]> gcc.gnu.org Git - gcc.git/blame - gcc/final.c
final.c (shorten_branches): Clear the end of the label_align array only if we made...
[gcc.git] / gcc / final.c
CommitLineData
3cf2715d 1/* Convert RTL to assembler code and output it, for GNU compiler.
3b708058 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
b660f82f 3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3cf2715d
DE
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
940d9d63
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
3cf2715d 21
3cf2715d
DE
22/* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
08c148a8
NB
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
3cf2715d
DE
46
47#include "config.h"
670ee920 48#include "system.h"
3cf2715d
DE
49
50#include "tree.h"
51#include "rtl.h"
6baf1cc8 52#include "tm_p.h"
3cf2715d
DE
53#include "regs.h"
54#include "insn-config.h"
3cf2715d 55#include "insn-attr.h"
3cf2715d
DE
56#include "recog.h"
57#include "conditions.h"
58#include "flags.h"
59#include "real.h"
60#include "hard-reg-set.h"
3cf2715d 61#include "output.h"
3d195391 62#include "except.h"
49ad7cfa 63#include "function.h"
10f0ad3d 64#include "toplev.h"
d6f4ec51 65#include "reload.h"
ab87f8c8 66#include "intl.h"
be1bb652 67#include "basic-block.h"
08c148a8 68#include "target.h"
a5a42b92 69#include "debug.h"
3cf2715d 70
440aabf8
NB
71#ifdef XCOFF_DEBUGGING_INFO
72#include "xcoffout.h" /* Needed for external data
73 declarations for e.g. AIX 4.x. */
74#endif
75
76ead72b
RL
76#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
77#include "dwarf2out.h"
78#endif
79
3cf2715d
DE
80/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
81 null default for it to save conditionalization later. */
82#ifndef CC_STATUS_INIT
83#define CC_STATUS_INIT
84#endif
85
86/* How to start an assembler comment. */
87#ifndef ASM_COMMENT_START
88#define ASM_COMMENT_START ";#"
89#endif
90
91/* Is the given character a logical line separator for the assembler? */
92#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
93#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
94#endif
95
75197b37
BS
96#ifndef JUMP_TABLES_IN_TEXT_SECTION
97#define JUMP_TABLES_IN_TEXT_SECTION 0
98#endif
99
3cf2715d 100/* Last insn processed by final_scan_insn. */
b1a9f6a0
RH
101static rtx debug_insn;
102rtx current_output_insn;
3cf2715d
DE
103
104/* Line number of last NOTE. */
105static int last_linenum;
106
eac40081
RK
107/* Highest line number in current block. */
108static int high_block_linenum;
109
110/* Likewise for function. */
111static int high_function_linenum;
112
3cf2715d 113/* Filename of last NOTE. */
3cce094d 114static const char *last_filename;
3cf2715d
DE
115
116/* Number of basic blocks seen so far;
117 used if profile_block_flag is set. */
118static int count_basic_blocks;
119
9e2f9a7f 120/* Number of instrumented arcs when profile_arc_flag is set. */
51891abe 121extern int count_instrumented_edges;
9e2f9a7f 122
fc470718
R
123extern int length_unit_log; /* This is defined in insn-attrtab.c. */
124
3cf2715d
DE
125/* Nonzero while outputting an `asm' with operands.
126 This means that inconsistencies are the user's fault, so don't abort.
127 The precise value is the insn being output, to pass to error_for_asm. */
128static rtx this_is_asm_operands;
129
130/* Number of operands of this insn, for an `asm' with operands. */
22bf4422 131static unsigned int insn_noperands;
3cf2715d
DE
132
133/* Compare optimization flag. */
134
135static rtx last_ignored_compare = 0;
136
137/* Flag indicating this insn is the start of a new basic block. */
138
139static int new_block = 1;
140
3cf2715d
DE
141/* Assign a unique number to each insn that is output.
142 This can be used to generate unique local labels. */
143
144static int insn_counter = 0;
145
146#ifdef HAVE_cc0
147/* This variable contains machine-dependent flags (defined in tm.h)
148 set and examined by output routines
149 that describe how to interpret the condition codes properly. */
150
151CC_STATUS cc_status;
152
153/* During output of an insn, this contains a copy of cc_status
154 from before the insn. */
155
156CC_STATUS cc_prev_status;
157#endif
158
159/* Indexed by hardware reg number, is 1 if that register is ever
160 used in the current function.
161
162 In life_analysis, or in stupid_life_analysis, this is set
163 up to record the hard regs used explicitly. Reload adds
164 in the hard regs used for holding pseudo regs. Final uses
165 it to generate the code in the function prologue and epilogue
166 to save and restore registers as needed. */
167
168char regs_ever_live[FIRST_PSEUDO_REGISTER];
169
170/* Nonzero means current function must be given a frame pointer.
171 Set in stmt.c if anything is allocated on the stack there.
172 Set in reload1.c if anything is allocated on the stack there. */
173
174int frame_pointer_needed;
175
8480e480
CC
176/* Assign unique numbers to labels generated for profiling. */
177
178int profile_label_no;
179
18c038b9 180/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
3cf2715d
DE
181
182static int block_depth;
183
184/* Nonzero if have enabled APP processing of our assembler output. */
185
186static int app_on;
187
188/* If we are outputting an insn sequence, this contains the sequence rtx.
189 Zero otherwise. */
190
191rtx final_sequence;
192
193#ifdef ASSEMBLER_DIALECT
194
195/* Number of the assembler dialect to use, starting at 0. */
196static int dialect_number;
197#endif
198
199/* Indexed by line number, nonzero if there is a note for that line. */
200
201static char *line_note_exists;
202
afe48e06
RH
203#ifdef HAVE_conditional_execution
204/* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
205rtx current_insn_predicate;
206#endif
207
3cf2715d
DE
208/* Linked list to hold line numbers for each basic block. */
209
f5d927c0
KH
210struct bb_list
211{
3cf2715d
DE
212 struct bb_list *next; /* pointer to next basic block */
213 int line_num; /* line number */
214 int file_label_num; /* LPBC<n> label # for stored filename */
215 int func_label_num; /* LPBC<n> label # for stored function name */
216};
217
218static struct bb_list *bb_head = 0; /* Head of basic block list */
219static struct bb_list **bb_tail = &bb_head; /* Ptr to store next bb ptr */
220static int bb_file_label_num = -1; /* Current label # for file */
221static int bb_func_label_num = -1; /* Current label # for func */
222
223/* Linked list to hold the strings for each file and function name output. */
224
f5d927c0
KH
225struct bb_str
226{
3cf2715d 227 struct bb_str *next; /* pointer to next string */
9b3142b3 228 const char *string; /* string */
3cf2715d
DE
229 int label_num; /* label number */
230 int length; /* string length */
231};
232
3cf2715d
DE
233static struct bb_str *sbb_head = 0; /* Head of string list. */
234static struct bb_str **sbb_tail = &sbb_head; /* Ptr to store next bb str */
235static int sbb_label_num = 0; /* Last label used */
236
1d300e19 237#ifdef HAVE_ATTR_length
711d877c
KG
238static int asm_insn_count PARAMS ((rtx));
239#endif
240static void profile_function PARAMS ((FILE *));
241static void profile_after_prologue PARAMS ((FILE *));
242static void add_bb PARAMS ((FILE *));
243static int add_bb_string PARAMS ((const char *, int));
653e276c 244static void notice_source_line PARAMS ((rtx));
711d877c
KG
245static rtx walk_alter_subreg PARAMS ((rtx));
246static void output_asm_name PARAMS ((void));
247static void output_operand PARAMS ((rtx, int));
e9a25f70 248#ifdef LEAF_REGISTERS
711d877c 249static void leaf_renumber_regs PARAMS ((rtx));
e9a25f70
JL
250#endif
251#ifdef HAVE_cc0
711d877c 252static int alter_cond PARAMS ((rtx));
e9a25f70 253#endif
ca3075bd 254#ifndef ADDR_VEC_ALIGN
711d877c 255static int final_addr_vec_align PARAMS ((rtx));
ca3075bd 256#endif
7bdb32b9 257#ifdef HAVE_ATTR_length
711d877c 258static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
7bdb32b9 259#endif
3cf2715d
DE
260\f
261/* Initialize data in final at the beginning of a compilation. */
262
263void
264init_final (filename)
6a651371 265 const char *filename ATTRIBUTE_UNUSED;
3cf2715d 266{
3cf2715d 267 app_on = 0;
3cf2715d
DE
268 final_sequence = 0;
269
270#ifdef ASSEMBLER_DIALECT
271 dialect_number = ASSEMBLER_DIALECT;
272#endif
273}
274
275/* Called at end of source file,
276 to output the block-profiling table for this entire compilation. */
277
278void
279end_final (filename)
f5d927c0 280 const char *filename;
3cf2715d
DE
281{
282 int i;
283
9e2f9a7f 284 if (profile_block_flag || profile_arc_flag)
3cf2715d
DE
285 {
286 char name[20];
287 int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
9e2f9a7f 288 int size, rounded;
3cf2715d
DE
289 struct bb_list *ptr;
290 struct bb_str *sptr;
9e2f9a7f 291 int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
b2aec5c0 292 int gcov_type_bytes = GCOV_TYPE_SIZE / BITS_PER_UNIT;
9e2f9a7f
DE
293 int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
294
295 if (profile_block_flag)
296 size = long_bytes * count_basic_blocks;
297 else
b2aec5c0 298 size = gcov_type_bytes * count_instrumented_edges;
9e2f9a7f 299 rounded = size;
3cf2715d
DE
300
301 rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
302 rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
303 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
304
305 data_section ();
306
47431dff
RK
307 /* Output the main header, of 11 words:
308 0: 1 if this file is initialized, else 0.
3cf2715d
DE
309 1: address of file name (LPBX1).
310 2: address of table of counts (LPBX2).
311 3: number of counts in the table.
312 4: always 0, for compatibility with Sun.
313
314 The following are GNU extensions:
315
316 5: address of table of start addrs of basic blocks (LPBX3).
317 6: Number of bytes in this header.
318 7: address of table of function names (LPBX4).
319 8: address of table of line numbers (LPBX5) or 0.
47431dff 320 9: address of table of file names (LPBX6) or 0.
0f41302f 321 10: space reserved for basic block profiling. */
3cf2715d
DE
322
323 ASM_OUTPUT_ALIGN (asm_out_file, align);
324
325 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
326 /* zero word */
9e2f9a7f 327 assemble_integer (const0_rtx, long_bytes, 1);
3cf2715d
DE
328
329 /* address of filename */
330 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
38a448ca 331 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
3cf2715d
DE
332
333 /* address of count table */
334 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
38a448ca 335 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
3cf2715d 336
9e2f9a7f
DE
337 /* count of the # of basic blocks or # of instrumented arcs */
338 if (profile_block_flag)
339 assemble_integer (GEN_INT (count_basic_blocks), long_bytes, 1);
340 else
51891abe 341 assemble_integer (GEN_INT (count_instrumented_edges), long_bytes, 1);
3cf2715d
DE
342
343 /* zero word (link field) */
9e2f9a7f 344 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
345
346 /* address of basic block start address table */
9e2f9a7f
DE
347 if (profile_block_flag)
348 {
349 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
38a448ca 350 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
9e2f9a7f
DE
351 1);
352 }
353 else
354 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
355
356 /* byte count for extended structure. */
d7502074 357 assemble_integer (GEN_INT (11 * UNITS_PER_WORD), long_bytes, 1);
3cf2715d
DE
358
359 /* address of function name table */
9e2f9a7f
DE
360 if (profile_block_flag)
361 {
362 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
38a448ca 363 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
9e2f9a7f
DE
364 1);
365 }
366 else
367 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
368
369 /* address of line number and filename tables if debugging. */
9e2f9a7f 370 if (write_symbols != NO_DEBUG && profile_block_flag)
3cf2715d
DE
371 {
372 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
c5c76735
JL
373 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
374 pointer_bytes, 1);
3cf2715d 375 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
c5c76735
JL
376 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
377 pointer_bytes, 1);
3cf2715d
DE
378 }
379 else
380 {
9e2f9a7f
DE
381 assemble_integer (const0_rtx, pointer_bytes, 1);
382 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
383 }
384
47431dff
RK
385 /* space for extension ptr (link field) */
386 assemble_integer (const0_rtx, UNITS_PER_WORD, 1);
387
3cf2715d
DE
388 /* Output the file name changing the suffix to .d for Sun tcov
389 compatibility. */
390 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
391 {
67e23d2f
JW
392 char *cwd = getpwd ();
393 int len = strlen (filename) + strlen (cwd) + 1;
394 char *data_file = (char *) alloca (len + 4);
395
396 strcpy (data_file, cwd);
397 strcat (data_file, "/");
398 strcat (data_file, filename);
3cf2715d 399 strip_off_ending (data_file, len);
9e2f9a7f
DE
400 if (profile_block_flag)
401 strcat (data_file, ".d");
402 else
403 strcat (data_file, ".da");
3cf2715d
DE
404 assemble_string (data_file, strlen (data_file) + 1);
405 }
406
407 /* Make space for the table of counts. */
2786cbad 408 if (size == 0)
3cf2715d
DE
409 {
410 /* Realign data section. */
411 ASM_OUTPUT_ALIGN (asm_out_file, align);
412 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
413 if (size != 0)
414 assemble_zeros (size);
415 }
416 else
417 {
418 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
419#ifdef ASM_OUTPUT_SHARED_LOCAL
420 if (flag_shared_data)
421 ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
422 else
423#endif
e9a25f70 424#ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
f5d927c0
KH
425 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name,
426 size, BIGGEST_ALIGNMENT);
e9a25f70 427#else
3cf2715d
DE
428#ifdef ASM_OUTPUT_ALIGNED_LOCAL
429 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
430 BIGGEST_ALIGNMENT);
431#else
432 ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
e9a25f70 433#endif
3cf2715d
DE
434#endif
435 }
436
437 /* Output any basic block strings */
9e2f9a7f 438 if (profile_block_flag)
3cf2715d 439 {
9e2f9a7f
DE
440 readonly_data_section ();
441 if (sbb_head)
3cf2715d 442 {
9e2f9a7f
DE
443 ASM_OUTPUT_ALIGN (asm_out_file, align);
444 for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
445 {
446 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
447 sptr->label_num);
448 assemble_string (sptr->string, sptr->length);
449 }
3cf2715d
DE
450 }
451 }
452
453 /* Output the table of addresses. */
9e2f9a7f 454 if (profile_block_flag)
3cf2715d 455 {
9e2f9a7f
DE
456 /* Realign in new section */
457 ASM_OUTPUT_ALIGN (asm_out_file, align);
458 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
459 for (i = 0; i < count_basic_blocks; i++)
460 {
461 ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
38a448ca 462 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
9e2f9a7f
DE
463 pointer_bytes, 1);
464 }
3cf2715d
DE
465 }
466
467 /* Output the table of function names. */
9e2f9a7f 468 if (profile_block_flag)
3cf2715d 469 {
9e2f9a7f
DE
470 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
471 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
3cf2715d 472 {
9e2f9a7f
DE
473 if (ptr->func_label_num >= 0)
474 {
475 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
476 ptr->func_label_num);
38a448ca 477 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
9e2f9a7f
DE
478 pointer_bytes, 1);
479 }
480 else
481 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d 482 }
3cf2715d 483
f5d927c0 484 for (; i < count_basic_blocks; i++)
9e2f9a7f
DE
485 assemble_integer (const0_rtx, pointer_bytes, 1);
486 }
3cf2715d 487
9e2f9a7f 488 if (write_symbols != NO_DEBUG && profile_block_flag)
3cf2715d
DE
489 {
490 /* Output the table of line numbers. */
491 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
492 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
9e2f9a7f 493 assemble_integer (GEN_INT (ptr->line_num), long_bytes, 1);
3cf2715d 494
f5d927c0 495 for (; i < count_basic_blocks; i++)
9e2f9a7f 496 assemble_integer (const0_rtx, long_bytes, 1);
3cf2715d
DE
497
498 /* Output the table of file names. */
499 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
500 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
501 {
502 if (ptr->file_label_num >= 0)
503 {
9e2f9a7f
DE
504 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
505 ptr->file_label_num);
38a448ca 506 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
9e2f9a7f 507 pointer_bytes, 1);
3cf2715d
DE
508 }
509 else
9e2f9a7f 510 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
511 }
512
f5d927c0 513 for (; i < count_basic_blocks; i++)
9e2f9a7f 514 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
515 }
516
517 /* End with the address of the table of addresses,
518 so we can find it easily, as the last word in the file's text. */
9e2f9a7f
DE
519 if (profile_block_flag)
520 {
521 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
38a448ca 522 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
9e2f9a7f
DE
523 1);
524 }
3cf2715d
DE
525 }
526}
527
08c148a8 528/* Default target function prologue and epilogue assembler output.
b9f22704 529
08c148a8
NB
530 If not overridden for epilogue code, then the function body itself
531 contains return instructions wherever needed. */
532void
533default_function_pro_epilogue (file, size)
534 FILE *file ATTRIBUTE_UNUSED;
535 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
536{
537}
538
b4c25db2
NB
539/* Default target hook that outputs nothing to a stream. */
540void
541no_asm_to_stream (file)
542 FILE *file ATTRIBUTE_UNUSED;
543{
544}
545
3cf2715d
DE
546/* Enable APP processing of subsequent output.
547 Used before the output from an `asm' statement. */
548
549void
550app_enable ()
551{
552 if (! app_on)
553 {
51723711 554 fputs (ASM_APP_ON, asm_out_file);
3cf2715d
DE
555 app_on = 1;
556 }
557}
558
559/* Disable APP processing of subsequent output.
560 Called from varasm.c before most kinds of output. */
561
562void
563app_disable ()
564{
565 if (app_on)
566 {
51723711 567 fputs (ASM_APP_OFF, asm_out_file);
3cf2715d
DE
568 app_on = 0;
569 }
570}
571\f
f5d927c0 572/* Return the number of slots filled in the current
3cf2715d
DE
573 delayed branch sequence (we don't count the insn needing the
574 delay slot). Zero if not in a delayed branch sequence. */
575
576#ifdef DELAY_SLOTS
577int
578dbr_sequence_length ()
579{
580 if (final_sequence != 0)
581 return XVECLEN (final_sequence, 0) - 1;
582 else
583 return 0;
584}
585#endif
586\f
587/* The next two pages contain routines used to compute the length of an insn
588 and to shorten branches. */
589
590/* Arrays for insn lengths, and addresses. The latter is referenced by
591 `insn_current_length'. */
592
593static short *insn_lengths;
9d98a694
AO
594
595#ifdef HAVE_ATTR_length
596varray_type insn_addresses_;
597#endif
3cf2715d 598
ea3cbda5
R
599/* Max uid for which the above arrays are valid. */
600static int insn_lengths_max_uid;
601
3cf2715d
DE
602/* Address of insn being processed. Used by `insn_current_length'. */
603int insn_current_address;
604
fc470718
R
605/* Address of insn being processed in previous iteration. */
606int insn_last_address;
607
608/* konwn invariant alignment of insn being processed. */
609int insn_current_align;
610
95707627
R
611/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
612 gives the next following alignment insn that increases the known
613 alignment, or NULL_RTX if there is no such insn.
614 For any alignment obtained this way, we can again index uid_align with
615 its uid to obtain the next following align that in turn increases the
616 alignment, till we reach NULL_RTX; the sequence obtained this way
617 for each insn we'll call the alignment chain of this insn in the following
618 comments. */
619
f5d927c0
KH
620struct label_alignment
621{
9e423e6d
JW
622 short alignment;
623 short max_skip;
624};
625
626static rtx *uid_align;
627static int *uid_shuid;
628static struct label_alignment *label_align;
95707627 629
3cf2715d
DE
630/* Indicate that branch shortening hasn't yet been done. */
631
632void
633init_insn_lengths ()
634{
95707627
R
635 if (uid_shuid)
636 {
637 free (uid_shuid);
638 uid_shuid = 0;
639 }
640 if (insn_lengths)
641 {
642 free (insn_lengths);
643 insn_lengths = 0;
ea3cbda5 644 insn_lengths_max_uid = 0;
95707627 645 }
9d98a694
AO
646#ifdef HAVE_ATTR_length
647 INSN_ADDRESSES_FREE ();
648#endif
95707627
R
649 if (uid_align)
650 {
651 free (uid_align);
652 uid_align = 0;
653 }
3cf2715d
DE
654}
655
656/* Obtain the current length of an insn. If branch shortening has been done,
657 get its actual length. Otherwise, get its maximum length. */
658
659int
660get_attr_length (insn)
7bdb32b9 661 rtx insn ATTRIBUTE_UNUSED;
3cf2715d
DE
662{
663#ifdef HAVE_ATTR_length
664 rtx body;
665 int i;
666 int length = 0;
667
ea3cbda5 668 if (insn_lengths_max_uid > INSN_UID (insn))
3cf2715d
DE
669 return insn_lengths[INSN_UID (insn)];
670 else
671 switch (GET_CODE (insn))
672 {
673 case NOTE:
674 case BARRIER:
675 case CODE_LABEL:
676 return 0;
677
678 case CALL_INSN:
679 length = insn_default_length (insn);
680 break;
681
682 case JUMP_INSN:
683 body = PATTERN (insn);
684 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
685 {
fc470718
R
686 /* Alignment is machine-dependent and should be handled by
687 ADDR_VEC_ALIGN. */
3cf2715d
DE
688 }
689 else
690 length = insn_default_length (insn);
691 break;
692
693 case INSN:
694 body = PATTERN (insn);
695 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
696 return 0;
697
698 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
699 length = asm_insn_count (body) * insn_default_length (insn);
700 else if (GET_CODE (body) == SEQUENCE)
701 for (i = 0; i < XVECLEN (body, 0); i++)
702 length += get_attr_length (XVECEXP (body, 0, i));
703 else
704 length = insn_default_length (insn);
e9a25f70
JL
705 break;
706
707 default:
708 break;
3cf2715d
DE
709 }
710
711#ifdef ADJUST_INSN_LENGTH
712 ADJUST_INSN_LENGTH (insn, length);
713#endif
714 return length;
715#else /* not HAVE_ATTR_length */
716 return 0;
717#endif /* not HAVE_ATTR_length */
718}
719\f
fc470718
R
720/* Code to handle alignment inside shorten_branches. */
721
722/* Here is an explanation how the algorithm in align_fuzz can give
723 proper results:
724
725 Call a sequence of instructions beginning with alignment point X
726 and continuing until the next alignment point `block X'. When `X'
f5d927c0 727 is used in an expression, it means the alignment value of the
fc470718 728 alignment point.
f5d927c0 729
fc470718
R
730 Call the distance between the start of the first insn of block X, and
731 the end of the last insn of block X `IX', for the `inner size of X'.
732 This is clearly the sum of the instruction lengths.
f5d927c0 733
fc470718
R
734 Likewise with the next alignment-delimited block following X, which we
735 shall call block Y.
f5d927c0 736
fc470718
R
737 Call the distance between the start of the first insn of block X, and
738 the start of the first insn of block Y `OX', for the `outer size of X'.
f5d927c0 739
fc470718 740 The estimated padding is then OX - IX.
f5d927c0 741
fc470718 742 OX can be safely estimated as
f5d927c0 743
fc470718
R
744 if (X >= Y)
745 OX = round_up(IX, Y)
746 else
747 OX = round_up(IX, X) + Y - X
f5d927c0 748
fc470718
R
749 Clearly est(IX) >= real(IX), because that only depends on the
750 instruction lengths, and those being overestimated is a given.
f5d927c0 751
fc470718
R
752 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
753 we needn't worry about that when thinking about OX.
f5d927c0 754
fc470718
R
755 When X >= Y, the alignment provided by Y adds no uncertainty factor
756 for branch ranges starting before X, so we can just round what we have.
757 But when X < Y, we don't know anything about the, so to speak,
758 `middle bits', so we have to assume the worst when aligning up from an
759 address mod X to one mod Y, which is Y - X. */
760
761#ifndef LABEL_ALIGN
efa3896a 762#define LABEL_ALIGN(LABEL) align_labels_log
fc470718
R
763#endif
764
9e423e6d 765#ifndef LABEL_ALIGN_MAX_SKIP
efa3896a 766#define LABEL_ALIGN_MAX_SKIP (align_labels-1)
9e423e6d
JW
767#endif
768
fc470718 769#ifndef LOOP_ALIGN
efa3896a 770#define LOOP_ALIGN(LABEL) align_loops_log
fc470718
R
771#endif
772
9e423e6d 773#ifndef LOOP_ALIGN_MAX_SKIP
efa3896a 774#define LOOP_ALIGN_MAX_SKIP (align_loops-1)
9e423e6d
JW
775#endif
776
fc470718 777#ifndef LABEL_ALIGN_AFTER_BARRIER
25e22dc0 778#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 1
fc470718
R
779#endif
780
9e423e6d 781#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
25e22dc0
JH
782#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
783#endif
784
785#ifndef JUMP_ALIGN
786#define JUMP_ALIGN(LABEL) align_jumps_log
787#endif
788
789#ifndef JUMP_ALIGN_MAX_SKIP
790#define JUMP_ALIGN_MAX_SKIP (align_jumps-1)
9e423e6d
JW
791#endif
792
fc470718 793#ifndef ADDR_VEC_ALIGN
ca3075bd 794static int
fc470718
R
795final_addr_vec_align (addr_vec)
796 rtx addr_vec;
797{
2a841588 798 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
fc470718
R
799
800 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
801 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
2a841588 802 return exact_log2 (align);
fc470718
R
803
804}
f5d927c0 805
fc470718
R
806#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
807#endif
808
809#ifndef INSN_LENGTH_ALIGNMENT
810#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
811#endif
812
fc470718
R
813#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
814
de7987a6 815static int min_labelno, max_labelno;
fc470718
R
816
817#define LABEL_TO_ALIGNMENT(LABEL) \
9e423e6d
JW
818 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
819
820#define LABEL_TO_MAX_SKIP(LABEL) \
821 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
fc470718
R
822
823/* For the benefit of port specific code do this also as a function. */
f5d927c0 824
fc470718
R
825int
826label_to_alignment (label)
827 rtx label;
828{
829 return LABEL_TO_ALIGNMENT (label);
830}
831
832#ifdef HAVE_ATTR_length
833/* The differences in addresses
834 between a branch and its target might grow or shrink depending on
835 the alignment the start insn of the range (the branch for a forward
836 branch or the label for a backward branch) starts out on; if these
837 differences are used naively, they can even oscillate infinitely.
838 We therefore want to compute a 'worst case' address difference that
839 is independent of the alignment the start insn of the range end
840 up on, and that is at least as large as the actual difference.
841 The function align_fuzz calculates the amount we have to add to the
842 naively computed difference, by traversing the part of the alignment
843 chain of the start insn of the range that is in front of the end insn
844 of the range, and considering for each alignment the maximum amount
845 that it might contribute to a size increase.
846
847 For casesi tables, we also want to know worst case minimum amounts of
848 address difference, in case a machine description wants to introduce
849 some common offset that is added to all offsets in a table.
850 For this purpose, align_fuzz with a growth argument of 0 comuptes the
851 appropriate adjustment. */
852
fc470718
R
853/* Compute the maximum delta by which the difference of the addresses of
854 START and END might grow / shrink due to a different address for start
855 which changes the size of alignment insns between START and END.
856 KNOWN_ALIGN_LOG is the alignment known for START.
857 GROWTH should be ~0 if the objective is to compute potential code size
858 increase, and 0 if the objective is to compute potential shrink.
859 The return value is undefined for any other value of GROWTH. */
f5d927c0 860
ca3075bd 861static int
687d0ab6 862align_fuzz (start, end, known_align_log, growth)
fc470718
R
863 rtx start, end;
864 int known_align_log;
865 unsigned growth;
866{
867 int uid = INSN_UID (start);
868 rtx align_label;
869 int known_align = 1 << known_align_log;
870 int end_shuid = INSN_SHUID (end);
871 int fuzz = 0;
872
873 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
874 {
875 int align_addr, new_align;
876
877 uid = INSN_UID (align_label);
9d98a694 878 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
fc470718
R
879 if (uid_shuid[uid] > end_shuid)
880 break;
881 known_align_log = LABEL_TO_ALIGNMENT (align_label);
882 new_align = 1 << known_align_log;
883 if (new_align < known_align)
884 continue;
885 fuzz += (-align_addr ^ growth) & (new_align - known_align);
886 known_align = new_align;
887 }
888 return fuzz;
889}
890
891/* Compute a worst-case reference address of a branch so that it
892 can be safely used in the presence of aligned labels. Since the
893 size of the branch itself is unknown, the size of the branch is
894 not included in the range. I.e. for a forward branch, the reference
895 address is the end address of the branch as known from the previous
896 branch shortening pass, minus a value to account for possible size
897 increase due to alignment. For a backward branch, it is the start
898 address of the branch as known from the current pass, plus a value
899 to account for possible size increase due to alignment.
900 NB.: Therefore, the maximum offset allowed for backward branches needs
901 to exclude the branch size. */
f5d927c0 902
fc470718
R
903int
904insn_current_reference_address (branch)
905 rtx branch;
906{
5527bf14
RH
907 rtx dest, seq;
908 int seq_uid;
909
910 if (! INSN_ADDRESSES_SET_P ())
911 return 0;
912
913 seq = NEXT_INSN (PREV_INSN (branch));
914 seq_uid = INSN_UID (seq);
fc470718
R
915 if (GET_CODE (branch) != JUMP_INSN)
916 /* This can happen for example on the PA; the objective is to know the
917 offset to address something in front of the start of the function.
918 Thus, we can treat it like a backward branch.
919 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
920 any alignment we'd encounter, so we skip the call to align_fuzz. */
921 return insn_current_address;
922 dest = JUMP_LABEL (branch);
5527bf14 923
b9f22704 924 /* BRANCH has no proper alignment chain set, so use SEQ.
afc6898e
BS
925 BRANCH also has no INSN_SHUID. */
926 if (INSN_SHUID (seq) < INSN_SHUID (dest))
fc470718 927 {
f5d927c0 928 /* Forward branch. */
fc470718 929 return (insn_last_address + insn_lengths[seq_uid]
26024475 930 - align_fuzz (seq, dest, length_unit_log, ~0));
fc470718
R
931 }
932 else
933 {
f5d927c0 934 /* Backward branch. */
fc470718 935 return (insn_current_address
923f7cf9 936 + align_fuzz (dest, seq, length_unit_log, ~0));
fc470718
R
937 }
938}
939#endif /* HAVE_ATTR_length */
940\f
25e22dc0
JH
941void
942compute_alignments ()
943{
944 int i;
945 int log, max_skip, max_log;
946
947 if (label_align)
948 {
949 free (label_align);
950 label_align = 0;
951 }
952
953 max_labelno = max_label_num ();
954 min_labelno = get_first_label_num ();
955 label_align = (struct label_alignment *) xcalloc ((max_labelno - min_labelno + 1),
956 sizeof (struct label_alignment));
957
958 /* If not optimizing or optimizing for size, don't assign any alignments. */
959 for (i = 0; i < n_basic_blocks; i++)
960 {
961 basic_block bb = BASIC_BLOCK (i);
962 rtx label = bb->head;
963 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
964 edge e;
965
966 if (GET_CODE (label) != CODE_LABEL)
967 continue;
968 max_log = LABEL_ALIGN (label);
969 max_skip = LABEL_ALIGN_MAX_SKIP;
970
971 for (e = bb->pred; e; e = e->pred_next)
972 {
973 if (e->flags & EDGE_FALLTHRU)
974 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
975 else
976 branch_frequency += EDGE_FREQUENCY (e);
977 }
978
979 /* There are two purposes to align block with no fallthru incomming edge:
980 1) to avoid fetch stalls when branch destination is near cache boundary
981 2) to improve cache effciency in case the previous block is not executed
982 (so it does not need to be in the cache).
983
984 We to catch first case, we align frequently executed blocks.
985 To catch the second, we align blocks that are executed more frequently
986 than the predecesor and the predecesor is likely to not be executed
987 when function is called. */
988
989 if (!has_fallthru
990 && (branch_frequency > BB_FREQ_MAX / 10
991 || (bb->frequency > BASIC_BLOCK (i - 1)->frequency * 10
992 && (BASIC_BLOCK (i - 1)->frequency
993 <= ENTRY_BLOCK_PTR->frequency / 2))))
994 {
995 log = JUMP_ALIGN (label);
996 if (max_log < log)
997 {
998 max_log = log;
999 max_skip = JUMP_ALIGN_MAX_SKIP;
1000 }
1001 }
1002 /* In case block is frequent and reached mostly by non-fallthru edge,
1003 align it. It is most likely an first block of loop. */
1004 if (has_fallthru
1005 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1006 && branch_frequency > fallthru_frequency * 5)
1007 {
1008 log = LOOP_ALIGN (label);
1009 if (max_log < log)
1010 {
1011 max_log = log;
1012 max_skip = LOOP_ALIGN_MAX_SKIP;
1013 }
1014 }
1015 LABEL_TO_ALIGNMENT (label) = max_log;
1016 LABEL_TO_MAX_SKIP (label) = max_skip;
1017 }
1018}
1019\f
3cf2715d
DE
1020/* Make a pass over all insns and compute their actual lengths by shortening
1021 any branches of variable length if possible. */
1022
1023/* Give a default value for the lowest address in a function. */
1024
1025#ifndef FIRST_INSN_ADDRESS
1026#define FIRST_INSN_ADDRESS 0
1027#endif
1028
fc470718
R
1029/* shorten_branches might be called multiple times: for example, the SH
1030 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
1031 In order to do this, it needs proper length information, which it obtains
1032 by calling shorten_branches. This cannot be collapsed with
1033 shorten_branches itself into a single pass unless we also want to intergate
1034 reorg.c, since the branch splitting exposes new instructions with delay
1035 slots. */
1036
3cf2715d
DE
1037void
1038shorten_branches (first)
7bdb32b9 1039 rtx first ATTRIBUTE_UNUSED;
3cf2715d 1040{
3cf2715d 1041 rtx insn;
fc470718
R
1042 int max_uid;
1043 int i;
fc470718 1044 int max_log;
9e423e6d 1045 int max_skip;
fc470718
R
1046#ifdef HAVE_ATTR_length
1047#define MAX_CODE_ALIGN 16
1048 rtx seq;
3cf2715d 1049 int something_changed = 1;
3cf2715d
DE
1050 char *varying_length;
1051 rtx body;
1052 int uid;
fc470718 1053 rtx align_tab[MAX_CODE_ALIGN];
3cf2715d 1054
fc470718 1055#endif
3d14e82f 1056
fc470718
R
1057 /* Compute maximum UID and allocate label_align / uid_shuid. */
1058 max_uid = get_max_uid ();
1059
fc470718
R
1060 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1061
25e22dc0
JH
1062 if (max_labelno != max_label_num ())
1063 {
1064 int old = max_labelno;
d9b6874b
ZW
1065 int n_labels;
1066 int n_old_labels;
1067
25e22dc0 1068 max_labelno = max_label_num ();
d9b6874b
ZW
1069
1070 n_labels = max_labelno - min_labelno + 1;
1071 n_old_labels = old - min_labelno + 1;
1072
25e22dc0 1073 label_align = (struct label_alignment *) xrealloc
d9b6874b
ZW
1074 (label_align, n_labels * sizeof (struct label_alignment));
1075
1076 if (n_old_labels < n_labels)
1077 memset (label_align + n_old_labels, 0,
1078 (n_labels - n_old_labels) * sizeof (struct label_alignment));
25e22dc0
JH
1079 }
1080
fc470718
R
1081 /* Initialize label_align and set up uid_shuid to be strictly
1082 monotonically rising with insn order. */
e2faec75
R
1083 /* We use max_log here to keep track of the maximum alignment we want to
1084 impose on the next CODE_LABEL (or the current one if we are processing
1085 the CODE_LABEL itself). */
f5d927c0 1086
9e423e6d
JW
1087 max_log = 0;
1088 max_skip = 0;
1089
1090 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
fc470718
R
1091 {
1092 int log;
1093
1094 INSN_SHUID (insn) = i++;
2c3c49de 1095 if (INSN_P (insn))
e2faec75
R
1096 {
1097 /* reorg might make the first insn of a loop being run once only,
1098 and delete the label in front of it. Then we want to apply
1099 the loop alignment to the new label created by reorg, which
1100 is separated by the former loop start insn from the
1101 NOTE_INSN_LOOP_BEG. */
1102 }
fc470718
R
1103 else if (GET_CODE (insn) == CODE_LABEL)
1104 {
1105 rtx next;
25e22dc0
JH
1106
1107 /* Merge in alignments computed by compute_alignments. */
1108 log = LABEL_TO_ALIGNMENT (insn);
1109 if (max_log < log)
1110 {
1111 max_log = log;
1112 max_skip = LABEL_TO_MAX_SKIP (insn);
1113 }
fc470718
R
1114
1115 log = LABEL_ALIGN (insn);
1116 if (max_log < log)
9e423e6d
JW
1117 {
1118 max_log = log;
1119 max_skip = LABEL_ALIGN_MAX_SKIP;
1120 }
fc470718 1121 next = NEXT_INSN (insn);
75197b37
BS
1122 /* ADDR_VECs only take room if read-only data goes into the text
1123 section. */
1124 if (JUMP_TABLES_IN_TEXT_SECTION
1125#if !defined(READONLY_DATA_SECTION)
1126 || 1
fc470718 1127#endif
75197b37
BS
1128 )
1129 if (next && GET_CODE (next) == JUMP_INSN)
1130 {
1131 rtx nextbody = PATTERN (next);
1132 if (GET_CODE (nextbody) == ADDR_VEC
1133 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1134 {
1135 log = ADDR_VEC_ALIGN (next);
1136 if (max_log < log)
1137 {
1138 max_log = log;
1139 max_skip = LABEL_ALIGN_MAX_SKIP;
1140 }
1141 }
1142 }
fc470718 1143 LABEL_TO_ALIGNMENT (insn) = max_log;
9e423e6d 1144 LABEL_TO_MAX_SKIP (insn) = max_skip;
fc470718 1145 max_log = 0;
9e423e6d 1146 max_skip = 0;
fc470718
R
1147 }
1148 else if (GET_CODE (insn) == BARRIER)
1149 {
1150 rtx label;
1151
2c3c49de 1152 for (label = insn; label && ! INSN_P (label);
fc470718
R
1153 label = NEXT_INSN (label))
1154 if (GET_CODE (label) == CODE_LABEL)
1155 {
1156 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1157 if (max_log < log)
9e423e6d
JW
1158 {
1159 max_log = log;
1160 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1161 }
fc470718
R
1162 break;
1163 }
1164 }
fc470718
R
1165 }
1166#ifdef HAVE_ATTR_length
1167
1168 /* Allocate the rest of the arrays. */
fc470718 1169 insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
ea3cbda5 1170 insn_lengths_max_uid = max_uid;
af035616
R
1171 /* Syntax errors can lead to labels being outside of the main insn stream.
1172 Initialize insn_addresses, so that we get reproducible results. */
9d98a694 1173 INSN_ADDRESSES_ALLOC (max_uid);
fc470718 1174
3de90026 1175 varying_length = (char *) xcalloc (max_uid, sizeof (char));
fc470718
R
1176
1177 /* Initialize uid_align. We scan instructions
1178 from end to start, and keep in align_tab[n] the last seen insn
1179 that does an alignment of at least n+1, i.e. the successor
1180 in the alignment chain for an insn that does / has a known
1181 alignment of n. */
3de90026 1182 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
fc470718 1183
f5d927c0 1184 for (i = MAX_CODE_ALIGN; --i >= 0;)
fc470718
R
1185 align_tab[i] = NULL_RTX;
1186 seq = get_last_insn ();
33f7f353 1187 for (; seq; seq = PREV_INSN (seq))
fc470718
R
1188 {
1189 int uid = INSN_UID (seq);
1190 int log;
fc470718
R
1191 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1192 uid_align[uid] = align_tab[0];
fc470718
R
1193 if (log)
1194 {
1195 /* Found an alignment label. */
1196 uid_align[uid] = align_tab[log];
1197 for (i = log - 1; i >= 0; i--)
1198 align_tab[i] = seq;
1199 }
33f7f353
JR
1200 }
1201#ifdef CASE_VECTOR_SHORTEN_MODE
1202 if (optimize)
1203 {
1204 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1205 label fields. */
1206
1207 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1208 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1209 int rel;
1210
1211 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
fc470718 1212 {
33f7f353
JR
1213 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1214 int len, i, min, max, insn_shuid;
1215 int min_align;
1216 addr_diff_vec_flags flags;
1217
1218 if (GET_CODE (insn) != JUMP_INSN
1219 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1220 continue;
1221 pat = PATTERN (insn);
1222 len = XVECLEN (pat, 1);
1223 if (len <= 0)
1224 abort ();
1225 min_align = MAX_CODE_ALIGN;
1226 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1227 {
1228 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1229 int shuid = INSN_SHUID (lab);
1230 if (shuid < min)
1231 {
1232 min = shuid;
1233 min_lab = lab;
1234 }
1235 if (shuid > max)
1236 {
1237 max = shuid;
1238 max_lab = lab;
1239 }
1240 if (min_align > LABEL_TO_ALIGNMENT (lab))
1241 min_align = LABEL_TO_ALIGNMENT (lab);
1242 }
1243 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1244 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1245 insn_shuid = INSN_SHUID (insn);
1246 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1247 flags.min_align = min_align;
1248 flags.base_after_vec = rel > insn_shuid;
1249 flags.min_after_vec = min > insn_shuid;
1250 flags.max_after_vec = max > insn_shuid;
1251 flags.min_after_base = min > rel;
1252 flags.max_after_base = max > rel;
1253 ADDR_DIFF_VEC_FLAGS (pat) = flags;
fc470718
R
1254 }
1255 }
33f7f353 1256#endif /* CASE_VECTOR_SHORTEN_MODE */
3cf2715d 1257
3cf2715d
DE
1258 /* Compute initial lengths, addresses, and varying flags for each insn. */
1259 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1260 insn != 0;
1261 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1262 {
1263 uid = INSN_UID (insn);
fc470718 1264
3cf2715d 1265 insn_lengths[uid] = 0;
fc470718
R
1266
1267 if (GET_CODE (insn) == CODE_LABEL)
1268 {
1269 int log = LABEL_TO_ALIGNMENT (insn);
1270 if (log)
1271 {
1272 int align = 1 << log;
ecb06768 1273 int new_address = (insn_current_address + align - 1) & -align;
fc470718 1274 insn_lengths[uid] = new_address - insn_current_address;
fc470718
R
1275 }
1276 }
1277
9d98a694 1278 INSN_ADDRESSES (uid) = insn_current_address;
f5d927c0 1279
3cf2715d
DE
1280 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1281 || GET_CODE (insn) == CODE_LABEL)
1282 continue;
04da53bd
R
1283 if (INSN_DELETED_P (insn))
1284 continue;
3cf2715d
DE
1285
1286 body = PATTERN (insn);
1287 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
5a32a90c
JR
1288 {
1289 /* This only takes room if read-only data goes into the text
1290 section. */
75197b37
BS
1291 if (JUMP_TABLES_IN_TEXT_SECTION
1292#if !defined(READONLY_DATA_SECTION)
1293 || 1
1294#endif
1295 )
1296 insn_lengths[uid] = (XVECLEN (body,
1297 GET_CODE (body) == ADDR_DIFF_VEC)
1298 * GET_MODE_SIZE (GET_MODE (body)));
5a32a90c 1299 /* Alignment is handled by ADDR_VEC_ALIGN. */
5a32a90c 1300 }
a30caf5c 1301 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
3cf2715d
DE
1302 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1303 else if (GET_CODE (body) == SEQUENCE)
1304 {
1305 int i;
1306 int const_delay_slots;
1307#ifdef DELAY_SLOTS
1308 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1309#else
1310 const_delay_slots = 0;
1311#endif
1312 /* Inside a delay slot sequence, we do not do any branch shortening
1313 if the shortening could change the number of delay slots
0f41302f 1314 of the branch. */
3cf2715d
DE
1315 for (i = 0; i < XVECLEN (body, 0); i++)
1316 {
1317 rtx inner_insn = XVECEXP (body, 0, i);
1318 int inner_uid = INSN_UID (inner_insn);
1319 int inner_length;
1320
a30caf5c
DC
1321 if (GET_CODE (body) == ASM_INPUT
1322 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
3cf2715d
DE
1323 inner_length = (asm_insn_count (PATTERN (inner_insn))
1324 * insn_default_length (inner_insn));
1325 else
1326 inner_length = insn_default_length (inner_insn);
f5d927c0 1327
3cf2715d
DE
1328 insn_lengths[inner_uid] = inner_length;
1329 if (const_delay_slots)
1330 {
1331 if ((varying_length[inner_uid]
1332 = insn_variable_length_p (inner_insn)) != 0)
1333 varying_length[uid] = 1;
9d98a694
AO
1334 INSN_ADDRESSES (inner_uid) = (insn_current_address
1335 + insn_lengths[uid]);
3cf2715d
DE
1336 }
1337 else
1338 varying_length[inner_uid] = 0;
1339 insn_lengths[uid] += inner_length;
1340 }
1341 }
1342 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1343 {
1344 insn_lengths[uid] = insn_default_length (insn);
1345 varying_length[uid] = insn_variable_length_p (insn);
1346 }
1347
1348 /* If needed, do any adjustment. */
1349#ifdef ADJUST_INSN_LENGTH
1350 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
04b6000c
VM
1351 if (insn_lengths[uid] < 0)
1352 fatal_insn ("Negative insn length", insn);
3cf2715d
DE
1353#endif
1354 }
1355
1356 /* Now loop over all the insns finding varying length insns. For each,
1357 get the current insn length. If it has changed, reflect the change.
1358 When nothing changes for a full pass, we are done. */
1359
1360 while (something_changed)
1361 {
1362 something_changed = 0;
fc470718 1363 insn_current_align = MAX_CODE_ALIGN - 1;
3cf2715d
DE
1364 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1365 insn != 0;
1366 insn = NEXT_INSN (insn))
1367 {
1368 int new_length;
b729186a 1369#ifdef ADJUST_INSN_LENGTH
3cf2715d 1370 int tmp_length;
b729186a 1371#endif
fc470718 1372 int length_align;
3cf2715d
DE
1373
1374 uid = INSN_UID (insn);
fc470718
R
1375
1376 if (GET_CODE (insn) == CODE_LABEL)
1377 {
1378 int log = LABEL_TO_ALIGNMENT (insn);
1379 if (log > insn_current_align)
1380 {
1381 int align = 1 << log;
ecb06768 1382 int new_address= (insn_current_address + align - 1) & -align;
fc470718
R
1383 insn_lengths[uid] = new_address - insn_current_address;
1384 insn_current_align = log;
1385 insn_current_address = new_address;
1386 }
1387 else
1388 insn_lengths[uid] = 0;
9d98a694 1389 INSN_ADDRESSES (uid) = insn_current_address;
fc470718
R
1390 continue;
1391 }
1392
1393 length_align = INSN_LENGTH_ALIGNMENT (insn);
1394 if (length_align < insn_current_align)
1395 insn_current_align = length_align;
1396
9d98a694
AO
1397 insn_last_address = INSN_ADDRESSES (uid);
1398 INSN_ADDRESSES (uid) = insn_current_address;
fc470718 1399
5e75ef4a 1400#ifdef CASE_VECTOR_SHORTEN_MODE
33f7f353
JR
1401 if (optimize && GET_CODE (insn) == JUMP_INSN
1402 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1403 {
33f7f353
JR
1404 rtx body = PATTERN (insn);
1405 int old_length = insn_lengths[uid];
1406 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1407 rtx min_lab = XEXP (XEXP (body, 2), 0);
1408 rtx max_lab = XEXP (XEXP (body, 3), 0);
1409 addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
9d98a694
AO
1410 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1411 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1412 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
33f7f353
JR
1413 rtx prev;
1414 int rel_align = 0;
1415
1416 /* Try to find a known alignment for rel_lab. */
1417 for (prev = rel_lab;
1418 prev
1419 && ! insn_lengths[INSN_UID (prev)]
1420 && ! (varying_length[INSN_UID (prev)] & 1);
1421 prev = PREV_INSN (prev))
1422 if (varying_length[INSN_UID (prev)] & 2)
1423 {
1424 rel_align = LABEL_TO_ALIGNMENT (prev);
1425 break;
1426 }
1427
1428 /* See the comment on addr_diff_vec_flags in rtl.h for the
1429 meaning of the flags values. base: REL_LAB vec: INSN */
1430 /* Anything after INSN has still addresses from the last
1431 pass; adjust these so that they reflect our current
1432 estimate for this pass. */
1433 if (flags.base_after_vec)
1434 rel_addr += insn_current_address - insn_last_address;
1435 if (flags.min_after_vec)
1436 min_addr += insn_current_address - insn_last_address;
1437 if (flags.max_after_vec)
1438 max_addr += insn_current_address - insn_last_address;
1439 /* We want to know the worst case, i.e. lowest possible value
1440 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1441 its offset is positive, and we have to be wary of code shrink;
1442 otherwise, it is negative, and we have to be vary of code
1443 size increase. */
1444 if (flags.min_after_base)
1445 {
1446 /* If INSN is between REL_LAB and MIN_LAB, the size
1447 changes we are about to make can change the alignment
1448 within the observed offset, therefore we have to break
1449 it up into two parts that are independent. */
1450 if (! flags.base_after_vec && flags.min_after_vec)
1451 {
1452 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1453 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1454 }
1455 else
1456 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1457 }
1458 else
1459 {
1460 if (flags.base_after_vec && ! flags.min_after_vec)
1461 {
1462 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1463 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1464 }
1465 else
1466 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1467 }
1468 /* Likewise, determine the highest lowest possible value
1469 for the offset of MAX_LAB. */
1470 if (flags.max_after_base)
1471 {
1472 if (! flags.base_after_vec && flags.max_after_vec)
1473 {
1474 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1475 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1476 }
1477 else
1478 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1479 }
1480 else
1481 {
1482 if (flags.base_after_vec && ! flags.max_after_vec)
1483 {
1484 max_addr += align_fuzz (max_lab, insn, 0, 0);
1485 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1486 }
1487 else
1488 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1489 }
1490 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1491 max_addr - rel_addr,
1492 body));
75197b37
BS
1493 if (JUMP_TABLES_IN_TEXT_SECTION
1494#if !defined(READONLY_DATA_SECTION)
1495 || 1
33f7f353 1496#endif
75197b37
BS
1497 )
1498 {
1499 insn_lengths[uid]
1500 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1501 insn_current_address += insn_lengths[uid];
1502 if (insn_lengths[uid] != old_length)
1503 something_changed = 1;
1504 }
1505
33f7f353 1506 continue;
33f7f353 1507 }
5e75ef4a
JL
1508#endif /* CASE_VECTOR_SHORTEN_MODE */
1509
1510 if (! (varying_length[uid]))
3cf2715d 1511 {
674fc07d
GS
1512 if (GET_CODE (insn) == INSN
1513 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1514 {
1515 int i;
1516
1517 body = PATTERN (insn);
1518 for (i = 0; i < XVECLEN (body, 0); i++)
1519 {
1520 rtx inner_insn = XVECEXP (body, 0, i);
1521 int inner_uid = INSN_UID (inner_insn);
1522
1523 INSN_ADDRESSES (inner_uid) = insn_current_address;
1524
1525 insn_current_address += insn_lengths[inner_uid];
1526 }
1527 }
1528 else
1529 insn_current_address += insn_lengths[uid];
1530
3cf2715d
DE
1531 continue;
1532 }
674fc07d 1533
3cf2715d
DE
1534 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1535 {
1536 int i;
f5d927c0 1537
3cf2715d
DE
1538 body = PATTERN (insn);
1539 new_length = 0;
1540 for (i = 0; i < XVECLEN (body, 0); i++)
1541 {
1542 rtx inner_insn = XVECEXP (body, 0, i);
1543 int inner_uid = INSN_UID (inner_insn);
1544 int inner_length;
1545
9d98a694 1546 INSN_ADDRESSES (inner_uid) = insn_current_address;
3cf2715d
DE
1547
1548 /* insn_current_length returns 0 for insns with a
1549 non-varying length. */
1550 if (! varying_length[inner_uid])
1551 inner_length = insn_lengths[inner_uid];
1552 else
1553 inner_length = insn_current_length (inner_insn);
1554
1555 if (inner_length != insn_lengths[inner_uid])
1556 {
1557 insn_lengths[inner_uid] = inner_length;
1558 something_changed = 1;
1559 }
1560 insn_current_address += insn_lengths[inner_uid];
1561 new_length += inner_length;
1562 }
1563 }
1564 else
1565 {
1566 new_length = insn_current_length (insn);
1567 insn_current_address += new_length;
1568 }
1569
3cf2715d
DE
1570#ifdef ADJUST_INSN_LENGTH
1571 /* If needed, do any adjustment. */
1572 tmp_length = new_length;
1573 ADJUST_INSN_LENGTH (insn, new_length);
1574 insn_current_address += (new_length - tmp_length);
3cf2715d
DE
1575#endif
1576
1577 if (new_length != insn_lengths[uid])
1578 {
1579 insn_lengths[uid] = new_length;
1580 something_changed = 1;
1581 }
1582 }
bb4aaf18
TG
1583 /* For a non-optimizing compile, do only a single pass. */
1584 if (!optimize)
1585 break;
3cf2715d 1586 }
fc470718
R
1587
1588 free (varying_length);
1589
3cf2715d
DE
1590#endif /* HAVE_ATTR_length */
1591}
1592
1593#ifdef HAVE_ATTR_length
1594/* Given the body of an INSN known to be generated by an ASM statement, return
1595 the number of machine instructions likely to be generated for this insn.
1596 This is used to compute its length. */
1597
1598static int
1599asm_insn_count (body)
1600 rtx body;
1601{
3cce094d 1602 const char *template;
3cf2715d
DE
1603 int count = 1;
1604
5d0930ea
DE
1605 if (GET_CODE (body) == ASM_INPUT)
1606 template = XSTR (body, 0);
1607 else
df4ae160 1608 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
5d0930ea 1609
f5d927c0
KH
1610 for (; *template; template++)
1611 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
3cf2715d
DE
1612 count++;
1613
1614 return count;
1615}
1616#endif
1617\f
1618/* Output assembler code for the start of a function,
1619 and initialize some of the variables in this file
1620 for the new function. The label for the function and associated
1621 assembler pseudo-ops have already been output in `assemble_start_function'.
1622
1623 FIRST is the first insn of the rtl for the function being compiled.
1624 FILE is the file to write assembler code to.
1625 OPTIMIZE is nonzero if we should eliminate redundant
1626 test and compare insns. */
1627
1628void
1629final_start_function (first, file, optimize)
1630 rtx first;
1631 FILE *file;
6a651371 1632 int optimize ATTRIBUTE_UNUSED;
3cf2715d
DE
1633{
1634 block_depth = 0;
1635
1636 this_is_asm_operands = 0;
1637
1638#ifdef NON_SAVING_SETJMP
1639 /* A function that calls setjmp should save and restore all the
1640 call-saved registers on a system where longjmp clobbers them. */
1641 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1642 {
1643 int i;
1644
1645 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
252f342a 1646 if (!call_used_regs[i])
3cf2715d
DE
1647 regs_ever_live[i] = 1;
1648 }
1649#endif
f5d927c0 1650
3cf2715d 1651 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
653e276c
NB
1652 notice_source_line (first);
1653 high_block_linenum = high_function_linenum = last_linenum;
eac40081 1654
653e276c 1655 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
d291dd49 1656
653e276c
NB
1657#if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1658 if (write_symbols != DWARF2_DEBUG)
1659 dwarf2out_begin_prologue (0, NULL);
f5d927c0 1660#endif
3cf2715d
DE
1661
1662#ifdef LEAF_REG_REMAP
54ff41b7 1663 if (current_function_uses_only_leaf_regs)
3cf2715d
DE
1664 leaf_renumber_regs (first);
1665#endif
1666
1667 /* The Sun386i and perhaps other machines don't work right
1668 if the profiling code comes after the prologue. */
1669#ifdef PROFILE_BEFORE_PROLOGUE
1670 if (profile_flag)
1671 profile_function (file);
1672#endif /* PROFILE_BEFORE_PROLOGUE */
1673
0021b564
JM
1674#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1675 if (dwarf2out_do_frame ())
1676 dwarf2out_frame_debug (NULL_RTX);
1677#endif
1678
18c038b9
MM
1679 /* If debugging, assign block numbers to all of the blocks in this
1680 function. */
1681 if (write_symbols)
1682 {
3ac79482 1683 remove_unnecessary_notes ();
a20612aa
RH
1684 reorder_blocks ();
1685 number_blocks (current_function_decl);
18c038b9
MM
1686 /* We never actually put out begin/end notes for the top-level
1687 block in the function. But, conceptually, that block is
1688 always needed. */
1689 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1690 }
1691
3cf2715d 1692 /* First output the function prologue: code to set up the stack frame. */
f6897b10 1693 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
3cf2715d 1694
3cf2715d
DE
1695 /* If the machine represents the prologue as RTL, the profiling code must
1696 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1697#ifdef HAVE_prologue
1698 if (! HAVE_prologue)
1699#endif
1700 profile_after_prologue (file);
1701
1702 profile_label_no++;
1703
1704 /* If we are doing basic block profiling, remember a printable version
1705 of the function name. */
1706 if (profile_block_flag)
1707 {
f5d927c0
KH
1708 bb_func_label_num =
1709 add_bb_string ((*decl_printable_name) (current_function_decl, 2),
1710 FALSE);
3cf2715d
DE
1711 }
1712}
1713
1714static void
1715profile_after_prologue (file)
7bdb32b9 1716 FILE *file ATTRIBUTE_UNUSED;
3cf2715d
DE
1717{
1718#ifdef FUNCTION_BLOCK_PROFILER
1719 if (profile_block_flag)
1720 {
47431dff 1721 FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
3cf2715d
DE
1722 }
1723#endif /* FUNCTION_BLOCK_PROFILER */
1724
1725#ifndef PROFILE_BEFORE_PROLOGUE
1726 if (profile_flag)
1727 profile_function (file);
1728#endif /* not PROFILE_BEFORE_PROLOGUE */
1729}
1730
1731static void
1732profile_function (file)
1733 FILE *file;
1734{
dcacfa04 1735#ifndef NO_PROFILE_COUNTERS
9e2f9a7f 1736 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
dcacfa04 1737#endif
b729186a
JL
1738#if defined(ASM_OUTPUT_REG_PUSH)
1739#if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
3cf2715d 1740 int sval = current_function_returns_struct;
b729186a
JL
1741#endif
1742#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
3cf2715d 1743 int cxt = current_function_needs_context;
b729186a
JL
1744#endif
1745#endif /* ASM_OUTPUT_REG_PUSH */
3cf2715d 1746
dcacfa04 1747#ifndef NO_PROFILE_COUNTERS
3cf2715d
DE
1748 data_section ();
1749 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1750 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
9e2f9a7f 1751 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, 1);
dcacfa04 1752#endif
3cf2715d 1753
499df339 1754 function_section (current_function_decl);
3cf2715d 1755
65ed39df 1756#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1757 if (sval)
1758 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1759#else
65ed39df 1760#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1761 if (sval)
51723711
KG
1762 {
1763 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1764 }
3cf2715d
DE
1765#endif
1766#endif
1767
65ed39df 1768#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1769 if (cxt)
1770 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1771#else
65ed39df 1772#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1773 if (cxt)
51723711
KG
1774 {
1775 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1776 }
3cf2715d
DE
1777#endif
1778#endif
3cf2715d
DE
1779
1780 FUNCTION_PROFILER (file, profile_label_no);
1781
65ed39df 1782#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1783 if (cxt)
1784 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1785#else
65ed39df 1786#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1787 if (cxt)
51723711
KG
1788 {
1789 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1790 }
3cf2715d
DE
1791#endif
1792#endif
3cf2715d 1793
65ed39df 1794#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1795 if (sval)
1796 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1797#else
65ed39df 1798#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1799 if (sval)
51723711
KG
1800 {
1801 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1802 }
3cf2715d
DE
1803#endif
1804#endif
1805}
1806
1807/* Output assembler code for the end of a function.
1808 For clarity, args are same as those of `final_start_function'
1809 even though not all of them are needed. */
1810
1811void
e2a12aca 1812final_end_function ()
3cf2715d 1813{
be1bb652 1814 app_disable ();
3cf2715d 1815
e2a12aca 1816 (*debug_hooks->end_function) (high_function_linenum);
3cf2715d 1817
3cf2715d
DE
1818 /* Finally, output the function epilogue:
1819 code to restore the stack frame and return to the caller. */
e2a12aca 1820 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
3cf2715d 1821
e2a12aca
NB
1822 /* And debug output. */
1823 (*debug_hooks->end_epilogue) ();
3cf2715d 1824
e2a12aca
NB
1825#if defined (DWARF2_UNWIND_INFO)
1826 if (write_symbols != DWARF2_DEBUG && dwarf2out_do_frame ())
9a666dda
JM
1827 dwarf2out_end_epilogue ();
1828#endif
1829
3cf2715d 1830 bb_func_label_num = -1; /* not in function, nuke label # */
3cf2715d
DE
1831}
1832\f
1833/* Add a block to the linked list that remembers the current line/file/function
1834 for basic block profiling. Emit the label in front of the basic block and
1835 the instructions that increment the count field. */
1836
1837static void
1838add_bb (file)
1839 FILE *file;
1840{
f5d927c0
KH
1841 struct bb_list *ptr =
1842 (struct bb_list *) permalloc (sizeof (struct bb_list));
3cf2715d
DE
1843
1844 /* Add basic block to linked list. */
1845 ptr->next = 0;
1846 ptr->line_num = last_linenum;
1847 ptr->file_label_num = bb_file_label_num;
1848 ptr->func_label_num = bb_func_label_num;
1849 *bb_tail = ptr;
1850 bb_tail = &ptr->next;
1851
1852 /* Enable the table of basic-block use counts
1853 to point at the code it applies to. */
1854 ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);
1855
1856 /* Before first insn of this basic block, increment the
1857 count of times it was entered. */
1858#ifdef BLOCK_PROFILER
1859 BLOCK_PROFILER (file, count_basic_blocks);
9e2f9a7f
DE
1860#endif
1861#ifdef HAVE_cc0
3cf2715d
DE
1862 CC_STATUS_INIT;
1863#endif
1864
1865 new_block = 0;
1866 count_basic_blocks++;
1867}
1868
1869/* Add a string to be used for basic block profiling. */
1870
1871static int
1872add_bb_string (string, perm_p)
9b3142b3 1873 const char *string;
3cf2715d
DE
1874 int perm_p;
1875{
1876 int len;
1877 struct bb_str *ptr = 0;
1878
1879 if (!string)
1880 {
1881 string = "<unknown>";
1882 perm_p = TRUE;
1883 }
1884
1885 /* Allocate a new string if the current string isn't permanent. If
1886 the string is permanent search for the same string in other
1887 allocations. */
1888
1889 len = strlen (string) + 1;
1890 if (!perm_p)
1891 {
1892 char *p = (char *) permalloc (len);
4e135bdd 1893 memcpy (p, string, len);
3cf2715d
DE
1894 string = p;
1895 }
1896 else
0f41302f 1897 for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
3cf2715d
DE
1898 if (ptr->string == string)
1899 break;
1900
1901 /* Allocate a new string block if we need to. */
1902 if (!ptr)
1903 {
1904 ptr = (struct bb_str *) permalloc (sizeof (*ptr));
1905 ptr->next = 0;
1906 ptr->length = len;
1907 ptr->label_num = sbb_label_num++;
1908 ptr->string = string;
1909 *sbb_tail = ptr;
1910 sbb_tail = &ptr->next;
1911 }
1912
1913 return ptr->label_num;
1914}
3cf2715d
DE
1915\f
1916/* Output assembler code for some insns: all or part of a function.
1917 For description of args, see `final_start_function', above.
1918
1919 PRESCAN is 1 if we are not really outputting,
1920 just scanning as if we were outputting.
1921 Prescanning deletes and rearranges insns just like ordinary output.
1922 PRESCAN is -2 if we are outputting after having prescanned.
1923 In this case, don't try to delete or rearrange insns
1924 because that has already been done.
1925 Prescanning is done only on certain machines. */
1926
1927void
1928final (first, file, optimize, prescan)
1929 rtx first;
1930 FILE *file;
1931 int optimize;
1932 int prescan;
1933{
1934 register rtx insn;
1935 int max_line = 0;
a8c3510c 1936 int max_uid = 0;
3cf2715d
DE
1937
1938 last_ignored_compare = 0;
1939 new_block = 1;
1940
1941 /* Make a map indicating which line numbers appear in this function.
1942 When producing SDB debugging info, delete troublesome line number
1943 notes from inlined functions in other files as well as duplicate
1944 line number notes. */
1945#ifdef SDB_DEBUGGING_INFO
1946 if (write_symbols == SDB_DEBUG)
1947 {
1948 rtx last = 0;
1949 for (insn = first; insn; insn = NEXT_INSN (insn))
1950 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1951 {
1952 if ((RTX_INTEGRATED_P (insn)
1953 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1954 || (last != 0
1955 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1956 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1957 {
1958 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1959 NOTE_SOURCE_FILE (insn) = 0;
1960 continue;
1961 }
1962 last = insn;
1963 if (NOTE_LINE_NUMBER (insn) > max_line)
1964 max_line = NOTE_LINE_NUMBER (insn);
1965 }
1966 }
1967 else
1968#endif
1969 {
1970 for (insn = first; insn; insn = NEXT_INSN (insn))
1971 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1972 max_line = NOTE_LINE_NUMBER (insn);
1973 }
1974
bedda2da 1975 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
3cf2715d
DE
1976
1977 for (insn = first; insn; insn = NEXT_INSN (insn))
a8c3510c
AM
1978 {
1979 if (INSN_UID (insn) > max_uid) /* find largest UID */
f5d927c0 1980 max_uid = INSN_UID (insn);
a8c3510c 1981 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
f5d927c0 1982 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
9ef4c6ef
JC
1983#ifdef HAVE_cc0
1984 /* If CC tracking across branches is enabled, record the insn which
1985 jumps to each branch only reached from one place. */
7ad7f828 1986 if (optimize && GET_CODE (insn) == JUMP_INSN)
9ef4c6ef
JC
1987 {
1988 rtx lab = JUMP_LABEL (insn);
1989 if (lab && LABEL_NUSES (lab) == 1)
1990 {
1991 LABEL_REFS (lab) = insn;
1992 }
1993 }
1994#endif
a8c3510c
AM
1995 }
1996
3cf2715d
DE
1997 init_recog ();
1998
1999 CC_STATUS_INIT;
2000
2001 /* Output the insns. */
2002 for (insn = NEXT_INSN (first); insn;)
2f16edb1
TG
2003 {
2004#ifdef HAVE_ATTR_length
b9f22704 2005 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
0ac76ad9
RH
2006 {
2007#ifdef STACK_REGS
2008 /* Irritatingly, the reg-stack pass is creating new instructions
2009 and because of REG_DEAD note abuse it has to run after
2010 shorten_branches. Fake address of -1 then. */
2011 insn_current_address = -1;
2012#else
2013 /* This can be triggered by bugs elsewhere in the compiler if
2014 new insns are created after init_insn_lengths is called. */
2015 abort ();
2f16edb1 2016#endif
0ac76ad9
RH
2017 }
2018 else
9d98a694 2019 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
0ac76ad9
RH
2020#endif /* HAVE_ATTR_length */
2021
2f16edb1
TG
2022 insn = final_scan_insn (insn, file, optimize, prescan, 0);
2023 }
3cf2715d
DE
2024
2025 /* Do basic-block profiling here
2026 if the last insn was a conditional branch. */
2027 if (profile_block_flag && new_block)
2028 add_bb (file);
a8c3510c 2029
bedda2da
MM
2030 free (line_note_exists);
2031 line_note_exists = NULL;
3cf2715d
DE
2032}
2033\f
4bbf910e
RH
2034const char *
2035get_insn_template (code, insn)
2036 int code;
2037 rtx insn;
2038{
2039 const void *output = insn_data[code].output;
2040 switch (insn_data[code].output_format)
2041 {
2042 case INSN_OUTPUT_FORMAT_SINGLE:
2043 return (const char *) output;
2044 case INSN_OUTPUT_FORMAT_MULTI:
f5d927c0 2045 return ((const char *const *) output)[which_alternative];
4bbf910e
RH
2046 case INSN_OUTPUT_FORMAT_FUNCTION:
2047 if (insn == NULL)
2048 abort ();
f5d927c0 2049 return (*(insn_output_fn) output) (recog_data.operand, insn);
4bbf910e
RH
2050
2051 default:
2052 abort ();
2053 }
2054}
f5d927c0 2055
3cf2715d
DE
2056/* The final scan for one insn, INSN.
2057 Args are same as in `final', except that INSN
2058 is the insn being scanned.
2059 Value returned is the next insn to be scanned.
2060
2061 NOPEEPHOLES is the flag to disallow peephole processing (currently
2062 used for within delayed branch sequence output). */
2063
2064rtx
2065final_scan_insn (insn, file, optimize, prescan, nopeepholes)
2066 rtx insn;
2067 FILE *file;
272df862 2068 int optimize ATTRIBUTE_UNUSED;
3cf2715d 2069 int prescan;
272df862 2070 int nopeepholes ATTRIBUTE_UNUSED;
3cf2715d 2071{
90ca38bb
MM
2072#ifdef HAVE_cc0
2073 rtx set;
2074#endif
2075
3cf2715d
DE
2076 insn_counter++;
2077
2078 /* Ignore deleted insns. These can occur when we split insns (due to a
2079 template of "#") while not optimizing. */
2080 if (INSN_DELETED_P (insn))
2081 return NEXT_INSN (insn);
2082
2083 switch (GET_CODE (insn))
2084 {
2085 case NOTE:
2086 if (prescan > 0)
2087 break;
2088
be1bb652
RH
2089 switch (NOTE_LINE_NUMBER (insn))
2090 {
2091 case NOTE_INSN_DELETED:
2092 case NOTE_INSN_LOOP_BEG:
2093 case NOTE_INSN_LOOP_END:
2094 case NOTE_INSN_LOOP_CONT:
2095 case NOTE_INSN_LOOP_VTOP:
2096 case NOTE_INSN_FUNCTION_END:
be1bb652
RH
2097 case NOTE_INSN_REPEATED_LINE_NUMBER:
2098 case NOTE_INSN_RANGE_BEG:
2099 case NOTE_INSN_RANGE_END:
2100 case NOTE_INSN_LIVE:
2101 case NOTE_INSN_EXPECTED_VALUE:
2102 break;
3cf2715d 2103
be1bb652 2104 case NOTE_INSN_BASIC_BLOCK:
ad0fc698
JW
2105#ifdef IA64_UNWIND_INFO
2106 IA64_UNWIND_EMIT (asm_out_file, insn);
2107#endif
be1bb652
RH
2108 if (flag_debug_asm)
2109 fprintf (asm_out_file, "\t%s basic block %d\n",
2110 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
2111 break;
3cf2715d 2112
be1bb652 2113 case NOTE_INSN_EH_REGION_BEG:
52a11cbf
RH
2114 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2115 NOTE_EH_HANDLER (insn));
3d195391 2116 break;
3d195391 2117
be1bb652 2118 case NOTE_INSN_EH_REGION_END:
52a11cbf
RH
2119 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2120 NOTE_EH_HANDLER (insn));
3d195391 2121 break;
3d195391 2122
be1bb652 2123 case NOTE_INSN_PROLOGUE_END:
b9f22704 2124 (*targetm.asm_out.function_end_prologue) (file);
3cf2715d
DE
2125 profile_after_prologue (file);
2126 break;
3cf2715d 2127
be1bb652 2128 case NOTE_INSN_EPILOGUE_BEG:
b9f22704 2129 (*targetm.asm_out.function_begin_epilogue) (file);
be1bb652 2130 break;
3cf2715d 2131
be1bb652 2132 case NOTE_INSN_FUNCTION_BEG:
653e276c
NB
2133 app_disable ();
2134 (*debug_hooks->end_prologue) (last_linenum);
3cf2715d 2135 break;
be1bb652
RH
2136
2137 case NOTE_INSN_BLOCK_BEG:
2138 if (debug_info_level == DINFO_LEVEL_NORMAL
3cf2715d 2139 || debug_info_level == DINFO_LEVEL_VERBOSE
3cf2715d 2140 || write_symbols == DWARF_DEBUG
be1bb652
RH
2141 || write_symbols == DWARF2_DEBUG)
2142 {
2143 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 2144
be1bb652
RH
2145 app_disable ();
2146 ++block_depth;
2147 high_block_linenum = last_linenum;
eac40081 2148
a5a42b92 2149 /* Output debugging info about the symbol-block beginning. */
e2a12aca 2150 (*debug_hooks->begin_block) (last_linenum, n);
3cf2715d 2151
be1bb652
RH
2152 /* Mark this block as output. */
2153 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2154 }
2155 break;
18c038b9 2156
be1bb652
RH
2157 case NOTE_INSN_BLOCK_END:
2158 if (debug_info_level == DINFO_LEVEL_NORMAL
2159 || debug_info_level == DINFO_LEVEL_VERBOSE
2160 || write_symbols == DWARF_DEBUG
2161 || write_symbols == DWARF2_DEBUG)
2162 {
2163 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 2164
be1bb652
RH
2165 app_disable ();
2166
2167 /* End of a symbol-block. */
2168 --block_depth;
2169 if (block_depth < 0)
2170 abort ();
3cf2715d 2171
e2a12aca 2172 (*debug_hooks->end_block) (high_block_linenum, n);
be1bb652
RH
2173 }
2174 break;
2175
2176 case NOTE_INSN_DELETED_LABEL:
2177 /* Emit the label. We may have deleted the CODE_LABEL because
2178 the label could be proved to be unreachable, though still
2179 referenced (in the form of having its address taken. */
8215347e 2180 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
be1bb652 2181 break;
3cf2715d 2182
21835d9b
JJ
2183 case 0:
2184 break;
2185
be1bb652
RH
2186 default:
2187 if (NOTE_LINE_NUMBER (insn) <= 0)
2188 abort ();
3cf2715d 2189
be1bb652
RH
2190 /* This note is a line-number. */
2191 {
2192 register rtx note;
2193 int note_after = 0;
2194
f5d927c0 2195 /* If there is anything real after this note, output it.
be1bb652
RH
2196 If another line note follows, omit this one. */
2197 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2198 {
2199 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
3cf2715d 2200 break;
3cf2715d 2201
be1bb652
RH
2202 /* These types of notes can be significant
2203 so make sure the preceding line number stays. */
2204 else if (GET_CODE (note) == NOTE
2205 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2206 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2207 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2208 break;
2209 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2210 {
2211 /* Another line note follows; we can delete this note
2212 if no intervening line numbers have notes elsewhere. */
2213 int num;
2214 for (num = NOTE_LINE_NUMBER (insn) + 1;
2215 num < NOTE_LINE_NUMBER (note);
2216 num++)
2217 if (line_note_exists[num])
2218 break;
2219
2220 if (num >= NOTE_LINE_NUMBER (note))
2221 note_after = 1;
2222 break;
2223 }
2224 }
2225
2226 /* Output this line note if it is the first or the last line
2227 note in a row. */
2228 if (!note_after)
653e276c
NB
2229 {
2230 notice_source_line (insn);
2231 (*debug_hooks->source_line) (last_linenum, last_filename);
2232 }
be1bb652 2233 }
f5d927c0 2234 break;
3cf2715d
DE
2235 }
2236 break;
2237
2238 case BARRIER:
f73ad30e 2239#if defined (DWARF2_UNWIND_INFO)
fbfa55b0 2240 if (dwarf2out_do_frame ())
be1bb652 2241 dwarf2out_frame_debug (insn);
3cf2715d
DE
2242#endif
2243 break;
2244
2245 case CODE_LABEL:
1dd8faa8
R
2246 /* The target port might emit labels in the output function for
2247 some insn, e.g. sh.c output_branchy_insn. */
de7987a6
R
2248 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2249 {
2250 int align = LABEL_TO_ALIGNMENT (insn);
50b2596f 2251#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
9e423e6d 2252 int max_skip = LABEL_TO_MAX_SKIP (insn);
50b2596f 2253#endif
fc470718 2254
1dd8faa8 2255 if (align && NEXT_INSN (insn))
9e423e6d
JW
2256#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2257 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2258#else
de7987a6 2259 ASM_OUTPUT_ALIGN (file, align);
9e423e6d 2260#endif
de7987a6 2261 }
9ef4c6ef 2262#ifdef HAVE_cc0
3cf2715d 2263 CC_STATUS_INIT;
9ef4c6ef
JC
2264 /* If this label is reached from only one place, set the condition
2265 codes from the instruction just before the branch. */
7ad7f828
JC
2266
2267 /* Disabled because some insns set cc_status in the C output code
2268 and NOTICE_UPDATE_CC alone can set incorrect status. */
2269 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
9ef4c6ef
JC
2270 {
2271 rtx jump = LABEL_REFS (insn);
2272 rtx barrier = prev_nonnote_insn (insn);
2273 rtx prev;
2274 /* If the LABEL_REFS field of this label has been set to point
2275 at a branch, the predecessor of the branch is a regular
2276 insn, and that branch is the only way to reach this label,
2277 set the condition codes based on the branch and its
2278 predecessor. */
2279 if (barrier && GET_CODE (barrier) == BARRIER
2280 && jump && GET_CODE (jump) == JUMP_INSN
2281 && (prev = prev_nonnote_insn (jump))
2282 && GET_CODE (prev) == INSN)
2283 {
2284 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2285 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2286 }
2287 }
2288#endif
3cf2715d
DE
2289 if (prescan > 0)
2290 break;
2291 new_block = 1;
03ffa171
RK
2292
2293#ifdef FINAL_PRESCAN_LABEL
df4ae160 2294 FINAL_PRESCAN_INSN (insn, NULL, 0);
03ffa171
RK
2295#endif
2296
e1772ac0
NB
2297 if (LABEL_NAME (insn))
2298 (*debug_hooks->label) (insn);
2299
3cf2715d
DE
2300 if (app_on)
2301 {
51723711 2302 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2303 app_on = 0;
2304 }
2305 if (NEXT_INSN (insn) != 0
2306 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2307 {
2308 rtx nextbody = PATTERN (NEXT_INSN (insn));
2309
2310 /* If this label is followed by a jump-table,
2311 make sure we put the label in the read-only section. Also
2312 possibly write the label and jump table together. */
2313
2314 if (GET_CODE (nextbody) == ADDR_VEC
2315 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2316 {
e0d80184
DM
2317#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2318 /* In this case, the case vector is being moved by the
2319 target, so don't output the label at all. Leave that
2320 to the back end macros. */
2321#else
75197b37
BS
2322 if (! JUMP_TABLES_IN_TEXT_SECTION)
2323 {
2324 readonly_data_section ();
3cf2715d 2325#ifdef READONLY_DATA_SECTION
75197b37
BS
2326 ASM_OUTPUT_ALIGN (file,
2327 exact_log2 (BIGGEST_ALIGNMENT
2328 / BITS_PER_UNIT));
3cf2715d 2329#endif /* READONLY_DATA_SECTION */
75197b37
BS
2330 }
2331 else
2332 function_section (current_function_decl);
2333
3cf2715d
DE
2334#ifdef ASM_OUTPUT_CASE_LABEL
2335 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2336 NEXT_INSN (insn));
2337#else
f5d927c0
KH
2338 if (LABEL_ALTERNATE_NAME (insn))
2339 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2340 else
2341 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
e0d80184 2342#endif
3cf2715d
DE
2343#endif
2344 break;
2345 }
2346 }
8cd0faaf 2347 if (LABEL_ALTERNATE_NAME (insn))
f5d927c0 2348 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
8cd0faaf 2349 else
f5d927c0 2350 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
3cf2715d
DE
2351 break;
2352
2353 default:
2354 {
51723711 2355 register rtx body = PATTERN (insn);
3cf2715d 2356 int insn_code_number;
9b3142b3 2357 const char *template;
b729186a 2358#ifdef HAVE_cc0
3cf2715d 2359 rtx note;
b729186a 2360#endif
3cf2715d
DE
2361
2362 /* An INSN, JUMP_INSN or CALL_INSN.
2363 First check for special kinds that recog doesn't recognize. */
2364
2365 if (GET_CODE (body) == USE /* These are just declarations */
2366 || GET_CODE (body) == CLOBBER)
2367 break;
2368
2369#ifdef HAVE_cc0
2370 /* If there is a REG_CC_SETTER note on this insn, it means that
2371 the setting of the condition code was done in the delay slot
2372 of the insn that branched here. So recover the cc status
2373 from the insn that set it. */
2374
2375 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2376 if (note)
2377 {
2378 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2379 cc_prev_status = cc_status;
2380 }
2381#endif
2382
2383 /* Detect insns that are really jump-tables
2384 and output them as such. */
2385
2386 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2387 {
7f7f8214 2388#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
3cf2715d 2389 register int vlen, idx;
7f7f8214 2390#endif
3cf2715d
DE
2391
2392 if (prescan > 0)
2393 break;
2394
2395 if (app_on)
2396 {
51723711 2397 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2398 app_on = 0;
2399 }
2400
e0d80184
DM
2401#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2402 if (GET_CODE (body) == ADDR_VEC)
2403 {
2404#ifdef ASM_OUTPUT_ADDR_VEC
2405 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2406#else
f5d927c0 2407 abort ();
e0d80184
DM
2408#endif
2409 }
2410 else
2411 {
2412#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2413 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2414#else
f5d927c0 2415 abort ();
e0d80184
DM
2416#endif
2417 }
2418#else
3cf2715d
DE
2419 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2420 for (idx = 0; idx < vlen; idx++)
2421 {
2422 if (GET_CODE (body) == ADDR_VEC)
2423 {
2424#ifdef ASM_OUTPUT_ADDR_VEC_ELT
2425 ASM_OUTPUT_ADDR_VEC_ELT
2426 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2427#else
2428 abort ();
2429#endif
2430 }
2431 else
2432 {
2433#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2434 ASM_OUTPUT_ADDR_DIFF_ELT
2435 (file,
33f7f353 2436 body,
3cf2715d
DE
2437 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2438 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2439#else
2440 abort ();
2441#endif
2442 }
2443 }
2444#ifdef ASM_OUTPUT_CASE_END
2445 ASM_OUTPUT_CASE_END (file,
2446 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2447 insn);
e0d80184 2448#endif
3cf2715d
DE
2449#endif
2450
4d1065ed 2451 function_section (current_function_decl);
3cf2715d
DE
2452
2453 break;
2454 }
2455
2456 /* Do basic-block profiling when we reach a new block.
2457 Done here to avoid jump tables. */
2458 if (profile_block_flag && new_block)
2459 add_bb (file);
2460
2461 if (GET_CODE (body) == ASM_INPUT)
2462 {
2463 /* There's no telling what that did to the condition codes. */
2464 CC_STATUS_INIT;
2465 if (prescan > 0)
2466 break;
2467 if (! app_on)
2468 {
51723711 2469 fputs (ASM_APP_ON, file);
3cf2715d
DE
2470 app_on = 1;
2471 }
2472 fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
2473 break;
2474 }
2475
2476 /* Detect `asm' construct with operands. */
2477 if (asm_noperands (body) >= 0)
2478 {
22bf4422 2479 unsigned int noperands = asm_noperands (body);
3cf2715d 2480 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
3cce094d 2481 const char *string;
3cf2715d
DE
2482
2483 /* There's no telling what that did to the condition codes. */
2484 CC_STATUS_INIT;
2485 if (prescan > 0)
2486 break;
2487
2488 if (! app_on)
2489 {
51723711 2490 fputs (ASM_APP_ON, file);
3cf2715d
DE
2491 app_on = 1;
2492 }
2493
2494 /* Get out the operand values. */
df4ae160 2495 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
3cf2715d
DE
2496 /* Inhibit aborts on what would otherwise be compiler bugs. */
2497 insn_noperands = noperands;
2498 this_is_asm_operands = insn;
2499
2500 /* Output the insn using them. */
2501 output_asm_insn (string, ops);
2502 this_is_asm_operands = 0;
2503 break;
2504 }
2505
2506 if (prescan <= 0 && app_on)
2507 {
51723711 2508 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2509 app_on = 0;
2510 }
2511
2512 if (GET_CODE (body) == SEQUENCE)
2513 {
2514 /* A delayed-branch sequence */
2515 register int i;
2516 rtx next;
2517
2518 if (prescan > 0)
2519 break;
2520 final_sequence = body;
2521
2522 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2523 force the restoration of a comparison that was previously
2524 thought unnecessary. If that happens, cancel this sequence
2525 and cause that insn to be restored. */
2526
2527 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2528 if (next != XVECEXP (body, 0, 1))
2529 {
2530 final_sequence = 0;
2531 return next;
2532 }
2533
2534 for (i = 1; i < XVECLEN (body, 0); i++)
c7eee2df
RK
2535 {
2536 rtx insn = XVECEXP (body, 0, i);
2537 rtx next = NEXT_INSN (insn);
2538 /* We loop in case any instruction in a delay slot gets
2539 split. */
2540 do
2541 insn = final_scan_insn (insn, file, 0, prescan, 1);
2542 while (insn != next);
2543 }
3cf2715d
DE
2544#ifdef DBR_OUTPUT_SEQEND
2545 DBR_OUTPUT_SEQEND (file);
2546#endif
2547 final_sequence = 0;
2548
2549 /* If the insn requiring the delay slot was a CALL_INSN, the
2550 insns in the delay slot are actually executed before the
2551 called function. Hence we don't preserve any CC-setting
2552 actions in these insns and the CC must be marked as being
2553 clobbered by the function. */
2554 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
b729186a
JL
2555 {
2556 CC_STATUS_INIT;
2557 }
3cf2715d
DE
2558
2559 /* Following a conditional branch sequence, we have a new basic
2560 block. */
2561 if (profile_block_flag)
2562 {
2563 rtx insn = XVECEXP (body, 0, 0);
2564 rtx body = PATTERN (insn);
2565
2566 if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2567 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2568 || (GET_CODE (insn) == JUMP_INSN
2569 && GET_CODE (body) == PARALLEL
2570 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2571 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
2572 new_block = 1;
2573 }
2574 break;
2575 }
2576
2577 /* We have a real machine instruction as rtl. */
2578
2579 body = PATTERN (insn);
2580
2581#ifdef HAVE_cc0
f5d927c0 2582 set = single_set (insn);
b88c92cc 2583
3cf2715d
DE
2584 /* Check for redundant test and compare instructions
2585 (when the condition codes are already set up as desired).
2586 This is done only when optimizing; if not optimizing,
2587 it should be possible for the user to alter a variable
2588 with the debugger in between statements
2589 and the next statement should reexamine the variable
2590 to compute the condition codes. */
2591
30f5e9f5 2592 if (optimize)
3cf2715d 2593 {
b88c92cc 2594#if 0
f5d927c0 2595 rtx set = single_set (insn);
b88c92cc 2596#endif
30f5e9f5
RK
2597
2598 if (set
2599 && GET_CODE (SET_DEST (set)) == CC0
2600 && insn != last_ignored_compare)
3cf2715d 2601 {
30f5e9f5
RK
2602 if (GET_CODE (SET_SRC (set)) == SUBREG)
2603 SET_SRC (set) = alter_subreg (SET_SRC (set));
2604 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2605 {
2606 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2607 XEXP (SET_SRC (set), 0)
2608 = alter_subreg (XEXP (SET_SRC (set), 0));
2609 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2610 XEXP (SET_SRC (set), 1)
2611 = alter_subreg (XEXP (SET_SRC (set), 1));
2612 }
2613 if ((cc_status.value1 != 0
2614 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2615 || (cc_status.value2 != 0
2616 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
3cf2715d 2617 {
30f5e9f5
RK
2618 /* Don't delete insn if it has an addressing side-effect. */
2619 if (! FIND_REG_INC_NOTE (insn, 0)
2620 /* or if anything in it is volatile. */
2621 && ! volatile_refs_p (PATTERN (insn)))
2622 {
2623 /* We don't really delete the insn; just ignore it. */
2624 last_ignored_compare = insn;
2625 break;
2626 }
3cf2715d
DE
2627 }
2628 }
2629 }
2630#endif
2631
2632 /* Following a conditional branch, we have a new basic block.
2633 But if we are inside a sequence, the new block starts after the
2634 last insn of the sequence. */
2635 if (profile_block_flag && final_sequence == 0
2636 && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2637 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2638 || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
2639 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2640 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
2641 new_block = 1;
2642
2643#ifndef STACK_REGS
2644 /* Don't bother outputting obvious no-ops, even without -O.
2645 This optimization is fast and doesn't interfere with debugging.
2646 Don't do this if the insn is in a delay slot, since this
2647 will cause an improper number of delay insns to be written. */
2648 if (final_sequence == 0
2649 && prescan >= 0
2650 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2651 && GET_CODE (SET_SRC (body)) == REG
2652 && GET_CODE (SET_DEST (body)) == REG
2653 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2654 break;
2655#endif
2656
2657#ifdef HAVE_cc0
2658 /* If this is a conditional branch, maybe modify it
2659 if the cc's are in a nonstandard state
2660 so that it accomplishes the same thing that it would
2661 do straightforwardly if the cc's were set up normally. */
2662
2663 if (cc_status.flags != 0
2664 && GET_CODE (insn) == JUMP_INSN
2665 && GET_CODE (body) == SET
2666 && SET_DEST (body) == pc_rtx
2667 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
de2b56f9 2668 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
fff752ad 2669 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
3cf2715d
DE
2670 /* This is done during prescan; it is not done again
2671 in final scan when prescan has been done. */
2672 && prescan >= 0)
2673 {
2674 /* This function may alter the contents of its argument
2675 and clear some of the cc_status.flags bits.
2676 It may also return 1 meaning condition now always true
2677 or -1 meaning condition now always false
2678 or 2 meaning condition nontrivial but altered. */
2679 register int result = alter_cond (XEXP (SET_SRC (body), 0));
2680 /* If condition now has fixed value, replace the IF_THEN_ELSE
2681 with its then-operand or its else-operand. */
2682 if (result == 1)
2683 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2684 if (result == -1)
2685 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2686
2687 /* The jump is now either unconditional or a no-op.
2688 If it has become a no-op, don't try to output it.
2689 (It would not be recognized.) */
2690 if (SET_SRC (body) == pc_rtx)
2691 {
2692 PUT_CODE (insn, NOTE);
2693 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2694 NOTE_SOURCE_FILE (insn) = 0;
2695 break;
2696 }
2697 else if (GET_CODE (SET_SRC (body)) == RETURN)
2698 /* Replace (set (pc) (return)) with (return). */
2699 PATTERN (insn) = body = SET_SRC (body);
2700
2701 /* Rerecognize the instruction if it has changed. */
2702 if (result != 0)
2703 INSN_CODE (insn) = -1;
2704 }
2705
2706 /* Make same adjustments to instructions that examine the
462da2af
SC
2707 condition codes without jumping and instructions that
2708 handle conditional moves (if this machine has either one). */
3cf2715d
DE
2709
2710 if (cc_status.flags != 0
b88c92cc 2711 && set != 0)
3cf2715d 2712 {
462da2af 2713 rtx cond_rtx, then_rtx, else_rtx;
f5d927c0 2714
462da2af 2715 if (GET_CODE (insn) != JUMP_INSN
b88c92cc 2716 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
462da2af 2717 {
b88c92cc
RK
2718 cond_rtx = XEXP (SET_SRC (set), 0);
2719 then_rtx = XEXP (SET_SRC (set), 1);
2720 else_rtx = XEXP (SET_SRC (set), 2);
462da2af
SC
2721 }
2722 else
2723 {
b88c92cc 2724 cond_rtx = SET_SRC (set);
462da2af
SC
2725 then_rtx = const_true_rtx;
2726 else_rtx = const0_rtx;
2727 }
f5d927c0 2728
462da2af 2729 switch (GET_CODE (cond_rtx))
3cf2715d
DE
2730 {
2731 case GTU:
2732 case GT:
2733 case LTU:
2734 case LT:
2735 case GEU:
2736 case GE:
2737 case LEU:
2738 case LE:
2739 case EQ:
2740 case NE:
2741 {
2742 register int result;
462da2af 2743 if (XEXP (cond_rtx, 0) != cc0_rtx)
3cf2715d 2744 break;
462da2af 2745 result = alter_cond (cond_rtx);
3cf2715d 2746 if (result == 1)
b88c92cc 2747 validate_change (insn, &SET_SRC (set), then_rtx, 0);
3cf2715d 2748 else if (result == -1)
b88c92cc 2749 validate_change (insn, &SET_SRC (set), else_rtx, 0);
3cf2715d
DE
2750 else if (result == 2)
2751 INSN_CODE (insn) = -1;
b88c92cc 2752 if (SET_DEST (set) == SET_SRC (set))
462da2af
SC
2753 {
2754 PUT_CODE (insn, NOTE);
2755 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2756 NOTE_SOURCE_FILE (insn) = 0;
462da2af 2757 }
3cf2715d 2758 }
e9a25f70
JL
2759 break;
2760
2761 default:
2762 break;
3cf2715d
DE
2763 }
2764 }
462da2af 2765
3cf2715d
DE
2766#endif
2767
ede7cd44 2768#ifdef HAVE_peephole
3cf2715d
DE
2769 /* Do machine-specific peephole optimizations if desired. */
2770
2771 if (optimize && !flag_no_peephole && !nopeepholes)
2772 {
2773 rtx next = peephole (insn);
2774 /* When peepholing, if there were notes within the peephole,
2775 emit them before the peephole. */
2776 if (next != 0 && next != NEXT_INSN (insn))
2777 {
2778 rtx prev = PREV_INSN (insn);
2779 rtx note;
2780
2781 for (note = NEXT_INSN (insn); note != next;
2782 note = NEXT_INSN (note))
2783 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2784
2785 /* In case this is prescan, put the notes
2786 in proper position for later rescan. */
2787 note = NEXT_INSN (insn);
2788 PREV_INSN (note) = prev;
2789 NEXT_INSN (prev) = note;
2790 NEXT_INSN (PREV_INSN (next)) = insn;
2791 PREV_INSN (insn) = PREV_INSN (next);
2792 NEXT_INSN (insn) = next;
2793 PREV_INSN (next) = insn;
2794 }
2795
2796 /* PEEPHOLE might have changed this. */
2797 body = PATTERN (insn);
2798 }
ede7cd44 2799#endif
3cf2715d
DE
2800
2801 /* Try to recognize the instruction.
2802 If successful, verify that the operands satisfy the
2803 constraints for the instruction. Crash if they don't,
2804 since `reload' should have changed them so that they do. */
2805
2806 insn_code_number = recog_memoized (insn);
0304f787 2807 cleanup_subreg_operands (insn);
3cf2715d 2808
c349e40b
SC
2809 /* Dump the insn in the assembly for debugging. */
2810 if (flag_dump_rtl_in_asm)
2811 {
2812 print_rtx_head = ASM_COMMENT_START;
2813 print_rtl_single (asm_out_file, insn);
2814 print_rtx_head = "";
2815 }
b9f22704 2816
6c698a6d 2817 if (! constrain_operands_cached (1))
3cf2715d 2818 fatal_insn_not_found (insn);
3cf2715d
DE
2819
2820 /* Some target machines need to prescan each insn before
2821 it is output. */
2822
2823#ifdef FINAL_PRESCAN_INSN
1ccbefce 2824 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3cf2715d
DE
2825#endif
2826
afe48e06
RH
2827#ifdef HAVE_conditional_execution
2828 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2829 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2830 else
2831 current_insn_predicate = NULL_RTX;
2832#endif
2833
3cf2715d
DE
2834#ifdef HAVE_cc0
2835 cc_prev_status = cc_status;
2836
2837 /* Update `cc_status' for this instruction.
2838 The instruction's output routine may change it further.
2839 If the output routine for a jump insn needs to depend
2840 on the cc status, it should look at cc_prev_status. */
2841
2842 NOTICE_UPDATE_CC (body, insn);
2843#endif
2844
b1a9f6a0 2845 current_output_insn = debug_insn = insn;
3cf2715d 2846
f73ad30e 2847#if defined (DWARF2_UNWIND_INFO)
fbfa55b0 2848 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
b57d9225
JM
2849 dwarf2out_frame_debug (insn);
2850#endif
2851
4bbf910e
RH
2852 /* Find the proper template for this insn. */
2853 template = get_insn_template (insn_code_number, insn);
3cf2715d 2854
4bbf910e
RH
2855 /* If the C code returns 0, it means that it is a jump insn
2856 which follows a deleted test insn, and that test insn
2857 needs to be reinserted. */
3cf2715d
DE
2858 if (template == 0)
2859 {
efd0378b
HPN
2860 rtx prev;
2861
4bbf910e
RH
2862 if (prev_nonnote_insn (insn) != last_ignored_compare)
2863 abort ();
2864 new_block = 0;
efd0378b
HPN
2865
2866 /* We have already processed the notes between the setter and
2867 the user. Make sure we don't process them again, this is
2868 particularly important if one of the notes is a block
2869 scope note or an EH note. */
2870 for (prev = insn;
2871 prev != last_ignored_compare;
2872 prev = PREV_INSN (prev))
2873 {
2874 if (GET_CODE (prev) == NOTE)
2875 {
2876 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
2877 NOTE_SOURCE_FILE (prev) = 0;
2878 }
2879 }
2880
2881 return prev;
3cf2715d
DE
2882 }
2883
2884 /* If the template is the string "#", it means that this insn must
2885 be split. */
2886 if (template[0] == '#' && template[1] == '\0')
2887 {
2888 rtx new = try_split (body, insn, 0);
2889
2890 /* If we didn't split the insn, go away. */
2891 if (new == insn && PATTERN (new) == body)
cf879efa 2892 fatal_insn ("Could not split insn", insn);
f5d927c0 2893
3d14e82f
JW
2894#ifdef HAVE_ATTR_length
2895 /* This instruction should have been split in shorten_branches,
2896 to ensure that we would have valid length info for the
2897 splitees. */
2898 abort ();
2899#endif
2900
3cf2715d
DE
2901 new_block = 0;
2902 return new;
2903 }
f5d927c0 2904
3cf2715d
DE
2905 if (prescan > 0)
2906 break;
2907
ce152ef8
AM
2908#ifdef IA64_UNWIND_INFO
2909 IA64_UNWIND_EMIT (asm_out_file, insn);
2910#endif
3cf2715d
DE
2911 /* Output assembler code from the template. */
2912
1ccbefce 2913 output_asm_insn (template, recog_data.operand);
3cf2715d 2914
0021b564 2915#if defined (DWARF2_UNWIND_INFO)
0021b564 2916#if defined (HAVE_prologue)
fbfa55b0
RH
2917 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2918 dwarf2out_frame_debug (insn);
2919#else
2920 if (!ACCUMULATE_OUTGOING_ARGS
2921 && GET_CODE (insn) == INSN
2922 && dwarf2out_do_frame ())
2923 dwarf2out_frame_debug (insn);
0021b564
JM
2924#endif
2925#endif
469ac993 2926
3cf2715d
DE
2927#if 0
2928 /* It's not at all clear why we did this and doing so interferes
2929 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2930 with this out. */
2931
2932 /* Mark this insn as having been output. */
2933 INSN_DELETED_P (insn) = 1;
2934#endif
2935
b1a9f6a0 2936 current_output_insn = debug_insn = 0;
3cf2715d
DE
2937 }
2938 }
2939 return NEXT_INSN (insn);
2940}
2941\f
2942/* Output debugging info to the assembler file FILE
2943 based on the NOTE-insn INSN, assumed to be a line number. */
2944
2945static void
653e276c 2946notice_source_line (insn)
3cf2715d
DE
2947 rtx insn;
2948{
3cce094d 2949 register const char *filename = NOTE_SOURCE_FILE (insn);
3cf2715d
DE
2950
2951 /* Remember filename for basic block profiling.
2952 Filenames are allocated on the permanent obstack
2953 or are passed in ARGV, so we don't have to save
2954 the string. */
2955
2956 if (profile_block_flag && last_filename != filename)
2957 bb_file_label_num = add_bb_string (filename, TRUE);
2958
2959 last_filename = filename;
2960 last_linenum = NOTE_LINE_NUMBER (insn);
eac40081
RK
2961 high_block_linenum = MAX (last_linenum, high_block_linenum);
2962 high_function_linenum = MAX (last_linenum, high_function_linenum);
3cf2715d
DE
2963}
2964\f
0304f787
JL
2965/* For each operand in INSN, simplify (subreg (reg)) so that it refers
2966 directly to the desired hard register. */
f5d927c0 2967
0304f787
JL
2968void
2969cleanup_subreg_operands (insn)
2970 rtx insn;
2971{
f62a15e3 2972 int i;
6c698a6d 2973 extract_insn_cached (insn);
1ccbefce 2974 for (i = 0; i < recog_data.n_operands; i++)
0304f787 2975 {
1ccbefce 2976 if (GET_CODE (recog_data.operand[i]) == SUBREG)
f5d927c0 2977 recog_data.operand[i] = alter_subreg (recog_data.operand[i]);
1ccbefce 2978 else if (GET_CODE (recog_data.operand[i]) == PLUS
04337620
BS
2979 || GET_CODE (recog_data.operand[i]) == MULT
2980 || GET_CODE (recog_data.operand[i]) == MEM)
f5d927c0 2981 recog_data.operand[i] = walk_alter_subreg (recog_data.operand[i]);
0304f787
JL
2982 }
2983
1ccbefce 2984 for (i = 0; i < recog_data.n_dups; i++)
0304f787 2985 {
1ccbefce 2986 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
f5d927c0 2987 *recog_data.dup_loc[i] = alter_subreg (*recog_data.dup_loc[i]);
1ccbefce 2988 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
04337620
BS
2989 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2990 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
f5d927c0 2991 *recog_data.dup_loc[i] = walk_alter_subreg (*recog_data.dup_loc[i]);
0304f787
JL
2992 }
2993}
2994
3cf2715d
DE
2995/* If X is a SUBREG, replace it with a REG or a MEM,
2996 based on the thing it is a subreg of. */
2997
2998rtx
2999alter_subreg (x)
3000 register rtx x;
3001{
3002 register rtx y = SUBREG_REG (x);
f5963e61 3003
3cf2715d
DE
3004 if (GET_CODE (y) == SUBREG)
3005 y = alter_subreg (y);
3006
f5963e61
JL
3007 /* If reload is operating, we may be replacing inside this SUBREG.
3008 Check for that and make a new one if so. */
3009 if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
3010 x = copy_rtx (x);
3011
3cf2715d
DE
3012 if (GET_CODE (y) == REG)
3013 {
ddef6bc7
JJ
3014 int regno = subreg_hard_regno (x, 1);
3015
ef178af3
ZW
3016 PUT_CODE (x, REG);
3017 REGNO (x) = regno;
08394eef 3018 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (y);
0304f787
JL
3019 /* This field has a different meaning for REGs and SUBREGs. Make sure
3020 to clear it! */
3021 x->used = 0;
3cf2715d
DE
3022 }
3023 else if (GET_CODE (y) == MEM)
3024 {
f1ec5147 3025 HOST_WIDE_INT offset = SUBREG_BYTE (x);
ddef6bc7
JJ
3026
3027 /* Catch these instead of generating incorrect code. */
3028 if ((offset % GET_MODE_SIZE (GET_MODE (x))) != 0)
3029 abort ();
bf49b139 3030
3cf2715d 3031 PUT_CODE (x, MEM);
c6df88cb 3032 MEM_COPY_ATTRIBUTES (x, y);
3cf2715d
DE
3033 XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
3034 }
3035
3036 return x;
3037}
3038
3039/* Do alter_subreg on all the SUBREGs contained in X. */
3040
3041static rtx
3042walk_alter_subreg (x)
3043 rtx x;
3044{
3045 switch (GET_CODE (x))
3046 {
3047 case PLUS:
3048 case MULT:
3049 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3050 XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
3051 break;
3052
3053 case MEM:
3054 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3055 break;
3056
3057 case SUBREG:
3058 return alter_subreg (x);
f5d927c0 3059
e9a25f70
JL
3060 default:
3061 break;
3cf2715d
DE
3062 }
3063
3064 return x;
3065}
3066\f
3067#ifdef HAVE_cc0
3068
3069/* Given BODY, the body of a jump instruction, alter the jump condition
3070 as required by the bits that are set in cc_status.flags.
3071 Not all of the bits there can be handled at this level in all cases.
3072
3073 The value is normally 0.
3074 1 means that the condition has become always true.
3075 -1 means that the condition has become always false.
3076 2 means that COND has been altered. */
3077
3078static int
3079alter_cond (cond)
3080 register rtx cond;
3081{
3082 int value = 0;
3083
3084 if (cc_status.flags & CC_REVERSED)
3085 {
3086 value = 2;
3087 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3088 }
3089
3090 if (cc_status.flags & CC_INVERTED)
3091 {
3092 value = 2;
3093 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3094 }
3095
3096 if (cc_status.flags & CC_NOT_POSITIVE)
3097 switch (GET_CODE (cond))
3098 {
3099 case LE:
3100 case LEU:
3101 case GEU:
3102 /* Jump becomes unconditional. */
3103 return 1;
3104
3105 case GT:
3106 case GTU:
3107 case LTU:
3108 /* Jump becomes no-op. */
3109 return -1;
3110
3111 case GE:
3112 PUT_CODE (cond, EQ);
3113 value = 2;
3114 break;
3115
3116 case LT:
3117 PUT_CODE (cond, NE);
3118 value = 2;
3119 break;
f5d927c0 3120
e9a25f70
JL
3121 default:
3122 break;
3cf2715d
DE
3123 }
3124
3125 if (cc_status.flags & CC_NOT_NEGATIVE)
3126 switch (GET_CODE (cond))
3127 {
3128 case GE:
3129 case GEU:
3130 /* Jump becomes unconditional. */
3131 return 1;
3132
3133 case LT:
3134 case LTU:
3135 /* Jump becomes no-op. */
3136 return -1;
3137
3138 case LE:
3139 case LEU:
3140 PUT_CODE (cond, EQ);
3141 value = 2;
3142 break;
3143
3144 case GT:
3145 case GTU:
3146 PUT_CODE (cond, NE);
3147 value = 2;
3148 break;
f5d927c0 3149
e9a25f70
JL
3150 default:
3151 break;
3cf2715d
DE
3152 }
3153
3154 if (cc_status.flags & CC_NO_OVERFLOW)
3155 switch (GET_CODE (cond))
3156 {
3157 case GEU:
3158 /* Jump becomes unconditional. */
3159 return 1;
3160
3161 case LEU:
3162 PUT_CODE (cond, EQ);
3163 value = 2;
3164 break;
3165
3166 case GTU:
3167 PUT_CODE (cond, NE);
3168 value = 2;
3169 break;
3170
3171 case LTU:
3172 /* Jump becomes no-op. */
3173 return -1;
f5d927c0 3174
e9a25f70
JL
3175 default:
3176 break;
3cf2715d
DE
3177 }
3178
3179 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3180 switch (GET_CODE (cond))
3181 {
e9a25f70 3182 default:
3cf2715d
DE
3183 abort ();
3184
3185 case NE:
3186 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3187 value = 2;
3188 break;
3189
3190 case EQ:
3191 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3192 value = 2;
3193 break;
3194 }
3195
3196 if (cc_status.flags & CC_NOT_SIGNED)
3197 /* The flags are valid if signed condition operators are converted
3198 to unsigned. */
3199 switch (GET_CODE (cond))
3200 {
3201 case LE:
3202 PUT_CODE (cond, LEU);
3203 value = 2;
3204 break;
3205
3206 case LT:
3207 PUT_CODE (cond, LTU);
3208 value = 2;
3209 break;
3210
3211 case GT:
3212 PUT_CODE (cond, GTU);
3213 value = 2;
3214 break;
3215
3216 case GE:
3217 PUT_CODE (cond, GEU);
3218 value = 2;
3219 break;
e9a25f70
JL
3220
3221 default:
3222 break;
3cf2715d
DE
3223 }
3224
3225 return value;
3226}
3227#endif
3228\f
3229/* Report inconsistency between the assembler template and the operands.
3230 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3231
3232void
ab87f8c8
JL
3233output_operand_lossage (msgid)
3234 const char *msgid;
3cf2715d
DE
3235{
3236 if (this_is_asm_operands)
ab87f8c8 3237 error_for_asm (this_is_asm_operands, "invalid `asm': %s", _(msgid));
3cf2715d 3238 else
651a788e 3239 internal_error ("output_operand: %s", _(msgid));
3cf2715d
DE
3240}
3241\f
3242/* Output of assembler code from a template, and its subroutines. */
3243
3244/* Output text from TEMPLATE to the assembler output file,
3245 obeying %-directions to substitute operands taken from
3246 the vector OPERANDS.
3247
3248 %N (for N a digit) means print operand N in usual manner.
3249 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3250 and print the label name with no punctuation.
3251 %cN means require operand N to be a constant
3252 and print the constant expression with no punctuation.
3253 %aN means expect operand N to be a memory address
3254 (not a memory reference!) and print a reference
3255 to that address.
3256 %nN means expect operand N to be a constant
3257 and print a constant expression for minus the value
3258 of the operand, with no other punctuation. */
3259
cb649530
RK
3260static void
3261output_asm_name ()
3262{
3263 if (flag_print_asm_name)
3264 {
3265 /* Annotate the assembly with a comment describing the pattern and
3266 alternative used. */
3267 if (debug_insn)
3268 {
3269 register int num = INSN_CODE (debug_insn);
f5d927c0 3270 fprintf (asm_out_file, "\t%s %d\t%s",
a995e389
RH
3271 ASM_COMMENT_START, INSN_UID (debug_insn),
3272 insn_data[num].name);
3273 if (insn_data[num].n_alternatives > 1)
cb649530 3274 fprintf (asm_out_file, "/%d", which_alternative + 1);
1db9f6ce 3275#ifdef HAVE_ATTR_length
a995e389
RH
3276 fprintf (asm_out_file, "\t[length = %d]",
3277 get_attr_length (debug_insn));
1db9f6ce 3278#endif
cb649530
RK
3279 /* Clear this so only the first assembler insn
3280 of any rtl insn will get the special comment for -dp. */
3281 debug_insn = 0;
3282 }
3283 }
3284}
3285
3cf2715d
DE
3286void
3287output_asm_insn (template, operands)
9b3142b3 3288 const char *template;
3cf2715d
DE
3289 rtx *operands;
3290{
9b3142b3 3291 register const char *p;
b729186a 3292 register int c;
3cf2715d
DE
3293
3294 /* An insn may return a null string template
3295 in a case where no assembler code is needed. */
3296 if (*template == 0)
3297 return;
3298
3299 p = template;
3300 putc ('\t', asm_out_file);
3301
3302#ifdef ASM_OUTPUT_OPCODE
3303 ASM_OUTPUT_OPCODE (asm_out_file, p);
3304#endif
3305
b729186a 3306 while ((c = *p++))
3cf2715d
DE
3307 switch (c)
3308 {
3cf2715d 3309 case '\n':
cb649530 3310 output_asm_name ();
3cf2715d 3311 putc (c, asm_out_file);
cb649530 3312#ifdef ASM_OUTPUT_OPCODE
3cf2715d
DE
3313 while ((c = *p) == '\t')
3314 {
3315 putc (c, asm_out_file);
3316 p++;
3317 }
3318 ASM_OUTPUT_OPCODE (asm_out_file, p);
3cf2715d 3319#endif
cb649530 3320 break;
3cf2715d
DE
3321
3322#ifdef ASSEMBLER_DIALECT
3323 case '{':
b729186a
JL
3324 {
3325 register int i;
f5d927c0 3326
b729186a
JL
3327 /* If we want the first dialect, do nothing. Otherwise, skip
3328 DIALECT_NUMBER of strings ending with '|'. */
3329 for (i = 0; i < dialect_number; i++)
3330 {
463a8384 3331 while (*p && *p != '}' && *p++ != '|')
b729186a 3332 ;
463a8384
BS
3333 if (*p == '}')
3334 break;
b729186a
JL
3335 if (*p == '|')
3336 p++;
3337 }
3338 }
3cf2715d
DE
3339 break;
3340
3341 case '|':
3342 /* Skip to close brace. */
3343 while (*p && *p++ != '}')
3344 ;
3345 break;
3346
3347 case '}':
3348 break;
3349#endif
3350
3351 case '%':
3352 /* %% outputs a single %. */
3353 if (*p == '%')
3354 {
3355 p++;
3356 putc (c, asm_out_file);
3357 }
3358 /* %= outputs a number which is unique to each insn in the entire
3359 compilation. This is useful for making local labels that are
3360 referred to more than once in a given insn. */
3361 else if (*p == '=')
3362 {
3363 p++;
3364 fprintf (asm_out_file, "%d", insn_counter);
3365 }
3366 /* % followed by a letter and some digits
3367 outputs an operand in a special way depending on the letter.
3368 Letters `acln' are implemented directly.
3369 Other letters are passed to `output_operand' so that
3370 the PRINT_OPERAND macro can define them. */
f5d927c0 3371 else if (ISLOWER (*p) || ISUPPER (*p))
3cf2715d
DE
3372 {
3373 int letter = *p++;
3374 c = atoi (p);
3375
3376 if (! (*p >= '0' && *p <= '9'))
3377 output_operand_lossage ("operand number missing after %-letter");
22bf4422 3378 else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3cf2715d
DE
3379 output_operand_lossage ("operand number out of range");
3380 else if (letter == 'l')
3381 output_asm_label (operands[c]);
3382 else if (letter == 'a')
3383 output_address (operands[c]);
3384 else if (letter == 'c')
3385 {
3386 if (CONSTANT_ADDRESS_P (operands[c]))
3387 output_addr_const (asm_out_file, operands[c]);
3388 else
3389 output_operand (operands[c], 'c');
3390 }
3391 else if (letter == 'n')
3392 {
3393 if (GET_CODE (operands[c]) == CONST_INT)
21e3a81b 3394 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3cf2715d
DE
3395 - INTVAL (operands[c]));
3396 else
3397 {
3398 putc ('-', asm_out_file);
3399 output_addr_const (asm_out_file, operands[c]);
3400 }
3401 }
3402 else
3403 output_operand (operands[c], letter);
f5d927c0
KH
3404
3405 while ((c = *p) >= '0' && c <= '9')
3406 p++;
3cf2715d
DE
3407 }
3408 /* % followed by a digit outputs an operand the default way. */
3409 else if (*p >= '0' && *p <= '9')
3410 {
3411 c = atoi (p);
f5d927c0
KH
3412 if (this_is_asm_operands
3413 && (c < 0 || (unsigned int) c >= insn_noperands))
3cf2715d
DE
3414 output_operand_lossage ("operand number out of range");
3415 else
3416 output_operand (operands[c], 0);
f5d927c0
KH
3417 while ((c = *p) >= '0' && c <= '9')
3418 p++;
3cf2715d
DE
3419 }
3420 /* % followed by punctuation: output something for that
3421 punctuation character alone, with no operand.
3422 The PRINT_OPERAND macro decides what is actually done. */
3423#ifdef PRINT_OPERAND_PUNCT_VALID_P
f5d927c0 3424 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3cf2715d
DE
3425 output_operand (NULL_RTX, *p++);
3426#endif
3427 else
3428 output_operand_lossage ("invalid %%-code");
3429 break;
3430
3431 default:
3432 putc (c, asm_out_file);
3433 }
3434
cb649530 3435 output_asm_name ();
3cf2715d
DE
3436
3437 putc ('\n', asm_out_file);
3438}
3439\f
3440/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3441
3442void
3443output_asm_label (x)
3444 rtx x;
3445{
3446 char buf[256];
3447
3448 if (GET_CODE (x) == LABEL_REF)
be1bb652
RH
3449 x = XEXP (x, 0);
3450 if (GET_CODE (x) == CODE_LABEL
3451 || (GET_CODE (x) == NOTE
3452 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3cf2715d
DE
3453 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3454 else
3455 output_operand_lossage ("`%l' operand isn't a label");
3456
3457 assemble_name (asm_out_file, buf);
3458}
3459
3460/* Print operand X using machine-dependent assembler syntax.
3461 The macro PRINT_OPERAND is defined just to control this function.
3462 CODE is a non-digit that preceded the operand-number in the % spec,
3463 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3464 between the % and the digits.
3465 When CODE is a non-letter, X is 0.
3466
3467 The meanings of the letters are machine-dependent and controlled
3468 by PRINT_OPERAND. */
3469
3470static void
3471output_operand (x, code)
3472 rtx x;
962f1324 3473 int code ATTRIBUTE_UNUSED;
3cf2715d
DE
3474{
3475 if (x && GET_CODE (x) == SUBREG)
3476 x = alter_subreg (x);
3477
3478 /* If X is a pseudo-register, abort now rather than writing trash to the
3479 assembler file. */
3480
3481 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3482 abort ();
3483
3484 PRINT_OPERAND (asm_out_file, x, code);
3485}
3486
3487/* Print a memory reference operand for address X
3488 using machine-dependent assembler syntax.
3489 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3490
3491void
3492output_address (x)
3493 rtx x;
3494{
3495 walk_alter_subreg (x);
3496 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3497}
3498\f
3499/* Print an integer constant expression in assembler syntax.
3500 Addition and subtraction are the only arithmetic
3501 that may appear in these expressions. */
3502
3503void
3504output_addr_const (file, x)
3505 FILE *file;
3506 rtx x;
3507{
3508 char buf[256];
3509
3510 restart:
3511 switch (GET_CODE (x))
3512 {
3513 case PC:
3514 if (flag_pic)
3515 putc ('.', file);
3516 else
3517 abort ();
3518 break;
3519
3520 case SYMBOL_REF:
99c8c61c
AO
3521#ifdef ASM_OUTPUT_SYMBOL_REF
3522 ASM_OUTPUT_SYMBOL_REF (file, x);
3523#else
3cf2715d 3524 assemble_name (file, XSTR (x, 0));
99c8c61c 3525#endif
3cf2715d
DE
3526 break;
3527
3528 case LABEL_REF:
422be3c3
AO
3529 x = XEXP (x, 0);
3530 /* Fall through. */
3cf2715d
DE
3531 case CODE_LABEL:
3532 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3533 assemble_name (file, buf);
3534 break;
3535
3536 case CONST_INT:
21e3a81b 3537 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3cf2715d
DE
3538 break;
3539
3540 case CONST:
3541 /* This used to output parentheses around the expression,
3542 but that does not work on the 386 (either ATT or BSD assembler). */
3543 output_addr_const (file, XEXP (x, 0));
3544 break;
3545
3546 case CONST_DOUBLE:
3547 if (GET_MODE (x) == VOIDmode)
3548 {
3549 /* We can use %d if the number is one word and positive. */
3550 if (CONST_DOUBLE_HIGH (x))
21e3a81b 3551 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3cf2715d 3552 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
f5d927c0 3553 else if (CONST_DOUBLE_LOW (x) < 0)
21e3a81b 3554 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3cf2715d 3555 else
21e3a81b 3556 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3cf2715d
DE
3557 }
3558 else
3559 /* We can't handle floating point constants;
3560 PRINT_OPERAND must handle them. */
3561 output_operand_lossage ("floating constant misused");
3562 break;
3563
3564 case PLUS:
3565 /* Some assemblers need integer constants to appear last (eg masm). */
3566 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3567 {
3568 output_addr_const (file, XEXP (x, 1));
3569 if (INTVAL (XEXP (x, 0)) >= 0)
3570 fprintf (file, "+");
3571 output_addr_const (file, XEXP (x, 0));
3572 }
3573 else
3574 {
3575 output_addr_const (file, XEXP (x, 0));
08106825
AO
3576 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3577 || INTVAL (XEXP (x, 1)) >= 0)
3cf2715d
DE
3578 fprintf (file, "+");
3579 output_addr_const (file, XEXP (x, 1));
3580 }
3581 break;
3582
3583 case MINUS:
3584 /* Avoid outputting things like x-x or x+5-x,
3585 since some assemblers can't handle that. */
3586 x = simplify_subtraction (x);
3587 if (GET_CODE (x) != MINUS)
3588 goto restart;
3589
3590 output_addr_const (file, XEXP (x, 0));
3591 fprintf (file, "-");
422be3c3
AO
3592 if ((GET_CODE (XEXP (x, 1)) == CONST_INT
3593 && INTVAL (XEXP (x, 1)) < 0)
3594 || GET_CODE (XEXP (x, 1)) != CONST_INT)
3cf2715d 3595 {
17b53c33 3596 fputs (targetm.asm_out.open_paren, file);
3cf2715d 3597 output_addr_const (file, XEXP (x, 1));
17b53c33 3598 fputs (targetm.asm_out.close_paren, file);
3cf2715d
DE
3599 }
3600 else
3601 output_addr_const (file, XEXP (x, 1));
3602 break;
3603
3604 case ZERO_EXTEND:
3605 case SIGN_EXTEND:
3606 output_addr_const (file, XEXP (x, 0));
3607 break;
3608
3609 default:
422be3c3
AO
3610#ifdef OUTPUT_ADDR_CONST_EXTRA
3611 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3612 break;
3613
3614 fail:
3615#endif
3cf2715d
DE
3616 output_operand_lossage ("invalid expression as operand");
3617 }
3618}
3619\f
3620/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3621 %R prints the value of REGISTER_PREFIX.
3622 %L prints the value of LOCAL_LABEL_PREFIX.
3623 %U prints the value of USER_LABEL_PREFIX.
3624 %I prints the value of IMMEDIATE_PREFIX.
3625 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3626 Also supported are %d, %x, %s, %e, %f, %g and %%.
3627
3628 We handle alternate assembler dialects here, just like output_asm_insn. */
3629
3630void
711d877c 3631asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3cf2715d 3632{
5148a72b 3633#ifndef ANSI_PROTOTYPES
3cf2715d 3634 FILE *file;
87e11268 3635 const char *p;
3cf2715d
DE
3636#endif
3637 va_list argptr;
3638 char buf[10];
3639 char *q, c;
3cf2715d
DE
3640
3641 VA_START (argptr, p);
3642
5148a72b 3643#ifndef ANSI_PROTOTYPES
0f41302f 3644 file = va_arg (argptr, FILE *);
87e11268 3645 p = va_arg (argptr, const char *);
3cf2715d
DE
3646#endif
3647
3648 buf[0] = '%';
3649
b729186a 3650 while ((c = *p++))
3cf2715d
DE
3651 switch (c)
3652 {
3653#ifdef ASSEMBLER_DIALECT
3654 case '{':
b729186a
JL
3655 {
3656 int i;
3cf2715d 3657
b729186a
JL
3658 /* If we want the first dialect, do nothing. Otherwise, skip
3659 DIALECT_NUMBER of strings ending with '|'. */
3660 for (i = 0; i < dialect_number; i++)
3661 {
3662 while (*p && *p++ != '|')
3663 ;
3664
3665 if (*p == '|')
3666 p++;
f5d927c0 3667 }
b729186a 3668 }
3cf2715d
DE
3669 break;
3670
3671 case '|':
3672 /* Skip to close brace. */
3673 while (*p && *p++ != '}')
3674 ;
3675 break;
3676
3677 case '}':
3678 break;
3679#endif
3680
3681 case '%':
3682 c = *p++;
3683 q = &buf[1];
3684 while ((c >= '0' && c <= '9') || c == '.')
3685 {
3686 *q++ = c;
3687 c = *p++;
3688 }
3689 switch (c)
3690 {
3691 case '%':
3692 fprintf (file, "%%");
3693 break;
3694
3695 case 'd': case 'i': case 'u':
3696 case 'x': case 'p': case 'X':
3697 case 'o':
3698 *q++ = c;
3699 *q = 0;
3700 fprintf (file, buf, va_arg (argptr, int));
3701 break;
3702
3703 case 'w':
3704 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3705 but we do not check for those cases. It means that the value
3706 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3707
21e3a81b
RK
3708#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3709#else
3710#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3711 *q++ = 'l';
3712#else
3713 *q++ = 'l';
3cf2715d 3714 *q++ = 'l';
21e3a81b 3715#endif
3cf2715d
DE
3716#endif
3717
3718 *q++ = *p++;
3719 *q = 0;
3720 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3721 break;
3722
3723 case 'l':
3724 *q++ = c;
3725 *q++ = *p++;
3726 *q = 0;
3727 fprintf (file, buf, va_arg (argptr, long));
3728 break;
3729
3730 case 'e':
3731 case 'f':
3732 case 'g':
3733 *q++ = c;
3734 *q = 0;
3735 fprintf (file, buf, va_arg (argptr, double));
3736 break;
3737
3738 case 's':
3739 *q++ = c;
3740 *q = 0;
3741 fprintf (file, buf, va_arg (argptr, char *));
3742 break;
3743
3744 case 'O':
3745#ifdef ASM_OUTPUT_OPCODE
3746 ASM_OUTPUT_OPCODE (asm_out_file, p);
3747#endif
3748 break;
3749
3750 case 'R':
3751#ifdef REGISTER_PREFIX
3752 fprintf (file, "%s", REGISTER_PREFIX);
3753#endif
3754 break;
3755
3756 case 'I':
3757#ifdef IMMEDIATE_PREFIX
3758 fprintf (file, "%s", IMMEDIATE_PREFIX);
3759#endif
3760 break;
3761
3762 case 'L':
3763#ifdef LOCAL_LABEL_PREFIX
3764 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3765#endif
3766 break;
3767
3768 case 'U':
19283265 3769 fputs (user_label_prefix, file);
3cf2715d
DE
3770 break;
3771
fe0503ea
NC
3772#ifdef ASM_FPRINTF_EXTENSIONS
3773 /* Upper case letters are reserved for general use by asm_fprintf
3774 and so are not available to target specific code. In order to
3775 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3776 they are defined here. As they get turned into real extensions
3777 to asm_fprintf they should be removed from this list. */
3778 case 'A': case 'B': case 'C': case 'D': case 'E':
3779 case 'F': case 'G': case 'H': case 'J': case 'K':
3780 case 'M': case 'N': case 'P': case 'Q': case 'S':
3781 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3782 break;
f5d927c0 3783
fe0503ea
NC
3784 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3785#endif
3cf2715d
DE
3786 default:
3787 abort ();
3788 }
3789 break;
3790
3791 default:
3792 fputc (c, file);
3793 }
f0305a2b 3794 va_end (argptr);
3cf2715d
DE
3795}
3796\f
3797/* Split up a CONST_DOUBLE or integer constant rtx
3798 into two rtx's for single words,
3799 storing in *FIRST the word that comes first in memory in the target
3800 and in *SECOND the other. */
3801
3802void
3803split_double (value, first, second)
3804 rtx value;
3805 rtx *first, *second;
3806{
3807 if (GET_CODE (value) == CONST_INT)
3808 {
5a1a6efd 3809 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
f76b9db2 3810 {
5a1a6efd 3811 /* In this case the CONST_INT holds both target words.
27eef9ce
JC
3812 Extract the bits from it into two word-sized pieces.
3813 Sign extend each half to HOST_WIDE_INT. */
7f251dee
AO
3814 unsigned HOST_WIDE_INT low, high;
3815 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3816
3817 /* Set sign_bit to the most significant bit of a word. */
3818 sign_bit = 1;
3819 sign_bit <<= BITS_PER_WORD - 1;
3820
3821 /* Set mask so that all bits of the word are set. We could
3822 have used 1 << BITS_PER_WORD instead of basing the
3823 calculation on sign_bit. However, on machines where
3824 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3825 compiler warning, even though the code would never be
3826 executed. */
3827 mask = sign_bit << 1;
3828 mask--;
3829
3830 /* Set sign_extend as any remaining bits. */
3831 sign_extend = ~mask;
f5d927c0 3832
7f251dee
AO
3833 /* Pick the lower word and sign-extend it. */
3834 low = INTVAL (value);
3835 low &= mask;
3836 if (low & sign_bit)
3837 low |= sign_extend;
3838
3839 /* Pick the higher word, shifted to the least significant
3840 bits, and sign-extend it. */
3841 high = INTVAL (value);
3842 high >>= BITS_PER_WORD - 1;
3843 high >>= 1;
3844 high &= mask;
3845 if (high & sign_bit)
3846 high |= sign_extend;
3847
3848 /* Store the words in the target machine order. */
5a1a6efd
RK
3849 if (WORDS_BIG_ENDIAN)
3850 {
7f251dee
AO
3851 *first = GEN_INT (high);
3852 *second = GEN_INT (low);
5a1a6efd
RK
3853 }
3854 else
3855 {
7f251dee
AO
3856 *first = GEN_INT (low);
3857 *second = GEN_INT (high);
5a1a6efd 3858 }
f76b9db2
ILT
3859 }
3860 else
3861 {
5a1a6efd
RK
3862 /* The rule for using CONST_INT for a wider mode
3863 is that we regard the value as signed.
3864 So sign-extend it. */
3865 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3866 if (WORDS_BIG_ENDIAN)
3867 {
3868 *first = high;
3869 *second = value;
3870 }
3871 else
3872 {
3873 *first = value;
3874 *second = high;
3875 }
f76b9db2 3876 }
3cf2715d
DE
3877 }
3878 else if (GET_CODE (value) != CONST_DOUBLE)
3879 {
f76b9db2
ILT
3880 if (WORDS_BIG_ENDIAN)
3881 {
3882 *first = const0_rtx;
3883 *second = value;
3884 }
3885 else
3886 {
3887 *first = value;
3888 *second = const0_rtx;
3889 }
3cf2715d
DE
3890 }
3891 else if (GET_MODE (value) == VOIDmode
3892 /* This is the old way we did CONST_DOUBLE integers. */
3893 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3894 {
3895 /* In an integer, the words are defined as most and least significant.
3896 So order them by the target's convention. */
f76b9db2
ILT
3897 if (WORDS_BIG_ENDIAN)
3898 {
3899 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3900 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3901 }
3902 else
3903 {
3904 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3905 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3906 }
3cf2715d
DE
3907 }
3908 else
3909 {
3910#ifdef REAL_ARITHMETIC
f5d927c0
KH
3911 REAL_VALUE_TYPE r;
3912 long l[2];
3cf2715d
DE
3913 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3914
3915 /* Note, this converts the REAL_VALUE_TYPE to the target's
3916 format, splits up the floating point double and outputs
3917 exactly 32 bits of it into each of l[0] and l[1] --
0f41302f 3918 not necessarily BITS_PER_WORD bits. */
3cf2715d
DE
3919 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3920
b5a3eb84
JW
3921 /* If 32 bits is an entire word for the target, but not for the host,
3922 then sign-extend on the host so that the number will look the same
3923 way on the host that it would on the target. See for instance
3924 simplify_unary_operation. The #if is needed to avoid compiler
3925 warnings. */
3926
3927#if HOST_BITS_PER_LONG > 32
3928 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3929 {
3930 if (l[0] & ((long) 1 << 31))
3931 l[0] |= ((long) (-1) << 32);
3932 if (l[1] & ((long) 1 << 31))
3933 l[1] |= ((long) (-1) << 32);
3934 }
3935#endif
3936
3cf2715d
DE
3937 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3938 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3939#else
3940 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3941 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3942 && ! flag_pretend_float)
7f251dee 3943 abort ();
3cf2715d 3944
f76b9db2
ILT
3945 if (
3946#ifdef HOST_WORDS_BIG_ENDIAN
3947 WORDS_BIG_ENDIAN
3cf2715d 3948#else
f76b9db2 3949 ! WORDS_BIG_ENDIAN
3cf2715d 3950#endif
f76b9db2
ILT
3951 )
3952 {
3953 /* Host and target agree => no need to swap. */
3954 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3955 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3956 }
3957 else
3958 {
3959 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3960 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3961 }
3cf2715d
DE
3962#endif /* no REAL_ARITHMETIC */
3963 }
3964}
3965\f
3966/* Return nonzero if this function has no function calls. */
3967
3968int
3969leaf_function_p ()
3970{
3971 rtx insn;
b660f82f 3972 rtx link;
3cf2715d 3973
9e2f9a7f 3974 if (profile_flag || profile_block_flag || profile_arc_flag)
3cf2715d
DE
3975 return 0;
3976
3977 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3978 {
7d167afd
JJ
3979 if (GET_CODE (insn) == CALL_INSN
3980 && ! SIBLING_CALL_P (insn))
3cf2715d
DE
3981 return 0;
3982 if (GET_CODE (insn) == INSN
3983 && GET_CODE (PATTERN (insn)) == SEQUENCE
0a1c58a2
JL
3984 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3985 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3cf2715d
DE
3986 return 0;
3987 }
b660f82f
JW
3988 for (link = current_function_epilogue_delay_list;
3989 link;
3990 link = XEXP (link, 1))
3cf2715d 3991 {
b660f82f
JW
3992 insn = XEXP (link, 0);
3993
3994 if (GET_CODE (insn) == CALL_INSN
7d167afd 3995 && ! SIBLING_CALL_P (insn))
3cf2715d 3996 return 0;
b660f82f
JW
3997 if (GET_CODE (insn) == INSN
3998 && GET_CODE (PATTERN (insn)) == SEQUENCE
3999 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
4000 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3cf2715d
DE
4001 return 0;
4002 }
4003
4004 return 1;
4005}
4006
ef6257cd
JH
4007/* Return 1 if branch is an forward branch.
4008 Uses insn_shuid array, so it works only in the final pass. May be used by
4009 output templates to customary add branch prediction hints.
4010 */
4011int
4012final_forward_branch_p (insn)
4013 rtx insn;
4014{
4015 int insn_id, label_id;
4016 if (!uid_shuid)
4017 abort ();
4018 insn_id = INSN_SHUID (insn);
4019 label_id = INSN_SHUID (JUMP_LABEL (insn));
4020 /* We've hit some insns that does not have id information available. */
4021 if (!insn_id || !label_id)
4022 abort ();
4023 return insn_id < label_id;
4024}
4025
3cf2715d
DE
4026/* On some machines, a function with no call insns
4027 can run faster if it doesn't create its own register window.
4028 When output, the leaf function should use only the "output"
4029 registers. Ordinarily, the function would be compiled to use
4030 the "input" registers to find its arguments; it is a candidate
4031 for leaf treatment if it uses only the "input" registers.
4032 Leaf function treatment means renumbering so the function
4033 uses the "output" registers instead. */
4034
4035#ifdef LEAF_REGISTERS
4036
3cf2715d
DE
4037/* Return 1 if this function uses only the registers that can be
4038 safely renumbered. */
4039
4040int
4041only_leaf_regs_used ()
4042{
4043 int i;
7d167afd 4044 char *permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3cf2715d
DE
4045
4046 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
e5e809f4
JL
4047 if ((regs_ever_live[i] || global_regs[i])
4048 && ! permitted_reg_in_leaf_functions[i])
4049 return 0;
4050
4051 if (current_function_uses_pic_offset_table
4052 && pic_offset_table_rtx != 0
4053 && GET_CODE (pic_offset_table_rtx) == REG
4054 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4055 return 0;
4056
3cf2715d
DE
4057 return 1;
4058}
4059
4060/* Scan all instructions and renumber all registers into those
4061 available in leaf functions. */
4062
4063static void
4064leaf_renumber_regs (first)
4065 rtx first;
4066{
4067 rtx insn;
4068
4069 /* Renumber only the actual patterns.
4070 The reg-notes can contain frame pointer refs,
4071 and renumbering them could crash, and should not be needed. */
4072 for (insn = first; insn; insn = NEXT_INSN (insn))
2c3c49de 4073 if (INSN_P (insn))
3cf2715d 4074 leaf_renumber_regs_insn (PATTERN (insn));
f5d927c0
KH
4075 for (insn = current_function_epilogue_delay_list;
4076 insn;
4077 insn = XEXP (insn, 1))
2c3c49de 4078 if (INSN_P (XEXP (insn, 0)))
3cf2715d
DE
4079 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4080}
4081
4082/* Scan IN_RTX and its subexpressions, and renumber all regs into those
4083 available in leaf functions. */
4084
4085void
4086leaf_renumber_regs_insn (in_rtx)
4087 register rtx in_rtx;
4088{
4089 register int i, j;
6f7d635c 4090 register const char *format_ptr;
3cf2715d
DE
4091
4092 if (in_rtx == 0)
4093 return;
4094
4095 /* Renumber all input-registers into output-registers.
4096 renumbered_regs would be 1 for an output-register;
4097 they */
4098
4099 if (GET_CODE (in_rtx) == REG)
4100 {
4101 int newreg;
4102
4103 /* Don't renumber the same reg twice. */
4104 if (in_rtx->used)
4105 return;
4106
4107 newreg = REGNO (in_rtx);
4108 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4109 to reach here as part of a REG_NOTE. */
4110 if (newreg >= FIRST_PSEUDO_REGISTER)
4111 {
4112 in_rtx->used = 1;
4113 return;
4114 }
4115 newreg = LEAF_REG_REMAP (newreg);
4116 if (newreg < 0)
4117 abort ();
4118 regs_ever_live[REGNO (in_rtx)] = 0;
4119 regs_ever_live[newreg] = 1;
4120 REGNO (in_rtx) = newreg;
4121 in_rtx->used = 1;
4122 }
4123
2c3c49de 4124 if (INSN_P (in_rtx))
3cf2715d
DE
4125 {
4126 /* Inside a SEQUENCE, we find insns.
4127 Renumber just the patterns of these insns,
4128 just as we do for the top-level insns. */
4129 leaf_renumber_regs_insn (PATTERN (in_rtx));
4130 return;
4131 }
4132
4133 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4134
4135 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4136 switch (*format_ptr++)
4137 {
4138 case 'e':
4139 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4140 break;
4141
4142 case 'E':
4143 if (NULL != XVEC (in_rtx, i))
4144 {
4145 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4146 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4147 }
4148 break;
4149
4150 case 'S':
4151 case 's':
4152 case '0':
4153 case 'i':
4154 case 'w':
4155 case 'n':
4156 case 'u':
4157 break;
4158
4159 default:
4160 abort ();
4161 }
4162}
4163#endif
This page took 1.453781 seconds and 5 git commands to generate.