parameter" was the place where we are receiving the
4343 function's incoming structure pointer, set up the result. */
4344 if (parm == function_result_decl)
ccdecf58
RK
4345 {
4346 tree result = DECL_RESULT (fndecl);
4347 tree restype = TREE_TYPE (result);
4348
4349 DECL_RTL (result)
38a448ca 4350 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
ccdecf58 4351
05e3bdb9 4352 MEM_IN_STRUCT_P (DECL_RTL (result)) = AGGREGATE_TYPE_P (restype);
ccdecf58 4353 }
6f086dfc
RS
4354
4355 if (TREE_THIS_VOLATILE (parm))
4356 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
4357 if (TREE_READONLY (parm))
4358 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
4359 }
4360
3412b298
JW
4361 /* Output all parameter conversion instructions (possibly including calls)
4362 now that all parameters have been copied out of hard registers. */
4363 emit_insns (conversion_insns);
4364
6f086dfc
RS
4365 last_parm_insn = get_last_insn ();
4366
4367 current_function_args_size = stack_args_size.constant;
4368
4369 /* Adjust function incoming argument size for alignment and
4370 minimum length. */
4371
4372#ifdef REG_PARM_STACK_SPACE
6f90e075 4373#ifndef MAYBE_REG_PARM_STACK_SPACE
6f086dfc
RS
4374 current_function_args_size = MAX (current_function_args_size,
4375 REG_PARM_STACK_SPACE (fndecl));
4376#endif
6f90e075 4377#endif
6f086dfc
RS
4378
4379#ifdef STACK_BOUNDARY
4380#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4381
4382 current_function_args_size
4383 = ((current_function_args_size + STACK_BYTES - 1)
4384 / STACK_BYTES) * STACK_BYTES;
4385#endif
4386
4387#ifdef ARGS_GROW_DOWNWARD
4388 current_function_arg_offset_rtx
5f4f0e22 4389 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
6f086dfc
RS
4390 : expand_expr (size_binop (MINUS_EXPR, stack_args_size.var,
4391 size_int (-stack_args_size.constant)),
86fa911a 4392 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
6f086dfc
RS
4393#else
4394 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4395#endif
4396
4397 /* See how many bytes, if any, of its args a function should try to pop
4398 on return. */
4399
64e6d9cc 4400 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
6f086dfc
RS
4401 current_function_args_size);
4402
3b69d50e
RK
4403 /* For stdarg.h function, save info about
4404 regs and stack space used by the named args. */
6f086dfc 4405
3b69d50e 4406 if (!hide_last_arg)
6f086dfc
RS
4407 current_function_args_info = args_so_far;
4408
4409 /* Set the rtx used for the function return value. Put this in its
4410 own variable so any optimizers that need this information don't have
4411 to include tree.h. Do this here so it gets done when an inlined
4412 function gets output. */
4413
4414 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4415}
4416\f
75dc3319
RK
4417/* Indicate whether REGNO is an incoming argument to the current function
4418 that was promoted to a wider mode. If so, return the RTX for the
4419 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4420 that REGNO is promoted from and whether the promotion was signed or
4421 unsigned. */
4422
4423#ifdef PROMOTE_FUNCTION_ARGS
4424
4425rtx
4426promoted_input_arg (regno, pmode, punsignedp)
4427 int regno;
4428 enum machine_mode *pmode;
4429 int *punsignedp;
4430{
4431 tree arg;
4432
4433 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4434 arg = TREE_CHAIN (arg))
4435 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
621061f4
RK
4436 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4437 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
75dc3319
RK
4438 {
4439 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4440 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4441
a5a52dbc 4442 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
75dc3319
RK
4443 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4444 && mode != DECL_MODE (arg))
4445 {
4446 *pmode = DECL_MODE (arg);
4447 *punsignedp = unsignedp;
4448 return DECL_INCOMING_RTL (arg);
4449 }
4450 }
4451
4452 return 0;
4453}
4454
4455#endif
4456\f
6f086dfc
RS
4457/* Compute the size and offset from the start of the stacked arguments for a
4458 parm passed in mode PASSED_MODE and with type TYPE.
4459
4460 INITIAL_OFFSET_PTR points to the current offset into the stacked
4461 arguments.
4462
4463 The starting offset and size for this parm are returned in *OFFSET_PTR
4464 and *ARG_SIZE_PTR, respectively.
4465
4466 IN_REGS is non-zero if the argument will be passed in registers. It will
4467 never be set if REG_PARM_STACK_SPACE is not defined.
4468
4469 FNDECL is the function in which the argument was defined.
4470
4471 There are two types of rounding that are done. The first, controlled by
4472 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4473 list to be aligned to the specific boundary (in bits). This rounding
4474 affects the initial and starting offsets, but not the argument size.
4475
4476 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4477 optionally rounds the size of the parm to PARM_BOUNDARY. The
4478 initial offset is not affected by this rounding, while the size always
4479 is and the starting offset may be. */
4480
4481/* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4482 initial_offset_ptr is positive because locate_and_pad_parm's
4483 callers pass in the total size of args so far as
4484 initial_offset_ptr. arg_size_ptr is always positive.*/
4485
6f086dfc
RS
4486void
4487locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4488 initial_offset_ptr, offset_ptr, arg_size_ptr)
4489 enum machine_mode passed_mode;
4490 tree type;
4491 int in_regs;
4492 tree fndecl;
4493 struct args_size *initial_offset_ptr;
4494 struct args_size *offset_ptr;
4495 struct args_size *arg_size_ptr;
4496{
4497 tree sizetree
4498 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4499 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4500 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
6f086dfc
RS
4501
4502#ifdef REG_PARM_STACK_SPACE
4503 /* If we have found a stack parm before we reach the end of the
4504 area reserved for registers, skip that area. */
4505 if (! in_regs)
4506 {
29a82058
JL
4507 int reg_parm_stack_space = 0;
4508
29008b51
JW
4509#ifdef MAYBE_REG_PARM_STACK_SPACE
4510 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4511#else
6f086dfc 4512 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
29008b51 4513#endif
6f086dfc
RS
4514 if (reg_parm_stack_space > 0)
4515 {
4516 if (initial_offset_ptr->var)
4517 {
4518 initial_offset_ptr->var
4519 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4520 size_int (reg_parm_stack_space));
4521 initial_offset_ptr->constant = 0;
4522 }
4523 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4524 initial_offset_ptr->constant = reg_parm_stack_space;
4525 }
4526 }
4527#endif /* REG_PARM_STACK_SPACE */
4528
4529 arg_size_ptr->var = 0;
4530 arg_size_ptr->constant = 0;
4531
4532#ifdef ARGS_GROW_DOWNWARD
4533 if (initial_offset_ptr->var)
4534 {
4535 offset_ptr->constant = 0;
4536 offset_ptr->var = size_binop (MINUS_EXPR, integer_zero_node,
4537 initial_offset_ptr->var);
4538 }
4539 else
4540 {
4541 offset_ptr->constant = - initial_offset_ptr->constant;
4542 offset_ptr->var = 0;
4543 }
0b21dcf5 4544 if (where_pad != none
6f086dfc
RS
4545 && (TREE_CODE (sizetree) != INTEGER_CST
4546 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
4547 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4548 SUB_PARM_SIZE (*offset_ptr, sizetree);
66bcbe19
TG
4549 if (where_pad != downward)
4550 pad_to_arg_alignment (offset_ptr, boundary);
6f086dfc
RS
4551 if (initial_offset_ptr->var)
4552 {
4553 arg_size_ptr->var = size_binop (MINUS_EXPR,
4554 size_binop (MINUS_EXPR,
4555 integer_zero_node,
4556 initial_offset_ptr->var),
4557 offset_ptr->var);
4558 }
4559 else
4560 {
db3cf6fb
MS
4561 arg_size_ptr->constant = (- initial_offset_ptr->constant
4562 - offset_ptr->constant);
6f086dfc 4563 }
6f086dfc
RS
4564#else /* !ARGS_GROW_DOWNWARD */
4565 pad_to_arg_alignment (initial_offset_ptr, boundary);
4566 *offset_ptr = *initial_offset_ptr;
6f086dfc
RS
4567
4568#ifdef PUSH_ROUNDING
4569 if (passed_mode != BLKmode)
4570 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4571#endif
4572
d4b0a7a0
DE
4573 /* Pad_below needs the pre-rounded size to know how much to pad below
4574 so this must be done before rounding up. */
ea5917da
DE
4575 if (where_pad == downward
4576 /* However, BLKmode args passed in regs have their padding done elsewhere.
4577 The stack slot must be able to hold the entire register. */
4578 && !(in_regs && passed_mode == BLKmode))
d4b0a7a0
DE
4579 pad_below (offset_ptr, passed_mode, sizetree);
4580
6f086dfc
RS
4581 if (where_pad != none
4582 && (TREE_CODE (sizetree) != INTEGER_CST
4583 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
4584 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4585
4586 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
4587#endif /* ARGS_GROW_DOWNWARD */
4588}
4589
e16c591a
RS
4590/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4591 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4592
6f086dfc
RS
4593static void
4594pad_to_arg_alignment (offset_ptr, boundary)
4595 struct args_size *offset_ptr;
4596 int boundary;
4597{
4598 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4599
4600 if (boundary > BITS_PER_UNIT)
4601 {
4602 if (offset_ptr->var)
4603 {
4604 offset_ptr->var =
4605#ifdef ARGS_GROW_DOWNWARD
4606 round_down
4607#else
4608 round_up
4609#endif
4610 (ARGS_SIZE_TREE (*offset_ptr),
4611 boundary / BITS_PER_UNIT);
4612 offset_ptr->constant = 0; /*?*/
4613 }
4614 else
4615 offset_ptr->constant =
4616#ifdef ARGS_GROW_DOWNWARD
4617 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
4618#else
4619 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
4620#endif
4621 }
4622}
4623
51723711 4624#ifndef ARGS_GROW_DOWNWARD
6f086dfc
RS
4625static void
4626pad_below (offset_ptr, passed_mode, sizetree)
4627 struct args_size *offset_ptr;
4628 enum machine_mode passed_mode;
4629 tree sizetree;
4630{
4631 if (passed_mode != BLKmode)
4632 {
4633 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4634 offset_ptr->constant
4635 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4636 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4637 - GET_MODE_SIZE (passed_mode));
4638 }
4639 else
4640 {
4641 if (TREE_CODE (sizetree) != INTEGER_CST
4642 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4643 {
4644 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4645 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4646 /* Add it in. */
4647 ADD_PARM_SIZE (*offset_ptr, s2);
4648 SUB_PARM_SIZE (*offset_ptr, sizetree);
4649 }
4650 }
4651}
51723711 4652#endif
6f086dfc
RS
4653
4654static tree
4655round_down (value, divisor)
4656 tree value;
4657 int divisor;
4658{
4659 return size_binop (MULT_EXPR,
4660 size_binop (FLOOR_DIV_EXPR, value, size_int (divisor)),
4661 size_int (divisor));
4662}
4663\f
4664/* Walk the tree of blocks describing the binding levels within a function
4665 and warn about uninitialized variables.
4666 This is done after calling flow_analysis and before global_alloc
4667 clobbers the pseudo-regs to hard regs. */
4668
4669void
4670uninitialized_vars_warning (block)
4671 tree block;
4672{
4673 register tree decl, sub;
4674 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
4675 {
4676 if (TREE_CODE (decl) == VAR_DECL
4677 /* These warnings are unreliable for and aggregates
4678 because assigning the fields one by one can fail to convince
4679 flow.c that the entire aggregate was initialized.
4680 Unions are troublesome because members may be shorter. */
05e3bdb9 4681 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
6f086dfc
RS
4682 && DECL_RTL (decl) != 0
4683 && GET_CODE (DECL_RTL (decl)) == REG
4684 && regno_uninitialized (REGNO (DECL_RTL (decl))))
4685 warning_with_decl (decl,
3c8cd8bd 4686 "`%s' might be used uninitialized in this function");
6f086dfc
RS
4687 if (TREE_CODE (decl) == VAR_DECL
4688 && DECL_RTL (decl) != 0
4689 && GET_CODE (DECL_RTL (decl)) == REG
4690 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
4691 warning_with_decl (decl,
3c8cd8bd 4692 "variable `%s' might be clobbered by `longjmp' or `vfork'");
6f086dfc
RS
4693 }
4694 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
4695 uninitialized_vars_warning (sub);
4696}
4697
4698/* Do the appropriate part of uninitialized_vars_warning
4699 but for arguments instead of local variables. */
4700
4701void
0cd6ef35 4702setjmp_args_warning ()
6f086dfc
RS
4703{
4704 register tree decl;
4705 for (decl = DECL_ARGUMENTS (current_function_decl);
4706 decl; decl = TREE_CHAIN (decl))
4707 if (DECL_RTL (decl) != 0
4708 && GET_CODE (DECL_RTL (decl)) == REG
4709 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3c8cd8bd 4710 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
6f086dfc
RS
4711}
4712
4713/* If this function call setjmp, put all vars into the stack
4714 unless they were declared `register'. */
4715
4716void
4717setjmp_protect (block)
4718 tree block;
4719{
4720 register tree decl, sub;
4721 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
4722 if ((TREE_CODE (decl) == VAR_DECL
4723 || TREE_CODE (decl) == PARM_DECL)
4724 && DECL_RTL (decl) != 0
e9a25f70
JL
4725 && (GET_CODE (DECL_RTL (decl)) == REG
4726 || (GET_CODE (DECL_RTL (decl)) == MEM
4727 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
b335c2cc
TW
4728 /* If this variable came from an inline function, it must be
4729 that it's life doesn't overlap the setjmp. If there was a
4730 setjmp in the function, it would already be in memory. We
4731 must exclude such variable because their DECL_RTL might be
4732 set to strange things such as virtual_stack_vars_rtx. */
4733 && ! DECL_FROM_INLINE (decl)
6f086dfc
RS
4734 && (
4735#ifdef NON_SAVING_SETJMP
4736 /* If longjmp doesn't restore the registers,
4737 don't put anything in them. */
4738 NON_SAVING_SETJMP
4739 ||
4740#endif
a82ad570 4741 ! DECL_REGISTER (decl)))
6f086dfc
RS
4742 put_var_into_stack (decl);
4743 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
4744 setjmp_protect (sub);
4745}
4746\f
4747/* Like the previous function, but for args instead of local variables. */
4748
4749void
4750setjmp_protect_args ()
4751{
29a82058 4752 register tree decl;
6f086dfc
RS
4753 for (decl = DECL_ARGUMENTS (current_function_decl);
4754 decl; decl = TREE_CHAIN (decl))
4755 if ((TREE_CODE (decl) == VAR_DECL
4756 || TREE_CODE (decl) == PARM_DECL)
4757 && DECL_RTL (decl) != 0
e9a25f70
JL
4758 && (GET_CODE (DECL_RTL (decl)) == REG
4759 || (GET_CODE (DECL_RTL (decl)) == MEM
4760 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
6f086dfc
RS
4761 && (
4762 /* If longjmp doesn't restore the registers,
4763 don't put anything in them. */
4764#ifdef NON_SAVING_SETJMP
4765 NON_SAVING_SETJMP
4766 ||
4767#endif
a82ad570 4768 ! DECL_REGISTER (decl)))
6f086dfc
RS
4769 put_var_into_stack (decl);
4770}
4771\f
4772/* Return the context-pointer register corresponding to DECL,
4773 or 0 if it does not need one. */
4774
4775rtx
4776lookup_static_chain (decl)
4777 tree decl;
4778{
b001a02f
PB
4779 tree context = decl_function_context (decl);
4780 tree link;
7ad8c4bf 4781
38ee6ed9
JM
4782 if (context == 0
4783 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
7ad8c4bf 4784 return 0;
38ee6ed9 4785
6f086dfc
RS
4786 /* We treat inline_function_decl as an alias for the current function
4787 because that is the inline function whose vars, types, etc.
4788 are being merged into the current function.
4789 See expand_inline_function. */
4790 if (context == current_function_decl || context == inline_function_decl)
4791 return virtual_stack_vars_rtx;
4792
4793 for (link = context_display; link; link = TREE_CHAIN (link))
4794 if (TREE_PURPOSE (link) == context)
4795 return RTL_EXPR_RTL (TREE_VALUE (link));
4796
4797 abort ();
4798}
4799\f
4800/* Convert a stack slot address ADDR for variable VAR
4801 (from a containing function)
4802 into an address valid in this function (using a static chain). */
4803
4804rtx
4805fix_lexical_addr (addr, var)
4806 rtx addr;
4807 tree var;
4808{
4809 rtx basereg;
4810 int displacement;
4811 tree context = decl_function_context (var);
4812 struct function *fp;
4813 rtx base = 0;
4814
4815 /* If this is the present function, we need not do anything. */
4816 if (context == current_function_decl || context == inline_function_decl)
4817 return addr;
4818
4819 for (fp = outer_function_chain; fp; fp = fp->next)
4820 if (fp->decl == context)
4821 break;
4822
4823 if (fp == 0)
4824 abort ();
4825
e9a25f70
JL
4826 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
4827 addr = XEXP (XEXP (addr, 0), 0);
4828
6f086dfc
RS
4829 /* Decode given address as base reg plus displacement. */
4830 if (GET_CODE (addr) == REG)
4831 basereg = addr, displacement = 0;
4832 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
4833 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
4834 else
4835 abort ();
4836
4837 /* We accept vars reached via the containing function's
4838 incoming arg pointer and via its stack variables pointer. */
4839 if (basereg == fp->internal_arg_pointer)
4840 {
4841 /* If reached via arg pointer, get the arg pointer value
4842 out of that function's stack frame.
4843
4844 There are two cases: If a separate ap is needed, allocate a
4845 slot in the outer function for it and dereference it that way.
4846 This is correct even if the real ap is actually a pseudo.
4847 Otherwise, just adjust the offset from the frame pointer to
4848 compensate. */
4849
4850#ifdef NEED_SEPARATE_AP
4851 rtx addr;
4852
4853 if (fp->arg_pointer_save_area == 0)
4854 fp->arg_pointer_save_area
4855 = assign_outer_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
4856
4857 addr = fix_lexical_addr (XEXP (fp->arg_pointer_save_area, 0), var);
4858 addr = memory_address (Pmode, addr);
4859
38a448ca 4860 base = copy_to_reg (gen_rtx_MEM (Pmode, addr));
6f086dfc
RS
4861#else
4862 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
86f8eff3 4863 base = lookup_static_chain (var);
6f086dfc
RS
4864#endif
4865 }
4866
4867 else if (basereg == virtual_stack_vars_rtx)
4868 {
4869 /* This is the same code as lookup_static_chain, duplicated here to
4870 avoid an extra call to decl_function_context. */
4871 tree link;
4872
4873 for (link = context_display; link; link = TREE_CHAIN (link))
4874 if (TREE_PURPOSE (link) == context)
4875 {
4876 base = RTL_EXPR_RTL (TREE_VALUE (link));
4877 break;
4878 }
4879 }
4880
4881 if (base == 0)
4882 abort ();
4883
4884 /* Use same offset, relative to appropriate static chain or argument
4885 pointer. */
4886 return plus_constant (base, displacement);
4887}
4888\f
4889/* Return the address of the trampoline for entering nested fn FUNCTION.
4890 If necessary, allocate a trampoline (in the stack frame)
4891 and emit rtl to initialize its contents (at entry to this function). */
4892
4893rtx
4894trampoline_address (function)
4895 tree function;
4896{
4897 tree link;
4898 tree rtlexp;
4899 rtx tramp;
4900 struct function *fp;
4901 tree fn_context;
4902
4903 /* Find an existing trampoline and return it. */
4904 for (link = trampoline_list; link; link = TREE_CHAIN (link))
4905 if (TREE_PURPOSE (link) == function)
e87ee2a9
RK
4906 return
4907 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
4908
6f086dfc
RS
4909 for (fp = outer_function_chain; fp; fp = fp->next)
4910 for (link = fp->trampoline_list; link; link = TREE_CHAIN (link))
4911 if (TREE_PURPOSE (link) == function)
4912 {
4913 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
4914 function);
4915 return round_trampoline_addr (tramp);
4916 }
4917
4918 /* None exists; we must make one. */
4919
4920 /* Find the `struct function' for the function containing FUNCTION. */
4921 fp = 0;
4922 fn_context = decl_function_context (function);
4ac74fb8
RK
4923 if (fn_context != current_function_decl
4924 && fn_context != inline_function_decl)
6f086dfc
RS
4925 for (fp = outer_function_chain; fp; fp = fp->next)
4926 if (fp->decl == fn_context)
4927 break;
4928
4929 /* Allocate run-time space for this trampoline
4930 (usually in the defining function's stack frame). */
4931#ifdef ALLOCATE_TRAMPOLINE
4932 tramp = ALLOCATE_TRAMPOLINE (fp);
4933#else
4934 /* If rounding needed, allocate extra space
4935 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
4936#ifdef TRAMPOLINE_ALIGNMENT
b02ab63a
RK
4937#define TRAMPOLINE_REAL_SIZE \
4938 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
6f086dfc
RS
4939#else
4940#define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
4941#endif
4942 if (fp != 0)
4943 tramp = assign_outer_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0, fp);
4944 else
4945 tramp = assign_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0);
4946#endif
4947
4948 /* Record the trampoline for reuse and note it for later initialization
4949 by expand_function_end. */
4950 if (fp != 0)
4951 {
28498644
RK
4952 push_obstacks (fp->function_maybepermanent_obstack,
4953 fp->function_maybepermanent_obstack);
6f086dfc
RS
4954 rtlexp = make_node (RTL_EXPR);
4955 RTL_EXPR_RTL (rtlexp) = tramp;
4956 fp->trampoline_list = tree_cons (function, rtlexp, fp->trampoline_list);
4957 pop_obstacks ();
4958 }
4959 else
4960 {
4961 /* Make the RTL_EXPR node temporary, not momentary, so that the
4962 trampoline_list doesn't become garbage. */
4963 int momentary = suspend_momentary ();
4964 rtlexp = make_node (RTL_EXPR);
4965 resume_momentary (momentary);
4966
4967 RTL_EXPR_RTL (rtlexp) = tramp;
4968 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
4969 }
4970
4971 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
4972 return round_trampoline_addr (tramp);
4973}
4974
4975/* Given a trampoline address,
4976 round it to multiple of TRAMPOLINE_ALIGNMENT. */
4977
4978static rtx
4979round_trampoline_addr (tramp)
4980 rtx tramp;
4981{
4982#ifdef TRAMPOLINE_ALIGNMENT
4983 /* Round address up to desired boundary. */
4984 rtx temp = gen_reg_rtx (Pmode);
4985 temp = expand_binop (Pmode, add_optab, tramp,
b02ab63a 4986 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
6f086dfc
RS
4987 temp, 0, OPTAB_LIB_WIDEN);
4988 tramp = expand_binop (Pmode, and_optab, temp,
b02ab63a 4989 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
6f086dfc
RS
4990 temp, 0, OPTAB_LIB_WIDEN);
4991#endif
4992 return tramp;
4993}
4994\f
467456d0
RS
4995/* The functions identify_blocks and reorder_blocks provide a way to
4996 reorder the tree of BLOCK nodes, for optimizers that reshuffle or
4997 duplicate portions of the RTL code. Call identify_blocks before
4998 changing the RTL, and call reorder_blocks after. */
4999
b2a59b15
MS
5000/* Put all this function's BLOCK nodes including those that are chained
5001 onto the first block into a vector, and return it.
467456d0
RS
5002 Also store in each NOTE for the beginning or end of a block
5003 the index of that block in the vector.
b2a59b15 5004 The arguments are BLOCK, the chain of top-level blocks of the function,
467456d0
RS
5005 and INSNS, the insn chain of the function. */
5006
5007tree *
b2a59b15
MS
5008identify_blocks (block, insns)
5009 tree block;
467456d0
RS
5010 rtx insns;
5011{
fc289cd1
JW
5012 int n_blocks;
5013 tree *block_vector;
5014 int *block_stack;
467456d0 5015 int depth = 0;
b2a59b15
MS
5016 int next_block_number = 1;
5017 int current_block_number = 1;
467456d0
RS
5018 rtx insn;
5019
b2a59b15 5020 if (block == 0)
fc289cd1
JW
5021 return 0;
5022
b2a59b15 5023 n_blocks = all_blocks (block, 0);
fc289cd1
JW
5024 block_vector = (tree *) xmalloc (n_blocks * sizeof (tree));
5025 block_stack = (int *) alloca (n_blocks * sizeof (int));
5026
b2a59b15 5027 all_blocks (block, block_vector);
467456d0
RS
5028
5029 for (insn = insns; insn; insn = NEXT_INSN (insn))
5030 if (GET_CODE (insn) == NOTE)
5031 {
5032 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5033 {
5034 block_stack[depth++] = current_block_number;
5035 current_block_number = next_block_number;
1b2ac438 5036 NOTE_BLOCK_NUMBER (insn) = next_block_number++;
467456d0
RS
5037 }
5038 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5039 {
5040 current_block_number = block_stack[--depth];
1b2ac438 5041 NOTE_BLOCK_NUMBER (insn) = current_block_number;
467456d0
RS
5042 }
5043 }
5044
b2a59b15
MS
5045 if (n_blocks != next_block_number)
5046 abort ();
5047
467456d0
RS
5048 return block_vector;
5049}
5050
5051/* Given BLOCK_VECTOR which was returned by identify_blocks,
5052 and a revised instruction chain, rebuild the tree structure
5053 of BLOCK nodes to correspond to the new order of RTL.
fc289cd1 5054 The new block tree is inserted below TOP_BLOCK.
467456d0
RS
5055 Returns the current top-level block. */
5056
5057tree
b2a59b15 5058reorder_blocks (block_vector, block, insns)
467456d0 5059 tree *block_vector;
b2a59b15 5060 tree block;
467456d0
RS
5061 rtx insns;
5062{
b2a59b15 5063 tree current_block = block;
467456d0
RS
5064 rtx insn;
5065
fc289cd1 5066 if (block_vector == 0)
b2a59b15 5067 return block;
fc289cd1 5068
b2a59b15 5069 /* Prune the old trees away, so that it doesn't get in the way. */
fc289cd1 5070 BLOCK_SUBBLOCKS (current_block) = 0;
b2a59b15 5071 BLOCK_CHAIN (current_block) = 0;
fc289cd1 5072
467456d0
RS
5073 for (insn = insns; insn; insn = NEXT_INSN (insn))
5074 if (GET_CODE (insn) == NOTE)
5075 {
5076 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5077 {
5078 tree block = block_vector[NOTE_BLOCK_NUMBER (insn)];
5079 /* If we have seen this block before, copy it. */
5080 if (TREE_ASM_WRITTEN (block))
5081 block = copy_node (block);
fc289cd1 5082 BLOCK_SUBBLOCKS (block) = 0;
467456d0
RS
5083 TREE_ASM_WRITTEN (block) = 1;
5084 BLOCK_SUPERCONTEXT (block) = current_block;
5085 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5086 BLOCK_SUBBLOCKS (current_block) = block;
5087 current_block = block;
1b2ac438 5088 NOTE_SOURCE_FILE (insn) = 0;
467456d0
RS
5089 }
5090 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5091 {
5092 BLOCK_SUBBLOCKS (current_block)
5093 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5094 current_block = BLOCK_SUPERCONTEXT (current_block);
1b2ac438 5095 NOTE_SOURCE_FILE (insn) = 0;
467456d0
RS
5096 }
5097 }
5098
b2a59b15
MS
5099 BLOCK_SUBBLOCKS (current_block)
5100 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
467456d0
RS
5101 return current_block;
5102}
5103
5104/* Reverse the order of elements in the chain T of blocks,
5105 and return the new head of the chain (old last element). */
5106
5107static tree
5108blocks_nreverse (t)
5109 tree t;
5110{
5111 register tree prev = 0, decl, next;
5112 for (decl = t; decl; decl = next)
5113 {
5114 next = BLOCK_CHAIN (decl);
5115 BLOCK_CHAIN (decl) = prev;
5116 prev = decl;
5117 }
5118 return prev;
5119}
5120
b2a59b15
MS
5121/* Count the subblocks of the list starting with BLOCK, and list them
5122 all into the vector VECTOR. Also clear TREE_ASM_WRITTEN in all
5123 blocks. */
467456d0
RS
5124
5125static int
5126all_blocks (block, vector)
5127 tree block;
5128 tree *vector;
5129{
b2a59b15
MS
5130 int n_blocks = 0;
5131
5132 while (block)
5133 {
5134 TREE_ASM_WRITTEN (block) = 0;
5135
5136 /* Record this block. */
5137 if (vector)
5138 vector[n_blocks] = block;
5139
5140 ++n_blocks;
5141
5142 /* Record the subblocks, and their subblocks... */
5143 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5144 vector ? vector + n_blocks : 0);
5145 block = BLOCK_CHAIN (block);
5146 }
467456d0
RS
5147
5148 return n_blocks;
5149}
5150\f
6f086dfc
RS
5151/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5152 and initialize static variables for generating RTL for the statements
5153 of the function. */
5154
5155void
5156init_function_start (subr, filename, line)
5157 tree subr;
5158 char *filename;
5159 int line;
5160{
6f086dfc
RS
5161 init_stmt_for_function ();
5162
5163 cse_not_expected = ! optimize;
5164
5165 /* Caller save not needed yet. */
5166 caller_save_needed = 0;
5167
5168 /* No stack slots have been made yet. */
5169 stack_slot_list = 0;
5170
5171 /* There is no stack slot for handling nonlocal gotos. */
5172 nonlocal_goto_handler_slot = 0;
5173 nonlocal_goto_stack_level = 0;
5174
5175 /* No labels have been declared for nonlocal use. */
5176 nonlocal_labels = 0;
5177
5178 /* No function calls so far in this function. */
5179 function_call_count = 0;
5180
5181 /* No parm regs have been allocated.
5182 (This is important for output_inline_function.) */
5183 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5184
5185 /* Initialize the RTL mechanism. */
5186 init_emit ();
5187
5188 /* Initialize the queue of pending postincrement and postdecrements,
5189 and some other info in expr.c. */
5190 init_expr ();
5191
5192 /* We haven't done register allocation yet. */
5193 reg_renumber = 0;
5194
5195 init_const_rtx_hash_table ();
5196
a1d7ffe3 5197 current_function_name = (*decl_printable_name) (subr, 2);
6f086dfc
RS
5198
5199 /* Nonzero if this is a nested function that uses a static chain. */
5200
5201 current_function_needs_context
38ee6ed9
JM
5202 = (decl_function_context (current_function_decl) != 0
5203 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6f086dfc
RS
5204
5205 /* Set if a call to setjmp is seen. */
5206 current_function_calls_setjmp = 0;
5207
5208 /* Set if a call to longjmp is seen. */
5209 current_function_calls_longjmp = 0;
5210
5211 current_function_calls_alloca = 0;
5212 current_function_has_nonlocal_label = 0;
8634413a 5213 current_function_has_nonlocal_goto = 0;
6f086dfc 5214 current_function_contains_functions = 0;
173cd503 5215 current_function_is_thunk = 0;
6f086dfc
RS
5216
5217 current_function_returns_pcc_struct = 0;
5218 current_function_returns_struct = 0;
5219 current_function_epilogue_delay_list = 0;
5220 current_function_uses_const_pool = 0;
5221 current_function_uses_pic_offset_table = 0;
5222
5223 /* We have not yet needed to make a label to jump to for tail-recursion. */
5224 tail_recursion_label = 0;
5225
5226 /* We haven't had a need to make a save area for ap yet. */
5227
5228 arg_pointer_save_area = 0;
5229
5230 /* No stack slots allocated yet. */
5231 frame_offset = 0;
5232
5233 /* No SAVE_EXPRs in this function yet. */
5234 save_expr_regs = 0;
5235
5236 /* No RTL_EXPRs in this function yet. */
5237 rtl_expr_chain = 0;
5238
bc0ebdf9
RK
5239 /* Set up to allocate temporaries. */
5240 init_temp_slots ();
6f086dfc
RS
5241
5242 /* Within function body, compute a type's size as soon it is laid out. */
5243 immediate_size_expand++;
5244
d9a98e1a
RK
5245 /* We haven't made any trampolines for this function yet. */
5246 trampoline_list = 0;
5247
6f086dfc
RS
5248 init_pending_stack_adjust ();
5249 inhibit_defer_pop = 0;
5250
5251 current_function_outgoing_args_size = 0;
5252
6f086dfc
RS
5253 /* Prevent ever trying to delete the first instruction of a function.
5254 Also tell final how to output a linenum before the function prologue. */
5255 emit_line_note (filename, line);
5256
5257 /* Make sure first insn is a note even if we don't want linenums.
5258 This makes sure the first insn will never be deleted.
5259 Also, final expects a note to appear there. */
5f4f0e22 5260 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6f086dfc
RS
5261
5262 /* Set flags used by final.c. */
5263 if (aggregate_value_p (DECL_RESULT (subr)))
5264 {
5265#ifdef PCC_STATIC_STRUCT_RETURN
1b8297c1 5266 current_function_returns_pcc_struct = 1;
6f086dfc 5267#endif
1b8297c1 5268 current_function_returns_struct = 1;
6f086dfc
RS
5269 }
5270
5271 /* Warn if this value is an aggregate type,
5272 regardless of which calling convention we are using for it. */
5273 if (warn_aggregate_return
05e3bdb9 5274 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6f086dfc
RS
5275 warning ("function returns an aggregate");
5276
5277 current_function_returns_pointer
8eda074c 5278 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6f086dfc
RS
5279
5280 /* Indicate that we need to distinguish between the return value of the
5281 present function and the return value of a function being called. */
5282 rtx_equal_function_value_matters = 1;
5283
5284 /* Indicate that we have not instantiated virtual registers yet. */
5285 virtuals_instantiated = 0;
5286
5287 /* Indicate we have no need of a frame pointer yet. */
5288 frame_pointer_needed = 0;
5289
ebb904cb 5290 /* By default assume not varargs or stdarg. */
6f086dfc 5291 current_function_varargs = 0;
ebb904cb 5292 current_function_stdarg = 0;
6f086dfc
RS
5293}
5294
5295/* Indicate that the current function uses extra args
5296 not explicitly mentioned in the argument list in any fashion. */
5297
5298void
5299mark_varargs ()
5300{
5301 current_function_varargs = 1;
5302}
5303
5304/* Expand a call to __main at the beginning of a possible main function. */
5305
e2fd1d94
JM
5306#if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
5307#undef HAS_INIT_SECTION
5308#define HAS_INIT_SECTION
5309#endif
5310
6f086dfc
RS
5311void
5312expand_main_function ()
5313{
e2fd1d94 5314#if !defined (HAS_INIT_SECTION)
b93a436e
JL
5315 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
5316 VOIDmode, 0);
e2fd1d94 5317#endif /* not HAS_INIT_SECTION */
6f086dfc
RS
5318}
5319\f
c20bf1f3
JB
5320extern struct obstack permanent_obstack;
5321
6f086dfc
RS
5322/* Start the RTL for a new function, and set variables used for
5323 emitting RTL.
5324 SUBR is the FUNCTION_DECL node.
5325 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5326 the function's parameters, which must be run at any return statement. */
5327
5328void
5329expand_function_start (subr, parms_have_cleanups)
5330 tree subr;
5331 int parms_have_cleanups;
5332{
5333 register int i;
5334 tree tem;
5335 rtx last_ptr;
5336
5337 /* Make sure volatile mem refs aren't considered
5338 valid operands of arithmetic insns. */
5339 init_recog_no_volatile ();
5340
5341 /* If function gets a static chain arg, store it in the stack frame.
5342 Do this first, so it gets the first stack slot offset. */
5343 if (current_function_needs_context)
3e2481e9
JW
5344 {
5345 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
f0c51a1e 5346
f0c51a1e
RK
5347 /* Delay copying static chain if it is not a register to avoid
5348 conflicts with regs used for parameters. */
f95182a4
ILT
5349 if (! SMALL_REGISTER_CLASSES
5350 || GET_CODE (static_chain_incoming_rtx) == REG)
f0c51a1e 5351 emit_move_insn (last_ptr, static_chain_incoming_rtx);
3e2481e9 5352 }
6f086dfc
RS
5353
5354 /* If the parameters of this function need cleaning up, get a label
5355 for the beginning of the code which executes those cleanups. This must
5356 be done before doing anything with return_label. */
5357 if (parms_have_cleanups)
5358 cleanup_label = gen_label_rtx ();
5359 else
5360 cleanup_label = 0;
5361
5362 /* Make the label for return statements to jump to, if this machine
5363 does not have a one-instruction return and uses an epilogue,
5364 or if it returns a structure, or if it has parm cleanups. */
5365#ifdef HAVE_return
5366 if (cleanup_label == 0 && HAVE_return
5367 && ! current_function_returns_pcc_struct
5368 && ! (current_function_returns_struct && ! optimize))
5369 return_label = 0;
5370 else
5371 return_label = gen_label_rtx ();
5372#else
5373 return_label = gen_label_rtx ();
5374#endif
5375
5376 /* Initialize rtx used to return the value. */
5377 /* Do this before assign_parms so that we copy the struct value address
5378 before any library calls that assign parms might generate. */
5379
5380 /* Decide whether to return the value in memory or in a register. */
5381 if (aggregate_value_p (DECL_RESULT (subr)))
5382 {
5383 /* Returning something that won't go in a register. */
4acc00bf 5384 register rtx value_address = 0;
6f086dfc
RS
5385
5386#ifdef PCC_STATIC_STRUCT_RETURN
5387 if (current_function_returns_pcc_struct)
5388 {
5389 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
5390 value_address = assemble_static_space (size);
5391 }
5392 else
5393#endif
5394 {
5395 /* Expect to be passed the address of a place to store the value.
5396 If it is passed as an argument, assign_parms will take care of
5397 it. */
5398 if (struct_value_incoming_rtx)
5399 {
5400 value_address = gen_reg_rtx (Pmode);
5401 emit_move_insn (value_address, struct_value_incoming_rtx);
5402 }
5403 }
5404 if (value_address)
ccdecf58
RK
5405 {
5406 DECL_RTL (DECL_RESULT (subr))
38a448ca 5407 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
ccdecf58 5408 MEM_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)))
05e3bdb9 5409 = AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
ccdecf58 5410 }
6f086dfc
RS
5411 }
5412 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
5413 /* If return mode is void, this decl rtl should not be used. */
5414 DECL_RTL (DECL_RESULT (subr)) = 0;
5415 else if (parms_have_cleanups)
a53e14c0
RK
5416 {
5417 /* If function will end with cleanup code for parms,
5418 compute the return values into a pseudo reg,
5419 which we will copy into the true return register
5420 after the cleanups are done. */
5421
5422 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
a5a52dbc 5423
a53e14c0
RK
5424#ifdef PROMOTE_FUNCTION_RETURN
5425 tree type = TREE_TYPE (DECL_RESULT (subr));
5426 int unsignedp = TREE_UNSIGNED (type);
5427
a5a52dbc 5428 mode = promote_mode (type, mode, &unsignedp, 1);
a53e14c0
RK
5429#endif
5430
5431 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
5432 }
6f086dfc
RS
5433 else
5434 /* Scalar, returned in a register. */
5435 {
5436#ifdef FUNCTION_OUTGOING_VALUE
5437 DECL_RTL (DECL_RESULT (subr))
5438 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
5439#else
5440 DECL_RTL (DECL_RESULT (subr))
5441 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
5442#endif
5443
5444 /* Mark this reg as the function's return value. */
5445 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
5446 {
5447 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
5448 /* Needed because we may need to move this to memory
5449 in case it's a named return value whose address is taken. */
a82ad570 5450 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6f086dfc
RS
5451 }
5452 }
5453
5454 /* Initialize rtx for parameters and local variables.
5455 In some cases this requires emitting insns. */
5456
5457 assign_parms (subr, 0);
5458
f0c51a1e
RK
5459 /* Copy the static chain now if it wasn't a register. The delay is to
5460 avoid conflicts with the parameter passing registers. */
5461
f95182a4 5462 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
f0c51a1e
RK
5463 if (GET_CODE (static_chain_incoming_rtx) != REG)
5464 emit_move_insn (last_ptr, static_chain_incoming_rtx);
f0c51a1e 5465
6f086dfc
RS
5466 /* The following was moved from init_function_start.
5467 The move is supposed to make sdb output more accurate. */
5468 /* Indicate the beginning of the function body,
5469 as opposed to parm setup. */
5f4f0e22 5470 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6f086dfc
RS
5471
5472 /* If doing stupid allocation, mark parms as born here. */
5473
5474 if (GET_CODE (get_last_insn ()) != NOTE)
5f4f0e22 5475 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6f086dfc
RS
5476 parm_birth_insn = get_last_insn ();
5477
5478 if (obey_regdecls)
5479 {
5480 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
5481 use_variable (regno_reg_rtx[i]);
5482
5483 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
5484 use_variable (current_function_internal_arg_pointer);
5485 }
5486
6d7306f7
JM
5487 context_display = 0;
5488 if (current_function_needs_context)
ac9e20f0 5489 {
6d7306f7
JM
5490 /* Fetch static chain values for containing functions. */
5491 tem = decl_function_context (current_function_decl);
5492 /* If not doing stupid register allocation copy the static chain
5493 pointer into a pseudo. If we have small register classes, copy
5494 the value from memory if static_chain_incoming_rtx is a REG. If
5495 we do stupid register allocation, we use the stack address
5496 generated above. */
5497 if (tem && ! obey_regdecls)
5498 {
6d7306f7
JM
5499 /* If the static chain originally came in a register, put it back
5500 there, then move it out in the next insn. The reason for
5501 this peculiar code is to satisfy function integration. */
f95182a4
ILT
5502 if (SMALL_REGISTER_CLASSES
5503 && GET_CODE (static_chain_incoming_rtx) == REG)
6d7306f7 5504 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6d7306f7
JM
5505 last_ptr = copy_to_reg (static_chain_incoming_rtx);
5506 }
ac9e20f0 5507
6d7306f7
JM
5508 while (tem)
5509 {
5510 tree rtlexp = make_node (RTL_EXPR);
6f086dfc 5511
6d7306f7
JM
5512 RTL_EXPR_RTL (rtlexp) = last_ptr;
5513 context_display = tree_cons (tem, rtlexp, context_display);
5514 tem = decl_function_context (tem);
5515 if (tem == 0)
5516 break;
5517 /* Chain thru stack frames, assuming pointer to next lexical frame
5518 is found at the place we always store it. */
6f086dfc 5519#ifdef FRAME_GROWS_DOWNWARD
6d7306f7 5520 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
6f086dfc 5521#endif
38a448ca
RH
5522 last_ptr = copy_to_reg (gen_rtx_MEM (Pmode,
5523 memory_address (Pmode, last_ptr)));
6d7306f7
JM
5524
5525 /* If we are not optimizing, ensure that we know that this
5526 piece of context is live over the entire function. */
5527 if (! optimize)
38a448ca
RH
5528 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
5529 save_expr_regs);
6d7306f7 5530 }
6f086dfc
RS
5531 }
5532
5533 /* After the display initializations is where the tail-recursion label
5534 should go, if we end up needing one. Ensure we have a NOTE here
5535 since some things (like trampolines) get placed before this. */
5f4f0e22 5536 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6f086dfc
RS
5537
5538 /* Evaluate now the sizes of any types declared among the arguments. */
5539 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
7b05e286 5540 {
86fa911a
RK
5541 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
5542 EXPAND_MEMORY_USE_BAD);
7b05e286
JW
5543 /* Flush the queue in case this parameter declaration has
5544 side-effects. */
5545 emit_queue ();
5546 }
6f086dfc
RS
5547
5548 /* Make sure there is a line number after the function entry setup code. */
5549 force_next_line_note ();
5550}
5551\f
5552/* Generate RTL for the end of the current function.
980697fd 5553 FILENAME and LINE are the current position in the source file.
6f086dfc 5554
980697fd 5555 It is up to language-specific callers to do cleanups for parameters--
1be07046 5556 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6f086dfc
RS
5557
5558void
1be07046 5559expand_function_end (filename, line, end_bindings)
6f086dfc
RS
5560 char *filename;
5561 int line;
1be07046 5562 int end_bindings;
6f086dfc
RS
5563{
5564 register int i;
5565 tree link;
5566
1e2414db 5567#ifdef TRAMPOLINE_TEMPLATE
6f086dfc 5568 static rtx initial_trampoline;
1e2414db 5569#endif
6f086dfc
RS
5570
5571#ifdef NON_SAVING_SETJMP
5572 /* Don't put any variables in registers if we call setjmp
5573 on a machine that fails to restore the registers. */
5574 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
5575 {
b88a3142
RK
5576 if (DECL_INITIAL (current_function_decl) != error_mark_node)
5577 setjmp_protect (DECL_INITIAL (current_function_decl));
5578
6f086dfc
RS
5579 setjmp_protect_args ();
5580 }
5581#endif
5582
5583 /* Save the argument pointer if a save area was made for it. */
5584 if (arg_pointer_save_area)
5585 {
5586 rtx x = gen_move_insn (arg_pointer_save_area, virtual_incoming_args_rtx);
5587 emit_insn_before (x, tail_recursion_reentry);
5588 }
5589
5590 /* Initialize any trampolines required by this function. */
5591 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5592 {
5593 tree function = TREE_PURPOSE (link);
5594 rtx context = lookup_static_chain (function);
5595 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
1e2414db 5596 rtx blktramp;
6f086dfc
RS
5597 rtx seq;
5598
1e2414db 5599#ifdef TRAMPOLINE_TEMPLATE
6f086dfc
RS
5600 /* First make sure this compilation has a template for
5601 initializing trampolines. */
5602 if (initial_trampoline == 0)
86f8eff3
RK
5603 {
5604 end_temporary_allocation ();
5605 initial_trampoline
38a448ca 5606 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
86f8eff3
RK
5607 resume_temporary_allocation ();
5608 }
1e2414db 5609#endif
6f086dfc
RS
5610
5611 /* Generate insns to initialize the trampoline. */
5612 start_sequence ();
1e2414db
RK
5613 tramp = round_trampoline_addr (XEXP (tramp, 0));
5614#ifdef TRAMPOLINE_TEMPLATE
5615 blktramp = change_address (initial_trampoline, BLKmode, tramp);
5616 emit_block_move (blktramp, initial_trampoline,
5617 GEN_INT (TRAMPOLINE_SIZE),
189cc377 5618 TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
1e2414db
RK
5619#endif
5620 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6f086dfc
RS
5621 seq = get_insns ();
5622 end_sequence ();
5623
5624 /* Put those insns at entry to the containing function (this one). */
5625 emit_insns_before (seq, tail_recursion_reentry);
5626 }
6f086dfc 5627
11044f66
RK
5628 /* If we are doing stack checking and this function makes calls,
5629 do a stack probe at the start of the function to ensure we have enough
5630 space for another stack frame. */
5631 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
5632 {
5633 rtx insn, seq;
5634
5635 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5636 if (GET_CODE (insn) == CALL_INSN)
5637 {
5638 start_sequence ();
5639 probe_stack_range (STACK_CHECK_PROTECT,
5640 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
5641 seq = get_insns ();
5642 end_sequence ();
5643 emit_insns_before (seq, tail_recursion_reentry);
5644 break;
5645 }
5646 }
5647
db8717d9
RK
5648 /* Warn about unused parms if extra warnings were specified. */
5649 if (warn_unused && extra_warnings)
6f086dfc 5650 {
db8717d9 5651 tree decl;
6f086dfc
RS
5652
5653 for (decl = DECL_ARGUMENTS (current_function_decl);
5654 decl; decl = TREE_CHAIN (decl))
497dc802
JM
5655 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5656 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6f086dfc
RS
5657 warning_with_decl (decl, "unused parameter `%s'");
5658 }
6f086dfc
RS
5659
5660 /* Delete handlers for nonlocal gotos if nothing uses them. */
5661 if (nonlocal_goto_handler_slot != 0 && !current_function_has_nonlocal_label)
5662 delete_handlers ();
5663
5664 /* End any sequences that failed to be closed due to syntax errors. */
5665 while (in_sequence_p ())
5f4f0e22 5666 end_sequence ();
6f086dfc
RS
5667
5668 /* Outside function body, can't compute type's actual size
5669 until next function's body starts. */
5670 immediate_size_expand--;
5671
5672 /* If doing stupid register allocation,
5673 mark register parms as dying here. */
5674
5675 if (obey_regdecls)
5676 {
5677 rtx tem;
5678 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
5679 use_variable (regno_reg_rtx[i]);
5680
5681 /* Likewise for the regs of all the SAVE_EXPRs in the function. */
5682
5683 for (tem = save_expr_regs; tem; tem = XEXP (tem, 1))
5684 {
5685 use_variable (XEXP (tem, 0));
5686 use_variable_after (XEXP (tem, 0), parm_birth_insn);
5687 }
5688
5689 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
5690 use_variable (current_function_internal_arg_pointer);
5691 }
5692
5693 clear_pending_stack_adjust ();
5694 do_pending_stack_adjust ();
5695
5696 /* Mark the end of the function body.
5697 If control reaches this insn, the function can drop through
5698 without returning a value. */
5f4f0e22 5699 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6f086dfc 5700
82e415a3
DE
5701 /* Must mark the last line number note in the function, so that the test
5702 coverage code can avoid counting the last line twice. This just tells
5703 the code to ignore the immediately following line note, since there
5704 already exists a copy of this note somewhere above. This line number
5705 note is still needed for debugging though, so we can't delete it. */
5706 if (flag_test_coverage)
5707 emit_note (NULL_PTR, NOTE_REPEATED_LINE_NUMBER);
5708
6f086dfc
RS
5709 /* Output a linenumber for the end of the function.
5710 SDB depends on this. */
5711 emit_line_note_force (filename, line);
5712
5713 /* Output the label for the actual return from the function,
5714 if one is expected. This happens either because a function epilogue
5715 is used instead of a return instruction, or because a return was done
5716 with a goto in order to run local cleanups, or because of pcc-style
5717 structure returning. */
5718
5719 if (return_label)
5720 emit_label (return_label);
5721
1be07046
RS
5722 /* C++ uses this. */
5723 if (end_bindings)
5724 expand_end_bindings (0, 0, 0);
5725
e5a1e0e8
MS
5726 /* Now handle any leftover exception regions that may have been
5727 created for the parameters. */
5728 {
5729 rtx last = get_last_insn ();
5730 rtx label;
5731
5732 expand_leftover_cleanups ();
5733
5734 /* If the above emitted any code, may sure we jump around it. */
5735 if (last != get_last_insn ())
5736 {
5737 label = gen_label_rtx ();
5738 last = emit_jump_insn_after (gen_jump (label), last);
5739 last = emit_barrier_after (last);
5740 emit_label (label);
5741 }
5742 }
5743
6f086dfc
RS
5744 /* If we had calls to alloca, and this machine needs
5745 an accurate stack pointer to exit the function,
5746 insert some code to save and restore the stack pointer. */
5747#ifdef EXIT_IGNORE_STACK
5748 if (! EXIT_IGNORE_STACK)
5749#endif
5750 if (current_function_calls_alloca)
5751 {
59257ff7
RK
5752 rtx tem = 0;
5753
5754 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
5f4f0e22 5755 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6f086dfc
RS
5756 }
5757
5758 /* If scalar return value was computed in a pseudo-reg,
5759 copy that to the hard return register. */
5760 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
5761 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
5762 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
5763 >= FIRST_PSEUDO_REGISTER))
5764 {
5765 rtx real_decl_result;
5766
5767#ifdef FUNCTION_OUTGOING_VALUE
5768 real_decl_result
5769 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
5770 current_function_decl);
5771#else
5772 real_decl_result
5773 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
5774 current_function_decl);
5775#endif
5776 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
ecec4441
JW
5777 /* If this is a BLKmode structure being returned in registers, then use
5778 the mode computed in expand_return. */
5779 if (GET_MODE (real_decl_result) == BLKmode)
5780 PUT_MODE (real_decl_result,
5781 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6f086dfc
RS
5782 emit_move_insn (real_decl_result,
5783 DECL_RTL (DECL_RESULT (current_function_decl)));
38a448ca 5784 emit_insn (gen_rtx_USE (VOIDmode, real_decl_result));
f345de42
JL
5785
5786 /* The delay slot scheduler assumes that current_function_return_rtx
5787 holds the hard register containing the return value, not a temporary
5788 pseudo. */
5789 current_function_return_rtx = real_decl_result;
6f086dfc
RS
5790 }
5791
5792 /* If returning a structure, arrange to return the address of the value
5793 in a place where debuggers expect to find it.
5794
5795 If returning a structure PCC style,
5796 the caller also depends on this value.
5797 And current_function_returns_pcc_struct is not necessarily set. */
5798 if (current_function_returns_struct
5799 || current_function_returns_pcc_struct)
5800 {
5801 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
5802 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5803#ifdef FUNCTION_OUTGOING_VALUE
5804 rtx outgoing
5805 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
5806 current_function_decl);
5807#else
5808 rtx outgoing
5809 = FUNCTION_VALUE (build_pointer_type (type),
5810 current_function_decl);
5811#endif
5812
5813 /* Mark this as a function return value so integrate will delete the
5814 assignment and USE below when inlining this function. */
5815 REG_FUNCTION_VALUE_P (outgoing) = 1;
5816
5817 emit_move_insn (outgoing, value_address);
5818 use_variable (outgoing);
5819 }
5820
5821 /* Output a return insn if we are using one.
5822 Otherwise, let the rtl chain end here, to drop through
5823 into the epilogue. */
5824
5825#ifdef HAVE_return
5826 if (HAVE_return)
5827 {
5828 emit_jump_insn (gen_return ());
5829 emit_barrier ();
5830 }
5831#endif
5832
5833 /* Fix up any gotos that jumped out to the outermost
5834 binding level of the function.
5835 Must follow emitting RETURN_LABEL. */
5836
5837 /* If you have any cleanups to do at this point,
5838 and they need to create temporary variables,
5839 then you will lose. */
e15679f8 5840 expand_fixups (get_insns ());
6f086dfc 5841}
bdac5f58
TW
5842\f
5843/* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
5844
5845static int *prologue;
5846static int *epilogue;
5847
5848/* Create an array that records the INSN_UIDs of INSNS (either a sequence
5849 or a single insn). */
5850
5851static int *
5852record_insns (insns)
5853 rtx insns;
5854{
5855 int *vec;
5856
5857 if (GET_CODE (insns) == SEQUENCE)
5858 {
5859 int len = XVECLEN (insns, 0);
5860 vec = (int *) oballoc ((len + 1) * sizeof (int));
5861 vec[len] = 0;
5862 while (--len >= 0)
5863 vec[len] = INSN_UID (XVECEXP (insns, 0, len));
5864 }
5865 else
5866 {
5867 vec = (int *) oballoc (2 * sizeof (int));
5868 vec[0] = INSN_UID (insns);
5869 vec[1] = 0;
5870 }
5871 return vec;
5872}
5873
10914065 5874/* Determine how many INSN_UIDs in VEC are part of INSN. */
bdac5f58 5875
081f5e7e 5876#if defined (HAVE_prologue) || defined (HAVE_epilogue)
10914065 5877static int
bdac5f58
TW
5878contains (insn, vec)
5879 rtx insn;
5880 int *vec;
5881{
5882 register int i, j;
5883
5884 if (GET_CODE (insn) == INSN
5885 && GET_CODE (PATTERN (insn)) == SEQUENCE)
5886 {
10914065 5887 int count = 0;
bdac5f58
TW
5888 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5889 for (j = 0; vec[j]; j++)
5890 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == vec[j])
10914065
TW
5891 count++;
5892 return count;
bdac5f58
TW
5893 }
5894 else
5895 {
5896 for (j = 0; vec[j]; j++)
5897 if (INSN_UID (insn) == vec[j])
10914065 5898 return 1;
bdac5f58
TW
5899 }
5900 return 0;
5901}
081f5e7e 5902#endif /* HAVE_prologue || HAVE_epilogue */
bdac5f58 5903
9faa82d8 5904/* Generate the prologue and epilogue RTL if the machine supports it. Thread
bdac5f58
TW
5905 this into place with notes indicating where the prologue ends and where
5906 the epilogue begins. Update the basic block information when possible. */
5907
5908void
5909thread_prologue_and_epilogue_insns (f)
5910 rtx f;
5911{
5912#ifdef HAVE_prologue
5913 if (HAVE_prologue)
5914 {
29a82058 5915 rtx head, seq;
bdac5f58
TW
5916
5917 /* The first insn (a NOTE_INSN_DELETED) is followed by zero or more
5918 prologue insns and a NOTE_INSN_PROLOGUE_END. */
5919 emit_note_after (NOTE_INSN_PROLOGUE_END, f);
5920 seq = gen_prologue ();
5921 head = emit_insn_after (seq, f);
5922
5923 /* Include the new prologue insns in the first block. Ignore them
5924 if they form a basic block unto themselves. */
5925 if (basic_block_head && n_basic_blocks
5926 && GET_CODE (basic_block_head[0]) != CODE_LABEL)
5927 basic_block_head[0] = NEXT_INSN (f);
5928
5929 /* Retain a map of the prologue insns. */
5930 prologue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : head);
5931 }
5932 else
5933#endif
5934 prologue = 0;
5935
5936#ifdef HAVE_epilogue
5937 if (HAVE_epilogue)
5938 {
5939 rtx insn = get_last_insn ();
5940 rtx prev = prev_nonnote_insn (insn);
5941
5942 /* If we end with a BARRIER, we don't need an epilogue. */
5943 if (! (prev && GET_CODE (prev) == BARRIER))
5944 {
a78bdb38
JW
5945 rtx tail, seq, tem;
5946 rtx first_use = 0;
5947 rtx last_use = 0;
bdac5f58 5948
a78bdb38
JW
5949 /* The last basic block ends with a NOTE_INSN_EPILOGUE_BEG, the
5950 epilogue insns, the USE insns at the end of a function,
5951 the jump insn that returns, and then a BARRIER. */
bdac5f58 5952
a78bdb38 5953 /* Move the USE insns at the end of a function onto a list. */
bdac5f58
TW
5954 while (prev
5955 && GET_CODE (prev) == INSN
5956 && GET_CODE (PATTERN (prev)) == USE)
5957 {
a78bdb38 5958 tem = prev;
bdac5f58 5959 prev = prev_nonnote_insn (prev);
a78bdb38
JW
5960
5961 NEXT_INSN (PREV_INSN (tem)) = NEXT_INSN (tem);
5962 PREV_INSN (NEXT_INSN (tem)) = PREV_INSN (tem);
83eb3b0d
RK
5963 if (first_use)
5964 {
5965 NEXT_INSN (tem) = first_use;
5966 PREV_INSN (first_use) = tem;
5967 }
5968 first_use = tem;
5969 if (!last_use)
a78bdb38 5970 last_use = tem;
bdac5f58
TW
5971 }
5972
a78bdb38
JW
5973 emit_barrier_after (insn);
5974
bdac5f58
TW
5975 seq = gen_epilogue ();
5976 tail = emit_jump_insn_after (seq, insn);
a78bdb38
JW
5977
5978 /* Insert the USE insns immediately before the return insn, which
5979 must be the first instruction before the final barrier. */
5980 if (first_use)
5981 {
5982 tem = prev_nonnote_insn (get_last_insn ());
5983 NEXT_INSN (PREV_INSN (tem)) = first_use;
5984 PREV_INSN (first_use) = PREV_INSN (tem);
5985 PREV_INSN (tem) = last_use;
5986 NEXT_INSN (last_use) = tem;
5987 }
5988
bdac5f58
TW
5989 emit_note_after (NOTE_INSN_EPILOGUE_BEG, insn);
5990
5991 /* Include the new epilogue insns in the last block. Ignore
5992 them if they form a basic block unto themselves. */
5993 if (basic_block_end && n_basic_blocks
5994 && GET_CODE (basic_block_end[n_basic_blocks - 1]) != JUMP_INSN)
5995 basic_block_end[n_basic_blocks - 1] = tail;
5996
5997 /* Retain a map of the epilogue insns. */
5998 epilogue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : tail);
5999 return;
6000 }
6001 }
6002#endif
6003 epilogue = 0;
6004}
6005
6006/* Reposition the prologue-end and epilogue-begin notes after instruction
6007 scheduling and delayed branch scheduling. */
6008
6009void
6010reposition_prologue_and_epilogue_notes (f)
6011 rtx f;
6012{
6013#if defined (HAVE_prologue) || defined (HAVE_epilogue)
6014 /* Reposition the prologue and epilogue notes. */
6015 if (n_basic_blocks)
6016 {
6017 rtx next, prev;
bf526252 6018 int len;
bdac5f58
TW
6019
6020 if (prologue)
6021 {
bf526252
RK
6022 register rtx insn, note = 0;
6023
6024 /* Scan from the beginning until we reach the last prologue insn.
6025 We apparently can't depend on basic_block_{head,end} after
6026 reorg has run. */
6027 for (len = 0; prologue[len]; len++)
6028 ;
9392c110
JH
6029 for (insn = f; len && insn; insn = NEXT_INSN (insn))
6030 {
6031 if (GET_CODE (insn) == NOTE)
6032 {
6033 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
6034 note = insn;
6035 }
6036 else if ((len -= contains (insn, prologue)) == 0)
6037 {
6038 /* Find the prologue-end note if we haven't already, and
6039 move it to just after the last prologue insn. */
6040 if (note == 0)
6041 {
51723711 6042 for (note = insn; (note = NEXT_INSN (note));)
9392c110
JH
6043 if (GET_CODE (note) == NOTE
6044 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
6045 break;
6046 }
6047 next = NEXT_INSN (note);
6048 prev = PREV_INSN (note);
6049 if (prev)
6050 NEXT_INSN (prev) = next;
6051 if (next)
6052 PREV_INSN (next) = prev;
6053 add_insn_after (note, insn);
6054 }
6055 }
bdac5f58
TW
6056 }
6057
6058 if (epilogue)
6059 {
bf526252
RK
6060 register rtx insn, note = 0;
6061
6062 /* Scan from the end until we reach the first epilogue insn.
6063 We apparently can't depend on basic_block_{head,end} after
6064 reorg has run. */
6065 for (len = 0; epilogue[len]; len++)
6066 ;
9392c110
JH
6067 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
6068 {
6069 if (GET_CODE (insn) == NOTE)
6070 {
6071 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
6072 note = insn;
6073 }
6074 else if ((len -= contains (insn, epilogue)) == 0)
6075 {
6076 /* Find the epilogue-begin note if we haven't already, and
6077 move it to just before the first epilogue insn. */
6078 if (note == 0)
6079 {
51723711 6080 for (note = insn; (note = PREV_INSN (note));)
9392c110
JH
6081 if (GET_CODE (note) == NOTE
6082 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
6083 break;
6084 }
6085 next = NEXT_INSN (note);
6086 prev = PREV_INSN (note);
6087 if (prev)
6088 NEXT_INSN (prev) = next;
6089 if (next)
6090 PREV_INSN (next) = prev;
6091 add_insn_after (note, PREV_INSN (insn));
6092 }
6093 }
bdac5f58
TW
6094 }
6095 }
6096#endif /* HAVE_prologue or HAVE_epilogue */
6097}
This page took 1.170112 seconds and 5 git commands to generate.