]> gcc.gnu.org Git - gcc.git/blame - gcc/fortran/interface.c
Daily bump.
[gcc.git] / gcc / fortran / interface.c
CommitLineData
6de9cd9a 1/* Deal with interfaces.
bc0a33d3
TS
2 Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006 Free Software
3 Foundation, Inc.
6de9cd9a
DN
4 Contributed by Andy Vaught
5
9fc4d79b 6This file is part of GCC.
6de9cd9a 7
9fc4d79b
TS
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
6de9cd9a 12
9fc4d79b
TS
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
6de9cd9a
DN
17
18You should have received a copy of the GNU General Public License
9fc4d79b 19along with GCC; see the file COPYING. If not, write to the Free
ab57747b
KC
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA. */
6de9cd9a
DN
22
23
24/* Deal with interfaces. An explicit interface is represented as a
25 singly linked list of formal argument structures attached to the
26 relevant symbols. For an implicit interface, the arguments don't
27 point to symbols. Explicit interfaces point to namespaces that
28 contain the symbols within that interface.
29
30 Implicit interfaces are linked together in a singly linked list
31 along the next_if member of symbol nodes. Since a particular
32 symbol can only have a single explicit interface, the symbol cannot
33 be part of multiple lists and a single next-member suffices.
34
35 This is not the case for general classes, though. An operator
36 definition is independent of just about all other uses and has it's
37 own head pointer.
38
39 Nameless interfaces:
40 Nameless interfaces create symbols with explicit interfaces within
41 the current namespace. They are otherwise unlinked.
42
43 Generic interfaces:
44 The generic name points to a linked list of symbols. Each symbol
6892757c 45 has an explicit interface. Each explicit interface has its own
6de9cd9a
DN
46 namespace containing the arguments. Module procedures are symbols in
47 which the interface is added later when the module procedure is parsed.
48
49 User operators:
50 User-defined operators are stored in a their own set of symtrees
51 separate from regular symbols. The symtrees point to gfc_user_op
52 structures which in turn head up a list of relevant interfaces.
53
54 Extended intrinsics and assignment:
55 The head of these interface lists are stored in the containing namespace.
56
57 Implicit interfaces:
58 An implicit interface is represented as a singly linked list of
59 formal argument list structures that don't point to any symbol
60 nodes -- they just contain types.
61
62
63 When a subprogram is defined, the program unit's name points to an
64 interface as usual, but the link to the namespace is NULL and the
65 formal argument list points to symbols within the same namespace as
66 the program unit name. */
67
68#include "config.h"
d22e4895 69#include "system.h"
6de9cd9a
DN
70#include "gfortran.h"
71#include "match.h"
72
73
74/* The current_interface structure holds information about the
75 interface currently being parsed. This structure is saved and
76 restored during recursive interfaces. */
77
78gfc_interface_info current_interface;
79
80
81/* Free a singly linked list of gfc_interface structures. */
82
83void
84gfc_free_interface (gfc_interface * intr)
85{
86 gfc_interface *next;
87
88 for (; intr; intr = next)
89 {
90 next = intr->next;
91 gfc_free (intr);
92 }
93}
94
95
96/* Change the operators unary plus and minus into binary plus and
97 minus respectively, leaving the rest unchanged. */
98
99static gfc_intrinsic_op
100fold_unary (gfc_intrinsic_op operator)
101{
102
103 switch (operator)
104 {
105 case INTRINSIC_UPLUS:
106 operator = INTRINSIC_PLUS;
107 break;
108 case INTRINSIC_UMINUS:
109 operator = INTRINSIC_MINUS;
110 break;
111 default:
112 break;
113 }
114
115 return operator;
116}
117
118
119/* Match a generic specification. Depending on which type of
120 interface is found, the 'name' or 'operator' pointers may be set.
121 This subroutine doesn't return MATCH_NO. */
122
123match
124gfc_match_generic_spec (interface_type * type,
125 char *name,
126 gfc_intrinsic_op *operator)
127{
128 char buffer[GFC_MAX_SYMBOL_LEN + 1];
129 match m;
130 gfc_intrinsic_op i;
131
132 if (gfc_match (" assignment ( = )") == MATCH_YES)
133 {
134 *type = INTERFACE_INTRINSIC_OP;
135 *operator = INTRINSIC_ASSIGN;
136 return MATCH_YES;
137 }
138
139 if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
140 { /* Operator i/f */
141 *type = INTERFACE_INTRINSIC_OP;
142 *operator = fold_unary (i);
143 return MATCH_YES;
144 }
145
146 if (gfc_match (" operator ( ") == MATCH_YES)
147 {
148 m = gfc_match_defined_op_name (buffer, 1);
149 if (m == MATCH_NO)
150 goto syntax;
151 if (m != MATCH_YES)
152 return MATCH_ERROR;
153
154 m = gfc_match_char (')');
155 if (m == MATCH_NO)
156 goto syntax;
157 if (m != MATCH_YES)
158 return MATCH_ERROR;
159
160 strcpy (name, buffer);
161 *type = INTERFACE_USER_OP;
162 return MATCH_YES;
163 }
164
165 if (gfc_match_name (buffer) == MATCH_YES)
166 {
167 strcpy (name, buffer);
168 *type = INTERFACE_GENERIC;
169 return MATCH_YES;
170 }
171
172 *type = INTERFACE_NAMELESS;
173 return MATCH_YES;
174
175syntax:
176 gfc_error ("Syntax error in generic specification at %C");
177 return MATCH_ERROR;
178}
179
180
181/* Match one of the five forms of an interface statement. */
182
183match
184gfc_match_interface (void)
185{
186 char name[GFC_MAX_SYMBOL_LEN + 1];
187 interface_type type;
188 gfc_symbol *sym;
189 gfc_intrinsic_op operator;
190 match m;
191
192 m = gfc_match_space ();
193
194 if (gfc_match_generic_spec (&type, name, &operator) == MATCH_ERROR)
195 return MATCH_ERROR;
196
197
198 /* If we're not looking at the end of the statement now, or if this
199 is not a nameless interface but we did not see a space, punt. */
200 if (gfc_match_eos () != MATCH_YES
201 || (type != INTERFACE_NAMELESS
202 && m != MATCH_YES))
203 {
204 gfc_error
205 ("Syntax error: Trailing garbage in INTERFACE statement at %C");
206 return MATCH_ERROR;
207 }
208
209 current_interface.type = type;
210
211 switch (type)
212 {
213 case INTERFACE_GENERIC:
214 if (gfc_get_symbol (name, NULL, &sym))
215 return MATCH_ERROR;
216
231b2fcc
TS
217 if (!sym->attr.generic
218 && gfc_add_generic (&sym->attr, sym->name, NULL) == FAILURE)
6de9cd9a
DN
219 return MATCH_ERROR;
220
e5d7f6f7
FXC
221 if (sym->attr.dummy)
222 {
223 gfc_error ("Dummy procedure '%s' at %C cannot have a "
224 "generic interface", sym->name);
225 return MATCH_ERROR;
226 }
227
6de9cd9a
DN
228 current_interface.sym = gfc_new_block = sym;
229 break;
230
231 case INTERFACE_USER_OP:
232 current_interface.uop = gfc_get_uop (name);
233 break;
234
235 case INTERFACE_INTRINSIC_OP:
236 current_interface.op = operator;
237 break;
238
239 case INTERFACE_NAMELESS:
240 break;
241 }
242
243 return MATCH_YES;
244}
245
246
247/* Match the different sort of generic-specs that can be present after
248 the END INTERFACE itself. */
249
250match
251gfc_match_end_interface (void)
252{
253 char name[GFC_MAX_SYMBOL_LEN + 1];
254 interface_type type;
255 gfc_intrinsic_op operator;
256 match m;
257
258 m = gfc_match_space ();
259
260 if (gfc_match_generic_spec (&type, name, &operator) == MATCH_ERROR)
261 return MATCH_ERROR;
262
263 /* If we're not looking at the end of the statement now, or if this
264 is not a nameless interface but we did not see a space, punt. */
265 if (gfc_match_eos () != MATCH_YES
266 || (type != INTERFACE_NAMELESS
267 && m != MATCH_YES))
268 {
269 gfc_error
270 ("Syntax error: Trailing garbage in END INTERFACE statement at %C");
271 return MATCH_ERROR;
272 }
273
274 m = MATCH_YES;
275
276 switch (current_interface.type)
277 {
278 case INTERFACE_NAMELESS:
279 if (type != current_interface.type)
280 {
281 gfc_error ("Expected a nameless interface at %C");
282 m = MATCH_ERROR;
283 }
284
285 break;
286
287 case INTERFACE_INTRINSIC_OP:
288 if (type != current_interface.type || operator != current_interface.op)
289 {
290
291 if (current_interface.op == INTRINSIC_ASSIGN)
292 gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C");
293 else
294 gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C",
295 gfc_op2string (current_interface.op));
296
297 m = MATCH_ERROR;
298 }
299
300 break;
301
302 case INTERFACE_USER_OP:
303 /* Comparing the symbol node names is OK because only use-associated
304 symbols can be renamed. */
305 if (type != current_interface.type
9b46f94f 306 || strcmp (current_interface.uop->name, name) != 0)
6de9cd9a
DN
307 {
308 gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C",
55898b2c 309 current_interface.uop->name);
6de9cd9a
DN
310 m = MATCH_ERROR;
311 }
312
313 break;
314
315 case INTERFACE_GENERIC:
316 if (type != current_interface.type
317 || strcmp (current_interface.sym->name, name) != 0)
318 {
319 gfc_error ("Expecting 'END INTERFACE %s' at %C",
320 current_interface.sym->name);
321 m = MATCH_ERROR;
322 }
323
324 break;
325 }
326
327 return m;
328}
329
330
e0e85e06
PT
331/* Compare two derived types using the criteria in 4.4.2 of the standard,
332 recursing through gfc_compare_types for the components. */
6de9cd9a
DN
333
334int
e0e85e06 335gfc_compare_derived_types (gfc_symbol * derived1, gfc_symbol * derived2)
6de9cd9a
DN
336{
337 gfc_component *dt1, *dt2;
338
6de9cd9a
DN
339 /* Special case for comparing derived types across namespaces. If the
340 true names and module names are the same and the module name is
341 nonnull, then they are equal. */
e0e85e06
PT
342 if (strcmp (derived1->name, derived2->name) == 0
343 && derived1 != NULL && derived2 != NULL
344 && derived1->module != NULL && derived2->module != NULL
345 && strcmp (derived1->module, derived2->module) == 0)
6de9cd9a
DN
346 return 1;
347
348 /* Compare type via the rules of the standard. Both types must have
349 the SEQUENCE attribute to be equal. */
350
e0e85e06 351 if (strcmp (derived1->name, derived2->name))
6de9cd9a
DN
352 return 0;
353
e0e85e06
PT
354 if (derived1->component_access == ACCESS_PRIVATE
355 || derived2->component_access == ACCESS_PRIVATE)
356 return 0;
6de9cd9a 357
e0e85e06 358 if (derived1->attr.sequence == 0 || derived2->attr.sequence == 0)
6de9cd9a
DN
359 return 0;
360
e0e85e06
PT
361 dt1 = derived1->components;
362 dt2 = derived2->components;
363
6de9cd9a
DN
364 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
365 simple test can speed things up. Otherwise, lots of things have to
366 match. */
367 for (;;)
368 {
369 if (strcmp (dt1->name, dt2->name) != 0)
370 return 0;
371
372 if (dt1->pointer != dt2->pointer)
373 return 0;
374
375 if (dt1->dimension != dt2->dimension)
376 return 0;
377
5046aff5
PT
378 if (dt1->allocatable != dt2->allocatable)
379 return 0;
380
6de9cd9a
DN
381 if (dt1->dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
382 return 0;
383
384 if (gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
385 return 0;
386
387 dt1 = dt1->next;
388 dt2 = dt2->next;
389
390 if (dt1 == NULL && dt2 == NULL)
391 break;
392 if (dt1 == NULL || dt2 == NULL)
393 return 0;
394 }
395
396 return 1;
397}
398
e0e85e06
PT
399/* Compare two typespecs, recursively if necessary. */
400
401int
402gfc_compare_types (gfc_typespec * ts1, gfc_typespec * ts2)
403{
404
405 if (ts1->type != ts2->type)
406 return 0;
407 if (ts1->type != BT_DERIVED)
408 return (ts1->kind == ts2->kind);
409
410 /* Compare derived types. */
411 if (ts1->derived == ts2->derived)
412 return 1;
413
414 return gfc_compare_derived_types (ts1->derived ,ts2->derived);
415}
416
6de9cd9a
DN
417
418/* Given two symbols that are formal arguments, compare their ranks
419 and types. Returns nonzero if they have the same rank and type,
420 zero otherwise. */
421
422static int
423compare_type_rank (gfc_symbol * s1, gfc_symbol * s2)
424{
425 int r1, r2;
426
427 r1 = (s1->as != NULL) ? s1->as->rank : 0;
428 r2 = (s2->as != NULL) ? s2->as->rank : 0;
429
430 if (r1 != r2)
431 return 0; /* Ranks differ */
432
433 return gfc_compare_types (&s1->ts, &s2->ts);
434}
435
436
437static int compare_interfaces (gfc_symbol *, gfc_symbol *, int);
438
439/* Given two symbols that are formal arguments, compare their types
440 and rank and their formal interfaces if they are both dummy
441 procedures. Returns nonzero if the same, zero if different. */
442
443static int
444compare_type_rank_if (gfc_symbol * s1, gfc_symbol * s2)
445{
26f2ca2b
PT
446 if (s1 == NULL || s2 == NULL)
447 return s1 == s2 ? 1 : 0;
6de9cd9a
DN
448
449 if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
450 return compare_type_rank (s1, s2);
451
452 if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
453 return 0;
454
455 /* At this point, both symbols are procedures. */
456 if ((s1->attr.function == 0 && s1->attr.subroutine == 0)
457 || (s2->attr.function == 0 && s2->attr.subroutine == 0))
458 return 0;
459
460 if (s1->attr.function != s2->attr.function
461 || s1->attr.subroutine != s2->attr.subroutine)
462 return 0;
463
464 if (s1->attr.function && compare_type_rank (s1, s2) == 0)
465 return 0;
466
993ef28f
PT
467 /* Originally, gfortran recursed here to check the interfaces of passed
468 procedures. This is explicitly not required by the standard. */
469 return 1;
6de9cd9a
DN
470}
471
472
473/* Given a formal argument list and a keyword name, search the list
474 for that keyword. Returns the correct symbol node if found, NULL
475 if not found. */
476
477static gfc_symbol *
478find_keyword_arg (const char *name, gfc_formal_arglist * f)
479{
480
481 for (; f; f = f->next)
482 if (strcmp (f->sym->name, name) == 0)
483 return f->sym;
484
485 return NULL;
486}
487
488
489/******** Interface checking subroutines **********/
490
491
492/* Given an operator interface and the operator, make sure that all
493 interfaces for that operator are legal. */
494
495static void
496check_operator_interface (gfc_interface * intr, gfc_intrinsic_op operator)
497{
498 gfc_formal_arglist *formal;
499 sym_intent i1, i2;
500 gfc_symbol *sym;
501 bt t1, t2;
502 int args;
503
504 if (intr == NULL)
505 return;
506
507 args = 0;
508 t1 = t2 = BT_UNKNOWN;
509 i1 = i2 = INTENT_UNKNOWN;
510
511 for (formal = intr->sym->formal; formal; formal = formal->next)
512 {
513 sym = formal->sym;
8c086c9c
PT
514 if (sym == NULL)
515 {
516 gfc_error ("Alternate return cannot appear in operator "
517 "interface at %L", &intr->where);
518 return;
519 }
6de9cd9a
DN
520 if (args == 0)
521 {
522 t1 = sym->ts.type;
523 i1 = sym->attr.intent;
524 }
525 if (args == 1)
526 {
527 t2 = sym->ts.type;
528 i2 = sym->attr.intent;
529 }
530 args++;
531 }
532
533 if (args == 0 || args > 2)
534 goto num_args;
535
536 sym = intr->sym;
537
538 if (operator == INTRINSIC_ASSIGN)
539 {
540 if (!sym->attr.subroutine)
541 {
542 gfc_error
543 ("Assignment operator interface at %L must be a SUBROUTINE",
544 &intr->where);
545 return;
546 }
8c086c9c
PT
547 if (args != 2)
548 {
549 gfc_error
550 ("Assignment operator interface at %L must have two arguments",
551 &intr->where);
552 return;
553 }
554 if (sym->formal->sym->ts.type != BT_DERIVED
555 && sym->formal->next->sym->ts.type != BT_DERIVED
556 && (sym->formal->sym->ts.type == sym->formal->next->sym->ts.type
557 || (gfc_numeric_ts (&sym->formal->sym->ts)
558 && gfc_numeric_ts (&sym->formal->next->sym->ts))))
559 {
560 gfc_error
561 ("Assignment operator interface at %L must not redefine "
562 "an INTRINSIC type assignment", &intr->where);
563 return;
564 }
6de9cd9a
DN
565 }
566 else
567 {
568 if (!sym->attr.function)
569 {
570 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
571 &intr->where);
572 return;
573 }
574 }
575
576 switch (operator)
577 {
578 case INTRINSIC_PLUS: /* Numeric unary or binary */
579 case INTRINSIC_MINUS:
580 if ((args == 1)
581 && (t1 == BT_INTEGER
582 || t1 == BT_REAL
583 || t1 == BT_COMPLEX))
584 goto bad_repl;
585
586 if ((args == 2)
587 && (t1 == BT_INTEGER || t1 == BT_REAL || t1 == BT_COMPLEX)
588 && (t2 == BT_INTEGER || t2 == BT_REAL || t2 == BT_COMPLEX))
589 goto bad_repl;
590
591 break;
592
593 case INTRINSIC_POWER: /* Binary numeric */
594 case INTRINSIC_TIMES:
595 case INTRINSIC_DIVIDE:
596
597 case INTRINSIC_EQ:
598 case INTRINSIC_NE:
599 if (args == 1)
600 goto num_args;
601
602 if ((t1 == BT_INTEGER || t1 == BT_REAL || t1 == BT_COMPLEX)
603 && (t2 == BT_INTEGER || t2 == BT_REAL || t2 == BT_COMPLEX))
604 goto bad_repl;
605
606 break;
607
608 case INTRINSIC_GE: /* Binary numeric operators that do not support */
609 case INTRINSIC_LE: /* complex numbers */
610 case INTRINSIC_LT:
611 case INTRINSIC_GT:
612 if (args == 1)
613 goto num_args;
614
615 if ((t1 == BT_INTEGER || t1 == BT_REAL)
616 && (t2 == BT_INTEGER || t2 == BT_REAL))
617 goto bad_repl;
618
619 break;
620
621 case INTRINSIC_OR: /* Binary logical */
622 case INTRINSIC_AND:
623 case INTRINSIC_EQV:
624 case INTRINSIC_NEQV:
625 if (args == 1)
626 goto num_args;
627 if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
628 goto bad_repl;
629 break;
630
631 case INTRINSIC_NOT: /* Unary logical */
632 if (args != 1)
633 goto num_args;
634 if (t1 == BT_LOGICAL)
635 goto bad_repl;
636 break;
637
638 case INTRINSIC_CONCAT: /* Binary string */
639 if (args != 2)
640 goto num_args;
641 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
642 goto bad_repl;
643 break;
644
645 case INTRINSIC_ASSIGN: /* Class by itself */
646 if (args != 2)
647 goto num_args;
648 break;
649 default:
650 gfc_internal_error ("check_operator_interface(): Bad operator");
651 }
652
653 /* Check intents on operator interfaces. */
654 if (operator == INTRINSIC_ASSIGN)
655 {
656 if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
657 gfc_error ("First argument of defined assignment at %L must be "
658 "INTENT(IN) or INTENT(INOUT)", &intr->where);
659
660 if (i2 != INTENT_IN)
661 gfc_error ("Second argument of defined assignment at %L must be "
662 "INTENT(IN)", &intr->where);
663 }
664 else
665 {
666 if (i1 != INTENT_IN)
667 gfc_error ("First argument of operator interface at %L must be "
668 "INTENT(IN)", &intr->where);
669
670 if (args == 2 && i2 != INTENT_IN)
671 gfc_error ("Second argument of operator interface at %L must be "
672 "INTENT(IN)", &intr->where);
673 }
674
675 return;
676
677bad_repl:
678 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
679 &intr->where);
680 return;
681
682num_args:
683 gfc_error ("Operator interface at %L has the wrong number of arguments",
684 &intr->where);
685 return;
686}
687
688
689/* Given a pair of formal argument lists, we see if the two lists can
690 be distinguished by counting the number of nonoptional arguments of
691 a given type/rank in f1 and seeing if there are less then that
692 number of those arguments in f2 (including optional arguments).
693 Since this test is asymmetric, it has to be called twice to make it
694 symmetric. Returns nonzero if the argument lists are incompatible
695 by this test. This subroutine implements rule 1 of section
696 14.1.2.3. */
697
698static int
699count_types_test (gfc_formal_arglist * f1, gfc_formal_arglist * f2)
700{
701 int rc, ac1, ac2, i, j, k, n1;
702 gfc_formal_arglist *f;
703
704 typedef struct
705 {
706 int flag;
707 gfc_symbol *sym;
708 }
709 arginfo;
710
711 arginfo *arg;
712
713 n1 = 0;
714
715 for (f = f1; f; f = f->next)
716 n1++;
717
718 /* Build an array of integers that gives the same integer to
719 arguments of the same type/rank. */
720 arg = gfc_getmem (n1 * sizeof (arginfo));
721
722 f = f1;
723 for (i = 0; i < n1; i++, f = f->next)
724 {
725 arg[i].flag = -1;
726 arg[i].sym = f->sym;
727 }
728
729 k = 0;
730
731 for (i = 0; i < n1; i++)
732 {
733 if (arg[i].flag != -1)
734 continue;
735
26f2ca2b 736 if (arg[i].sym && arg[i].sym->attr.optional)
6de9cd9a
DN
737 continue; /* Skip optional arguments */
738
739 arg[i].flag = k;
740
741 /* Find other nonoptional arguments of the same type/rank. */
742 for (j = i + 1; j < n1; j++)
26f2ca2b 743 if ((arg[j].sym == NULL || !arg[j].sym->attr.optional)
6de9cd9a
DN
744 && compare_type_rank_if (arg[i].sym, arg[j].sym))
745 arg[j].flag = k;
746
747 k++;
748 }
749
750 /* Now loop over each distinct type found in f1. */
751 k = 0;
752 rc = 0;
753
754 for (i = 0; i < n1; i++)
755 {
756 if (arg[i].flag != k)
757 continue;
758
759 ac1 = 1;
760 for (j = i + 1; j < n1; j++)
761 if (arg[j].flag == k)
762 ac1++;
763
764 /* Count the number of arguments in f2 with that type, including
f7b529fa 765 those that are optional. */
6de9cd9a
DN
766 ac2 = 0;
767
768 for (f = f2; f; f = f->next)
769 if (compare_type_rank_if (arg[i].sym, f->sym))
770 ac2++;
771
772 if (ac1 > ac2)
773 {
774 rc = 1;
775 break;
776 }
777
778 k++;
779 }
780
781 gfc_free (arg);
782
783 return rc;
784}
785
786
787/* Perform the abbreviated correspondence test for operators. The
788 arguments cannot be optional and are always ordered correctly,
789 which makes this test much easier than that for generic tests.
790
791 This subroutine is also used when comparing a formal and actual
792 argument list when an actual parameter is a dummy procedure. At
793 that point, two formal interfaces must be compared for equality
794 which is what happens here. */
795
796static int
797operator_correspondence (gfc_formal_arglist * f1, gfc_formal_arglist * f2)
798{
799 for (;;)
800 {
801 if (f1 == NULL && f2 == NULL)
802 break;
803 if (f1 == NULL || f2 == NULL)
804 return 1;
805
806 if (!compare_type_rank (f1->sym, f2->sym))
807 return 1;
808
809 f1 = f1->next;
810 f2 = f2->next;
811 }
812
813 return 0;
814}
815
816
817/* Perform the correspondence test in rule 2 of section 14.1.2.3.
69de3b83 818 Returns zero if no argument is found that satisfies rule 2, nonzero
6de9cd9a
DN
819 otherwise.
820
821 This test is also not symmetric in f1 and f2 and must be called
822 twice. This test finds problems caused by sorting the actual
823 argument list with keywords. For example:
824
825 INTERFACE FOO
826 SUBROUTINE F1(A, B)
827 INTEGER :: A ; REAL :: B
828 END SUBROUTINE F1
829
830 SUBROUTINE F2(B, A)
831 INTEGER :: A ; REAL :: B
832 END SUBROUTINE F1
833 END INTERFACE FOO
834
835 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
836
837static int
838generic_correspondence (gfc_formal_arglist * f1, gfc_formal_arglist * f2)
839{
840
841 gfc_formal_arglist *f2_save, *g;
842 gfc_symbol *sym;
843
844 f2_save = f2;
845
846 while (f1)
847 {
848 if (f1->sym->attr.optional)
849 goto next;
850
851 if (f2 != NULL && compare_type_rank (f1->sym, f2->sym))
852 goto next;
853
854 /* Now search for a disambiguating keyword argument starting at
855 the current non-match. */
856 for (g = f1; g; g = g->next)
857 {
858 if (g->sym->attr.optional)
859 continue;
860
861 sym = find_keyword_arg (g->sym->name, f2_save);
862 if (sym == NULL || !compare_type_rank (g->sym, sym))
863 return 1;
864 }
865
866 next:
867 f1 = f1->next;
868 if (f2 != NULL)
869 f2 = f2->next;
870 }
871
872 return 0;
873}
874
875
876/* 'Compare' two formal interfaces associated with a pair of symbols.
877 We return nonzero if there exists an actual argument list that
878 would be ambiguous between the two interfaces, zero otherwise. */
879
880static int
881compare_interfaces (gfc_symbol * s1, gfc_symbol * s2, int generic_flag)
882{
883 gfc_formal_arglist *f1, *f2;
884
885 if (s1->attr.function != s2->attr.function
886 && s1->attr.subroutine != s2->attr.subroutine)
887 return 0; /* disagreement between function/subroutine */
888
889 f1 = s1->formal;
890 f2 = s2->formal;
891
892 if (f1 == NULL && f2 == NULL)
893 return 1; /* Special case */
894
895 if (count_types_test (f1, f2))
896 return 0;
897 if (count_types_test (f2, f1))
898 return 0;
899
900 if (generic_flag)
901 {
902 if (generic_correspondence (f1, f2))
903 return 0;
904 if (generic_correspondence (f2, f1))
905 return 0;
906 }
907 else
908 {
909 if (operator_correspondence (f1, f2))
910 return 0;
911 }
912
913 return 1;
914}
915
916
917/* Given a pointer to an interface pointer, remove duplicate
918 interfaces and make sure that all symbols are either functions or
919 subroutines. Returns nonzero if something goes wrong. */
920
921static int
922check_interface0 (gfc_interface * p, const char *interface_name)
923{
924 gfc_interface *psave, *q, *qlast;
925
926 psave = p;
927 /* Make sure all symbols in the interface have been defined as
928 functions or subroutines. */
929 for (; p; p = p->next)
930 if (!p->sym->attr.function && !p->sym->attr.subroutine)
931 {
932 gfc_error ("Procedure '%s' in %s at %L is neither function nor "
933 "subroutine", p->sym->name, interface_name,
934 &p->sym->declared_at);
935 return 1;
936 }
937 p = psave;
938
939 /* Remove duplicate interfaces in this interface list. */
940 for (; p; p = p->next)
941 {
942 qlast = p;
943
944 for (q = p->next; q;)
945 {
946 if (p->sym != q->sym)
947 {
948 qlast = q;
949 q = q->next;
950
951 }
952 else
953 {
954 /* Duplicate interface */
955 qlast->next = q->next;
956 gfc_free (q);
957 q = qlast->next;
958 }
959 }
960 }
961
962 return 0;
963}
964
965
966/* Check lists of interfaces to make sure that no two interfaces are
967 ambiguous. Duplicate interfaces (from the same symbol) are OK
968 here. */
969
970static int
991f3b12 971check_interface1 (gfc_interface * p, gfc_interface * q0,
993ef28f 972 int generic_flag, const char *interface_name,
26f2ca2b 973 bool referenced)
6de9cd9a 974{
991f3b12 975 gfc_interface * q;
6de9cd9a 976 for (; p; p = p->next)
991f3b12 977 for (q = q0; q; q = q->next)
6de9cd9a
DN
978 {
979 if (p->sym == q->sym)
980 continue; /* Duplicates OK here */
981
312ae8f4 982 if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
6de9cd9a
DN
983 continue;
984
985 if (compare_interfaces (p->sym, q->sym, generic_flag))
986 {
993ef28f
PT
987 if (referenced)
988 {
989 gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L",
990 p->sym->name, q->sym->name, interface_name,
991 &p->where);
992 }
993
994 if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
995 gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L",
996 p->sym->name, q->sym->name, interface_name,
997 &p->where);
6de9cd9a
DN
998 return 1;
999 }
1000 }
6de9cd9a
DN
1001 return 0;
1002}
1003
1004
1005/* Check the generic and operator interfaces of symbols to make sure
1006 that none of the interfaces conflict. The check has to be done
1007 after all of the symbols are actually loaded. */
1008
1009static void
1010check_sym_interfaces (gfc_symbol * sym)
1011{
1012 char interface_name[100];
26f2ca2b 1013 bool k;
71f77fd7 1014 gfc_interface *p;
6de9cd9a
DN
1015
1016 if (sym->ns != gfc_current_ns)
1017 return;
1018
9914f8cf
PT
1019 if (sym->attr.if_source == IFSRC_IFBODY
1020 && sym->attr.flavor == FL_PROCEDURE
1021 && !sym->attr.mod_proc)
1022 resolve_global_procedure (sym, &sym->declared_at, sym->attr.subroutine);
1023
6de9cd9a
DN
1024 if (sym->generic != NULL)
1025 {
1026 sprintf (interface_name, "generic interface '%s'", sym->name);
1027 if (check_interface0 (sym->generic, interface_name))
1028 return;
1029
71f77fd7
PT
1030 for (p = sym->generic; p; p = p->next)
1031 {
1032 if (!p->sym->attr.use_assoc
1033 && p->sym->attr.mod_proc
1034 && p->sym->attr.if_source != IFSRC_DECL)
1035 {
1036 gfc_error ("MODULE PROCEDURE '%s' at %L does not come "
1037 "from a module", p->sym->name, &p->where);
1038 return;
1039 }
1040 }
1041
4c256e34 1042 /* Originally, this test was applied to host interfaces too;
993ef28f
PT
1043 this is incorrect since host associated symbols, from any
1044 source, cannot be ambiguous with local symbols. */
1045 k = sym->attr.referenced || !sym->attr.use_assoc;
1046 if (check_interface1 (sym->generic, sym->generic, 1,
1047 interface_name, k))
1048 sym->attr.ambiguous_interfaces = 1;
6de9cd9a
DN
1049 }
1050}
1051
1052
1053static void
1054check_uop_interfaces (gfc_user_op * uop)
1055{
1056 char interface_name[100];
1057 gfc_user_op *uop2;
1058 gfc_namespace *ns;
1059
1060 sprintf (interface_name, "operator interface '%s'", uop->name);
1061 if (check_interface0 (uop->operator, interface_name))
1062 return;
1063
1064 for (ns = gfc_current_ns; ns; ns = ns->parent)
1065 {
1066 uop2 = gfc_find_uop (uop->name, ns);
1067 if (uop2 == NULL)
1068 continue;
1069
993ef28f 1070 check_interface1 (uop->operator, uop2->operator, 0,
26f2ca2b 1071 interface_name, true);
6de9cd9a
DN
1072 }
1073}
1074
1075
1076/* For the namespace, check generic, user operator and intrinsic
1077 operator interfaces for consistency and to remove duplicate
1078 interfaces. We traverse the whole namespace, counting on the fact
1079 that most symbols will not have generic or operator interfaces. */
1080
1081void
1082gfc_check_interfaces (gfc_namespace * ns)
1083{
1084 gfc_namespace *old_ns, *ns2;
1085 char interface_name[100];
1086 gfc_intrinsic_op i;
1087
1088 old_ns = gfc_current_ns;
1089 gfc_current_ns = ns;
1090
1091 gfc_traverse_ns (ns, check_sym_interfaces);
1092
1093 gfc_traverse_user_op (ns, check_uop_interfaces);
1094
1095 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
1096 {
1097 if (i == INTRINSIC_USER)
1098 continue;
1099
1100 if (i == INTRINSIC_ASSIGN)
1101 strcpy (interface_name, "intrinsic assignment operator");
1102 else
1103 sprintf (interface_name, "intrinsic '%s' operator",
1104 gfc_op2string (i));
1105
1106 if (check_interface0 (ns->operator[i], interface_name))
1107 continue;
1108
1109 check_operator_interface (ns->operator[i], i);
1110
1111 for (ns2 = ns->parent; ns2; ns2 = ns2->parent)
1112 if (check_interface1 (ns->operator[i], ns2->operator[i], 0,
26f2ca2b 1113 interface_name, true))
6de9cd9a
DN
1114 break;
1115 }
1116
1117 gfc_current_ns = old_ns;
1118}
1119
1120
1121static int
1122symbol_rank (gfc_symbol * sym)
1123{
1124
1125 return (sym->as == NULL) ? 0 : sym->as->rank;
1126}
1127
1128
aa08038d
EE
1129/* Given a symbol of a formal argument list and an expression, if the
1130 formal argument is allocatable, check that the actual argument is
1131 allocatable. Returns nonzero if compatible, zero if not compatible. */
1132
1133static int
1134compare_allocatable (gfc_symbol * formal, gfc_expr * actual)
1135{
1136 symbol_attribute attr;
1137
1138 if (formal->attr.allocatable)
1139 {
1140 attr = gfc_expr_attr (actual);
1141 if (!attr.allocatable)
1142 return 0;
1143 }
1144
1145 return 1;
1146}
1147
1148
6de9cd9a
DN
1149/* Given a symbol of a formal argument list and an expression, if the
1150 formal argument is a pointer, see if the actual argument is a
1151 pointer. Returns nonzero if compatible, zero if not compatible. */
1152
1153static int
1154compare_pointer (gfc_symbol * formal, gfc_expr * actual)
1155{
1156 symbol_attribute attr;
1157
1158 if (formal->attr.pointer)
1159 {
1160 attr = gfc_expr_attr (actual);
1161 if (!attr.pointer)
1162 return 0;
1163 }
1164
1165 return 1;
1166}
1167
1168
1169/* Given a symbol of a formal argument list and an expression, see if
1170 the two are compatible as arguments. Returns nonzero if
1171 compatible, zero if not compatible. */
1172
1173static int
1174compare_parameter (gfc_symbol * formal, gfc_expr * actual,
1175 int ranks_must_agree, int is_elemental)
1176{
1177 gfc_ref *ref;
1178
1179 if (actual->ts.type == BT_PROCEDURE)
1180 {
1181 if (formal->attr.flavor != FL_PROCEDURE)
1182 return 0;
1183
1184 if (formal->attr.function
1185 && !compare_type_rank (formal, actual->symtree->n.sym))
1186 return 0;
1187
699fa7aa
PT
1188 if (formal->attr.if_source == IFSRC_UNKNOWN
1189 || actual->symtree->n.sym->attr.external)
6de9cd9a
DN
1190 return 1; /* Assume match */
1191
1192 return compare_interfaces (formal, actual->symtree->n.sym, 0);
1193 }
1194
90aeadcb 1195 if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
1600fe22 1196 && !gfc_compare_types (&formal->ts, &actual->ts))
6de9cd9a
DN
1197 return 0;
1198
1199 if (symbol_rank (formal) == actual->rank)
1200 return 1;
1201
1202 /* At this point the ranks didn't agree. */
1203 if (ranks_must_agree || formal->attr.pointer)
1204 return 0;
1205
1206 if (actual->rank != 0)
1207 return is_elemental || formal->attr.dimension;
1208
1209 /* At this point, we are considering a scalar passed to an array.
1210 This is legal if the scalar is an array element of the right sort. */
1211 if (formal->as->type == AS_ASSUMED_SHAPE)
1212 return 0;
1213
1214 for (ref = actual->ref; ref; ref = ref->next)
1215 if (ref->type == REF_SUBSTRING)
1216 return 0;
1217
1218 for (ref = actual->ref; ref; ref = ref->next)
1219 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT)
1220 break;
1221
1222 if (ref == NULL)
1223 return 0; /* Not an array element */
1224
1225 return 1;
1226}
1227
1228
ee7e677f
TB
1229/* Given a symbol of a formal argument list and an expression, see if
1230 the two are compatible as arguments. Returns nonzero if
1231 compatible, zero if not compatible. */
1232
1233static int
1234compare_parameter_protected (gfc_symbol * formal, gfc_expr * actual)
1235{
1236 if (actual->expr_type != EXPR_VARIABLE)
1237 return 1;
1238
1239 if (!actual->symtree->n.sym->attr.protected)
1240 return 1;
1241
1242 if (!actual->symtree->n.sym->attr.use_assoc)
1243 return 1;
1244
1245 if (formal->attr.intent == INTENT_IN
1246 || formal->attr.intent == INTENT_UNKNOWN)
1247 return 1;
1248
1249 if (!actual->symtree->n.sym->attr.pointer)
1250 return 0;
1251
1252 if (actual->symtree->n.sym->attr.pointer && formal->attr.pointer)
1253 return 0;
1254
1255 return 1;
1256}
1257
1258
6de9cd9a
DN
1259/* Given formal and actual argument lists, see if they are compatible.
1260 If they are compatible, the actual argument list is sorted to
1261 correspond with the formal list, and elements for missing optional
1262 arguments are inserted. If WHERE pointer is nonnull, then we issue
1263 errors when things don't match instead of just returning the status
1264 code. */
1265
1266static int
1267compare_actual_formal (gfc_actual_arglist ** ap,
1268 gfc_formal_arglist * formal,
1269 int ranks_must_agree, int is_elemental, locus * where)
1270{
1271 gfc_actual_arglist **new, *a, *actual, temp;
1272 gfc_formal_arglist *f;
1273 int i, n, na;
98cb5a54 1274 bool rank_check;
6de9cd9a
DN
1275
1276 actual = *ap;
1277
1278 if (actual == NULL && formal == NULL)
1279 return 1;
1280
1281 n = 0;
1282 for (f = formal; f; f = f->next)
1283 n++;
1284
1285 new = (gfc_actual_arglist **) alloca (n * sizeof (gfc_actual_arglist *));
1286
1287 for (i = 0; i < n; i++)
1288 new[i] = NULL;
1289
1290 na = 0;
1291 f = formal;
1292 i = 0;
1293
1294 for (a = actual; a; a = a->next, f = f->next)
1295 {
cb9e4f55 1296 if (a->name != NULL)
6de9cd9a
DN
1297 {
1298 i = 0;
1299 for (f = formal; f; f = f->next, i++)
1300 {
1301 if (f->sym == NULL)
1302 continue;
1303 if (strcmp (f->sym->name, a->name) == 0)
1304 break;
1305 }
1306
1307 if (f == NULL)
1308 {
1309 if (where)
1310 gfc_error
1311 ("Keyword argument '%s' at %L is not in the procedure",
1312 a->name, &a->expr->where);
1313 return 0;
1314 }
1315
1316 if (new[i] != NULL)
1317 {
1318 if (where)
1319 gfc_error
1320 ("Keyword argument '%s' at %L is already associated "
1321 "with another actual argument", a->name, &a->expr->where);
1322 return 0;
1323 }
1324 }
1325
1326 if (f == NULL)
1327 {
1328 if (where)
1329 gfc_error
1330 ("More actual than formal arguments in procedure call at %L",
1331 where);
1332
1333 return 0;
1334 }
1335
1336 if (f->sym == NULL && a->expr == NULL)
1337 goto match;
1338
1339 if (f->sym == NULL)
1340 {
1341 if (where)
1342 gfc_error
1343 ("Missing alternate return spec in subroutine call at %L",
1344 where);
1345 return 0;
1346 }
1347
1348 if (a->expr == NULL)
1349 {
1350 if (where)
1351 gfc_error
1352 ("Unexpected alternate return spec in subroutine call at %L",
1353 where);
1354 return 0;
1355 }
1356
98cb5a54
PT
1357 rank_check = where != NULL
1358 && !is_elemental
1359 && f->sym->as
1360 && (f->sym->as->type == AS_ASSUMED_SHAPE
1361 || f->sym->as->type == AS_DEFERRED);
1362
6de9cd9a 1363 if (!compare_parameter
98cb5a54 1364 (f->sym, a->expr, ranks_must_agree || rank_check, is_elemental))
6de9cd9a
DN
1365 {
1366 if (where)
1367 gfc_error ("Type/rank mismatch in argument '%s' at %L",
1368 f->sym->name, &a->expr->where);
1369 return 0;
1370 }
1371
699fa7aa
PT
1372 /* Satisfy 12.4.1.2 by ensuring that a procedure actual argument is
1373 provided for a procedure formal argument. */
1374 if (a->expr->ts.type != BT_PROCEDURE
1375 && a->expr->expr_type == EXPR_VARIABLE
1376 && f->sym->attr.flavor == FL_PROCEDURE)
1377 {
9914f8cf
PT
1378 if (where)
1379 gfc_error ("Expected a procedure for argument '%s' at %L",
1380 f->sym->name, &a->expr->where);
1381 return 0;
699fa7aa
PT
1382 }
1383
d68bd5a8
PT
1384 if (f->sym->attr.flavor == FL_PROCEDURE
1385 && f->sym->attr.pure
1386 && a->expr->ts.type == BT_PROCEDURE
1387 && !a->expr->symtree->n.sym->attr.pure)
1388 {
1389 if (where)
1390 gfc_error ("Expected a PURE procedure for argument '%s' at %L",
1391 f->sym->name, &a->expr->where);
1392 return 0;
1393 }
1394
bf9d2177
JJ
1395 if (f->sym->as
1396 && f->sym->as->type == AS_ASSUMED_SHAPE
1397 && a->expr->expr_type == EXPR_VARIABLE
1398 && a->expr->symtree->n.sym->as
1399 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
1400 && (a->expr->ref == NULL
1401 || (a->expr->ref->type == REF_ARRAY
1402 && a->expr->ref->u.ar.type == AR_FULL)))
1403 {
1404 if (where)
1405 gfc_error ("Actual argument for '%s' cannot be an assumed-size"
1406 " array at %L", f->sym->name, where);
1407 return 0;
1408 }
1409
1600fe22
TS
1410 if (a->expr->expr_type != EXPR_NULL
1411 && compare_pointer (f->sym, a->expr) == 0)
6de9cd9a
DN
1412 {
1413 if (where)
1414 gfc_error ("Actual argument for '%s' must be a pointer at %L",
1415 f->sym->name, &a->expr->where);
1416 return 0;
1417 }
1418
aa08038d
EE
1419 if (a->expr->expr_type != EXPR_NULL
1420 && compare_allocatable (f->sym, a->expr) == 0)
1421 {
1422 if (where)
1423 gfc_error ("Actual argument for '%s' must be ALLOCATABLE at %L",
1424 f->sym->name, &a->expr->where);
1425 return 0;
1426 }
1427
a920e94a
PT
1428 /* Check intent = OUT/INOUT for definable actual argument. */
1429 if (a->expr->expr_type != EXPR_VARIABLE
1430 && (f->sym->attr.intent == INTENT_OUT
1431 || f->sym->attr.intent == INTENT_INOUT))
1432 {
536afc35
PT
1433 if (where)
1434 gfc_error ("Actual argument at %L must be definable to "
1435 "match dummy INTENT = OUT/INOUT", &a->expr->where);
a920e94a
PT
1436 return 0;
1437 }
1438
ee7e677f
TB
1439 if (!compare_parameter_protected(f->sym, a->expr))
1440 {
1441 if (where)
1442 gfc_error ("Actual argument at %L is use-associated with "
1443 "PROTECTED attribute and dummy argument '%s' is "
1444 "INTENT = OUT/INOUT",
1445 &a->expr->where,f->sym->name);
1446 return 0;
1447 }
1448
6de9cd9a
DN
1449 match:
1450 if (a == actual)
1451 na = i;
1452
1453 new[i++] = a;
1454 }
1455
1456 /* Make sure missing actual arguments are optional. */
1457 i = 0;
1458 for (f = formal; f; f = f->next, i++)
1459 {
1460 if (new[i] != NULL)
1461 continue;
1462 if (!f->sym->attr.optional)
1463 {
1464 if (where)
1465 gfc_error ("Missing actual argument for argument '%s' at %L",
1466 f->sym->name, where);
1467 return 0;
1468 }
1469 }
1470
1471 /* The argument lists are compatible. We now relink a new actual
1472 argument list with null arguments in the right places. The head
1473 of the list remains the head. */
1474 for (i = 0; i < n; i++)
1475 if (new[i] == NULL)
1476 new[i] = gfc_get_actual_arglist ();
1477
1478 if (na != 0)
1479 {
1480 temp = *new[0];
1481 *new[0] = *actual;
1482 *actual = temp;
1483
1484 a = new[0];
1485 new[0] = new[na];
1486 new[na] = a;
1487 }
1488
1489 for (i = 0; i < n - 1; i++)
1490 new[i]->next = new[i + 1];
1491
1492 new[i]->next = NULL;
1493
1494 if (*ap == NULL && n > 0)
1495 *ap = new[0];
1496
1600fe22
TS
1497 /* Note the types of omitted optional arguments. */
1498 for (a = actual, f = formal; a; a = a->next, f = f->next)
1499 if (a->expr == NULL && a->label == NULL)
1500 a->missing_arg_type = f->sym->ts.type;
1501
6de9cd9a
DN
1502 return 1;
1503}
1504
1505
1506typedef struct
1507{
1508 gfc_formal_arglist *f;
1509 gfc_actual_arglist *a;
1510}
1511argpair;
1512
1513/* qsort comparison function for argument pairs, with the following
1514 order:
1515 - p->a->expr == NULL
1516 - p->a->expr->expr_type != EXPR_VARIABLE
f7b529fa 1517 - growing p->a->expr->symbol. */
6de9cd9a
DN
1518
1519static int
1520pair_cmp (const void *p1, const void *p2)
1521{
1522 const gfc_actual_arglist *a1, *a2;
1523
1524 /* *p1 and *p2 are elements of the to-be-sorted array. */
1525 a1 = ((const argpair *) p1)->a;
1526 a2 = ((const argpair *) p2)->a;
1527 if (!a1->expr)
1528 {
1529 if (!a2->expr)
1530 return 0;
1531 return -1;
1532 }
1533 if (!a2->expr)
1534 return 1;
1535 if (a1->expr->expr_type != EXPR_VARIABLE)
1536 {
1537 if (a2->expr->expr_type != EXPR_VARIABLE)
1538 return 0;
1539 return -1;
1540 }
1541 if (a2->expr->expr_type != EXPR_VARIABLE)
1542 return 1;
1543 return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
1544}
1545
1546
1547/* Given two expressions from some actual arguments, test whether they
1548 refer to the same expression. The analysis is conservative.
1549 Returning FAILURE will produce no warning. */
1550
1551static try
1552compare_actual_expr (gfc_expr * e1, gfc_expr * e2)
1553{
1554 const gfc_ref *r1, *r2;
1555
1556 if (!e1 || !e2
1557 || e1->expr_type != EXPR_VARIABLE
1558 || e2->expr_type != EXPR_VARIABLE
1559 || e1->symtree->n.sym != e2->symtree->n.sym)
1560 return FAILURE;
1561
1562 /* TODO: improve comparison, see expr.c:show_ref(). */
1563 for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
1564 {
1565 if (r1->type != r2->type)
1566 return FAILURE;
1567 switch (r1->type)
1568 {
1569 case REF_ARRAY:
1570 if (r1->u.ar.type != r2->u.ar.type)
1571 return FAILURE;
1572 /* TODO: At the moment, consider only full arrays;
1573 we could do better. */
1574 if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
1575 return FAILURE;
1576 break;
1577
1578 case REF_COMPONENT:
1579 if (r1->u.c.component != r2->u.c.component)
1580 return FAILURE;
1581 break;
1582
1583 case REF_SUBSTRING:
1584 return FAILURE;
1585
1586 default:
1587 gfc_internal_error ("compare_actual_expr(): Bad component code");
1588 }
1589 }
1590 if (!r1 && !r2)
1591 return SUCCESS;
1592 return FAILURE;
1593}
1594
1595/* Given formal and actual argument lists that correspond to one
1596 another, check that identical actual arguments aren't not
1597 associated with some incompatible INTENTs. */
1598
1599static try
1600check_some_aliasing (gfc_formal_arglist * f, gfc_actual_arglist * a)
1601{
1602 sym_intent f1_intent, f2_intent;
1603 gfc_formal_arglist *f1;
1604 gfc_actual_arglist *a1;
1605 size_t n, i, j;
1606 argpair *p;
1607 try t = SUCCESS;
1608
1609 n = 0;
1610 for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
1611 {
1612 if (f1 == NULL && a1 == NULL)
1613 break;
1614 if (f1 == NULL || a1 == NULL)
1615 gfc_internal_error ("check_some_aliasing(): List mismatch");
1616 n++;
1617 }
1618 if (n == 0)
1619 return t;
1620 p = (argpair *) alloca (n * sizeof (argpair));
1621
1622 for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
1623 {
1624 p[i].f = f1;
1625 p[i].a = a1;
1626 }
1627
1628 qsort (p, n, sizeof (argpair), pair_cmp);
1629
1630 for (i = 0; i < n; i++)
1631 {
1632 if (!p[i].a->expr
1633 || p[i].a->expr->expr_type != EXPR_VARIABLE
1634 || p[i].a->expr->ts.type == BT_PROCEDURE)
1635 continue;
1636 f1_intent = p[i].f->sym->attr.intent;
1637 for (j = i + 1; j < n; j++)
1638 {
1639 /* Expected order after the sort. */
1640 if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
1641 gfc_internal_error ("check_some_aliasing(): corrupted data");
1642
1643 /* Are the expression the same? */
1644 if (compare_actual_expr (p[i].a->expr, p[j].a->expr) == FAILURE)
1645 break;
1646 f2_intent = p[j].f->sym->attr.intent;
1647 if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
1648 || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN))
1649 {
1650 gfc_warning ("Same actual argument associated with INTENT(%s) "
1651 "argument '%s' and INTENT(%s) argument '%s' at %L",
1652 gfc_intent_string (f1_intent), p[i].f->sym->name,
1653 gfc_intent_string (f2_intent), p[j].f->sym->name,
1654 &p[i].a->expr->where);
1655 t = FAILURE;
1656 }
1657 }
1658 }
1659
1660 return t;
1661}
1662
1663
1664/* Given formal and actual argument lists that correspond to one
1665 another, check that they are compatible in the sense that intents
1666 are not mismatched. */
1667
1668static try
1669check_intents (gfc_formal_arglist * f, gfc_actual_arglist * a)
1670{
1671 sym_intent a_intent, f_intent;
1672
1673 for (;; f = f->next, a = a->next)
1674 {
1675 if (f == NULL && a == NULL)
1676 break;
1677 if (f == NULL || a == NULL)
1678 gfc_internal_error ("check_intents(): List mismatch");
1679
1680 if (a->expr == NULL || a->expr->expr_type != EXPR_VARIABLE)
1681 continue;
1682
1683 a_intent = a->expr->symtree->n.sym->attr.intent;
1684 f_intent = f->sym->attr.intent;
1685
1686 if (a_intent == INTENT_IN
1687 && (f_intent == INTENT_INOUT
1688 || f_intent == INTENT_OUT))
1689 {
1690
1691 gfc_error ("Procedure argument at %L is INTENT(IN) while interface "
1692 "specifies INTENT(%s)", &a->expr->where,
1693 gfc_intent_string (f_intent));
1694 return FAILURE;
1695 }
1696
1697 if (gfc_pure (NULL) && gfc_impure_variable (a->expr->symtree->n.sym))
1698 {
1699 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
1700 {
1701 gfc_error
1702 ("Procedure argument at %L is local to a PURE procedure and "
1703 "is passed to an INTENT(%s) argument", &a->expr->where,
1704 gfc_intent_string (f_intent));
1705 return FAILURE;
1706 }
1707
1708 if (a->expr->symtree->n.sym->attr.pointer)
1709 {
1710 gfc_error
1711 ("Procedure argument at %L is local to a PURE procedure and "
1712 "has the POINTER attribute", &a->expr->where);
1713 return FAILURE;
1714 }
1715 }
1716 }
1717
1718 return SUCCESS;
1719}
1720
1721
1722/* Check how a procedure is used against its interface. If all goes
1723 well, the actual argument list will also end up being properly
1724 sorted. */
1725
1726void
1727gfc_procedure_use (gfc_symbol * sym, gfc_actual_arglist ** ap, locus * where)
1728{
c4bbc105 1729
6de9cd9a
DN
1730 /* Warn about calls with an implicit interface. */
1731 if (gfc_option.warn_implicit_interface
1732 && sym->attr.if_source == IFSRC_UNKNOWN)
1733 gfc_warning ("Procedure '%s' called with an implicit interface at %L",
1734 sym->name, where);
1735
1736 if (sym->attr.if_source == IFSRC_UNKNOWN
98cb5a54 1737 || !compare_actual_formal (ap, sym->formal, 0,
c4bbc105 1738 sym->attr.elemental, where))
6de9cd9a
DN
1739 return;
1740
1741 check_intents (sym->formal, *ap);
1742 if (gfc_option.warn_aliasing)
1743 check_some_aliasing (sym->formal, *ap);
1744}
1745
1746
1747/* Given an interface pointer and an actual argument list, search for
1748 a formal argument list that matches the actual. If found, returns
1749 a pointer to the symbol of the correct interface. Returns NULL if
1750 not found. */
1751
1752gfc_symbol *
1753gfc_search_interface (gfc_interface * intr, int sub_flag,
1754 gfc_actual_arglist ** ap)
1755{
1756 int r;
1757
1758 for (; intr; intr = intr->next)
1759 {
1760 if (sub_flag && intr->sym->attr.function)
1761 continue;
1762 if (!sub_flag && intr->sym->attr.subroutine)
1763 continue;
1764
1765 r = !intr->sym->attr.elemental;
1766
1767 if (compare_actual_formal (ap, intr->sym->formal, r, !r, NULL))
1768 {
1769 check_intents (intr->sym->formal, *ap);
1770 if (gfc_option.warn_aliasing)
1771 check_some_aliasing (intr->sym->formal, *ap);
1772 return intr->sym;
1773 }
1774 }
1775
1776 return NULL;
1777}
1778
1779
1780/* Do a brute force recursive search for a symbol. */
1781
1782static gfc_symtree *
1783find_symtree0 (gfc_symtree * root, gfc_symbol * sym)
1784{
1785 gfc_symtree * st;
1786
1787 if (root->n.sym == sym)
1788 return root;
1789
1790 st = NULL;
1791 if (root->left)
1792 st = find_symtree0 (root->left, sym);
1793 if (root->right && ! st)
1794 st = find_symtree0 (root->right, sym);
1795 return st;
1796}
1797
1798
1799/* Find a symtree for a symbol. */
1800
1801static gfc_symtree *
1802find_sym_in_symtree (gfc_symbol * sym)
1803{
1804 gfc_symtree *st;
1805 gfc_namespace *ns;
1806
1807 /* First try to find it by name. */
1808 gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
1809 if (st && st->n.sym == sym)
1810 return st;
1811
1812 /* if it's been renamed, resort to a brute-force search. */
1813 /* TODO: avoid having to do this search. If the symbol doesn't exist
1814 in the symtree for the current namespace, it should probably be added. */
1815 for (ns = gfc_current_ns; ns; ns = ns->parent)
1816 {
1817 st = find_symtree0 (ns->sym_root, sym);
1818 if (st)
1819 return st;
1820 }
1821 gfc_internal_error ("Unable to find symbol %s", sym->name);
1822 /* Not reached */
1823}
1824
1825
1826/* This subroutine is called when an expression is being resolved.
1827 The expression node in question is either a user defined operator
1f2959f0 1828 or an intrinsic operator with arguments that aren't compatible
6de9cd9a
DN
1829 with the operator. This subroutine builds an actual argument list
1830 corresponding to the operands, then searches for a compatible
1831 interface. If one is found, the expression node is replaced with
1832 the appropriate function call. */
1833
1834try
1835gfc_extend_expr (gfc_expr * e)
1836{
1837 gfc_actual_arglist *actual;
1838 gfc_symbol *sym;
1839 gfc_namespace *ns;
1840 gfc_user_op *uop;
1841 gfc_intrinsic_op i;
1842
1843 sym = NULL;
1844
1845 actual = gfc_get_actual_arglist ();
58b03ab2 1846 actual->expr = e->value.op.op1;
6de9cd9a 1847
58b03ab2 1848 if (e->value.op.op2 != NULL)
6de9cd9a
DN
1849 {
1850 actual->next = gfc_get_actual_arglist ();
58b03ab2 1851 actual->next->expr = e->value.op.op2;
6de9cd9a
DN
1852 }
1853
58b03ab2 1854 i = fold_unary (e->value.op.operator);
6de9cd9a
DN
1855
1856 if (i == INTRINSIC_USER)
1857 {
1858 for (ns = gfc_current_ns; ns; ns = ns->parent)
1859 {
58b03ab2 1860 uop = gfc_find_uop (e->value.op.uop->name, ns);
6de9cd9a
DN
1861 if (uop == NULL)
1862 continue;
1863
1864 sym = gfc_search_interface (uop->operator, 0, &actual);
1865 if (sym != NULL)
1866 break;
1867 }
1868 }
1869 else
1870 {
1871 for (ns = gfc_current_ns; ns; ns = ns->parent)
1872 {
1873 sym = gfc_search_interface (ns->operator[i], 0, &actual);
1874 if (sym != NULL)
1875 break;
1876 }
1877 }
1878
1879 if (sym == NULL)
1880 {
1881 /* Don't use gfc_free_actual_arglist() */
1882 if (actual->next != NULL)
1883 gfc_free (actual->next);
1884 gfc_free (actual);
1885
1886 return FAILURE;
1887 }
1888
1889 /* Change the expression node to a function call. */
1890 e->expr_type = EXPR_FUNCTION;
1891 e->symtree = find_sym_in_symtree (sym);
1892 e->value.function.actual = actual;
58b03ab2
TS
1893 e->value.function.esym = NULL;
1894 e->value.function.isym = NULL;
cf013e9f 1895 e->value.function.name = NULL;
6de9cd9a
DN
1896
1897 if (gfc_pure (NULL) && !gfc_pure (sym))
1898 {
1899 gfc_error
1900 ("Function '%s' called in lieu of an operator at %L must be PURE",
1901 sym->name, &e->where);
1902 return FAILURE;
1903 }
1904
1905 if (gfc_resolve_expr (e) == FAILURE)
1906 return FAILURE;
1907
1908 return SUCCESS;
1909}
1910
1911
1912/* Tries to replace an assignment code node with a subroutine call to
1913 the subroutine associated with the assignment operator. Return
1914 SUCCESS if the node was replaced. On FAILURE, no error is
1915 generated. */
1916
1917try
1918gfc_extend_assign (gfc_code * c, gfc_namespace * ns)
1919{
1920 gfc_actual_arglist *actual;
1921 gfc_expr *lhs, *rhs;
1922 gfc_symbol *sym;
1923
1924 lhs = c->expr;
1925 rhs = c->expr2;
1926
1927 /* Don't allow an intrinsic assignment to be replaced. */
1928 if (lhs->ts.type != BT_DERIVED && rhs->ts.type != BT_DERIVED
1929 && (lhs->ts.type == rhs->ts.type
1930 || (gfc_numeric_ts (&lhs->ts)
1931 && gfc_numeric_ts (&rhs->ts))))
1932 return FAILURE;
1933
1934 actual = gfc_get_actual_arglist ();
1935 actual->expr = lhs;
1936
1937 actual->next = gfc_get_actual_arglist ();
1938 actual->next->expr = rhs;
1939
1940 sym = NULL;
1941
1942 for (; ns; ns = ns->parent)
1943 {
1944 sym = gfc_search_interface (ns->operator[INTRINSIC_ASSIGN], 1, &actual);
1945 if (sym != NULL)
1946 break;
1947 }
1948
1949 if (sym == NULL)
1950 {
1951 gfc_free (actual->next);
1952 gfc_free (actual);
1953 return FAILURE;
1954 }
1955
1956 /* Replace the assignment with the call. */
476220e7 1957 c->op = EXEC_ASSIGN_CALL;
6de9cd9a
DN
1958 c->symtree = find_sym_in_symtree (sym);
1959 c->expr = NULL;
1960 c->expr2 = NULL;
1961 c->ext.actual = actual;
1962
6de9cd9a
DN
1963 return SUCCESS;
1964}
1965
1966
1967/* Make sure that the interface just parsed is not already present in
1968 the given interface list. Ambiguity isn't checked yet since module
1969 procedures can be present without interfaces. */
1970
1971static try
1972check_new_interface (gfc_interface * base, gfc_symbol * new)
1973{
1974 gfc_interface *ip;
1975
1976 for (ip = base; ip; ip = ip->next)
1977 {
1978 if (ip->sym == new)
1979 {
1980 gfc_error ("Entity '%s' at %C is already present in the interface",
1981 new->name);
1982 return FAILURE;
1983 }
1984 }
1985
1986 return SUCCESS;
1987}
1988
1989
1990/* Add a symbol to the current interface. */
1991
1992try
1993gfc_add_interface (gfc_symbol * new)
1994{
1995 gfc_interface **head, *intr;
1996 gfc_namespace *ns;
1997 gfc_symbol *sym;
1998
1999 switch (current_interface.type)
2000 {
2001 case INTERFACE_NAMELESS:
2002 return SUCCESS;
2003
2004 case INTERFACE_INTRINSIC_OP:
2005 for (ns = current_interface.ns; ns; ns = ns->parent)
2006 if (check_new_interface (ns->operator[current_interface.op], new)
2007 == FAILURE)
2008 return FAILURE;
2009
2010 head = &current_interface.ns->operator[current_interface.op];
2011 break;
2012
2013 case INTERFACE_GENERIC:
2014 for (ns = current_interface.ns; ns; ns = ns->parent)
2015 {
2016 gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
2017 if (sym == NULL)
2018 continue;
2019
2020 if (check_new_interface (sym->generic, new) == FAILURE)
2021 return FAILURE;
2022 }
2023
2024 head = &current_interface.sym->generic;
2025 break;
2026
2027 case INTERFACE_USER_OP:
2028 if (check_new_interface (current_interface.uop->operator, new) ==
2029 FAILURE)
2030 return FAILURE;
2031
2032 head = &current_interface.uop->operator;
2033 break;
2034
2035 default:
2036 gfc_internal_error ("gfc_add_interface(): Bad interface type");
2037 }
2038
2039 intr = gfc_get_interface ();
2040 intr->sym = new;
63645982 2041 intr->where = gfc_current_locus;
6de9cd9a
DN
2042
2043 intr->next = *head;
2044 *head = intr;
2045
2046 return SUCCESS;
2047}
2048
2049
2050/* Gets rid of a formal argument list. We do not free symbols.
2051 Symbols are freed when a namespace is freed. */
2052
2053void
2054gfc_free_formal_arglist (gfc_formal_arglist * p)
2055{
2056 gfc_formal_arglist *q;
2057
2058 for (; p; p = q)
2059 {
2060 q = p->next;
2061 gfc_free (p);
2062 }
2063}
This page took 1.007495 seconds and 5 git commands to generate.