]> gcc.gnu.org Git - gcc.git/blame - gcc/flow.c
jump.c (jump_optimize): Call mark_jump_label also for deleted insns.
[gcc.git] / gcc / flow.c
CommitLineData
d7429b6a 1/* Data flow analysis for GNU compiler.
6a45254e 2 Copyright (C) 1987, 88, 92-96, 1997 Free Software Foundation, Inc.
d7429b6a
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
a35311b0
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
d7429b6a
RK
20
21
22/* This file contains the data flow analysis pass of the compiler.
23 It computes data flow information
24 which tells combine_instructions which insns to consider combining
25 and controls register allocation.
26
27 Additional data flow information that is too bulky to record
28 is generated during the analysis, and is used at that time to
29 create autoincrement and autodecrement addressing.
30
31 The first step is dividing the function into basic blocks.
32 find_basic_blocks does this. Then life_analysis determines
33 where each register is live and where it is dead.
34
35 ** find_basic_blocks **
36
37 find_basic_blocks divides the current function's rtl
38 into basic blocks. It records the beginnings and ends of the
39 basic blocks in the vectors basic_block_head and basic_block_end,
40 and the number of blocks in n_basic_blocks.
41
42 find_basic_blocks also finds any unreachable loops
43 and deletes them.
44
45 ** life_analysis **
46
47 life_analysis is called immediately after find_basic_blocks.
48 It uses the basic block information to determine where each
49 hard or pseudo register is live.
50
51 ** live-register info **
52
53 The information about where each register is live is in two parts:
54 the REG_NOTES of insns, and the vector basic_block_live_at_start.
55
56 basic_block_live_at_start has an element for each basic block,
57 and the element is a bit-vector with a bit for each hard or pseudo
58 register. The bit is 1 if the register is live at the beginning
59 of the basic block.
60
61 Two types of elements can be added to an insn's REG_NOTES.
62 A REG_DEAD note is added to an insn's REG_NOTES for any register
63 that meets both of two conditions: The value in the register is not
64 needed in subsequent insns and the insn does not replace the value in
65 the register (in the case of multi-word hard registers, the value in
66 each register must be replaced by the insn to avoid a REG_DEAD note).
67
68 In the vast majority of cases, an object in a REG_DEAD note will be
69 used somewhere in the insn. The (rare) exception to this is if an
70 insn uses a multi-word hard register and only some of the registers are
71 needed in subsequent insns. In that case, REG_DEAD notes will be
72 provided for those hard registers that are not subsequently needed.
73 Partial REG_DEAD notes of this type do not occur when an insn sets
74 only some of the hard registers used in such a multi-word operand;
75 omitting REG_DEAD notes for objects stored in an insn is optional and
76 the desire to do so does not justify the complexity of the partial
77 REG_DEAD notes.
78
79 REG_UNUSED notes are added for each register that is set by the insn
80 but is unused subsequently (if every register set by the insn is unused
81 and the insn does not reference memory or have some other side-effect,
82 the insn is deleted instead). If only part of a multi-word hard
83 register is used in a subsequent insn, REG_UNUSED notes are made for
84 the parts that will not be used.
85
86 To determine which registers are live after any insn, one can
87 start from the beginning of the basic block and scan insns, noting
88 which registers are set by each insn and which die there.
89
90 ** Other actions of life_analysis **
91
92 life_analysis sets up the LOG_LINKS fields of insns because the
93 information needed to do so is readily available.
94
95 life_analysis deletes insns whose only effect is to store a value
96 that is never used.
97
98 life_analysis notices cases where a reference to a register as
99 a memory address can be combined with a preceding or following
100 incrementation or decrementation of the register. The separate
101 instruction to increment or decrement is deleted and the address
102 is changed to a POST_INC or similar rtx.
103
104 Each time an incrementing or decrementing address is created,
105 a REG_INC element is added to the insn's REG_NOTES list.
106
107 life_analysis fills in certain vectors containing information about
108 register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
109 reg_n_calls_crosses and reg_basic_block. */
110\f
d7429b6a 111#include "config.h"
e9a25f70 112#include <stdio.h>
d7429b6a
RK
113#include "rtl.h"
114#include "basic-block.h"
115#include "insn-config.h"
116#include "regs.h"
117#include "hard-reg-set.h"
118#include "flags.h"
119#include "output.h"
3d195391 120#include "except.h"
d7429b6a
RK
121
122#include "obstack.h"
123#define obstack_chunk_alloc xmalloc
124#define obstack_chunk_free free
125
7eb136d6
MM
126/* The contents of the current function definition are allocated
127 in this obstack, and all are freed at the end of the function.
128 For top-level functions, this is temporary_obstack.
129 Separate obstacks are made for nested functions. */
130
131extern struct obstack *function_obstack;
132
d7429b6a
RK
133/* List of labels that must never be deleted. */
134extern rtx forced_labels;
135
136/* Get the basic block number of an insn.
137 This info should not be expected to remain available
138 after the end of life_analysis. */
139
140/* This is the limit of the allocated space in the following two arrays. */
141
142static int max_uid_for_flow;
143
144#define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)]
145
146/* This is where the BLOCK_NUM values are really stored.
147 This is set up by find_basic_blocks and used there and in life_analysis,
148 and then freed. */
149
6ac271be 150static int *uid_block_number;
d7429b6a
RK
151
152/* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
153
154#define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
155static char *uid_volatile;
156
157/* Number of basic blocks in the current function. */
158
159int n_basic_blocks;
160
161/* Maximum register number used in this function, plus one. */
162
163int max_regno;
164
0f41302f
MS
165/* Maximum number of SCRATCH rtx's used in any basic block of this
166 function. */
d7429b6a
RK
167
168int max_scratch;
169
170/* Number of SCRATCH rtx's in the current block. */
171
172static int num_scratch;
173
b1f21e0a 174/* Indexed by n, giving various register information */
d7429b6a 175
b1f21e0a 176reg_info *reg_n_info;
d7429b6a
RK
177
178/* Element N is the next insn that uses (hard or pseudo) register number N
179 within the current basic block; or zero, if there is no such insn.
180 This is valid only during the final backward scan in propagate_block. */
181
182static rtx *reg_next_use;
183
184/* Size of a regset for the current function,
185 in (1) bytes and (2) elements. */
186
187int regset_bytes;
188int regset_size;
189
190/* Element N is first insn in basic block N.
191 This info lasts until we finish compiling the function. */
192
193rtx *basic_block_head;
194
195/* Element N is last insn in basic block N.
196 This info lasts until we finish compiling the function. */
197
198rtx *basic_block_end;
199
200/* Element N is a regset describing the registers live
201 at the start of basic block N.
202 This info lasts until we finish compiling the function. */
203
204regset *basic_block_live_at_start;
205
206/* Regset of regs live when calls to `setjmp'-like functions happen. */
207
208regset regs_live_at_setjmp;
209
210/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
211 that have to go in the same hard reg.
212 The first two regs in the list are a pair, and the next two
213 are another pair, etc. */
214rtx regs_may_share;
215
216/* Element N is nonzero if control can drop into basic block N
217 from the preceding basic block. Freed after life_analysis. */
218
219static char *basic_block_drops_in;
220
221/* Element N is depth within loops of the last insn in basic block number N.
222 Freed after life_analysis. */
223
224static short *basic_block_loop_depth;
225
226/* Element N nonzero if basic block N can actually be reached.
227 Vector exists only during find_basic_blocks. */
228
229static char *block_live_static;
230
231/* Depth within loops of basic block being scanned for lifetime analysis,
232 plus one. This is the weight attached to references to registers. */
233
234static int loop_depth;
235
236/* During propagate_block, this is non-zero if the value of CC0 is live. */
237
238static int cc0_live;
239
240/* During propagate_block, this contains the last MEM stored into. It
241 is used to eliminate consecutive stores to the same location. */
242
243static rtx last_mem_set;
244
245/* Set of registers that may be eliminable. These are handled specially
246 in updating regs_ever_live. */
247
248static HARD_REG_SET elim_reg_set;
249
250/* Forward declarations */
e658434c 251static void find_basic_blocks PROTO((rtx, rtx));
e658434c
RK
252static void mark_label_ref PROTO((rtx, rtx, int));
253static void life_analysis PROTO((rtx, int));
254void allocate_for_life_analysis PROTO((void));
67f0e213
RK
255void init_regset_vector PROTO((regset *, int, struct obstack *));
256void free_regset_vector PROTO((regset *, int));
e658434c
RK
257static void propagate_block PROTO((regset, rtx, rtx, int,
258 regset, int));
8329b5ec 259static rtx flow_delete_insn PROTO((rtx));
e658434c
RK
260static int insn_dead_p PROTO((rtx, regset, int));
261static int libcall_dead_p PROTO((rtx, regset, rtx, rtx));
262static void mark_set_regs PROTO((regset, regset, rtx,
263 rtx, regset));
264static void mark_set_1 PROTO((regset, regset, rtx,
265 rtx, regset));
1d300e19 266#ifdef AUTO_INC_DEC
e658434c 267static void find_auto_inc PROTO((regset, rtx, rtx));
e658434c
RK
268static int try_pre_increment_1 PROTO((rtx));
269static int try_pre_increment PROTO((rtx, rtx, HOST_WIDE_INT));
1d300e19
KG
270#endif
271static void mark_used_regs PROTO((regset, regset, rtx, int, rtx));
e658434c 272void dump_flow_info PROTO((FILE *));
d7429b6a
RK
273\f
274/* Find basic blocks of the current function and perform data flow analysis.
275 F is the first insn of the function and NREGS the number of register numbers
276 in use. */
277
278void
279flow_analysis (f, nregs, file)
280 rtx f;
281 int nregs;
282 FILE *file;
283{
284 register rtx insn;
285 register int i;
d7e4fe8b 286 rtx nonlocal_label_list = nonlocal_label_rtx_list ();
2c3a56ad 287 int in_libcall_block = 0;
d7429b6a
RK
288
289#ifdef ELIMINABLE_REGS
290 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
291#endif
292
293 /* Record which registers will be eliminated. We use this in
0f41302f 294 mark_used_regs. */
d7429b6a
RK
295
296 CLEAR_HARD_REG_SET (elim_reg_set);
297
298#ifdef ELIMINABLE_REGS
299 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
300 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
301#else
302 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
303#endif
304
305 /* Count the basic blocks. Also find maximum insn uid value used. */
306
307 {
308 register RTX_CODE prev_code = JUMP_INSN;
309 register RTX_CODE code;
74d7ab55 310 int eh_region = 0;
d7429b6a
RK
311
312 max_uid_for_flow = 0;
313
314 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
315 {
2c3a56ad
JL
316
317 /* Track when we are inside in LIBCALL block. */
318 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
319 && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
320 in_libcall_block = 1;
321
d7429b6a
RK
322 code = GET_CODE (insn);
323 if (INSN_UID (insn) > max_uid_for_flow)
324 max_uid_for_flow = INSN_UID (insn);
325 if (code == CODE_LABEL
d7e4fe8b
RS
326 || (GET_RTX_CLASS (code) == 'i'
327 && (prev_code == JUMP_INSN
328 || (prev_code == CALL_INSN
9b8d9d6b 329 && (nonlocal_label_list != 0 || eh_region)
2c3a56ad 330 && ! in_libcall_block)
d7e4fe8b 331 || prev_code == BARRIER)))
d7429b6a 332 i++;
8cfe18d6 333
2dd4cace 334 if (code == CALL_INSN && find_reg_note (insn, REG_RETVAL, NULL_RTX))
8cfe18d6
RK
335 code = INSN;
336
6b67ec08 337 if (code != NOTE)
d7429b6a 338 prev_code = code;
74d7ab55
JM
339 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
340 ++eh_region;
341 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
342 --eh_region;
2c3a56ad
JL
343
344 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
345 && find_reg_note (insn, REG_RETVAL, NULL_RTX))
346 in_libcall_block = 0;
d7429b6a
RK
347 }
348 }
349
350#ifdef AUTO_INC_DEC
351 /* Leave space for insns we make in some cases for auto-inc. These cases
352 are rare, so we don't need too much space. */
353 max_uid_for_flow += max_uid_for_flow / 10;
354#endif
355
356 /* Allocate some tables that last till end of compiling this function
357 and some needed only in find_basic_blocks and life_analysis. */
358
359 n_basic_blocks = i;
360 basic_block_head = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
361 basic_block_end = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
362 basic_block_drops_in = (char *) alloca (n_basic_blocks);
363 basic_block_loop_depth = (short *) alloca (n_basic_blocks * sizeof (short));
364 uid_block_number
6ac271be 365 = (int *) alloca ((max_uid_for_flow + 1) * sizeof (int));
d7429b6a
RK
366 uid_volatile = (char *) alloca (max_uid_for_flow + 1);
367 bzero (uid_volatile, max_uid_for_flow + 1);
368
d7e4fe8b 369 find_basic_blocks (f, nonlocal_label_list);
d7429b6a
RK
370 life_analysis (f, nregs);
371 if (file)
372 dump_flow_info (file);
373
374 basic_block_drops_in = 0;
375 uid_block_number = 0;
376 basic_block_loop_depth = 0;
377}
378\f
379/* Find all basic blocks of the function whose first insn is F.
380 Store the correct data in the tables that describe the basic blocks,
381 set up the chains of references for each CODE_LABEL, and
d7e4fe8b
RS
382 delete any entire basic blocks that cannot be reached.
383
384 NONLOCAL_LABEL_LIST is the same local variable from flow_analysis. */
d7429b6a
RK
385
386static void
d7e4fe8b
RS
387find_basic_blocks (f, nonlocal_label_list)
388 rtx f, nonlocal_label_list;
d7429b6a
RK
389{
390 register rtx insn;
391 register int i;
392 register char *block_live = (char *) alloca (n_basic_blocks);
393 register char *block_marked = (char *) alloca (n_basic_blocks);
2ec1535d
JL
394 /* An array of CODE_LABELs, indexed by UID for the start of the active
395 EH handler for each insn in F. */
396 rtx *active_eh_handler;
d7429b6a
RK
397 /* List of label_refs to all labels whose addresses are taken
398 and used as data. */
8329b5ec 399 rtx label_value_list;
2ec1535d 400 rtx x, note, eh_note;
e658434c 401 enum rtx_code prev_code, code;
8329b5ec 402 int depth, pass;
2c3a56ad 403 int in_libcall_block = 0;
d7429b6a 404
8329b5ec 405 pass = 1;
2ec1535d 406 active_eh_handler = (rtx *) alloca ((max_uid_for_flow + 1) * sizeof (rtx));
8329b5ec
DE
407 restart:
408
409 label_value_list = 0;
d7429b6a
RK
410 block_live_static = block_live;
411 bzero (block_live, n_basic_blocks);
412 bzero (block_marked, n_basic_blocks);
2ec1535d 413 bzero (active_eh_handler, (max_uid_for_flow + 1) * sizeof (rtx));
d7429b6a
RK
414
415 /* Initialize with just block 0 reachable and no blocks marked. */
416 if (n_basic_blocks > 0)
417 block_live[0] = 1;
418
e658434c
RK
419 /* Initialize the ref chain of each label to 0. Record where all the
420 blocks start and end and their depth in loops. For each insn, record
421 the block it is in. Also mark as reachable any blocks headed by labels
422 that must not be deleted. */
d7429b6a 423
2ec1535d 424 for (eh_note = NULL_RTX, insn = f, i = -1, prev_code = JUMP_INSN, depth = 1;
e658434c
RK
425 insn; insn = NEXT_INSN (insn))
426 {
2c3a56ad
JL
427
428 /* Track when we are inside in LIBCALL block. */
429 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
430 && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
431 in_libcall_block = 1;
432
e658434c
RK
433 code = GET_CODE (insn);
434 if (code == NOTE)
435 {
436 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
437 depth++;
438 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
439 depth--;
440 }
d7429b6a 441
e658434c
RK
442 /* A basic block starts at label, or after something that can jump. */
443 else if (code == CODE_LABEL
444 || (GET_RTX_CLASS (code) == 'i'
445 && (prev_code == JUMP_INSN
446 || (prev_code == CALL_INSN
74d7ab55 447 && (nonlocal_label_list != 0 || eh_note)
2c3a56ad 448 && ! in_libcall_block)
e658434c
RK
449 || prev_code == BARRIER)))
450 {
451 basic_block_head[++i] = insn;
452 basic_block_end[i] = insn;
453 basic_block_loop_depth[i] = depth;
454
455 if (code == CODE_LABEL)
456 {
d7429b6a
RK
457 LABEL_REFS (insn) = insn;
458 /* Any label that cannot be deleted
459 is considered to start a reachable block. */
460 if (LABEL_PRESERVE_P (insn))
461 block_live[i] = 1;
462 }
e658434c 463 }
d7429b6a 464
e658434c
RK
465 else if (GET_RTX_CLASS (code) == 'i')
466 {
467 basic_block_end[i] = insn;
468 basic_block_loop_depth[i] = depth;
42fa3cfb 469 }
e658434c 470
42fa3cfb
JW
471 if (GET_RTX_CLASS (code) == 'i')
472 {
e658434c
RK
473 /* Make a list of all labels referred to other than by jumps. */
474 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
475 if (REG_NOTE_KIND (note) == REG_LABEL)
38a448ca
RH
476 label_value_list = gen_rtx_EXPR_LIST (VOIDmode, XEXP (note, 0),
477 label_value_list);
42fa3cfb 478 }
d7429b6a 479
2ec1535d
JL
480 /* Keep a lifo list of the currently active exception handlers. */
481 if (GET_CODE (insn) == NOTE)
482 {
483 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
484 {
485 for (x = exception_handler_labels; x; x = XEXP (x, 1))
486 if (CODE_LABEL_NUMBER (XEXP (x, 0)) == NOTE_BLOCK_NUMBER (insn))
487 {
38a448ca
RH
488 eh_note = gen_rtx_EXPR_LIST (VOIDmode,
489 XEXP (x, 0), eh_note);
2ec1535d
JL
490 break;
491 }
492 if (x == NULL_RTX)
493 abort ();
494 }
495 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
496 eh_note = XEXP (eh_note, 1);
497 }
498 /* If we encounter a CALL_INSN, note which exception handler it
499 might pass control to.
500
501 If doing asynchronous exceptions, record the active EH handler
502 for every insn, since most insns can throw. */
503 else if (eh_note
504 && (asynchronous_exceptions
505 || (GET_CODE (insn) == CALL_INSN
2c3a56ad 506 && ! in_libcall_block)))
2ec1535d
JL
507 active_eh_handler[INSN_UID (insn)] = XEXP (eh_note, 0);
508
e658434c 509 BLOCK_NUM (insn) = i;
d7e4fe8b 510
6b67ec08 511 if (code != NOTE)
e658434c 512 prev_code = code;
2c3a56ad
JL
513
514 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
515 && find_reg_note (insn, REG_RETVAL, NULL_RTX))
516 in_libcall_block = 0;
e658434c
RK
517 }
518
2aec79e2
DE
519 /* During the second pass, `n_basic_blocks' is only an upper bound.
520 Only perform the sanity check for the first pass, and on the second
521 pass ensure `n_basic_blocks' is set to the correct value. */
522 if (pass == 1 && i + 1 != n_basic_blocks)
e658434c 523 abort ();
2aec79e2 524 n_basic_blocks = i + 1;
d7429b6a
RK
525
526 /* Record which basic blocks control can drop in to. */
527
e658434c
RK
528 for (i = 0; i < n_basic_blocks; i++)
529 {
530 for (insn = PREV_INSN (basic_block_head[i]);
531 insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn))
532 ;
533
534 basic_block_drops_in[i] = insn && GET_CODE (insn) != BARRIER;
535 }
d7429b6a
RK
536
537 /* Now find which basic blocks can actually be reached
538 and put all jump insns' LABEL_REFS onto the ref-chains
539 of their target labels. */
540
541 if (n_basic_blocks > 0)
542 {
543 int something_marked = 1;
8329b5ec 544 int deleted;
d7429b6a 545
d7429b6a
RK
546 /* Pass over all blocks, marking each block that is reachable
547 and has not yet been marked.
548 Keep doing this until, in one pass, no blocks have been marked.
549 Then blocks_live and blocks_marked are identical and correct.
550 In addition, all jumps actually reachable have been marked. */
551
552 while (something_marked)
553 {
554 something_marked = 0;
555 for (i = 0; i < n_basic_blocks; i++)
556 if (block_live[i] && !block_marked[i])
557 {
558 block_marked[i] = 1;
559 something_marked = 1;
560 if (i + 1 < n_basic_blocks && basic_block_drops_in[i + 1])
561 block_live[i + 1] = 1;
562 insn = basic_block_end[i];
563 if (GET_CODE (insn) == JUMP_INSN)
564 mark_label_ref (PATTERN (insn), insn, 0);
812059fe 565
2ec1535d
JL
566 /* If we have any forced labels, mark them as potentially
567 reachable from this block. */
568 for (x = forced_labels; x; x = XEXP (x, 1))
569 if (! LABEL_REF_NONLOCAL_P (x))
38a448ca 570 mark_label_ref (gen_rtx_LABEL_REF (VOIDmode, XEXP (x, 0)),
2ec1535d
JL
571 insn, 0);
572
573 /* Now scan the insns for this block, we may need to make
574 edges for some of them to various non-obvious locations
575 (exception handlers, nonlocal labels, etc). */
576 for (insn = basic_block_head[i];
577 insn != NEXT_INSN (basic_block_end[i]);
578 insn = NEXT_INSN (insn))
579 {
580 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
581 {
582
8930b063
JL
583 /* References to labels in non-jumping insns have
584 REG_LABEL notes attached to them.
585
586 This can happen for computed gotos; we don't care
587 about them here since the values are also on the
588 label_value_list and will be marked live if we find
589 a live computed goto.
590
591 This can also happen when we take the address of
592 a label to pass as an argument to __throw. Note
593 throw only uses the value to determine what handler
594 should be called -- ie the label is not used as
595 a jump target, it just marks regions in the code.
596
597 In theory we should be able to ignore the REG_LABEL
598 notes, but we have to make sure that the label and
599 associated insns aren't marked dead, so we make
600 the block in question live and create an edge from
601 this insn to the label. This is not strictly
e701eb4d 602 correct, but it is close enough for now. */
2ec1535d
JL
603 for (note = REG_NOTES (insn);
604 note;
605 note = XEXP (note, 1))
606 {
812059fe
MS
607 if (REG_NOTE_KIND (note) == REG_LABEL)
608 {
609 x = XEXP (note, 0);
610 block_live[BLOCK_NUM (x)] = 1;
38a448ca 611 mark_label_ref (gen_rtx_LABEL_REF (VOIDmode, x),
8930b063 612 insn, 0);
2ec1535d
JL
613 }
614 }
615
616 /* If this is a computed jump, then mark it as
617 reaching everything on the label_value_list
618 and forced_labels list. */
619 if (computed_jump_p (insn))
620 {
621 for (x = label_value_list; x; x = XEXP (x, 1))
38a448ca
RH
622 mark_label_ref (gen_rtx_LABEL_REF (VOIDmode,
623 XEXP (x, 0)),
2ec1535d
JL
624 insn, 0);
625
626 for (x = forced_labels; x; x = XEXP (x, 1))
38a448ca
RH
627 mark_label_ref (gen_rtx_LABEL_REF (VOIDmode,
628 XEXP (x, 0)),
2ec1535d
JL
629 insn, 0);
630 }
631
632 /* If this is a CALL_INSN, then mark it as reaching
633 the active EH handler for this CALL_INSN. If
634 we're handling asynchronous exceptions mark every
635 insn as reaching the active EH handler.
636
637 Also mark the CALL_INSN as reaching any nonlocal
638 goto sites. */
639 else if (asynchronous_exceptions
640 || (GET_CODE (insn) == CALL_INSN
641 && ! find_reg_note (insn, REG_RETVAL,
642 NULL_RTX)))
643 {
644 if (active_eh_handler[INSN_UID (insn)])
38a448ca
RH
645 mark_label_ref (gen_rtx_LABEL_REF (VOIDmode,
646 active_eh_handler[INSN_UID (insn)]),
2ec1535d
JL
647 insn, 0);
648
649 if (!asynchronous_exceptions)
650 {
651 for (x = nonlocal_label_list;
652 x;
653 x = XEXP (x, 1))
38a448ca
RH
654 mark_label_ref (gen_rtx_LABEL_REF (VOIDmode,
655 XEXP (x, 0)),
2ec1535d 656 insn, 0);
812059fe 657 }
2ec1535d
JL
658 /* ??? This could be made smarter:
659 in some cases it's possible to tell that
660 certain calls will not do a nonlocal goto.
661
662 For example, if the nested functions that
663 do the nonlocal gotos do not have their
664 addresses taken, then only calls to those
665 functions or to other nested functions that
666 use them could possibly do nonlocal gotos. */
667 }
668 }
669 }
d7429b6a
RK
670 }
671 }
672
2ec1535d
JL
673 /* This should never happen. If it does that means we've computed an
674 incorrect flow graph, which can lead to aborts/crashes later in the
675 compiler or incorrect code generation.
af14ce9c 676
2ec1535d
JL
677 We used to try and continue here, but that's just asking for trouble
678 later during the compile or at runtime. It's easier to debug the
679 problem here than later! */
af14ce9c
RK
680 for (i = 1; i < n_basic_blocks; i++)
681 if (block_live[i] && ! basic_block_drops_in[i]
682 && GET_CODE (basic_block_head[i]) == CODE_LABEL
683 && LABEL_REFS (basic_block_head[i]) == basic_block_head[i])
2ec1535d 684 abort ();
af14ce9c 685
d7429b6a
RK
686 /* Now delete the code for any basic blocks that can't be reached.
687 They can occur because jump_optimize does not recognize
688 unreachable loops as unreachable. */
689
8329b5ec 690 deleted = 0;
d7429b6a
RK
691 for (i = 0; i < n_basic_blocks; i++)
692 if (!block_live[i])
693 {
8329b5ec
DE
694 deleted++;
695
696 /* Delete the insns in a (non-live) block. We physically delete
697 every non-note insn except the start and end (so
698 basic_block_head/end needn't be updated), we turn the latter
699 into NOTE_INSN_DELETED notes.
700 We use to "delete" the insns by turning them into notes, but
701 we may be deleting lots of insns that subsequent passes would
702 otherwise have to process. Secondly, lots of deleted blocks in
703 a row can really slow down propagate_block since it will
704 otherwise process insn-turned-notes multiple times when it
705 looks for loop begin/end notes. */
706 if (basic_block_head[i] != basic_block_end[i])
707 {
49b6c81e
DE
708 /* It would be quicker to delete all of these with a single
709 unchaining, rather than one at a time, but we need to keep
710 the NOTE's. */
8329b5ec
DE
711 insn = NEXT_INSN (basic_block_head[i]);
712 while (insn != basic_block_end[i])
713 {
714 if (GET_CODE (insn) == BARRIER)
715 abort ();
716 else if (GET_CODE (insn) != NOTE)
717 insn = flow_delete_insn (insn);
718 else
719 insn = NEXT_INSN (insn);
720 }
721 }
d7429b6a 722 insn = basic_block_head[i];
8329b5ec 723 if (GET_CODE (insn) != NOTE)
d7429b6a 724 {
8329b5ec 725 /* Turn the head into a deleted insn note. */
d7429b6a
RK
726 if (GET_CODE (insn) == BARRIER)
727 abort ();
f8671389
JL
728
729 /* If the head of this block is a CODE_LABEL, then it might
730 be the label for an exception handler which can't be
731 reached.
732
733 We need to remove the label from the exception_handler_label
734 list and remove the associated NOTE_EH_REGION_BEG and
735 NOTE_EH_REGION_END notes. */
736 if (GET_CODE (insn) == CODE_LABEL)
737 {
738 rtx x, *prev = &exception_handler_labels;
739
740 for (x = exception_handler_labels; x; x = XEXP (x, 1))
741 {
742 if (XEXP (x, 0) == insn)
743 {
744 /* Found a match, splice this label out of the
745 EH label list. */
746 *prev = XEXP (x, 1);
747 XEXP (x, 1) = NULL_RTX;
748 XEXP (x, 0) = NULL_RTX;
749
750 /* Now we have to find the EH_BEG and EH_END notes
751 associated with this label and remove them. */
752
753 for (x = get_insns (); x; x = NEXT_INSN (x))
754 {
755 if (GET_CODE (x) == NOTE
756 && ((NOTE_LINE_NUMBER (x)
757 == NOTE_INSN_EH_REGION_BEG)
758 || (NOTE_LINE_NUMBER (x)
759 == NOTE_INSN_EH_REGION_END))
760 && (NOTE_BLOCK_NUMBER (x)
761 == CODE_LABEL_NUMBER (insn)))
762 {
763 NOTE_LINE_NUMBER (x) = NOTE_INSN_DELETED;
764 NOTE_SOURCE_FILE (x) = 0;
765 }
766 }
767 break;
768 }
769 prev = &XEXP (x, 1);
770 }
771 }
772
8329b5ec
DE
773 PUT_CODE (insn, NOTE);
774 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
775 NOTE_SOURCE_FILE (insn) = 0;
776 }
777 insn = basic_block_end[i];
778 if (GET_CODE (insn) != NOTE)
779 {
780 /* Turn the tail into a deleted insn note. */
781 if (GET_CODE (insn) == BARRIER)
782 abort ();
783 PUT_CODE (insn, NOTE);
784 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
785 NOTE_SOURCE_FILE (insn) = 0;
d7429b6a 786 }
8329b5ec
DE
787 /* BARRIERs are between basic blocks, not part of one.
788 Delete a BARRIER if the preceding jump is deleted.
789 We cannot alter a BARRIER into a NOTE
790 because it is too short; but we can really delete
791 it because it is not part of a basic block. */
792 if (NEXT_INSN (insn) != 0
793 && GET_CODE (NEXT_INSN (insn)) == BARRIER)
794 delete_insn (NEXT_INSN (insn));
795
d7429b6a
RK
796 /* Each time we delete some basic blocks,
797 see if there is a jump around them that is
798 being turned into a no-op. If so, delete it. */
799
800 if (block_live[i - 1])
801 {
802 register int j;
8329b5ec 803 for (j = i + 1; j < n_basic_blocks; j++)
d7429b6a
RK
804 if (block_live[j])
805 {
806 rtx label;
807 insn = basic_block_end[i - 1];
808 if (GET_CODE (insn) == JUMP_INSN
809 /* An unconditional jump is the only possibility
810 we must check for, since a conditional one
811 would make these blocks live. */
812 && simplejump_p (insn)
813 && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
814 && INSN_UID (label) != 0
815 && BLOCK_NUM (label) == j)
816 {
817 PUT_CODE (insn, NOTE);
818 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
819 NOTE_SOURCE_FILE (insn) = 0;
820 if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
821 abort ();
822 delete_insn (NEXT_INSN (insn));
823 }
824 break;
825 }
826 }
827 }
8329b5ec 828
9faa82d8 829 /* There are pathological cases where one function calling hundreds of
8329b5ec
DE
830 nested inline functions can generate lots and lots of unreachable
831 blocks that jump can't delete. Since we don't use sparse matrices
832 a lot of memory will be needed to compile such functions.
833 Implementing sparse matrices is a fair bit of work and it is not
834 clear that they win more than they lose (we don't want to
835 unnecessarily slow down compilation of normal code). By making
9faa82d8 836 another pass for the pathological case, we can greatly speed up
8329b5ec
DE
837 their compilation without hurting normal code. This works because
838 all the insns in the unreachable blocks have either been deleted or
49b6c81e
DE
839 turned into notes.
840 Note that we're talking about reducing memory usage by 10's of
841 megabytes and reducing compilation time by several minutes. */
8329b5ec
DE
842 /* ??? The choice of when to make another pass is a bit arbitrary,
843 and was derived from empirical data. */
844 if (pass == 1
49b6c81e 845 && deleted > 200)
8329b5ec
DE
846 {
847 pass++;
848 n_basic_blocks -= deleted;
2aec79e2
DE
849 /* `n_basic_blocks' may not be correct at this point: two previously
850 separate blocks may now be merged. That's ok though as we
851 recalculate it during the second pass. It certainly can't be
852 any larger than the current value. */
8329b5ec
DE
853 goto restart;
854 }
d7429b6a
RK
855 }
856}
857\f
8329b5ec
DE
858/* Subroutines of find_basic_blocks. */
859
d7429b6a
RK
860/* Check expression X for label references;
861 if one is found, add INSN to the label's chain of references.
862
863 CHECKDUP means check for and avoid creating duplicate references
864 from the same insn. Such duplicates do no serious harm but
865 can slow life analysis. CHECKDUP is set only when duplicates
866 are likely. */
867
868static void
869mark_label_ref (x, insn, checkdup)
870 rtx x, insn;
871 int checkdup;
872{
873 register RTX_CODE code;
874 register int i;
875 register char *fmt;
876
877 /* We can be called with NULL when scanning label_value_list. */
878 if (x == 0)
879 return;
880
881 code = GET_CODE (x);
882 if (code == LABEL_REF)
883 {
884 register rtx label = XEXP (x, 0);
885 register rtx y;
886 if (GET_CODE (label) != CODE_LABEL)
887 abort ();
888 /* If the label was never emitted, this insn is junk,
889 but avoid a crash trying to refer to BLOCK_NUM (label).
890 This can happen as a result of a syntax error
891 and a diagnostic has already been printed. */
892 if (INSN_UID (label) == 0)
893 return;
894 CONTAINING_INSN (x) = insn;
895 /* if CHECKDUP is set, check for duplicate ref from same insn
896 and don't insert. */
897 if (checkdup)
898 for (y = LABEL_REFS (label); y != label; y = LABEL_NEXTREF (y))
899 if (CONTAINING_INSN (y) == insn)
900 return;
901 LABEL_NEXTREF (x) = LABEL_REFS (label);
902 LABEL_REFS (label) = x;
903 block_live_static[BLOCK_NUM (label)] = 1;
904 return;
905 }
906
907 fmt = GET_RTX_FORMAT (code);
908 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
909 {
910 if (fmt[i] == 'e')
911 mark_label_ref (XEXP (x, i), insn, 0);
912 if (fmt[i] == 'E')
913 {
914 register int j;
915 for (j = 0; j < XVECLEN (x, i); j++)
916 mark_label_ref (XVECEXP (x, i, j), insn, 1);
917 }
918 }
919}
8329b5ec
DE
920
921/* Delete INSN by patching it out.
922 Return the next insn. */
923
924static rtx
925flow_delete_insn (insn)
926 rtx insn;
927{
928 /* ??? For the moment we assume we don't have to watch for NULLs here
929 since the start/end of basic blocks aren't deleted like this. */
930 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
931 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
932 return NEXT_INSN (insn);
933}
d7429b6a
RK
934\f
935/* Determine which registers are live at the start of each
936 basic block of the function whose first insn is F.
937 NREGS is the number of registers used in F.
938 We allocate the vector basic_block_live_at_start
939 and the regsets that it points to, and fill them with the data.
940 regset_size and regset_bytes are also set here. */
941
942static void
943life_analysis (f, nregs)
944 rtx f;
945 int nregs;
946{
d7429b6a
RK
947 int first_pass;
948 int changed;
949 /* For each basic block, a bitmask of regs
950 live on exit from the block. */
951 regset *basic_block_live_at_end;
952 /* For each basic block, a bitmask of regs
953 live on entry to a successor-block of this block.
954 If this does not match basic_block_live_at_end,
955 that must be updated, and the block must be rescanned. */
956 regset *basic_block_new_live_at_end;
957 /* For each basic block, a bitmask of regs
958 whose liveness at the end of the basic block
959 can make a difference in which regs are live on entry to the block.
960 These are the regs that are set within the basic block,
961 possibly excluding those that are used after they are set. */
962 regset *basic_block_significant;
963 register int i;
964 rtx insn;
965
966 struct obstack flow_obstack;
967
968 gcc_obstack_init (&flow_obstack);
969
970 max_regno = nregs;
971
972 bzero (regs_ever_live, sizeof regs_ever_live);
973
974 /* Allocate and zero out many data structures
975 that will record the data from lifetime analysis. */
976
977 allocate_for_life_analysis ();
978
979 reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
4c9a05bc 980 bzero ((char *) reg_next_use, nregs * sizeof (rtx));
d7429b6a
RK
981
982 /* Set up several regset-vectors used internally within this function.
983 Their meanings are documented above, with their declarations. */
984
4c9a05bc
RK
985 basic_block_live_at_end
986 = (regset *) alloca (n_basic_blocks * sizeof (regset));
987
d7429b6a
RK
988 /* Don't use alloca since that leads to a crash rather than an error message
989 if there isn't enough space.
990 Don't use oballoc since we may need to allocate other things during
991 this function on the temporary obstack. */
67f0e213 992 init_regset_vector (basic_block_live_at_end, n_basic_blocks, &flow_obstack);
d7429b6a 993
4c9a05bc
RK
994 basic_block_new_live_at_end
995 = (regset *) alloca (n_basic_blocks * sizeof (regset));
67f0e213 996 init_regset_vector (basic_block_new_live_at_end, n_basic_blocks,
7eb136d6 997 &flow_obstack);
d7429b6a 998
4c9a05bc
RK
999 basic_block_significant
1000 = (regset *) alloca (n_basic_blocks * sizeof (regset));
67f0e213 1001 init_regset_vector (basic_block_significant, n_basic_blocks, &flow_obstack);
d7429b6a
RK
1002
1003 /* Record which insns refer to any volatile memory
1004 or for any reason can't be deleted just because they are dead stores.
0f41302f 1005 Also, delete any insns that copy a register to itself. */
d7429b6a
RK
1006
1007 for (insn = f; insn; insn = NEXT_INSN (insn))
1008 {
1009 enum rtx_code code1 = GET_CODE (insn);
1010 if (code1 == CALL_INSN)
1011 INSN_VOLATILE (insn) = 1;
1012 else if (code1 == INSN || code1 == JUMP_INSN)
1013 {
1014 /* Delete (in effect) any obvious no-op moves. */
1015 if (GET_CODE (PATTERN (insn)) == SET
1016 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
1017 && GET_CODE (SET_SRC (PATTERN (insn))) == REG
db3cf6fb
MS
1018 && (REGNO (SET_DEST (PATTERN (insn)))
1019 == REGNO (SET_SRC (PATTERN (insn))))
d7429b6a 1020 /* Insns carrying these notes are useful later on. */
5f4f0e22 1021 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
d7429b6a
RK
1022 {
1023 PUT_CODE (insn, NOTE);
1024 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1025 NOTE_SOURCE_FILE (insn) = 0;
1026 }
ac684a20
JL
1027 /* Delete (in effect) any obvious no-op moves. */
1028 else if (GET_CODE (PATTERN (insn)) == SET
1029 && GET_CODE (SET_DEST (PATTERN (insn))) == SUBREG
1030 && GET_CODE (SUBREG_REG (SET_DEST (PATTERN (insn)))) == REG
1031 && GET_CODE (SET_SRC (PATTERN (insn))) == SUBREG
1032 && GET_CODE (SUBREG_REG (SET_SRC (PATTERN (insn)))) == REG
db3cf6fb
MS
1033 && (REGNO (SUBREG_REG (SET_DEST (PATTERN (insn))))
1034 == REGNO (SUBREG_REG (SET_SRC (PATTERN (insn)))))
ac684a20
JL
1035 && SUBREG_WORD (SET_DEST (PATTERN (insn))) ==
1036 SUBREG_WORD (SET_SRC (PATTERN (insn)))
1037 /* Insns carrying these notes are useful later on. */
1038 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
1039 {
1040 PUT_CODE (insn, NOTE);
1041 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1042 NOTE_SOURCE_FILE (insn) = 0;
1043 }
d7429b6a
RK
1044 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1045 {
1046 /* If nothing but SETs of registers to themselves,
1047 this insn can also be deleted. */
1048 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1049 {
1050 rtx tem = XVECEXP (PATTERN (insn), 0, i);
1051
1052 if (GET_CODE (tem) == USE
1053 || GET_CODE (tem) == CLOBBER)
1054 continue;
1055
1056 if (GET_CODE (tem) != SET
1057 || GET_CODE (SET_DEST (tem)) != REG
1058 || GET_CODE (SET_SRC (tem)) != REG
1059 || REGNO (SET_DEST (tem)) != REGNO (SET_SRC (tem)))
1060 break;
1061 }
1062
1063 if (i == XVECLEN (PATTERN (insn), 0)
1064 /* Insns carrying these notes are useful later on. */
5f4f0e22 1065 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
d7429b6a
RK
1066 {
1067 PUT_CODE (insn, NOTE);
1068 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1069 NOTE_SOURCE_FILE (insn) = 0;
1070 }
1071 else
1072 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
1073 }
1074 else if (GET_CODE (PATTERN (insn)) != USE)
1075 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
1076 /* A SET that makes space on the stack cannot be dead.
1077 (Such SETs occur only for allocating variable-size data,
1078 so they will always have a PLUS or MINUS according to the
1079 direction of stack growth.)
1080 Even if this function never uses this stack pointer value,
1081 signal handlers do! */
1082 else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
1083 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1084#ifdef STACK_GROWS_DOWNWARD
1085 && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
1086#else
1087 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1088#endif
1089 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
1090 INSN_VOLATILE (insn) = 1;
1091 }
1092 }
1093
1094 if (n_basic_blocks > 0)
1095#ifdef EXIT_IGNORE_STACK
1096 if (! EXIT_IGNORE_STACK
0200b5ed
JL
1097 || (! FRAME_POINTER_REQUIRED
1098 && ! current_function_calls_alloca
1099 && flag_omit_frame_pointer))
d7429b6a
RK
1100#endif
1101 {
1102 /* If exiting needs the right stack value,
1103 consider the stack pointer live at the end of the function. */
916b1701
MM
1104 SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
1105 STACK_POINTER_REGNUM);
1106 SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
1107 STACK_POINTER_REGNUM);
d7429b6a
RK
1108 }
1109
fe0f9c4b
RK
1110 /* Mark the frame pointer is needed at the end of the function. If
1111 we end up eliminating it, it will be removed from the live list
1112 of each basic block by reload. */
1113
1114 if (n_basic_blocks > 0)
1115 {
916b1701
MM
1116 SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
1117 FRAME_POINTER_REGNUM);
1118 SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
1119 FRAME_POINTER_REGNUM);
73a187c1
DE
1120#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1121 /* If they are different, also mark the hard frame pointer as live */
916b1701
MM
1122 SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
1123 HARD_FRAME_POINTER_REGNUM);
1124 SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
1125 HARD_FRAME_POINTER_REGNUM);
73a187c1 1126#endif
fe0f9c4b
RK
1127 }
1128
632c9d9e
MS
1129 /* Mark all global registers and all registers used by the epilogue
1130 as being live at the end of the function since they may be
1131 referenced by our caller. */
d7429b6a
RK
1132
1133 if (n_basic_blocks > 0)
1134 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
632c9d9e
MS
1135 if (global_regs[i]
1136#ifdef EPILOGUE_USES
1137 || EPILOGUE_USES (i)
1138#endif
1139 )
d7429b6a 1140 {
916b1701
MM
1141 SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1], i);
1142 SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1], i);
d7429b6a
RK
1143 }
1144
1145 /* Propagate life info through the basic blocks
1146 around the graph of basic blocks.
1147
1148 This is a relaxation process: each time a new register
1149 is live at the end of the basic block, we must scan the block
1150 to determine which registers are, as a consequence, live at the beginning
1151 of that block. These registers must then be marked live at the ends
1152 of all the blocks that can transfer control to that block.
1153 The process continues until it reaches a fixed point. */
1154
1155 first_pass = 1;
1156 changed = 1;
1157 while (changed)
1158 {
1159 changed = 0;
1160 for (i = n_basic_blocks - 1; i >= 0; i--)
1161 {
1162 int consider = first_pass;
1163 int must_rescan = first_pass;
1164 register int j;
1165
1166 if (!first_pass)
1167 {
1168 /* Set CONSIDER if this block needs thinking about at all
1169 (that is, if the regs live now at the end of it
1170 are not the same as were live at the end of it when
1171 we last thought about it).
1172 Set must_rescan if it needs to be thought about
1173 instruction by instruction (that is, if any additional
1174 reg that is live at the end now but was not live there before
1175 is one of the significant regs of this basic block). */
1176
b5835272
RK
1177 EXECUTE_IF_AND_COMPL_IN_REG_SET
1178 (basic_block_new_live_at_end[i],
1179 basic_block_live_at_end[i], 0, j,
1180 {
1181 consider = 1;
1182 if (REGNO_REG_SET_P (basic_block_significant[i], j))
1183 {
1184 must_rescan = 1;
1185 goto done;
1186 }
1187 });
916b1701 1188 done:
d7429b6a
RK
1189 if (! consider)
1190 continue;
1191 }
1192
1193 /* The live_at_start of this block may be changing,
1194 so another pass will be required after this one. */
1195 changed = 1;
1196
1197 if (! must_rescan)
1198 {
1199 /* No complete rescan needed;
1200 just record those variables newly known live at end
1201 as live at start as well. */
916b1701
MM
1202 IOR_AND_COMPL_REG_SET (basic_block_live_at_start[i],
1203 basic_block_new_live_at_end[i],
1204 basic_block_live_at_end[i]);
1205
1206 IOR_AND_COMPL_REG_SET (basic_block_live_at_end[i],
1207 basic_block_new_live_at_end[i],
1208 basic_block_live_at_end[i]);
d7429b6a
RK
1209 }
1210 else
1211 {
1212 /* Update the basic_block_live_at_start
1213 by propagation backwards through the block. */
916b1701
MM
1214 COPY_REG_SET (basic_block_live_at_end[i],
1215 basic_block_new_live_at_end[i]);
1216 COPY_REG_SET (basic_block_live_at_start[i],
1217 basic_block_live_at_end[i]);
d7429b6a
RK
1218 propagate_block (basic_block_live_at_start[i],
1219 basic_block_head[i], basic_block_end[i], 0,
5f4f0e22
CH
1220 first_pass ? basic_block_significant[i]
1221 : (regset) 0,
d7429b6a
RK
1222 i);
1223 }
1224
1225 {
1226 register rtx jump, head;
af14ce9c 1227
d7429b6a
RK
1228 /* Update the basic_block_new_live_at_end's of the block
1229 that falls through into this one (if any). */
1230 head = basic_block_head[i];
d7429b6a 1231 if (basic_block_drops_in[i])
916b1701
MM
1232 IOR_REG_SET (basic_block_new_live_at_end[i-1],
1233 basic_block_live_at_start[i]);
af14ce9c 1234
d7429b6a
RK
1235 /* Update the basic_block_new_live_at_end's of
1236 all the blocks that jump to this one. */
1237 if (GET_CODE (head) == CODE_LABEL)
1238 for (jump = LABEL_REFS (head);
1239 jump != head;
1240 jump = LABEL_NEXTREF (jump))
1241 {
1242 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
916b1701
MM
1243 IOR_REG_SET (basic_block_new_live_at_end[from_block],
1244 basic_block_live_at_start[i]);
d7429b6a
RK
1245 }
1246 }
1247#ifdef USE_C_ALLOCA
1248 alloca (0);
1249#endif
1250 }
1251 first_pass = 0;
1252 }
1253
1254 /* The only pseudos that are live at the beginning of the function are
1255 those that were not set anywhere in the function. local-alloc doesn't
1256 know how to handle these correctly, so mark them as not local to any
1257 one basic block. */
1258
1259 if (n_basic_blocks > 0)
916b1701
MM
1260 EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[0],
1261 FIRST_PSEUDO_REGISTER, i,
1262 {
1263 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
1264 });
d7429b6a
RK
1265
1266 /* Now the life information is accurate.
1267 Make one more pass over each basic block
1268 to delete dead stores, create autoincrement addressing
1269 and record how many times each register is used, is set, or dies.
1270
1271 To save time, we operate directly in basic_block_live_at_end[i],
1272 thus destroying it (in fact, converting it into a copy of
1273 basic_block_live_at_start[i]). This is ok now because
1274 basic_block_live_at_end[i] is no longer used past this point. */
1275
1276 max_scratch = 0;
1277
1278 for (i = 0; i < n_basic_blocks; i++)
1279 {
1280 propagate_block (basic_block_live_at_end[i],
5f4f0e22
CH
1281 basic_block_head[i], basic_block_end[i], 1,
1282 (regset) 0, i);
d7429b6a
RK
1283#ifdef USE_C_ALLOCA
1284 alloca (0);
1285#endif
1286 }
1287
1288#if 0
1289 /* Something live during a setjmp should not be put in a register
1290 on certain machines which restore regs from stack frames
1291 rather than from the jmpbuf.
1292 But we don't need to do this for the user's variables, since
1293 ANSI says only volatile variables need this. */
1294#ifdef LONGJMP_RESTORE_FROM_STACK
916b1701
MM
1295 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
1296 FIRST_PSEUDO_REGISTER, i,
1297 {
1298 if (regno_reg_rtx[i] != 0
1299 && ! REG_USERVAR_P (regno_reg_rtx[i]))
1300 {
1301 REG_LIVE_LENGTH (i) = -1;
1302 REG_BASIC_BLOCK (i) = -1;
1303 }
1304 });
d7429b6a
RK
1305#endif
1306#endif
1307
1308 /* We have a problem with any pseudoreg that
1309 lives across the setjmp. ANSI says that if a
1310 user variable does not change in value
1311 between the setjmp and the longjmp, then the longjmp preserves it.
1312 This includes longjmp from a place where the pseudo appears dead.
1313 (In principle, the value still exists if it is in scope.)
1314 If the pseudo goes in a hard reg, some other value may occupy
1315 that hard reg where this pseudo is dead, thus clobbering the pseudo.
1316 Conclusion: such a pseudo must not go in a hard reg. */
916b1701
MM
1317 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
1318 FIRST_PSEUDO_REGISTER, i,
1319 {
1320 if (regno_reg_rtx[i] != 0)
1321 {
1322 REG_LIVE_LENGTH (i) = -1;
1323 REG_BASIC_BLOCK (i) = -1;
1324 }
1325 });
d7429b6a 1326
67f0e213
RK
1327
1328 free_regset_vector (basic_block_live_at_end, n_basic_blocks);
1329 free_regset_vector (basic_block_new_live_at_end, n_basic_blocks);
1330 free_regset_vector (basic_block_significant, n_basic_blocks);
1331 basic_block_live_at_end = (regset *)0;
1332 basic_block_new_live_at_end = (regset *)0;
1333 basic_block_significant = (regset *)0;
1334
5f4f0e22 1335 obstack_free (&flow_obstack, NULL_PTR);
d7429b6a
RK
1336}
1337\f
1338/* Subroutines of life analysis. */
1339
1340/* Allocate the permanent data structures that represent the results
1341 of life analysis. Not static since used also for stupid life analysis. */
1342
1343void
1344allocate_for_life_analysis ()
1345{
1346 register int i;
d7429b6a 1347
67f0e213
RK
1348 /* Recalculate the register space, in case it has grown. Old style
1349 vector oriented regsets would set regset_{size,bytes} here also. */
1350 allocate_reg_info (max_regno, FALSE, FALSE);
d7429b6a 1351
b1f21e0a
MM
1352 /* Because both reg_scan and flow_analysis want to set up the REG_N_SETS
1353 information, explicitly reset it here. The allocation should have
1354 already happened on the previous reg_scan pass. Make sure in case
1355 some more registers were allocated. */
d7429b6a 1356 for (i = 0; i < max_regno; i++)
b1f21e0a 1357 REG_N_SETS (i) = 0;
d7429b6a 1358
4c9a05bc
RK
1359 basic_block_live_at_start
1360 = (regset *) oballoc (n_basic_blocks * sizeof (regset));
67f0e213 1361 init_regset_vector (basic_block_live_at_start, n_basic_blocks,
7eb136d6 1362 function_obstack);
d7429b6a 1363
7eb136d6
MM
1364 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (function_obstack);
1365 CLEAR_REG_SET (regs_live_at_setjmp);
d7429b6a
RK
1366}
1367
67f0e213
RK
1368/* Make each element of VECTOR point at a regset. The vector has
1369 NELTS elements, and space is allocated from the ALLOC_OBSTACK
1370 obstack. */
d7429b6a 1371
67f0e213
RK
1372void
1373init_regset_vector (vector, nelts, alloc_obstack)
d7429b6a 1374 regset *vector;
d7429b6a 1375 int nelts;
7eb136d6 1376 struct obstack *alloc_obstack;
d7429b6a
RK
1377{
1378 register int i;
d7429b6a
RK
1379
1380 for (i = 0; i < nelts; i++)
1381 {
7eb136d6
MM
1382 vector[i] = OBSTACK_ALLOC_REG_SET (alloc_obstack);
1383 CLEAR_REG_SET (vector[i]);
d7429b6a
RK
1384 }
1385}
e658434c 1386
67f0e213
RK
1387/* Release any additional space allocated for each element of VECTOR point
1388 other than the regset header itself. The vector has NELTS elements. */
1389
1390void
1391free_regset_vector (vector, nelts)
1392 regset *vector;
1393 int nelts;
1394{
1395 register int i;
1396
1397 for (i = 0; i < nelts; i++)
1398 FREE_REG_SET (vector[i]);
1399}
1400
d7429b6a
RK
1401/* Compute the registers live at the beginning of a basic block
1402 from those live at the end.
1403
1404 When called, OLD contains those live at the end.
1405 On return, it contains those live at the beginning.
1406 FIRST and LAST are the first and last insns of the basic block.
1407
1408 FINAL is nonzero if we are doing the final pass which is not
1409 for computing the life info (since that has already been done)
1410 but for acting on it. On this pass, we delete dead stores,
1411 set up the logical links and dead-variables lists of instructions,
1412 and merge instructions for autoincrement and autodecrement addresses.
1413
1414 SIGNIFICANT is nonzero only the first time for each basic block.
1415 If it is nonzero, it points to a regset in which we store
1416 a 1 for each register that is set within the block.
1417
1418 BNUM is the number of the basic block. */
1419
1420static void
1421propagate_block (old, first, last, final, significant, bnum)
1422 register regset old;
1423 rtx first;
1424 rtx last;
1425 int final;
1426 regset significant;
1427 int bnum;
1428{
1429 register rtx insn;
1430 rtx prev;
1431 regset live;
1432 regset dead;
1433
1434 /* The following variables are used only if FINAL is nonzero. */
1435 /* This vector gets one element for each reg that has been live
1436 at any point in the basic block that has been scanned so far.
916b1701
MM
1437 SOMETIMES_MAX says how many elements are in use so far. */
1438 register int *regs_sometimes_live;
d7429b6a
RK
1439 int sometimes_max = 0;
1440 /* This regset has 1 for each reg that we have seen live so far.
1441 It and REGS_SOMETIMES_LIVE are updated together. */
1442 regset maxlive;
1443
1444 /* The loop depth may change in the middle of a basic block. Since we
1445 scan from end to beginning, we start with the depth at the end of the
1446 current basic block, and adjust as we pass ends and starts of loops. */
1447 loop_depth = basic_block_loop_depth[bnum];
1448
7eb136d6
MM
1449 dead = ALLOCA_REG_SET ();
1450 live = ALLOCA_REG_SET ();
d7429b6a
RK
1451
1452 cc0_live = 0;
1453 last_mem_set = 0;
1454
1455 /* Include any notes at the end of the block in the scan.
1456 This is in case the block ends with a call to setjmp. */
1457
1458 while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
1459 {
1460 /* Look for loop boundaries, we are going forward here. */
1461 last = NEXT_INSN (last);
1462 if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG)
1463 loop_depth++;
1464 else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END)
1465 loop_depth--;
1466 }
1467
1468 if (final)
1469 {
916b1701 1470 register int i;
d7429b6a
RK
1471
1472 num_scratch = 0;
7eb136d6 1473 maxlive = ALLOCA_REG_SET ();
916b1701
MM
1474 COPY_REG_SET (maxlive, old);
1475 regs_sometimes_live = (int *) alloca (max_regno * sizeof (int));
d7429b6a
RK
1476
1477 /* Process the regs live at the end of the block.
1478 Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
916b1701
MM
1479 Also mark them as not local to any one basic block. */
1480 EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
1481 {
1482 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
1483 regs_sometimes_live[sometimes_max] = i;
1484 sometimes_max++;
1485 });
d7429b6a
RK
1486 }
1487
1488 /* Scan the block an insn at a time from end to beginning. */
1489
1490 for (insn = last; ; insn = prev)
1491 {
1492 prev = PREV_INSN (insn);
1493
8329b5ec 1494 if (GET_CODE (insn) == NOTE)
d7429b6a 1495 {
8329b5ec
DE
1496 /* Look for loop boundaries, remembering that we are going
1497 backwards. */
1498 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1499 loop_depth++;
1500 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1501 loop_depth--;
1502
1503 /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
1504 Abort now rather than setting register status incorrectly. */
1505 if (loop_depth == 0)
1506 abort ();
1507
1508 /* If this is a call to `setjmp' et al,
1509 warn if any non-volatile datum is live. */
1510
1511 if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
916b1701 1512 IOR_REG_SET (regs_live_at_setjmp, old);
d7429b6a
RK
1513 }
1514
1515 /* Update the life-status of regs for this insn.
1516 First DEAD gets which regs are set in this insn
1517 then LIVE gets which regs are used in this insn.
1518 Then the regs live before the insn
1519 are those live after, with DEAD regs turned off,
1520 and then LIVE regs turned on. */
1521
8329b5ec 1522 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
d7429b6a
RK
1523 {
1524 register int i;
5f4f0e22 1525 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
d7429b6a
RK
1526 int insn_is_dead
1527 = (insn_dead_p (PATTERN (insn), old, 0)
1528 /* Don't delete something that refers to volatile storage! */
1529 && ! INSN_VOLATILE (insn));
1530 int libcall_is_dead
1531 = (insn_is_dead && note != 0
1532 && libcall_dead_p (PATTERN (insn), old, note, insn));
1533
1534 /* If an instruction consists of just dead store(s) on final pass,
1535 "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
1536 We could really delete it with delete_insn, but that
1537 can cause trouble for first or last insn in a basic block. */
1538 if (final && insn_is_dead)
1539 {
1540 PUT_CODE (insn, NOTE);
1541 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1542 NOTE_SOURCE_FILE (insn) = 0;
1543
e5df1ea3
RK
1544 /* CC0 is now known to be dead. Either this insn used it,
1545 in which case it doesn't anymore, or clobbered it,
1546 so the next insn can't use it. */
1547 cc0_live = 0;
1548
d7429b6a
RK
1549 /* If this insn is copying the return value from a library call,
1550 delete the entire library call. */
1551 if (libcall_is_dead)
1552 {
1553 rtx first = XEXP (note, 0);
1554 rtx p = insn;
1555 while (INSN_DELETED_P (first))
1556 first = NEXT_INSN (first);
1557 while (p != first)
1558 {
1559 p = PREV_INSN (p);
1560 PUT_CODE (p, NOTE);
1561 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
1562 NOTE_SOURCE_FILE (p) = 0;
1563 }
1564 }
1565 goto flushed;
1566 }
1567
916b1701
MM
1568 CLEAR_REG_SET (dead);
1569 CLEAR_REG_SET (live);
d7429b6a
RK
1570
1571 /* See if this is an increment or decrement that can be
1572 merged into a following memory address. */
1573#ifdef AUTO_INC_DEC
1574 {
956d6950
JL
1575 register rtx x = single_set (insn);
1576
d7429b6a 1577 /* Does this instruction increment or decrement a register? */
956d6950 1578 if (final && x != 0
d7429b6a
RK
1579 && GET_CODE (SET_DEST (x)) == REG
1580 && (GET_CODE (SET_SRC (x)) == PLUS
1581 || GET_CODE (SET_SRC (x)) == MINUS)
1582 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1583 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1584 /* Ok, look for a following memory ref we can combine with.
1585 If one is found, change the memory ref to a PRE_INC
1586 or PRE_DEC, cancel this insn, and return 1.
1587 Return 0 if nothing has been done. */
1588 && try_pre_increment_1 (insn))
1589 goto flushed;
1590 }
1591#endif /* AUTO_INC_DEC */
1592
1593 /* If this is not the final pass, and this insn is copying the
1594 value of a library call and it's dead, don't scan the
1595 insns that perform the library call, so that the call's
1596 arguments are not marked live. */
1597 if (libcall_is_dead)
1598 {
1599 /* Mark the dest reg as `significant'. */
5f4f0e22 1600 mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);
d7429b6a
RK
1601
1602 insn = XEXP (note, 0);
1603 prev = PREV_INSN (insn);
1604 }
1605 else if (GET_CODE (PATTERN (insn)) == SET
1606 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1607 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1608 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1609 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1610 /* We have an insn to pop a constant amount off the stack.
1611 (Such insns use PLUS regardless of the direction of the stack,
1612 and any insn to adjust the stack by a constant is always a pop.)
1613 These insns, if not dead stores, have no effect on life. */
1614 ;
1615 else
1616 {
1617 /* LIVE gets the regs used in INSN;
1618 DEAD gets those set by it. Dead insns don't make anything
1619 live. */
1620
5f4f0e22
CH
1621 mark_set_regs (old, dead, PATTERN (insn),
1622 final ? insn : NULL_RTX, significant);
d7429b6a
RK
1623
1624 /* If an insn doesn't use CC0, it becomes dead since we
1625 assume that every insn clobbers it. So show it dead here;
1626 mark_used_regs will set it live if it is referenced. */
1627 cc0_live = 0;
1628
1629 if (! insn_is_dead)
1630 mark_used_regs (old, live, PATTERN (insn), final, insn);
1631
1632 /* Sometimes we may have inserted something before INSN (such as
1633 a move) when we make an auto-inc. So ensure we will scan
1634 those insns. */
1635#ifdef AUTO_INC_DEC
1636 prev = PREV_INSN (insn);
1637#endif
1638
1639 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1640 {
1641 register int i;
1642
6b67ec08
RK
1643 rtx note;
1644
1645 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1646 note;
1647 note = XEXP (note, 1))
1648 if (GET_CODE (XEXP (note, 0)) == USE)
1649 mark_used_regs (old, live, SET_DEST (XEXP (note, 0)),
1650 final, insn);
1651
d7429b6a 1652 /* Each call clobbers all call-clobbered regs that are not
e4329280 1653 global or fixed. Note that the function-value reg is a
d7429b6a
RK
1654 call-clobbered reg, and mark_set_regs has already had
1655 a chance to handle it. */
1656
1657 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
e4329280
RK
1658 if (call_used_regs[i] && ! global_regs[i]
1659 && ! fixed_regs[i])
916b1701 1660 SET_REGNO_REG_SET (dead, i);
d7429b6a
RK
1661
1662 /* The stack ptr is used (honorarily) by a CALL insn. */
916b1701 1663 SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
d7429b6a
RK
1664
1665 /* Calls may also reference any of the global registers,
1666 so they are made live. */
d7429b6a
RK
1667 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1668 if (global_regs[i])
9b316aa2 1669 mark_used_regs (old, live,
38a448ca 1670 gen_rtx_REG (reg_raw_mode[i], i),
9b316aa2 1671 final, insn);
d7429b6a
RK
1672
1673 /* Calls also clobber memory. */
1674 last_mem_set = 0;
1675 }
1676
1677 /* Update OLD for the registers used or set. */
916b1701
MM
1678 AND_COMPL_REG_SET (old, dead);
1679 IOR_REG_SET (old, live);
d7429b6a
RK
1680
1681 if (GET_CODE (insn) == CALL_INSN && final)
1682 {
1683 /* Any regs live at the time of a call instruction
1684 must not go in a register clobbered by calls.
1685 Find all regs now live and record this for them. */
1686
916b1701 1687 register int *p = regs_sometimes_live;
d7429b6a
RK
1688
1689 for (i = 0; i < sometimes_max; i++, p++)
916b1701
MM
1690 if (REGNO_REG_SET_P (old, *p))
1691 REG_N_CALLS_CROSSED (*p)++;
d7429b6a
RK
1692 }
1693 }
1694
1695 /* On final pass, add any additional sometimes-live regs
1696 into MAXLIVE and REGS_SOMETIMES_LIVE.
1697 Also update counts of how many insns each reg is live at. */
1698
1699 if (final)
1700 {
916b1701
MM
1701 register int regno;
1702 register int *p;
d7429b6a 1703
b5835272
RK
1704 EXECUTE_IF_AND_COMPL_IN_REG_SET
1705 (live, maxlive, 0, regno,
1706 {
1707 regs_sometimes_live[sometimes_max++] = regno;
1708 SET_REGNO_REG_SET (maxlive, regno);
1709 });
d7429b6a 1710
916b1701
MM
1711 p = regs_sometimes_live;
1712 for (i = 0; i < sometimes_max; i++)
1713 {
1714 regno = *p++;
1715 if (REGNO_REG_SET_P (old, regno))
1716 REG_LIVE_LENGTH (regno)++;
1717 }
d7429b6a
RK
1718 }
1719 }
1720 flushed: ;
1721 if (insn == first)
1722 break;
1723 }
1724
67f0e213
RK
1725 FREE_REG_SET (dead);
1726 FREE_REG_SET (live);
1727 if (final)
1728 FREE_REG_SET (maxlive);
1729
d7429b6a
RK
1730 if (num_scratch > max_scratch)
1731 max_scratch = num_scratch;
1732}
1733\f
1734/* Return 1 if X (the body of an insn, or part of it) is just dead stores
1735 (SET expressions whose destinations are registers dead after the insn).
1736 NEEDED is the regset that says which regs are alive after the insn.
1737
1738 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL. */
1739
1740static int
1741insn_dead_p (x, needed, call_ok)
1742 rtx x;
1743 regset needed;
1744 int call_ok;
1745{
1746 register RTX_CODE code = GET_CODE (x);
1747 /* If setting something that's a reg or part of one,
1748 see if that register's altered value will be live. */
1749
1750 if (code == SET)
1751 {
1752 register rtx r = SET_DEST (x);
1753 /* A SET that is a subroutine call cannot be dead. */
1754 if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
1755 return 0;
1756
1757#ifdef HAVE_cc0
1758 if (GET_CODE (r) == CC0)
1759 return ! cc0_live;
1760#endif
1761
1762 if (GET_CODE (r) == MEM && last_mem_set && ! MEM_VOLATILE_P (r)
1763 && rtx_equal_p (r, last_mem_set))
1764 return 1;
1765
1766 while (GET_CODE (r) == SUBREG
1767 || GET_CODE (r) == STRICT_LOW_PART
1768 || GET_CODE (r) == ZERO_EXTRACT
1769 || GET_CODE (r) == SIGN_EXTRACT)
1770 r = SUBREG_REG (r);
1771
1772 if (GET_CODE (r) == REG)
1773 {
1774 register int regno = REGNO (r);
d7429b6a 1775
d8c8b8e3 1776 /* Don't delete insns to set global regs. */
d7429b6a
RK
1777 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1778 /* Make sure insns to set frame pointer aren't deleted. */
1779 || regno == FRAME_POINTER_REGNUM
73a187c1
DE
1780#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1781 || regno == HARD_FRAME_POINTER_REGNUM
1782#endif
d7e4fe8b
RS
1783#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1784 /* Make sure insns to set arg pointer are never deleted
1785 (if the arg pointer isn't fixed, there will be a USE for
0f41302f 1786 it, so we can treat it normally). */
d7e4fe8b
RS
1787 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1788#endif
916b1701 1789 || REGNO_REG_SET_P (needed, regno))
d7429b6a
RK
1790 return 0;
1791
1792 /* If this is a hard register, verify that subsequent words are
1793 not needed. */
1794 if (regno < FIRST_PSEUDO_REGISTER)
1795 {
1796 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
1797
1798 while (--n > 0)
916b1701 1799 if (REGNO_REG_SET_P (needed, regno+n))
d7429b6a
RK
1800 return 0;
1801 }
1802
1803 return 1;
1804 }
1805 }
1806 /* If performing several activities,
1807 insn is dead if each activity is individually dead.
1808 Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
1809 that's inside a PARALLEL doesn't make the insn worth keeping. */
1810 else if (code == PARALLEL)
1811 {
1812 register int i = XVECLEN (x, 0);
1813 for (i--; i >= 0; i--)
1814 {
1815 rtx elt = XVECEXP (x, 0, i);
1816 if (!insn_dead_p (elt, needed, call_ok)
1817 && GET_CODE (elt) != CLOBBER
1818 && GET_CODE (elt) != USE)
1819 return 0;
1820 }
1821 return 1;
1822 }
1823 /* We do not check CLOBBER or USE here.
1824 An insn consisting of just a CLOBBER or just a USE
1825 should not be deleted. */
1826 return 0;
1827}
1828
1829/* If X is the pattern of the last insn in a libcall, and assuming X is dead,
1830 return 1 if the entire library call is dead.
1831 This is true if X copies a register (hard or pseudo)
1832 and if the hard return reg of the call insn is dead.
1833 (The caller should have tested the destination of X already for death.)
1834
1835 If this insn doesn't just copy a register, then we don't
1836 have an ordinary libcall. In that case, cse could not have
1837 managed to substitute the source for the dest later on,
1838 so we can assume the libcall is dead.
1839
1840 NEEDED is the bit vector of pseudoregs live before this insn.
1841 NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */
1842
1843static int
1844libcall_dead_p (x, needed, note, insn)
1845 rtx x;
1846 regset needed;
1847 rtx note;
1848 rtx insn;
1849{
1850 register RTX_CODE code = GET_CODE (x);
1851
1852 if (code == SET)
1853 {
1854 register rtx r = SET_SRC (x);
1855 if (GET_CODE (r) == REG)
1856 {
1857 rtx call = XEXP (note, 0);
1858 register int i;
1859
1860 /* Find the call insn. */
1861 while (call != insn && GET_CODE (call) != CALL_INSN)
1862 call = NEXT_INSN (call);
1863
1864 /* If there is none, do nothing special,
1865 since ordinary death handling can understand these insns. */
1866 if (call == insn)
1867 return 0;
1868
1869 /* See if the hard reg holding the value is dead.
1870 If this is a PARALLEL, find the call within it. */
1871 call = PATTERN (call);
1872 if (GET_CODE (call) == PARALLEL)
1873 {
1874 for (i = XVECLEN (call, 0) - 1; i >= 0; i--)
1875 if (GET_CODE (XVECEXP (call, 0, i)) == SET
1876 && GET_CODE (SET_SRC (XVECEXP (call, 0, i))) == CALL)
1877 break;
1878
761a5bcd
JW
1879 /* This may be a library call that is returning a value
1880 via invisible pointer. Do nothing special, since
1881 ordinary death handling can understand these insns. */
d7429b6a 1882 if (i < 0)
761a5bcd 1883 return 0;
d7429b6a
RK
1884
1885 call = XVECEXP (call, 0, i);
1886 }
1887
1888 return insn_dead_p (call, needed, 1);
1889 }
1890 }
1891 return 1;
1892}
1893
1894/* Return 1 if register REGNO was used before it was set.
944e5f77 1895 In other words, if it is live at function entry.
6a45254e
RK
1896 Don't count global register variables or variables in registers
1897 that can be used for function arg passing, though. */
d7429b6a
RK
1898
1899int
1900regno_uninitialized (regno)
1901 int regno;
1902{
b0b7b46a 1903 if (n_basic_blocks == 0
6a45254e
RK
1904 || (regno < FIRST_PSEUDO_REGISTER
1905 && (global_regs[regno] || FUNCTION_ARG_REGNO_P (regno))))
d7429b6a
RK
1906 return 0;
1907
916b1701 1908 return REGNO_REG_SET_P (basic_block_live_at_start[0], regno);
d7429b6a
RK
1909}
1910
1911/* 1 if register REGNO was alive at a place where `setjmp' was called
1912 and was set more than once or is an argument.
1913 Such regs may be clobbered by `longjmp'. */
1914
1915int
1916regno_clobbered_at_setjmp (regno)
1917 int regno;
1918{
1919 if (n_basic_blocks == 0)
1920 return 0;
1921
b1f21e0a 1922 return ((REG_N_SETS (regno) > 1
916b1701
MM
1923 || REGNO_REG_SET_P (basic_block_live_at_start[0], regno))
1924 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
d7429b6a
RK
1925}
1926\f
1927/* Process the registers that are set within X.
1928 Their bits are set to 1 in the regset DEAD,
1929 because they are dead prior to this insn.
1930
1931 If INSN is nonzero, it is the insn being processed
1932 and the fact that it is nonzero implies this is the FINAL pass
1933 in propagate_block. In this case, various info about register
1934 usage is stored, LOG_LINKS fields of insns are set up. */
1935
d7429b6a
RK
1936static void
1937mark_set_regs (needed, dead, x, insn, significant)
1938 regset needed;
1939 regset dead;
1940 rtx x;
1941 rtx insn;
1942 regset significant;
1943{
1944 register RTX_CODE code = GET_CODE (x);
1945
1946 if (code == SET || code == CLOBBER)
1947 mark_set_1 (needed, dead, x, insn, significant);
1948 else if (code == PARALLEL)
1949 {
1950 register int i;
1951 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1952 {
1953 code = GET_CODE (XVECEXP (x, 0, i));
1954 if (code == SET || code == CLOBBER)
1955 mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
1956 }
1957 }
1958}
1959
1960/* Process a single SET rtx, X. */
1961
1962static void
1963mark_set_1 (needed, dead, x, insn, significant)
1964 regset needed;
1965 regset dead;
1966 rtx x;
1967 rtx insn;
1968 regset significant;
1969{
1970 register int regno;
1971 register rtx reg = SET_DEST (x);
1972
1973 /* Modifying just one hardware register of a multi-reg value
1974 or just a byte field of a register
1975 does not mean the value from before this insn is now dead.
1976 But it does mean liveness of that register at the end of the block
1977 is significant.
1978
1979 Within mark_set_1, however, we treat it as if the register is
1980 indeed modified. mark_used_regs will, however, also treat this
1981 register as being used. Thus, we treat these insns as setting a
1982 new value for the register as a function of its old value. This
1983 cases LOG_LINKS to be made appropriately and this will help combine. */
1984
1985 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
1986 || GET_CODE (reg) == SIGN_EXTRACT
1987 || GET_CODE (reg) == STRICT_LOW_PART)
1988 reg = XEXP (reg, 0);
1989
1990 /* If we are writing into memory or into a register mentioned in the
1991 address of the last thing stored into memory, show we don't know
1992 what the last store was. If we are writing memory, save the address
1993 unless it is volatile. */
1994 if (GET_CODE (reg) == MEM
1995 || (GET_CODE (reg) == REG
1996 && last_mem_set != 0 && reg_overlap_mentioned_p (reg, last_mem_set)))
1997 last_mem_set = 0;
1998
1999 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2000 /* There are no REG_INC notes for SP, so we can't assume we'll see
2001 everything that invalidates it. To be safe, don't eliminate any
2002 stores though SP; none of them should be redundant anyway. */
2003 && ! reg_mentioned_p (stack_pointer_rtx, reg))
2004 last_mem_set = reg;
2005
2006 if (GET_CODE (reg) == REG
2007 && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
73a187c1
DE
2008#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2009 && regno != HARD_FRAME_POINTER_REGNUM
2010#endif
d7e4fe8b
RS
2011#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2012 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2013#endif
d7429b6a
RK
2014 && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
2015 /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
2016 {
916b1701
MM
2017 int some_needed = REGNO_REG_SET_P (needed, regno);
2018 int some_not_needed = ! some_needed;
d7429b6a
RK
2019
2020 /* Mark it as a significant register for this basic block. */
2021 if (significant)
916b1701 2022 SET_REGNO_REG_SET (significant, regno);
d7429b6a
RK
2023
2024 /* Mark it as as dead before this insn. */
916b1701 2025 SET_REGNO_REG_SET (dead, regno);
d7429b6a
RK
2026
2027 /* A hard reg in a wide mode may really be multiple registers.
2028 If so, mark all of them just like the first. */
2029 if (regno < FIRST_PSEUDO_REGISTER)
2030 {
2031 int n;
2032
2033 /* Nothing below is needed for the stack pointer; get out asap.
2034 Eg, log links aren't needed, since combine won't use them. */
2035 if (regno == STACK_POINTER_REGNUM)
2036 return;
2037
2038 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2039 while (--n > 0)
2040 {
916b1701
MM
2041 int regno_n = regno + n;
2042 int needed_regno = REGNO_REG_SET_P (needed, regno_n);
d7429b6a 2043 if (significant)
916b1701 2044 SET_REGNO_REG_SET (significant, regno_n);
cb9e8ad1 2045
916b1701
MM
2046 SET_REGNO_REG_SET (dead, regno_n);
2047 some_needed |= needed_regno;
2048 some_not_needed |= ! needed_regno;
d7429b6a
RK
2049 }
2050 }
2051 /* Additional data to record if this is the final pass. */
2052 if (insn)
2053 {
2054 register rtx y = reg_next_use[regno];
2055 register int blocknum = BLOCK_NUM (insn);
2056
2057 /* If this is a hard reg, record this function uses the reg. */
2058
2059 if (regno < FIRST_PSEUDO_REGISTER)
2060 {
2061 register int i;
2062 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
2063
2064 for (i = regno; i < endregno; i++)
2065 {
93514916
JW
2066 /* The next use is no longer "next", since a store
2067 intervenes. */
2068 reg_next_use[i] = 0;
2069
d7429b6a 2070 regs_ever_live[i] = 1;
b1f21e0a 2071 REG_N_SETS (i)++;
d7429b6a
RK
2072 }
2073 }
2074 else
2075 {
93514916
JW
2076 /* The next use is no longer "next", since a store
2077 intervenes. */
2078 reg_next_use[regno] = 0;
2079
d7429b6a
RK
2080 /* Keep track of which basic blocks each reg appears in. */
2081
b1f21e0a
MM
2082 if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
2083 REG_BASIC_BLOCK (regno) = blocknum;
2084 else if (REG_BASIC_BLOCK (regno) != blocknum)
2085 REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
d7429b6a
RK
2086
2087 /* Count (weighted) references, stores, etc. This counts a
2088 register twice if it is modified, but that is correct. */
b1f21e0a 2089 REG_N_SETS (regno)++;
d7429b6a 2090
b1f21e0a 2091 REG_N_REFS (regno) += loop_depth;
d7429b6a
RK
2092
2093 /* The insns where a reg is live are normally counted
2094 elsewhere, but we want the count to include the insn
2095 where the reg is set, and the normal counting mechanism
2096 would not count it. */
b1f21e0a 2097 REG_LIVE_LENGTH (regno)++;
d7429b6a
RK
2098 }
2099
cb9e8ad1 2100 if (! some_not_needed)
d7429b6a
RK
2101 {
2102 /* Make a logical link from the next following insn
2103 that uses this register, back to this insn.
2104 The following insns have already been processed.
2105
2106 We don't build a LOG_LINK for hard registers containing
2107 in ASM_OPERANDs. If these registers get replaced,
2108 we might wind up changing the semantics of the insn,
2109 even if reload can make what appear to be valid assignments
2110 later. */
2111 if (y && (BLOCK_NUM (y) == blocknum)
2112 && (regno >= FIRST_PSEUDO_REGISTER
2113 || asm_noperands (PATTERN (y)) < 0))
2114 LOG_LINKS (y)
38a448ca 2115 = gen_rtx_INSN_LIST (VOIDmode, insn, LOG_LINKS (y));
d7429b6a
RK
2116 }
2117 else if (! some_needed)
2118 {
2119 /* Note that dead stores have already been deleted when possible
2120 If we get here, we have found a dead store that cannot
2121 be eliminated (because the same insn does something useful).
2122 Indicate this by marking the reg being set as dying here. */
2123 REG_NOTES (insn)
38a448ca 2124 = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
b1f21e0a 2125 REG_N_DEATHS (REGNO (reg))++;
d7429b6a
RK
2126 }
2127 else
2128 {
2129 /* This is a case where we have a multi-word hard register
2130 and some, but not all, of the words of the register are
2131 needed in subsequent insns. Write REG_UNUSED notes
2132 for those parts that were not needed. This case should
2133 be rare. */
2134
2135 int i;
2136
2137 for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
2138 i >= 0; i--)
916b1701 2139 if (!REGNO_REG_SET_P (needed, regno + i))
d7429b6a 2140 REG_NOTES (insn)
38a448ca
RH
2141 = gen_rtx_EXPR_LIST (REG_UNUSED,
2142 gen_rtx_REG (reg_raw_mode[regno + i],
2143 regno + i),
2144 REG_NOTES (insn));
d7429b6a
RK
2145 }
2146 }
2147 }
8244fc4f
RS
2148 else if (GET_CODE (reg) == REG)
2149 reg_next_use[regno] = 0;
d7429b6a
RK
2150
2151 /* If this is the last pass and this is a SCRATCH, show it will be dying
2152 here and count it. */
2153 else if (GET_CODE (reg) == SCRATCH && insn != 0)
2154 {
2155 REG_NOTES (insn)
38a448ca 2156 = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
d7429b6a
RK
2157 num_scratch++;
2158 }
2159}
2160\f
2161#ifdef AUTO_INC_DEC
2162
2163/* X is a MEM found in INSN. See if we can convert it into an auto-increment
2164 reference. */
2165
2166static void
2167find_auto_inc (needed, x, insn)
2168 regset needed;
2169 rtx x;
2170 rtx insn;
2171{
2172 rtx addr = XEXP (x, 0);
e658434c 2173 HOST_WIDE_INT offset = 0;
05ed5d57 2174 rtx set;
d7429b6a
RK
2175
2176 /* Here we detect use of an index register which might be good for
2177 postincrement, postdecrement, preincrement, or predecrement. */
2178
2179 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
2180 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
2181
2182 if (GET_CODE (addr) == REG)
2183 {
2184 register rtx y;
2185 register int size = GET_MODE_SIZE (GET_MODE (x));
2186 rtx use;
2187 rtx incr;
2188 int regno = REGNO (addr);
2189
2190 /* Is the next use an increment that might make auto-increment? */
05ed5d57
RK
2191 if ((incr = reg_next_use[regno]) != 0
2192 && (set = single_set (incr)) != 0
2193 && GET_CODE (set) == SET
d7429b6a
RK
2194 && BLOCK_NUM (incr) == BLOCK_NUM (insn)
2195 /* Can't add side effects to jumps; if reg is spilled and
2196 reloaded, there's no way to store back the altered value. */
2197 && GET_CODE (insn) != JUMP_INSN
05ed5d57 2198 && (y = SET_SRC (set), GET_CODE (y) == PLUS)
d7429b6a
RK
2199 && XEXP (y, 0) == addr
2200 && GET_CODE (XEXP (y, 1)) == CONST_INT
2201 && (0
2202#ifdef HAVE_POST_INCREMENT
2203 || (INTVAL (XEXP (y, 1)) == size && offset == 0)
2204#endif
2205#ifdef HAVE_POST_DECREMENT
2206 || (INTVAL (XEXP (y, 1)) == - size && offset == 0)
2207#endif
2208#ifdef HAVE_PRE_INCREMENT
2209 || (INTVAL (XEXP (y, 1)) == size && offset == size)
2210#endif
2211#ifdef HAVE_PRE_DECREMENT
2212 || (INTVAL (XEXP (y, 1)) == - size && offset == - size)
2213#endif
2214 )
2215 /* Make sure this reg appears only once in this insn. */
2216 && (use = find_use_as_address (PATTERN (insn), addr, offset),
2217 use != 0 && use != (rtx) 1))
2218 {
05ed5d57 2219 rtx q = SET_DEST (set);
7280c2a4
RK
2220 enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size
2221 ? (offset ? PRE_INC : POST_INC)
2222 : (offset ? PRE_DEC : POST_DEC));
d7429b6a
RK
2223
2224 if (dead_or_set_p (incr, addr))
7280c2a4
RK
2225 {
2226 /* This is the simple case. Try to make the auto-inc. If
2227 we can't, we are done. Otherwise, we will do any
2228 needed updates below. */
2229 if (! validate_change (insn, &XEXP (x, 0),
38a448ca 2230 gen_rtx_fmt_e (inc_code, Pmode, addr),
7280c2a4
RK
2231 0))
2232 return;
2233 }
5175ad37
DE
2234 else if (GET_CODE (q) == REG
2235 /* PREV_INSN used here to check the semi-open interval
2236 [insn,incr). */
b24884cd
JL
2237 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
2238 /* We must also check for sets of q as q may be
2239 a call clobbered hard register and there may
2240 be a call between PREV_INSN (insn) and incr. */
2241 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
d7429b6a 2242 {
5175ad37 2243 /* We have *p followed sometime later by q = p+size.
d7429b6a 2244 Both p and q must be live afterward,
5175ad37 2245 and q is not used between INSN and it's assignment.
d7429b6a
RK
2246 Change it to q = p, ...*q..., q = q+size.
2247 Then fall into the usual case. */
2248 rtx insns, temp;
2249
2250 start_sequence ();
2251 emit_move_insn (q, addr);
2252 insns = get_insns ();
2253 end_sequence ();
2254
2255 /* If anything in INSNS have UID's that don't fit within the
2256 extra space we allocate earlier, we can't make this auto-inc.
2257 This should never happen. */
2258 for (temp = insns; temp; temp = NEXT_INSN (temp))
2259 {
2260 if (INSN_UID (temp) > max_uid_for_flow)
2261 return;
2262 BLOCK_NUM (temp) = BLOCK_NUM (insn);
2263 }
2264
7280c2a4
RK
2265 /* If we can't make the auto-inc, or can't make the
2266 replacement into Y, exit. There's no point in making
2267 the change below if we can't do the auto-inc and doing
2268 so is not correct in the pre-inc case. */
2269
2270 validate_change (insn, &XEXP (x, 0),
38a448ca 2271 gen_rtx_fmt_e (inc_code, Pmode, q),
7280c2a4
RK
2272 1);
2273 validate_change (incr, &XEXP (y, 0), q, 1);
2274 if (! apply_change_group ())
2275 return;
2276
2277 /* We now know we'll be doing this change, so emit the
2278 new insn(s) and do the updates. */
d7429b6a 2279 emit_insns_before (insns, insn);
e8b641a1
RK
2280
2281 if (basic_block_head[BLOCK_NUM (insn)] == insn)
2282 basic_block_head[BLOCK_NUM (insn)] = insns;
2283
d7429b6a
RK
2284 /* INCR will become a NOTE and INSN won't contain a
2285 use of ADDR. If a use of ADDR was just placed in
2286 the insn before INSN, make that the next use.
2287 Otherwise, invalidate it. */
2288 if (GET_CODE (PREV_INSN (insn)) == INSN
2289 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
2290 && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
2291 reg_next_use[regno] = PREV_INSN (insn);
2292 else
2293 reg_next_use[regno] = 0;
2294
2295 addr = q;
2296 regno = REGNO (q);
d7429b6a
RK
2297
2298 /* REGNO is now used in INCR which is below INSN, but
2299 it previously wasn't live here. If we don't mark
2300 it as needed, we'll put a REG_DEAD note for it
2301 on this insn, which is incorrect. */
916b1701 2302 SET_REGNO_REG_SET (needed, regno);
d7429b6a
RK
2303
2304 /* If there are any calls between INSN and INCR, show
2305 that REGNO now crosses them. */
2306 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
2307 if (GET_CODE (temp) == CALL_INSN)
b1f21e0a 2308 REG_N_CALLS_CROSSED (regno)++;
d7429b6a 2309 }
02df8aba
RK
2310 else
2311 return;
d7429b6a 2312
7280c2a4
RK
2313 /* If we haven't returned, it means we were able to make the
2314 auto-inc, so update the status. First, record that this insn
2315 has an implicit side effect. */
2316
2317 REG_NOTES (insn)
38a448ca 2318 = gen_rtx_EXPR_LIST (REG_INC, addr, REG_NOTES (insn));
7280c2a4
RK
2319
2320 /* Modify the old increment-insn to simply copy
2321 the already-incremented value of our register. */
2322 if (! validate_change (incr, &SET_SRC (set), addr, 0))
2323 abort ();
2324
2325 /* If that makes it a no-op (copying the register into itself) delete
2326 it so it won't appear to be a "use" and a "set" of this
2327 register. */
2328 if (SET_DEST (set) == addr)
d7429b6a 2329 {
7280c2a4
RK
2330 PUT_CODE (incr, NOTE);
2331 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
2332 NOTE_SOURCE_FILE (incr) = 0;
2333 }
d7429b6a 2334
7280c2a4
RK
2335 if (regno >= FIRST_PSEUDO_REGISTER)
2336 {
2337 /* Count an extra reference to the reg. When a reg is
2338 incremented, spilling it is worse, so we want to make
2339 that less likely. */
b1f21e0a 2340 REG_N_REFS (regno) += loop_depth;
7280c2a4
RK
2341
2342 /* Count the increment as a setting of the register,
2343 even though it isn't a SET in rtl. */
b1f21e0a 2344 REG_N_SETS (regno)++;
d7429b6a
RK
2345 }
2346 }
2347 }
2348}
2349#endif /* AUTO_INC_DEC */
2350\f
2351/* Scan expression X and store a 1-bit in LIVE for each reg it uses.
2352 This is done assuming the registers needed from X
2353 are those that have 1-bits in NEEDED.
2354
2355 On the final pass, FINAL is 1. This means try for autoincrement
2356 and count the uses and deaths of each pseudo-reg.
2357
2358 INSN is the containing instruction. If INSN is dead, this function is not
2359 called. */
2360
2361static void
2362mark_used_regs (needed, live, x, final, insn)
2363 regset needed;
2364 regset live;
2365 rtx x;
d7429b6a 2366 int final;
e658434c 2367 rtx insn;
d7429b6a
RK
2368{
2369 register RTX_CODE code;
2370 register int regno;
2371 int i;
2372
2373 retry:
2374 code = GET_CODE (x);
2375 switch (code)
2376 {
2377 case LABEL_REF:
2378 case SYMBOL_REF:
2379 case CONST_INT:
2380 case CONST:
2381 case CONST_DOUBLE:
2382 case PC:
d7429b6a
RK
2383 case ADDR_VEC:
2384 case ADDR_DIFF_VEC:
2385 case ASM_INPUT:
2386 return;
2387
2388#ifdef HAVE_cc0
2389 case CC0:
2390 cc0_live = 1;
2391 return;
2392#endif
2393
2f1553a4
RK
2394 case CLOBBER:
2395 /* If we are clobbering a MEM, mark any registers inside the address
2396 as being used. */
2397 if (GET_CODE (XEXP (x, 0)) == MEM)
2398 mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn);
2399 return;
2400
d7429b6a 2401 case MEM:
7eb136d6
MM
2402 /* Invalidate the data for the last MEM stored, but only if MEM is
2403 something that can be stored into. */
2404 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2405 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
2406 ; /* needn't clear last_mem_set */
2407 else
2408 last_mem_set = 0;
d7429b6a
RK
2409
2410#ifdef AUTO_INC_DEC
2411 if (final)
2412 find_auto_inc (needed, x, insn);
2413#endif
2414 break;
2415
80f8f04a
RK
2416 case SUBREG:
2417 if (GET_CODE (SUBREG_REG (x)) == REG
2418 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
2419 && (GET_MODE_SIZE (GET_MODE (x))
88285acf 2420 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
b1f21e0a 2421 REG_CHANGES_SIZE (REGNO (SUBREG_REG (x))) = 1;
80f8f04a
RK
2422
2423 /* While we're here, optimize this case. */
2424 x = SUBREG_REG (x);
2425
e100a3bb 2426 /* In case the SUBREG is not of a register, don't optimize */
ce79abf3 2427 if (GET_CODE (x) != REG)
e100a3bb
MM
2428 {
2429 mark_used_regs (needed, live, x, final, insn);
2430 return;
2431 }
ce79abf3 2432
0f41302f 2433 /* ... fall through ... */
80f8f04a 2434
d7429b6a
RK
2435 case REG:
2436 /* See a register other than being set
2437 => mark it as needed. */
2438
2439 regno = REGNO (x);
2440 {
67f0e213
RK
2441 int some_needed = REGNO_REG_SET_P (needed, regno);
2442 int some_not_needed = ! some_needed;
d7429b6a 2443
916b1701 2444 SET_REGNO_REG_SET (live, regno);
cb9e8ad1 2445
d7429b6a
RK
2446 /* A hard reg in a wide mode may really be multiple registers.
2447 If so, mark all of them just like the first. */
2448 if (regno < FIRST_PSEUDO_REGISTER)
2449 {
2450 int n;
2451
d7e4fe8b 2452 /* For stack ptr or fixed arg pointer,
d7429b6a
RK
2453 nothing below can be necessary, so waste no more time. */
2454 if (regno == STACK_POINTER_REGNUM
73a187c1
DE
2455#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2456 || regno == HARD_FRAME_POINTER_REGNUM
2457#endif
d7e4fe8b
RS
2458#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2459 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2460#endif
d7429b6a
RK
2461 || regno == FRAME_POINTER_REGNUM)
2462 {
2463 /* If this is a register we are going to try to eliminate,
2464 don't mark it live here. If we are successful in
2465 eliminating it, it need not be live unless it is used for
2466 pseudos, in which case it will have been set live when
2467 it was allocated to the pseudos. If the register will not
2468 be eliminated, reload will set it live at that point. */
2469
2470 if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
2471 regs_ever_live[regno] = 1;
2472 return;
2473 }
2474 /* No death notes for global register variables;
2475 their values are live after this function exits. */
2476 if (global_regs[regno])
d8c8b8e3
RS
2477 {
2478 if (final)
2479 reg_next_use[regno] = insn;
2480 return;
2481 }
d7429b6a
RK
2482
2483 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2484 while (--n > 0)
2485 {
916b1701
MM
2486 int regno_n = regno + n;
2487 int needed_regno = REGNO_REG_SET_P (needed, regno_n);
cb9e8ad1 2488
916b1701
MM
2489 SET_REGNO_REG_SET (live, regno_n);
2490 some_needed |= needed_regno;
931c6c7a 2491 some_not_needed |= ! needed_regno;
d7429b6a
RK
2492 }
2493 }
2494 if (final)
2495 {
2496 /* Record where each reg is used, so when the reg
2497 is set we know the next insn that uses it. */
2498
2499 reg_next_use[regno] = insn;
2500
2501 if (regno < FIRST_PSEUDO_REGISTER)
2502 {
2503 /* If a hard reg is being used,
2504 record that this function does use it. */
2505
2506 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
2507 if (i == 0)
2508 i = 1;
2509 do
2510 regs_ever_live[regno + --i] = 1;
2511 while (i > 0);
2512 }
2513 else
2514 {
2515 /* Keep track of which basic block each reg appears in. */
2516
2517 register int blocknum = BLOCK_NUM (insn);
2518
b1f21e0a
MM
2519 if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
2520 REG_BASIC_BLOCK (regno) = blocknum;
2521 else if (REG_BASIC_BLOCK (regno) != blocknum)
2522 REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
d7429b6a
RK
2523
2524 /* Count (weighted) number of uses of each reg. */
2525
b1f21e0a 2526 REG_N_REFS (regno) += loop_depth;
d7429b6a
RK
2527 }
2528
2529 /* Record and count the insns in which a reg dies.
2530 If it is used in this insn and was dead below the insn
2531 then it dies in this insn. If it was set in this insn,
2532 we do not make a REG_DEAD note; likewise if we already
2533 made such a note. */
2534
cb9e8ad1 2535 if (some_not_needed
d7429b6a
RK
2536 && ! dead_or_set_p (insn, x)
2537#if 0
2538 && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
2539#endif
2540 )
2541 {
ab28041e
JW
2542 /* Check for the case where the register dying partially
2543 overlaps the register set by this insn. */
2544 if (regno < FIRST_PSEUDO_REGISTER
2545 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
2546 {
480eac3b 2547 int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
ab28041e
JW
2548 while (--n >= 0)
2549 some_needed |= dead_or_set_regno_p (insn, regno + n);
2550 }
2551
d7429b6a
RK
2552 /* If none of the words in X is needed, make a REG_DEAD
2553 note. Otherwise, we must make partial REG_DEAD notes. */
2554 if (! some_needed)
2555 {
2556 REG_NOTES (insn)
38a448ca 2557 = gen_rtx_EXPR_LIST (REG_DEAD, x, REG_NOTES (insn));
b1f21e0a 2558 REG_N_DEATHS (regno)++;
d7429b6a
RK
2559 }
2560 else
2561 {
2562 int i;
2563
2564 /* Don't make a REG_DEAD note for a part of a register
2565 that is set in the insn. */
2566
2567 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
2568 i >= 0; i--)
916b1701 2569 if (!REGNO_REG_SET_P (needed, regno + i)
d7429b6a
RK
2570 && ! dead_or_set_regno_p (insn, regno + i))
2571 REG_NOTES (insn)
38a448ca
RH
2572 = gen_rtx_EXPR_LIST (REG_DEAD,
2573 gen_rtx_REG (reg_raw_mode[regno + i],
2574 regno + i),
2575 REG_NOTES (insn));
d7429b6a
RK
2576 }
2577 }
2578 }
2579 }
2580 return;
2581
2582 case SET:
2583 {
2584 register rtx testreg = SET_DEST (x);
2585 int mark_dest = 0;
2586
2587 /* If storing into MEM, don't show it as being used. But do
2588 show the address as being used. */
2589 if (GET_CODE (testreg) == MEM)
2590 {
2591#ifdef AUTO_INC_DEC
2592 if (final)
2593 find_auto_inc (needed, testreg, insn);
2594#endif
2595 mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
2596 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2597 return;
2598 }
2599
2600 /* Storing in STRICT_LOW_PART is like storing in a reg
2601 in that this SET might be dead, so ignore it in TESTREG.
2602 but in some other ways it is like using the reg.
2603
2604 Storing in a SUBREG or a bit field is like storing the entire
2605 register in that if the register's value is not used
2606 then this SET is not needed. */
2607 while (GET_CODE (testreg) == STRICT_LOW_PART
2608 || GET_CODE (testreg) == ZERO_EXTRACT
2609 || GET_CODE (testreg) == SIGN_EXTRACT
2610 || GET_CODE (testreg) == SUBREG)
2611 {
88285acf
RK
2612 if (GET_CODE (testreg) == SUBREG
2613 && GET_CODE (SUBREG_REG (testreg)) == REG
2614 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
2615 && (GET_MODE_SIZE (GET_MODE (testreg))
2616 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg)))))
b1f21e0a 2617 REG_CHANGES_SIZE (REGNO (SUBREG_REG (testreg))) = 1;
88285acf 2618
d7429b6a
RK
2619 /* Modifying a single register in an alternate mode
2620 does not use any of the old value. But these other
2621 ways of storing in a register do use the old value. */
2622 if (GET_CODE (testreg) == SUBREG
2623 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
2624 ;
2625 else
2626 mark_dest = 1;
2627
2628 testreg = XEXP (testreg, 0);
2629 }
2630
2631 /* If this is a store into a register,
2632 recursively scan the value being stored. */
2633
2634 if (GET_CODE (testreg) == REG
2635 && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
73a187c1
DE
2636#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2637 && regno != HARD_FRAME_POINTER_REGNUM
2638#endif
d7e4fe8b
RS
2639#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2640 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2641#endif
d8c8b8e3
RS
2642 )
2643 /* We used to exclude global_regs here, but that seems wrong.
2644 Storing in them is like storing in mem. */
d7429b6a
RK
2645 {
2646 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2647 if (mark_dest)
2648 mark_used_regs (needed, live, SET_DEST (x), final, insn);
2649 return;
2650 }
2651 }
2652 break;
2653
2654 case RETURN:
2655 /* If exiting needs the right stack value, consider this insn as
2656 using the stack pointer. In any event, consider it as using
632c9d9e 2657 all global registers and all registers used by return. */
d7429b6a
RK
2658
2659#ifdef EXIT_IGNORE_STACK
2660 if (! EXIT_IGNORE_STACK
0200b5ed
JL
2661 || (! FRAME_POINTER_REQUIRED
2662 && ! current_function_calls_alloca
2663 && flag_omit_frame_pointer))
d7429b6a 2664#endif
916b1701 2665 SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
d7429b6a
RK
2666
2667 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
632c9d9e
MS
2668 if (global_regs[i]
2669#ifdef EPILOGUE_USES
2670 || EPILOGUE_USES (i)
2671#endif
2672 )
916b1701 2673 SET_REGNO_REG_SET (live, i);
d7429b6a 2674 break;
e9a25f70
JL
2675
2676 default:
2677 break;
d7429b6a
RK
2678 }
2679
2680 /* Recursively scan the operands of this expression. */
2681
2682 {
2683 register char *fmt = GET_RTX_FORMAT (code);
2684 register int i;
2685
2686 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2687 {
2688 if (fmt[i] == 'e')
2689 {
2690 /* Tail recursive case: save a function call level. */
2691 if (i == 0)
2692 {
2693 x = XEXP (x, 0);
2694 goto retry;
2695 }
2696 mark_used_regs (needed, live, XEXP (x, i), final, insn);
2697 }
2698 else if (fmt[i] == 'E')
2699 {
2700 register int j;
2701 for (j = 0; j < XVECLEN (x, i); j++)
2702 mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
2703 }
2704 }
2705 }
2706}
2707\f
2708#ifdef AUTO_INC_DEC
2709
2710static int
2711try_pre_increment_1 (insn)
2712 rtx insn;
2713{
2714 /* Find the next use of this reg. If in same basic block,
2715 make it do pre-increment or pre-decrement if appropriate. */
956d6950 2716 rtx x = single_set (insn);
5f4f0e22 2717 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
d7429b6a
RK
2718 * INTVAL (XEXP (SET_SRC (x), 1)));
2719 int regno = REGNO (SET_DEST (x));
2720 rtx y = reg_next_use[regno];
2721 if (y != 0
2722 && BLOCK_NUM (y) == BLOCK_NUM (insn)
89861c38 2723 /* Don't do this if the reg dies, or gets set in y; a standard addressing
0f41302f 2724 mode would be better. */
89861c38 2725 && ! dead_or_set_p (y, SET_DEST (x))
956d6950 2726 && try_pre_increment (y, SET_DEST (x), amount))
d7429b6a
RK
2727 {
2728 /* We have found a suitable auto-increment
2729 and already changed insn Y to do it.
2730 So flush this increment-instruction. */
2731 PUT_CODE (insn, NOTE);
2732 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2733 NOTE_SOURCE_FILE (insn) = 0;
2734 /* Count a reference to this reg for the increment
2735 insn we are deleting. When a reg is incremented.
2736 spilling it is worse, so we want to make that
2737 less likely. */
2738 if (regno >= FIRST_PSEUDO_REGISTER)
2739 {
b1f21e0a
MM
2740 REG_N_REFS (regno) += loop_depth;
2741 REG_N_SETS (regno)++;
d7429b6a
RK
2742 }
2743 return 1;
2744 }
2745 return 0;
2746}
2747
2748/* Try to change INSN so that it does pre-increment or pre-decrement
2749 addressing on register REG in order to add AMOUNT to REG.
2750 AMOUNT is negative for pre-decrement.
2751 Returns 1 if the change could be made.
2752 This checks all about the validity of the result of modifying INSN. */
2753
2754static int
2755try_pre_increment (insn, reg, amount)
2756 rtx insn, reg;
5f4f0e22 2757 HOST_WIDE_INT amount;
d7429b6a
RK
2758{
2759 register rtx use;
2760
2761 /* Nonzero if we can try to make a pre-increment or pre-decrement.
2762 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
2763 int pre_ok = 0;
2764 /* Nonzero if we can try to make a post-increment or post-decrement.
2765 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
2766 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
2767 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
2768 int post_ok = 0;
2769
2770 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
2771 int do_post = 0;
2772
2773 /* From the sign of increment, see which possibilities are conceivable
2774 on this target machine. */
2775#ifdef HAVE_PRE_INCREMENT
2776 if (amount > 0)
2777 pre_ok = 1;
2778#endif
2779#ifdef HAVE_POST_INCREMENT
2780 if (amount > 0)
2781 post_ok = 1;
2782#endif
2783
2784#ifdef HAVE_PRE_DECREMENT
2785 if (amount < 0)
2786 pre_ok = 1;
2787#endif
2788#ifdef HAVE_POST_DECREMENT
2789 if (amount < 0)
2790 post_ok = 1;
2791#endif
2792
2793 if (! (pre_ok || post_ok))
2794 return 0;
2795
2796 /* It is not safe to add a side effect to a jump insn
2797 because if the incremented register is spilled and must be reloaded
2798 there would be no way to store the incremented value back in memory. */
2799
2800 if (GET_CODE (insn) == JUMP_INSN)
2801 return 0;
2802
2803 use = 0;
2804 if (pre_ok)
2805 use = find_use_as_address (PATTERN (insn), reg, 0);
2806 if (post_ok && (use == 0 || use == (rtx) 1))
2807 {
2808 use = find_use_as_address (PATTERN (insn), reg, -amount);
2809 do_post = 1;
2810 }
2811
2812 if (use == 0 || use == (rtx) 1)
2813 return 0;
2814
2815 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
2816 return 0;
2817
a0fbc3a9
SC
2818 /* See if this combination of instruction and addressing mode exists. */
2819 if (! validate_change (insn, &XEXP (use, 0),
38a448ca
RH
2820 gen_rtx_fmt_e (amount > 0
2821 ? (do_post ? POST_INC : PRE_INC)
2822 : (do_post ? POST_DEC : PRE_DEC),
2823 Pmode, reg), 0))
a0fbc3a9 2824 return 0;
d7429b6a
RK
2825
2826 /* Record that this insn now has an implicit side effect on X. */
38a448ca 2827 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
d7429b6a
RK
2828 return 1;
2829}
2830
2831#endif /* AUTO_INC_DEC */
2832\f
2833/* Find the place in the rtx X where REG is used as a memory address.
2834 Return the MEM rtx that so uses it.
2835 If PLUSCONST is nonzero, search instead for a memory address equivalent to
2836 (plus REG (const_int PLUSCONST)).
2837
2838 If such an address does not appear, return 0.
2839 If REG appears more than once, or is used other than in such an address,
2840 return (rtx)1. */
2841
8c660648 2842rtx
d7429b6a
RK
2843find_use_as_address (x, reg, plusconst)
2844 register rtx x;
2845 rtx reg;
e658434c 2846 HOST_WIDE_INT plusconst;
d7429b6a
RK
2847{
2848 enum rtx_code code = GET_CODE (x);
2849 char *fmt = GET_RTX_FORMAT (code);
2850 register int i;
2851 register rtx value = 0;
2852 register rtx tem;
2853
2854 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
2855 return x;
2856
2857 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
2858 && XEXP (XEXP (x, 0), 0) == reg
2859 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2860 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
2861 return x;
2862
2863 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
2864 {
2865 /* If REG occurs inside a MEM used in a bit-field reference,
2866 that is unacceptable. */
2867 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
6fa5c106 2868 return (rtx) (HOST_WIDE_INT) 1;
d7429b6a
RK
2869 }
2870
2871 if (x == reg)
6fa5c106 2872 return (rtx) (HOST_WIDE_INT) 1;
d7429b6a
RK
2873
2874 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2875 {
2876 if (fmt[i] == 'e')
2877 {
2878 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
2879 if (value == 0)
2880 value = tem;
2881 else if (tem != 0)
6fa5c106 2882 return (rtx) (HOST_WIDE_INT) 1;
d7429b6a
RK
2883 }
2884 if (fmt[i] == 'E')
2885 {
2886 register int j;
2887 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2888 {
2889 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
2890 if (value == 0)
2891 value = tem;
2892 else if (tem != 0)
6fa5c106 2893 return (rtx) (HOST_WIDE_INT) 1;
d7429b6a
RK
2894 }
2895 }
2896 }
2897
2898 return value;
2899}
2900\f
2901/* Write information about registers and basic blocks into FILE.
2902 This is part of making a debugging dump. */
2903
2904void
2905dump_flow_info (file)
2906 FILE *file;
2907{
2908 register int i;
2909 static char *reg_class_names[] = REG_CLASS_NAMES;
2910
2911 fprintf (file, "%d registers.\n", max_regno);
2912
2913 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
b1f21e0a 2914 if (REG_N_REFS (i))
d7429b6a 2915 {
e4600702 2916 enum reg_class class, altclass;
d7429b6a 2917 fprintf (file, "\nRegister %d used %d times across %d insns",
b1f21e0a
MM
2918 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
2919 if (REG_BASIC_BLOCK (i) >= 0)
2920 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
2921 if (REG_N_DEATHS (i) != 1)
2922 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
2923 if (REG_N_CALLS_CROSSED (i) == 1)
d7429b6a 2924 fprintf (file, "; crosses 1 call");
b1f21e0a
MM
2925 else if (REG_N_CALLS_CROSSED (i))
2926 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
d7429b6a
RK
2927 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
2928 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
2929 class = reg_preferred_class (i);
e4600702
RK
2930 altclass = reg_alternate_class (i);
2931 if (class != GENERAL_REGS || altclass != ALL_REGS)
d7429b6a 2932 {
e4600702
RK
2933 if (altclass == ALL_REGS || class == ALL_REGS)
2934 fprintf (file, "; pref %s", reg_class_names[(int) class]);
2935 else if (altclass == NO_REGS)
d7429b6a
RK
2936 fprintf (file, "; %s or none", reg_class_names[(int) class]);
2937 else
e4600702
RK
2938 fprintf (file, "; pref %s, else %s",
2939 reg_class_names[(int) class],
2940 reg_class_names[(int) altclass]);
d7429b6a
RK
2941 }
2942 if (REGNO_POINTER_FLAG (i))
2943 fprintf (file, "; pointer");
2944 fprintf (file, ".\n");
2945 }
2946 fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
2947 for (i = 0; i < n_basic_blocks; i++)
2948 {
2949 register rtx head, jump;
2950 register int regno;
2951 fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
2952 i,
2953 INSN_UID (basic_block_head[i]),
2954 INSN_UID (basic_block_end[i]));
2955 /* The control flow graph's storage is freed
2956 now when flow_analysis returns.
2957 Don't try to print it if it is gone. */
2958 if (basic_block_drops_in)
2959 {
2960 fprintf (file, "Reached from blocks: ");
2961 head = basic_block_head[i];
2962 if (GET_CODE (head) == CODE_LABEL)
2963 for (jump = LABEL_REFS (head);
2964 jump != head;
2965 jump = LABEL_NEXTREF (jump))
2966 {
2967 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
2968 fprintf (file, " %d", from_block);
2969 }
2970 if (basic_block_drops_in[i])
2971 fprintf (file, " previous");
2972 }
2973 fprintf (file, "\nRegisters live at start:");
2974 for (regno = 0; regno < max_regno; regno++)
916b1701
MM
2975 if (REGNO_REG_SET_P (basic_block_live_at_start[i], regno))
2976 fprintf (file, " %d", regno);
d7429b6a
RK
2977 fprintf (file, "\n");
2978 }
2979 fprintf (file, "\n");
2980}
3e28fe44
MM
2981
2982\f
2983/* Like print_rtl, but also print out live information for the start of each
2984 basic block. */
2985
2986void
2987print_rtl_with_bb (outf, rtx_first)
2988 FILE *outf;
2989 rtx rtx_first;
2990{
2991 register rtx tmp_rtx;
2992
2993 if (rtx_first == 0)
2994 fprintf (outf, "(nil)\n");
2995
2996 else
2997 {
2998 int i, bb;
2999 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
3000 int max_uid = get_max_uid ();
adfc539e
PDM
3001 int *start = (int *) alloca (max_uid * sizeof (int));
3002 int *end = (int *) alloca (max_uid * sizeof (int));
d8d64559 3003 char *in_bb_p = (char *) alloca (max_uid * sizeof (enum bb_state));
3e28fe44
MM
3004
3005 for (i = 0; i < max_uid; i++)
3006 {
3007 start[i] = end[i] = -1;
3008 in_bb_p[i] = NOT_IN_BB;
3009 }
3010
3011 for (i = n_basic_blocks-1; i >= 0; i--)
3012 {
3013 rtx x;
3014 start[INSN_UID (basic_block_head[i])] = i;
3015 end[INSN_UID (basic_block_end[i])] = i;
3016 for (x = basic_block_head[i]; x != NULL_RTX; x = NEXT_INSN (x))
3017 {
1791f8e2
MM
3018 in_bb_p[ INSN_UID(x)]
3019 = (in_bb_p[ INSN_UID(x)] == NOT_IN_BB)
3b33f637 3020 ? IN_ONE_BB : IN_MULTIPLE_BB;
3e28fe44
MM
3021 if (x == basic_block_end[i])
3022 break;
3023 }
3024 }
3025
3026 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
3027 {
3028 if ((bb = start[INSN_UID (tmp_rtx)]) >= 0)
3029 {
3030 fprintf (outf, ";; Start of basic block %d, registers live:",
3031 bb);
3032
3033 EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[bb], 0, i,
3034 {
3035 fprintf (outf, " %d", i);
3036 if (i < FIRST_PSEUDO_REGISTER)
3037 fprintf (outf, " [%s]",
3038 reg_names[i]);
3039 });
3040 putc ('\n', outf);
3041 }
3042
3043 if (in_bb_p[ INSN_UID(tmp_rtx)] == NOT_IN_BB
3044 && GET_CODE (tmp_rtx) != NOTE
3045 && GET_CODE (tmp_rtx) != BARRIER)
3046 fprintf (outf, ";; Insn is not within a basic block\n");
3047 else if (in_bb_p[ INSN_UID(tmp_rtx)] == IN_MULTIPLE_BB)
3048 fprintf (outf, ";; Insn is in multiple basic blocks\n");
3049
3050 print_rtl_single (outf, tmp_rtx);
3051
3052 if ((bb = end[INSN_UID (tmp_rtx)]) >= 0)
3053 fprintf (outf, ";; End of basic block %d\n", bb);
3054
3055 putc ('\n', outf);
3056 }
3057 }
3058}
This page took 0.692589 seconds and 5 git commands to generate.