]> gcc.gnu.org Git - gcc.git/blame - gcc/final.c
re PR preprocessor/11361 (ICE (segfault) in c-lex.c with one-liner)
[gcc.git] / gcc / final.c
CommitLineData
3cf2715d 1/* Convert RTL to assembler code and output it, for GNU compiler.
3b708058 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
6cf9ac28 3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3cf2715d 4
1322177d 5This file is part of GCC.
3cf2715d 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
3cf2715d 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
3cf2715d
DE
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
3cf2715d 21
3cf2715d
DE
22/* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
08c148a8
NB
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
3cf2715d
DE
46
47#include "config.h"
670ee920 48#include "system.h"
4977bab6
ZW
49#include "coretypes.h"
50#include "tm.h"
3cf2715d
DE
51
52#include "tree.h"
53#include "rtl.h"
6baf1cc8 54#include "tm_p.h"
3cf2715d
DE
55#include "regs.h"
56#include "insn-config.h"
3cf2715d 57#include "insn-attr.h"
3cf2715d
DE
58#include "recog.h"
59#include "conditions.h"
60#include "flags.h"
61#include "real.h"
62#include "hard-reg-set.h"
3cf2715d 63#include "output.h"
3d195391 64#include "except.h"
49ad7cfa 65#include "function.h"
10f0ad3d 66#include "toplev.h"
d6f4ec51 67#include "reload.h"
ab87f8c8 68#include "intl.h"
be1bb652 69#include "basic-block.h"
08c148a8 70#include "target.h"
a5a42b92 71#include "debug.h"
49d801d3 72#include "expr.h"
ba4f7968 73#include "cfglayout.h"
3cf2715d 74
440aabf8
NB
75#ifdef XCOFF_DEBUGGING_INFO
76#include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78#endif
79
76ead72b
RL
80#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81#include "dwarf2out.h"
82#endif
83
6a08f7b3
DP
84#ifdef DBX_DEBUGGING_INFO
85#include "dbxout.h"
86#endif
87
3cf2715d
DE
88/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90#ifndef CC_STATUS_INIT
91#define CC_STATUS_INIT
92#endif
93
94/* How to start an assembler comment. */
95#ifndef ASM_COMMENT_START
96#define ASM_COMMENT_START ";#"
97#endif
98
99/* Is the given character a logical line separator for the assembler? */
100#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102#endif
103
75197b37
BS
104#ifndef JUMP_TABLES_IN_TEXT_SECTION
105#define JUMP_TABLES_IN_TEXT_SECTION 0
106#endif
107
d48bc59a
RH
108#if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109#define HAVE_READONLY_DATA_SECTION 1
110#else
111#define HAVE_READONLY_DATA_SECTION 0
112#endif
113
3cf2715d 114/* Last insn processed by final_scan_insn. */
b1a9f6a0
RH
115static rtx debug_insn;
116rtx current_output_insn;
3cf2715d
DE
117
118/* Line number of last NOTE. */
119static int last_linenum;
120
eac40081
RK
121/* Highest line number in current block. */
122static int high_block_linenum;
123
124/* Likewise for function. */
125static int high_function_linenum;
126
3cf2715d 127/* Filename of last NOTE. */
3cce094d 128static const char *last_filename;
3cf2715d 129
fc470718
R
130extern int length_unit_log; /* This is defined in insn-attrtab.c. */
131
3cf2715d
DE
132/* Nonzero while outputting an `asm' with operands.
133 This means that inconsistencies are the user's fault, so don't abort.
134 The precise value is the insn being output, to pass to error_for_asm. */
c8b94768 135rtx this_is_asm_operands;
3cf2715d
DE
136
137/* Number of operands of this insn, for an `asm' with operands. */
22bf4422 138static unsigned int insn_noperands;
3cf2715d
DE
139
140/* Compare optimization flag. */
141
142static rtx last_ignored_compare = 0;
143
3cf2715d
DE
144/* Assign a unique number to each insn that is output.
145 This can be used to generate unique local labels. */
146
147static int insn_counter = 0;
148
149#ifdef HAVE_cc0
150/* This variable contains machine-dependent flags (defined in tm.h)
151 set and examined by output routines
152 that describe how to interpret the condition codes properly. */
153
154CC_STATUS cc_status;
155
156/* During output of an insn, this contains a copy of cc_status
157 from before the insn. */
158
159CC_STATUS cc_prev_status;
160#endif
161
162/* Indexed by hardware reg number, is 1 if that register is ever
163 used in the current function.
164
165 In life_analysis, or in stupid_life_analysis, this is set
166 up to record the hard regs used explicitly. Reload adds
167 in the hard regs used for holding pseudo regs. Final uses
168 it to generate the code in the function prologue and epilogue
169 to save and restore registers as needed. */
170
171char regs_ever_live[FIRST_PSEUDO_REGISTER];
172
173/* Nonzero means current function must be given a frame pointer.
174 Set in stmt.c if anything is allocated on the stack there.
175 Set in reload1.c if anything is allocated on the stack there. */
176
177int frame_pointer_needed;
178
18c038b9 179/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
3cf2715d
DE
180
181static int block_depth;
182
183/* Nonzero if have enabled APP processing of our assembler output. */
184
185static int app_on;
186
187/* If we are outputting an insn sequence, this contains the sequence rtx.
188 Zero otherwise. */
189
190rtx final_sequence;
191
192#ifdef ASSEMBLER_DIALECT
193
194/* Number of the assembler dialect to use, starting at 0. */
195static int dialect_number;
196#endif
197
198/* Indexed by line number, nonzero if there is a note for that line. */
199
200static char *line_note_exists;
201
afe48e06
RH
202#ifdef HAVE_conditional_execution
203/* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
204rtx current_insn_predicate;
205#endif
206
1d300e19 207#ifdef HAVE_ATTR_length
6cf9ac28
AJ
208static int asm_insn_count (rtx);
209#endif
210static void profile_function (FILE *);
211static void profile_after_prologue (FILE *);
212static bool notice_source_line (rtx);
213static rtx walk_alter_subreg (rtx *);
214static void output_asm_name (void);
215static void output_alternate_entry_point (FILE *, rtx);
216static tree get_mem_expr_from_op (rtx, int *);
217static void output_asm_operand_names (rtx *, int *, int);
218static void output_operand (rtx, int);
e9a25f70 219#ifdef LEAF_REGISTERS
6cf9ac28 220static void leaf_renumber_regs (rtx);
e9a25f70
JL
221#endif
222#ifdef HAVE_cc0
6cf9ac28 223static int alter_cond (rtx);
e9a25f70 224#endif
ca3075bd 225#ifndef ADDR_VEC_ALIGN
6cf9ac28 226static int final_addr_vec_align (rtx);
ca3075bd 227#endif
7bdb32b9 228#ifdef HAVE_ATTR_length
6cf9ac28 229static int align_fuzz (rtx, rtx, int, unsigned);
7bdb32b9 230#endif
3cf2715d
DE
231\f
232/* Initialize data in final at the beginning of a compilation. */
233
234void
6cf9ac28 235init_final (const char *filename ATTRIBUTE_UNUSED)
3cf2715d 236{
3cf2715d 237 app_on = 0;
3cf2715d
DE
238 final_sequence = 0;
239
240#ifdef ASSEMBLER_DIALECT
241 dialect_number = ASSEMBLER_DIALECT;
242#endif
243}
244
08c148a8 245/* Default target function prologue and epilogue assembler output.
b9f22704 246
08c148a8
NB
247 If not overridden for epilogue code, then the function body itself
248 contains return instructions wherever needed. */
249void
6cf9ac28
AJ
250default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
251 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
08c148a8
NB
252{
253}
254
b4c25db2
NB
255/* Default target hook that outputs nothing to a stream. */
256void
6cf9ac28 257no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
b4c25db2
NB
258{
259}
260
3cf2715d
DE
261/* Enable APP processing of subsequent output.
262 Used before the output from an `asm' statement. */
263
264void
6cf9ac28 265app_enable (void)
3cf2715d
DE
266{
267 if (! app_on)
268 {
51723711 269 fputs (ASM_APP_ON, asm_out_file);
3cf2715d
DE
270 app_on = 1;
271 }
272}
273
274/* Disable APP processing of subsequent output.
275 Called from varasm.c before most kinds of output. */
276
277void
6cf9ac28 278app_disable (void)
3cf2715d
DE
279{
280 if (app_on)
281 {
51723711 282 fputs (ASM_APP_OFF, asm_out_file);
3cf2715d
DE
283 app_on = 0;
284 }
285}
286\f
f5d927c0 287/* Return the number of slots filled in the current
3cf2715d
DE
288 delayed branch sequence (we don't count the insn needing the
289 delay slot). Zero if not in a delayed branch sequence. */
290
291#ifdef DELAY_SLOTS
292int
6cf9ac28 293dbr_sequence_length (void)
3cf2715d
DE
294{
295 if (final_sequence != 0)
296 return XVECLEN (final_sequence, 0) - 1;
297 else
298 return 0;
299}
300#endif
301\f
302/* The next two pages contain routines used to compute the length of an insn
303 and to shorten branches. */
304
305/* Arrays for insn lengths, and addresses. The latter is referenced by
306 `insn_current_length'. */
307
addd7df6 308static int *insn_lengths;
9d98a694 309
9d98a694 310varray_type insn_addresses_;
3cf2715d 311
ea3cbda5
R
312/* Max uid for which the above arrays are valid. */
313static int insn_lengths_max_uid;
314
3cf2715d
DE
315/* Address of insn being processed. Used by `insn_current_length'. */
316int insn_current_address;
317
fc470718
R
318/* Address of insn being processed in previous iteration. */
319int insn_last_address;
320
d6a7951f 321/* known invariant alignment of insn being processed. */
fc470718
R
322int insn_current_align;
323
95707627
R
324/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
325 gives the next following alignment insn that increases the known
326 alignment, or NULL_RTX if there is no such insn.
327 For any alignment obtained this way, we can again index uid_align with
328 its uid to obtain the next following align that in turn increases the
329 alignment, till we reach NULL_RTX; the sequence obtained this way
330 for each insn we'll call the alignment chain of this insn in the following
331 comments. */
332
f5d927c0
KH
333struct label_alignment
334{
9e423e6d
JW
335 short alignment;
336 short max_skip;
337};
338
339static rtx *uid_align;
340static int *uid_shuid;
341static struct label_alignment *label_align;
95707627 342
3cf2715d
DE
343/* Indicate that branch shortening hasn't yet been done. */
344
345void
6cf9ac28 346init_insn_lengths (void)
3cf2715d 347{
95707627
R
348 if (uid_shuid)
349 {
350 free (uid_shuid);
351 uid_shuid = 0;
352 }
353 if (insn_lengths)
354 {
355 free (insn_lengths);
356 insn_lengths = 0;
ea3cbda5 357 insn_lengths_max_uid = 0;
95707627 358 }
9d98a694
AO
359#ifdef HAVE_ATTR_length
360 INSN_ADDRESSES_FREE ();
361#endif
95707627
R
362 if (uid_align)
363 {
364 free (uid_align);
365 uid_align = 0;
366 }
3cf2715d
DE
367}
368
369/* Obtain the current length of an insn. If branch shortening has been done,
370 get its actual length. Otherwise, get its maximum length. */
371
372int
6cf9ac28 373get_attr_length (rtx insn ATTRIBUTE_UNUSED)
3cf2715d
DE
374{
375#ifdef HAVE_ATTR_length
376 rtx body;
377 int i;
378 int length = 0;
379
ea3cbda5 380 if (insn_lengths_max_uid > INSN_UID (insn))
3cf2715d
DE
381 return insn_lengths[INSN_UID (insn)];
382 else
383 switch (GET_CODE (insn))
384 {
385 case NOTE:
386 case BARRIER:
387 case CODE_LABEL:
388 return 0;
389
390 case CALL_INSN:
391 length = insn_default_length (insn);
392 break;
393
394 case JUMP_INSN:
395 body = PATTERN (insn);
dd3f0101 396 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
3cf2715d 397 {
fc470718
R
398 /* Alignment is machine-dependent and should be handled by
399 ADDR_VEC_ALIGN. */
3cf2715d
DE
400 }
401 else
402 length = insn_default_length (insn);
403 break;
404
405 case INSN:
406 body = PATTERN (insn);
407 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
408 return 0;
409
410 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
411 length = asm_insn_count (body) * insn_default_length (insn);
412 else if (GET_CODE (body) == SEQUENCE)
413 for (i = 0; i < XVECLEN (body, 0); i++)
414 length += get_attr_length (XVECEXP (body, 0, i));
415 else
416 length = insn_default_length (insn);
e9a25f70
JL
417 break;
418
419 default:
420 break;
3cf2715d
DE
421 }
422
423#ifdef ADJUST_INSN_LENGTH
424 ADJUST_INSN_LENGTH (insn, length);
425#endif
426 return length;
427#else /* not HAVE_ATTR_length */
428 return 0;
429#endif /* not HAVE_ATTR_length */
430}
431\f
fc470718
R
432/* Code to handle alignment inside shorten_branches. */
433
434/* Here is an explanation how the algorithm in align_fuzz can give
435 proper results:
436
437 Call a sequence of instructions beginning with alignment point X
438 and continuing until the next alignment point `block X'. When `X'
f5d927c0 439 is used in an expression, it means the alignment value of the
fc470718 440 alignment point.
f5d927c0 441
fc470718
R
442 Call the distance between the start of the first insn of block X, and
443 the end of the last insn of block X `IX', for the `inner size of X'.
444 This is clearly the sum of the instruction lengths.
f5d927c0 445
fc470718
R
446 Likewise with the next alignment-delimited block following X, which we
447 shall call block Y.
f5d927c0 448
fc470718
R
449 Call the distance between the start of the first insn of block X, and
450 the start of the first insn of block Y `OX', for the `outer size of X'.
f5d927c0 451
fc470718 452 The estimated padding is then OX - IX.
f5d927c0 453
fc470718 454 OX can be safely estimated as
f5d927c0 455
fc470718
R
456 if (X >= Y)
457 OX = round_up(IX, Y)
458 else
459 OX = round_up(IX, X) + Y - X
f5d927c0 460
fc470718
R
461 Clearly est(IX) >= real(IX), because that only depends on the
462 instruction lengths, and those being overestimated is a given.
f5d927c0 463
fc470718
R
464 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
465 we needn't worry about that when thinking about OX.
f5d927c0 466
fc470718
R
467 When X >= Y, the alignment provided by Y adds no uncertainty factor
468 for branch ranges starting before X, so we can just round what we have.
469 But when X < Y, we don't know anything about the, so to speak,
470 `middle bits', so we have to assume the worst when aligning up from an
471 address mod X to one mod Y, which is Y - X. */
472
473#ifndef LABEL_ALIGN
efa3896a 474#define LABEL_ALIGN(LABEL) align_labels_log
fc470718
R
475#endif
476
9e423e6d 477#ifndef LABEL_ALIGN_MAX_SKIP
2cca7283 478#define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
9e423e6d
JW
479#endif
480
fc470718 481#ifndef LOOP_ALIGN
efa3896a 482#define LOOP_ALIGN(LABEL) align_loops_log
fc470718
R
483#endif
484
9e423e6d 485#ifndef LOOP_ALIGN_MAX_SKIP
2cca7283 486#define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
9e423e6d
JW
487#endif
488
fc470718 489#ifndef LABEL_ALIGN_AFTER_BARRIER
340f7e7c 490#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
fc470718
R
491#endif
492
9e423e6d 493#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
247a370b
JH
494#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
495#endif
496
497#ifndef JUMP_ALIGN
498#define JUMP_ALIGN(LABEL) align_jumps_log
499#endif
500
501#ifndef JUMP_ALIGN_MAX_SKIP
2cca7283 502#define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
9e423e6d
JW
503#endif
504
fc470718 505#ifndef ADDR_VEC_ALIGN
ca3075bd 506static int
6cf9ac28 507final_addr_vec_align (rtx addr_vec)
fc470718 508{
2a841588 509 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
fc470718
R
510
511 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
512 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
2a841588 513 return exact_log2 (align);
fc470718
R
514
515}
f5d927c0 516
fc470718
R
517#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
518#endif
519
520#ifndef INSN_LENGTH_ALIGNMENT
521#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
522#endif
523
fc470718
R
524#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
525
de7987a6 526static int min_labelno, max_labelno;
fc470718
R
527
528#define LABEL_TO_ALIGNMENT(LABEL) \
9e423e6d
JW
529 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
530
531#define LABEL_TO_MAX_SKIP(LABEL) \
532 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
fc470718
R
533
534/* For the benefit of port specific code do this also as a function. */
f5d927c0 535
fc470718 536int
6cf9ac28 537label_to_alignment (rtx label)
fc470718
R
538{
539 return LABEL_TO_ALIGNMENT (label);
540}
541
542#ifdef HAVE_ATTR_length
543/* The differences in addresses
544 between a branch and its target might grow or shrink depending on
545 the alignment the start insn of the range (the branch for a forward
546 branch or the label for a backward branch) starts out on; if these
547 differences are used naively, they can even oscillate infinitely.
548 We therefore want to compute a 'worst case' address difference that
549 is independent of the alignment the start insn of the range end
550 up on, and that is at least as large as the actual difference.
551 The function align_fuzz calculates the amount we have to add to the
552 naively computed difference, by traversing the part of the alignment
553 chain of the start insn of the range that is in front of the end insn
554 of the range, and considering for each alignment the maximum amount
555 that it might contribute to a size increase.
556
557 For casesi tables, we also want to know worst case minimum amounts of
558 address difference, in case a machine description wants to introduce
559 some common offset that is added to all offsets in a table.
d6a7951f 560 For this purpose, align_fuzz with a growth argument of 0 computes the
fc470718
R
561 appropriate adjustment. */
562
fc470718
R
563/* Compute the maximum delta by which the difference of the addresses of
564 START and END might grow / shrink due to a different address for start
565 which changes the size of alignment insns between START and END.
566 KNOWN_ALIGN_LOG is the alignment known for START.
567 GROWTH should be ~0 if the objective is to compute potential code size
568 increase, and 0 if the objective is to compute potential shrink.
569 The return value is undefined for any other value of GROWTH. */
f5d927c0 570
ca3075bd 571static int
6cf9ac28 572align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
fc470718
R
573{
574 int uid = INSN_UID (start);
575 rtx align_label;
576 int known_align = 1 << known_align_log;
577 int end_shuid = INSN_SHUID (end);
578 int fuzz = 0;
579
580 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
581 {
582 int align_addr, new_align;
583
584 uid = INSN_UID (align_label);
9d98a694 585 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
fc470718
R
586 if (uid_shuid[uid] > end_shuid)
587 break;
588 known_align_log = LABEL_TO_ALIGNMENT (align_label);
589 new_align = 1 << known_align_log;
590 if (new_align < known_align)
591 continue;
592 fuzz += (-align_addr ^ growth) & (new_align - known_align);
593 known_align = new_align;
594 }
595 return fuzz;
596}
597
598/* Compute a worst-case reference address of a branch so that it
599 can be safely used in the presence of aligned labels. Since the
600 size of the branch itself is unknown, the size of the branch is
601 not included in the range. I.e. for a forward branch, the reference
602 address is the end address of the branch as known from the previous
603 branch shortening pass, minus a value to account for possible size
604 increase due to alignment. For a backward branch, it is the start
605 address of the branch as known from the current pass, plus a value
606 to account for possible size increase due to alignment.
607 NB.: Therefore, the maximum offset allowed for backward branches needs
608 to exclude the branch size. */
f5d927c0 609
fc470718 610int
6cf9ac28 611insn_current_reference_address (rtx branch)
fc470718 612{
5527bf14
RH
613 rtx dest, seq;
614 int seq_uid;
615
616 if (! INSN_ADDRESSES_SET_P ())
617 return 0;
618
619 seq = NEXT_INSN (PREV_INSN (branch));
620 seq_uid = INSN_UID (seq);
fc470718
R
621 if (GET_CODE (branch) != JUMP_INSN)
622 /* This can happen for example on the PA; the objective is to know the
623 offset to address something in front of the start of the function.
624 Thus, we can treat it like a backward branch.
625 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
626 any alignment we'd encounter, so we skip the call to align_fuzz. */
627 return insn_current_address;
628 dest = JUMP_LABEL (branch);
5527bf14 629
b9f22704 630 /* BRANCH has no proper alignment chain set, so use SEQ.
afc6898e
BS
631 BRANCH also has no INSN_SHUID. */
632 if (INSN_SHUID (seq) < INSN_SHUID (dest))
fc470718 633 {
f5d927c0 634 /* Forward branch. */
fc470718 635 return (insn_last_address + insn_lengths[seq_uid]
26024475 636 - align_fuzz (seq, dest, length_unit_log, ~0));
fc470718
R
637 }
638 else
639 {
f5d927c0 640 /* Backward branch. */
fc470718 641 return (insn_current_address
923f7cf9 642 + align_fuzz (dest, seq, length_unit_log, ~0));
fc470718
R
643 }
644}
645#endif /* HAVE_ATTR_length */
646\f
247a370b 647void
6cf9ac28 648compute_alignments (void)
247a370b 649{
247a370b 650 int log, max_skip, max_log;
e0082a72 651 basic_block bb;
247a370b
JH
652
653 if (label_align)
654 {
655 free (label_align);
656 label_align = 0;
657 }
658
659 max_labelno = max_label_num ();
660 min_labelno = get_first_label_num ();
703ad42b
KG
661 label_align = xcalloc (max_labelno - min_labelno + 1,
662 sizeof (struct label_alignment));
247a370b
JH
663
664 /* If not optimizing or optimizing for size, don't assign any alignments. */
ba712955 665 if (! optimize || optimize_size)
247a370b
JH
666 return;
667
e0082a72 668 FOR_EACH_BB (bb)
247a370b 669 {
247a370b
JH
670 rtx label = bb->head;
671 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
672 edge e;
673
66b4e478
JH
674 if (GET_CODE (label) != CODE_LABEL
675 || probably_never_executed_bb_p (bb))
247a370b
JH
676 continue;
677 max_log = LABEL_ALIGN (label);
678 max_skip = LABEL_ALIGN_MAX_SKIP;
679
680 for (e = bb->pred; e; e = e->pred_next)
681 {
682 if (e->flags & EDGE_FALLTHRU)
683 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
684 else
685 branch_frequency += EDGE_FREQUENCY (e);
686 }
687
f63d1bf7 688 /* There are two purposes to align block with no fallthru incoming edge:
247a370b 689 1) to avoid fetch stalls when branch destination is near cache boundary
d6a7951f 690 2) to improve cache efficiency in case the previous block is not executed
247a370b
JH
691 (so it does not need to be in the cache).
692
693 We to catch first case, we align frequently executed blocks.
694 To catch the second, we align blocks that are executed more frequently
eaec9b3d 695 than the predecessor and the predecessor is likely to not be executed
247a370b
JH
696 when function is called. */
697
698 if (!has_fallthru
699 && (branch_frequency > BB_FREQ_MAX / 10
f6366fc7
ZD
700 || (bb->frequency > bb->prev_bb->frequency * 10
701 && (bb->prev_bb->frequency
247a370b
JH
702 <= ENTRY_BLOCK_PTR->frequency / 2))))
703 {
704 log = JUMP_ALIGN (label);
705 if (max_log < log)
706 {
707 max_log = log;
708 max_skip = JUMP_ALIGN_MAX_SKIP;
709 }
710 }
711 /* In case block is frequent and reached mostly by non-fallthru edge,
09da1532 712 align it. It is most likely a first block of loop. */
247a370b 713 if (has_fallthru
66b4e478 714 && maybe_hot_bb_p (bb)
247a370b 715 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1877be45 716 && branch_frequency > fallthru_frequency * 2)
247a370b
JH
717 {
718 log = LOOP_ALIGN (label);
719 if (max_log < log)
720 {
721 max_log = log;
722 max_skip = LOOP_ALIGN_MAX_SKIP;
723 }
724 }
725 LABEL_TO_ALIGNMENT (label) = max_log;
726 LABEL_TO_MAX_SKIP (label) = max_skip;
727 }
728}
729\f
3cf2715d
DE
730/* Make a pass over all insns and compute their actual lengths by shortening
731 any branches of variable length if possible. */
732
733/* Give a default value for the lowest address in a function. */
734
735#ifndef FIRST_INSN_ADDRESS
736#define FIRST_INSN_ADDRESS 0
737#endif
738
fc470718
R
739/* shorten_branches might be called multiple times: for example, the SH
740 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
741 In order to do this, it needs proper length information, which it obtains
742 by calling shorten_branches. This cannot be collapsed with
d6a7951f 743 shorten_branches itself into a single pass unless we also want to integrate
fc470718
R
744 reorg.c, since the branch splitting exposes new instructions with delay
745 slots. */
746
3cf2715d 747void
6cf9ac28 748shorten_branches (rtx first ATTRIBUTE_UNUSED)
3cf2715d 749{
3cf2715d 750 rtx insn;
fc470718
R
751 int max_uid;
752 int i;
fc470718 753 int max_log;
9e423e6d 754 int max_skip;
fc470718
R
755#ifdef HAVE_ATTR_length
756#define MAX_CODE_ALIGN 16
757 rtx seq;
3cf2715d 758 int something_changed = 1;
3cf2715d
DE
759 char *varying_length;
760 rtx body;
761 int uid;
fc470718 762 rtx align_tab[MAX_CODE_ALIGN];
3cf2715d 763
fc470718 764#endif
3d14e82f 765
3446405d
JH
766 /* Compute maximum UID and allocate label_align / uid_shuid. */
767 max_uid = get_max_uid ();
d9b6874b 768
703ad42b 769 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
25e22dc0 770
247a370b
JH
771 if (max_labelno != max_label_num ())
772 {
773 int old = max_labelno;
774 int n_labels;
775 int n_old_labels;
776
777 max_labelno = max_label_num ();
778
779 n_labels = max_labelno - min_labelno + 1;
780 n_old_labels = old - min_labelno + 1;
781
703ad42b
KG
782 label_align = xrealloc (label_align,
783 n_labels * sizeof (struct label_alignment));
247a370b
JH
784
785 /* Range of labels grows monotonically in the function. Abort here
786 means that the initialization of array got lost. */
787 if (n_old_labels > n_labels)
788 abort ();
789
790 memset (label_align + n_old_labels, 0,
791 (n_labels - n_old_labels) * sizeof (struct label_alignment));
792 }
793
fc470718
R
794 /* Initialize label_align and set up uid_shuid to be strictly
795 monotonically rising with insn order. */
e2faec75
R
796 /* We use max_log here to keep track of the maximum alignment we want to
797 impose on the next CODE_LABEL (or the current one if we are processing
798 the CODE_LABEL itself). */
f5d927c0 799
9e423e6d
JW
800 max_log = 0;
801 max_skip = 0;
802
803 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
fc470718
R
804 {
805 int log;
806
807 INSN_SHUID (insn) = i++;
2c3c49de 808 if (INSN_P (insn))
e2faec75
R
809 {
810 /* reorg might make the first insn of a loop being run once only,
811 and delete the label in front of it. Then we want to apply
812 the loop alignment to the new label created by reorg, which
813 is separated by the former loop start insn from the
814 NOTE_INSN_LOOP_BEG. */
815 }
fc470718
R
816 else if (GET_CODE (insn) == CODE_LABEL)
817 {
818 rtx next;
ff81832f 819
247a370b
JH
820 /* Merge in alignments computed by compute_alignments. */
821 log = LABEL_TO_ALIGNMENT (insn);
822 if (max_log < log)
823 {
824 max_log = log;
825 max_skip = LABEL_TO_MAX_SKIP (insn);
826 }
fc470718
R
827
828 log = LABEL_ALIGN (insn);
829 if (max_log < log)
9e423e6d
JW
830 {
831 max_log = log;
832 max_skip = LABEL_ALIGN_MAX_SKIP;
833 }
fc470718 834 next = NEXT_INSN (insn);
75197b37
BS
835 /* ADDR_VECs only take room if read-only data goes into the text
836 section. */
d48bc59a 837 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
75197b37
BS
838 if (next && GET_CODE (next) == JUMP_INSN)
839 {
840 rtx nextbody = PATTERN (next);
841 if (GET_CODE (nextbody) == ADDR_VEC
842 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
843 {
844 log = ADDR_VEC_ALIGN (next);
845 if (max_log < log)
846 {
847 max_log = log;
848 max_skip = LABEL_ALIGN_MAX_SKIP;
849 }
850 }
851 }
fc470718 852 LABEL_TO_ALIGNMENT (insn) = max_log;
9e423e6d 853 LABEL_TO_MAX_SKIP (insn) = max_skip;
fc470718 854 max_log = 0;
9e423e6d 855 max_skip = 0;
fc470718
R
856 }
857 else if (GET_CODE (insn) == BARRIER)
858 {
859 rtx label;
860
2c3c49de 861 for (label = insn; label && ! INSN_P (label);
fc470718
R
862 label = NEXT_INSN (label))
863 if (GET_CODE (label) == CODE_LABEL)
864 {
865 log = LABEL_ALIGN_AFTER_BARRIER (insn);
866 if (max_log < log)
9e423e6d
JW
867 {
868 max_log = log;
869 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
870 }
fc470718
R
871 break;
872 }
873 }
fc470718
R
874 }
875#ifdef HAVE_ATTR_length
876
877 /* Allocate the rest of the arrays. */
703ad42b 878 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
ea3cbda5 879 insn_lengths_max_uid = max_uid;
af035616
R
880 /* Syntax errors can lead to labels being outside of the main insn stream.
881 Initialize insn_addresses, so that we get reproducible results. */
9d98a694 882 INSN_ADDRESSES_ALLOC (max_uid);
fc470718 883
703ad42b 884 varying_length = xcalloc (max_uid, sizeof (char));
fc470718
R
885
886 /* Initialize uid_align. We scan instructions
887 from end to start, and keep in align_tab[n] the last seen insn
888 that does an alignment of at least n+1, i.e. the successor
889 in the alignment chain for an insn that does / has a known
890 alignment of n. */
703ad42b 891 uid_align = xcalloc (max_uid, sizeof *uid_align);
fc470718 892
f5d927c0 893 for (i = MAX_CODE_ALIGN; --i >= 0;)
fc470718
R
894 align_tab[i] = NULL_RTX;
895 seq = get_last_insn ();
33f7f353 896 for (; seq; seq = PREV_INSN (seq))
fc470718
R
897 {
898 int uid = INSN_UID (seq);
899 int log;
fc470718
R
900 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
901 uid_align[uid] = align_tab[0];
fc470718
R
902 if (log)
903 {
904 /* Found an alignment label. */
905 uid_align[uid] = align_tab[log];
906 for (i = log - 1; i >= 0; i--)
907 align_tab[i] = seq;
908 }
33f7f353
JR
909 }
910#ifdef CASE_VECTOR_SHORTEN_MODE
911 if (optimize)
912 {
913 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
914 label fields. */
915
916 int min_shuid = INSN_SHUID (get_insns ()) - 1;
917 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
918 int rel;
919
920 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
fc470718 921 {
33f7f353
JR
922 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
923 int len, i, min, max, insn_shuid;
924 int min_align;
925 addr_diff_vec_flags flags;
926
927 if (GET_CODE (insn) != JUMP_INSN
928 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
929 continue;
930 pat = PATTERN (insn);
931 len = XVECLEN (pat, 1);
932 if (len <= 0)
933 abort ();
934 min_align = MAX_CODE_ALIGN;
935 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
936 {
937 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
938 int shuid = INSN_SHUID (lab);
939 if (shuid < min)
940 {
941 min = shuid;
942 min_lab = lab;
943 }
944 if (shuid > max)
945 {
946 max = shuid;
947 max_lab = lab;
948 }
949 if (min_align > LABEL_TO_ALIGNMENT (lab))
950 min_align = LABEL_TO_ALIGNMENT (lab);
951 }
952 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
953 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
954 insn_shuid = INSN_SHUID (insn);
955 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
956 flags.min_align = min_align;
957 flags.base_after_vec = rel > insn_shuid;
958 flags.min_after_vec = min > insn_shuid;
959 flags.max_after_vec = max > insn_shuid;
960 flags.min_after_base = min > rel;
961 flags.max_after_base = max > rel;
962 ADDR_DIFF_VEC_FLAGS (pat) = flags;
fc470718
R
963 }
964 }
33f7f353 965#endif /* CASE_VECTOR_SHORTEN_MODE */
3cf2715d 966
3cf2715d
DE
967 /* Compute initial lengths, addresses, and varying flags for each insn. */
968 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
969 insn != 0;
970 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
971 {
972 uid = INSN_UID (insn);
fc470718 973
3cf2715d 974 insn_lengths[uid] = 0;
fc470718
R
975
976 if (GET_CODE (insn) == CODE_LABEL)
977 {
978 int log = LABEL_TO_ALIGNMENT (insn);
979 if (log)
980 {
981 int align = 1 << log;
ecb06768 982 int new_address = (insn_current_address + align - 1) & -align;
fc470718 983 insn_lengths[uid] = new_address - insn_current_address;
fc470718
R
984 }
985 }
986
5a09edba 987 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
f5d927c0 988
3cf2715d
DE
989 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
990 || GET_CODE (insn) == CODE_LABEL)
991 continue;
04da53bd
R
992 if (INSN_DELETED_P (insn))
993 continue;
3cf2715d
DE
994
995 body = PATTERN (insn);
996 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
5a32a90c
JR
997 {
998 /* This only takes room if read-only data goes into the text
999 section. */
d48bc59a 1000 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
75197b37
BS
1001 insn_lengths[uid] = (XVECLEN (body,
1002 GET_CODE (body) == ADDR_DIFF_VEC)
1003 * GET_MODE_SIZE (GET_MODE (body)));
5a32a90c 1004 /* Alignment is handled by ADDR_VEC_ALIGN. */
5a32a90c 1005 }
a30caf5c 1006 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
3cf2715d
DE
1007 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1008 else if (GET_CODE (body) == SEQUENCE)
1009 {
1010 int i;
1011 int const_delay_slots;
1012#ifdef DELAY_SLOTS
1013 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1014#else
1015 const_delay_slots = 0;
1016#endif
1017 /* Inside a delay slot sequence, we do not do any branch shortening
1018 if the shortening could change the number of delay slots
0f41302f 1019 of the branch. */
3cf2715d
DE
1020 for (i = 0; i < XVECLEN (body, 0); i++)
1021 {
1022 rtx inner_insn = XVECEXP (body, 0, i);
1023 int inner_uid = INSN_UID (inner_insn);
1024 int inner_length;
1025
a30caf5c
DC
1026 if (GET_CODE (body) == ASM_INPUT
1027 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
3cf2715d
DE
1028 inner_length = (asm_insn_count (PATTERN (inner_insn))
1029 * insn_default_length (inner_insn));
1030 else
1031 inner_length = insn_default_length (inner_insn);
f5d927c0 1032
3cf2715d
DE
1033 insn_lengths[inner_uid] = inner_length;
1034 if (const_delay_slots)
1035 {
1036 if ((varying_length[inner_uid]
1037 = insn_variable_length_p (inner_insn)) != 0)
1038 varying_length[uid] = 1;
9d98a694
AO
1039 INSN_ADDRESSES (inner_uid) = (insn_current_address
1040 + insn_lengths[uid]);
3cf2715d
DE
1041 }
1042 else
1043 varying_length[inner_uid] = 0;
1044 insn_lengths[uid] += inner_length;
1045 }
1046 }
1047 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1048 {
1049 insn_lengths[uid] = insn_default_length (insn);
1050 varying_length[uid] = insn_variable_length_p (insn);
1051 }
1052
1053 /* If needed, do any adjustment. */
1054#ifdef ADJUST_INSN_LENGTH
1055 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
04b6000c 1056 if (insn_lengths[uid] < 0)
c725bd79 1057 fatal_insn ("negative insn length", insn);
3cf2715d
DE
1058#endif
1059 }
1060
1061 /* Now loop over all the insns finding varying length insns. For each,
1062 get the current insn length. If it has changed, reflect the change.
1063 When nothing changes for a full pass, we are done. */
1064
1065 while (something_changed)
1066 {
1067 something_changed = 0;
fc470718 1068 insn_current_align = MAX_CODE_ALIGN - 1;
3cf2715d
DE
1069 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1070 insn != 0;
1071 insn = NEXT_INSN (insn))
1072 {
1073 int new_length;
b729186a 1074#ifdef ADJUST_INSN_LENGTH
3cf2715d 1075 int tmp_length;
b729186a 1076#endif
fc470718 1077 int length_align;
3cf2715d
DE
1078
1079 uid = INSN_UID (insn);
fc470718
R
1080
1081 if (GET_CODE (insn) == CODE_LABEL)
1082 {
1083 int log = LABEL_TO_ALIGNMENT (insn);
1084 if (log > insn_current_align)
1085 {
1086 int align = 1 << log;
ecb06768 1087 int new_address= (insn_current_address + align - 1) & -align;
fc470718
R
1088 insn_lengths[uid] = new_address - insn_current_address;
1089 insn_current_align = log;
1090 insn_current_address = new_address;
1091 }
1092 else
1093 insn_lengths[uid] = 0;
9d98a694 1094 INSN_ADDRESSES (uid) = insn_current_address;
fc470718
R
1095 continue;
1096 }
1097
1098 length_align = INSN_LENGTH_ALIGNMENT (insn);
1099 if (length_align < insn_current_align)
1100 insn_current_align = length_align;
1101
9d98a694
AO
1102 insn_last_address = INSN_ADDRESSES (uid);
1103 INSN_ADDRESSES (uid) = insn_current_address;
fc470718 1104
5e75ef4a 1105#ifdef CASE_VECTOR_SHORTEN_MODE
33f7f353
JR
1106 if (optimize && GET_CODE (insn) == JUMP_INSN
1107 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1108 {
33f7f353
JR
1109 rtx body = PATTERN (insn);
1110 int old_length = insn_lengths[uid];
1111 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1112 rtx min_lab = XEXP (XEXP (body, 2), 0);
1113 rtx max_lab = XEXP (XEXP (body, 3), 0);
9d98a694
AO
1114 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1115 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1116 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
33f7f353
JR
1117 rtx prev;
1118 int rel_align = 0;
950a3816
KG
1119 addr_diff_vec_flags flags;
1120
1121 /* Avoid automatic aggregate initialization. */
1122 flags = ADDR_DIFF_VEC_FLAGS (body);
33f7f353
JR
1123
1124 /* Try to find a known alignment for rel_lab. */
1125 for (prev = rel_lab;
1126 prev
1127 && ! insn_lengths[INSN_UID (prev)]
1128 && ! (varying_length[INSN_UID (prev)] & 1);
1129 prev = PREV_INSN (prev))
1130 if (varying_length[INSN_UID (prev)] & 2)
1131 {
1132 rel_align = LABEL_TO_ALIGNMENT (prev);
1133 break;
1134 }
1135
1136 /* See the comment on addr_diff_vec_flags in rtl.h for the
1137 meaning of the flags values. base: REL_LAB vec: INSN */
1138 /* Anything after INSN has still addresses from the last
1139 pass; adjust these so that they reflect our current
1140 estimate for this pass. */
1141 if (flags.base_after_vec)
1142 rel_addr += insn_current_address - insn_last_address;
1143 if (flags.min_after_vec)
1144 min_addr += insn_current_address - insn_last_address;
1145 if (flags.max_after_vec)
1146 max_addr += insn_current_address - insn_last_address;
1147 /* We want to know the worst case, i.e. lowest possible value
1148 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1149 its offset is positive, and we have to be wary of code shrink;
1150 otherwise, it is negative, and we have to be vary of code
1151 size increase. */
1152 if (flags.min_after_base)
1153 {
1154 /* If INSN is between REL_LAB and MIN_LAB, the size
1155 changes we are about to make can change the alignment
1156 within the observed offset, therefore we have to break
1157 it up into two parts that are independent. */
1158 if (! flags.base_after_vec && flags.min_after_vec)
1159 {
1160 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1161 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1162 }
1163 else
1164 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1165 }
1166 else
1167 {
1168 if (flags.base_after_vec && ! flags.min_after_vec)
1169 {
1170 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1171 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1172 }
1173 else
1174 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1175 }
1176 /* Likewise, determine the highest lowest possible value
1177 for the offset of MAX_LAB. */
1178 if (flags.max_after_base)
1179 {
1180 if (! flags.base_after_vec && flags.max_after_vec)
1181 {
1182 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1183 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1184 }
1185 else
1186 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1187 }
1188 else
1189 {
1190 if (flags.base_after_vec && ! flags.max_after_vec)
1191 {
1192 max_addr += align_fuzz (max_lab, insn, 0, 0);
1193 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1194 }
1195 else
1196 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1197 }
1198 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1199 max_addr - rel_addr,
1200 body));
d48bc59a 1201 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
75197b37
BS
1202 {
1203 insn_lengths[uid]
1204 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1205 insn_current_address += insn_lengths[uid];
1206 if (insn_lengths[uid] != old_length)
1207 something_changed = 1;
1208 }
1209
33f7f353 1210 continue;
33f7f353 1211 }
5e75ef4a
JL
1212#endif /* CASE_VECTOR_SHORTEN_MODE */
1213
1214 if (! (varying_length[uid]))
3cf2715d 1215 {
674fc07d
GS
1216 if (GET_CODE (insn) == INSN
1217 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1218 {
1219 int i;
1220
1221 body = PATTERN (insn);
1222 for (i = 0; i < XVECLEN (body, 0); i++)
1223 {
1224 rtx inner_insn = XVECEXP (body, 0, i);
1225 int inner_uid = INSN_UID (inner_insn);
1226
1227 INSN_ADDRESSES (inner_uid) = insn_current_address;
1228
1229 insn_current_address += insn_lengths[inner_uid];
1230 }
dd3f0101 1231 }
674fc07d
GS
1232 else
1233 insn_current_address += insn_lengths[uid];
1234
3cf2715d
DE
1235 continue;
1236 }
674fc07d 1237
3cf2715d
DE
1238 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1239 {
1240 int i;
f5d927c0 1241
3cf2715d
DE
1242 body = PATTERN (insn);
1243 new_length = 0;
1244 for (i = 0; i < XVECLEN (body, 0); i++)
1245 {
1246 rtx inner_insn = XVECEXP (body, 0, i);
1247 int inner_uid = INSN_UID (inner_insn);
1248 int inner_length;
1249
9d98a694 1250 INSN_ADDRESSES (inner_uid) = insn_current_address;
3cf2715d
DE
1251
1252 /* insn_current_length returns 0 for insns with a
1253 non-varying length. */
1254 if (! varying_length[inner_uid])
1255 inner_length = insn_lengths[inner_uid];
1256 else
1257 inner_length = insn_current_length (inner_insn);
1258
1259 if (inner_length != insn_lengths[inner_uid])
1260 {
1261 insn_lengths[inner_uid] = inner_length;
1262 something_changed = 1;
1263 }
1264 insn_current_address += insn_lengths[inner_uid];
1265 new_length += inner_length;
1266 }
1267 }
1268 else
1269 {
1270 new_length = insn_current_length (insn);
1271 insn_current_address += new_length;
1272 }
1273
3cf2715d
DE
1274#ifdef ADJUST_INSN_LENGTH
1275 /* If needed, do any adjustment. */
1276 tmp_length = new_length;
1277 ADJUST_INSN_LENGTH (insn, new_length);
1278 insn_current_address += (new_length - tmp_length);
3cf2715d
DE
1279#endif
1280
1281 if (new_length != insn_lengths[uid])
1282 {
1283 insn_lengths[uid] = new_length;
1284 something_changed = 1;
1285 }
1286 }
bb4aaf18
TG
1287 /* For a non-optimizing compile, do only a single pass. */
1288 if (!optimize)
1289 break;
3cf2715d 1290 }
fc470718
R
1291
1292 free (varying_length);
1293
3cf2715d
DE
1294#endif /* HAVE_ATTR_length */
1295}
1296
1297#ifdef HAVE_ATTR_length
1298/* Given the body of an INSN known to be generated by an ASM statement, return
1299 the number of machine instructions likely to be generated for this insn.
1300 This is used to compute its length. */
1301
1302static int
6cf9ac28 1303asm_insn_count (rtx body)
3cf2715d 1304{
3cce094d 1305 const char *template;
3cf2715d
DE
1306 int count = 1;
1307
5d0930ea
DE
1308 if (GET_CODE (body) == ASM_INPUT)
1309 template = XSTR (body, 0);
1310 else
df4ae160 1311 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
5d0930ea 1312
f5d927c0
KH
1313 for (; *template; template++)
1314 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
3cf2715d
DE
1315 count++;
1316
1317 return count;
1318}
1319#endif
1320\f
1321/* Output assembler code for the start of a function,
1322 and initialize some of the variables in this file
1323 for the new function. The label for the function and associated
1324 assembler pseudo-ops have already been output in `assemble_start_function'.
1325
1326 FIRST is the first insn of the rtl for the function being compiled.
1327 FILE is the file to write assembler code to.
1328 OPTIMIZE is nonzero if we should eliminate redundant
1329 test and compare insns. */
1330
1331void
6cf9ac28
AJ
1332final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1333 int optimize ATTRIBUTE_UNUSED)
3cf2715d
DE
1334{
1335 block_depth = 0;
1336
1337 this_is_asm_operands = 0;
1338
1339#ifdef NON_SAVING_SETJMP
1340 /* A function that calls setjmp should save and restore all the
1341 call-saved registers on a system where longjmp clobbers them. */
1342 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1343 {
1344 int i;
1345
1346 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
252f342a 1347 if (!call_used_regs[i])
3cf2715d
DE
1348 regs_ever_live[i] = 1;
1349 }
1350#endif
f5d927c0 1351
9ae130f8
JH
1352 last_filename = locator_file (prologue_locator);
1353 last_linenum = locator_line (prologue_locator);
1354
653e276c 1355 high_block_linenum = high_function_linenum = last_linenum;
eac40081 1356
653e276c 1357 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
d291dd49 1358
653e276c 1359#if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
7a0c8d71 1360 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
653e276c 1361 dwarf2out_begin_prologue (0, NULL);
f5d927c0 1362#endif
3cf2715d
DE
1363
1364#ifdef LEAF_REG_REMAP
54ff41b7 1365 if (current_function_uses_only_leaf_regs)
3cf2715d
DE
1366 leaf_renumber_regs (first);
1367#endif
1368
1369 /* The Sun386i and perhaps other machines don't work right
1370 if the profiling code comes after the prologue. */
1371#ifdef PROFILE_BEFORE_PROLOGUE
70f4f91c 1372 if (current_function_profile)
3cf2715d
DE
1373 profile_function (file);
1374#endif /* PROFILE_BEFORE_PROLOGUE */
1375
0021b564
JM
1376#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1377 if (dwarf2out_do_frame ())
1378 dwarf2out_frame_debug (NULL_RTX);
1379#endif
1380
18c038b9
MM
1381 /* If debugging, assign block numbers to all of the blocks in this
1382 function. */
1383 if (write_symbols)
1384 {
3ac79482 1385 remove_unnecessary_notes ();
0435312e 1386 reemit_insn_block_notes ();
a20612aa 1387 number_blocks (current_function_decl);
18c038b9
MM
1388 /* We never actually put out begin/end notes for the top-level
1389 block in the function. But, conceptually, that block is
1390 always needed. */
1391 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1392 }
1393
3cf2715d 1394 /* First output the function prologue: code to set up the stack frame. */
f6897b10 1395 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
3cf2715d 1396
3cf2715d
DE
1397 /* If the machine represents the prologue as RTL, the profiling code must
1398 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1399#ifdef HAVE_prologue
1400 if (! HAVE_prologue)
1401#endif
1402 profile_after_prologue (file);
3cf2715d
DE
1403}
1404
1405static void
6cf9ac28 1406profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
3cf2715d 1407{
3cf2715d 1408#ifndef PROFILE_BEFORE_PROLOGUE
70f4f91c 1409 if (current_function_profile)
3cf2715d
DE
1410 profile_function (file);
1411#endif /* not PROFILE_BEFORE_PROLOGUE */
1412}
1413
1414static void
6cf9ac28 1415profile_function (FILE *file ATTRIBUTE_UNUSED)
3cf2715d 1416{
dcacfa04 1417#ifndef NO_PROFILE_COUNTERS
9739c90c 1418# define NO_PROFILE_COUNTERS 0
dcacfa04 1419#endif
b729186a
JL
1420#if defined(ASM_OUTPUT_REG_PUSH)
1421#if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
3cf2715d 1422 int sval = current_function_returns_struct;
b729186a
JL
1423#endif
1424#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
3cf2715d 1425 int cxt = current_function_needs_context;
b729186a
JL
1426#endif
1427#endif /* ASM_OUTPUT_REG_PUSH */
3cf2715d 1428
9739c90c
JJ
1429 if (! NO_PROFILE_COUNTERS)
1430 {
1431 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1432 data_section ();
1433 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1434 (*targetm.asm_out.internal_label) (file, "LP", current_function_funcdef_no);
1435 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1436 }
3cf2715d 1437
499df339 1438 function_section (current_function_decl);
3cf2715d 1439
65ed39df 1440#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1441 if (sval)
1442 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1443#else
65ed39df 1444#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1445 if (sval)
51723711
KG
1446 {
1447 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1448 }
3cf2715d
DE
1449#endif
1450#endif
1451
65ed39df 1452#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1453 if (cxt)
1454 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1455#else
65ed39df 1456#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1457 if (cxt)
51723711
KG
1458 {
1459 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1460 }
3cf2715d
DE
1461#endif
1462#endif
3cf2715d 1463
df696a75 1464 FUNCTION_PROFILER (file, current_function_funcdef_no);
3cf2715d 1465
65ed39df 1466#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1467 if (cxt)
1468 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1469#else
65ed39df 1470#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1471 if (cxt)
51723711
KG
1472 {
1473 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1474 }
3cf2715d
DE
1475#endif
1476#endif
3cf2715d 1477
65ed39df 1478#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1479 if (sval)
1480 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1481#else
65ed39df 1482#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1483 if (sval)
51723711
KG
1484 {
1485 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1486 }
3cf2715d
DE
1487#endif
1488#endif
1489}
1490
1491/* Output assembler code for the end of a function.
1492 For clarity, args are same as those of `final_start_function'
1493 even though not all of them are needed. */
1494
1495void
6cf9ac28 1496final_end_function (void)
3cf2715d 1497{
be1bb652 1498 app_disable ();
3cf2715d 1499
e2a12aca 1500 (*debug_hooks->end_function) (high_function_linenum);
3cf2715d 1501
3cf2715d
DE
1502 /* Finally, output the function epilogue:
1503 code to restore the stack frame and return to the caller. */
e2a12aca 1504 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
3cf2715d 1505
e2a12aca 1506 /* And debug output. */
702ada3d 1507 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
3cf2715d 1508
e2a12aca 1509#if defined (DWARF2_UNWIND_INFO)
7a0c8d71
DR
1510 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1511 && dwarf2out_do_frame ())
702ada3d 1512 dwarf2out_end_epilogue (last_linenum, last_filename);
9a666dda 1513#endif
3cf2715d
DE
1514}
1515\f
3cf2715d
DE
1516/* Output assembler code for some insns: all or part of a function.
1517 For description of args, see `final_start_function', above.
1518
1519 PRESCAN is 1 if we are not really outputting,
1520 just scanning as if we were outputting.
1521 Prescanning deletes and rearranges insns just like ordinary output.
1522 PRESCAN is -2 if we are outputting after having prescanned.
1523 In this case, don't try to delete or rearrange insns
1524 because that has already been done.
1525 Prescanning is done only on certain machines. */
1526
1527void
6cf9ac28 1528final (rtx first, FILE *file, int optimize, int prescan)
3cf2715d 1529{
b3694847 1530 rtx insn;
3cf2715d 1531 int max_line = 0;
a8c3510c 1532 int max_uid = 0;
3cf2715d
DE
1533
1534 last_ignored_compare = 0;
3cf2715d
DE
1535
1536 /* Make a map indicating which line numbers appear in this function.
1537 When producing SDB debugging info, delete troublesome line number
1538 notes from inlined functions in other files as well as duplicate
1539 line number notes. */
1540#ifdef SDB_DEBUGGING_INFO
1541 if (write_symbols == SDB_DEBUG)
1542 {
1543 rtx last = 0;
1544 for (insn = first; insn; insn = NEXT_INSN (insn))
1545 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1546 {
1547 if ((RTX_INTEGRATED_P (insn)
1548 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1549 || (last != 0
1550 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1551 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1552 {
2e106602 1553 delete_insn (insn); /* Use delete_note. */
3cf2715d
DE
1554 continue;
1555 }
1556 last = insn;
1557 if (NOTE_LINE_NUMBER (insn) > max_line)
1558 max_line = NOTE_LINE_NUMBER (insn);
1559 }
1560 }
1561 else
1562#endif
1563 {
1564 for (insn = first; insn; insn = NEXT_INSN (insn))
1565 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1566 max_line = NOTE_LINE_NUMBER (insn);
1567 }
1568
703ad42b 1569 line_note_exists = xcalloc (max_line + 1, sizeof (char));
3cf2715d
DE
1570
1571 for (insn = first; insn; insn = NEXT_INSN (insn))
a8c3510c
AM
1572 {
1573 if (INSN_UID (insn) > max_uid) /* find largest UID */
f5d927c0 1574 max_uid = INSN_UID (insn);
a8c3510c 1575 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
f5d927c0 1576 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
9ef4c6ef
JC
1577#ifdef HAVE_cc0
1578 /* If CC tracking across branches is enabled, record the insn which
1579 jumps to each branch only reached from one place. */
7ad7f828 1580 if (optimize && GET_CODE (insn) == JUMP_INSN)
9ef4c6ef
JC
1581 {
1582 rtx lab = JUMP_LABEL (insn);
1583 if (lab && LABEL_NUSES (lab) == 1)
1584 {
1585 LABEL_REFS (lab) = insn;
1586 }
1587 }
1588#endif
a8c3510c
AM
1589 }
1590
3cf2715d
DE
1591 init_recog ();
1592
1593 CC_STATUS_INIT;
1594
1595 /* Output the insns. */
1596 for (insn = NEXT_INSN (first); insn;)
2f16edb1
TG
1597 {
1598#ifdef HAVE_ATTR_length
b9f22704 1599 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
0ac76ad9 1600 {
0ac76ad9
RH
1601 /* This can be triggered by bugs elsewhere in the compiler if
1602 new insns are created after init_insn_lengths is called. */
0acb0203
JH
1603 if (GET_CODE (insn) == NOTE)
1604 insn_current_address = -1;
1605 else
1606 abort ();
0ac76ad9
RH
1607 }
1608 else
9d98a694 1609 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
0ac76ad9
RH
1610#endif /* HAVE_ATTR_length */
1611
2f16edb1
TG
1612 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1613 }
3cf2715d 1614
bedda2da
MM
1615 free (line_note_exists);
1616 line_note_exists = NULL;
3cf2715d
DE
1617}
1618\f
4bbf910e 1619const char *
6cf9ac28 1620get_insn_template (int code, rtx insn)
4bbf910e
RH
1621{
1622 const void *output = insn_data[code].output;
1623 switch (insn_data[code].output_format)
1624 {
1625 case INSN_OUTPUT_FORMAT_SINGLE:
1626 return (const char *) output;
1627 case INSN_OUTPUT_FORMAT_MULTI:
f5d927c0 1628 return ((const char *const *) output)[which_alternative];
4bbf910e
RH
1629 case INSN_OUTPUT_FORMAT_FUNCTION:
1630 if (insn == NULL)
1631 abort ();
f5d927c0 1632 return (*(insn_output_fn) output) (recog_data.operand, insn);
4bbf910e
RH
1633
1634 default:
1635 abort ();
1636 }
1637}
f5d927c0 1638
0dc36574
ZW
1639/* Emit the appropriate declaration for an alternate-entry-point
1640 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1641 LABEL_KIND != LABEL_NORMAL.
1642
1643 The case fall-through in this function is intentional. */
1644static void
6cf9ac28 1645output_alternate_entry_point (FILE *file, rtx insn)
0dc36574
ZW
1646{
1647 const char *name = LABEL_NAME (insn);
1648
1649 switch (LABEL_KIND (insn))
1650 {
1651 case LABEL_WEAK_ENTRY:
1652#ifdef ASM_WEAKEN_LABEL
1653 ASM_WEAKEN_LABEL (file, name);
1654#endif
1655 case LABEL_GLOBAL_ENTRY:
5eb99654 1656 (*targetm.asm_out.globalize_label) (file, name);
0dc36574 1657 case LABEL_STATIC_ENTRY:
905173eb
ZW
1658#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1659 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1660#endif
0dc36574
ZW
1661 ASM_OUTPUT_LABEL (file, name);
1662 break;
1663
1664 case LABEL_NORMAL:
1665 default:
1666 abort ();
1667 }
1668}
1669
3cf2715d
DE
1670/* The final scan for one insn, INSN.
1671 Args are same as in `final', except that INSN
1672 is the insn being scanned.
1673 Value returned is the next insn to be scanned.
1674
1675 NOPEEPHOLES is the flag to disallow peephole processing (currently
1676 used for within delayed branch sequence output). */
1677
1678rtx
6cf9ac28
AJ
1679final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1680 int prescan, int nopeepholes ATTRIBUTE_UNUSED)
3cf2715d 1681{
90ca38bb
MM
1682#ifdef HAVE_cc0
1683 rtx set;
1684#endif
1685
3cf2715d
DE
1686 insn_counter++;
1687
1688 /* Ignore deleted insns. These can occur when we split insns (due to a
1689 template of "#") while not optimizing. */
1690 if (INSN_DELETED_P (insn))
1691 return NEXT_INSN (insn);
1692
1693 switch (GET_CODE (insn))
1694 {
1695 case NOTE:
1696 if (prescan > 0)
1697 break;
1698
be1bb652
RH
1699 switch (NOTE_LINE_NUMBER (insn))
1700 {
1701 case NOTE_INSN_DELETED:
1702 case NOTE_INSN_LOOP_BEG:
1703 case NOTE_INSN_LOOP_END:
2c79137a 1704 case NOTE_INSN_LOOP_END_TOP_COND:
be1bb652
RH
1705 case NOTE_INSN_LOOP_CONT:
1706 case NOTE_INSN_LOOP_VTOP:
1707 case NOTE_INSN_FUNCTION_END:
be1bb652 1708 case NOTE_INSN_REPEATED_LINE_NUMBER:
be1bb652
RH
1709 case NOTE_INSN_EXPECTED_VALUE:
1710 break;
3cf2715d 1711
be1bb652 1712 case NOTE_INSN_BASIC_BLOCK:
ad0fc698
JW
1713#ifdef IA64_UNWIND_INFO
1714 IA64_UNWIND_EMIT (asm_out_file, insn);
1715#endif
be1bb652
RH
1716 if (flag_debug_asm)
1717 fprintf (asm_out_file, "\t%s basic block %d\n",
0b17ab2f 1718 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
be1bb652 1719 break;
3cf2715d 1720
be1bb652 1721 case NOTE_INSN_EH_REGION_BEG:
52a11cbf
RH
1722 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1723 NOTE_EH_HANDLER (insn));
3d195391 1724 break;
3d195391 1725
be1bb652 1726 case NOTE_INSN_EH_REGION_END:
52a11cbf
RH
1727 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1728 NOTE_EH_HANDLER (insn));
3d195391 1729 break;
3d195391 1730
be1bb652 1731 case NOTE_INSN_PROLOGUE_END:
b9f22704 1732 (*targetm.asm_out.function_end_prologue) (file);
3cf2715d
DE
1733 profile_after_prologue (file);
1734 break;
3cf2715d 1735
be1bb652 1736 case NOTE_INSN_EPILOGUE_BEG:
b9f22704 1737 (*targetm.asm_out.function_begin_epilogue) (file);
be1bb652 1738 break;
3cf2715d 1739
be1bb652 1740 case NOTE_INSN_FUNCTION_BEG:
653e276c 1741 app_disable ();
702ada3d 1742 (*debug_hooks->end_prologue) (last_linenum, last_filename);
3cf2715d 1743 break;
be1bb652
RH
1744
1745 case NOTE_INSN_BLOCK_BEG:
1746 if (debug_info_level == DINFO_LEVEL_NORMAL
3cf2715d 1747 || debug_info_level == DINFO_LEVEL_VERBOSE
3cf2715d 1748 || write_symbols == DWARF_DEBUG
7a0c8d71
DR
1749 || write_symbols == DWARF2_DEBUG
1750 || write_symbols == VMS_AND_DWARF2_DEBUG
1751 || write_symbols == VMS_DEBUG)
be1bb652
RH
1752 {
1753 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 1754
be1bb652
RH
1755 app_disable ();
1756 ++block_depth;
1757 high_block_linenum = last_linenum;
eac40081 1758
a5a42b92 1759 /* Output debugging info about the symbol-block beginning. */
e2a12aca 1760 (*debug_hooks->begin_block) (last_linenum, n);
3cf2715d 1761
be1bb652
RH
1762 /* Mark this block as output. */
1763 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1764 }
1765 break;
18c038b9 1766
be1bb652
RH
1767 case NOTE_INSN_BLOCK_END:
1768 if (debug_info_level == DINFO_LEVEL_NORMAL
1769 || debug_info_level == DINFO_LEVEL_VERBOSE
1770 || write_symbols == DWARF_DEBUG
7a0c8d71
DR
1771 || write_symbols == DWARF2_DEBUG
1772 || write_symbols == VMS_AND_DWARF2_DEBUG
1773 || write_symbols == VMS_DEBUG)
be1bb652
RH
1774 {
1775 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 1776
be1bb652
RH
1777 app_disable ();
1778
1779 /* End of a symbol-block. */
1780 --block_depth;
1781 if (block_depth < 0)
1782 abort ();
3cf2715d 1783
e2a12aca 1784 (*debug_hooks->end_block) (high_block_linenum, n);
be1bb652
RH
1785 }
1786 break;
1787
1788 case NOTE_INSN_DELETED_LABEL:
1789 /* Emit the label. We may have deleted the CODE_LABEL because
1790 the label could be proved to be unreachable, though still
1791 referenced (in the form of having its address taken. */
8215347e 1792 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
be1bb652 1793 break;
3cf2715d 1794
21835d9b
JJ
1795 case 0:
1796 break;
1797
be1bb652
RH
1798 default:
1799 if (NOTE_LINE_NUMBER (insn) <= 0)
1800 abort ();
f5d927c0 1801 break;
3cf2715d
DE
1802 }
1803 break;
1804
1805 case BARRIER:
f73ad30e 1806#if defined (DWARF2_UNWIND_INFO)
fbfa55b0 1807 if (dwarf2out_do_frame ())
be1bb652 1808 dwarf2out_frame_debug (insn);
3cf2715d
DE
1809#endif
1810 break;
1811
1812 case CODE_LABEL:
1dd8faa8
R
1813 /* The target port might emit labels in the output function for
1814 some insn, e.g. sh.c output_branchy_insn. */
de7987a6
R
1815 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1816 {
1817 int align = LABEL_TO_ALIGNMENT (insn);
50b2596f 1818#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
9e423e6d 1819 int max_skip = LABEL_TO_MAX_SKIP (insn);
50b2596f 1820#endif
fc470718 1821
1dd8faa8 1822 if (align && NEXT_INSN (insn))
40cdfca6 1823 {
9e423e6d 1824#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
40cdfca6 1825 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
8e16ab99
SF
1826#else
1827#ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1828 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
9e423e6d 1829#else
40cdfca6 1830 ASM_OUTPUT_ALIGN (file, align);
8e16ab99 1831#endif
9e423e6d 1832#endif
40cdfca6 1833 }
de7987a6 1834 }
9ef4c6ef 1835#ifdef HAVE_cc0
3cf2715d 1836 CC_STATUS_INIT;
9ef4c6ef
JC
1837 /* If this label is reached from only one place, set the condition
1838 codes from the instruction just before the branch. */
7ad7f828
JC
1839
1840 /* Disabled because some insns set cc_status in the C output code
1841 and NOTICE_UPDATE_CC alone can set incorrect status. */
1842 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
9ef4c6ef
JC
1843 {
1844 rtx jump = LABEL_REFS (insn);
1845 rtx barrier = prev_nonnote_insn (insn);
1846 rtx prev;
1847 /* If the LABEL_REFS field of this label has been set to point
1848 at a branch, the predecessor of the branch is a regular
1849 insn, and that branch is the only way to reach this label,
1850 set the condition codes based on the branch and its
1851 predecessor. */
1852 if (barrier && GET_CODE (barrier) == BARRIER
1853 && jump && GET_CODE (jump) == JUMP_INSN
1854 && (prev = prev_nonnote_insn (jump))
1855 && GET_CODE (prev) == INSN)
1856 {
1857 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1858 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1859 }
1860 }
1861#endif
3cf2715d
DE
1862 if (prescan > 0)
1863 break;
03ffa171
RK
1864
1865#ifdef FINAL_PRESCAN_LABEL
df4ae160 1866 FINAL_PRESCAN_INSN (insn, NULL, 0);
03ffa171
RK
1867#endif
1868
e1772ac0
NB
1869 if (LABEL_NAME (insn))
1870 (*debug_hooks->label) (insn);
1871
3cf2715d
DE
1872 if (app_on)
1873 {
51723711 1874 fputs (ASM_APP_OFF, file);
3cf2715d
DE
1875 app_on = 0;
1876 }
1877 if (NEXT_INSN (insn) != 0
1878 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1879 {
1880 rtx nextbody = PATTERN (NEXT_INSN (insn));
1881
1882 /* If this label is followed by a jump-table,
1883 make sure we put the label in the read-only section. Also
1884 possibly write the label and jump table together. */
1885
1886 if (GET_CODE (nextbody) == ADDR_VEC
1887 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1888 {
e0d80184
DM
1889#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1890 /* In this case, the case vector is being moved by the
1891 target, so don't output the label at all. Leave that
1892 to the back end macros. */
1893#else
75197b37
BS
1894 if (! JUMP_TABLES_IN_TEXT_SECTION)
1895 {
340f7e7c
RH
1896 int log_align;
1897
75197b37 1898 readonly_data_section ();
340f7e7c
RH
1899
1900#ifdef ADDR_VEC_ALIGN
3e4eece3 1901 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
340f7e7c
RH
1902#else
1903 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1904#endif
1905 ASM_OUTPUT_ALIGN (file, log_align);
75197b37
BS
1906 }
1907 else
1908 function_section (current_function_decl);
1909
3cf2715d
DE
1910#ifdef ASM_OUTPUT_CASE_LABEL
1911 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1912 NEXT_INSN (insn));
1913#else
4977bab6 1914 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
e0d80184 1915#endif
3cf2715d
DE
1916#endif
1917 break;
1918 }
1919 }
0dc36574
ZW
1920 if (LABEL_ALT_ENTRY_P (insn))
1921 output_alternate_entry_point (file, insn);
8cd0faaf 1922 else
4977bab6 1923 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
3cf2715d
DE
1924 break;
1925
1926 default:
1927 {
b3694847 1928 rtx body = PATTERN (insn);
3cf2715d 1929 int insn_code_number;
9b3142b3 1930 const char *template;
3cf2715d
DE
1931 rtx note;
1932
1933 /* An INSN, JUMP_INSN or CALL_INSN.
1934 First check for special kinds that recog doesn't recognize. */
1935
1936 if (GET_CODE (body) == USE /* These are just declarations */
1937 || GET_CODE (body) == CLOBBER)
1938 break;
1939
1940#ifdef HAVE_cc0
1941 /* If there is a REG_CC_SETTER note on this insn, it means that
1942 the setting of the condition code was done in the delay slot
1943 of the insn that branched here. So recover the cc status
1944 from the insn that set it. */
1945
1946 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1947 if (note)
1948 {
1949 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1950 cc_prev_status = cc_status;
1951 }
1952#endif
1953
1954 /* Detect insns that are really jump-tables
1955 and output them as such. */
1956
1957 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1958 {
7f7f8214 1959#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
b3694847 1960 int vlen, idx;
7f7f8214 1961#endif
3cf2715d
DE
1962
1963 if (prescan > 0)
1964 break;
1965
1966 if (app_on)
1967 {
51723711 1968 fputs (ASM_APP_OFF, file);
3cf2715d
DE
1969 app_on = 0;
1970 }
1971
e0d80184
DM
1972#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1973 if (GET_CODE (body) == ADDR_VEC)
1974 {
1975#ifdef ASM_OUTPUT_ADDR_VEC
1976 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
1977#else
f5d927c0 1978 abort ();
e0d80184
DM
1979#endif
1980 }
1981 else
1982 {
1983#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
1984 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
1985#else
f5d927c0 1986 abort ();
e0d80184
DM
1987#endif
1988 }
1989#else
3cf2715d
DE
1990 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
1991 for (idx = 0; idx < vlen; idx++)
1992 {
1993 if (GET_CODE (body) == ADDR_VEC)
1994 {
1995#ifdef ASM_OUTPUT_ADDR_VEC_ELT
1996 ASM_OUTPUT_ADDR_VEC_ELT
1997 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
1998#else
1999 abort ();
2000#endif
2001 }
2002 else
2003 {
2004#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2005 ASM_OUTPUT_ADDR_DIFF_ELT
2006 (file,
33f7f353 2007 body,
3cf2715d
DE
2008 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2009 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2010#else
2011 abort ();
2012#endif
2013 }
2014 }
2015#ifdef ASM_OUTPUT_CASE_END
2016 ASM_OUTPUT_CASE_END (file,
2017 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2018 insn);
e0d80184 2019#endif
3cf2715d
DE
2020#endif
2021
4d1065ed 2022 function_section (current_function_decl);
3cf2715d
DE
2023
2024 break;
2025 }
0435312e
JH
2026 /* Output this line note if it is the first or the last line
2027 note in a row. */
2028 if (notice_source_line (insn))
2029 {
2030 (*debug_hooks->source_line) (last_linenum, last_filename);
2031 }
3cf2715d 2032
3cf2715d
DE
2033 if (GET_CODE (body) == ASM_INPUT)
2034 {
36d7136e
RH
2035 const char *string = XSTR (body, 0);
2036
3cf2715d
DE
2037 /* There's no telling what that did to the condition codes. */
2038 CC_STATUS_INIT;
2039 if (prescan > 0)
2040 break;
36d7136e
RH
2041
2042 if (string[0])
3cf2715d 2043 {
36d7136e
RH
2044 if (! app_on)
2045 {
2046 fputs (ASM_APP_ON, file);
2047 app_on = 1;
2048 }
2049 fprintf (asm_out_file, "\t%s\n", string);
3cf2715d 2050 }
3cf2715d
DE
2051 break;
2052 }
2053
2054 /* Detect `asm' construct with operands. */
2055 if (asm_noperands (body) >= 0)
2056 {
22bf4422 2057 unsigned int noperands = asm_noperands (body);
703ad42b 2058 rtx *ops = alloca (noperands * sizeof (rtx));
3cce094d 2059 const char *string;
3cf2715d
DE
2060
2061 /* There's no telling what that did to the condition codes. */
2062 CC_STATUS_INIT;
2063 if (prescan > 0)
2064 break;
2065
3cf2715d 2066 /* Get out the operand values. */
df4ae160 2067 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
3cf2715d
DE
2068 /* Inhibit aborts on what would otherwise be compiler bugs. */
2069 insn_noperands = noperands;
2070 this_is_asm_operands = insn;
2071
2072 /* Output the insn using them. */
36d7136e
RH
2073 if (string[0])
2074 {
2075 if (! app_on)
2076 {
2077 fputs (ASM_APP_ON, file);
2078 app_on = 1;
2079 }
2080 output_asm_insn (string, ops);
2081 }
2082
3cf2715d
DE
2083 this_is_asm_operands = 0;
2084 break;
2085 }
2086
2087 if (prescan <= 0 && app_on)
2088 {
51723711 2089 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2090 app_on = 0;
2091 }
2092
2093 if (GET_CODE (body) == SEQUENCE)
2094 {
2095 /* A delayed-branch sequence */
b3694847 2096 int i;
3cf2715d
DE
2097 rtx next;
2098
2099 if (prescan > 0)
2100 break;
2101 final_sequence = body;
2102
d660cefe
RS
2103 /* Record the delay slots' frame information before the branch.
2104 This is needed for delayed calls: see execute_cfa_program(). */
2105#if defined (DWARF2_UNWIND_INFO)
2106 if (dwarf2out_do_frame ())
2107 for (i = 1; i < XVECLEN (body, 0); i++)
2108 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2109#endif
2110
3cf2715d
DE
2111 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2112 force the restoration of a comparison that was previously
2113 thought unnecessary. If that happens, cancel this sequence
2114 and cause that insn to be restored. */
2115
2116 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2117 if (next != XVECEXP (body, 0, 1))
2118 {
2119 final_sequence = 0;
2120 return next;
2121 }
2122
2123 for (i = 1; i < XVECLEN (body, 0); i++)
c7eee2df
RK
2124 {
2125 rtx insn = XVECEXP (body, 0, i);
2126 rtx next = NEXT_INSN (insn);
2127 /* We loop in case any instruction in a delay slot gets
2128 split. */
2129 do
2130 insn = final_scan_insn (insn, file, 0, prescan, 1);
2131 while (insn != next);
2132 }
3cf2715d
DE
2133#ifdef DBR_OUTPUT_SEQEND
2134 DBR_OUTPUT_SEQEND (file);
2135#endif
2136 final_sequence = 0;
2137
2138 /* If the insn requiring the delay slot was a CALL_INSN, the
2139 insns in the delay slot are actually executed before the
2140 called function. Hence we don't preserve any CC-setting
2141 actions in these insns and the CC must be marked as being
2142 clobbered by the function. */
2143 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
b729186a
JL
2144 {
2145 CC_STATUS_INIT;
2146 }
3cf2715d
DE
2147 break;
2148 }
2149
2150 /* We have a real machine instruction as rtl. */
2151
2152 body = PATTERN (insn);
2153
2154#ifdef HAVE_cc0
f5d927c0 2155 set = single_set (insn);
b88c92cc 2156
3cf2715d
DE
2157 /* Check for redundant test and compare instructions
2158 (when the condition codes are already set up as desired).
2159 This is done only when optimizing; if not optimizing,
2160 it should be possible for the user to alter a variable
2161 with the debugger in between statements
2162 and the next statement should reexamine the variable
2163 to compute the condition codes. */
2164
30f5e9f5 2165 if (optimize)
3cf2715d 2166 {
b88c92cc 2167#if 0
f5d927c0 2168 rtx set = single_set (insn);
b88c92cc 2169#endif
30f5e9f5
RK
2170
2171 if (set
2172 && GET_CODE (SET_DEST (set)) == CC0
2173 && insn != last_ignored_compare)
3cf2715d 2174 {
30f5e9f5 2175 if (GET_CODE (SET_SRC (set)) == SUBREG)
49d801d3 2176 SET_SRC (set) = alter_subreg (&SET_SRC (set));
30f5e9f5
RK
2177 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2178 {
2179 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2180 XEXP (SET_SRC (set), 0)
49d801d3 2181 = alter_subreg (&XEXP (SET_SRC (set), 0));
30f5e9f5
RK
2182 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2183 XEXP (SET_SRC (set), 1)
49d801d3 2184 = alter_subreg (&XEXP (SET_SRC (set), 1));
30f5e9f5
RK
2185 }
2186 if ((cc_status.value1 != 0
2187 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2188 || (cc_status.value2 != 0
2189 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
3cf2715d 2190 {
30f5e9f5 2191 /* Don't delete insn if it has an addressing side-effect. */
ff81832f 2192 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
30f5e9f5
RK
2193 /* or if anything in it is volatile. */
2194 && ! volatile_refs_p (PATTERN (insn)))
2195 {
2196 /* We don't really delete the insn; just ignore it. */
2197 last_ignored_compare = insn;
2198 break;
2199 }
3cf2715d
DE
2200 }
2201 }
2202 }
2203#endif
2204
3cf2715d
DE
2205#ifndef STACK_REGS
2206 /* Don't bother outputting obvious no-ops, even without -O.
2207 This optimization is fast and doesn't interfere with debugging.
2208 Don't do this if the insn is in a delay slot, since this
2209 will cause an improper number of delay insns to be written. */
2210 if (final_sequence == 0
2211 && prescan >= 0
2212 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2213 && GET_CODE (SET_SRC (body)) == REG
2214 && GET_CODE (SET_DEST (body)) == REG
2215 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2216 break;
2217#endif
2218
2219#ifdef HAVE_cc0
2220 /* If this is a conditional branch, maybe modify it
2221 if the cc's are in a nonstandard state
2222 so that it accomplishes the same thing that it would
2223 do straightforwardly if the cc's were set up normally. */
2224
2225 if (cc_status.flags != 0
2226 && GET_CODE (insn) == JUMP_INSN
2227 && GET_CODE (body) == SET
2228 && SET_DEST (body) == pc_rtx
2229 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
de2b56f9 2230 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
fff752ad 2231 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
3cf2715d
DE
2232 /* This is done during prescan; it is not done again
2233 in final scan when prescan has been done. */
2234 && prescan >= 0)
2235 {
2236 /* This function may alter the contents of its argument
2237 and clear some of the cc_status.flags bits.
2238 It may also return 1 meaning condition now always true
2239 or -1 meaning condition now always false
2240 or 2 meaning condition nontrivial but altered. */
b3694847 2241 int result = alter_cond (XEXP (SET_SRC (body), 0));
3cf2715d
DE
2242 /* If condition now has fixed value, replace the IF_THEN_ELSE
2243 with its then-operand or its else-operand. */
2244 if (result == 1)
2245 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2246 if (result == -1)
2247 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2248
2249 /* The jump is now either unconditional or a no-op.
2250 If it has become a no-op, don't try to output it.
2251 (It would not be recognized.) */
2252 if (SET_SRC (body) == pc_rtx)
2253 {
ca6c03ca 2254 delete_insn (insn);
3cf2715d
DE
2255 break;
2256 }
2257 else if (GET_CODE (SET_SRC (body)) == RETURN)
2258 /* Replace (set (pc) (return)) with (return). */
2259 PATTERN (insn) = body = SET_SRC (body);
2260
2261 /* Rerecognize the instruction if it has changed. */
2262 if (result != 0)
2263 INSN_CODE (insn) = -1;
2264 }
2265
2266 /* Make same adjustments to instructions that examine the
462da2af
SC
2267 condition codes without jumping and instructions that
2268 handle conditional moves (if this machine has either one). */
3cf2715d
DE
2269
2270 if (cc_status.flags != 0
b88c92cc 2271 && set != 0)
3cf2715d 2272 {
462da2af 2273 rtx cond_rtx, then_rtx, else_rtx;
f5d927c0 2274
462da2af 2275 if (GET_CODE (insn) != JUMP_INSN
b88c92cc 2276 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
462da2af 2277 {
b88c92cc
RK
2278 cond_rtx = XEXP (SET_SRC (set), 0);
2279 then_rtx = XEXP (SET_SRC (set), 1);
2280 else_rtx = XEXP (SET_SRC (set), 2);
462da2af
SC
2281 }
2282 else
2283 {
b88c92cc 2284 cond_rtx = SET_SRC (set);
462da2af
SC
2285 then_rtx = const_true_rtx;
2286 else_rtx = const0_rtx;
2287 }
f5d927c0 2288
462da2af 2289 switch (GET_CODE (cond_rtx))
3cf2715d
DE
2290 {
2291 case GTU:
2292 case GT:
2293 case LTU:
2294 case LT:
2295 case GEU:
2296 case GE:
2297 case LEU:
2298 case LE:
2299 case EQ:
2300 case NE:
2301 {
b3694847 2302 int result;
462da2af 2303 if (XEXP (cond_rtx, 0) != cc0_rtx)
3cf2715d 2304 break;
462da2af 2305 result = alter_cond (cond_rtx);
3cf2715d 2306 if (result == 1)
b88c92cc 2307 validate_change (insn, &SET_SRC (set), then_rtx, 0);
3cf2715d 2308 else if (result == -1)
b88c92cc 2309 validate_change (insn, &SET_SRC (set), else_rtx, 0);
3cf2715d
DE
2310 else if (result == 2)
2311 INSN_CODE (insn) = -1;
b88c92cc 2312 if (SET_DEST (set) == SET_SRC (set))
ca6c03ca 2313 delete_insn (insn);
3cf2715d 2314 }
e9a25f70
JL
2315 break;
2316
2317 default:
2318 break;
3cf2715d
DE
2319 }
2320 }
462da2af 2321
3cf2715d
DE
2322#endif
2323
ede7cd44 2324#ifdef HAVE_peephole
3cf2715d
DE
2325 /* Do machine-specific peephole optimizations if desired. */
2326
2327 if (optimize && !flag_no_peephole && !nopeepholes)
2328 {
2329 rtx next = peephole (insn);
2330 /* When peepholing, if there were notes within the peephole,
2331 emit them before the peephole. */
2332 if (next != 0 && next != NEXT_INSN (insn))
2333 {
2334 rtx prev = PREV_INSN (insn);
3cf2715d
DE
2335
2336 for (note = NEXT_INSN (insn); note != next;
2337 note = NEXT_INSN (note))
2338 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2339
2340 /* In case this is prescan, put the notes
2341 in proper position for later rescan. */
2342 note = NEXT_INSN (insn);
2343 PREV_INSN (note) = prev;
2344 NEXT_INSN (prev) = note;
2345 NEXT_INSN (PREV_INSN (next)) = insn;
2346 PREV_INSN (insn) = PREV_INSN (next);
2347 NEXT_INSN (insn) = next;
2348 PREV_INSN (next) = insn;
2349 }
2350
2351 /* PEEPHOLE might have changed this. */
2352 body = PATTERN (insn);
2353 }
ede7cd44 2354#endif
3cf2715d
DE
2355
2356 /* Try to recognize the instruction.
2357 If successful, verify that the operands satisfy the
2358 constraints for the instruction. Crash if they don't,
2359 since `reload' should have changed them so that they do. */
2360
2361 insn_code_number = recog_memoized (insn);
0304f787 2362 cleanup_subreg_operands (insn);
3cf2715d 2363
dd3f0101
KH
2364 /* Dump the insn in the assembly for debugging. */
2365 if (flag_dump_rtl_in_asm)
2366 {
2367 print_rtx_head = ASM_COMMENT_START;
2368 print_rtl_single (asm_out_file, insn);
2369 print_rtx_head = "";
2370 }
b9f22704 2371
6c698a6d 2372 if (! constrain_operands_cached (1))
3cf2715d 2373 fatal_insn_not_found (insn);
3cf2715d
DE
2374
2375 /* Some target machines need to prescan each insn before
2376 it is output. */
2377
2378#ifdef FINAL_PRESCAN_INSN
1ccbefce 2379 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3cf2715d
DE
2380#endif
2381
afe48e06
RH
2382#ifdef HAVE_conditional_execution
2383 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2384 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2385 else
2386 current_insn_predicate = NULL_RTX;
2387#endif
2388
3cf2715d
DE
2389#ifdef HAVE_cc0
2390 cc_prev_status = cc_status;
2391
2392 /* Update `cc_status' for this instruction.
2393 The instruction's output routine may change it further.
2394 If the output routine for a jump insn needs to depend
2395 on the cc status, it should look at cc_prev_status. */
2396
2397 NOTICE_UPDATE_CC (body, insn);
2398#endif
2399
b1a9f6a0 2400 current_output_insn = debug_insn = insn;
3cf2715d 2401
f73ad30e 2402#if defined (DWARF2_UNWIND_INFO)
fbfa55b0 2403 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
b57d9225
JM
2404 dwarf2out_frame_debug (insn);
2405#endif
2406
4bbf910e
RH
2407 /* Find the proper template for this insn. */
2408 template = get_insn_template (insn_code_number, insn);
3cf2715d 2409
4bbf910e
RH
2410 /* If the C code returns 0, it means that it is a jump insn
2411 which follows a deleted test insn, and that test insn
2412 needs to be reinserted. */
3cf2715d
DE
2413 if (template == 0)
2414 {
efd0378b
HPN
2415 rtx prev;
2416
4bbf910e
RH
2417 if (prev_nonnote_insn (insn) != last_ignored_compare)
2418 abort ();
efd0378b
HPN
2419
2420 /* We have already processed the notes between the setter and
2421 the user. Make sure we don't process them again, this is
2422 particularly important if one of the notes is a block
2423 scope note or an EH note. */
2424 for (prev = insn;
2425 prev != last_ignored_compare;
2426 prev = PREV_INSN (prev))
2427 {
2428 if (GET_CODE (prev) == NOTE)
ca6c03ca 2429 delete_insn (prev); /* Use delete_note. */
efd0378b
HPN
2430 }
2431
2432 return prev;
3cf2715d
DE
2433 }
2434
2435 /* If the template is the string "#", it means that this insn must
2436 be split. */
2437 if (template[0] == '#' && template[1] == '\0')
2438 {
2439 rtx new = try_split (body, insn, 0);
2440
2441 /* If we didn't split the insn, go away. */
2442 if (new == insn && PATTERN (new) == body)
c725bd79 2443 fatal_insn ("could not split insn", insn);
f5d927c0 2444
3d14e82f
JW
2445#ifdef HAVE_ATTR_length
2446 /* This instruction should have been split in shorten_branches,
2447 to ensure that we would have valid length info for the
2448 splitees. */
2449 abort ();
2450#endif
2451
3cf2715d
DE
2452 return new;
2453 }
f5d927c0 2454
3cf2715d
DE
2455 if (prescan > 0)
2456 break;
2457
ce152ef8
AM
2458#ifdef IA64_UNWIND_INFO
2459 IA64_UNWIND_EMIT (asm_out_file, insn);
2460#endif
3cf2715d
DE
2461 /* Output assembler code from the template. */
2462
1ccbefce 2463 output_asm_insn (template, recog_data.operand);
3cf2715d 2464
d660cefe
RS
2465 /* If necessary, report the effect that the instruction has on
2466 the unwind info. We've already done this for delay slots
2467 and call instructions. */
0021b564 2468#if defined (DWARF2_UNWIND_INFO)
d660cefe
RS
2469 if (GET_CODE (insn) == INSN
2470#if !defined (HAVE_prologue)
2471 && !ACCUMULATE_OUTGOING_ARGS
2472#endif
2473 && final_sequence == 0
fbfa55b0
RH
2474 && dwarf2out_do_frame ())
2475 dwarf2out_frame_debug (insn);
0021b564 2476#endif
469ac993 2477
3cf2715d 2478#if 0
6001794d
KH
2479 /* It's not at all clear why we did this and doing so used to
2480 interfere with tests that used REG_WAS_0 notes, which are
2481 now gone, so let's try with this out. */
3cf2715d
DE
2482
2483 /* Mark this insn as having been output. */
2484 INSN_DELETED_P (insn) = 1;
2485#endif
2486
4a8d0c9c
RH
2487 /* Emit information for vtable gc. */
2488 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2489 if (note)
2490 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2491 INTVAL (XEXP (XEXP (note, 0), 1)));
2492
b1a9f6a0 2493 current_output_insn = debug_insn = 0;
3cf2715d
DE
2494 }
2495 }
2496 return NEXT_INSN (insn);
2497}
2498\f
2499/* Output debugging info to the assembler file FILE
2500 based on the NOTE-insn INSN, assumed to be a line number. */
2501
0435312e 2502static bool
6cf9ac28 2503notice_source_line (rtx insn)
3cf2715d 2504{
0435312e
JH
2505 const char *filename = insn_file (insn);
2506 int linenum = insn_line (insn);
3cf2715d 2507
0435312e
JH
2508 if (filename && (filename != last_filename || last_linenum != linenum))
2509 {
2510 last_filename = filename;
2511 last_linenum = linenum;
2512 high_block_linenum = MAX (last_linenum, high_block_linenum);
2513 high_function_linenum = MAX (last_linenum, high_function_linenum);
2514 return true;
2515 }
2516 return false;
3cf2715d
DE
2517}
2518\f
0304f787
JL
2519/* For each operand in INSN, simplify (subreg (reg)) so that it refers
2520 directly to the desired hard register. */
f5d927c0 2521
0304f787 2522void
6cf9ac28 2523cleanup_subreg_operands (rtx insn)
0304f787 2524{
f62a15e3 2525 int i;
6c698a6d 2526 extract_insn_cached (insn);
1ccbefce 2527 for (i = 0; i < recog_data.n_operands; i++)
0304f787 2528 {
9f4524f2
RE
2529 /* The following test cannot use recog_data.operand when tesing
2530 for a SUBREG: the underlying object might have been changed
2531 already if we are inside a match_operator expression that
2532 matches the else clause. Instead we test the underlying
2533 expression directly. */
2534 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
49d801d3 2535 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
1ccbefce 2536 else if (GET_CODE (recog_data.operand[i]) == PLUS
04337620
BS
2537 || GET_CODE (recog_data.operand[i]) == MULT
2538 || GET_CODE (recog_data.operand[i]) == MEM)
49d801d3 2539 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
0304f787
JL
2540 }
2541
1ccbefce 2542 for (i = 0; i < recog_data.n_dups; i++)
0304f787 2543 {
1ccbefce 2544 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
49d801d3 2545 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
1ccbefce 2546 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
04337620
BS
2547 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2548 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
49d801d3 2549 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
0304f787
JL
2550 }
2551}
2552
3cf2715d
DE
2553/* If X is a SUBREG, replace it with a REG or a MEM,
2554 based on the thing it is a subreg of. */
2555
2556rtx
6cf9ac28 2557alter_subreg (rtx *xp)
3cf2715d 2558{
49d801d3 2559 rtx x = *xp;
b3694847 2560 rtx y = SUBREG_REG (x);
f5963e61 2561
49d801d3
JH
2562 /* simplify_subreg does not remove subreg from volatile references.
2563 We are required to. */
2564 if (GET_CODE (y) == MEM)
2565 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2566 else
fea54805
RK
2567 {
2568 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2569 SUBREG_BYTE (x));
2570
2571 if (new != 0)
2572 *xp = new;
2573 /* Simplify_subreg can't handle some REG cases, but we have to. */
2574 else if (GET_CODE (y) == REG)
2575 {
7687c5b8 2576 unsigned int regno = subreg_hard_regno (x, 1);
a560d4d4 2577 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
fea54805
RK
2578 }
2579 else
2580 abort ();
2581 }
2582
49d801d3 2583 return *xp;
3cf2715d
DE
2584}
2585
2586/* Do alter_subreg on all the SUBREGs contained in X. */
2587
2588static rtx
6cf9ac28 2589walk_alter_subreg (rtx *xp)
3cf2715d 2590{
49d801d3 2591 rtx x = *xp;
3cf2715d
DE
2592 switch (GET_CODE (x))
2593 {
2594 case PLUS:
2595 case MULT:
49d801d3
JH
2596 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2597 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
3cf2715d
DE
2598 break;
2599
2600 case MEM:
49d801d3 2601 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
3cf2715d
DE
2602 break;
2603
2604 case SUBREG:
49d801d3 2605 return alter_subreg (xp);
f5d927c0 2606
e9a25f70
JL
2607 default:
2608 break;
3cf2715d
DE
2609 }
2610
5bc72aeb 2611 return *xp;
3cf2715d
DE
2612}
2613\f
2614#ifdef HAVE_cc0
2615
2616/* Given BODY, the body of a jump instruction, alter the jump condition
2617 as required by the bits that are set in cc_status.flags.
2618 Not all of the bits there can be handled at this level in all cases.
2619
2620 The value is normally 0.
2621 1 means that the condition has become always true.
2622 -1 means that the condition has become always false.
2623 2 means that COND has been altered. */
2624
2625static int
6cf9ac28 2626alter_cond (rtx cond)
3cf2715d
DE
2627{
2628 int value = 0;
2629
2630 if (cc_status.flags & CC_REVERSED)
2631 {
2632 value = 2;
2633 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2634 }
2635
2636 if (cc_status.flags & CC_INVERTED)
2637 {
2638 value = 2;
2639 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2640 }
2641
2642 if (cc_status.flags & CC_NOT_POSITIVE)
2643 switch (GET_CODE (cond))
2644 {
2645 case LE:
2646 case LEU:
2647 case GEU:
2648 /* Jump becomes unconditional. */
2649 return 1;
2650
2651 case GT:
2652 case GTU:
2653 case LTU:
2654 /* Jump becomes no-op. */
2655 return -1;
2656
2657 case GE:
2658 PUT_CODE (cond, EQ);
2659 value = 2;
2660 break;
2661
2662 case LT:
2663 PUT_CODE (cond, NE);
2664 value = 2;
2665 break;
f5d927c0 2666
e9a25f70
JL
2667 default:
2668 break;
3cf2715d
DE
2669 }
2670
2671 if (cc_status.flags & CC_NOT_NEGATIVE)
2672 switch (GET_CODE (cond))
2673 {
2674 case GE:
2675 case GEU:
2676 /* Jump becomes unconditional. */
2677 return 1;
2678
2679 case LT:
2680 case LTU:
2681 /* Jump becomes no-op. */
2682 return -1;
2683
2684 case LE:
2685 case LEU:
2686 PUT_CODE (cond, EQ);
2687 value = 2;
2688 break;
2689
2690 case GT:
2691 case GTU:
2692 PUT_CODE (cond, NE);
2693 value = 2;
2694 break;
f5d927c0 2695
e9a25f70
JL
2696 default:
2697 break;
3cf2715d
DE
2698 }
2699
2700 if (cc_status.flags & CC_NO_OVERFLOW)
2701 switch (GET_CODE (cond))
2702 {
2703 case GEU:
2704 /* Jump becomes unconditional. */
2705 return 1;
2706
2707 case LEU:
2708 PUT_CODE (cond, EQ);
2709 value = 2;
2710 break;
2711
2712 case GTU:
2713 PUT_CODE (cond, NE);
2714 value = 2;
2715 break;
2716
2717 case LTU:
2718 /* Jump becomes no-op. */
2719 return -1;
f5d927c0 2720
e9a25f70
JL
2721 default:
2722 break;
3cf2715d
DE
2723 }
2724
2725 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2726 switch (GET_CODE (cond))
2727 {
e9a25f70 2728 default:
3cf2715d
DE
2729 abort ();
2730
2731 case NE:
2732 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2733 value = 2;
2734 break;
2735
2736 case EQ:
2737 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2738 value = 2;
2739 break;
2740 }
2741
2742 if (cc_status.flags & CC_NOT_SIGNED)
2743 /* The flags are valid if signed condition operators are converted
2744 to unsigned. */
2745 switch (GET_CODE (cond))
2746 {
2747 case LE:
2748 PUT_CODE (cond, LEU);
2749 value = 2;
2750 break;
2751
2752 case LT:
2753 PUT_CODE (cond, LTU);
2754 value = 2;
2755 break;
2756
2757 case GT:
2758 PUT_CODE (cond, GTU);
2759 value = 2;
2760 break;
2761
2762 case GE:
2763 PUT_CODE (cond, GEU);
2764 value = 2;
2765 break;
e9a25f70
JL
2766
2767 default:
2768 break;
3cf2715d
DE
2769 }
2770
2771 return value;
2772}
2773#endif
2774\f
2775/* Report inconsistency between the assembler template and the operands.
2776 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2777
2778void
e34d07f2 2779output_operand_lossage (const char *msgid, ...)
3cf2715d 2780{
a52453cc
PT
2781 char *fmt_string;
2782 char *new_message;
fd478a0a 2783 const char *pfx_str;
e34d07f2 2784 va_list ap;
6cf9ac28 2785
e34d07f2 2786 va_start (ap, msgid);
a52453cc
PT
2787
2788 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2789 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2790 vasprintf (&new_message, fmt_string, ap);
dd3f0101 2791
3cf2715d 2792 if (this_is_asm_operands)
a52453cc 2793 error_for_asm (this_is_asm_operands, "%s", new_message);
3cf2715d 2794 else
a52453cc
PT
2795 internal_error ("%s", new_message);
2796
2797 free (fmt_string);
2798 free (new_message);
e34d07f2 2799 va_end (ap);
3cf2715d
DE
2800}
2801\f
2802/* Output of assembler code from a template, and its subroutines. */
2803
0d4903b8
RK
2804/* Annotate the assembly with a comment describing the pattern and
2805 alternative used. */
2806
2807static void
6cf9ac28 2808output_asm_name (void)
0d4903b8
RK
2809{
2810 if (debug_insn)
2811 {
2812 int num = INSN_CODE (debug_insn);
2813 fprintf (asm_out_file, "\t%s %d\t%s",
2814 ASM_COMMENT_START, INSN_UID (debug_insn),
2815 insn_data[num].name);
2816 if (insn_data[num].n_alternatives > 1)
2817 fprintf (asm_out_file, "/%d", which_alternative + 1);
2818#ifdef HAVE_ATTR_length
2819 fprintf (asm_out_file, "\t[length = %d]",
2820 get_attr_length (debug_insn));
2821#endif
2822 /* Clear this so only the first assembler insn
2823 of any rtl insn will get the special comment for -dp. */
2824 debug_insn = 0;
2825 }
2826}
2827
998d7deb
RH
2828/* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2829 or its address, return that expr . Set *PADDRESSP to 1 if the expr
c5adc06a
RK
2830 corresponds to the address of the object and 0 if to the object. */
2831
2832static tree
6cf9ac28 2833get_mem_expr_from_op (rtx op, int *paddressp)
c5adc06a 2834{
998d7deb 2835 tree expr;
c5adc06a
RK
2836 int inner_addressp;
2837
2838 *paddressp = 0;
2839
a560d4d4
JH
2840 if (GET_CODE (op) == REG)
2841 return REG_EXPR (op);
c5adc06a
RK
2842 else if (GET_CODE (op) != MEM)
2843 return 0;
2844
998d7deb
RH
2845 if (MEM_EXPR (op) != 0)
2846 return MEM_EXPR (op);
c5adc06a
RK
2847
2848 /* Otherwise we have an address, so indicate it and look at the address. */
2849 *paddressp = 1;
2850 op = XEXP (op, 0);
2851
2852 /* First check if we have a decl for the address, then look at the right side
2853 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2854 But don't allow the address to itself be indirect. */
998d7deb
RH
2855 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2856 return expr;
c5adc06a 2857 else if (GET_CODE (op) == PLUS
998d7deb
RH
2858 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2859 return expr;
c5adc06a
RK
2860
2861 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
2862 || GET_RTX_CLASS (GET_CODE (op)) == '2')
2863 op = XEXP (op, 0);
2864
998d7deb
RH
2865 expr = get_mem_expr_from_op (op, &inner_addressp);
2866 return inner_addressp ? 0 : expr;
c5adc06a 2867}
ff81832f 2868
4f9b4029
RK
2869/* Output operand names for assembler instructions. OPERANDS is the
2870 operand vector, OPORDER is the order to write the operands, and NOPS
2871 is the number of operands to write. */
2872
2873static void
6cf9ac28 2874output_asm_operand_names (rtx *operands, int *oporder, int nops)
4f9b4029
RK
2875{
2876 int wrote = 0;
2877 int i;
2878
2879 for (i = 0; i < nops; i++)
2880 {
2881 int addressp;
a560d4d4
JH
2882 rtx op = operands[oporder[i]];
2883 tree expr = get_mem_expr_from_op (op, &addressp);
4f9b4029 2884
a560d4d4
JH
2885 fprintf (asm_out_file, "%c%s",
2886 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2887 wrote = 1;
998d7deb 2888 if (expr)
4f9b4029 2889 {
a560d4d4 2890 fprintf (asm_out_file, "%s",
998d7deb
RH
2891 addressp ? "*" : "");
2892 print_mem_expr (asm_out_file, expr);
4f9b4029
RK
2893 wrote = 1;
2894 }
a560d4d4
JH
2895 else if (REG_P (op) && ORIGINAL_REGNO (op)
2896 && ORIGINAL_REGNO (op) != REGNO (op))
2897 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
4f9b4029
RK
2898 }
2899}
2900
3cf2715d
DE
2901/* Output text from TEMPLATE to the assembler output file,
2902 obeying %-directions to substitute operands taken from
2903 the vector OPERANDS.
2904
2905 %N (for N a digit) means print operand N in usual manner.
2906 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2907 and print the label name with no punctuation.
2908 %cN means require operand N to be a constant
2909 and print the constant expression with no punctuation.
2910 %aN means expect operand N to be a memory address
2911 (not a memory reference!) and print a reference
2912 to that address.
2913 %nN means expect operand N to be a constant
2914 and print a constant expression for minus the value
2915 of the operand, with no other punctuation. */
2916
2917void
6cf9ac28 2918output_asm_insn (const char *template, rtx *operands)
3cf2715d 2919{
b3694847
SS
2920 const char *p;
2921 int c;
8554d9a4
JJ
2922#ifdef ASSEMBLER_DIALECT
2923 int dialect = 0;
2924#endif
0d4903b8 2925 int oporder[MAX_RECOG_OPERANDS];
4f9b4029 2926 char opoutput[MAX_RECOG_OPERANDS];
0d4903b8 2927 int ops = 0;
3cf2715d
DE
2928
2929 /* An insn may return a null string template
2930 in a case where no assembler code is needed. */
2931 if (*template == 0)
2932 return;
2933
4f9b4029 2934 memset (opoutput, 0, sizeof opoutput);
3cf2715d
DE
2935 p = template;
2936 putc ('\t', asm_out_file);
2937
2938#ifdef ASM_OUTPUT_OPCODE
2939 ASM_OUTPUT_OPCODE (asm_out_file, p);
2940#endif
2941
b729186a 2942 while ((c = *p++))
3cf2715d
DE
2943 switch (c)
2944 {
3cf2715d 2945 case '\n':
4f9b4029
RK
2946 if (flag_verbose_asm)
2947 output_asm_operand_names (operands, oporder, ops);
0d4903b8
RK
2948 if (flag_print_asm_name)
2949 output_asm_name ();
2950
4f9b4029
RK
2951 ops = 0;
2952 memset (opoutput, 0, sizeof opoutput);
2953
3cf2715d 2954 putc (c, asm_out_file);
cb649530 2955#ifdef ASM_OUTPUT_OPCODE
3cf2715d
DE
2956 while ((c = *p) == '\t')
2957 {
2958 putc (c, asm_out_file);
2959 p++;
2960 }
2961 ASM_OUTPUT_OPCODE (asm_out_file, p);
3cf2715d 2962#endif
cb649530 2963 break;
3cf2715d
DE
2964
2965#ifdef ASSEMBLER_DIALECT
2966 case '{':
b729186a 2967 {
b3694847 2968 int i;
f5d927c0 2969
8554d9a4
JJ
2970 if (dialect)
2971 output_operand_lossage ("nested assembly dialect alternatives");
2972 else
2973 dialect = 1;
2974
b729186a
JL
2975 /* If we want the first dialect, do nothing. Otherwise, skip
2976 DIALECT_NUMBER of strings ending with '|'. */
2977 for (i = 0; i < dialect_number; i++)
2978 {
463a8384 2979 while (*p && *p != '}' && *p++ != '|')
b729186a 2980 ;
463a8384
BS
2981 if (*p == '}')
2982 break;
b729186a
JL
2983 if (*p == '|')
2984 p++;
2985 }
8554d9a4
JJ
2986
2987 if (*p == '\0')
2988 output_operand_lossage ("unterminated assembly dialect alternative");
b729186a 2989 }
3cf2715d
DE
2990 break;
2991
2992 case '|':
8554d9a4
JJ
2993 if (dialect)
2994 {
2995 /* Skip to close brace. */
2996 do
2997 {
2998 if (*p == '\0')
2999 {
3000 output_operand_lossage ("unterminated assembly dialect alternative");
3001 break;
3002 }
ff81832f 3003 }
8554d9a4
JJ
3004 while (*p++ != '}');
3005 dialect = 0;
3006 }
3007 else
3008 putc (c, asm_out_file);
3cf2715d
DE
3009 break;
3010
3011 case '}':
8554d9a4
JJ
3012 if (! dialect)
3013 putc (c, asm_out_file);
3014 dialect = 0;
3cf2715d
DE
3015 break;
3016#endif
3017
3018 case '%':
3019 /* %% outputs a single %. */
3020 if (*p == '%')
3021 {
3022 p++;
3023 putc (c, asm_out_file);
3024 }
3025 /* %= outputs a number which is unique to each insn in the entire
3026 compilation. This is useful for making local labels that are
3027 referred to more than once in a given insn. */
3028 else if (*p == '=')
3029 {
3030 p++;
3031 fprintf (asm_out_file, "%d", insn_counter);
3032 }
3033 /* % followed by a letter and some digits
3034 outputs an operand in a special way depending on the letter.
3035 Letters `acln' are implemented directly.
3036 Other letters are passed to `output_operand' so that
3037 the PRINT_OPERAND macro can define them. */
0df6c2c7 3038 else if (ISALPHA (*p))
3cf2715d
DE
3039 {
3040 int letter = *p++;
3041 c = atoi (p);
3042
0df6c2c7 3043 if (! ISDIGIT (*p))
a52453cc 3044 output_operand_lossage ("operand number missing after %%-letter");
0d4903b8
RK
3045 else if (this_is_asm_operands
3046 && (c < 0 || (unsigned int) c >= insn_noperands))
3cf2715d
DE
3047 output_operand_lossage ("operand number out of range");
3048 else if (letter == 'l')
3049 output_asm_label (operands[c]);
3050 else if (letter == 'a')
3051 output_address (operands[c]);
3052 else if (letter == 'c')
3053 {
3054 if (CONSTANT_ADDRESS_P (operands[c]))
3055 output_addr_const (asm_out_file, operands[c]);
3056 else
3057 output_operand (operands[c], 'c');
3058 }
3059 else if (letter == 'n')
3060 {
3061 if (GET_CODE (operands[c]) == CONST_INT)
21e3a81b 3062 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3cf2715d
DE
3063 - INTVAL (operands[c]));
3064 else
3065 {
3066 putc ('-', asm_out_file);
3067 output_addr_const (asm_out_file, operands[c]);
3068 }
3069 }
3070 else
3071 output_operand (operands[c], letter);
f5d927c0 3072
4f9b4029
RK
3073 if (!opoutput[c])
3074 oporder[ops++] = c;
3075 opoutput[c] = 1;
0d4903b8 3076
0df6c2c7 3077 while (ISDIGIT (c = *p))
f5d927c0 3078 p++;
3cf2715d
DE
3079 }
3080 /* % followed by a digit outputs an operand the default way. */
0df6c2c7 3081 else if (ISDIGIT (*p))
3cf2715d
DE
3082 {
3083 c = atoi (p);
f5d927c0
KH
3084 if (this_is_asm_operands
3085 && (c < 0 || (unsigned int) c >= insn_noperands))
3cf2715d
DE
3086 output_operand_lossage ("operand number out of range");
3087 else
3088 output_operand (operands[c], 0);
0d4903b8 3089
4f9b4029
RK
3090 if (!opoutput[c])
3091 oporder[ops++] = c;
3092 opoutput[c] = 1;
3093
0df6c2c7 3094 while (ISDIGIT (c = *p))
f5d927c0 3095 p++;
3cf2715d
DE
3096 }
3097 /* % followed by punctuation: output something for that
3098 punctuation character alone, with no operand.
3099 The PRINT_OPERAND macro decides what is actually done. */
3100#ifdef PRINT_OPERAND_PUNCT_VALID_P
f5d927c0 3101 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3cf2715d
DE
3102 output_operand (NULL_RTX, *p++);
3103#endif
3104 else
3105 output_operand_lossage ("invalid %%-code");
3106 break;
3107
3108 default:
3109 putc (c, asm_out_file);
3110 }
3111
0d4903b8
RK
3112 /* Write out the variable names for operands, if we know them. */
3113 if (flag_verbose_asm)
4f9b4029 3114 output_asm_operand_names (operands, oporder, ops);
0d4903b8
RK
3115 if (flag_print_asm_name)
3116 output_asm_name ();
3cf2715d
DE
3117
3118 putc ('\n', asm_out_file);
3119}
3120\f
3121/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3122
3123void
6cf9ac28 3124output_asm_label (rtx x)
3cf2715d
DE
3125{
3126 char buf[256];
3127
3128 if (GET_CODE (x) == LABEL_REF)
be1bb652
RH
3129 x = XEXP (x, 0);
3130 if (GET_CODE (x) == CODE_LABEL
3131 || (GET_CODE (x) == NOTE
3132 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3cf2715d
DE
3133 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3134 else
a52453cc 3135 output_operand_lossage ("`%%l' operand isn't a label");
3cf2715d
DE
3136
3137 assemble_name (asm_out_file, buf);
3138}
3139
3140/* Print operand X using machine-dependent assembler syntax.
3141 The macro PRINT_OPERAND is defined just to control this function.
3142 CODE is a non-digit that preceded the operand-number in the % spec,
3143 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3144 between the % and the digits.
3145 When CODE is a non-letter, X is 0.
3146
3147 The meanings of the letters are machine-dependent and controlled
3148 by PRINT_OPERAND. */
3149
3150static void
6cf9ac28 3151output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3cf2715d
DE
3152{
3153 if (x && GET_CODE (x) == SUBREG)
49d801d3 3154 x = alter_subreg (&x);
3cf2715d
DE
3155
3156 /* If X is a pseudo-register, abort now rather than writing trash to the
3157 assembler file. */
3158
3159 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3160 abort ();
3161
3162 PRINT_OPERAND (asm_out_file, x, code);
3163}
3164
3165/* Print a memory reference operand for address X
3166 using machine-dependent assembler syntax.
3167 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3168
3169void
6cf9ac28 3170output_address (rtx x)
3cf2715d 3171{
49d801d3 3172 walk_alter_subreg (&x);
3cf2715d
DE
3173 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3174}
3175\f
3176/* Print an integer constant expression in assembler syntax.
3177 Addition and subtraction are the only arithmetic
3178 that may appear in these expressions. */
3179
3180void
6cf9ac28 3181output_addr_const (FILE *file, rtx x)
3cf2715d
DE
3182{
3183 char buf[256];
3184
3185 restart:
3186 switch (GET_CODE (x))
3187 {
3188 case PC:
eac50d7a 3189 putc ('.', file);
3cf2715d
DE
3190 break;
3191
3192 case SYMBOL_REF:
99c8c61c
AO
3193#ifdef ASM_OUTPUT_SYMBOL_REF
3194 ASM_OUTPUT_SYMBOL_REF (file, x);
3195#else
3cf2715d 3196 assemble_name (file, XSTR (x, 0));
99c8c61c 3197#endif
3cf2715d
DE
3198 break;
3199
3200 case LABEL_REF:
422be3c3
AO
3201 x = XEXP (x, 0);
3202 /* Fall through. */
3cf2715d
DE
3203 case CODE_LABEL:
3204 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
2f0b7af6
GK
3205#ifdef ASM_OUTPUT_LABEL_REF
3206 ASM_OUTPUT_LABEL_REF (file, buf);
3207#else
3cf2715d 3208 assemble_name (file, buf);
2f0b7af6 3209#endif
3cf2715d
DE
3210 break;
3211
3212 case CONST_INT:
21e3a81b 3213 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3cf2715d
DE
3214 break;
3215
3216 case CONST:
3217 /* This used to output parentheses around the expression,
3218 but that does not work on the 386 (either ATT or BSD assembler). */
3219 output_addr_const (file, XEXP (x, 0));
3220 break;
3221
3222 case CONST_DOUBLE:
3223 if (GET_MODE (x) == VOIDmode)
3224 {
3225 /* We can use %d if the number is one word and positive. */
3226 if (CONST_DOUBLE_HIGH (x))
21e3a81b 3227 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3cf2715d 3228 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
f5d927c0 3229 else if (CONST_DOUBLE_LOW (x) < 0)
21e3a81b 3230 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3cf2715d 3231 else
21e3a81b 3232 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3cf2715d
DE
3233 }
3234 else
3235 /* We can't handle floating point constants;
3236 PRINT_OPERAND must handle them. */
3237 output_operand_lossage ("floating constant misused");
3238 break;
3239
3240 case PLUS:
3241 /* Some assemblers need integer constants to appear last (eg masm). */
3242 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3243 {
3244 output_addr_const (file, XEXP (x, 1));
3245 if (INTVAL (XEXP (x, 0)) >= 0)
3246 fprintf (file, "+");
3247 output_addr_const (file, XEXP (x, 0));
3248 }
3249 else
3250 {
3251 output_addr_const (file, XEXP (x, 0));
08106825
AO
3252 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3253 || INTVAL (XEXP (x, 1)) >= 0)
3cf2715d
DE
3254 fprintf (file, "+");
3255 output_addr_const (file, XEXP (x, 1));
3256 }
3257 break;
3258
3259 case MINUS:
3260 /* Avoid outputting things like x-x or x+5-x,
3261 since some assemblers can't handle that. */
3262 x = simplify_subtraction (x);
3263 if (GET_CODE (x) != MINUS)
3264 goto restart;
3265
3266 output_addr_const (file, XEXP (x, 0));
3267 fprintf (file, "-");
301d03af
RS
3268 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3269 || GET_CODE (XEXP (x, 1)) == PC
3270 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3271 output_addr_const (file, XEXP (x, 1));
3272 else
3cf2715d 3273 {
17b53c33 3274 fputs (targetm.asm_out.open_paren, file);
3cf2715d 3275 output_addr_const (file, XEXP (x, 1));
17b53c33 3276 fputs (targetm.asm_out.close_paren, file);
3cf2715d 3277 }
3cf2715d
DE
3278 break;
3279
3280 case ZERO_EXTEND:
3281 case SIGN_EXTEND:
fdf473ae 3282 case SUBREG:
3cf2715d
DE
3283 output_addr_const (file, XEXP (x, 0));
3284 break;
3285
3286 default:
422be3c3
AO
3287#ifdef OUTPUT_ADDR_CONST_EXTRA
3288 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3289 break;
3290
3291 fail:
3292#endif
3cf2715d
DE
3293 output_operand_lossage ("invalid expression as operand");
3294 }
3295}
3296\f
3297/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3298 %R prints the value of REGISTER_PREFIX.
3299 %L prints the value of LOCAL_LABEL_PREFIX.
3300 %U prints the value of USER_LABEL_PREFIX.
3301 %I prints the value of IMMEDIATE_PREFIX.
3302 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
b1721339 3303 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3cf2715d
DE
3304
3305 We handle alternate assembler dialects here, just like output_asm_insn. */
3306
3307void
e34d07f2 3308asm_fprintf (FILE *file, const char *p, ...)
3cf2715d 3309{
3cf2715d
DE
3310 char buf[10];
3311 char *q, c;
e34d07f2 3312 va_list argptr;
6cf9ac28 3313
e34d07f2 3314 va_start (argptr, p);
3cf2715d
DE
3315
3316 buf[0] = '%';
3317
b729186a 3318 while ((c = *p++))
3cf2715d
DE
3319 switch (c)
3320 {
3321#ifdef ASSEMBLER_DIALECT
3322 case '{':
b729186a
JL
3323 {
3324 int i;
3cf2715d 3325
b729186a
JL
3326 /* If we want the first dialect, do nothing. Otherwise, skip
3327 DIALECT_NUMBER of strings ending with '|'. */
3328 for (i = 0; i < dialect_number; i++)
3329 {
3330 while (*p && *p++ != '|')
3331 ;
3332
3333 if (*p == '|')
3334 p++;
f5d927c0 3335 }
b729186a 3336 }
3cf2715d
DE
3337 break;
3338
3339 case '|':
3340 /* Skip to close brace. */
3341 while (*p && *p++ != '}')
3342 ;
3343 break;
3344
3345 case '}':
3346 break;
3347#endif
3348
3349 case '%':
3350 c = *p++;
3351 q = &buf[1];
b1721339
KG
3352 while (strchr ("-+ #0", c))
3353 {
3354 *q++ = c;
3355 c = *p++;
3356 }
0df6c2c7 3357 while (ISDIGIT (c) || c == '.')
3cf2715d
DE
3358 {
3359 *q++ = c;
3360 c = *p++;
3361 }
3362 switch (c)
3363 {
3364 case '%':
b1721339 3365 putc ('%', file);
3cf2715d
DE
3366 break;
3367
3368 case 'd': case 'i': case 'u':
b1721339
KG
3369 case 'x': case 'X': case 'o':
3370 case 'c':
3cf2715d
DE
3371 *q++ = c;
3372 *q = 0;
3373 fprintf (file, buf, va_arg (argptr, int));
3374 break;
3375
3376 case 'w':
b1721339
KG
3377 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3378 'o' cases, but we do not check for those cases. It
3379 means that the value is a HOST_WIDE_INT, which may be
3380 either `long' or `long long'. */
85f015e1
KG
3381 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3382 q += strlen (HOST_WIDE_INT_PRINT);
3cf2715d
DE
3383 *q++ = *p++;
3384 *q = 0;
3385 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3386 break;
3387
3388 case 'l':
3389 *q++ = c;
b1721339
KG
3390#ifdef HAVE_LONG_LONG
3391 if (*p == 'l')
3392 {
3393 *q++ = *p++;
3394 *q++ = *p++;
3395 *q = 0;
3396 fprintf (file, buf, va_arg (argptr, long long));
3397 }
3398 else
3399#endif
3400 {
3401 *q++ = *p++;
3402 *q = 0;
3403 fprintf (file, buf, va_arg (argptr, long));
3404 }
6cf9ac28 3405
3cf2715d
DE
3406 break;
3407
3408 case 's':
3409 *q++ = c;
3410 *q = 0;
3411 fprintf (file, buf, va_arg (argptr, char *));
3412 break;
3413
3414 case 'O':
3415#ifdef ASM_OUTPUT_OPCODE
3416 ASM_OUTPUT_OPCODE (asm_out_file, p);
3417#endif
3418 break;
3419
3420 case 'R':
3421#ifdef REGISTER_PREFIX
3422 fprintf (file, "%s", REGISTER_PREFIX);
3423#endif
3424 break;
3425
3426 case 'I':
3427#ifdef IMMEDIATE_PREFIX
3428 fprintf (file, "%s", IMMEDIATE_PREFIX);
3429#endif
3430 break;
3431
3432 case 'L':
3433#ifdef LOCAL_LABEL_PREFIX
3434 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3435#endif
3436 break;
3437
3438 case 'U':
19283265 3439 fputs (user_label_prefix, file);
3cf2715d
DE
3440 break;
3441
fe0503ea
NC
3442#ifdef ASM_FPRINTF_EXTENSIONS
3443 /* Upper case letters are reserved for general use by asm_fprintf
3444 and so are not available to target specific code. In order to
3445 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3446 they are defined here. As they get turned into real extensions
3447 to asm_fprintf they should be removed from this list. */
3448 case 'A': case 'B': case 'C': case 'D': case 'E':
3449 case 'F': case 'G': case 'H': case 'J': case 'K':
3450 case 'M': case 'N': case 'P': case 'Q': case 'S':
3451 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3452 break;
f5d927c0 3453
fe0503ea
NC
3454 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3455#endif
3cf2715d
DE
3456 default:
3457 abort ();
3458 }
3459 break;
3460
3461 default:
b1721339 3462 putc (c, file);
3cf2715d 3463 }
e34d07f2 3464 va_end (argptr);
3cf2715d
DE
3465}
3466\f
3467/* Split up a CONST_DOUBLE or integer constant rtx
3468 into two rtx's for single words,
3469 storing in *FIRST the word that comes first in memory in the target
3470 and in *SECOND the other. */
3471
3472void
6cf9ac28 3473split_double (rtx value, rtx *first, rtx *second)
3cf2715d
DE
3474{
3475 if (GET_CODE (value) == CONST_INT)
3476 {
5a1a6efd 3477 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
f76b9db2 3478 {
5a1a6efd 3479 /* In this case the CONST_INT holds both target words.
27eef9ce
JC
3480 Extract the bits from it into two word-sized pieces.
3481 Sign extend each half to HOST_WIDE_INT. */
7f251dee
AO
3482 unsigned HOST_WIDE_INT low, high;
3483 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3484
3485 /* Set sign_bit to the most significant bit of a word. */
3486 sign_bit = 1;
3487 sign_bit <<= BITS_PER_WORD - 1;
3488
3489 /* Set mask so that all bits of the word are set. We could
3490 have used 1 << BITS_PER_WORD instead of basing the
3491 calculation on sign_bit. However, on machines where
3492 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3493 compiler warning, even though the code would never be
3494 executed. */
3495 mask = sign_bit << 1;
3496 mask--;
3497
3498 /* Set sign_extend as any remaining bits. */
3499 sign_extend = ~mask;
f5d927c0 3500
7f251dee
AO
3501 /* Pick the lower word and sign-extend it. */
3502 low = INTVAL (value);
3503 low &= mask;
3504 if (low & sign_bit)
3505 low |= sign_extend;
3506
3507 /* Pick the higher word, shifted to the least significant
3508 bits, and sign-extend it. */
3509 high = INTVAL (value);
3510 high >>= BITS_PER_WORD - 1;
3511 high >>= 1;
3512 high &= mask;
3513 if (high & sign_bit)
3514 high |= sign_extend;
3515
3516 /* Store the words in the target machine order. */
5a1a6efd
RK
3517 if (WORDS_BIG_ENDIAN)
3518 {
7f251dee
AO
3519 *first = GEN_INT (high);
3520 *second = GEN_INT (low);
5a1a6efd
RK
3521 }
3522 else
3523 {
7f251dee
AO
3524 *first = GEN_INT (low);
3525 *second = GEN_INT (high);
5a1a6efd 3526 }
f76b9db2
ILT
3527 }
3528 else
3529 {
5a1a6efd
RK
3530 /* The rule for using CONST_INT for a wider mode
3531 is that we regard the value as signed.
3532 So sign-extend it. */
3533 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3534 if (WORDS_BIG_ENDIAN)
3535 {
3536 *first = high;
3537 *second = value;
3538 }
3539 else
3540 {
3541 *first = value;
3542 *second = high;
3543 }
f76b9db2 3544 }
3cf2715d
DE
3545 }
3546 else if (GET_CODE (value) != CONST_DOUBLE)
3547 {
f76b9db2
ILT
3548 if (WORDS_BIG_ENDIAN)
3549 {
3550 *first = const0_rtx;
3551 *second = value;
3552 }
3553 else
3554 {
3555 *first = value;
3556 *second = const0_rtx;
3557 }
3cf2715d
DE
3558 }
3559 else if (GET_MODE (value) == VOIDmode
3560 /* This is the old way we did CONST_DOUBLE integers. */
3561 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3562 {
3563 /* In an integer, the words are defined as most and least significant.
3564 So order them by the target's convention. */
f76b9db2
ILT
3565 if (WORDS_BIG_ENDIAN)
3566 {
3567 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3568 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3569 }
3570 else
3571 {
3572 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3573 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3574 }
3cf2715d
DE
3575 }
3576 else
3577 {
f5d927c0
KH
3578 REAL_VALUE_TYPE r;
3579 long l[2];
3cf2715d
DE
3580 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3581
3582 /* Note, this converts the REAL_VALUE_TYPE to the target's
3583 format, splits up the floating point double and outputs
3584 exactly 32 bits of it into each of l[0] and l[1] --
0f41302f 3585 not necessarily BITS_PER_WORD bits. */
3cf2715d
DE
3586 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3587
b5a3eb84
JW
3588 /* If 32 bits is an entire word for the target, but not for the host,
3589 then sign-extend on the host so that the number will look the same
3590 way on the host that it would on the target. See for instance
3591 simplify_unary_operation. The #if is needed to avoid compiler
3592 warnings. */
3593
3594#if HOST_BITS_PER_LONG > 32
3595 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3596 {
3597 if (l[0] & ((long) 1 << 31))
3598 l[0] |= ((long) (-1) << 32);
3599 if (l[1] & ((long) 1 << 31))
3600 l[1] |= ((long) (-1) << 32);
3601 }
3602#endif
3603
3cf2715d
DE
3604 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3605 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3cf2715d
DE
3606 }
3607}
3608\f
3609/* Return nonzero if this function has no function calls. */
3610
3611int
6cf9ac28 3612leaf_function_p (void)
3cf2715d
DE
3613{
3614 rtx insn;
b660f82f 3615 rtx link;
3cf2715d 3616
70f4f91c 3617 if (current_function_profile || profile_arc_flag)
3cf2715d
DE
3618 return 0;
3619
3620 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3621 {
7d167afd
JJ
3622 if (GET_CODE (insn) == CALL_INSN
3623 && ! SIBLING_CALL_P (insn))
3cf2715d
DE
3624 return 0;
3625 if (GET_CODE (insn) == INSN
3626 && GET_CODE (PATTERN (insn)) == SEQUENCE
0a1c58a2
JL
3627 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3628 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3cf2715d
DE
3629 return 0;
3630 }
b660f82f
JW
3631 for (link = current_function_epilogue_delay_list;
3632 link;
3633 link = XEXP (link, 1))
3cf2715d 3634 {
b660f82f
JW
3635 insn = XEXP (link, 0);
3636
3637 if (GET_CODE (insn) == CALL_INSN
7d167afd 3638 && ! SIBLING_CALL_P (insn))
3cf2715d 3639 return 0;
b660f82f
JW
3640 if (GET_CODE (insn) == INSN
3641 && GET_CODE (PATTERN (insn)) == SEQUENCE
3642 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3643 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3cf2715d
DE
3644 return 0;
3645 }
3646
3647 return 1;
3648}
3649
09da1532 3650/* Return 1 if branch is a forward branch.
ef6257cd
JH
3651 Uses insn_shuid array, so it works only in the final pass. May be used by
3652 output templates to customary add branch prediction hints.
3653 */
3654int
6cf9ac28 3655final_forward_branch_p (rtx insn)
ef6257cd
JH
3656{
3657 int insn_id, label_id;
3658 if (!uid_shuid)
3659 abort ();
3660 insn_id = INSN_SHUID (insn);
3661 label_id = INSN_SHUID (JUMP_LABEL (insn));
3662 /* We've hit some insns that does not have id information available. */
3663 if (!insn_id || !label_id)
3664 abort ();
3665 return insn_id < label_id;
3666}
3667
3cf2715d
DE
3668/* On some machines, a function with no call insns
3669 can run faster if it doesn't create its own register window.
3670 When output, the leaf function should use only the "output"
3671 registers. Ordinarily, the function would be compiled to use
3672 the "input" registers to find its arguments; it is a candidate
3673 for leaf treatment if it uses only the "input" registers.
3674 Leaf function treatment means renumbering so the function
3675 uses the "output" registers instead. */
3676
3677#ifdef LEAF_REGISTERS
3678
3cf2715d
DE
3679/* Return 1 if this function uses only the registers that can be
3680 safely renumbered. */
3681
3682int
6cf9ac28 3683only_leaf_regs_used (void)
3cf2715d
DE
3684{
3685 int i;
4977bab6 3686 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3cf2715d
DE
3687
3688 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
e5e809f4
JL
3689 if ((regs_ever_live[i] || global_regs[i])
3690 && ! permitted_reg_in_leaf_functions[i])
3691 return 0;
3692
3693 if (current_function_uses_pic_offset_table
3694 && pic_offset_table_rtx != 0
3695 && GET_CODE (pic_offset_table_rtx) == REG
3696 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3697 return 0;
3698
3cf2715d
DE
3699 return 1;
3700}
3701
3702/* Scan all instructions and renumber all registers into those
3703 available in leaf functions. */
3704
3705static void
6cf9ac28 3706leaf_renumber_regs (rtx first)
3cf2715d
DE
3707{
3708 rtx insn;
3709
3710 /* Renumber only the actual patterns.
3711 The reg-notes can contain frame pointer refs,
3712 and renumbering them could crash, and should not be needed. */
3713 for (insn = first; insn; insn = NEXT_INSN (insn))
2c3c49de 3714 if (INSN_P (insn))
3cf2715d 3715 leaf_renumber_regs_insn (PATTERN (insn));
f5d927c0
KH
3716 for (insn = current_function_epilogue_delay_list;
3717 insn;
3718 insn = XEXP (insn, 1))
2c3c49de 3719 if (INSN_P (XEXP (insn, 0)))
3cf2715d
DE
3720 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3721}
3722
3723/* Scan IN_RTX and its subexpressions, and renumber all regs into those
3724 available in leaf functions. */
3725
3726void
6cf9ac28 3727leaf_renumber_regs_insn (rtx in_rtx)
3cf2715d 3728{
b3694847
SS
3729 int i, j;
3730 const char *format_ptr;
3cf2715d
DE
3731
3732 if (in_rtx == 0)
3733 return;
3734
3735 /* Renumber all input-registers into output-registers.
3736 renumbered_regs would be 1 for an output-register;
3737 they */
3738
3739 if (GET_CODE (in_rtx) == REG)
3740 {
3741 int newreg;
3742
3743 /* Don't renumber the same reg twice. */
3744 if (in_rtx->used)
3745 return;
3746
3747 newreg = REGNO (in_rtx);
3748 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3749 to reach here as part of a REG_NOTE. */
3750 if (newreg >= FIRST_PSEUDO_REGISTER)
3751 {
3752 in_rtx->used = 1;
3753 return;
3754 }
3755 newreg = LEAF_REG_REMAP (newreg);
3756 if (newreg < 0)
3757 abort ();
3758 regs_ever_live[REGNO (in_rtx)] = 0;
3759 regs_ever_live[newreg] = 1;
3760 REGNO (in_rtx) = newreg;
3761 in_rtx->used = 1;
3762 }
3763
2c3c49de 3764 if (INSN_P (in_rtx))
3cf2715d
DE
3765 {
3766 /* Inside a SEQUENCE, we find insns.
3767 Renumber just the patterns of these insns,
3768 just as we do for the top-level insns. */
3769 leaf_renumber_regs_insn (PATTERN (in_rtx));
3770 return;
3771 }
3772
3773 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3774
3775 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3776 switch (*format_ptr++)
3777 {
3778 case 'e':
3779 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3780 break;
3781
3782 case 'E':
3783 if (NULL != XVEC (in_rtx, i))
3784 {
3785 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3786 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3787 }
3788 break;
3789
3790 case 'S':
3791 case 's':
3792 case '0':
3793 case 'i':
3794 case 'w':
3795 case 'n':
3796 case 'u':
3797 break;
3798
3799 default:
3800 abort ();
3801 }
3802}
3803#endif
6a08f7b3
DP
3804
3805
3806/* When -gused is used, emit debug info for only used symbols. But in
3807 addition to the standard intercepted debug_hooks there are some direct
3808 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3809 Those routines may also be called from a higher level intercepted routine. So
3810 to prevent recording data for an inner call to one of these for an intercept,
3811 we maintain a intercept nesting counter (debug_nesting). We only save the
3812 intercepted arguments if the nesting is 1. */
3813int debug_nesting = 0;
3814
3815static tree *symbol_queue;
3816int symbol_queue_index = 0;
3817static int symbol_queue_size = 0;
3818
3819/* Generate the symbols for any queued up type symbols we encountered
3820 while generating the type info for some originally used symbol.
3821 This might generate additional entries in the queue. Only when
3822 the nesting depth goes to 0 is this routine called. */
3823
3824void
6cf9ac28 3825debug_flush_symbol_queue (void)
6a08f7b3
DP
3826{
3827 int i;
6cf9ac28 3828
6a08f7b3
DP
3829 /* Make sure that additionally queued items are not flushed
3830 prematurely. */
6cf9ac28 3831
6a08f7b3 3832 ++debug_nesting;
6cf9ac28 3833
6a08f7b3
DP
3834 for (i = 0; i < symbol_queue_index; ++i)
3835 {
3836 /* If we pushed queued symbols then such symbols are must be
3837 output no matter what anyone else says. Specifically,
3838 we need to make sure dbxout_symbol() thinks the symbol was
3839 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3840 which may be set for outside reasons. */
3841 int saved_tree_used = TREE_USED (symbol_queue[i]);
3842 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3843 TREE_USED (symbol_queue[i]) = 1;
3844 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3845
3846#ifdef DBX_DEBUGGING_INFO
3847 dbxout_symbol (symbol_queue[i], 0);
3848#endif
3849
3850 TREE_USED (symbol_queue[i]) = saved_tree_used;
3851 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3852 }
3853
3854 symbol_queue_index = 0;
6cf9ac28 3855 --debug_nesting;
6a08f7b3
DP
3856}
3857
3858/* Queue a type symbol needed as part of the definition of a decl
3859 symbol. These symbols are generated when debug_flush_symbol_queue()
3860 is called. */
3861
6cf9ac28 3862void
6a08f7b3
DP
3863debug_queue_symbol (tree decl)
3864{
6cf9ac28 3865 if (symbol_queue_index >= symbol_queue_size)
6a08f7b3
DP
3866 {
3867 symbol_queue_size += 10;
703ad42b
KG
3868 symbol_queue = xrealloc (symbol_queue,
3869 symbol_queue_size * sizeof (tree));
6a08f7b3
DP
3870 }
3871
3872 symbol_queue[symbol_queue_index++] = decl;
6cf9ac28 3873}
6a08f7b3 3874
f9da5064 3875/* Free symbol queue. */
6a08f7b3 3876void
6cf9ac28 3877debug_free_queue (void)
6a08f7b3
DP
3878{
3879 if (symbol_queue)
3880 {
3881 free (symbol_queue);
3882 symbol_queue = NULL;
3883 symbol_queue_size = 0;
3884 }
3885}
This page took 2.017027 seconds and 5 git commands to generate.