]> gcc.gnu.org Git - gcc.git/blame - gcc/final.c
Merge in gcc2-ss-010999
[gcc.git] / gcc / final.c
CommitLineData
3cf2715d 1/* Convert RTL to assembler code and output it, for GNU compiler.
87e11268 2 Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
3cf2715d
DE
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
940d9d63
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
3cf2715d
DE
20
21
22/* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly as assembler code by the macros FUNCTION_PROLOGUE and
45 FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
46
47#include "config.h"
670ee920 48#include "system.h"
3cf2715d
DE
49
50#include "tree.h"
51#include "rtl.h"
52#include "regs.h"
53#include "insn-config.h"
54#include "insn-flags.h"
55#include "insn-attr.h"
56#include "insn-codes.h"
57#include "recog.h"
58#include "conditions.h"
59#include "flags.h"
60#include "real.h"
61#include "hard-reg-set.h"
62#include "defaults.h"
63#include "output.h"
3d195391 64#include "except.h"
49ad7cfa 65#include "function.h"
10f0ad3d 66#include "toplev.h"
d6f4ec51 67#include "reload.h"
ab87f8c8 68#include "intl.h"
3cf2715d
DE
69
70/* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
71#if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
76ead72b 72#include "dbxout.h"
c7391272 73#if defined (USG) || !defined (HAVE_STAB_H)
3cf2715d
DE
74#include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
75#else
9ec36da5
JL
76#include <stab.h>
77#endif
78
3cf2715d
DE
79#endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
80
81#ifdef XCOFF_DEBUGGING_INFO
82#include "xcoffout.h"
83#endif
84
76ead72b
RL
85#ifdef DWARF_DEBUGGING_INFO
86#include "dwarfout.h"
87#endif
88
89#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
90#include "dwarf2out.h"
91#endif
92
93#ifdef SDB_DEBUGGING_INFO
94#include "sdbout.h"
95#endif
96
3cf2715d
DE
97/* .stabd code for line number. */
98#ifndef N_SLINE
99#define N_SLINE 0x44
100#endif
101
102/* .stabs code for included file name. */
103#ifndef N_SOL
104#define N_SOL 0x84
105#endif
106
107#ifndef INT_TYPE_SIZE
108#define INT_TYPE_SIZE BITS_PER_WORD
109#endif
110
9e2f9a7f
DE
111#ifndef LONG_TYPE_SIZE
112#define LONG_TYPE_SIZE BITS_PER_WORD
113#endif
114
3cf2715d
DE
115/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
116 null default for it to save conditionalization later. */
117#ifndef CC_STATUS_INIT
118#define CC_STATUS_INIT
119#endif
120
121/* How to start an assembler comment. */
122#ifndef ASM_COMMENT_START
123#define ASM_COMMENT_START ";#"
124#endif
125
126/* Is the given character a logical line separator for the assembler? */
127#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
128#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
129#endif
130
75197b37
BS
131#ifndef JUMP_TABLES_IN_TEXT_SECTION
132#define JUMP_TABLES_IN_TEXT_SECTION 0
133#endif
134
3cf2715d
DE
135/* Last insn processed by final_scan_insn. */
136static rtx debug_insn = 0;
137
138/* Line number of last NOTE. */
139static int last_linenum;
140
eac40081
RK
141/* Highest line number in current block. */
142static int high_block_linenum;
143
144/* Likewise for function. */
145static int high_function_linenum;
146
3cf2715d
DE
147/* Filename of last NOTE. */
148static char *last_filename;
149
150/* Number of basic blocks seen so far;
151 used if profile_block_flag is set. */
152static int count_basic_blocks;
153
9e2f9a7f
DE
154/* Number of instrumented arcs when profile_arc_flag is set. */
155extern int count_instrumented_arcs;
156
fc470718
R
157extern int length_unit_log; /* This is defined in insn-attrtab.c. */
158
3cf2715d
DE
159/* Nonzero while outputting an `asm' with operands.
160 This means that inconsistencies are the user's fault, so don't abort.
161 The precise value is the insn being output, to pass to error_for_asm. */
162static rtx this_is_asm_operands;
163
164/* Number of operands of this insn, for an `asm' with operands. */
22bf4422 165static unsigned int insn_noperands;
3cf2715d
DE
166
167/* Compare optimization flag. */
168
169static rtx last_ignored_compare = 0;
170
171/* Flag indicating this insn is the start of a new basic block. */
172
173static int new_block = 1;
174
175/* All the symbol-blocks (levels of scoping) in the compilation
176 are assigned sequence numbers in order of appearance of the
177 beginnings of the symbol-blocks. Both final and dbxout do this,
178 and assume that they will both give the same number to each block.
179 Final uses these sequence numbers to generate assembler label names
180 LBBnnn and LBEnnn for the beginning and end of the symbol-block.
181 Dbxout uses the sequence numbers to generate references to the same labels
182 from the dbx debugging information.
183
184 Sdb records this level at the beginning of each function,
185 in order to find the current level when recursing down declarations.
186 It outputs the block beginning and endings
187 at the point in the asm file where the blocks would begin and end. */
188
189int next_block_index;
190
191/* Assign a unique number to each insn that is output.
192 This can be used to generate unique local labels. */
193
194static int insn_counter = 0;
195
196#ifdef HAVE_cc0
197/* This variable contains machine-dependent flags (defined in tm.h)
198 set and examined by output routines
199 that describe how to interpret the condition codes properly. */
200
201CC_STATUS cc_status;
202
203/* During output of an insn, this contains a copy of cc_status
204 from before the insn. */
205
206CC_STATUS cc_prev_status;
207#endif
208
209/* Indexed by hardware reg number, is 1 if that register is ever
210 used in the current function.
211
212 In life_analysis, or in stupid_life_analysis, this is set
213 up to record the hard regs used explicitly. Reload adds
214 in the hard regs used for holding pseudo regs. Final uses
215 it to generate the code in the function prologue and epilogue
216 to save and restore registers as needed. */
217
218char regs_ever_live[FIRST_PSEUDO_REGISTER];
219
220/* Nonzero means current function must be given a frame pointer.
221 Set in stmt.c if anything is allocated on the stack there.
222 Set in reload1.c if anything is allocated on the stack there. */
223
224int frame_pointer_needed;
225
226/* Assign unique numbers to labels generated for profiling. */
227
228int profile_label_no;
229
230/* Length so far allocated in PENDING_BLOCKS. */
231
232static int max_block_depth;
233
234/* Stack of sequence numbers of symbol-blocks of which we have seen the
235 beginning but not yet the end. Sequence numbers are assigned at
236 the beginning; this stack allows us to find the sequence number
237 of a block that is ending. */
238
239static int *pending_blocks;
240
241/* Number of elements currently in use in PENDING_BLOCKS. */
242
243static int block_depth;
244
245/* Nonzero if have enabled APP processing of our assembler output. */
246
247static int app_on;
248
249/* If we are outputting an insn sequence, this contains the sequence rtx.
250 Zero otherwise. */
251
252rtx final_sequence;
253
254#ifdef ASSEMBLER_DIALECT
255
256/* Number of the assembler dialect to use, starting at 0. */
257static int dialect_number;
258#endif
259
260/* Indexed by line number, nonzero if there is a note for that line. */
261
262static char *line_note_exists;
263
264/* Linked list to hold line numbers for each basic block. */
265
266struct bb_list {
267 struct bb_list *next; /* pointer to next basic block */
268 int line_num; /* line number */
269 int file_label_num; /* LPBC<n> label # for stored filename */
270 int func_label_num; /* LPBC<n> label # for stored function name */
271};
272
273static struct bb_list *bb_head = 0; /* Head of basic block list */
274static struct bb_list **bb_tail = &bb_head; /* Ptr to store next bb ptr */
275static int bb_file_label_num = -1; /* Current label # for file */
276static int bb_func_label_num = -1; /* Current label # for func */
277
278/* Linked list to hold the strings for each file and function name output. */
279
280struct bb_str {
281 struct bb_str *next; /* pointer to next string */
9b3142b3 282 const char *string; /* string */
3cf2715d
DE
283 int label_num; /* label number */
284 int length; /* string length */
285};
286
ede7cd44 287#ifdef HAVE_peephole
3cf2715d 288extern rtx peephole PROTO((rtx));
ede7cd44 289#endif
3cf2715d
DE
290
291static struct bb_str *sbb_head = 0; /* Head of string list. */
292static struct bb_str **sbb_tail = &sbb_head; /* Ptr to store next bb str */
293static int sbb_label_num = 0; /* Last label used */
294
1d300e19 295#ifdef HAVE_ATTR_length
3cf2715d 296static int asm_insn_count PROTO((rtx));
1d300e19 297#endif
3cf2715d
DE
298static void profile_function PROTO((FILE *));
299static void profile_after_prologue PROTO((FILE *));
300static void add_bb PROTO((FILE *));
9b3142b3 301static int add_bb_string PROTO((const char *, int));
3cf2715d
DE
302static void output_source_line PROTO((FILE *, rtx));
303static rtx walk_alter_subreg PROTO((rtx));
cb649530 304static void output_asm_name PROTO((void));
3cf2715d 305static void output_operand PROTO((rtx, int));
e9a25f70 306#ifdef LEAF_REGISTERS
3cf2715d 307static void leaf_renumber_regs PROTO((rtx));
e9a25f70
JL
308#endif
309#ifdef HAVE_cc0
310static int alter_cond PROTO((rtx));
311#endif
3cf2715d
DE
312\f
313/* Initialize data in final at the beginning of a compilation. */
314
315void
316init_final (filename)
6a651371 317 const char *filename ATTRIBUTE_UNUSED;
3cf2715d
DE
318{
319 next_block_index = 2;
320 app_on = 0;
321 max_block_depth = 20;
322 pending_blocks = (int *) xmalloc (20 * sizeof *pending_blocks);
323 final_sequence = 0;
324
325#ifdef ASSEMBLER_DIALECT
326 dialect_number = ASSEMBLER_DIALECT;
327#endif
328}
329
330/* Called at end of source file,
331 to output the block-profiling table for this entire compilation. */
332
333void
334end_final (filename)
87e11268 335 const char *filename;
3cf2715d
DE
336{
337 int i;
338
9e2f9a7f 339 if (profile_block_flag || profile_arc_flag)
3cf2715d
DE
340 {
341 char name[20];
342 int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
9e2f9a7f 343 int size, rounded;
3cf2715d
DE
344 struct bb_list *ptr;
345 struct bb_str *sptr;
9e2f9a7f
DE
346 int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
347 int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
348
349 if (profile_block_flag)
350 size = long_bytes * count_basic_blocks;
351 else
352 size = long_bytes * count_instrumented_arcs;
353 rounded = size;
3cf2715d
DE
354
355 rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
356 rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
357 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
358
359 data_section ();
360
47431dff
RK
361 /* Output the main header, of 11 words:
362 0: 1 if this file is initialized, else 0.
3cf2715d
DE
363 1: address of file name (LPBX1).
364 2: address of table of counts (LPBX2).
365 3: number of counts in the table.
366 4: always 0, for compatibility with Sun.
367
368 The following are GNU extensions:
369
370 5: address of table of start addrs of basic blocks (LPBX3).
371 6: Number of bytes in this header.
372 7: address of table of function names (LPBX4).
373 8: address of table of line numbers (LPBX5) or 0.
47431dff 374 9: address of table of file names (LPBX6) or 0.
0f41302f 375 10: space reserved for basic block profiling. */
3cf2715d
DE
376
377 ASM_OUTPUT_ALIGN (asm_out_file, align);
378
379 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
380 /* zero word */
9e2f9a7f 381 assemble_integer (const0_rtx, long_bytes, 1);
3cf2715d
DE
382
383 /* address of filename */
384 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
38a448ca 385 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
3cf2715d
DE
386
387 /* address of count table */
388 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
38a448ca 389 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
3cf2715d 390
9e2f9a7f
DE
391 /* count of the # of basic blocks or # of instrumented arcs */
392 if (profile_block_flag)
393 assemble_integer (GEN_INT (count_basic_blocks), long_bytes, 1);
394 else
395 assemble_integer (GEN_INT (count_instrumented_arcs), long_bytes,
396 1);
3cf2715d
DE
397
398 /* zero word (link field) */
9e2f9a7f 399 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
400
401 /* address of basic block start address table */
9e2f9a7f
DE
402 if (profile_block_flag)
403 {
404 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
38a448ca 405 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
9e2f9a7f
DE
406 1);
407 }
408 else
409 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
410
411 /* byte count for extended structure. */
d7502074 412 assemble_integer (GEN_INT (11 * UNITS_PER_WORD), long_bytes, 1);
3cf2715d
DE
413
414 /* address of function name table */
9e2f9a7f
DE
415 if (profile_block_flag)
416 {
417 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
38a448ca 418 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
9e2f9a7f
DE
419 1);
420 }
421 else
422 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
423
424 /* address of line number and filename tables if debugging. */
9e2f9a7f 425 if (write_symbols != NO_DEBUG && profile_block_flag)
3cf2715d
DE
426 {
427 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
c5c76735
JL
428 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
429 pointer_bytes, 1);
3cf2715d 430 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
c5c76735
JL
431 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
432 pointer_bytes, 1);
3cf2715d
DE
433 }
434 else
435 {
9e2f9a7f
DE
436 assemble_integer (const0_rtx, pointer_bytes, 1);
437 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
438 }
439
47431dff
RK
440 /* space for extension ptr (link field) */
441 assemble_integer (const0_rtx, UNITS_PER_WORD, 1);
442
3cf2715d
DE
443 /* Output the file name changing the suffix to .d for Sun tcov
444 compatibility. */
445 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
446 {
67e23d2f
JW
447 char *cwd = getpwd ();
448 int len = strlen (filename) + strlen (cwd) + 1;
449 char *data_file = (char *) alloca (len + 4);
450
451 strcpy (data_file, cwd);
452 strcat (data_file, "/");
453 strcat (data_file, filename);
3cf2715d 454 strip_off_ending (data_file, len);
9e2f9a7f
DE
455 if (profile_block_flag)
456 strcat (data_file, ".d");
457 else
458 strcat (data_file, ".da");
3cf2715d
DE
459 assemble_string (data_file, strlen (data_file) + 1);
460 }
461
462 /* Make space for the table of counts. */
2786cbad 463 if (size == 0)
3cf2715d
DE
464 {
465 /* Realign data section. */
466 ASM_OUTPUT_ALIGN (asm_out_file, align);
467 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
468 if (size != 0)
469 assemble_zeros (size);
470 }
471 else
472 {
473 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
474#ifdef ASM_OUTPUT_SHARED_LOCAL
475 if (flag_shared_data)
476 ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
477 else
478#endif
e9a25f70
JL
479#ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
480 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
481 BIGGEST_ALIGNMENT);
482#else
3cf2715d
DE
483#ifdef ASM_OUTPUT_ALIGNED_LOCAL
484 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
485 BIGGEST_ALIGNMENT);
486#else
487 ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
e9a25f70 488#endif
3cf2715d
DE
489#endif
490 }
491
492 /* Output any basic block strings */
9e2f9a7f 493 if (profile_block_flag)
3cf2715d 494 {
9e2f9a7f
DE
495 readonly_data_section ();
496 if (sbb_head)
3cf2715d 497 {
9e2f9a7f
DE
498 ASM_OUTPUT_ALIGN (asm_out_file, align);
499 for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
500 {
501 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
502 sptr->label_num);
503 assemble_string (sptr->string, sptr->length);
504 }
3cf2715d
DE
505 }
506 }
507
508 /* Output the table of addresses. */
9e2f9a7f 509 if (profile_block_flag)
3cf2715d 510 {
9e2f9a7f
DE
511 /* Realign in new section */
512 ASM_OUTPUT_ALIGN (asm_out_file, align);
513 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
514 for (i = 0; i < count_basic_blocks; i++)
515 {
516 ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
38a448ca 517 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
9e2f9a7f
DE
518 pointer_bytes, 1);
519 }
3cf2715d
DE
520 }
521
522 /* Output the table of function names. */
9e2f9a7f 523 if (profile_block_flag)
3cf2715d 524 {
9e2f9a7f
DE
525 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
526 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
3cf2715d 527 {
9e2f9a7f
DE
528 if (ptr->func_label_num >= 0)
529 {
530 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
531 ptr->func_label_num);
38a448ca 532 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
9e2f9a7f
DE
533 pointer_bytes, 1);
534 }
535 else
536 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d 537 }
3cf2715d 538
9e2f9a7f
DE
539 for ( ; i < count_basic_blocks; i++)
540 assemble_integer (const0_rtx, pointer_bytes, 1);
541 }
3cf2715d 542
9e2f9a7f 543 if (write_symbols != NO_DEBUG && profile_block_flag)
3cf2715d
DE
544 {
545 /* Output the table of line numbers. */
546 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
547 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
9e2f9a7f 548 assemble_integer (GEN_INT (ptr->line_num), long_bytes, 1);
3cf2715d
DE
549
550 for ( ; i < count_basic_blocks; i++)
9e2f9a7f 551 assemble_integer (const0_rtx, long_bytes, 1);
3cf2715d
DE
552
553 /* Output the table of file names. */
554 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
555 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
556 {
557 if (ptr->file_label_num >= 0)
558 {
9e2f9a7f
DE
559 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
560 ptr->file_label_num);
38a448ca 561 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
9e2f9a7f 562 pointer_bytes, 1);
3cf2715d
DE
563 }
564 else
9e2f9a7f 565 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
566 }
567
568 for ( ; i < count_basic_blocks; i++)
9e2f9a7f 569 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
570 }
571
572 /* End with the address of the table of addresses,
573 so we can find it easily, as the last word in the file's text. */
9e2f9a7f
DE
574 if (profile_block_flag)
575 {
576 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
38a448ca 577 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
9e2f9a7f
DE
578 1);
579 }
3cf2715d
DE
580 }
581}
582
583/* Enable APP processing of subsequent output.
584 Used before the output from an `asm' statement. */
585
586void
587app_enable ()
588{
589 if (! app_on)
590 {
51723711 591 fputs (ASM_APP_ON, asm_out_file);
3cf2715d
DE
592 app_on = 1;
593 }
594}
595
596/* Disable APP processing of subsequent output.
597 Called from varasm.c before most kinds of output. */
598
599void
600app_disable ()
601{
602 if (app_on)
603 {
51723711 604 fputs (ASM_APP_OFF, asm_out_file);
3cf2715d
DE
605 app_on = 0;
606 }
607}
608\f
609/* Return the number of slots filled in the current
610 delayed branch sequence (we don't count the insn needing the
611 delay slot). Zero if not in a delayed branch sequence. */
612
613#ifdef DELAY_SLOTS
614int
615dbr_sequence_length ()
616{
617 if (final_sequence != 0)
618 return XVECLEN (final_sequence, 0) - 1;
619 else
620 return 0;
621}
622#endif
623\f
624/* The next two pages contain routines used to compute the length of an insn
625 and to shorten branches. */
626
627/* Arrays for insn lengths, and addresses. The latter is referenced by
628 `insn_current_length'. */
629
630static short *insn_lengths;
631int *insn_addresses;
632
ea3cbda5
R
633/* Max uid for which the above arrays are valid. */
634static int insn_lengths_max_uid;
635
3cf2715d
DE
636/* Address of insn being processed. Used by `insn_current_length'. */
637int insn_current_address;
638
fc470718
R
639/* Address of insn being processed in previous iteration. */
640int insn_last_address;
641
642/* konwn invariant alignment of insn being processed. */
643int insn_current_align;
644
95707627
R
645/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
646 gives the next following alignment insn that increases the known
647 alignment, or NULL_RTX if there is no such insn.
648 For any alignment obtained this way, we can again index uid_align with
649 its uid to obtain the next following align that in turn increases the
650 alignment, till we reach NULL_RTX; the sequence obtained this way
651 for each insn we'll call the alignment chain of this insn in the following
652 comments. */
653
9e423e6d
JW
654struct label_alignment {
655 short alignment;
656 short max_skip;
657};
658
659static rtx *uid_align;
660static int *uid_shuid;
661static struct label_alignment *label_align;
95707627 662
3cf2715d
DE
663/* Indicate that branch shortening hasn't yet been done. */
664
665void
666init_insn_lengths ()
667{
95707627
R
668 if (label_align)
669 {
670 free (label_align);
671 label_align = 0;
672 }
673 if (uid_shuid)
674 {
675 free (uid_shuid);
676 uid_shuid = 0;
677 }
678 if (insn_lengths)
679 {
680 free (insn_lengths);
681 insn_lengths = 0;
ea3cbda5 682 insn_lengths_max_uid = 0;
95707627
R
683 }
684 if (insn_addresses)
685 {
686 free (insn_addresses);
687 insn_addresses = 0;
688 }
689 if (uid_align)
690 {
691 free (uid_align);
692 uid_align = 0;
693 }
3cf2715d
DE
694}
695
696/* Obtain the current length of an insn. If branch shortening has been done,
697 get its actual length. Otherwise, get its maximum length. */
698
699int
700get_attr_length (insn)
701 rtx insn;
702{
703#ifdef HAVE_ATTR_length
704 rtx body;
705 int i;
706 int length = 0;
707
ea3cbda5 708 if (insn_lengths_max_uid > INSN_UID (insn))
3cf2715d
DE
709 return insn_lengths[INSN_UID (insn)];
710 else
711 switch (GET_CODE (insn))
712 {
713 case NOTE:
714 case BARRIER:
715 case CODE_LABEL:
716 return 0;
717
718 case CALL_INSN:
719 length = insn_default_length (insn);
720 break;
721
722 case JUMP_INSN:
723 body = PATTERN (insn);
724 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
725 {
fc470718
R
726 /* Alignment is machine-dependent and should be handled by
727 ADDR_VEC_ALIGN. */
3cf2715d
DE
728 }
729 else
730 length = insn_default_length (insn);
731 break;
732
733 case INSN:
734 body = PATTERN (insn);
735 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
736 return 0;
737
738 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
739 length = asm_insn_count (body) * insn_default_length (insn);
740 else if (GET_CODE (body) == SEQUENCE)
741 for (i = 0; i < XVECLEN (body, 0); i++)
742 length += get_attr_length (XVECEXP (body, 0, i));
743 else
744 length = insn_default_length (insn);
e9a25f70
JL
745 break;
746
747 default:
748 break;
3cf2715d
DE
749 }
750
751#ifdef ADJUST_INSN_LENGTH
752 ADJUST_INSN_LENGTH (insn, length);
753#endif
754 return length;
755#else /* not HAVE_ATTR_length */
756 return 0;
757#endif /* not HAVE_ATTR_length */
758}
759\f
fc470718
R
760/* Code to handle alignment inside shorten_branches. */
761
762/* Here is an explanation how the algorithm in align_fuzz can give
763 proper results:
764
765 Call a sequence of instructions beginning with alignment point X
766 and continuing until the next alignment point `block X'. When `X'
767 is used in an expression, it means the alignment value of the
768 alignment point.
769
770 Call the distance between the start of the first insn of block X, and
771 the end of the last insn of block X `IX', for the `inner size of X'.
772 This is clearly the sum of the instruction lengths.
773
774 Likewise with the next alignment-delimited block following X, which we
775 shall call block Y.
776
777 Call the distance between the start of the first insn of block X, and
778 the start of the first insn of block Y `OX', for the `outer size of X'.
779
780 The estimated padding is then OX - IX.
781
782 OX can be safely estimated as
783
784 if (X >= Y)
785 OX = round_up(IX, Y)
786 else
787 OX = round_up(IX, X) + Y - X
788
789 Clearly est(IX) >= real(IX), because that only depends on the
790 instruction lengths, and those being overestimated is a given.
791
792 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
793 we needn't worry about that when thinking about OX.
794
795 When X >= Y, the alignment provided by Y adds no uncertainty factor
796 for branch ranges starting before X, so we can just round what we have.
797 But when X < Y, we don't know anything about the, so to speak,
798 `middle bits', so we have to assume the worst when aligning up from an
799 address mod X to one mod Y, which is Y - X. */
800
801#ifndef LABEL_ALIGN
efa3896a 802#define LABEL_ALIGN(LABEL) align_labels_log
fc470718
R
803#endif
804
9e423e6d 805#ifndef LABEL_ALIGN_MAX_SKIP
efa3896a 806#define LABEL_ALIGN_MAX_SKIP (align_labels-1)
9e423e6d
JW
807#endif
808
fc470718 809#ifndef LOOP_ALIGN
efa3896a 810#define LOOP_ALIGN(LABEL) align_loops_log
fc470718
R
811#endif
812
9e423e6d 813#ifndef LOOP_ALIGN_MAX_SKIP
efa3896a 814#define LOOP_ALIGN_MAX_SKIP (align_loops-1)
9e423e6d
JW
815#endif
816
fc470718 817#ifndef LABEL_ALIGN_AFTER_BARRIER
efa3896a 818#define LABEL_ALIGN_AFTER_BARRIER(LABEL) align_jumps_log
fc470718
R
819#endif
820
9e423e6d 821#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
efa3896a 822#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (align_jumps-1)
9e423e6d
JW
823#endif
824
fc470718
R
825#ifndef ADDR_VEC_ALIGN
826int
827final_addr_vec_align (addr_vec)
828 rtx addr_vec;
829{
830 int align = exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))));
831
832 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
833 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
834 return align;
835
836}
837#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
838#endif
839
840#ifndef INSN_LENGTH_ALIGNMENT
841#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
842#endif
843
fc470718
R
844#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
845
de7987a6 846static int min_labelno, max_labelno;
fc470718
R
847
848#define LABEL_TO_ALIGNMENT(LABEL) \
9e423e6d
JW
849 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
850
851#define LABEL_TO_MAX_SKIP(LABEL) \
852 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
fc470718
R
853
854/* For the benefit of port specific code do this also as a function. */
855int
856label_to_alignment (label)
857 rtx label;
858{
859 return LABEL_TO_ALIGNMENT (label);
860}
861
862#ifdef HAVE_ATTR_length
863/* The differences in addresses
864 between a branch and its target might grow or shrink depending on
865 the alignment the start insn of the range (the branch for a forward
866 branch or the label for a backward branch) starts out on; if these
867 differences are used naively, they can even oscillate infinitely.
868 We therefore want to compute a 'worst case' address difference that
869 is independent of the alignment the start insn of the range end
870 up on, and that is at least as large as the actual difference.
871 The function align_fuzz calculates the amount we have to add to the
872 naively computed difference, by traversing the part of the alignment
873 chain of the start insn of the range that is in front of the end insn
874 of the range, and considering for each alignment the maximum amount
875 that it might contribute to a size increase.
876
877 For casesi tables, we also want to know worst case minimum amounts of
878 address difference, in case a machine description wants to introduce
879 some common offset that is added to all offsets in a table.
880 For this purpose, align_fuzz with a growth argument of 0 comuptes the
881 appropriate adjustment. */
882
883
884/* Compute the maximum delta by which the difference of the addresses of
885 START and END might grow / shrink due to a different address for start
886 which changes the size of alignment insns between START and END.
887 KNOWN_ALIGN_LOG is the alignment known for START.
888 GROWTH should be ~0 if the objective is to compute potential code size
889 increase, and 0 if the objective is to compute potential shrink.
890 The return value is undefined for any other value of GROWTH. */
687d0ab6
R
891int
892align_fuzz (start, end, known_align_log, growth)
fc470718
R
893 rtx start, end;
894 int known_align_log;
895 unsigned growth;
896{
897 int uid = INSN_UID (start);
898 rtx align_label;
899 int known_align = 1 << known_align_log;
900 int end_shuid = INSN_SHUID (end);
901 int fuzz = 0;
902
903 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
904 {
905 int align_addr, new_align;
906
907 uid = INSN_UID (align_label);
908 align_addr = insn_addresses[uid] - insn_lengths[uid];
909 if (uid_shuid[uid] > end_shuid)
910 break;
911 known_align_log = LABEL_TO_ALIGNMENT (align_label);
912 new_align = 1 << known_align_log;
913 if (new_align < known_align)
914 continue;
915 fuzz += (-align_addr ^ growth) & (new_align - known_align);
916 known_align = new_align;
917 }
918 return fuzz;
919}
920
921/* Compute a worst-case reference address of a branch so that it
922 can be safely used in the presence of aligned labels. Since the
923 size of the branch itself is unknown, the size of the branch is
924 not included in the range. I.e. for a forward branch, the reference
925 address is the end address of the branch as known from the previous
926 branch shortening pass, minus a value to account for possible size
927 increase due to alignment. For a backward branch, it is the start
928 address of the branch as known from the current pass, plus a value
929 to account for possible size increase due to alignment.
930 NB.: Therefore, the maximum offset allowed for backward branches needs
931 to exclude the branch size. */
932int
933insn_current_reference_address (branch)
934 rtx branch;
935{
936 rtx dest;
937 rtx seq = NEXT_INSN (PREV_INSN (branch));
938 int seq_uid = INSN_UID (seq);
939 if (GET_CODE (branch) != JUMP_INSN)
940 /* This can happen for example on the PA; the objective is to know the
941 offset to address something in front of the start of the function.
942 Thus, we can treat it like a backward branch.
943 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
944 any alignment we'd encounter, so we skip the call to align_fuzz. */
945 return insn_current_address;
946 dest = JUMP_LABEL (branch);
33f7f353 947 /* BRANCH has no proper alignment chain set, so use SEQ. */
fc470718
R
948 if (INSN_SHUID (branch) < INSN_SHUID (dest))
949 {
950 /* Forward branch. */
951 return (insn_last_address + insn_lengths[seq_uid]
26024475 952 - align_fuzz (seq, dest, length_unit_log, ~0));
fc470718
R
953 }
954 else
955 {
956 /* Backward branch. */
957 return (insn_current_address
923f7cf9 958 + align_fuzz (dest, seq, length_unit_log, ~0));
fc470718
R
959 }
960}
961#endif /* HAVE_ATTR_length */
962\f
3cf2715d
DE
963/* Make a pass over all insns and compute their actual lengths by shortening
964 any branches of variable length if possible. */
965
966/* Give a default value for the lowest address in a function. */
967
968#ifndef FIRST_INSN_ADDRESS
969#define FIRST_INSN_ADDRESS 0
970#endif
971
fc470718
R
972/* shorten_branches might be called multiple times: for example, the SH
973 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
974 In order to do this, it needs proper length information, which it obtains
975 by calling shorten_branches. This cannot be collapsed with
976 shorten_branches itself into a single pass unless we also want to intergate
977 reorg.c, since the branch splitting exposes new instructions with delay
978 slots. */
979
3cf2715d
DE
980void
981shorten_branches (first)
982 rtx first;
983{
3cf2715d 984 rtx insn;
fc470718
R
985 int max_uid;
986 int i;
fc470718 987 int max_log;
9e423e6d 988 int max_skip;
fc470718
R
989#ifdef HAVE_ATTR_length
990#define MAX_CODE_ALIGN 16
991 rtx seq;
3cf2715d 992 int something_changed = 1;
3cf2715d
DE
993 char *varying_length;
994 rtx body;
995 int uid;
fc470718 996 rtx align_tab[MAX_CODE_ALIGN];
3cf2715d 997
3d14e82f
JW
998 /* In order to make sure that all instructions have valid length info,
999 we must split them before we compute the address/length info. */
1000
1001 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
1002 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
fc470718
R
1003 {
1004 rtx old = insn;
1b4d9ecd
RE
1005 /* Don't split the insn if it has been deleted. */
1006 if (! INSN_DELETED_P (old))
1007 insn = try_split (PATTERN (old), old, 1);
fc470718
R
1008 /* When not optimizing, the old insn will be still left around
1009 with only the 'deleted' bit set. Transform it into a note
1010 to avoid confusion of subsequent processing. */
1011 if (INSN_DELETED_P (old))
1012 {
1013 PUT_CODE (old , NOTE);
1014 NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
1015 NOTE_SOURCE_FILE (old) = 0;
1016 }
1017 }
1018#endif
3d14e82f 1019
fc470718
R
1020 /* We must do some computations even when not actually shortening, in
1021 order to get the alignment information for the labels. */
1022
95707627
R
1023 init_insn_lengths ();
1024
fc470718
R
1025 /* Compute maximum UID and allocate label_align / uid_shuid. */
1026 max_uid = get_max_uid ();
1027
1028 max_labelno = max_label_num ();
1029 min_labelno = get_first_label_num ();
3de90026
RH
1030 label_align = (struct label_alignment **)
1031 xcalloc ((max_labelno - min_labelno + 1), sizeof (struct label_alignment));
fc470718 1032
fc470718
R
1033 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1034
1035 /* Initialize label_align and set up uid_shuid to be strictly
1036 monotonically rising with insn order. */
e2faec75
R
1037 /* We use max_log here to keep track of the maximum alignment we want to
1038 impose on the next CODE_LABEL (or the current one if we are processing
1039 the CODE_LABEL itself). */
1040
9e423e6d
JW
1041 max_log = 0;
1042 max_skip = 0;
1043
1044 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
fc470718
R
1045 {
1046 int log;
1047
1048 INSN_SHUID (insn) = i++;
1049 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
e2faec75
R
1050 {
1051 /* reorg might make the first insn of a loop being run once only,
1052 and delete the label in front of it. Then we want to apply
1053 the loop alignment to the new label created by reorg, which
1054 is separated by the former loop start insn from the
1055 NOTE_INSN_LOOP_BEG. */
1056 }
fc470718
R
1057 else if (GET_CODE (insn) == CODE_LABEL)
1058 {
1059 rtx next;
1060
1061 log = LABEL_ALIGN (insn);
1062 if (max_log < log)
9e423e6d
JW
1063 {
1064 max_log = log;
1065 max_skip = LABEL_ALIGN_MAX_SKIP;
1066 }
fc470718 1067 next = NEXT_INSN (insn);
75197b37
BS
1068 /* ADDR_VECs only take room if read-only data goes into the text
1069 section. */
1070 if (JUMP_TABLES_IN_TEXT_SECTION
1071#if !defined(READONLY_DATA_SECTION)
1072 || 1
fc470718 1073#endif
75197b37
BS
1074 )
1075 if (next && GET_CODE (next) == JUMP_INSN)
1076 {
1077 rtx nextbody = PATTERN (next);
1078 if (GET_CODE (nextbody) == ADDR_VEC
1079 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1080 {
1081 log = ADDR_VEC_ALIGN (next);
1082 if (max_log < log)
1083 {
1084 max_log = log;
1085 max_skip = LABEL_ALIGN_MAX_SKIP;
1086 }
1087 }
1088 }
fc470718 1089 LABEL_TO_ALIGNMENT (insn) = max_log;
9e423e6d 1090 LABEL_TO_MAX_SKIP (insn) = max_skip;
fc470718 1091 max_log = 0;
9e423e6d 1092 max_skip = 0;
fc470718
R
1093 }
1094 else if (GET_CODE (insn) == BARRIER)
1095 {
1096 rtx label;
1097
1098 for (label = insn; label && GET_RTX_CLASS (GET_CODE (label)) != 'i';
1099 label = NEXT_INSN (label))
1100 if (GET_CODE (label) == CODE_LABEL)
1101 {
1102 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1103 if (max_log < log)
9e423e6d
JW
1104 {
1105 max_log = log;
1106 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1107 }
fc470718
R
1108 break;
1109 }
1110 }
e2faec75
R
1111 /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
1112 sequences in order to handle reorg output efficiently. */
fc470718
R
1113 else if (GET_CODE (insn) == NOTE
1114 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1115 {
1116 rtx label;
edd6ede7 1117 int nest = 0;
fc470718 1118
edd6ede7
R
1119 /* Search for the label that starts the loop.
1120 Don't skip past the end of the loop, since that could
1121 lead to putting an alignment where it does not belong.
1122 However, a label after a nested (non-)loop would be OK. */
e2faec75 1123 for (label = insn; label; label = NEXT_INSN (label))
edd6ede7
R
1124 {
1125 if (GET_CODE (label) == NOTE
1126 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_BEG)
1127 nest++;
1128 else if (GET_CODE (label) == NOTE
1129 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_END
1130 && --nest == 0)
fc470718 1131 break;
edd6ede7
R
1132 else if (GET_CODE (label) == CODE_LABEL)
1133 {
1134 log = LOOP_ALIGN (insn);
1135 if (max_log < log)
1136 {
1137 max_log = log;
1138 max_skip = LOOP_ALIGN_MAX_SKIP;
1139 }
1140 break;
1141 }
1142 }
fc470718
R
1143 }
1144 else
1145 continue;
1146 }
1147#ifdef HAVE_ATTR_length
1148
1149 /* Allocate the rest of the arrays. */
fc470718 1150 insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
ea3cbda5 1151 insn_lengths_max_uid = max_uid;
af035616
R
1152 /* Syntax errors can lead to labels being outside of the main insn stream.
1153 Initialize insn_addresses, so that we get reproducible results. */
3de90026 1154 insn_addresses = (int *) xcalloc (max_uid, sizeof (int));
fc470718 1155
3de90026 1156 varying_length = (char *) xcalloc (max_uid, sizeof (char));
fc470718
R
1157
1158 /* Initialize uid_align. We scan instructions
1159 from end to start, and keep in align_tab[n] the last seen insn
1160 that does an alignment of at least n+1, i.e. the successor
1161 in the alignment chain for an insn that does / has a known
1162 alignment of n. */
3de90026 1163 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
fc470718
R
1164
1165 for (i = MAX_CODE_ALIGN; --i >= 0; )
1166 align_tab[i] = NULL_RTX;
1167 seq = get_last_insn ();
33f7f353 1168 for (; seq; seq = PREV_INSN (seq))
fc470718
R
1169 {
1170 int uid = INSN_UID (seq);
1171 int log;
fc470718
R
1172 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1173 uid_align[uid] = align_tab[0];
fc470718
R
1174 if (log)
1175 {
1176 /* Found an alignment label. */
1177 uid_align[uid] = align_tab[log];
1178 for (i = log - 1; i >= 0; i--)
1179 align_tab[i] = seq;
1180 }
33f7f353
JR
1181 }
1182#ifdef CASE_VECTOR_SHORTEN_MODE
1183 if (optimize)
1184 {
1185 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1186 label fields. */
1187
1188 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1189 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1190 int rel;
1191
1192 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
fc470718 1193 {
33f7f353
JR
1194 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1195 int len, i, min, max, insn_shuid;
1196 int min_align;
1197 addr_diff_vec_flags flags;
1198
1199 if (GET_CODE (insn) != JUMP_INSN
1200 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1201 continue;
1202 pat = PATTERN (insn);
1203 len = XVECLEN (pat, 1);
1204 if (len <= 0)
1205 abort ();
1206 min_align = MAX_CODE_ALIGN;
1207 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1208 {
1209 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1210 int shuid = INSN_SHUID (lab);
1211 if (shuid < min)
1212 {
1213 min = shuid;
1214 min_lab = lab;
1215 }
1216 if (shuid > max)
1217 {
1218 max = shuid;
1219 max_lab = lab;
1220 }
1221 if (min_align > LABEL_TO_ALIGNMENT (lab))
1222 min_align = LABEL_TO_ALIGNMENT (lab);
1223 }
1224 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1225 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1226 insn_shuid = INSN_SHUID (insn);
1227 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1228 flags.min_align = min_align;
1229 flags.base_after_vec = rel > insn_shuid;
1230 flags.min_after_vec = min > insn_shuid;
1231 flags.max_after_vec = max > insn_shuid;
1232 flags.min_after_base = min > rel;
1233 flags.max_after_base = max > rel;
1234 ADDR_DIFF_VEC_FLAGS (pat) = flags;
fc470718
R
1235 }
1236 }
33f7f353 1237#endif /* CASE_VECTOR_SHORTEN_MODE */
3cf2715d 1238
3cf2715d
DE
1239
1240 /* Compute initial lengths, addresses, and varying flags for each insn. */
1241 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1242 insn != 0;
1243 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1244 {
1245 uid = INSN_UID (insn);
fc470718 1246
3cf2715d 1247 insn_lengths[uid] = 0;
fc470718
R
1248
1249 if (GET_CODE (insn) == CODE_LABEL)
1250 {
1251 int log = LABEL_TO_ALIGNMENT (insn);
1252 if (log)
1253 {
1254 int align = 1 << log;
ecb06768 1255 int new_address = (insn_current_address + align - 1) & -align;
fc470718
R
1256 insn_lengths[uid] = new_address - insn_current_address;
1257 insn_current_address = new_address;
1258 }
1259 }
1260
1261 insn_addresses[uid] = insn_current_address;
3cf2715d
DE
1262
1263 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1264 || GET_CODE (insn) == CODE_LABEL)
1265 continue;
04da53bd
R
1266 if (INSN_DELETED_P (insn))
1267 continue;
3cf2715d
DE
1268
1269 body = PATTERN (insn);
1270 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
5a32a90c
JR
1271 {
1272 /* This only takes room if read-only data goes into the text
1273 section. */
75197b37
BS
1274 if (JUMP_TABLES_IN_TEXT_SECTION
1275#if !defined(READONLY_DATA_SECTION)
1276 || 1
1277#endif
1278 )
1279 insn_lengths[uid] = (XVECLEN (body,
1280 GET_CODE (body) == ADDR_DIFF_VEC)
1281 * GET_MODE_SIZE (GET_MODE (body)));
5a32a90c 1282 /* Alignment is handled by ADDR_VEC_ALIGN. */
5a32a90c 1283 }
3cf2715d
DE
1284 else if (asm_noperands (body) >= 0)
1285 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1286 else if (GET_CODE (body) == SEQUENCE)
1287 {
1288 int i;
1289 int const_delay_slots;
1290#ifdef DELAY_SLOTS
1291 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1292#else
1293 const_delay_slots = 0;
1294#endif
1295 /* Inside a delay slot sequence, we do not do any branch shortening
1296 if the shortening could change the number of delay slots
0f41302f 1297 of the branch. */
3cf2715d
DE
1298 for (i = 0; i < XVECLEN (body, 0); i++)
1299 {
1300 rtx inner_insn = XVECEXP (body, 0, i);
1301 int inner_uid = INSN_UID (inner_insn);
1302 int inner_length;
1303
1304 if (asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1305 inner_length = (asm_insn_count (PATTERN (inner_insn))
1306 * insn_default_length (inner_insn));
1307 else
1308 inner_length = insn_default_length (inner_insn);
1309
1310 insn_lengths[inner_uid] = inner_length;
1311 if (const_delay_slots)
1312 {
1313 if ((varying_length[inner_uid]
1314 = insn_variable_length_p (inner_insn)) != 0)
1315 varying_length[uid] = 1;
1316 insn_addresses[inner_uid] = (insn_current_address +
1317 insn_lengths[uid]);
1318 }
1319 else
1320 varying_length[inner_uid] = 0;
1321 insn_lengths[uid] += inner_length;
1322 }
1323 }
1324 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1325 {
1326 insn_lengths[uid] = insn_default_length (insn);
1327 varying_length[uid] = insn_variable_length_p (insn);
1328 }
1329
1330 /* If needed, do any adjustment. */
1331#ifdef ADJUST_INSN_LENGTH
1332 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
04b6000c
VM
1333 if (insn_lengths[uid] < 0)
1334 fatal_insn ("Negative insn length", insn);
3cf2715d
DE
1335#endif
1336 }
1337
1338 /* Now loop over all the insns finding varying length insns. For each,
1339 get the current insn length. If it has changed, reflect the change.
1340 When nothing changes for a full pass, we are done. */
1341
1342 while (something_changed)
1343 {
1344 something_changed = 0;
fc470718 1345 insn_current_align = MAX_CODE_ALIGN - 1;
3cf2715d
DE
1346 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1347 insn != 0;
1348 insn = NEXT_INSN (insn))
1349 {
1350 int new_length;
b729186a 1351#ifdef ADJUST_INSN_LENGTH
3cf2715d 1352 int tmp_length;
b729186a 1353#endif
fc470718 1354 int length_align;
3cf2715d
DE
1355
1356 uid = INSN_UID (insn);
fc470718
R
1357
1358 if (GET_CODE (insn) == CODE_LABEL)
1359 {
1360 int log = LABEL_TO_ALIGNMENT (insn);
1361 if (log > insn_current_align)
1362 {
1363 int align = 1 << log;
ecb06768 1364 int new_address= (insn_current_address + align - 1) & -align;
fc470718
R
1365 insn_lengths[uid] = new_address - insn_current_address;
1366 insn_current_align = log;
1367 insn_current_address = new_address;
1368 }
1369 else
1370 insn_lengths[uid] = 0;
1371 insn_addresses[uid] = insn_current_address;
1372 continue;
1373 }
1374
1375 length_align = INSN_LENGTH_ALIGNMENT (insn);
1376 if (length_align < insn_current_align)
1377 insn_current_align = length_align;
1378
1379 insn_last_address = insn_addresses[uid];
3cf2715d 1380 insn_addresses[uid] = insn_current_address;
fc470718 1381
5e75ef4a 1382#ifdef CASE_VECTOR_SHORTEN_MODE
33f7f353
JR
1383 if (optimize && GET_CODE (insn) == JUMP_INSN
1384 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1385 {
33f7f353
JR
1386 rtx body = PATTERN (insn);
1387 int old_length = insn_lengths[uid];
1388 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1389 rtx min_lab = XEXP (XEXP (body, 2), 0);
1390 rtx max_lab = XEXP (XEXP (body, 3), 0);
1391 addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
1392 int rel_addr = insn_addresses[INSN_UID (rel_lab)];
1393 int min_addr = insn_addresses[INSN_UID (min_lab)];
1394 int max_addr = insn_addresses[INSN_UID (max_lab)];
1395 rtx prev;
1396 int rel_align = 0;
1397
1398 /* Try to find a known alignment for rel_lab. */
1399 for (prev = rel_lab;
1400 prev
1401 && ! insn_lengths[INSN_UID (prev)]
1402 && ! (varying_length[INSN_UID (prev)] & 1);
1403 prev = PREV_INSN (prev))
1404 if (varying_length[INSN_UID (prev)] & 2)
1405 {
1406 rel_align = LABEL_TO_ALIGNMENT (prev);
1407 break;
1408 }
1409
1410 /* See the comment on addr_diff_vec_flags in rtl.h for the
1411 meaning of the flags values. base: REL_LAB vec: INSN */
1412 /* Anything after INSN has still addresses from the last
1413 pass; adjust these so that they reflect our current
1414 estimate for this pass. */
1415 if (flags.base_after_vec)
1416 rel_addr += insn_current_address - insn_last_address;
1417 if (flags.min_after_vec)
1418 min_addr += insn_current_address - insn_last_address;
1419 if (flags.max_after_vec)
1420 max_addr += insn_current_address - insn_last_address;
1421 /* We want to know the worst case, i.e. lowest possible value
1422 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1423 its offset is positive, and we have to be wary of code shrink;
1424 otherwise, it is negative, and we have to be vary of code
1425 size increase. */
1426 if (flags.min_after_base)
1427 {
1428 /* If INSN is between REL_LAB and MIN_LAB, the size
1429 changes we are about to make can change the alignment
1430 within the observed offset, therefore we have to break
1431 it up into two parts that are independent. */
1432 if (! flags.base_after_vec && flags.min_after_vec)
1433 {
1434 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1435 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1436 }
1437 else
1438 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1439 }
1440 else
1441 {
1442 if (flags.base_after_vec && ! flags.min_after_vec)
1443 {
1444 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1445 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1446 }
1447 else
1448 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1449 }
1450 /* Likewise, determine the highest lowest possible value
1451 for the offset of MAX_LAB. */
1452 if (flags.max_after_base)
1453 {
1454 if (! flags.base_after_vec && flags.max_after_vec)
1455 {
1456 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1457 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1458 }
1459 else
1460 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1461 }
1462 else
1463 {
1464 if (flags.base_after_vec && ! flags.max_after_vec)
1465 {
1466 max_addr += align_fuzz (max_lab, insn, 0, 0);
1467 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1468 }
1469 else
1470 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1471 }
1472 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1473 max_addr - rel_addr,
1474 body));
75197b37
BS
1475 if (JUMP_TABLES_IN_TEXT_SECTION
1476#if !defined(READONLY_DATA_SECTION)
1477 || 1
33f7f353 1478#endif
75197b37
BS
1479 )
1480 {
1481 insn_lengths[uid]
1482 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1483 insn_current_address += insn_lengths[uid];
1484 if (insn_lengths[uid] != old_length)
1485 something_changed = 1;
1486 }
1487
33f7f353 1488 continue;
33f7f353 1489 }
5e75ef4a
JL
1490#endif /* CASE_VECTOR_SHORTEN_MODE */
1491
1492 if (! (varying_length[uid]))
3cf2715d
DE
1493 {
1494 insn_current_address += insn_lengths[uid];
1495 continue;
1496 }
1497 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1498 {
1499 int i;
1500
1501 body = PATTERN (insn);
1502 new_length = 0;
1503 for (i = 0; i < XVECLEN (body, 0); i++)
1504 {
1505 rtx inner_insn = XVECEXP (body, 0, i);
1506 int inner_uid = INSN_UID (inner_insn);
1507 int inner_length;
1508
1509 insn_addresses[inner_uid] = insn_current_address;
1510
1511 /* insn_current_length returns 0 for insns with a
1512 non-varying length. */
1513 if (! varying_length[inner_uid])
1514 inner_length = insn_lengths[inner_uid];
1515 else
1516 inner_length = insn_current_length (inner_insn);
1517
1518 if (inner_length != insn_lengths[inner_uid])
1519 {
1520 insn_lengths[inner_uid] = inner_length;
1521 something_changed = 1;
1522 }
1523 insn_current_address += insn_lengths[inner_uid];
1524 new_length += inner_length;
1525 }
1526 }
1527 else
1528 {
1529 new_length = insn_current_length (insn);
1530 insn_current_address += new_length;
1531 }
1532
3cf2715d
DE
1533#ifdef ADJUST_INSN_LENGTH
1534 /* If needed, do any adjustment. */
1535 tmp_length = new_length;
1536 ADJUST_INSN_LENGTH (insn, new_length);
1537 insn_current_address += (new_length - tmp_length);
3cf2715d
DE
1538#endif
1539
1540 if (new_length != insn_lengths[uid])
1541 {
1542 insn_lengths[uid] = new_length;
1543 something_changed = 1;
1544 }
1545 }
bb4aaf18
TG
1546 /* For a non-optimizing compile, do only a single pass. */
1547 if (!optimize)
1548 break;
3cf2715d 1549 }
fc470718
R
1550
1551 free (varying_length);
1552
3cf2715d
DE
1553#endif /* HAVE_ATTR_length */
1554}
1555
1556#ifdef HAVE_ATTR_length
1557/* Given the body of an INSN known to be generated by an ASM statement, return
1558 the number of machine instructions likely to be generated for this insn.
1559 This is used to compute its length. */
1560
1561static int
1562asm_insn_count (body)
1563 rtx body;
1564{
1565 char *template;
1566 int count = 1;
1567
5d0930ea
DE
1568 if (GET_CODE (body) == ASM_INPUT)
1569 template = XSTR (body, 0);
1570 else
1571 template = decode_asm_operands (body, NULL_PTR, NULL_PTR,
1572 NULL_PTR, NULL_PTR);
1573
1574 for ( ; *template; template++)
3cf2715d
DE
1575 if (IS_ASM_LOGICAL_LINE_SEPARATOR(*template) || *template == '\n')
1576 count++;
1577
1578 return count;
1579}
1580#endif
1581\f
1582/* Output assembler code for the start of a function,
1583 and initialize some of the variables in this file
1584 for the new function. The label for the function and associated
1585 assembler pseudo-ops have already been output in `assemble_start_function'.
1586
1587 FIRST is the first insn of the rtl for the function being compiled.
1588 FILE is the file to write assembler code to.
1589 OPTIMIZE is nonzero if we should eliminate redundant
1590 test and compare insns. */
1591
1592void
1593final_start_function (first, file, optimize)
1594 rtx first;
1595 FILE *file;
6a651371 1596 int optimize ATTRIBUTE_UNUSED;
3cf2715d
DE
1597{
1598 block_depth = 0;
1599
1600 this_is_asm_operands = 0;
1601
1602#ifdef NON_SAVING_SETJMP
1603 /* A function that calls setjmp should save and restore all the
1604 call-saved registers on a system where longjmp clobbers them. */
1605 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1606 {
1607 int i;
1608
1609 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
252f342a 1610 if (!call_used_regs[i])
3cf2715d
DE
1611 regs_ever_live[i] = 1;
1612 }
1613#endif
1614
1615 /* Initial line number is supposed to be output
1616 before the function's prologue and label
1617 so that the function's address will not appear to be
1618 in the last statement of the preceding function. */
1619 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
5fad6898
RK
1620 last_linenum = high_block_linenum = high_function_linenum
1621 = NOTE_LINE_NUMBER (first);
eac40081 1622
c5cec899 1623#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
d291dd49 1624 /* Output DWARF definition of the function. */
0021b564 1625 if (dwarf2out_do_frame ())
9a666dda 1626 dwarf2out_begin_prologue ();
d291dd49
JM
1627#endif
1628
5fad6898
RK
1629 /* For SDB and XCOFF, the function beginning must be marked between
1630 the function label and the prologue. We always need this, even when
3c734272 1631 -g1 was used. Defer on MIPS systems so that parameter descriptions
0f41302f 1632 follow function entry. */
3c734272 1633#if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
5fad6898
RK
1634 if (write_symbols == SDB_DEBUG)
1635 sdbout_begin_function (last_linenum);
1636 else
2e2bbce2 1637#endif
3cf2715d 1638#ifdef XCOFF_DEBUGGING_INFO
5fad6898
RK
1639 if (write_symbols == XCOFF_DEBUG)
1640 xcoffout_begin_function (file, last_linenum);
1641 else
3cf2715d 1642#endif
5fad6898
RK
1643 /* But only output line number for other debug info types if -g2
1644 or better. */
1645 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1646 output_source_line (file, first);
3cf2715d
DE
1647
1648#ifdef LEAF_REG_REMAP
54ff41b7 1649 if (current_function_uses_only_leaf_regs)
3cf2715d
DE
1650 leaf_renumber_regs (first);
1651#endif
1652
1653 /* The Sun386i and perhaps other machines don't work right
1654 if the profiling code comes after the prologue. */
1655#ifdef PROFILE_BEFORE_PROLOGUE
1656 if (profile_flag)
1657 profile_function (file);
1658#endif /* PROFILE_BEFORE_PROLOGUE */
1659
0021b564
JM
1660#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1661 if (dwarf2out_do_frame ())
1662 dwarf2out_frame_debug (NULL_RTX);
1663#endif
1664
3cf2715d
DE
1665#ifdef FUNCTION_PROLOGUE
1666 /* First output the function prologue: code to set up the stack frame. */
1667 FUNCTION_PROLOGUE (file, get_frame_size ());
1668#endif
1669
1670#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
1671 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
1672 next_block_index = 1;
1673#endif
1674
1675 /* If the machine represents the prologue as RTL, the profiling code must
1676 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1677#ifdef HAVE_prologue
1678 if (! HAVE_prologue)
1679#endif
1680 profile_after_prologue (file);
1681
1682 profile_label_no++;
1683
1684 /* If we are doing basic block profiling, remember a printable version
1685 of the function name. */
1686 if (profile_block_flag)
1687 {
db3cf6fb
MS
1688 bb_func_label_num
1689 = add_bb_string ((*decl_printable_name) (current_function_decl, 2), FALSE);
3cf2715d
DE
1690 }
1691}
1692
1693static void
1694profile_after_prologue (file)
1695 FILE *file;
1696{
1697#ifdef FUNCTION_BLOCK_PROFILER
1698 if (profile_block_flag)
1699 {
47431dff 1700 FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
3cf2715d
DE
1701 }
1702#endif /* FUNCTION_BLOCK_PROFILER */
1703
1704#ifndef PROFILE_BEFORE_PROLOGUE
1705 if (profile_flag)
1706 profile_function (file);
1707#endif /* not PROFILE_BEFORE_PROLOGUE */
1708}
1709
1710static void
1711profile_function (file)
1712 FILE *file;
1713{
9e2f9a7f 1714 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
b729186a
JL
1715#if defined(ASM_OUTPUT_REG_PUSH)
1716#if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
3cf2715d 1717 int sval = current_function_returns_struct;
b729186a
JL
1718#endif
1719#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
3cf2715d 1720 int cxt = current_function_needs_context;
b729186a
JL
1721#endif
1722#endif /* ASM_OUTPUT_REG_PUSH */
3cf2715d
DE
1723
1724 data_section ();
1725 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1726 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
9e2f9a7f 1727 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, 1);
3cf2715d 1728
499df339 1729 function_section (current_function_decl);
3cf2715d 1730
65ed39df 1731#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1732 if (sval)
1733 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1734#else
65ed39df 1735#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1736 if (sval)
51723711
KG
1737 {
1738 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1739 }
3cf2715d
DE
1740#endif
1741#endif
1742
65ed39df 1743#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1744 if (cxt)
1745 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1746#else
65ed39df 1747#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1748 if (cxt)
51723711
KG
1749 {
1750 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1751 }
3cf2715d
DE
1752#endif
1753#endif
3cf2715d
DE
1754
1755 FUNCTION_PROFILER (file, profile_label_no);
1756
65ed39df 1757#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1758 if (cxt)
1759 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1760#else
65ed39df 1761#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1762 if (cxt)
51723711
KG
1763 {
1764 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1765 }
3cf2715d
DE
1766#endif
1767#endif
3cf2715d 1768
65ed39df 1769#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1770 if (sval)
1771 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1772#else
65ed39df 1773#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1774 if (sval)
51723711
KG
1775 {
1776 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1777 }
3cf2715d
DE
1778#endif
1779#endif
1780}
1781
1782/* Output assembler code for the end of a function.
1783 For clarity, args are same as those of `final_start_function'
1784 even though not all of them are needed. */
1785
1786void
1787final_end_function (first, file, optimize)
6a651371 1788 rtx first ATTRIBUTE_UNUSED;
3cf2715d 1789 FILE *file;
6a651371 1790 int optimize ATTRIBUTE_UNUSED;
3cf2715d
DE
1791{
1792 if (app_on)
1793 {
51723711 1794 fputs (ASM_APP_OFF, file);
3cf2715d
DE
1795 app_on = 0;
1796 }
1797
1798#ifdef SDB_DEBUGGING_INFO
1799 if (write_symbols == SDB_DEBUG)
eac40081 1800 sdbout_end_function (high_function_linenum);
3cf2715d
DE
1801#endif
1802
1803#ifdef DWARF_DEBUGGING_INFO
1804 if (write_symbols == DWARF_DEBUG)
1805 dwarfout_end_function ();
1806#endif
1807
1808#ifdef XCOFF_DEBUGGING_INFO
1809 if (write_symbols == XCOFF_DEBUG)
eac40081 1810 xcoffout_end_function (file, high_function_linenum);
3cf2715d
DE
1811#endif
1812
1813#ifdef FUNCTION_EPILOGUE
1814 /* Finally, output the function epilogue:
1815 code to restore the stack frame and return to the caller. */
1816 FUNCTION_EPILOGUE (file, get_frame_size ());
1817#endif
1818
1819#ifdef SDB_DEBUGGING_INFO
1820 if (write_symbols == SDB_DEBUG)
1821 sdbout_end_epilogue ();
1822#endif
1823
1824#ifdef DWARF_DEBUGGING_INFO
1825 if (write_symbols == DWARF_DEBUG)
1826 dwarfout_end_epilogue ();
1827#endif
1828
c5cec899 1829#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
0021b564 1830 if (dwarf2out_do_frame ())
9a666dda
JM
1831 dwarf2out_end_epilogue ();
1832#endif
1833
3cf2715d
DE
1834#ifdef XCOFF_DEBUGGING_INFO
1835 if (write_symbols == XCOFF_DEBUG)
1836 xcoffout_end_epilogue (file);
1837#endif
1838
1839 bb_func_label_num = -1; /* not in function, nuke label # */
1840
1841 /* If FUNCTION_EPILOGUE is not defined, then the function body
1842 itself contains return instructions wherever needed. */
1843}
1844\f
1845/* Add a block to the linked list that remembers the current line/file/function
1846 for basic block profiling. Emit the label in front of the basic block and
1847 the instructions that increment the count field. */
1848
1849static void
1850add_bb (file)
1851 FILE *file;
1852{
1853 struct bb_list *ptr = (struct bb_list *) permalloc (sizeof (struct bb_list));
1854
1855 /* Add basic block to linked list. */
1856 ptr->next = 0;
1857 ptr->line_num = last_linenum;
1858 ptr->file_label_num = bb_file_label_num;
1859 ptr->func_label_num = bb_func_label_num;
1860 *bb_tail = ptr;
1861 bb_tail = &ptr->next;
1862
1863 /* Enable the table of basic-block use counts
1864 to point at the code it applies to. */
1865 ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);
1866
1867 /* Before first insn of this basic block, increment the
1868 count of times it was entered. */
1869#ifdef BLOCK_PROFILER
1870 BLOCK_PROFILER (file, count_basic_blocks);
9e2f9a7f
DE
1871#endif
1872#ifdef HAVE_cc0
3cf2715d
DE
1873 CC_STATUS_INIT;
1874#endif
1875
1876 new_block = 0;
1877 count_basic_blocks++;
1878}
1879
1880/* Add a string to be used for basic block profiling. */
1881
1882static int
1883add_bb_string (string, perm_p)
9b3142b3 1884 const char *string;
3cf2715d
DE
1885 int perm_p;
1886{
1887 int len;
1888 struct bb_str *ptr = 0;
1889
1890 if (!string)
1891 {
1892 string = "<unknown>";
1893 perm_p = TRUE;
1894 }
1895
1896 /* Allocate a new string if the current string isn't permanent. If
1897 the string is permanent search for the same string in other
1898 allocations. */
1899
1900 len = strlen (string) + 1;
1901 if (!perm_p)
1902 {
1903 char *p = (char *) permalloc (len);
1904 bcopy (string, p, len);
1905 string = p;
1906 }
1907 else
0f41302f 1908 for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
3cf2715d
DE
1909 if (ptr->string == string)
1910 break;
1911
1912 /* Allocate a new string block if we need to. */
1913 if (!ptr)
1914 {
1915 ptr = (struct bb_str *) permalloc (sizeof (*ptr));
1916 ptr->next = 0;
1917 ptr->length = len;
1918 ptr->label_num = sbb_label_num++;
1919 ptr->string = string;
1920 *sbb_tail = ptr;
1921 sbb_tail = &ptr->next;
1922 }
1923
1924 return ptr->label_num;
1925}
1926
1927\f
1928/* Output assembler code for some insns: all or part of a function.
1929 For description of args, see `final_start_function', above.
1930
1931 PRESCAN is 1 if we are not really outputting,
1932 just scanning as if we were outputting.
1933 Prescanning deletes and rearranges insns just like ordinary output.
1934 PRESCAN is -2 if we are outputting after having prescanned.
1935 In this case, don't try to delete or rearrange insns
1936 because that has already been done.
1937 Prescanning is done only on certain machines. */
1938
1939void
1940final (first, file, optimize, prescan)
1941 rtx first;
1942 FILE *file;
1943 int optimize;
1944 int prescan;
1945{
1946 register rtx insn;
1947 int max_line = 0;
a8c3510c 1948 int max_uid = 0;
3cf2715d
DE
1949
1950 last_ignored_compare = 0;
1951 new_block = 1;
1952
3d195391
MS
1953 check_exception_handler_labels ();
1954
3cf2715d
DE
1955 /* Make a map indicating which line numbers appear in this function.
1956 When producing SDB debugging info, delete troublesome line number
1957 notes from inlined functions in other files as well as duplicate
1958 line number notes. */
1959#ifdef SDB_DEBUGGING_INFO
1960 if (write_symbols == SDB_DEBUG)
1961 {
1962 rtx last = 0;
1963 for (insn = first; insn; insn = NEXT_INSN (insn))
1964 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1965 {
1966 if ((RTX_INTEGRATED_P (insn)
1967 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1968 || (last != 0
1969 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1970 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1971 {
1972 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1973 NOTE_SOURCE_FILE (insn) = 0;
1974 continue;
1975 }
1976 last = insn;
1977 if (NOTE_LINE_NUMBER (insn) > max_line)
1978 max_line = NOTE_LINE_NUMBER (insn);
1979 }
1980 }
1981 else
1982#endif
1983 {
1984 for (insn = first; insn; insn = NEXT_INSN (insn))
1985 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1986 max_line = NOTE_LINE_NUMBER (insn);
1987 }
1988
1989 line_note_exists = (char *) oballoc (max_line + 1);
1990 bzero (line_note_exists, max_line + 1);
1991
1992 for (insn = first; insn; insn = NEXT_INSN (insn))
a8c3510c
AM
1993 {
1994 if (INSN_UID (insn) > max_uid) /* find largest UID */
1995 max_uid = INSN_UID (insn);
1996 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1997 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
9ef4c6ef
JC
1998#ifdef HAVE_cc0
1999 /* If CC tracking across branches is enabled, record the insn which
2000 jumps to each branch only reached from one place. */
7ad7f828 2001 if (optimize && GET_CODE (insn) == JUMP_INSN)
9ef4c6ef
JC
2002 {
2003 rtx lab = JUMP_LABEL (insn);
2004 if (lab && LABEL_NUSES (lab) == 1)
2005 {
2006 LABEL_REFS (lab) = insn;
2007 }
2008 }
2009#endif
a8c3510c
AM
2010 }
2011
2012 /* Initialize insn_eh_region table if eh is being used. */
2013
2014 init_insn_eh_region (first, max_uid);
3cf2715d
DE
2015
2016 init_recog ();
2017
2018 CC_STATUS_INIT;
2019
2020 /* Output the insns. */
2021 for (insn = NEXT_INSN (first); insn;)
2f16edb1
TG
2022 {
2023#ifdef HAVE_ATTR_length
2024 insn_current_address = insn_addresses[INSN_UID (insn)];
2025#endif
2026 insn = final_scan_insn (insn, file, optimize, prescan, 0);
2027 }
3cf2715d
DE
2028
2029 /* Do basic-block profiling here
2030 if the last insn was a conditional branch. */
2031 if (profile_block_flag && new_block)
2032 add_bb (file);
a8c3510c
AM
2033
2034 free_insn_eh_region ();
3cf2715d
DE
2035}
2036\f
2037/* The final scan for one insn, INSN.
2038 Args are same as in `final', except that INSN
2039 is the insn being scanned.
2040 Value returned is the next insn to be scanned.
2041
2042 NOPEEPHOLES is the flag to disallow peephole processing (currently
2043 used for within delayed branch sequence output). */
2044
2045rtx
2046final_scan_insn (insn, file, optimize, prescan, nopeepholes)
2047 rtx insn;
2048 FILE *file;
2049 int optimize;
2050 int prescan;
2051 int nopeepholes;
2052{
90ca38bb
MM
2053#ifdef HAVE_cc0
2054 rtx set;
2055#endif
2056
3cf2715d
DE
2057 insn_counter++;
2058
2059 /* Ignore deleted insns. These can occur when we split insns (due to a
2060 template of "#") while not optimizing. */
2061 if (INSN_DELETED_P (insn))
2062 return NEXT_INSN (insn);
2063
2064 switch (GET_CODE (insn))
2065 {
2066 case NOTE:
2067 if (prescan > 0)
2068 break;
2069
2070 /* Align the beginning of a loop, for higher speed
2071 on certain machines. */
2072
fc470718
R
2073 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2074 break; /* This used to depend on optimize, but that was bogus. */
3cf2715d
DE
2075 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2076 break;
2077
9ad8a5f0
MS
2078 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
2079 && ! exceptions_via_longjmp)
3d195391
MS
2080 {
2081 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHB", NOTE_BLOCK_NUMBER (insn));
a1622f83
AM
2082 if (! flag_new_exceptions)
2083 add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
3d195391
MS
2084#ifdef ASM_OUTPUT_EH_REGION_BEG
2085 ASM_OUTPUT_EH_REGION_BEG (file, NOTE_BLOCK_NUMBER (insn));
2086#endif
2087 break;
2088 }
2089
9ad8a5f0
MS
2090 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
2091 && ! exceptions_via_longjmp)
3d195391
MS
2092 {
2093 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHE", NOTE_BLOCK_NUMBER (insn));
a1622f83
AM
2094 if (flag_new_exceptions)
2095 add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
3d195391
MS
2096#ifdef ASM_OUTPUT_EH_REGION_END
2097 ASM_OUTPUT_EH_REGION_END (file, NOTE_BLOCK_NUMBER (insn));
2098#endif
2099 break;
2100 }
2101
3cf2715d
DE
2102 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
2103 {
2104#ifdef FUNCTION_END_PROLOGUE
2105 FUNCTION_END_PROLOGUE (file);
2106#endif
2107 profile_after_prologue (file);
2108 break;
2109 }
2110
2111#ifdef FUNCTION_BEGIN_EPILOGUE
2112 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
2113 {
2114 FUNCTION_BEGIN_EPILOGUE (file);
2115 break;
2116 }
2117#endif
2118
2119 if (write_symbols == NO_DEBUG)
2120 break;
2121 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2122 {
3c734272
RK
2123#if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
2124 /* MIPS stabs require the parameter descriptions to be after the
0f41302f 2125 function entry point rather than before. */
3c734272
RK
2126 if (write_symbols == SDB_DEBUG)
2127 sdbout_begin_function (last_linenum);
2128 else
2129#endif
3cf2715d 2130#ifdef DWARF_DEBUGGING_INFO
2e2bbce2
RK
2131 /* This outputs a marker where the function body starts, so it
2132 must be after the prologue. */
3cf2715d
DE
2133 if (write_symbols == DWARF_DEBUG)
2134 dwarfout_begin_function ();
2135#endif
2136 break;
2137 }
2138 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2139 break; /* An insn that was "deleted" */
2140 if (app_on)
2141 {
51723711 2142 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2143 app_on = 0;
2144 }
2145 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2146 && (debug_info_level == DINFO_LEVEL_NORMAL
2147 || debug_info_level == DINFO_LEVEL_VERBOSE
3cf2715d 2148 || write_symbols == DWARF_DEBUG
9a666dda 2149 || write_symbols == DWARF2_DEBUG))
3cf2715d
DE
2150 {
2151 /* Beginning of a symbol-block. Assign it a sequence number
2152 and push the number onto the stack PENDING_BLOCKS. */
2153
2154 if (block_depth == max_block_depth)
2155 {
2156 /* PENDING_BLOCKS is full; make it longer. */
2157 max_block_depth *= 2;
2158 pending_blocks
2159 = (int *) xrealloc (pending_blocks,
2160 max_block_depth * sizeof (int));
2161 }
2162 pending_blocks[block_depth++] = next_block_index;
2163
eac40081
RK
2164 high_block_linenum = last_linenum;
2165
3cf2715d
DE
2166 /* Output debugging info about the symbol-block beginning. */
2167
2168#ifdef SDB_DEBUGGING_INFO
2169 if (write_symbols == SDB_DEBUG)
2170 sdbout_begin_block (file, last_linenum, next_block_index);
2171#endif
2172#ifdef XCOFF_DEBUGGING_INFO
2173 if (write_symbols == XCOFF_DEBUG)
2174 xcoffout_begin_block (file, last_linenum, next_block_index);
2175#endif
2176#ifdef DBX_DEBUGGING_INFO
2177 if (write_symbols == DBX_DEBUG)
2178 ASM_OUTPUT_INTERNAL_LABEL (file, "LBB", next_block_index);
2179#endif
2180#ifdef DWARF_DEBUGGING_INFO
7aecea25 2181 if (write_symbols == DWARF_DEBUG)
3cf2715d
DE
2182 dwarfout_begin_block (next_block_index);
2183#endif
9a666dda
JM
2184#ifdef DWARF2_DEBUGGING_INFO
2185 if (write_symbols == DWARF2_DEBUG)
2186 dwarf2out_begin_block (next_block_index);
2187#endif
3cf2715d
DE
2188
2189 next_block_index++;
2190 }
2191 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
2192 && (debug_info_level == DINFO_LEVEL_NORMAL
2193 || debug_info_level == DINFO_LEVEL_VERBOSE
3cf2715d 2194 || write_symbols == DWARF_DEBUG
9a666dda 2195 || write_symbols == DWARF2_DEBUG))
3cf2715d
DE
2196 {
2197 /* End of a symbol-block. Pop its sequence number off
2198 PENDING_BLOCKS and output debugging info based on that. */
2199
2200 --block_depth;
df3ba30a
RH
2201 if (block_depth < 0)
2202 abort ();
3cf2715d
DE
2203
2204#ifdef XCOFF_DEBUGGING_INFO
df3ba30a 2205 if (write_symbols == XCOFF_DEBUG)
eac40081
RK
2206 xcoffout_end_block (file, high_block_linenum,
2207 pending_blocks[block_depth]);
3cf2715d
DE
2208#endif
2209#ifdef DBX_DEBUGGING_INFO
df3ba30a 2210 if (write_symbols == DBX_DEBUG)
3cf2715d
DE
2211 ASM_OUTPUT_INTERNAL_LABEL (file, "LBE",
2212 pending_blocks[block_depth]);
2213#endif
2214#ifdef SDB_DEBUGGING_INFO
df3ba30a 2215 if (write_symbols == SDB_DEBUG)
eac40081
RK
2216 sdbout_end_block (file, high_block_linenum,
2217 pending_blocks[block_depth]);
3cf2715d
DE
2218#endif
2219#ifdef DWARF_DEBUGGING_INFO
df3ba30a 2220 if (write_symbols == DWARF_DEBUG)
3cf2715d 2221 dwarfout_end_block (pending_blocks[block_depth]);
9a666dda
JM
2222#endif
2223#ifdef DWARF2_DEBUGGING_INFO
df3ba30a 2224 if (write_symbols == DWARF2_DEBUG)
9a666dda 2225 dwarf2out_end_block (pending_blocks[block_depth]);
3cf2715d
DE
2226#endif
2227 }
2228 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL
2229 && (debug_info_level == DINFO_LEVEL_NORMAL
2230 || debug_info_level == DINFO_LEVEL_VERBOSE))
2231 {
2232#ifdef DWARF_DEBUGGING_INFO
2233 if (write_symbols == DWARF_DEBUG)
2234 dwarfout_label (insn);
9a666dda
JM
2235#endif
2236#ifdef DWARF2_DEBUGGING_INFO
2237 if (write_symbols == DWARF2_DEBUG)
2238 dwarf2out_label (insn);
3cf2715d
DE
2239#endif
2240 }
2241 else if (NOTE_LINE_NUMBER (insn) > 0)
2242 /* This note is a line-number. */
2243 {
2244 register rtx note;
2245
2246#if 0 /* This is what we used to do. */
2247 output_source_line (file, insn);
2248#endif
2249 int note_after = 0;
2250
2251 /* If there is anything real after this note,
2252 output it. If another line note follows, omit this one. */
2253 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2254 {
2255 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2256 break;
2257 /* These types of notes can be significant
2258 so make sure the preceding line number stays. */
2259 else if (GET_CODE (note) == NOTE
2260 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2261 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2262 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2263 break;
2264 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2265 {
2266 /* Another line note follows; we can delete this note
2267 if no intervening line numbers have notes elsewhere. */
2268 int num;
2269 for (num = NOTE_LINE_NUMBER (insn) + 1;
2270 num < NOTE_LINE_NUMBER (note);
2271 num++)
2272 if (line_note_exists[num])
2273 break;
2274
2275 if (num >= NOTE_LINE_NUMBER (note))
2276 note_after = 1;
2277 break;
2278 }
2279 }
2280
2281 /* Output this line note
2282 if it is the first or the last line note in a row. */
2283 if (!note_after)
2284 output_source_line (file, insn);
2285 }
2286 break;
2287
2288 case BARRIER:
6020d360
JM
2289#if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2290 /* If we push arguments, we need to check all insns for stack
2291 adjustments. */
2292 if (dwarf2out_do_frame ())
2293 dwarf2out_frame_debug (insn);
3cf2715d
DE
2294#endif
2295 break;
2296
2297 case CODE_LABEL:
1dd8faa8
R
2298 /* The target port might emit labels in the output function for
2299 some insn, e.g. sh.c output_branchy_insn. */
de7987a6
R
2300 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2301 {
2302 int align = LABEL_TO_ALIGNMENT (insn);
50b2596f 2303#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
9e423e6d 2304 int max_skip = LABEL_TO_MAX_SKIP (insn);
50b2596f 2305#endif
fc470718 2306
1dd8faa8 2307 if (align && NEXT_INSN (insn))
9e423e6d
JW
2308#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2309 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2310#else
de7987a6 2311 ASM_OUTPUT_ALIGN (file, align);
9e423e6d 2312#endif
de7987a6 2313 }
9ef4c6ef 2314#ifdef HAVE_cc0
3cf2715d 2315 CC_STATUS_INIT;
9ef4c6ef
JC
2316 /* If this label is reached from only one place, set the condition
2317 codes from the instruction just before the branch. */
7ad7f828
JC
2318
2319 /* Disabled because some insns set cc_status in the C output code
2320 and NOTICE_UPDATE_CC alone can set incorrect status. */
2321 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
9ef4c6ef
JC
2322 {
2323 rtx jump = LABEL_REFS (insn);
2324 rtx barrier = prev_nonnote_insn (insn);
2325 rtx prev;
2326 /* If the LABEL_REFS field of this label has been set to point
2327 at a branch, the predecessor of the branch is a regular
2328 insn, and that branch is the only way to reach this label,
2329 set the condition codes based on the branch and its
2330 predecessor. */
2331 if (barrier && GET_CODE (barrier) == BARRIER
2332 && jump && GET_CODE (jump) == JUMP_INSN
2333 && (prev = prev_nonnote_insn (jump))
2334 && GET_CODE (prev) == INSN)
2335 {
2336 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2337 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2338 }
2339 }
2340#endif
3cf2715d
DE
2341 if (prescan > 0)
2342 break;
2343 new_block = 1;
03ffa171
RK
2344
2345#ifdef FINAL_PRESCAN_LABEL
2346 FINAL_PRESCAN_INSN (insn, NULL_PTR, 0);
2347#endif
2348
3cf2715d
DE
2349#ifdef SDB_DEBUGGING_INFO
2350 if (write_symbols == SDB_DEBUG && LABEL_NAME (insn))
2351 sdbout_label (insn);
2352#endif
2353#ifdef DWARF_DEBUGGING_INFO
2354 if (write_symbols == DWARF_DEBUG && LABEL_NAME (insn))
2355 dwarfout_label (insn);
9a666dda
JM
2356#endif
2357#ifdef DWARF2_DEBUGGING_INFO
2358 if (write_symbols == DWARF2_DEBUG && LABEL_NAME (insn))
2359 dwarf2out_label (insn);
3cf2715d
DE
2360#endif
2361 if (app_on)
2362 {
51723711 2363 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2364 app_on = 0;
2365 }
2366 if (NEXT_INSN (insn) != 0
2367 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2368 {
2369 rtx nextbody = PATTERN (NEXT_INSN (insn));
2370
2371 /* If this label is followed by a jump-table,
2372 make sure we put the label in the read-only section. Also
2373 possibly write the label and jump table together. */
2374
2375 if (GET_CODE (nextbody) == ADDR_VEC
2376 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2377 {
e0d80184
DM
2378#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2379 /* In this case, the case vector is being moved by the
2380 target, so don't output the label at all. Leave that
2381 to the back end macros. */
2382#else
75197b37
BS
2383 if (! JUMP_TABLES_IN_TEXT_SECTION)
2384 {
2385 readonly_data_section ();
3cf2715d 2386#ifdef READONLY_DATA_SECTION
75197b37
BS
2387 ASM_OUTPUT_ALIGN (file,
2388 exact_log2 (BIGGEST_ALIGNMENT
2389 / BITS_PER_UNIT));
3cf2715d 2390#endif /* READONLY_DATA_SECTION */
75197b37
BS
2391 }
2392 else
2393 function_section (current_function_decl);
2394
3cf2715d
DE
2395#ifdef ASM_OUTPUT_CASE_LABEL
2396 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2397 NEXT_INSN (insn));
2398#else
2399 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
e0d80184 2400#endif
3cf2715d
DE
2401#endif
2402 break;
2403 }
2404 }
2405
2406 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2407 break;
2408
2409 default:
2410 {
51723711 2411 register rtx body = PATTERN (insn);
3cf2715d 2412 int insn_code_number;
9b3142b3 2413 const char *template;
b729186a 2414#ifdef HAVE_cc0
3cf2715d 2415 rtx note;
b729186a 2416#endif
3cf2715d
DE
2417
2418 /* An INSN, JUMP_INSN or CALL_INSN.
2419 First check for special kinds that recog doesn't recognize. */
2420
2421 if (GET_CODE (body) == USE /* These are just declarations */
2422 || GET_CODE (body) == CLOBBER)
2423 break;
2424
2425#ifdef HAVE_cc0
2426 /* If there is a REG_CC_SETTER note on this insn, it means that
2427 the setting of the condition code was done in the delay slot
2428 of the insn that branched here. So recover the cc status
2429 from the insn that set it. */
2430
2431 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2432 if (note)
2433 {
2434 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2435 cc_prev_status = cc_status;
2436 }
2437#endif
2438
2439 /* Detect insns that are really jump-tables
2440 and output them as such. */
2441
2442 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2443 {
7f7f8214 2444#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
3cf2715d 2445 register int vlen, idx;
7f7f8214 2446#endif
3cf2715d
DE
2447
2448 if (prescan > 0)
2449 break;
2450
2451 if (app_on)
2452 {
51723711 2453 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2454 app_on = 0;
2455 }
2456
e0d80184
DM
2457#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2458 if (GET_CODE (body) == ADDR_VEC)
2459 {
2460#ifdef ASM_OUTPUT_ADDR_VEC
2461 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2462#else
2463 abort();
2464#endif
2465 }
2466 else
2467 {
2468#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2469 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2470#else
2471 abort();
2472#endif
2473 }
2474#else
3cf2715d
DE
2475 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2476 for (idx = 0; idx < vlen; idx++)
2477 {
2478 if (GET_CODE (body) == ADDR_VEC)
2479 {
2480#ifdef ASM_OUTPUT_ADDR_VEC_ELT
2481 ASM_OUTPUT_ADDR_VEC_ELT
2482 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2483#else
2484 abort ();
2485#endif
2486 }
2487 else
2488 {
2489#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2490 ASM_OUTPUT_ADDR_DIFF_ELT
2491 (file,
33f7f353 2492 body,
3cf2715d
DE
2493 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2494 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2495#else
2496 abort ();
2497#endif
2498 }
2499 }
2500#ifdef ASM_OUTPUT_CASE_END
2501 ASM_OUTPUT_CASE_END (file,
2502 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2503 insn);
e0d80184 2504#endif
3cf2715d
DE
2505#endif
2506
4d1065ed 2507 function_section (current_function_decl);
3cf2715d
DE
2508
2509 break;
2510 }
2511
2512 /* Do basic-block profiling when we reach a new block.
2513 Done here to avoid jump tables. */
2514 if (profile_block_flag && new_block)
2515 add_bb (file);
2516
2517 if (GET_CODE (body) == ASM_INPUT)
2518 {
2519 /* There's no telling what that did to the condition codes. */
2520 CC_STATUS_INIT;
2521 if (prescan > 0)
2522 break;
2523 if (! app_on)
2524 {
51723711 2525 fputs (ASM_APP_ON, file);
3cf2715d
DE
2526 app_on = 1;
2527 }
2528 fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
2529 break;
2530 }
2531
2532 /* Detect `asm' construct with operands. */
2533 if (asm_noperands (body) >= 0)
2534 {
22bf4422 2535 unsigned int noperands = asm_noperands (body);
3cf2715d
DE
2536 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2537 char *string;
2538
2539 /* There's no telling what that did to the condition codes. */
2540 CC_STATUS_INIT;
2541 if (prescan > 0)
2542 break;
2543
2544 if (! app_on)
2545 {
51723711 2546 fputs (ASM_APP_ON, file);
3cf2715d
DE
2547 app_on = 1;
2548 }
2549
2550 /* Get out the operand values. */
2551 string = decode_asm_operands (body, ops, NULL_PTR,
2552 NULL_PTR, NULL_PTR);
2553 /* Inhibit aborts on what would otherwise be compiler bugs. */
2554 insn_noperands = noperands;
2555 this_is_asm_operands = insn;
2556
2557 /* Output the insn using them. */
2558 output_asm_insn (string, ops);
2559 this_is_asm_operands = 0;
2560 break;
2561 }
2562
2563 if (prescan <= 0 && app_on)
2564 {
51723711 2565 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2566 app_on = 0;
2567 }
2568
2569 if (GET_CODE (body) == SEQUENCE)
2570 {
2571 /* A delayed-branch sequence */
2572 register int i;
2573 rtx next;
2574
2575 if (prescan > 0)
2576 break;
2577 final_sequence = body;
2578
2579 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2580 force the restoration of a comparison that was previously
2581 thought unnecessary. If that happens, cancel this sequence
2582 and cause that insn to be restored. */
2583
2584 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2585 if (next != XVECEXP (body, 0, 1))
2586 {
2587 final_sequence = 0;
2588 return next;
2589 }
2590
2591 for (i = 1; i < XVECLEN (body, 0); i++)
c7eee2df
RK
2592 {
2593 rtx insn = XVECEXP (body, 0, i);
2594 rtx next = NEXT_INSN (insn);
2595 /* We loop in case any instruction in a delay slot gets
2596 split. */
2597 do
2598 insn = final_scan_insn (insn, file, 0, prescan, 1);
2599 while (insn != next);
2600 }
3cf2715d
DE
2601#ifdef DBR_OUTPUT_SEQEND
2602 DBR_OUTPUT_SEQEND (file);
2603#endif
2604 final_sequence = 0;
2605
2606 /* If the insn requiring the delay slot was a CALL_INSN, the
2607 insns in the delay slot are actually executed before the
2608 called function. Hence we don't preserve any CC-setting
2609 actions in these insns and the CC must be marked as being
2610 clobbered by the function. */
2611 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
b729186a
JL
2612 {
2613 CC_STATUS_INIT;
2614 }
3cf2715d
DE
2615
2616 /* Following a conditional branch sequence, we have a new basic
2617 block. */
2618 if (profile_block_flag)
2619 {
2620 rtx insn = XVECEXP (body, 0, 0);
2621 rtx body = PATTERN (insn);
2622
2623 if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2624 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2625 || (GET_CODE (insn) == JUMP_INSN
2626 && GET_CODE (body) == PARALLEL
2627 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2628 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
2629 new_block = 1;
2630 }
2631 break;
2632 }
2633
2634 /* We have a real machine instruction as rtl. */
2635
2636 body = PATTERN (insn);
2637
2638#ifdef HAVE_cc0
b88c92cc
RK
2639 set = single_set(insn);
2640
3cf2715d
DE
2641 /* Check for redundant test and compare instructions
2642 (when the condition codes are already set up as desired).
2643 This is done only when optimizing; if not optimizing,
2644 it should be possible for the user to alter a variable
2645 with the debugger in between statements
2646 and the next statement should reexamine the variable
2647 to compute the condition codes. */
2648
30f5e9f5 2649 if (optimize)
3cf2715d 2650 {
b88c92cc 2651#if 0
30f5e9f5 2652 rtx set = single_set(insn);
b88c92cc 2653#endif
30f5e9f5
RK
2654
2655 if (set
2656 && GET_CODE (SET_DEST (set)) == CC0
2657 && insn != last_ignored_compare)
3cf2715d 2658 {
30f5e9f5
RK
2659 if (GET_CODE (SET_SRC (set)) == SUBREG)
2660 SET_SRC (set) = alter_subreg (SET_SRC (set));
2661 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2662 {
2663 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2664 XEXP (SET_SRC (set), 0)
2665 = alter_subreg (XEXP (SET_SRC (set), 0));
2666 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2667 XEXP (SET_SRC (set), 1)
2668 = alter_subreg (XEXP (SET_SRC (set), 1));
2669 }
2670 if ((cc_status.value1 != 0
2671 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2672 || (cc_status.value2 != 0
2673 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
3cf2715d 2674 {
30f5e9f5
RK
2675 /* Don't delete insn if it has an addressing side-effect. */
2676 if (! FIND_REG_INC_NOTE (insn, 0)
2677 /* or if anything in it is volatile. */
2678 && ! volatile_refs_p (PATTERN (insn)))
2679 {
2680 /* We don't really delete the insn; just ignore it. */
2681 last_ignored_compare = insn;
2682 break;
2683 }
3cf2715d
DE
2684 }
2685 }
2686 }
2687#endif
2688
2689 /* Following a conditional branch, we have a new basic block.
2690 But if we are inside a sequence, the new block starts after the
2691 last insn of the sequence. */
2692 if (profile_block_flag && final_sequence == 0
2693 && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2694 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2695 || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
2696 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2697 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
2698 new_block = 1;
2699
2700#ifndef STACK_REGS
2701 /* Don't bother outputting obvious no-ops, even without -O.
2702 This optimization is fast and doesn't interfere with debugging.
2703 Don't do this if the insn is in a delay slot, since this
2704 will cause an improper number of delay insns to be written. */
2705 if (final_sequence == 0
2706 && prescan >= 0
2707 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2708 && GET_CODE (SET_SRC (body)) == REG
2709 && GET_CODE (SET_DEST (body)) == REG
2710 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2711 break;
2712#endif
2713
2714#ifdef HAVE_cc0
2715 /* If this is a conditional branch, maybe modify it
2716 if the cc's are in a nonstandard state
2717 so that it accomplishes the same thing that it would
2718 do straightforwardly if the cc's were set up normally. */
2719
2720 if (cc_status.flags != 0
2721 && GET_CODE (insn) == JUMP_INSN
2722 && GET_CODE (body) == SET
2723 && SET_DEST (body) == pc_rtx
2724 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
de2b56f9 2725 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
fff752ad 2726 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
3cf2715d
DE
2727 /* This is done during prescan; it is not done again
2728 in final scan when prescan has been done. */
2729 && prescan >= 0)
2730 {
2731 /* This function may alter the contents of its argument
2732 and clear some of the cc_status.flags bits.
2733 It may also return 1 meaning condition now always true
2734 or -1 meaning condition now always false
2735 or 2 meaning condition nontrivial but altered. */
2736 register int result = alter_cond (XEXP (SET_SRC (body), 0));
2737 /* If condition now has fixed value, replace the IF_THEN_ELSE
2738 with its then-operand or its else-operand. */
2739 if (result == 1)
2740 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2741 if (result == -1)
2742 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2743
2744 /* The jump is now either unconditional or a no-op.
2745 If it has become a no-op, don't try to output it.
2746 (It would not be recognized.) */
2747 if (SET_SRC (body) == pc_rtx)
2748 {
2749 PUT_CODE (insn, NOTE);
2750 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2751 NOTE_SOURCE_FILE (insn) = 0;
2752 break;
2753 }
2754 else if (GET_CODE (SET_SRC (body)) == RETURN)
2755 /* Replace (set (pc) (return)) with (return). */
2756 PATTERN (insn) = body = SET_SRC (body);
2757
2758 /* Rerecognize the instruction if it has changed. */
2759 if (result != 0)
2760 INSN_CODE (insn) = -1;
2761 }
2762
2763 /* Make same adjustments to instructions that examine the
462da2af
SC
2764 condition codes without jumping and instructions that
2765 handle conditional moves (if this machine has either one). */
3cf2715d
DE
2766
2767 if (cc_status.flags != 0
b88c92cc 2768 && set != 0)
3cf2715d 2769 {
462da2af
SC
2770 rtx cond_rtx, then_rtx, else_rtx;
2771
2772 if (GET_CODE (insn) != JUMP_INSN
b88c92cc 2773 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
462da2af 2774 {
b88c92cc
RK
2775 cond_rtx = XEXP (SET_SRC (set), 0);
2776 then_rtx = XEXP (SET_SRC (set), 1);
2777 else_rtx = XEXP (SET_SRC (set), 2);
462da2af
SC
2778 }
2779 else
2780 {
b88c92cc 2781 cond_rtx = SET_SRC (set);
462da2af
SC
2782 then_rtx = const_true_rtx;
2783 else_rtx = const0_rtx;
2784 }
2785
2786 switch (GET_CODE (cond_rtx))
3cf2715d
DE
2787 {
2788 case GTU:
2789 case GT:
2790 case LTU:
2791 case LT:
2792 case GEU:
2793 case GE:
2794 case LEU:
2795 case LE:
2796 case EQ:
2797 case NE:
2798 {
2799 register int result;
462da2af 2800 if (XEXP (cond_rtx, 0) != cc0_rtx)
3cf2715d 2801 break;
462da2af 2802 result = alter_cond (cond_rtx);
3cf2715d 2803 if (result == 1)
b88c92cc 2804 validate_change (insn, &SET_SRC (set), then_rtx, 0);
3cf2715d 2805 else if (result == -1)
b88c92cc 2806 validate_change (insn, &SET_SRC (set), else_rtx, 0);
3cf2715d
DE
2807 else if (result == 2)
2808 INSN_CODE (insn) = -1;
b88c92cc 2809 if (SET_DEST (set) == SET_SRC (set))
462da2af
SC
2810 {
2811 PUT_CODE (insn, NOTE);
2812 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2813 NOTE_SOURCE_FILE (insn) = 0;
462da2af 2814 }
3cf2715d 2815 }
e9a25f70
JL
2816 break;
2817
2818 default:
2819 break;
3cf2715d
DE
2820 }
2821 }
462da2af 2822
3cf2715d
DE
2823#endif
2824
ede7cd44 2825#ifdef HAVE_peephole
3cf2715d
DE
2826 /* Do machine-specific peephole optimizations if desired. */
2827
2828 if (optimize && !flag_no_peephole && !nopeepholes)
2829 {
2830 rtx next = peephole (insn);
2831 /* When peepholing, if there were notes within the peephole,
2832 emit them before the peephole. */
2833 if (next != 0 && next != NEXT_INSN (insn))
2834 {
2835 rtx prev = PREV_INSN (insn);
2836 rtx note;
2837
2838 for (note = NEXT_INSN (insn); note != next;
2839 note = NEXT_INSN (note))
2840 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2841
2842 /* In case this is prescan, put the notes
2843 in proper position for later rescan. */
2844 note = NEXT_INSN (insn);
2845 PREV_INSN (note) = prev;
2846 NEXT_INSN (prev) = note;
2847 NEXT_INSN (PREV_INSN (next)) = insn;
2848 PREV_INSN (insn) = PREV_INSN (next);
2849 NEXT_INSN (insn) = next;
2850 PREV_INSN (next) = insn;
2851 }
2852
2853 /* PEEPHOLE might have changed this. */
2854 body = PATTERN (insn);
2855 }
ede7cd44 2856#endif
3cf2715d
DE
2857
2858 /* Try to recognize the instruction.
2859 If successful, verify that the operands satisfy the
2860 constraints for the instruction. Crash if they don't,
2861 since `reload' should have changed them so that they do. */
2862
2863 insn_code_number = recog_memoized (insn);
0eadeb15 2864 extract_insn (insn);
0304f787 2865 cleanup_subreg_operands (insn);
3cf2715d
DE
2866
2867#ifdef REGISTER_CONSTRAINTS
0eadeb15 2868 if (! constrain_operands (1))
3cf2715d
DE
2869 fatal_insn_not_found (insn);
2870#endif
2871
2872 /* Some target machines need to prescan each insn before
2873 it is output. */
2874
2875#ifdef FINAL_PRESCAN_INSN
0eadeb15 2876 FINAL_PRESCAN_INSN (insn, recog_operand, recog_n_operands);
3cf2715d
DE
2877#endif
2878
2879#ifdef HAVE_cc0
2880 cc_prev_status = cc_status;
2881
2882 /* Update `cc_status' for this instruction.
2883 The instruction's output routine may change it further.
2884 If the output routine for a jump insn needs to depend
2885 on the cc status, it should look at cc_prev_status. */
2886
2887 NOTICE_UPDATE_CC (body, insn);
2888#endif
2889
2890 debug_insn = insn;
2891
b57d9225
JM
2892#if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2893 /* If we push arguments, we want to know where the calls are. */
2894 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2895 dwarf2out_frame_debug (insn);
2896#endif
2897
3cf2715d
DE
2898 /* If the proper template needs to be chosen by some C code,
2899 run that code and get the real template. */
2900
2901 template = insn_template[insn_code_number];
2902 if (template == 0)
2903 {
2904 template = (*insn_outfun[insn_code_number]) (recog_operand, insn);
2905
2906 /* If the C code returns 0, it means that it is a jump insn
2907 which follows a deleted test insn, and that test insn
2908 needs to be reinserted. */
2909 if (template == 0)
2910 {
2911 if (prev_nonnote_insn (insn) != last_ignored_compare)
2912 abort ();
2913 new_block = 0;
2914 return prev_nonnote_insn (insn);
2915 }
2916 }
2917
2918 /* If the template is the string "#", it means that this insn must
2919 be split. */
2920 if (template[0] == '#' && template[1] == '\0')
2921 {
2922 rtx new = try_split (body, insn, 0);
2923
2924 /* If we didn't split the insn, go away. */
2925 if (new == insn && PATTERN (new) == body)
cf879efa 2926 fatal_insn ("Could not split insn", insn);
3cf2715d 2927
3d14e82f
JW
2928#ifdef HAVE_ATTR_length
2929 /* This instruction should have been split in shorten_branches,
2930 to ensure that we would have valid length info for the
2931 splitees. */
2932 abort ();
2933#endif
2934
3cf2715d
DE
2935 new_block = 0;
2936 return new;
2937 }
2938
2939 if (prescan > 0)
2940 break;
2941
2942 /* Output assembler code from the template. */
2943
2944 output_asm_insn (template, recog_operand);
2945
0021b564
JM
2946#if defined (DWARF2_UNWIND_INFO)
2947#if !defined (ACCUMULATE_OUTGOING_ARGS)
2948 /* If we push arguments, we need to check all insns for stack
2949 adjustments. */
b57d9225 2950 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
0021b564
JM
2951 dwarf2out_frame_debug (insn);
2952#else
2953#if defined (HAVE_prologue)
469ac993
JM
2954 /* If this insn is part of the prologue, emit DWARF v2
2955 call frame info. */
0021b564 2956 if (RTX_FRAME_RELATED_P (insn) && dwarf2out_do_frame ())
469ac993
JM
2957 dwarf2out_frame_debug (insn);
2958#endif
0021b564
JM
2959#endif
2960#endif
469ac993 2961
3cf2715d
DE
2962#if 0
2963 /* It's not at all clear why we did this and doing so interferes
2964 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2965 with this out. */
2966
2967 /* Mark this insn as having been output. */
2968 INSN_DELETED_P (insn) = 1;
2969#endif
2970
2971 debug_insn = 0;
2972 }
2973 }
2974 return NEXT_INSN (insn);
2975}
2976\f
2977/* Output debugging info to the assembler file FILE
2978 based on the NOTE-insn INSN, assumed to be a line number. */
2979
2980static void
2981output_source_line (file, insn)
6a651371 2982 FILE *file ATTRIBUTE_UNUSED;
3cf2715d
DE
2983 rtx insn;
2984{
2985 register char *filename = NOTE_SOURCE_FILE (insn);
2986
2987 /* Remember filename for basic block profiling.
2988 Filenames are allocated on the permanent obstack
2989 or are passed in ARGV, so we don't have to save
2990 the string. */
2991
2992 if (profile_block_flag && last_filename != filename)
2993 bb_file_label_num = add_bb_string (filename, TRUE);
2994
2995 last_filename = filename;
2996 last_linenum = NOTE_LINE_NUMBER (insn);
eac40081
RK
2997 high_block_linenum = MAX (last_linenum, high_block_linenum);
2998 high_function_linenum = MAX (last_linenum, high_function_linenum);
3cf2715d
DE
2999
3000 if (write_symbols != NO_DEBUG)
3001 {
3002#ifdef SDB_DEBUGGING_INFO
3003 if (write_symbols == SDB_DEBUG
3004#if 0 /* People like having line numbers even in wrong file! */
3005 /* COFF can't handle multiple source files--lose, lose. */
3006 && !strcmp (filename, main_input_filename)
3007#endif
3008 /* COFF relative line numbers must be positive. */
3009 && last_linenum > sdb_begin_function_line)
3010 {
3011#ifdef ASM_OUTPUT_SOURCE_LINE
3012 ASM_OUTPUT_SOURCE_LINE (file, last_linenum);
3013#else
3014 fprintf (file, "\t.ln\t%d\n",
3015 ((sdb_begin_function_line > -1)
3016 ? last_linenum - sdb_begin_function_line : 1));
3017#endif
3018 }
3019#endif
3020
3021#if defined (DBX_DEBUGGING_INFO)
3022 if (write_symbols == DBX_DEBUG)
3023 dbxout_source_line (file, filename, NOTE_LINE_NUMBER (insn));
3024#endif
3025
3026#if defined (XCOFF_DEBUGGING_INFO)
3027 if (write_symbols == XCOFF_DEBUG)
3028 xcoffout_source_line (file, filename, insn);
3029#endif
3030
3031#ifdef DWARF_DEBUGGING_INFO
3032 if (write_symbols == DWARF_DEBUG)
3033 dwarfout_line (filename, NOTE_LINE_NUMBER (insn));
3034#endif
9a666dda
JM
3035
3036#ifdef DWARF2_DEBUGGING_INFO
3037 if (write_symbols == DWARF2_DEBUG)
3038 dwarf2out_line (filename, NOTE_LINE_NUMBER (insn));
3039#endif
3cf2715d
DE
3040 }
3041}
3042\f
0304f787
JL
3043
3044/* For each operand in INSN, simplify (subreg (reg)) so that it refers
3045 directly to the desired hard register. */
3046void
3047cleanup_subreg_operands (insn)
3048 rtx insn;
3049{
f62a15e3
BS
3050 int i;
3051
0eadeb15
BS
3052 extract_insn (insn);
3053 for (i = 0; i < recog_n_operands; i++)
0304f787
JL
3054 {
3055 if (GET_CODE (recog_operand[i]) == SUBREG)
3056 recog_operand[i] = alter_subreg (recog_operand[i]);
3057 else if (GET_CODE (recog_operand[i]) == PLUS
3058 || GET_CODE (recog_operand[i]) == MULT)
3059 recog_operand[i] = walk_alter_subreg (recog_operand[i]);
3060 }
3061
0eadeb15 3062 for (i = 0; i < recog_n_dups; i++)
0304f787
JL
3063 {
3064 if (GET_CODE (*recog_dup_loc[i]) == SUBREG)
3065 *recog_dup_loc[i] = alter_subreg (*recog_dup_loc[i]);
3066 else if (GET_CODE (*recog_dup_loc[i]) == PLUS
3067 || GET_CODE (*recog_dup_loc[i]) == MULT)
3068 *recog_dup_loc[i] = walk_alter_subreg (*recog_dup_loc[i]);
3069 }
3070}
3071
3cf2715d
DE
3072/* If X is a SUBREG, replace it with a REG or a MEM,
3073 based on the thing it is a subreg of. */
3074
3075rtx
3076alter_subreg (x)
3077 register rtx x;
3078{
3079 register rtx y = SUBREG_REG (x);
f5963e61 3080
3cf2715d
DE
3081 if (GET_CODE (y) == SUBREG)
3082 y = alter_subreg (y);
3083
f5963e61
JL
3084 /* If reload is operating, we may be replacing inside this SUBREG.
3085 Check for that and make a new one if so. */
3086 if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
3087 x = copy_rtx (x);
3088
3cf2715d
DE
3089 if (GET_CODE (y) == REG)
3090 {
ef178af3 3091 int regno;
ce4d78eb
RH
3092 /* If the word size is larger than the size of this register,
3093 adjust the register number to compensate. */
3094 /* ??? Note that this just catches stragglers created by/for
3095 integrate. It would be better if we either caught these
3096 earlier, or kept _all_ subregs until now and eliminate
3097 gen_lowpart and friends. */
3098
ce4d78eb 3099#ifdef ALTER_HARD_SUBREG
ef178af3
ZW
3100 regno = ALTER_HARD_SUBREG(GET_MODE (x), SUBREG_WORD (x),
3101 GET_MODE (y), REGNO (y));
ce4d78eb 3102#else
ef178af3 3103 regno = REGNO (y) + SUBREG_WORD (x);
ce4d78eb 3104#endif
ef178af3
ZW
3105 PUT_CODE (x, REG);
3106 REGNO (x) = regno;
0304f787
JL
3107 /* This field has a different meaning for REGs and SUBREGs. Make sure
3108 to clear it! */
3109 x->used = 0;
3cf2715d
DE
3110 }
3111 else if (GET_CODE (y) == MEM)
3112 {
3113 register int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
f76b9db2
ILT
3114 if (BYTES_BIG_ENDIAN)
3115 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))
3116 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (y))));
3cf2715d 3117 PUT_CODE (x, MEM);
c6df88cb 3118 MEM_COPY_ATTRIBUTES (x, y);
41472af8 3119 MEM_ALIAS_SET (x) = MEM_ALIAS_SET (y);
3cf2715d
DE
3120 XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
3121 }
3122
3123 return x;
3124}
3125
3126/* Do alter_subreg on all the SUBREGs contained in X. */
3127
3128static rtx
3129walk_alter_subreg (x)
3130 rtx x;
3131{
3132 switch (GET_CODE (x))
3133 {
3134 case PLUS:
3135 case MULT:
3136 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3137 XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
3138 break;
3139
3140 case MEM:
3141 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3142 break;
3143
3144 case SUBREG:
3145 return alter_subreg (x);
e9a25f70
JL
3146
3147 default:
3148 break;
3cf2715d
DE
3149 }
3150
3151 return x;
3152}
3153\f
3154#ifdef HAVE_cc0
3155
3156/* Given BODY, the body of a jump instruction, alter the jump condition
3157 as required by the bits that are set in cc_status.flags.
3158 Not all of the bits there can be handled at this level in all cases.
3159
3160 The value is normally 0.
3161 1 means that the condition has become always true.
3162 -1 means that the condition has become always false.
3163 2 means that COND has been altered. */
3164
3165static int
3166alter_cond (cond)
3167 register rtx cond;
3168{
3169 int value = 0;
3170
3171 if (cc_status.flags & CC_REVERSED)
3172 {
3173 value = 2;
3174 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3175 }
3176
3177 if (cc_status.flags & CC_INVERTED)
3178 {
3179 value = 2;
3180 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3181 }
3182
3183 if (cc_status.flags & CC_NOT_POSITIVE)
3184 switch (GET_CODE (cond))
3185 {
3186 case LE:
3187 case LEU:
3188 case GEU:
3189 /* Jump becomes unconditional. */
3190 return 1;
3191
3192 case GT:
3193 case GTU:
3194 case LTU:
3195 /* Jump becomes no-op. */
3196 return -1;
3197
3198 case GE:
3199 PUT_CODE (cond, EQ);
3200 value = 2;
3201 break;
3202
3203 case LT:
3204 PUT_CODE (cond, NE);
3205 value = 2;
3206 break;
e9a25f70
JL
3207
3208 default:
3209 break;
3cf2715d
DE
3210 }
3211
3212 if (cc_status.flags & CC_NOT_NEGATIVE)
3213 switch (GET_CODE (cond))
3214 {
3215 case GE:
3216 case GEU:
3217 /* Jump becomes unconditional. */
3218 return 1;
3219
3220 case LT:
3221 case LTU:
3222 /* Jump becomes no-op. */
3223 return -1;
3224
3225 case LE:
3226 case LEU:
3227 PUT_CODE (cond, EQ);
3228 value = 2;
3229 break;
3230
3231 case GT:
3232 case GTU:
3233 PUT_CODE (cond, NE);
3234 value = 2;
3235 break;
e9a25f70
JL
3236
3237 default:
3238 break;
3cf2715d
DE
3239 }
3240
3241 if (cc_status.flags & CC_NO_OVERFLOW)
3242 switch (GET_CODE (cond))
3243 {
3244 case GEU:
3245 /* Jump becomes unconditional. */
3246 return 1;
3247
3248 case LEU:
3249 PUT_CODE (cond, EQ);
3250 value = 2;
3251 break;
3252
3253 case GTU:
3254 PUT_CODE (cond, NE);
3255 value = 2;
3256 break;
3257
3258 case LTU:
3259 /* Jump becomes no-op. */
3260 return -1;
e9a25f70
JL
3261
3262 default:
3263 break;
3cf2715d
DE
3264 }
3265
3266 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3267 switch (GET_CODE (cond))
3268 {
e9a25f70 3269 default:
3cf2715d
DE
3270 abort ();
3271
3272 case NE:
3273 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3274 value = 2;
3275 break;
3276
3277 case EQ:
3278 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3279 value = 2;
3280 break;
3281 }
3282
3283 if (cc_status.flags & CC_NOT_SIGNED)
3284 /* The flags are valid if signed condition operators are converted
3285 to unsigned. */
3286 switch (GET_CODE (cond))
3287 {
3288 case LE:
3289 PUT_CODE (cond, LEU);
3290 value = 2;
3291 break;
3292
3293 case LT:
3294 PUT_CODE (cond, LTU);
3295 value = 2;
3296 break;
3297
3298 case GT:
3299 PUT_CODE (cond, GTU);
3300 value = 2;
3301 break;
3302
3303 case GE:
3304 PUT_CODE (cond, GEU);
3305 value = 2;
3306 break;
e9a25f70
JL
3307
3308 default:
3309 break;
3cf2715d
DE
3310 }
3311
3312 return value;
3313}
3314#endif
3315\f
3316/* Report inconsistency between the assembler template and the operands.
3317 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3318
3319void
ab87f8c8
JL
3320output_operand_lossage (msgid)
3321 const char *msgid;
3cf2715d
DE
3322{
3323 if (this_is_asm_operands)
ab87f8c8 3324 error_for_asm (this_is_asm_operands, "invalid `asm': %s", _(msgid));
3cf2715d 3325 else
987009bf
ZW
3326 {
3327 error ("output_operand: %s", _(msgid));
3328 abort ();
3329 }
3cf2715d
DE
3330}
3331\f
3332/* Output of assembler code from a template, and its subroutines. */
3333
3334/* Output text from TEMPLATE to the assembler output file,
3335 obeying %-directions to substitute operands taken from
3336 the vector OPERANDS.
3337
3338 %N (for N a digit) means print operand N in usual manner.
3339 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3340 and print the label name with no punctuation.
3341 %cN means require operand N to be a constant
3342 and print the constant expression with no punctuation.
3343 %aN means expect operand N to be a memory address
3344 (not a memory reference!) and print a reference
3345 to that address.
3346 %nN means expect operand N to be a constant
3347 and print a constant expression for minus the value
3348 of the operand, with no other punctuation. */
3349
cb649530
RK
3350static void
3351output_asm_name ()
3352{
3353 if (flag_print_asm_name)
3354 {
3355 /* Annotate the assembly with a comment describing the pattern and
3356 alternative used. */
3357 if (debug_insn)
3358 {
3359 register int num = INSN_CODE (debug_insn);
1db9f6ce 3360 fprintf (asm_out_file, "\t%s %d\t%s",
cb649530
RK
3361 ASM_COMMENT_START, INSN_UID (debug_insn), insn_name[num]);
3362 if (insn_n_alternatives[num] > 1)
3363 fprintf (asm_out_file, "/%d", which_alternative + 1);
1db9f6ce
NC
3364#ifdef HAVE_ATTR_length
3365 fprintf (asm_out_file, "\t[length = %d]", get_attr_length (debug_insn));
3366#endif
cb649530
RK
3367 /* Clear this so only the first assembler insn
3368 of any rtl insn will get the special comment for -dp. */
3369 debug_insn = 0;
3370 }
3371 }
3372}
3373
3cf2715d
DE
3374void
3375output_asm_insn (template, operands)
9b3142b3 3376 const char *template;
3cf2715d
DE
3377 rtx *operands;
3378{
9b3142b3 3379 register const char *p;
b729186a 3380 register int c;
3cf2715d
DE
3381
3382 /* An insn may return a null string template
3383 in a case where no assembler code is needed. */
3384 if (*template == 0)
3385 return;
3386
3387 p = template;
3388 putc ('\t', asm_out_file);
3389
3390#ifdef ASM_OUTPUT_OPCODE
3391 ASM_OUTPUT_OPCODE (asm_out_file, p);
3392#endif
3393
b729186a 3394 while ((c = *p++))
3cf2715d
DE
3395 switch (c)
3396 {
3cf2715d 3397 case '\n':
cb649530 3398 output_asm_name ();
3cf2715d 3399 putc (c, asm_out_file);
cb649530 3400#ifdef ASM_OUTPUT_OPCODE
3cf2715d
DE
3401 while ((c = *p) == '\t')
3402 {
3403 putc (c, asm_out_file);
3404 p++;
3405 }
3406 ASM_OUTPUT_OPCODE (asm_out_file, p);
3cf2715d 3407#endif
cb649530 3408 break;
3cf2715d
DE
3409
3410#ifdef ASSEMBLER_DIALECT
3411 case '{':
b729186a
JL
3412 {
3413 register int i;
3414
3415 /* If we want the first dialect, do nothing. Otherwise, skip
3416 DIALECT_NUMBER of strings ending with '|'. */
3417 for (i = 0; i < dialect_number; i++)
3418 {
463a8384 3419 while (*p && *p != '}' && *p++ != '|')
b729186a 3420 ;
463a8384
BS
3421 if (*p == '}')
3422 break;
b729186a
JL
3423 if (*p == '|')
3424 p++;
3425 }
3426 }
3cf2715d
DE
3427 break;
3428
3429 case '|':
3430 /* Skip to close brace. */
3431 while (*p && *p++ != '}')
3432 ;
3433 break;
3434
3435 case '}':
3436 break;
3437#endif
3438
3439 case '%':
3440 /* %% outputs a single %. */
3441 if (*p == '%')
3442 {
3443 p++;
3444 putc (c, asm_out_file);
3445 }
3446 /* %= outputs a number which is unique to each insn in the entire
3447 compilation. This is useful for making local labels that are
3448 referred to more than once in a given insn. */
3449 else if (*p == '=')
3450 {
3451 p++;
3452 fprintf (asm_out_file, "%d", insn_counter);
3453 }
3454 /* % followed by a letter and some digits
3455 outputs an operand in a special way depending on the letter.
3456 Letters `acln' are implemented directly.
3457 Other letters are passed to `output_operand' so that
3458 the PRINT_OPERAND macro can define them. */
3459 else if ((*p >= 'a' && *p <= 'z')
3460 || (*p >= 'A' && *p <= 'Z'))
3461 {
3462 int letter = *p++;
3463 c = atoi (p);
3464
3465 if (! (*p >= '0' && *p <= '9'))
3466 output_operand_lossage ("operand number missing after %-letter");
22bf4422 3467 else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3cf2715d
DE
3468 output_operand_lossage ("operand number out of range");
3469 else if (letter == 'l')
3470 output_asm_label (operands[c]);
3471 else if (letter == 'a')
3472 output_address (operands[c]);
3473 else if (letter == 'c')
3474 {
3475 if (CONSTANT_ADDRESS_P (operands[c]))
3476 output_addr_const (asm_out_file, operands[c]);
3477 else
3478 output_operand (operands[c], 'c');
3479 }
3480 else if (letter == 'n')
3481 {
3482 if (GET_CODE (operands[c]) == CONST_INT)
21e3a81b 3483 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3cf2715d
DE
3484 - INTVAL (operands[c]));
3485 else
3486 {
3487 putc ('-', asm_out_file);
3488 output_addr_const (asm_out_file, operands[c]);
3489 }
3490 }
3491 else
3492 output_operand (operands[c], letter);
3493
3494 while ((c = *p) >= '0' && c <= '9') p++;
3495 }
3496 /* % followed by a digit outputs an operand the default way. */
3497 else if (*p >= '0' && *p <= '9')
3498 {
3499 c = atoi (p);
22bf4422 3500 if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3cf2715d
DE
3501 output_operand_lossage ("operand number out of range");
3502 else
3503 output_operand (operands[c], 0);
3504 while ((c = *p) >= '0' && c <= '9') p++;
3505 }
3506 /* % followed by punctuation: output something for that
3507 punctuation character alone, with no operand.
3508 The PRINT_OPERAND macro decides what is actually done. */
3509#ifdef PRINT_OPERAND_PUNCT_VALID_P
973838fd 3510 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char)*p))
3cf2715d
DE
3511 output_operand (NULL_RTX, *p++);
3512#endif
3513 else
3514 output_operand_lossage ("invalid %%-code");
3515 break;
3516
3517 default:
3518 putc (c, asm_out_file);
3519 }
3520
cb649530 3521 output_asm_name ();
3cf2715d
DE
3522
3523 putc ('\n', asm_out_file);
3524}
3525\f
3526/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3527
3528void
3529output_asm_label (x)
3530 rtx x;
3531{
3532 char buf[256];
3533
3534 if (GET_CODE (x) == LABEL_REF)
3535 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3536 else if (GET_CODE (x) == CODE_LABEL)
3537 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3538 else
3539 output_operand_lossage ("`%l' operand isn't a label");
3540
3541 assemble_name (asm_out_file, buf);
3542}
3543
3544/* Print operand X using machine-dependent assembler syntax.
3545 The macro PRINT_OPERAND is defined just to control this function.
3546 CODE is a non-digit that preceded the operand-number in the % spec,
3547 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3548 between the % and the digits.
3549 When CODE is a non-letter, X is 0.
3550
3551 The meanings of the letters are machine-dependent and controlled
3552 by PRINT_OPERAND. */
3553
3554static void
3555output_operand (x, code)
3556 rtx x;
3557 int code;
3558{
3559 if (x && GET_CODE (x) == SUBREG)
3560 x = alter_subreg (x);
3561
3562 /* If X is a pseudo-register, abort now rather than writing trash to the
3563 assembler file. */
3564
3565 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3566 abort ();
3567
3568 PRINT_OPERAND (asm_out_file, x, code);
3569}
3570
3571/* Print a memory reference operand for address X
3572 using machine-dependent assembler syntax.
3573 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3574
3575void
3576output_address (x)
3577 rtx x;
3578{
3579 walk_alter_subreg (x);
3580 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3581}
3582\f
3583/* Print an integer constant expression in assembler syntax.
3584 Addition and subtraction are the only arithmetic
3585 that may appear in these expressions. */
3586
3587void
3588output_addr_const (file, x)
3589 FILE *file;
3590 rtx x;
3591{
3592 char buf[256];
3593
3594 restart:
3595 switch (GET_CODE (x))
3596 {
3597 case PC:
3598 if (flag_pic)
3599 putc ('.', file);
3600 else
3601 abort ();
3602 break;
3603
3604 case SYMBOL_REF:
3605 assemble_name (file, XSTR (x, 0));
3606 break;
3607
3608 case LABEL_REF:
3609 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3610 assemble_name (file, buf);
3611 break;
3612
3613 case CODE_LABEL:
3614 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3615 assemble_name (file, buf);
3616 break;
3617
3618 case CONST_INT:
21e3a81b 3619 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3cf2715d
DE
3620 break;
3621
3622 case CONST:
3623 /* This used to output parentheses around the expression,
3624 but that does not work on the 386 (either ATT or BSD assembler). */
3625 output_addr_const (file, XEXP (x, 0));
3626 break;
3627
3628 case CONST_DOUBLE:
3629 if (GET_MODE (x) == VOIDmode)
3630 {
3631 /* We can use %d if the number is one word and positive. */
3632 if (CONST_DOUBLE_HIGH (x))
21e3a81b 3633 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3cf2715d
DE
3634 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3635 else if (CONST_DOUBLE_LOW (x) < 0)
21e3a81b 3636 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3cf2715d 3637 else
21e3a81b 3638 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3cf2715d
DE
3639 }
3640 else
3641 /* We can't handle floating point constants;
3642 PRINT_OPERAND must handle them. */
3643 output_operand_lossage ("floating constant misused");
3644 break;
3645
3646 case PLUS:
3647 /* Some assemblers need integer constants to appear last (eg masm). */
3648 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3649 {
3650 output_addr_const (file, XEXP (x, 1));
3651 if (INTVAL (XEXP (x, 0)) >= 0)
3652 fprintf (file, "+");
3653 output_addr_const (file, XEXP (x, 0));
3654 }
3655 else
3656 {
3657 output_addr_const (file, XEXP (x, 0));
3658 if (INTVAL (XEXP (x, 1)) >= 0)
3659 fprintf (file, "+");
3660 output_addr_const (file, XEXP (x, 1));
3661 }
3662 break;
3663
3664 case MINUS:
3665 /* Avoid outputting things like x-x or x+5-x,
3666 since some assemblers can't handle that. */
3667 x = simplify_subtraction (x);
3668 if (GET_CODE (x) != MINUS)
3669 goto restart;
3670
3671 output_addr_const (file, XEXP (x, 0));
3672 fprintf (file, "-");
3673 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3674 && INTVAL (XEXP (x, 1)) < 0)
3675 {
b6c8689d 3676 fprintf (file, "%s", ASM_OPEN_PAREN);
3cf2715d 3677 output_addr_const (file, XEXP (x, 1));
b6c8689d 3678 fprintf (file, "%s", ASM_CLOSE_PAREN);
3cf2715d
DE
3679 }
3680 else
3681 output_addr_const (file, XEXP (x, 1));
3682 break;
3683
3684 case ZERO_EXTEND:
3685 case SIGN_EXTEND:
3686 output_addr_const (file, XEXP (x, 0));
3687 break;
3688
3689 default:
3690 output_operand_lossage ("invalid expression as operand");
3691 }
3692}
3693\f
3694/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3695 %R prints the value of REGISTER_PREFIX.
3696 %L prints the value of LOCAL_LABEL_PREFIX.
3697 %U prints the value of USER_LABEL_PREFIX.
3698 %I prints the value of IMMEDIATE_PREFIX.
3699 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3700 Also supported are %d, %x, %s, %e, %f, %g and %%.
3701
3702 We handle alternate assembler dialects here, just like output_asm_insn. */
3703
3704void
87e11268 3705asm_fprintf VPROTO((FILE *file, const char *p, ...))
3cf2715d 3706{
5148a72b 3707#ifndef ANSI_PROTOTYPES
3cf2715d 3708 FILE *file;
87e11268 3709 const char *p;
3cf2715d
DE
3710#endif
3711 va_list argptr;
3712 char buf[10];
3713 char *q, c;
3cf2715d
DE
3714
3715 VA_START (argptr, p);
3716
5148a72b 3717#ifndef ANSI_PROTOTYPES
0f41302f 3718 file = va_arg (argptr, FILE *);
87e11268 3719 p = va_arg (argptr, const char *);
3cf2715d
DE
3720#endif
3721
3722 buf[0] = '%';
3723
b729186a 3724 while ((c = *p++))
3cf2715d
DE
3725 switch (c)
3726 {
3727#ifdef ASSEMBLER_DIALECT
3728 case '{':
b729186a
JL
3729 {
3730 int i;
3cf2715d 3731
b729186a
JL
3732 /* If we want the first dialect, do nothing. Otherwise, skip
3733 DIALECT_NUMBER of strings ending with '|'. */
3734 for (i = 0; i < dialect_number; i++)
3735 {
3736 while (*p && *p++ != '|')
3737 ;
3738
3739 if (*p == '|')
3740 p++;
3cf2715d 3741 }
b729186a 3742 }
3cf2715d
DE
3743 break;
3744
3745 case '|':
3746 /* Skip to close brace. */
3747 while (*p && *p++ != '}')
3748 ;
3749 break;
3750
3751 case '}':
3752 break;
3753#endif
3754
3755 case '%':
3756 c = *p++;
3757 q = &buf[1];
3758 while ((c >= '0' && c <= '9') || c == '.')
3759 {
3760 *q++ = c;
3761 c = *p++;
3762 }
3763 switch (c)
3764 {
3765 case '%':
3766 fprintf (file, "%%");
3767 break;
3768
3769 case 'd': case 'i': case 'u':
3770 case 'x': case 'p': case 'X':
3771 case 'o':
3772 *q++ = c;
3773 *q = 0;
3774 fprintf (file, buf, va_arg (argptr, int));
3775 break;
3776
3777 case 'w':
3778 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3779 but we do not check for those cases. It means that the value
3780 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3781
21e3a81b
RK
3782#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3783#else
3784#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3785 *q++ = 'l';
3786#else
3787 *q++ = 'l';
3cf2715d 3788 *q++ = 'l';
21e3a81b 3789#endif
3cf2715d
DE
3790#endif
3791
3792 *q++ = *p++;
3793 *q = 0;
3794 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3795 break;
3796
3797 case 'l':
3798 *q++ = c;
3799 *q++ = *p++;
3800 *q = 0;
3801 fprintf (file, buf, va_arg (argptr, long));
3802 break;
3803
3804 case 'e':
3805 case 'f':
3806 case 'g':
3807 *q++ = c;
3808 *q = 0;
3809 fprintf (file, buf, va_arg (argptr, double));
3810 break;
3811
3812 case 's':
3813 *q++ = c;
3814 *q = 0;
3815 fprintf (file, buf, va_arg (argptr, char *));
3816 break;
3817
3818 case 'O':
3819#ifdef ASM_OUTPUT_OPCODE
3820 ASM_OUTPUT_OPCODE (asm_out_file, p);
3821#endif
3822 break;
3823
3824 case 'R':
3825#ifdef REGISTER_PREFIX
3826 fprintf (file, "%s", REGISTER_PREFIX);
3827#endif
3828 break;
3829
3830 case 'I':
3831#ifdef IMMEDIATE_PREFIX
3832 fprintf (file, "%s", IMMEDIATE_PREFIX);
3833#endif
3834 break;
3835
3836 case 'L':
3837#ifdef LOCAL_LABEL_PREFIX
3838 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3839#endif
3840 break;
3841
3842 case 'U':
19283265 3843 fputs (user_label_prefix, file);
3cf2715d
DE
3844 break;
3845
fe0503ea
NC
3846#ifdef ASM_FPRINTF_EXTENSIONS
3847 /* Upper case letters are reserved for general use by asm_fprintf
3848 and so are not available to target specific code. In order to
3849 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3850 they are defined here. As they get turned into real extensions
3851 to asm_fprintf they should be removed from this list. */
3852 case 'A': case 'B': case 'C': case 'D': case 'E':
3853 case 'F': case 'G': case 'H': case 'J': case 'K':
3854 case 'M': case 'N': case 'P': case 'Q': case 'S':
3855 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3856 break;
3857
3858 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3859#endif
3cf2715d
DE
3860 default:
3861 abort ();
3862 }
3863 break;
3864
3865 default:
3866 fputc (c, file);
3867 }
3868}
3869\f
3870/* Split up a CONST_DOUBLE or integer constant rtx
3871 into two rtx's for single words,
3872 storing in *FIRST the word that comes first in memory in the target
3873 and in *SECOND the other. */
3874
3875void
3876split_double (value, first, second)
3877 rtx value;
3878 rtx *first, *second;
3879{
3880 if (GET_CODE (value) == CONST_INT)
3881 {
5a1a6efd 3882 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
f76b9db2 3883 {
5a1a6efd 3884 /* In this case the CONST_INT holds both target words.
27eef9ce
JC
3885 Extract the bits from it into two word-sized pieces.
3886 Sign extend each half to HOST_WIDE_INT. */
5a1a6efd 3887 rtx low, high;
563c063f
MM
3888 /* On machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD
3889 the shift below will cause a compiler warning, even though
3890 this code won't be executed. So put the shift amounts in
3891 variables to avoid the warning. */
3892 int rshift = HOST_BITS_PER_WIDE_INT - BITS_PER_WORD;
3893 int lshift = HOST_BITS_PER_WIDE_INT - 2 * BITS_PER_WORD;
3894
3895 low = GEN_INT ((INTVAL (value) << rshift) >> rshift);
3896 high = GEN_INT ((INTVAL (value) << lshift) >> rshift);
5a1a6efd
RK
3897 if (WORDS_BIG_ENDIAN)
3898 {
3899 *first = high;
3900 *second = low;
3901 }
3902 else
3903 {
3904 *first = low;
3905 *second = high;
3906 }
f76b9db2
ILT
3907 }
3908 else
3909 {
5a1a6efd
RK
3910 /* The rule for using CONST_INT for a wider mode
3911 is that we regard the value as signed.
3912 So sign-extend it. */
3913 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3914 if (WORDS_BIG_ENDIAN)
3915 {
3916 *first = high;
3917 *second = value;
3918 }
3919 else
3920 {
3921 *first = value;
3922 *second = high;
3923 }
f76b9db2 3924 }
3cf2715d
DE
3925 }
3926 else if (GET_CODE (value) != CONST_DOUBLE)
3927 {
f76b9db2
ILT
3928 if (WORDS_BIG_ENDIAN)
3929 {
3930 *first = const0_rtx;
3931 *second = value;
3932 }
3933 else
3934 {
3935 *first = value;
3936 *second = const0_rtx;
3937 }
3cf2715d
DE
3938 }
3939 else if (GET_MODE (value) == VOIDmode
3940 /* This is the old way we did CONST_DOUBLE integers. */
3941 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3942 {
3943 /* In an integer, the words are defined as most and least significant.
3944 So order them by the target's convention. */
f76b9db2
ILT
3945 if (WORDS_BIG_ENDIAN)
3946 {
3947 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3948 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3949 }
3950 else
3951 {
3952 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3953 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3954 }
3cf2715d
DE
3955 }
3956 else
3957 {
3958#ifdef REAL_ARITHMETIC
3959 REAL_VALUE_TYPE r; long l[2];
3960 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3961
3962 /* Note, this converts the REAL_VALUE_TYPE to the target's
3963 format, splits up the floating point double and outputs
3964 exactly 32 bits of it into each of l[0] and l[1] --
0f41302f 3965 not necessarily BITS_PER_WORD bits. */
3cf2715d
DE
3966 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3967
b5a3eb84
JW
3968 /* If 32 bits is an entire word for the target, but not for the host,
3969 then sign-extend on the host so that the number will look the same
3970 way on the host that it would on the target. See for instance
3971 simplify_unary_operation. The #if is needed to avoid compiler
3972 warnings. */
3973
3974#if HOST_BITS_PER_LONG > 32
3975 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3976 {
3977 if (l[0] & ((long) 1 << 31))
3978 l[0] |= ((long) (-1) << 32);
3979 if (l[1] & ((long) 1 << 31))
3980 l[1] |= ((long) (-1) << 32);
3981 }
3982#endif
3983
3cf2715d
DE
3984 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3985 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3986#else
3987 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3988 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3989 && ! flag_pretend_float)
3990 abort ();
3991
f76b9db2
ILT
3992 if (
3993#ifdef HOST_WORDS_BIG_ENDIAN
3994 WORDS_BIG_ENDIAN
3cf2715d 3995#else
f76b9db2 3996 ! WORDS_BIG_ENDIAN
3cf2715d 3997#endif
f76b9db2
ILT
3998 )
3999 {
4000 /* Host and target agree => no need to swap. */
4001 *first = GEN_INT (CONST_DOUBLE_LOW (value));
4002 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
4003 }
4004 else
4005 {
4006 *second = GEN_INT (CONST_DOUBLE_LOW (value));
4007 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
4008 }
3cf2715d
DE
4009#endif /* no REAL_ARITHMETIC */
4010 }
4011}
4012\f
4013/* Return nonzero if this function has no function calls. */
4014
4015int
4016leaf_function_p ()
4017{
4018 rtx insn;
4019
9e2f9a7f 4020 if (profile_flag || profile_block_flag || profile_arc_flag)
3cf2715d
DE
4021 return 0;
4022
4023 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4024 {
4025 if (GET_CODE (insn) == CALL_INSN)
4026 return 0;
4027 if (GET_CODE (insn) == INSN
4028 && GET_CODE (PATTERN (insn)) == SEQUENCE
4029 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)
4030 return 0;
4031 }
4032 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
4033 {
4034 if (GET_CODE (XEXP (insn, 0)) == CALL_INSN)
4035 return 0;
4036 if (GET_CODE (XEXP (insn, 0)) == INSN
4037 && GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE
4038 && GET_CODE (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)) == CALL_INSN)
4039 return 0;
4040 }
4041
4042 return 1;
4043}
4044
4045/* On some machines, a function with no call insns
4046 can run faster if it doesn't create its own register window.
4047 When output, the leaf function should use only the "output"
4048 registers. Ordinarily, the function would be compiled to use
4049 the "input" registers to find its arguments; it is a candidate
4050 for leaf treatment if it uses only the "input" registers.
4051 Leaf function treatment means renumbering so the function
4052 uses the "output" registers instead. */
4053
4054#ifdef LEAF_REGISTERS
4055
4056static char permitted_reg_in_leaf_functions[] = LEAF_REGISTERS;
4057
4058/* Return 1 if this function uses only the registers that can be
4059 safely renumbered. */
4060
4061int
4062only_leaf_regs_used ()
4063{
4064 int i;
4065
4066 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
e5e809f4
JL
4067 if ((regs_ever_live[i] || global_regs[i])
4068 && ! permitted_reg_in_leaf_functions[i])
4069 return 0;
4070
4071 if (current_function_uses_pic_offset_table
4072 && pic_offset_table_rtx != 0
4073 && GET_CODE (pic_offset_table_rtx) == REG
4074 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4075 return 0;
4076
3cf2715d
DE
4077 return 1;
4078}
4079
4080/* Scan all instructions and renumber all registers into those
4081 available in leaf functions. */
4082
4083static void
4084leaf_renumber_regs (first)
4085 rtx first;
4086{
4087 rtx insn;
4088
4089 /* Renumber only the actual patterns.
4090 The reg-notes can contain frame pointer refs,
4091 and renumbering them could crash, and should not be needed. */
4092 for (insn = first; insn; insn = NEXT_INSN (insn))
4093 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
4094 leaf_renumber_regs_insn (PATTERN (insn));
4095 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
4096 if (GET_RTX_CLASS (GET_CODE (XEXP (insn, 0))) == 'i')
4097 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4098}
4099
4100/* Scan IN_RTX and its subexpressions, and renumber all regs into those
4101 available in leaf functions. */
4102
4103void
4104leaf_renumber_regs_insn (in_rtx)
4105 register rtx in_rtx;
4106{
4107 register int i, j;
6f7d635c 4108 register const char *format_ptr;
3cf2715d
DE
4109
4110 if (in_rtx == 0)
4111 return;
4112
4113 /* Renumber all input-registers into output-registers.
4114 renumbered_regs would be 1 for an output-register;
4115 they */
4116
4117 if (GET_CODE (in_rtx) == REG)
4118 {
4119 int newreg;
4120
4121 /* Don't renumber the same reg twice. */
4122 if (in_rtx->used)
4123 return;
4124
4125 newreg = REGNO (in_rtx);
4126 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4127 to reach here as part of a REG_NOTE. */
4128 if (newreg >= FIRST_PSEUDO_REGISTER)
4129 {
4130 in_rtx->used = 1;
4131 return;
4132 }
4133 newreg = LEAF_REG_REMAP (newreg);
4134 if (newreg < 0)
4135 abort ();
4136 regs_ever_live[REGNO (in_rtx)] = 0;
4137 regs_ever_live[newreg] = 1;
4138 REGNO (in_rtx) = newreg;
4139 in_rtx->used = 1;
4140 }
4141
4142 if (GET_RTX_CLASS (GET_CODE (in_rtx)) == 'i')
4143 {
4144 /* Inside a SEQUENCE, we find insns.
4145 Renumber just the patterns of these insns,
4146 just as we do for the top-level insns. */
4147 leaf_renumber_regs_insn (PATTERN (in_rtx));
4148 return;
4149 }
4150
4151 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4152
4153 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4154 switch (*format_ptr++)
4155 {
4156 case 'e':
4157 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4158 break;
4159
4160 case 'E':
4161 if (NULL != XVEC (in_rtx, i))
4162 {
4163 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4164 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4165 }
4166 break;
4167
4168 case 'S':
4169 case 's':
4170 case '0':
4171 case 'i':
4172 case 'w':
4173 case 'n':
4174 case 'u':
4175 break;
4176
4177 default:
4178 abort ();
4179 }
4180}
4181#endif
This page took 1.078005 seconds and 5 git commands to generate.