]> gcc.gnu.org Git - gcc.git/blame - gcc/final.c
backport: basic-block.h: Include vec.h, errors.h.
[gcc.git] / gcc / final.c
CommitLineData
3cf2715d 1/* Convert RTL to assembler code and output it, for GNU compiler.
3b708058 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3897f229 3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3cf2715d 4
1322177d 5This file is part of GCC.
3cf2715d 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
3cf2715d 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
3cf2715d
DE
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
3cf2715d 21
3cf2715d
DE
22/* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
08c148a8
NB
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
3cf2715d
DE
46
47#include "config.h"
670ee920 48#include "system.h"
4977bab6
ZW
49#include "coretypes.h"
50#include "tm.h"
3cf2715d
DE
51
52#include "tree.h"
53#include "rtl.h"
6baf1cc8 54#include "tm_p.h"
3cf2715d
DE
55#include "regs.h"
56#include "insn-config.h"
3cf2715d 57#include "insn-attr.h"
3cf2715d
DE
58#include "recog.h"
59#include "conditions.h"
60#include "flags.h"
61#include "real.h"
62#include "hard-reg-set.h"
3cf2715d 63#include "output.h"
3d195391 64#include "except.h"
49ad7cfa 65#include "function.h"
10f0ad3d 66#include "toplev.h"
d6f4ec51 67#include "reload.h"
ab87f8c8 68#include "intl.h"
be1bb652 69#include "basic-block.h"
08c148a8 70#include "target.h"
a5a42b92 71#include "debug.h"
49d801d3 72#include "expr.h"
ba4f7968 73#include "cfglayout.h"
3cf2715d 74
440aabf8
NB
75#ifdef XCOFF_DEBUGGING_INFO
76#include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78#endif
79
76ead72b
RL
80#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81#include "dwarf2out.h"
82#endif
83
6a08f7b3
DP
84#ifdef DBX_DEBUGGING_INFO
85#include "dbxout.h"
86#endif
87
3cf2715d
DE
88/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90#ifndef CC_STATUS_INIT
91#define CC_STATUS_INIT
92#endif
93
94/* How to start an assembler comment. */
95#ifndef ASM_COMMENT_START
96#define ASM_COMMENT_START ";#"
97#endif
98
99/* Is the given character a logical line separator for the assembler? */
100#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102#endif
103
75197b37
BS
104#ifndef JUMP_TABLES_IN_TEXT_SECTION
105#define JUMP_TABLES_IN_TEXT_SECTION 0
106#endif
107
d48bc59a
RH
108#if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109#define HAVE_READONLY_DATA_SECTION 1
110#else
111#define HAVE_READONLY_DATA_SECTION 0
112#endif
113
589fe865
DJ
114/* Bitflags used by final_scan_insn. */
115#define SEEN_BB 1
116#define SEEN_NOTE 2
117#define SEEN_EMITTED 4
118
3cf2715d 119/* Last insn processed by final_scan_insn. */
b1a9f6a0
RH
120static rtx debug_insn;
121rtx current_output_insn;
3cf2715d
DE
122
123/* Line number of last NOTE. */
124static int last_linenum;
125
eac40081
RK
126/* Highest line number in current block. */
127static int high_block_linenum;
128
129/* Likewise for function. */
130static int high_function_linenum;
131
3cf2715d 132/* Filename of last NOTE. */
3cce094d 133static const char *last_filename;
3cf2715d 134
fc470718
R
135extern int length_unit_log; /* This is defined in insn-attrtab.c. */
136
3cf2715d
DE
137/* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
c8b94768 140rtx this_is_asm_operands;
3cf2715d
DE
141
142/* Number of operands of this insn, for an `asm' with operands. */
22bf4422 143static unsigned int insn_noperands;
3cf2715d
DE
144
145/* Compare optimization flag. */
146
147static rtx last_ignored_compare = 0;
148
3cf2715d
DE
149/* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
151
152static int insn_counter = 0;
153
154#ifdef HAVE_cc0
155/* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
158
159CC_STATUS cc_status;
160
161/* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
163
164CC_STATUS cc_prev_status;
165#endif
166
167/* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
169
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
175
176char regs_ever_live[FIRST_PSEUDO_REGISTER];
177
df2ef49b
AM
178/* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
181
182char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
183
3cf2715d 184/* Nonzero means current function must be given a frame pointer.
b483cfb7
EB
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
3cf2715d
DE
187
188int frame_pointer_needed;
189
18c038b9 190/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
3cf2715d
DE
191
192static int block_depth;
193
194/* Nonzero if have enabled APP processing of our assembler output. */
195
196static int app_on;
197
198/* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
200
201rtx final_sequence;
202
203#ifdef ASSEMBLER_DIALECT
204
205/* Number of the assembler dialect to use, starting at 0. */
206static int dialect_number;
207#endif
208
afe48e06
RH
209#ifdef HAVE_conditional_execution
210/* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211rtx current_insn_predicate;
212#endif
213
1d300e19 214#ifdef HAVE_ATTR_length
6cf9ac28
AJ
215static int asm_insn_count (rtx);
216#endif
217static void profile_function (FILE *);
218static void profile_after_prologue (FILE *);
219static bool notice_source_line (rtx);
220static rtx walk_alter_subreg (rtx *);
221static void output_asm_name (void);
222static void output_alternate_entry_point (FILE *, rtx);
223static tree get_mem_expr_from_op (rtx, int *);
224static void output_asm_operand_names (rtx *, int *, int);
225static void output_operand (rtx, int);
e9a25f70 226#ifdef LEAF_REGISTERS
6cf9ac28 227static void leaf_renumber_regs (rtx);
e9a25f70
JL
228#endif
229#ifdef HAVE_cc0
6cf9ac28 230static int alter_cond (rtx);
e9a25f70 231#endif
ca3075bd 232#ifndef ADDR_VEC_ALIGN
6cf9ac28 233static int final_addr_vec_align (rtx);
ca3075bd 234#endif
7bdb32b9 235#ifdef HAVE_ATTR_length
6cf9ac28 236static int align_fuzz (rtx, rtx, int, unsigned);
7bdb32b9 237#endif
3cf2715d
DE
238\f
239/* Initialize data in final at the beginning of a compilation. */
240
241void
6cf9ac28 242init_final (const char *filename ATTRIBUTE_UNUSED)
3cf2715d 243{
3cf2715d 244 app_on = 0;
3cf2715d
DE
245 final_sequence = 0;
246
247#ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249#endif
250}
251
08c148a8 252/* Default target function prologue and epilogue assembler output.
b9f22704 253
08c148a8
NB
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256void
6cf9ac28
AJ
257default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
08c148a8
NB
259{
260}
261
b4c25db2
NB
262/* Default target hook that outputs nothing to a stream. */
263void
6cf9ac28 264no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
b4c25db2
NB
265{
266}
267
3cf2715d
DE
268/* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
270
271void
6cf9ac28 272app_enable (void)
3cf2715d
DE
273{
274 if (! app_on)
275 {
51723711 276 fputs (ASM_APP_ON, asm_out_file);
3cf2715d
DE
277 app_on = 1;
278 }
279}
280
281/* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
283
284void
6cf9ac28 285app_disable (void)
3cf2715d
DE
286{
287 if (app_on)
288 {
51723711 289 fputs (ASM_APP_OFF, asm_out_file);
3cf2715d
DE
290 app_on = 0;
291 }
292}
293\f
f5d927c0 294/* Return the number of slots filled in the current
3cf2715d
DE
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
297
298#ifdef DELAY_SLOTS
299int
6cf9ac28 300dbr_sequence_length (void)
3cf2715d
DE
301{
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
306}
307#endif
308\f
309/* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
311
312/* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
314
addd7df6 315static int *insn_lengths;
9d98a694 316
9d98a694 317varray_type insn_addresses_;
3cf2715d 318
ea3cbda5
R
319/* Max uid for which the above arrays are valid. */
320static int insn_lengths_max_uid;
321
3cf2715d
DE
322/* Address of insn being processed. Used by `insn_current_length'. */
323int insn_current_address;
324
fc470718
R
325/* Address of insn being processed in previous iteration. */
326int insn_last_address;
327
d6a7951f 328/* known invariant alignment of insn being processed. */
fc470718
R
329int insn_current_align;
330
95707627
R
331/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
339
f5d927c0
KH
340struct label_alignment
341{
9e423e6d
JW
342 short alignment;
343 short max_skip;
344};
345
346static rtx *uid_align;
347static int *uid_shuid;
348static struct label_alignment *label_align;
95707627 349
3cf2715d
DE
350/* Indicate that branch shortening hasn't yet been done. */
351
352void
6cf9ac28 353init_insn_lengths (void)
3cf2715d 354{
95707627
R
355 if (uid_shuid)
356 {
357 free (uid_shuid);
358 uid_shuid = 0;
359 }
360 if (insn_lengths)
361 {
362 free (insn_lengths);
363 insn_lengths = 0;
ea3cbda5 364 insn_lengths_max_uid = 0;
95707627 365 }
9d98a694
AO
366#ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368#endif
95707627
R
369 if (uid_align)
370 {
371 free (uid_align);
372 uid_align = 0;
373 }
3cf2715d
DE
374}
375
376/* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
378
379int
6cf9ac28 380get_attr_length (rtx insn ATTRIBUTE_UNUSED)
3cf2715d
DE
381{
382#ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
386
ea3cbda5 387 if (insn_lengths_max_uid > INSN_UID (insn))
3cf2715d
DE
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
391 {
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
396
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
400
401 case JUMP_INSN:
402 body = PATTERN (insn);
dd3f0101 403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
3cf2715d 404 {
fc470718
R
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
3cf2715d
DE
407 }
408 else
409 length = insn_default_length (insn);
410 break;
411
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
416
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
e9a25f70
JL
424 break;
425
426 default:
427 break;
3cf2715d
DE
428 }
429
430#ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432#endif
433 return length;
434#else /* not HAVE_ATTR_length */
435 return 0;
436#endif /* not HAVE_ATTR_length */
437}
438\f
fc470718
R
439/* Code to handle alignment inside shorten_branches. */
440
441/* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
443
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
f5d927c0 446 is used in an expression, it means the alignment value of the
fc470718 447 alignment point.
f5d927c0 448
fc470718
R
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
f5d927c0 452
fc470718
R
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
f5d927c0 455
fc470718
R
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
f5d927c0 458
fc470718 459 The estimated padding is then OX - IX.
f5d927c0 460
fc470718 461 OX can be safely estimated as
f5d927c0 462
fc470718
R
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
f5d927c0 467
fc470718
R
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
f5d927c0 470
fc470718
R
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
f5d927c0 473
fc470718
R
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
479
480#ifndef LABEL_ALIGN
efa3896a 481#define LABEL_ALIGN(LABEL) align_labels_log
fc470718
R
482#endif
483
9e423e6d 484#ifndef LABEL_ALIGN_MAX_SKIP
2cca7283 485#define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
9e423e6d
JW
486#endif
487
fc470718 488#ifndef LOOP_ALIGN
efa3896a 489#define LOOP_ALIGN(LABEL) align_loops_log
fc470718
R
490#endif
491
9e423e6d 492#ifndef LOOP_ALIGN_MAX_SKIP
2cca7283 493#define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
9e423e6d
JW
494#endif
495
fc470718 496#ifndef LABEL_ALIGN_AFTER_BARRIER
340f7e7c 497#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
fc470718
R
498#endif
499
9e423e6d 500#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
247a370b
JH
501#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502#endif
503
504#ifndef JUMP_ALIGN
505#define JUMP_ALIGN(LABEL) align_jumps_log
506#endif
507
508#ifndef JUMP_ALIGN_MAX_SKIP
2cca7283 509#define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
9e423e6d
JW
510#endif
511
fc470718 512#ifndef ADDR_VEC_ALIGN
ca3075bd 513static int
6cf9ac28 514final_addr_vec_align (rtx addr_vec)
fc470718 515{
2a841588 516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
fc470718
R
517
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
2a841588 520 return exact_log2 (align);
fc470718
R
521
522}
f5d927c0 523
fc470718
R
524#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525#endif
526
527#ifndef INSN_LENGTH_ALIGNMENT
528#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529#endif
530
fc470718
R
531#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
532
de7987a6 533static int min_labelno, max_labelno;
fc470718
R
534
535#define LABEL_TO_ALIGNMENT(LABEL) \
9e423e6d
JW
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
537
538#define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
fc470718
R
540
541/* For the benefit of port specific code do this also as a function. */
f5d927c0 542
fc470718 543int
6cf9ac28 544label_to_alignment (rtx label)
fc470718
R
545{
546 return LABEL_TO_ALIGNMENT (label);
547}
548
549#ifdef HAVE_ATTR_length
550/* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
563
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
d6a7951f 567 For this purpose, align_fuzz with a growth argument of 0 computes the
fc470718
R
568 appropriate adjustment. */
569
fc470718
R
570/* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
f5d927c0 577
ca3075bd 578static int
6cf9ac28 579align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
fc470718
R
580{
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
586
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
588 {
589 int align_addr, new_align;
590
591 uid = INSN_UID (align_label);
9d98a694 592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
fc470718
R
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
601 }
602 return fuzz;
603}
604
605/* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
f5d927c0 616
fc470718 617int
6cf9ac28 618insn_current_reference_address (rtx branch)
fc470718 619{
5527bf14
RH
620 rtx dest, seq;
621 int seq_uid;
622
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
625
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
4b4bf941 628 if (!JUMP_P (branch))
fc470718
R
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
5527bf14 636
b9f22704 637 /* BRANCH has no proper alignment chain set, so use SEQ.
afc6898e
BS
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
fc470718 640 {
f5d927c0 641 /* Forward branch. */
fc470718 642 return (insn_last_address + insn_lengths[seq_uid]
26024475 643 - align_fuzz (seq, dest, length_unit_log, ~0));
fc470718
R
644 }
645 else
646 {
f5d927c0 647 /* Backward branch. */
fc470718 648 return (insn_current_address
923f7cf9 649 + align_fuzz (dest, seq, length_unit_log, ~0));
fc470718
R
650 }
651}
652#endif /* HAVE_ATTR_length */
653\f
247a370b 654void
6cf9ac28 655compute_alignments (void)
247a370b 656{
247a370b 657 int log, max_skip, max_log;
e0082a72 658 basic_block bb;
247a370b
JH
659
660 if (label_align)
661 {
662 free (label_align);
663 label_align = 0;
664 }
665
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
703ad42b
KG
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
247a370b
JH
670
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
ba712955 672 if (! optimize || optimize_size)
247a370b
JH
673 return;
674
e0082a72 675 FOR_EACH_BB (bb)
247a370b 676 {
a813c111 677 rtx label = BB_HEAD (bb);
247a370b
JH
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
628f6a4e 680 edge_iterator ei;
247a370b 681
4b4bf941 682 if (!LABEL_P (label)
66b4e478 683 || probably_never_executed_bb_p (bb))
247a370b
JH
684 continue;
685 max_log = LABEL_ALIGN (label);
686 max_skip = LABEL_ALIGN_MAX_SKIP;
687
628f6a4e 688 FOR_EACH_EDGE (e, ei, bb->preds)
247a370b
JH
689 {
690 if (e->flags & EDGE_FALLTHRU)
691 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
692 else
693 branch_frequency += EDGE_FREQUENCY (e);
694 }
695
f63d1bf7 696 /* There are two purposes to align block with no fallthru incoming edge:
247a370b 697 1) to avoid fetch stalls when branch destination is near cache boundary
d6a7951f 698 2) to improve cache efficiency in case the previous block is not executed
247a370b
JH
699 (so it does not need to be in the cache).
700
701 We to catch first case, we align frequently executed blocks.
702 To catch the second, we align blocks that are executed more frequently
eaec9b3d 703 than the predecessor and the predecessor is likely to not be executed
247a370b
JH
704 when function is called. */
705
706 if (!has_fallthru
707 && (branch_frequency > BB_FREQ_MAX / 10
f6366fc7
ZD
708 || (bb->frequency > bb->prev_bb->frequency * 10
709 && (bb->prev_bb->frequency
247a370b
JH
710 <= ENTRY_BLOCK_PTR->frequency / 2))))
711 {
712 log = JUMP_ALIGN (label);
713 if (max_log < log)
714 {
715 max_log = log;
716 max_skip = JUMP_ALIGN_MAX_SKIP;
717 }
718 }
719 /* In case block is frequent and reached mostly by non-fallthru edge,
09da1532 720 align it. It is most likely a first block of loop. */
247a370b 721 if (has_fallthru
66b4e478 722 && maybe_hot_bb_p (bb)
247a370b 723 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1877be45 724 && branch_frequency > fallthru_frequency * 2)
247a370b
JH
725 {
726 log = LOOP_ALIGN (label);
727 if (max_log < log)
728 {
729 max_log = log;
730 max_skip = LOOP_ALIGN_MAX_SKIP;
731 }
732 }
733 LABEL_TO_ALIGNMENT (label) = max_log;
734 LABEL_TO_MAX_SKIP (label) = max_skip;
735 }
736}
737\f
3cf2715d
DE
738/* Make a pass over all insns and compute their actual lengths by shortening
739 any branches of variable length if possible. */
740
fc470718
R
741/* shorten_branches might be called multiple times: for example, the SH
742 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
743 In order to do this, it needs proper length information, which it obtains
744 by calling shorten_branches. This cannot be collapsed with
d6a7951f 745 shorten_branches itself into a single pass unless we also want to integrate
fc470718
R
746 reorg.c, since the branch splitting exposes new instructions with delay
747 slots. */
748
3cf2715d 749void
6cf9ac28 750shorten_branches (rtx first ATTRIBUTE_UNUSED)
3cf2715d 751{
3cf2715d 752 rtx insn;
fc470718
R
753 int max_uid;
754 int i;
fc470718 755 int max_log;
9e423e6d 756 int max_skip;
fc470718
R
757#ifdef HAVE_ATTR_length
758#define MAX_CODE_ALIGN 16
759 rtx seq;
3cf2715d 760 int something_changed = 1;
3cf2715d
DE
761 char *varying_length;
762 rtx body;
763 int uid;
fc470718 764 rtx align_tab[MAX_CODE_ALIGN];
3cf2715d 765
fc470718 766#endif
3d14e82f 767
3446405d
JH
768 /* Compute maximum UID and allocate label_align / uid_shuid. */
769 max_uid = get_max_uid ();
d9b6874b 770
07a1f795
AP
771 /* Free uid_shuid before reallocating it. */
772 free (uid_shuid);
773
703ad42b 774 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
25e22dc0 775
247a370b
JH
776 if (max_labelno != max_label_num ())
777 {
778 int old = max_labelno;
779 int n_labels;
780 int n_old_labels;
781
782 max_labelno = max_label_num ();
783
784 n_labels = max_labelno - min_labelno + 1;
785 n_old_labels = old - min_labelno + 1;
786
703ad42b
KG
787 label_align = xrealloc (label_align,
788 n_labels * sizeof (struct label_alignment));
247a370b
JH
789
790 /* Range of labels grows monotonically in the function. Abort here
791 means that the initialization of array got lost. */
0bccc606 792 gcc_assert (n_old_labels <= n_labels);
247a370b
JH
793
794 memset (label_align + n_old_labels, 0,
795 (n_labels - n_old_labels) * sizeof (struct label_alignment));
796 }
797
fc470718
R
798 /* Initialize label_align and set up uid_shuid to be strictly
799 monotonically rising with insn order. */
e2faec75
R
800 /* We use max_log here to keep track of the maximum alignment we want to
801 impose on the next CODE_LABEL (or the current one if we are processing
802 the CODE_LABEL itself). */
f5d927c0 803
9e423e6d
JW
804 max_log = 0;
805 max_skip = 0;
806
807 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
fc470718
R
808 {
809 int log;
810
811 INSN_SHUID (insn) = i++;
2c3c49de 812 if (INSN_P (insn))
e2faec75
R
813 {
814 /* reorg might make the first insn of a loop being run once only,
815 and delete the label in front of it. Then we want to apply
816 the loop alignment to the new label created by reorg, which
817 is separated by the former loop start insn from the
818 NOTE_INSN_LOOP_BEG. */
819 }
4b4bf941 820 else if (LABEL_P (insn))
fc470718
R
821 {
822 rtx next;
ff81832f 823
247a370b
JH
824 /* Merge in alignments computed by compute_alignments. */
825 log = LABEL_TO_ALIGNMENT (insn);
826 if (max_log < log)
827 {
828 max_log = log;
829 max_skip = LABEL_TO_MAX_SKIP (insn);
830 }
fc470718
R
831
832 log = LABEL_ALIGN (insn);
833 if (max_log < log)
9e423e6d
JW
834 {
835 max_log = log;
836 max_skip = LABEL_ALIGN_MAX_SKIP;
837 }
fc470718 838 next = NEXT_INSN (insn);
75197b37
BS
839 /* ADDR_VECs only take room if read-only data goes into the text
840 section. */
d48bc59a 841 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
4b4bf941 842 if (next && JUMP_P (next))
75197b37
BS
843 {
844 rtx nextbody = PATTERN (next);
845 if (GET_CODE (nextbody) == ADDR_VEC
846 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
847 {
848 log = ADDR_VEC_ALIGN (next);
849 if (max_log < log)
850 {
851 max_log = log;
852 max_skip = LABEL_ALIGN_MAX_SKIP;
853 }
854 }
855 }
fc470718 856 LABEL_TO_ALIGNMENT (insn) = max_log;
9e423e6d 857 LABEL_TO_MAX_SKIP (insn) = max_skip;
fc470718 858 max_log = 0;
9e423e6d 859 max_skip = 0;
fc470718 860 }
4b4bf941 861 else if (BARRIER_P (insn))
fc470718
R
862 {
863 rtx label;
864
2c3c49de 865 for (label = insn; label && ! INSN_P (label);
fc470718 866 label = NEXT_INSN (label))
4b4bf941 867 if (LABEL_P (label))
fc470718
R
868 {
869 log = LABEL_ALIGN_AFTER_BARRIER (insn);
870 if (max_log < log)
9e423e6d
JW
871 {
872 max_log = log;
873 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
874 }
fc470718
R
875 break;
876 }
877 }
fc470718
R
878 }
879#ifdef HAVE_ATTR_length
880
881 /* Allocate the rest of the arrays. */
703ad42b 882 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
ea3cbda5 883 insn_lengths_max_uid = max_uid;
af035616
R
884 /* Syntax errors can lead to labels being outside of the main insn stream.
885 Initialize insn_addresses, so that we get reproducible results. */
9d98a694 886 INSN_ADDRESSES_ALLOC (max_uid);
fc470718 887
703ad42b 888 varying_length = xcalloc (max_uid, sizeof (char));
fc470718
R
889
890 /* Initialize uid_align. We scan instructions
891 from end to start, and keep in align_tab[n] the last seen insn
892 that does an alignment of at least n+1, i.e. the successor
893 in the alignment chain for an insn that does / has a known
894 alignment of n. */
703ad42b 895 uid_align = xcalloc (max_uid, sizeof *uid_align);
fc470718 896
f5d927c0 897 for (i = MAX_CODE_ALIGN; --i >= 0;)
fc470718
R
898 align_tab[i] = NULL_RTX;
899 seq = get_last_insn ();
33f7f353 900 for (; seq; seq = PREV_INSN (seq))
fc470718
R
901 {
902 int uid = INSN_UID (seq);
903 int log;
4b4bf941 904 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
fc470718 905 uid_align[uid] = align_tab[0];
fc470718
R
906 if (log)
907 {
908 /* Found an alignment label. */
909 uid_align[uid] = align_tab[log];
910 for (i = log - 1; i >= 0; i--)
911 align_tab[i] = seq;
912 }
33f7f353
JR
913 }
914#ifdef CASE_VECTOR_SHORTEN_MODE
915 if (optimize)
916 {
917 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
918 label fields. */
919
920 int min_shuid = INSN_SHUID (get_insns ()) - 1;
921 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
922 int rel;
923
924 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
fc470718 925 {
33f7f353
JR
926 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
927 int len, i, min, max, insn_shuid;
928 int min_align;
929 addr_diff_vec_flags flags;
930
4b4bf941 931 if (!JUMP_P (insn)
33f7f353
JR
932 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
933 continue;
934 pat = PATTERN (insn);
935 len = XVECLEN (pat, 1);
0bccc606 936 gcc_assert (len > 0);
33f7f353
JR
937 min_align = MAX_CODE_ALIGN;
938 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
939 {
940 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
941 int shuid = INSN_SHUID (lab);
942 if (shuid < min)
943 {
944 min = shuid;
945 min_lab = lab;
946 }
947 if (shuid > max)
948 {
949 max = shuid;
950 max_lab = lab;
951 }
952 if (min_align > LABEL_TO_ALIGNMENT (lab))
953 min_align = LABEL_TO_ALIGNMENT (lab);
954 }
955 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
956 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
957 insn_shuid = INSN_SHUID (insn);
958 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
959 flags.min_align = min_align;
960 flags.base_after_vec = rel > insn_shuid;
961 flags.min_after_vec = min > insn_shuid;
962 flags.max_after_vec = max > insn_shuid;
963 flags.min_after_base = min > rel;
964 flags.max_after_base = max > rel;
965 ADDR_DIFF_VEC_FLAGS (pat) = flags;
fc470718
R
966 }
967 }
33f7f353 968#endif /* CASE_VECTOR_SHORTEN_MODE */
3cf2715d 969
3cf2715d 970 /* Compute initial lengths, addresses, and varying flags for each insn. */
b816f339 971 for (insn_current_address = 0, insn = first;
3cf2715d
DE
972 insn != 0;
973 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
974 {
975 uid = INSN_UID (insn);
fc470718 976
3cf2715d 977 insn_lengths[uid] = 0;
fc470718 978
4b4bf941 979 if (LABEL_P (insn))
fc470718
R
980 {
981 int log = LABEL_TO_ALIGNMENT (insn);
982 if (log)
983 {
984 int align = 1 << log;
ecb06768 985 int new_address = (insn_current_address + align - 1) & -align;
fc470718 986 insn_lengths[uid] = new_address - insn_current_address;
fc470718
R
987 }
988 }
989
5a09edba 990 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
f5d927c0 991
4b4bf941
JQ
992 if (NOTE_P (insn) || BARRIER_P (insn)
993 || LABEL_P (insn))
3cf2715d 994 continue;
04da53bd
R
995 if (INSN_DELETED_P (insn))
996 continue;
3cf2715d
DE
997
998 body = PATTERN (insn);
999 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
5a32a90c
JR
1000 {
1001 /* This only takes room if read-only data goes into the text
1002 section. */
d48bc59a 1003 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
75197b37
BS
1004 insn_lengths[uid] = (XVECLEN (body,
1005 GET_CODE (body) == ADDR_DIFF_VEC)
1006 * GET_MODE_SIZE (GET_MODE (body)));
5a32a90c 1007 /* Alignment is handled by ADDR_VEC_ALIGN. */
5a32a90c 1008 }
a30caf5c 1009 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
3cf2715d
DE
1010 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1011 else if (GET_CODE (body) == SEQUENCE)
1012 {
1013 int i;
1014 int const_delay_slots;
1015#ifdef DELAY_SLOTS
1016 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1017#else
1018 const_delay_slots = 0;
1019#endif
1020 /* Inside a delay slot sequence, we do not do any branch shortening
1021 if the shortening could change the number of delay slots
0f41302f 1022 of the branch. */
3cf2715d
DE
1023 for (i = 0; i < XVECLEN (body, 0); i++)
1024 {
1025 rtx inner_insn = XVECEXP (body, 0, i);
1026 int inner_uid = INSN_UID (inner_insn);
1027 int inner_length;
1028
a30caf5c
DC
1029 if (GET_CODE (body) == ASM_INPUT
1030 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
3cf2715d
DE
1031 inner_length = (asm_insn_count (PATTERN (inner_insn))
1032 * insn_default_length (inner_insn));
1033 else
1034 inner_length = insn_default_length (inner_insn);
f5d927c0 1035
3cf2715d
DE
1036 insn_lengths[inner_uid] = inner_length;
1037 if (const_delay_slots)
1038 {
1039 if ((varying_length[inner_uid]
1040 = insn_variable_length_p (inner_insn)) != 0)
1041 varying_length[uid] = 1;
9d98a694
AO
1042 INSN_ADDRESSES (inner_uid) = (insn_current_address
1043 + insn_lengths[uid]);
3cf2715d
DE
1044 }
1045 else
1046 varying_length[inner_uid] = 0;
1047 insn_lengths[uid] += inner_length;
1048 }
1049 }
1050 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1051 {
1052 insn_lengths[uid] = insn_default_length (insn);
1053 varying_length[uid] = insn_variable_length_p (insn);
1054 }
1055
1056 /* If needed, do any adjustment. */
1057#ifdef ADJUST_INSN_LENGTH
1058 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
04b6000c 1059 if (insn_lengths[uid] < 0)
c725bd79 1060 fatal_insn ("negative insn length", insn);
3cf2715d
DE
1061#endif
1062 }
1063
1064 /* Now loop over all the insns finding varying length insns. For each,
1065 get the current insn length. If it has changed, reflect the change.
1066 When nothing changes for a full pass, we are done. */
1067
1068 while (something_changed)
1069 {
1070 something_changed = 0;
fc470718 1071 insn_current_align = MAX_CODE_ALIGN - 1;
b816f339 1072 for (insn_current_address = 0, insn = first;
3cf2715d
DE
1073 insn != 0;
1074 insn = NEXT_INSN (insn))
1075 {
1076 int new_length;
b729186a 1077#ifdef ADJUST_INSN_LENGTH
3cf2715d 1078 int tmp_length;
b729186a 1079#endif
fc470718 1080 int length_align;
3cf2715d
DE
1081
1082 uid = INSN_UID (insn);
fc470718 1083
4b4bf941 1084 if (LABEL_P (insn))
fc470718
R
1085 {
1086 int log = LABEL_TO_ALIGNMENT (insn);
1087 if (log > insn_current_align)
1088 {
1089 int align = 1 << log;
ecb06768 1090 int new_address= (insn_current_address + align - 1) & -align;
fc470718
R
1091 insn_lengths[uid] = new_address - insn_current_address;
1092 insn_current_align = log;
1093 insn_current_address = new_address;
1094 }
1095 else
1096 insn_lengths[uid] = 0;
9d98a694 1097 INSN_ADDRESSES (uid) = insn_current_address;
fc470718
R
1098 continue;
1099 }
1100
1101 length_align = INSN_LENGTH_ALIGNMENT (insn);
1102 if (length_align < insn_current_align)
1103 insn_current_align = length_align;
1104
9d98a694
AO
1105 insn_last_address = INSN_ADDRESSES (uid);
1106 INSN_ADDRESSES (uid) = insn_current_address;
fc470718 1107
5e75ef4a 1108#ifdef CASE_VECTOR_SHORTEN_MODE
4b4bf941 1109 if (optimize && JUMP_P (insn)
33f7f353
JR
1110 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1111 {
33f7f353
JR
1112 rtx body = PATTERN (insn);
1113 int old_length = insn_lengths[uid];
1114 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1115 rtx min_lab = XEXP (XEXP (body, 2), 0);
1116 rtx max_lab = XEXP (XEXP (body, 3), 0);
9d98a694
AO
1117 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1118 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1119 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
33f7f353
JR
1120 rtx prev;
1121 int rel_align = 0;
950a3816
KG
1122 addr_diff_vec_flags flags;
1123
1124 /* Avoid automatic aggregate initialization. */
1125 flags = ADDR_DIFF_VEC_FLAGS (body);
33f7f353
JR
1126
1127 /* Try to find a known alignment for rel_lab. */
1128 for (prev = rel_lab;
1129 prev
1130 && ! insn_lengths[INSN_UID (prev)]
1131 && ! (varying_length[INSN_UID (prev)] & 1);
1132 prev = PREV_INSN (prev))
1133 if (varying_length[INSN_UID (prev)] & 2)
1134 {
1135 rel_align = LABEL_TO_ALIGNMENT (prev);
1136 break;
1137 }
1138
1139 /* See the comment on addr_diff_vec_flags in rtl.h for the
1140 meaning of the flags values. base: REL_LAB vec: INSN */
1141 /* Anything after INSN has still addresses from the last
1142 pass; adjust these so that they reflect our current
1143 estimate for this pass. */
1144 if (flags.base_after_vec)
1145 rel_addr += insn_current_address - insn_last_address;
1146 if (flags.min_after_vec)
1147 min_addr += insn_current_address - insn_last_address;
1148 if (flags.max_after_vec)
1149 max_addr += insn_current_address - insn_last_address;
1150 /* We want to know the worst case, i.e. lowest possible value
1151 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1152 its offset is positive, and we have to be wary of code shrink;
1153 otherwise, it is negative, and we have to be vary of code
1154 size increase. */
1155 if (flags.min_after_base)
1156 {
1157 /* If INSN is between REL_LAB and MIN_LAB, the size
1158 changes we are about to make can change the alignment
1159 within the observed offset, therefore we have to break
1160 it up into two parts that are independent. */
1161 if (! flags.base_after_vec && flags.min_after_vec)
1162 {
1163 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1164 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1165 }
1166 else
1167 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1168 }
1169 else
1170 {
1171 if (flags.base_after_vec && ! flags.min_after_vec)
1172 {
1173 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1174 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1175 }
1176 else
1177 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1178 }
1179 /* Likewise, determine the highest lowest possible value
1180 for the offset of MAX_LAB. */
1181 if (flags.max_after_base)
1182 {
1183 if (! flags.base_after_vec && flags.max_after_vec)
1184 {
1185 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1186 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1187 }
1188 else
1189 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1190 }
1191 else
1192 {
1193 if (flags.base_after_vec && ! flags.max_after_vec)
1194 {
1195 max_addr += align_fuzz (max_lab, insn, 0, 0);
1196 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1197 }
1198 else
1199 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1200 }
1201 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1202 max_addr - rel_addr,
1203 body));
d48bc59a 1204 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
75197b37
BS
1205 {
1206 insn_lengths[uid]
1207 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1208 insn_current_address += insn_lengths[uid];
1209 if (insn_lengths[uid] != old_length)
1210 something_changed = 1;
1211 }
1212
33f7f353 1213 continue;
33f7f353 1214 }
5e75ef4a
JL
1215#endif /* CASE_VECTOR_SHORTEN_MODE */
1216
1217 if (! (varying_length[uid]))
3cf2715d 1218 {
4b4bf941 1219 if (NONJUMP_INSN_P (insn)
674fc07d
GS
1220 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1221 {
1222 int i;
1223
1224 body = PATTERN (insn);
1225 for (i = 0; i < XVECLEN (body, 0); i++)
1226 {
1227 rtx inner_insn = XVECEXP (body, 0, i);
1228 int inner_uid = INSN_UID (inner_insn);
1229
1230 INSN_ADDRESSES (inner_uid) = insn_current_address;
1231
1232 insn_current_address += insn_lengths[inner_uid];
1233 }
dd3f0101 1234 }
674fc07d
GS
1235 else
1236 insn_current_address += insn_lengths[uid];
1237
3cf2715d
DE
1238 continue;
1239 }
674fc07d 1240
4b4bf941 1241 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3cf2715d
DE
1242 {
1243 int i;
f5d927c0 1244
3cf2715d
DE
1245 body = PATTERN (insn);
1246 new_length = 0;
1247 for (i = 0; i < XVECLEN (body, 0); i++)
1248 {
1249 rtx inner_insn = XVECEXP (body, 0, i);
1250 int inner_uid = INSN_UID (inner_insn);
1251 int inner_length;
1252
9d98a694 1253 INSN_ADDRESSES (inner_uid) = insn_current_address;
3cf2715d
DE
1254
1255 /* insn_current_length returns 0 for insns with a
1256 non-varying length. */
1257 if (! varying_length[inner_uid])
1258 inner_length = insn_lengths[inner_uid];
1259 else
1260 inner_length = insn_current_length (inner_insn);
1261
1262 if (inner_length != insn_lengths[inner_uid])
1263 {
1264 insn_lengths[inner_uid] = inner_length;
1265 something_changed = 1;
1266 }
1267 insn_current_address += insn_lengths[inner_uid];
1268 new_length += inner_length;
1269 }
1270 }
1271 else
1272 {
1273 new_length = insn_current_length (insn);
1274 insn_current_address += new_length;
1275 }
1276
3cf2715d
DE
1277#ifdef ADJUST_INSN_LENGTH
1278 /* If needed, do any adjustment. */
1279 tmp_length = new_length;
1280 ADJUST_INSN_LENGTH (insn, new_length);
1281 insn_current_address += (new_length - tmp_length);
3cf2715d
DE
1282#endif
1283
1284 if (new_length != insn_lengths[uid])
1285 {
1286 insn_lengths[uid] = new_length;
1287 something_changed = 1;
1288 }
1289 }
bb4aaf18
TG
1290 /* For a non-optimizing compile, do only a single pass. */
1291 if (!optimize)
1292 break;
3cf2715d 1293 }
fc470718
R
1294
1295 free (varying_length);
1296
3cf2715d
DE
1297#endif /* HAVE_ATTR_length */
1298}
1299
1300#ifdef HAVE_ATTR_length
1301/* Given the body of an INSN known to be generated by an ASM statement, return
1302 the number of machine instructions likely to be generated for this insn.
1303 This is used to compute its length. */
1304
1305static int
6cf9ac28 1306asm_insn_count (rtx body)
3cf2715d 1307{
3cce094d 1308 const char *template;
3cf2715d
DE
1309 int count = 1;
1310
5d0930ea
DE
1311 if (GET_CODE (body) == ASM_INPUT)
1312 template = XSTR (body, 0);
1313 else
df4ae160 1314 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
5d0930ea 1315
f5d927c0
KH
1316 for (; *template; template++)
1317 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
3cf2715d
DE
1318 count++;
1319
1320 return count;
1321}
1322#endif
1323\f
1324/* Output assembler code for the start of a function,
1325 and initialize some of the variables in this file
1326 for the new function. The label for the function and associated
1327 assembler pseudo-ops have already been output in `assemble_start_function'.
1328
1329 FIRST is the first insn of the rtl for the function being compiled.
1330 FILE is the file to write assembler code to.
1331 OPTIMIZE is nonzero if we should eliminate redundant
1332 test and compare insns. */
1333
1334void
6cf9ac28
AJ
1335final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1336 int optimize ATTRIBUTE_UNUSED)
3cf2715d
DE
1337{
1338 block_depth = 0;
1339
1340 this_is_asm_operands = 0;
1341
9ae130f8
JH
1342 last_filename = locator_file (prologue_locator);
1343 last_linenum = locator_line (prologue_locator);
1344
653e276c 1345 high_block_linenum = high_function_linenum = last_linenum;
eac40081 1346
653e276c 1347 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
d291dd49 1348
951120ea 1349#if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
7a0c8d71 1350 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
653e276c 1351 dwarf2out_begin_prologue (0, NULL);
f5d927c0 1352#endif
3cf2715d
DE
1353
1354#ifdef LEAF_REG_REMAP
54ff41b7 1355 if (current_function_uses_only_leaf_regs)
3cf2715d
DE
1356 leaf_renumber_regs (first);
1357#endif
1358
1359 /* The Sun386i and perhaps other machines don't work right
1360 if the profiling code comes after the prologue. */
1361#ifdef PROFILE_BEFORE_PROLOGUE
70f4f91c 1362 if (current_function_profile)
3cf2715d
DE
1363 profile_function (file);
1364#endif /* PROFILE_BEFORE_PROLOGUE */
1365
0021b564
JM
1366#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1367 if (dwarf2out_do_frame ())
1368 dwarf2out_frame_debug (NULL_RTX);
1369#endif
1370
18c038b9
MM
1371 /* If debugging, assign block numbers to all of the blocks in this
1372 function. */
1373 if (write_symbols)
1374 {
3ac79482 1375 remove_unnecessary_notes ();
0435312e 1376 reemit_insn_block_notes ();
a20612aa 1377 number_blocks (current_function_decl);
18c038b9
MM
1378 /* We never actually put out begin/end notes for the top-level
1379 block in the function. But, conceptually, that block is
1380 always needed. */
1381 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1382 }
1383
3cf2715d 1384 /* First output the function prologue: code to set up the stack frame. */
5fd9b178 1385 targetm.asm_out.function_prologue (file, get_frame_size ());
3cf2715d 1386
3cf2715d
DE
1387 /* If the machine represents the prologue as RTL, the profiling code must
1388 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1389#ifdef HAVE_prologue
1390 if (! HAVE_prologue)
1391#endif
1392 profile_after_prologue (file);
3cf2715d
DE
1393}
1394
1395static void
6cf9ac28 1396profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
3cf2715d 1397{
3cf2715d 1398#ifndef PROFILE_BEFORE_PROLOGUE
70f4f91c 1399 if (current_function_profile)
3cf2715d
DE
1400 profile_function (file);
1401#endif /* not PROFILE_BEFORE_PROLOGUE */
1402}
1403
1404static void
6cf9ac28 1405profile_function (FILE *file ATTRIBUTE_UNUSED)
3cf2715d 1406{
dcacfa04 1407#ifndef NO_PROFILE_COUNTERS
9739c90c 1408# define NO_PROFILE_COUNTERS 0
dcacfa04 1409#endif
b729186a 1410#if defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1411 int sval = current_function_returns_struct;
61f71b34 1412 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
b729186a 1413#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
6de9cd9a 1414 int cxt = cfun->static_chain_decl != NULL;
b729186a
JL
1415#endif
1416#endif /* ASM_OUTPUT_REG_PUSH */
3cf2715d 1417
9739c90c
JJ
1418 if (! NO_PROFILE_COUNTERS)
1419 {
1420 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1421 data_section ();
1422 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
5fd9b178 1423 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
9739c90c
JJ
1424 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1425 }
3cf2715d 1426
499df339 1427 function_section (current_function_decl);
3cf2715d 1428
61f71b34 1429#if defined(ASM_OUTPUT_REG_PUSH)
f8cfc6aa 1430 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
61f71b34 1431 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
3cf2715d
DE
1432#endif
1433
65ed39df 1434#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1435 if (cxt)
1436 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1437#else
65ed39df 1438#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1439 if (cxt)
51723711
KG
1440 {
1441 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1442 }
3cf2715d
DE
1443#endif
1444#endif
3cf2715d 1445
df696a75 1446 FUNCTION_PROFILER (file, current_function_funcdef_no);
3cf2715d 1447
65ed39df 1448#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1449 if (cxt)
1450 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1451#else
65ed39df 1452#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1453 if (cxt)
51723711
KG
1454 {
1455 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1456 }
3cf2715d
DE
1457#endif
1458#endif
3cf2715d 1459
61f71b34 1460#if defined(ASM_OUTPUT_REG_PUSH)
f8cfc6aa 1461 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
61f71b34 1462 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
3cf2715d
DE
1463#endif
1464}
1465
1466/* Output assembler code for the end of a function.
1467 For clarity, args are same as those of `final_start_function'
1468 even though not all of them are needed. */
1469
1470void
6cf9ac28 1471final_end_function (void)
3cf2715d 1472{
be1bb652 1473 app_disable ();
3cf2715d 1474
e2a12aca 1475 (*debug_hooks->end_function) (high_function_linenum);
3cf2715d 1476
3cf2715d
DE
1477 /* Finally, output the function epilogue:
1478 code to restore the stack frame and return to the caller. */
5fd9b178 1479 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
3cf2715d 1480
e2a12aca 1481 /* And debug output. */
702ada3d 1482 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
3cf2715d 1483
e2a12aca 1484#if defined (DWARF2_UNWIND_INFO)
7a0c8d71
DR
1485 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1486 && dwarf2out_do_frame ())
702ada3d 1487 dwarf2out_end_epilogue (last_linenum, last_filename);
9a666dda 1488#endif
3cf2715d
DE
1489}
1490\f
3cf2715d
DE
1491/* Output assembler code for some insns: all or part of a function.
1492 For description of args, see `final_start_function', above.
1493
1494 PRESCAN is 1 if we are not really outputting,
1495 just scanning as if we were outputting.
1496 Prescanning deletes and rearranges insns just like ordinary output.
1497 PRESCAN is -2 if we are outputting after having prescanned.
1498 In this case, don't try to delete or rearrange insns
1499 because that has already been done.
1500 Prescanning is done only on certain machines. */
1501
1502void
6cf9ac28 1503final (rtx first, FILE *file, int optimize, int prescan)
3cf2715d 1504{
b3694847 1505 rtx insn;
a8c3510c 1506 int max_uid = 0;
589fe865 1507 int seen = 0;
3cf2715d
DE
1508
1509 last_ignored_compare = 0;
3cf2715d 1510
589fe865
DJ
1511#ifdef SDB_DEBUGGING_INFO
1512 /* When producing SDB debugging info, delete troublesome line number
3cf2715d
DE
1513 notes from inlined functions in other files as well as duplicate
1514 line number notes. */
3cf2715d
DE
1515 if (write_symbols == SDB_DEBUG)
1516 {
1517 rtx last = 0;
1518 for (insn = first; insn; insn = NEXT_INSN (insn))
4b4bf941 1519 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
3cf2715d 1520 {
6de9cd9a 1521 if (last != 0
6773e15f
PB
1522#ifdef USE_MAPPED_LOCATION
1523 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1524#else
6de9cd9a 1525 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
6773e15f 1526 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
d70dc103 1527#endif
6773e15f 1528 )
3cf2715d 1529 {
2e106602 1530 delete_insn (insn); /* Use delete_note. */
3cf2715d
DE
1531 continue;
1532 }
1533 last = insn;
3cf2715d
DE
1534 }
1535 }
3cf2715d 1536#endif
3cf2715d
DE
1537
1538 for (insn = first; insn; insn = NEXT_INSN (insn))
a8c3510c 1539 {
938d968e 1540 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
f5d927c0 1541 max_uid = INSN_UID (insn);
9ef4c6ef
JC
1542#ifdef HAVE_cc0
1543 /* If CC tracking across branches is enabled, record the insn which
1544 jumps to each branch only reached from one place. */
4b4bf941 1545 if (optimize && JUMP_P (insn))
9ef4c6ef
JC
1546 {
1547 rtx lab = JUMP_LABEL (insn);
1548 if (lab && LABEL_NUSES (lab) == 1)
1549 {
1550 LABEL_REFS (lab) = insn;
1551 }
1552 }
1553#endif
a8c3510c
AM
1554 }
1555
3cf2715d
DE
1556 init_recog ();
1557
1558 CC_STATUS_INIT;
1559
1560 /* Output the insns. */
1561 for (insn = NEXT_INSN (first); insn;)
2f16edb1
TG
1562 {
1563#ifdef HAVE_ATTR_length
b9f22704 1564 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
0ac76ad9 1565 {
0ac76ad9
RH
1566 /* This can be triggered by bugs elsewhere in the compiler if
1567 new insns are created after init_insn_lengths is called. */
0bccc606
NS
1568 gcc_assert (NOTE_P (insn));
1569 insn_current_address = -1;
0ac76ad9
RH
1570 }
1571 else
9d98a694 1572 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
0ac76ad9
RH
1573#endif /* HAVE_ATTR_length */
1574
589fe865 1575 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
2f16edb1 1576 }
3cf2715d
DE
1577}
1578\f
4bbf910e 1579const char *
6cf9ac28 1580get_insn_template (int code, rtx insn)
4bbf910e 1581{
4bbf910e
RH
1582 switch (insn_data[code].output_format)
1583 {
1584 case INSN_OUTPUT_FORMAT_SINGLE:
3897f229 1585 return insn_data[code].output.single;
4bbf910e 1586 case INSN_OUTPUT_FORMAT_MULTI:
3897f229 1587 return insn_data[code].output.multi[which_alternative];
4bbf910e 1588 case INSN_OUTPUT_FORMAT_FUNCTION:
0bccc606 1589 gcc_assert (insn);
3897f229 1590 return (*insn_data[code].output.function) (recog_data.operand, insn);
4bbf910e
RH
1591
1592 default:
0bccc606 1593 gcc_unreachable ();
4bbf910e
RH
1594 }
1595}
f5d927c0 1596
0dc36574
ZW
1597/* Emit the appropriate declaration for an alternate-entry-point
1598 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1599 LABEL_KIND != LABEL_NORMAL.
1600
1601 The case fall-through in this function is intentional. */
1602static void
6cf9ac28 1603output_alternate_entry_point (FILE *file, rtx insn)
0dc36574
ZW
1604{
1605 const char *name = LABEL_NAME (insn);
1606
1607 switch (LABEL_KIND (insn))
1608 {
1609 case LABEL_WEAK_ENTRY:
1610#ifdef ASM_WEAKEN_LABEL
1611 ASM_WEAKEN_LABEL (file, name);
1612#endif
1613 case LABEL_GLOBAL_ENTRY:
5fd9b178 1614 targetm.asm_out.globalize_label (file, name);
0dc36574 1615 case LABEL_STATIC_ENTRY:
905173eb
ZW
1616#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1617 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1618#endif
0dc36574
ZW
1619 ASM_OUTPUT_LABEL (file, name);
1620 break;
1621
1622 case LABEL_NORMAL:
1623 default:
0bccc606 1624 gcc_unreachable ();
0dc36574
ZW
1625 }
1626}
1627
750054a2
CT
1628/* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1629 note in the instruction chain (going forward) between the current
1630 instruction, and the next 'executable' instruction. */
1631
1632bool
1633scan_ahead_for_unlikely_executed_note (rtx insn)
1634{
1635 rtx temp;
1636 int bb_note_count = 0;
1637
1638 for (temp = insn; temp; temp = NEXT_INSN (temp))
1639 {
4b4bf941 1640 if (NOTE_P (temp)
750054a2
CT
1641 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1642 return true;
4b4bf941 1643 if (NOTE_P (temp)
750054a2
CT
1644 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1645 {
1646 bb_note_count++;
1647 if (bb_note_count > 1)
1648 return false;
1649 }
1650 if (INSN_P (temp))
1651 return false;
1652 }
1653
1654 return false;
1655}
1656
3cf2715d
DE
1657/* The final scan for one insn, INSN.
1658 Args are same as in `final', except that INSN
1659 is the insn being scanned.
1660 Value returned is the next insn to be scanned.
1661
ff8cea7e
EB
1662 NOPEEPHOLES is the flag to disallow peephole processing (currently
1663 used for within delayed branch sequence output).
3cf2715d 1664
589fe865
DJ
1665 SEEN is used to track the end of the prologue, for emitting
1666 debug information. We force the emission of a line note after
1667 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1668 at the beginning of the second basic block, whichever comes
1669 first. */
1670
5cfc5f84 1671rtx
6cf9ac28 1672final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
ff8cea7e
EB
1673 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1674 int *seen)
3cf2715d 1675{
90ca38bb
MM
1676#ifdef HAVE_cc0
1677 rtx set;
1678#endif
1679
3cf2715d
DE
1680 insn_counter++;
1681
1682 /* Ignore deleted insns. These can occur when we split insns (due to a
1683 template of "#") while not optimizing. */
1684 if (INSN_DELETED_P (insn))
1685 return NEXT_INSN (insn);
1686
1687 switch (GET_CODE (insn))
1688 {
1689 case NOTE:
1690 if (prescan > 0)
1691 break;
1692
be1bb652
RH
1693 switch (NOTE_LINE_NUMBER (insn))
1694 {
1695 case NOTE_INSN_DELETED:
1696 case NOTE_INSN_LOOP_BEG:
1697 case NOTE_INSN_LOOP_END:
be1bb652 1698 case NOTE_INSN_FUNCTION_END:
be1bb652 1699 case NOTE_INSN_REPEATED_LINE_NUMBER:
be1bb652
RH
1700 case NOTE_INSN_EXPECTED_VALUE:
1701 break;
3cf2715d 1702
750054a2
CT
1703 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1704
1705 /* The presence of this note indicates that this basic block
1706 belongs in the "cold" section of the .o file. If we are
1707 not already writing to the cold section we need to change
1708 to it. */
1709
1710 unlikely_text_section ();
1711 break;
1712
be1bb652 1713 case NOTE_INSN_BASIC_BLOCK:
750054a2 1714
2b8a92de 1715 /* If we are performing the optimization that partitions
750054a2
CT
1716 basic blocks into hot & cold sections of the .o file,
1717 then at the start of each new basic block, before
1718 beginning to write code for the basic block, we need to
1719 check to see whether the basic block belongs in the hot
1720 or cold section of the .o file, and change the section we
1721 are writing to appropriately. */
1722
1723 if (flag_reorder_blocks_and_partition
750054a2 1724 && !scan_ahead_for_unlikely_executed_note (insn))
9fb32434 1725 function_section (current_function_decl);
750054a2 1726
951120ea
PB
1727#ifdef TARGET_UNWIND_INFO
1728 targetm.asm_out.unwind_emit (asm_out_file, insn);
ad0fc698 1729#endif
951120ea 1730
be1bb652
RH
1731 if (flag_debug_asm)
1732 fprintf (asm_out_file, "\t%s basic block %d\n",
0b17ab2f 1733 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
589fe865
DJ
1734
1735 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1736 {
1737 *seen |= SEEN_EMITTED;
1738 last_filename = NULL;
1739 }
1740 else
1741 *seen |= SEEN_BB;
1742
be1bb652 1743 break;
3cf2715d 1744
be1bb652 1745 case NOTE_INSN_EH_REGION_BEG:
52a11cbf
RH
1746 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1747 NOTE_EH_HANDLER (insn));
3d195391 1748 break;
3d195391 1749
be1bb652 1750 case NOTE_INSN_EH_REGION_END:
52a11cbf
RH
1751 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1752 NOTE_EH_HANDLER (insn));
3d195391 1753 break;
3d195391 1754
be1bb652 1755 case NOTE_INSN_PROLOGUE_END:
5fd9b178 1756 targetm.asm_out.function_end_prologue (file);
3cf2715d 1757 profile_after_prologue (file);
589fe865
DJ
1758
1759 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1760 {
1761 *seen |= SEEN_EMITTED;
1762 last_filename = NULL;
1763 }
1764 else
1765 *seen |= SEEN_NOTE;
1766
3cf2715d 1767 break;
3cf2715d 1768
be1bb652 1769 case NOTE_INSN_EPILOGUE_BEG:
5fd9b178 1770 targetm.asm_out.function_begin_epilogue (file);
be1bb652 1771 break;
3cf2715d 1772
be1bb652 1773 case NOTE_INSN_FUNCTION_BEG:
653e276c 1774 app_disable ();
702ada3d 1775 (*debug_hooks->end_prologue) (last_linenum, last_filename);
589fe865
DJ
1776
1777 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1778 {
1779 *seen |= SEEN_EMITTED;
1780 last_filename = NULL;
1781 }
1782 else
1783 *seen |= SEEN_NOTE;
1784
3cf2715d 1785 break;
be1bb652
RH
1786
1787 case NOTE_INSN_BLOCK_BEG:
1788 if (debug_info_level == DINFO_LEVEL_NORMAL
3cf2715d 1789 || debug_info_level == DINFO_LEVEL_VERBOSE
7a0c8d71
DR
1790 || write_symbols == DWARF2_DEBUG
1791 || write_symbols == VMS_AND_DWARF2_DEBUG
1792 || write_symbols == VMS_DEBUG)
be1bb652
RH
1793 {
1794 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 1795
be1bb652
RH
1796 app_disable ();
1797 ++block_depth;
1798 high_block_linenum = last_linenum;
eac40081 1799
a5a42b92 1800 /* Output debugging info about the symbol-block beginning. */
e2a12aca 1801 (*debug_hooks->begin_block) (last_linenum, n);
3cf2715d 1802
be1bb652
RH
1803 /* Mark this block as output. */
1804 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1805 }
1806 break;
18c038b9 1807
be1bb652
RH
1808 case NOTE_INSN_BLOCK_END:
1809 if (debug_info_level == DINFO_LEVEL_NORMAL
1810 || debug_info_level == DINFO_LEVEL_VERBOSE
7a0c8d71
DR
1811 || write_symbols == DWARF2_DEBUG
1812 || write_symbols == VMS_AND_DWARF2_DEBUG
1813 || write_symbols == VMS_DEBUG)
be1bb652
RH
1814 {
1815 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 1816
be1bb652
RH
1817 app_disable ();
1818
1819 /* End of a symbol-block. */
1820 --block_depth;
0bccc606 1821 gcc_assert (block_depth >= 0);
3cf2715d 1822
e2a12aca 1823 (*debug_hooks->end_block) (high_block_linenum, n);
be1bb652
RH
1824 }
1825 break;
1826
1827 case NOTE_INSN_DELETED_LABEL:
1828 /* Emit the label. We may have deleted the CODE_LABEL because
1829 the label could be proved to be unreachable, though still
1830 referenced (in the form of having its address taken. */
8215347e 1831 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
be1bb652 1832 break;
3cf2715d 1833
014a1138
JZ
1834 case NOTE_INSN_VAR_LOCATION:
1835 (*debug_hooks->var_location) (insn);
1836 break;
1837
21835d9b
JJ
1838 case 0:
1839 break;
1840
be1bb652 1841 default:
0bccc606 1842 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
f5d927c0 1843 break;
3cf2715d
DE
1844 }
1845 break;
1846
1847 case BARRIER:
f73ad30e 1848#if defined (DWARF2_UNWIND_INFO)
fbfa55b0 1849 if (dwarf2out_do_frame ())
be1bb652 1850 dwarf2out_frame_debug (insn);
3cf2715d
DE
1851#endif
1852 break;
1853
1854 case CODE_LABEL:
1dd8faa8
R
1855 /* The target port might emit labels in the output function for
1856 some insn, e.g. sh.c output_branchy_insn. */
de7987a6
R
1857 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1858 {
1859 int align = LABEL_TO_ALIGNMENT (insn);
50b2596f 1860#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
9e423e6d 1861 int max_skip = LABEL_TO_MAX_SKIP (insn);
50b2596f 1862#endif
fc470718 1863
1dd8faa8 1864 if (align && NEXT_INSN (insn))
40cdfca6 1865 {
9e423e6d 1866#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
40cdfca6 1867 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
8e16ab99
SF
1868#else
1869#ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1870 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
9e423e6d 1871#else
40cdfca6 1872 ASM_OUTPUT_ALIGN (file, align);
8e16ab99 1873#endif
9e423e6d 1874#endif
40cdfca6 1875 }
de7987a6 1876 }
9ef4c6ef 1877#ifdef HAVE_cc0
3cf2715d 1878 CC_STATUS_INIT;
9ef4c6ef
JC
1879 /* If this label is reached from only one place, set the condition
1880 codes from the instruction just before the branch. */
7ad7f828
JC
1881
1882 /* Disabled because some insns set cc_status in the C output code
1883 and NOTICE_UPDATE_CC alone can set incorrect status. */
1884 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
9ef4c6ef
JC
1885 {
1886 rtx jump = LABEL_REFS (insn);
1887 rtx barrier = prev_nonnote_insn (insn);
1888 rtx prev;
1889 /* If the LABEL_REFS field of this label has been set to point
1890 at a branch, the predecessor of the branch is a regular
1891 insn, and that branch is the only way to reach this label,
1892 set the condition codes based on the branch and its
1893 predecessor. */
4b4bf941
JQ
1894 if (barrier && BARRIER_P (barrier)
1895 && jump && JUMP_P (jump)
9ef4c6ef 1896 && (prev = prev_nonnote_insn (jump))
4b4bf941 1897 && NONJUMP_INSN_P (prev))
9ef4c6ef
JC
1898 {
1899 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1900 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1901 }
1902 }
1903#endif
3cf2715d
DE
1904 if (prescan > 0)
1905 break;
03ffa171 1906
e1772ac0
NB
1907 if (LABEL_NAME (insn))
1908 (*debug_hooks->label) (insn);
1909
750054a2
CT
1910 /* If we are doing the optimization that partitions hot & cold
1911 basic blocks into separate sections of the .o file, we need
1912 to ensure the jump table ends up in the correct section... */
1913
9fb32434
CT
1914 if (flag_reorder_blocks_and_partition
1915 && targetm.have_named_sections)
750054a2
CT
1916 {
1917 rtx tmp_table, tmp_label;
4b4bf941 1918 if (LABEL_P (insn)
750054a2
CT
1919 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1920 {
1921 /* Do nothing; Do NOT change the current section. */
1922 }
1923 else if (scan_ahead_for_unlikely_executed_note (insn))
1924 unlikely_text_section ();
9fb32434
CT
1925 else if (in_unlikely_text_section ())
1926 function_section (current_function_decl);
750054a2
CT
1927 }
1928
3cf2715d
DE
1929 if (app_on)
1930 {
51723711 1931 fputs (ASM_APP_OFF, file);
3cf2715d
DE
1932 app_on = 0;
1933 }
1934 if (NEXT_INSN (insn) != 0
4b4bf941 1935 && JUMP_P (NEXT_INSN (insn)))
3cf2715d
DE
1936 {
1937 rtx nextbody = PATTERN (NEXT_INSN (insn));
1938
1939 /* If this label is followed by a jump-table,
1940 make sure we put the label in the read-only section. Also
1941 possibly write the label and jump table together. */
1942
1943 if (GET_CODE (nextbody) == ADDR_VEC
1944 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1945 {
e0d80184
DM
1946#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1947 /* In this case, the case vector is being moved by the
1948 target, so don't output the label at all. Leave that
1949 to the back end macros. */
1950#else
75197b37
BS
1951 if (! JUMP_TABLES_IN_TEXT_SECTION)
1952 {
340f7e7c
RH
1953 int log_align;
1954
ab5c8549 1955 targetm.asm_out.function_rodata_section (current_function_decl);
340f7e7c
RH
1956
1957#ifdef ADDR_VEC_ALIGN
3e4eece3 1958 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
340f7e7c
RH
1959#else
1960 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1961#endif
1962 ASM_OUTPUT_ALIGN (file, log_align);
75197b37
BS
1963 }
1964 else
1965 function_section (current_function_decl);
1966
3cf2715d
DE
1967#ifdef ASM_OUTPUT_CASE_LABEL
1968 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1969 NEXT_INSN (insn));
1970#else
5fd9b178 1971 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
e0d80184 1972#endif
3cf2715d
DE
1973#endif
1974 break;
1975 }
1976 }
0dc36574
ZW
1977 if (LABEL_ALT_ENTRY_P (insn))
1978 output_alternate_entry_point (file, insn);
8cd0faaf 1979 else
5fd9b178 1980 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
3cf2715d
DE
1981 break;
1982
1983 default:
1984 {
b3694847 1985 rtx body = PATTERN (insn);
3cf2715d 1986 int insn_code_number;
9b3142b3 1987 const char *template;
3cf2715d
DE
1988
1989 /* An INSN, JUMP_INSN or CALL_INSN.
1990 First check for special kinds that recog doesn't recognize. */
1991
6614fd40 1992 if (GET_CODE (body) == USE /* These are just declarations. */
3cf2715d
DE
1993 || GET_CODE (body) == CLOBBER)
1994 break;
1995
1996#ifdef HAVE_cc0
4928181c
SB
1997 {
1998 /* If there is a REG_CC_SETTER note on this insn, it means that
1999 the setting of the condition code was done in the delay slot
2000 of the insn that branched here. So recover the cc status
2001 from the insn that set it. */
3cf2715d 2002
4928181c
SB
2003 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2004 if (note)
2005 {
2006 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2007 cc_prev_status = cc_status;
2008 }
2009 }
3cf2715d
DE
2010#endif
2011
2012 /* Detect insns that are really jump-tables
2013 and output them as such. */
2014
2015 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2016 {
7f7f8214 2017#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
b3694847 2018 int vlen, idx;
7f7f8214 2019#endif
3cf2715d
DE
2020
2021 if (prescan > 0)
2022 break;
2023
2024 if (app_on)
2025 {
51723711 2026 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2027 app_on = 0;
2028 }
2029
e0d80184
DM
2030#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2031 if (GET_CODE (body) == ADDR_VEC)
2032 {
2033#ifdef ASM_OUTPUT_ADDR_VEC
2034 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2035#else
0bccc606 2036 gcc_unreachable ();
e0d80184
DM
2037#endif
2038 }
2039 else
2040 {
2041#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2042 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2043#else
0bccc606 2044 gcc_unreachable ();
e0d80184
DM
2045#endif
2046 }
2047#else
3cf2715d
DE
2048 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2049 for (idx = 0; idx < vlen; idx++)
2050 {
2051 if (GET_CODE (body) == ADDR_VEC)
2052 {
2053#ifdef ASM_OUTPUT_ADDR_VEC_ELT
2054 ASM_OUTPUT_ADDR_VEC_ELT
2055 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2056#else
0bccc606 2057 gcc_unreachable ();
3cf2715d
DE
2058#endif
2059 }
2060 else
2061 {
2062#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2063 ASM_OUTPUT_ADDR_DIFF_ELT
2064 (file,
33f7f353 2065 body,
3cf2715d
DE
2066 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2067 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2068#else
0bccc606 2069 gcc_unreachable ();
3cf2715d
DE
2070#endif
2071 }
2072 }
2073#ifdef ASM_OUTPUT_CASE_END
2074 ASM_OUTPUT_CASE_END (file,
2075 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2076 insn);
e0d80184 2077#endif
3cf2715d
DE
2078#endif
2079
4d1065ed 2080 function_section (current_function_decl);
3cf2715d
DE
2081
2082 break;
2083 }
0435312e
JH
2084 /* Output this line note if it is the first or the last line
2085 note in a row. */
2086 if (notice_source_line (insn))
2087 {
2088 (*debug_hooks->source_line) (last_linenum, last_filename);
2089 }
3cf2715d 2090
3cf2715d
DE
2091 if (GET_CODE (body) == ASM_INPUT)
2092 {
36d7136e
RH
2093 const char *string = XSTR (body, 0);
2094
3cf2715d
DE
2095 /* There's no telling what that did to the condition codes. */
2096 CC_STATUS_INIT;
2097 if (prescan > 0)
2098 break;
36d7136e
RH
2099
2100 if (string[0])
3cf2715d 2101 {
36d7136e
RH
2102 if (! app_on)
2103 {
2104 fputs (ASM_APP_ON, file);
2105 app_on = 1;
2106 }
2107 fprintf (asm_out_file, "\t%s\n", string);
3cf2715d 2108 }
3cf2715d
DE
2109 break;
2110 }
2111
2112 /* Detect `asm' construct with operands. */
2113 if (asm_noperands (body) >= 0)
2114 {
22bf4422 2115 unsigned int noperands = asm_noperands (body);
703ad42b 2116 rtx *ops = alloca (noperands * sizeof (rtx));
3cce094d 2117 const char *string;
3cf2715d
DE
2118
2119 /* There's no telling what that did to the condition codes. */
2120 CC_STATUS_INIT;
2121 if (prescan > 0)
2122 break;
2123
3cf2715d 2124 /* Get out the operand values. */
df4ae160 2125 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
3cf2715d
DE
2126 /* Inhibit aborts on what would otherwise be compiler bugs. */
2127 insn_noperands = noperands;
2128 this_is_asm_operands = insn;
2129
ad7e39ca
AO
2130#ifdef FINAL_PRESCAN_INSN
2131 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2132#endif
2133
3cf2715d 2134 /* Output the insn using them. */
36d7136e
RH
2135 if (string[0])
2136 {
2137 if (! app_on)
2138 {
2139 fputs (ASM_APP_ON, file);
2140 app_on = 1;
2141 }
2142 output_asm_insn (string, ops);
2143 }
2144
3cf2715d
DE
2145 this_is_asm_operands = 0;
2146 break;
2147 }
2148
2149 if (prescan <= 0 && app_on)
2150 {
51723711 2151 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2152 app_on = 0;
2153 }
2154
2155 if (GET_CODE (body) == SEQUENCE)
2156 {
2157 /* A delayed-branch sequence */
b3694847 2158 int i;
3cf2715d
DE
2159 rtx next;
2160
2161 if (prescan > 0)
2162 break;
2163 final_sequence = body;
2164
d660cefe
RS
2165 /* Record the delay slots' frame information before the branch.
2166 This is needed for delayed calls: see execute_cfa_program(). */
2167#if defined (DWARF2_UNWIND_INFO)
2168 if (dwarf2out_do_frame ())
2169 for (i = 1; i < XVECLEN (body, 0); i++)
2170 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2171#endif
2172
3cf2715d
DE
2173 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2174 force the restoration of a comparison that was previously
2175 thought unnecessary. If that happens, cancel this sequence
2176 and cause that insn to be restored. */
2177
589fe865 2178 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
3cf2715d
DE
2179 if (next != XVECEXP (body, 0, 1))
2180 {
2181 final_sequence = 0;
2182 return next;
2183 }
2184
2185 for (i = 1; i < XVECLEN (body, 0); i++)
c7eee2df
RK
2186 {
2187 rtx insn = XVECEXP (body, 0, i);
2188 rtx next = NEXT_INSN (insn);
2189 /* We loop in case any instruction in a delay slot gets
2190 split. */
2191 do
ff8cea7e 2192 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
c7eee2df
RK
2193 while (insn != next);
2194 }
3cf2715d
DE
2195#ifdef DBR_OUTPUT_SEQEND
2196 DBR_OUTPUT_SEQEND (file);
2197#endif
2198 final_sequence = 0;
2199
2200 /* If the insn requiring the delay slot was a CALL_INSN, the
2201 insns in the delay slot are actually executed before the
2202 called function. Hence we don't preserve any CC-setting
2203 actions in these insns and the CC must be marked as being
2204 clobbered by the function. */
4b4bf941 2205 if (CALL_P (XVECEXP (body, 0, 0)))
b729186a
JL
2206 {
2207 CC_STATUS_INIT;
2208 }
3cf2715d
DE
2209 break;
2210 }
2211
2212 /* We have a real machine instruction as rtl. */
2213
2214 body = PATTERN (insn);
2215
2216#ifdef HAVE_cc0
f5d927c0 2217 set = single_set (insn);
b88c92cc 2218
3cf2715d
DE
2219 /* Check for redundant test and compare instructions
2220 (when the condition codes are already set up as desired).
2221 This is done only when optimizing; if not optimizing,
2222 it should be possible for the user to alter a variable
2223 with the debugger in between statements
2224 and the next statement should reexamine the variable
2225 to compute the condition codes. */
2226
30f5e9f5 2227 if (optimize)
3cf2715d 2228 {
30f5e9f5
RK
2229 if (set
2230 && GET_CODE (SET_DEST (set)) == CC0
2231 && insn != last_ignored_compare)
3cf2715d 2232 {
30f5e9f5 2233 if (GET_CODE (SET_SRC (set)) == SUBREG)
49d801d3 2234 SET_SRC (set) = alter_subreg (&SET_SRC (set));
30f5e9f5
RK
2235 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2236 {
2237 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2238 XEXP (SET_SRC (set), 0)
49d801d3 2239 = alter_subreg (&XEXP (SET_SRC (set), 0));
30f5e9f5
RK
2240 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2241 XEXP (SET_SRC (set), 1)
49d801d3 2242 = alter_subreg (&XEXP (SET_SRC (set), 1));
30f5e9f5
RK
2243 }
2244 if ((cc_status.value1 != 0
2245 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2246 || (cc_status.value2 != 0
2247 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
3cf2715d 2248 {
30f5e9f5 2249 /* Don't delete insn if it has an addressing side-effect. */
ff81832f 2250 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
30f5e9f5
RK
2251 /* or if anything in it is volatile. */
2252 && ! volatile_refs_p (PATTERN (insn)))
2253 {
2254 /* We don't really delete the insn; just ignore it. */
2255 last_ignored_compare = insn;
2256 break;
2257 }
3cf2715d
DE
2258 }
2259 }
2260 }
2261#endif
2262
3cf2715d
DE
2263#ifndef STACK_REGS
2264 /* Don't bother outputting obvious no-ops, even without -O.
2265 This optimization is fast and doesn't interfere with debugging.
2266 Don't do this if the insn is in a delay slot, since this
2267 will cause an improper number of delay insns to be written. */
2268 if (final_sequence == 0
2269 && prescan >= 0
4b4bf941 2270 && NONJUMP_INSN_P (insn) && GET_CODE (body) == SET
f8cfc6aa
JQ
2271 && REG_P (SET_SRC (body))
2272 && REG_P (SET_DEST (body))
3cf2715d
DE
2273 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2274 break;
2275#endif
2276
2277#ifdef HAVE_cc0
2278 /* If this is a conditional branch, maybe modify it
2279 if the cc's are in a nonstandard state
2280 so that it accomplishes the same thing that it would
2281 do straightforwardly if the cc's were set up normally. */
2282
2283 if (cc_status.flags != 0
4b4bf941 2284 && JUMP_P (insn)
3cf2715d
DE
2285 && GET_CODE (body) == SET
2286 && SET_DEST (body) == pc_rtx
2287 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
ec8e098d 2288 && COMPARISON_P (XEXP (SET_SRC (body), 0))
fff752ad 2289 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
3cf2715d
DE
2290 /* This is done during prescan; it is not done again
2291 in final scan when prescan has been done. */
2292 && prescan >= 0)
2293 {
2294 /* This function may alter the contents of its argument
2295 and clear some of the cc_status.flags bits.
2296 It may also return 1 meaning condition now always true
2297 or -1 meaning condition now always false
2298 or 2 meaning condition nontrivial but altered. */
b3694847 2299 int result = alter_cond (XEXP (SET_SRC (body), 0));
3cf2715d
DE
2300 /* If condition now has fixed value, replace the IF_THEN_ELSE
2301 with its then-operand or its else-operand. */
2302 if (result == 1)
2303 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2304 if (result == -1)
2305 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2306
2307 /* The jump is now either unconditional or a no-op.
2308 If it has become a no-op, don't try to output it.
2309 (It would not be recognized.) */
2310 if (SET_SRC (body) == pc_rtx)
2311 {
ca6c03ca 2312 delete_insn (insn);
3cf2715d
DE
2313 break;
2314 }
2315 else if (GET_CODE (SET_SRC (body)) == RETURN)
2316 /* Replace (set (pc) (return)) with (return). */
2317 PATTERN (insn) = body = SET_SRC (body);
2318
2319 /* Rerecognize the instruction if it has changed. */
2320 if (result != 0)
2321 INSN_CODE (insn) = -1;
2322 }
2323
2324 /* Make same adjustments to instructions that examine the
462da2af
SC
2325 condition codes without jumping and instructions that
2326 handle conditional moves (if this machine has either one). */
3cf2715d
DE
2327
2328 if (cc_status.flags != 0
b88c92cc 2329 && set != 0)
3cf2715d 2330 {
462da2af 2331 rtx cond_rtx, then_rtx, else_rtx;
f5d927c0 2332
4b4bf941 2333 if (!JUMP_P (insn)
b88c92cc 2334 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
462da2af 2335 {
b88c92cc
RK
2336 cond_rtx = XEXP (SET_SRC (set), 0);
2337 then_rtx = XEXP (SET_SRC (set), 1);
2338 else_rtx = XEXP (SET_SRC (set), 2);
462da2af
SC
2339 }
2340 else
2341 {
b88c92cc 2342 cond_rtx = SET_SRC (set);
462da2af
SC
2343 then_rtx = const_true_rtx;
2344 else_rtx = const0_rtx;
2345 }
f5d927c0 2346
462da2af 2347 switch (GET_CODE (cond_rtx))
3cf2715d
DE
2348 {
2349 case GTU:
2350 case GT:
2351 case LTU:
2352 case LT:
2353 case GEU:
2354 case GE:
2355 case LEU:
2356 case LE:
2357 case EQ:
2358 case NE:
2359 {
b3694847 2360 int result;
462da2af 2361 if (XEXP (cond_rtx, 0) != cc0_rtx)
3cf2715d 2362 break;
462da2af 2363 result = alter_cond (cond_rtx);
3cf2715d 2364 if (result == 1)
b88c92cc 2365 validate_change (insn, &SET_SRC (set), then_rtx, 0);
3cf2715d 2366 else if (result == -1)
b88c92cc 2367 validate_change (insn, &SET_SRC (set), else_rtx, 0);
3cf2715d
DE
2368 else if (result == 2)
2369 INSN_CODE (insn) = -1;
b88c92cc 2370 if (SET_DEST (set) == SET_SRC (set))
ca6c03ca 2371 delete_insn (insn);
3cf2715d 2372 }
e9a25f70
JL
2373 break;
2374
2375 default:
2376 break;
3cf2715d
DE
2377 }
2378 }
462da2af 2379
3cf2715d
DE
2380#endif
2381
ede7cd44 2382#ifdef HAVE_peephole
3cf2715d
DE
2383 /* Do machine-specific peephole optimizations if desired. */
2384
2385 if (optimize && !flag_no_peephole && !nopeepholes)
2386 {
2387 rtx next = peephole (insn);
2388 /* When peepholing, if there were notes within the peephole,
2389 emit them before the peephole. */
2390 if (next != 0 && next != NEXT_INSN (insn))
2391 {
4928181c 2392 rtx note, prev = PREV_INSN (insn);
3cf2715d
DE
2393
2394 for (note = NEXT_INSN (insn); note != next;
2395 note = NEXT_INSN (note))
589fe865 2396 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
3cf2715d
DE
2397
2398 /* In case this is prescan, put the notes
2399 in proper position for later rescan. */
2400 note = NEXT_INSN (insn);
2401 PREV_INSN (note) = prev;
2402 NEXT_INSN (prev) = note;
2403 NEXT_INSN (PREV_INSN (next)) = insn;
2404 PREV_INSN (insn) = PREV_INSN (next);
2405 NEXT_INSN (insn) = next;
2406 PREV_INSN (next) = insn;
2407 }
2408
2409 /* PEEPHOLE might have changed this. */
2410 body = PATTERN (insn);
2411 }
ede7cd44 2412#endif
3cf2715d
DE
2413
2414 /* Try to recognize the instruction.
2415 If successful, verify that the operands satisfy the
2416 constraints for the instruction. Crash if they don't,
2417 since `reload' should have changed them so that they do. */
2418
2419 insn_code_number = recog_memoized (insn);
0304f787 2420 cleanup_subreg_operands (insn);
3cf2715d 2421
dd3f0101
KH
2422 /* Dump the insn in the assembly for debugging. */
2423 if (flag_dump_rtl_in_asm)
2424 {
2425 print_rtx_head = ASM_COMMENT_START;
2426 print_rtl_single (asm_out_file, insn);
2427 print_rtx_head = "";
2428 }
b9f22704 2429
6c698a6d 2430 if (! constrain_operands_cached (1))
3cf2715d 2431 fatal_insn_not_found (insn);
3cf2715d
DE
2432
2433 /* Some target machines need to prescan each insn before
2434 it is output. */
2435
2436#ifdef FINAL_PRESCAN_INSN
1ccbefce 2437 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3cf2715d
DE
2438#endif
2439
afe48e06
RH
2440#ifdef HAVE_conditional_execution
2441 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2442 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2443 else
2444 current_insn_predicate = NULL_RTX;
2445#endif
2446
3cf2715d
DE
2447#ifdef HAVE_cc0
2448 cc_prev_status = cc_status;
2449
2450 /* Update `cc_status' for this instruction.
2451 The instruction's output routine may change it further.
2452 If the output routine for a jump insn needs to depend
2453 on the cc status, it should look at cc_prev_status. */
2454
2455 NOTICE_UPDATE_CC (body, insn);
2456#endif
2457
b1a9f6a0 2458 current_output_insn = debug_insn = insn;
3cf2715d 2459
f73ad30e 2460#if defined (DWARF2_UNWIND_INFO)
4b4bf941 2461 if (CALL_P (insn) && dwarf2out_do_frame ())
b57d9225
JM
2462 dwarf2out_frame_debug (insn);
2463#endif
2464
4bbf910e
RH
2465 /* Find the proper template for this insn. */
2466 template = get_insn_template (insn_code_number, insn);
3cf2715d 2467
4bbf910e
RH
2468 /* If the C code returns 0, it means that it is a jump insn
2469 which follows a deleted test insn, and that test insn
2470 needs to be reinserted. */
3cf2715d
DE
2471 if (template == 0)
2472 {
efd0378b
HPN
2473 rtx prev;
2474
0bccc606 2475 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
efd0378b
HPN
2476
2477 /* We have already processed the notes between the setter and
2478 the user. Make sure we don't process them again, this is
2479 particularly important if one of the notes is a block
2480 scope note or an EH note. */
2481 for (prev = insn;
2482 prev != last_ignored_compare;
2483 prev = PREV_INSN (prev))
2484 {
4b4bf941 2485 if (NOTE_P (prev))
ca6c03ca 2486 delete_insn (prev); /* Use delete_note. */
efd0378b
HPN
2487 }
2488
2489 return prev;
3cf2715d
DE
2490 }
2491
2492 /* If the template is the string "#", it means that this insn must
2493 be split. */
2494 if (template[0] == '#' && template[1] == '\0')
2495 {
2496 rtx new = try_split (body, insn, 0);
2497
2498 /* If we didn't split the insn, go away. */
2499 if (new == insn && PATTERN (new) == body)
c725bd79 2500 fatal_insn ("could not split insn", insn);
f5d927c0 2501
3d14e82f
JW
2502#ifdef HAVE_ATTR_length
2503 /* This instruction should have been split in shorten_branches,
2504 to ensure that we would have valid length info for the
2505 splitees. */
0bccc606 2506 gcc_unreachable ();
3d14e82f
JW
2507#endif
2508
3cf2715d
DE
2509 return new;
2510 }
f5d927c0 2511
3cf2715d
DE
2512 if (prescan > 0)
2513 break;
2514
951120ea
PB
2515#ifdef TARGET_UNWIND_INFO
2516 /* ??? This will put the directives in the wrong place if
2517 get_insn_template outputs assembly directly. However calling it
2518 before get_insn_template breaks if the insns is split. */
2519 targetm.asm_out.unwind_emit (asm_out_file, insn);
ce152ef8 2520#endif
3cf2715d 2521
951120ea 2522 /* Output assembler code from the template. */
1ccbefce 2523 output_asm_insn (template, recog_data.operand);
3cf2715d 2524
d660cefe
RS
2525 /* If necessary, report the effect that the instruction has on
2526 the unwind info. We've already done this for delay slots
2527 and call instructions. */
0021b564 2528#if defined (DWARF2_UNWIND_INFO)
4b4bf941 2529 if (NONJUMP_INSN_P (insn)
d660cefe
RS
2530#if !defined (HAVE_prologue)
2531 && !ACCUMULATE_OUTGOING_ARGS
2532#endif
2533 && final_sequence == 0
fbfa55b0
RH
2534 && dwarf2out_do_frame ())
2535 dwarf2out_frame_debug (insn);
0021b564 2536#endif
469ac993 2537
b1a9f6a0 2538 current_output_insn = debug_insn = 0;
3cf2715d
DE
2539 }
2540 }
2541 return NEXT_INSN (insn);
2542}
2543\f
2544/* Output debugging info to the assembler file FILE
2545 based on the NOTE-insn INSN, assumed to be a line number. */
2546
0435312e 2547static bool
6cf9ac28 2548notice_source_line (rtx insn)
3cf2715d 2549{
0435312e
JH
2550 const char *filename = insn_file (insn);
2551 int linenum = insn_line (insn);
3cf2715d 2552
0435312e
JH
2553 if (filename && (filename != last_filename || last_linenum != linenum))
2554 {
2555 last_filename = filename;
2556 last_linenum = linenum;
2557 high_block_linenum = MAX (last_linenum, high_block_linenum);
2558 high_function_linenum = MAX (last_linenum, high_function_linenum);
2559 return true;
2560 }
2561 return false;
3cf2715d
DE
2562}
2563\f
0304f787
JL
2564/* For each operand in INSN, simplify (subreg (reg)) so that it refers
2565 directly to the desired hard register. */
f5d927c0 2566
0304f787 2567void
6cf9ac28 2568cleanup_subreg_operands (rtx insn)
0304f787 2569{
f62a15e3 2570 int i;
6c698a6d 2571 extract_insn_cached (insn);
1ccbefce 2572 for (i = 0; i < recog_data.n_operands; i++)
0304f787 2573 {
2067c116 2574 /* The following test cannot use recog_data.operand when testing
9f4524f2
RE
2575 for a SUBREG: the underlying object might have been changed
2576 already if we are inside a match_operator expression that
2577 matches the else clause. Instead we test the underlying
2578 expression directly. */
2579 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
49d801d3 2580 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
1ccbefce 2581 else if (GET_CODE (recog_data.operand[i]) == PLUS
04337620 2582 || GET_CODE (recog_data.operand[i]) == MULT
3c0cb5de 2583 || MEM_P (recog_data.operand[i]))
49d801d3 2584 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
0304f787
JL
2585 }
2586
1ccbefce 2587 for (i = 0; i < recog_data.n_dups; i++)
0304f787 2588 {
1ccbefce 2589 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
49d801d3 2590 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
1ccbefce 2591 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
04337620 2592 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3c0cb5de 2593 || MEM_P (*recog_data.dup_loc[i]))
49d801d3 2594 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
0304f787
JL
2595 }
2596}
2597
3cf2715d
DE
2598/* If X is a SUBREG, replace it with a REG or a MEM,
2599 based on the thing it is a subreg of. */
2600
2601rtx
6cf9ac28 2602alter_subreg (rtx *xp)
3cf2715d 2603{
49d801d3 2604 rtx x = *xp;
b3694847 2605 rtx y = SUBREG_REG (x);
f5963e61 2606
49d801d3
JH
2607 /* simplify_subreg does not remove subreg from volatile references.
2608 We are required to. */
3c0cb5de 2609 if (MEM_P (y))
49d801d3
JH
2610 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2611 else
fea54805
RK
2612 {
2613 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2614 SUBREG_BYTE (x));
2615
2616 if (new != 0)
2617 *xp = new;
0bccc606 2618 else
fea54805 2619 {
0bccc606 2620 /* Simplify_subreg can't handle some REG cases, but we have to. */
7687c5b8 2621 unsigned int regno = subreg_hard_regno (x, 1);
0bccc606
NS
2622
2623 gcc_assert (REG_P (y));
a560d4d4 2624 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
fea54805 2625 }
fea54805
RK
2626 }
2627
49d801d3 2628 return *xp;
3cf2715d
DE
2629}
2630
2631/* Do alter_subreg on all the SUBREGs contained in X. */
2632
2633static rtx
6cf9ac28 2634walk_alter_subreg (rtx *xp)
3cf2715d 2635{
49d801d3 2636 rtx x = *xp;
3cf2715d
DE
2637 switch (GET_CODE (x))
2638 {
2639 case PLUS:
2640 case MULT:
beed8fc0 2641 case AND:
49d801d3
JH
2642 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2643 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
3cf2715d
DE
2644 break;
2645
2646 case MEM:
beed8fc0 2647 case ZERO_EXTEND:
49d801d3 2648 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
3cf2715d
DE
2649 break;
2650
2651 case SUBREG:
49d801d3 2652 return alter_subreg (xp);
f5d927c0 2653
e9a25f70
JL
2654 default:
2655 break;
3cf2715d
DE
2656 }
2657
5bc72aeb 2658 return *xp;
3cf2715d
DE
2659}
2660\f
2661#ifdef HAVE_cc0
2662
2663/* Given BODY, the body of a jump instruction, alter the jump condition
2664 as required by the bits that are set in cc_status.flags.
2665 Not all of the bits there can be handled at this level in all cases.
2666
2667 The value is normally 0.
2668 1 means that the condition has become always true.
2669 -1 means that the condition has become always false.
2670 2 means that COND has been altered. */
2671
2672static int
6cf9ac28 2673alter_cond (rtx cond)
3cf2715d
DE
2674{
2675 int value = 0;
2676
2677 if (cc_status.flags & CC_REVERSED)
2678 {
2679 value = 2;
2680 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2681 }
2682
2683 if (cc_status.flags & CC_INVERTED)
2684 {
2685 value = 2;
2686 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2687 }
2688
2689 if (cc_status.flags & CC_NOT_POSITIVE)
2690 switch (GET_CODE (cond))
2691 {
2692 case LE:
2693 case LEU:
2694 case GEU:
2695 /* Jump becomes unconditional. */
2696 return 1;
2697
2698 case GT:
2699 case GTU:
2700 case LTU:
2701 /* Jump becomes no-op. */
2702 return -1;
2703
2704 case GE:
2705 PUT_CODE (cond, EQ);
2706 value = 2;
2707 break;
2708
2709 case LT:
2710 PUT_CODE (cond, NE);
2711 value = 2;
2712 break;
f5d927c0 2713
e9a25f70
JL
2714 default:
2715 break;
3cf2715d
DE
2716 }
2717
2718 if (cc_status.flags & CC_NOT_NEGATIVE)
2719 switch (GET_CODE (cond))
2720 {
2721 case GE:
2722 case GEU:
2723 /* Jump becomes unconditional. */
2724 return 1;
2725
2726 case LT:
2727 case LTU:
2728 /* Jump becomes no-op. */
2729 return -1;
2730
2731 case LE:
2732 case LEU:
2733 PUT_CODE (cond, EQ);
2734 value = 2;
2735 break;
2736
2737 case GT:
2738 case GTU:
2739 PUT_CODE (cond, NE);
2740 value = 2;
2741 break;
f5d927c0 2742
e9a25f70
JL
2743 default:
2744 break;
3cf2715d
DE
2745 }
2746
2747 if (cc_status.flags & CC_NO_OVERFLOW)
2748 switch (GET_CODE (cond))
2749 {
2750 case GEU:
2751 /* Jump becomes unconditional. */
2752 return 1;
2753
2754 case LEU:
2755 PUT_CODE (cond, EQ);
2756 value = 2;
2757 break;
2758
2759 case GTU:
2760 PUT_CODE (cond, NE);
2761 value = 2;
2762 break;
2763
2764 case LTU:
2765 /* Jump becomes no-op. */
2766 return -1;
f5d927c0 2767
e9a25f70
JL
2768 default:
2769 break;
3cf2715d
DE
2770 }
2771
2772 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2773 switch (GET_CODE (cond))
2774 {
e9a25f70 2775 default:
0bccc606 2776 gcc_unreachable ();
3cf2715d
DE
2777
2778 case NE:
2779 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2780 value = 2;
2781 break;
2782
2783 case EQ:
2784 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2785 value = 2;
2786 break;
2787 }
2788
2789 if (cc_status.flags & CC_NOT_SIGNED)
2790 /* The flags are valid if signed condition operators are converted
2791 to unsigned. */
2792 switch (GET_CODE (cond))
2793 {
2794 case LE:
2795 PUT_CODE (cond, LEU);
2796 value = 2;
2797 break;
2798
2799 case LT:
2800 PUT_CODE (cond, LTU);
2801 value = 2;
2802 break;
2803
2804 case GT:
2805 PUT_CODE (cond, GTU);
2806 value = 2;
2807 break;
2808
2809 case GE:
2810 PUT_CODE (cond, GEU);
2811 value = 2;
2812 break;
e9a25f70
JL
2813
2814 default:
2815 break;
3cf2715d
DE
2816 }
2817
2818 return value;
2819}
2820#endif
2821\f
2822/* Report inconsistency between the assembler template and the operands.
2823 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2824
2825void
e34d07f2 2826output_operand_lossage (const char *msgid, ...)
3cf2715d 2827{
a52453cc
PT
2828 char *fmt_string;
2829 char *new_message;
fd478a0a 2830 const char *pfx_str;
e34d07f2 2831 va_list ap;
6cf9ac28 2832
e34d07f2 2833 va_start (ap, msgid);
a52453cc
PT
2834
2835 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2836 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2837 vasprintf (&new_message, fmt_string, ap);
dd3f0101 2838
3cf2715d 2839 if (this_is_asm_operands)
a52453cc 2840 error_for_asm (this_is_asm_operands, "%s", new_message);
3cf2715d 2841 else
a52453cc
PT
2842 internal_error ("%s", new_message);
2843
2844 free (fmt_string);
2845 free (new_message);
e34d07f2 2846 va_end (ap);
3cf2715d
DE
2847}
2848\f
2849/* Output of assembler code from a template, and its subroutines. */
2850
0d4903b8
RK
2851/* Annotate the assembly with a comment describing the pattern and
2852 alternative used. */
2853
2854static void
6cf9ac28 2855output_asm_name (void)
0d4903b8
RK
2856{
2857 if (debug_insn)
2858 {
2859 int num = INSN_CODE (debug_insn);
2860 fprintf (asm_out_file, "\t%s %d\t%s",
2861 ASM_COMMENT_START, INSN_UID (debug_insn),
2862 insn_data[num].name);
2863 if (insn_data[num].n_alternatives > 1)
2864 fprintf (asm_out_file, "/%d", which_alternative + 1);
2865#ifdef HAVE_ATTR_length
2866 fprintf (asm_out_file, "\t[length = %d]",
2867 get_attr_length (debug_insn));
2868#endif
2869 /* Clear this so only the first assembler insn
2870 of any rtl insn will get the special comment for -dp. */
2871 debug_insn = 0;
2872 }
2873}
2874
998d7deb
RH
2875/* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2876 or its address, return that expr . Set *PADDRESSP to 1 if the expr
c5adc06a
RK
2877 corresponds to the address of the object and 0 if to the object. */
2878
2879static tree
6cf9ac28 2880get_mem_expr_from_op (rtx op, int *paddressp)
c5adc06a 2881{
998d7deb 2882 tree expr;
c5adc06a
RK
2883 int inner_addressp;
2884
2885 *paddressp = 0;
2886
f8cfc6aa 2887 if (REG_P (op))
a560d4d4 2888 return REG_EXPR (op);
3c0cb5de 2889 else if (!MEM_P (op))
c5adc06a
RK
2890 return 0;
2891
998d7deb
RH
2892 if (MEM_EXPR (op) != 0)
2893 return MEM_EXPR (op);
c5adc06a
RK
2894
2895 /* Otherwise we have an address, so indicate it and look at the address. */
2896 *paddressp = 1;
2897 op = XEXP (op, 0);
2898
2899 /* First check if we have a decl for the address, then look at the right side
2900 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2901 But don't allow the address to itself be indirect. */
998d7deb
RH
2902 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2903 return expr;
c5adc06a 2904 else if (GET_CODE (op) == PLUS
998d7deb
RH
2905 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2906 return expr;
c5adc06a 2907
ec8e098d
PB
2908 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2909 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
c5adc06a
RK
2910 op = XEXP (op, 0);
2911
998d7deb
RH
2912 expr = get_mem_expr_from_op (op, &inner_addressp);
2913 return inner_addressp ? 0 : expr;
c5adc06a 2914}
ff81832f 2915
4f9b4029
RK
2916/* Output operand names for assembler instructions. OPERANDS is the
2917 operand vector, OPORDER is the order to write the operands, and NOPS
2918 is the number of operands to write. */
2919
2920static void
6cf9ac28 2921output_asm_operand_names (rtx *operands, int *oporder, int nops)
4f9b4029
RK
2922{
2923 int wrote = 0;
2924 int i;
2925
2926 for (i = 0; i < nops; i++)
2927 {
2928 int addressp;
a560d4d4
JH
2929 rtx op = operands[oporder[i]];
2930 tree expr = get_mem_expr_from_op (op, &addressp);
4f9b4029 2931
a560d4d4
JH
2932 fprintf (asm_out_file, "%c%s",
2933 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2934 wrote = 1;
998d7deb 2935 if (expr)
4f9b4029 2936 {
a560d4d4 2937 fprintf (asm_out_file, "%s",
998d7deb
RH
2938 addressp ? "*" : "");
2939 print_mem_expr (asm_out_file, expr);
4f9b4029
RK
2940 wrote = 1;
2941 }
a560d4d4
JH
2942 else if (REG_P (op) && ORIGINAL_REGNO (op)
2943 && ORIGINAL_REGNO (op) != REGNO (op))
2944 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
4f9b4029
RK
2945 }
2946}
2947
3cf2715d
DE
2948/* Output text from TEMPLATE to the assembler output file,
2949 obeying %-directions to substitute operands taken from
2950 the vector OPERANDS.
2951
2952 %N (for N a digit) means print operand N in usual manner.
2953 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2954 and print the label name with no punctuation.
2955 %cN means require operand N to be a constant
2956 and print the constant expression with no punctuation.
2957 %aN means expect operand N to be a memory address
2958 (not a memory reference!) and print a reference
2959 to that address.
2960 %nN means expect operand N to be a constant
2961 and print a constant expression for minus the value
2962 of the operand, with no other punctuation. */
2963
2964void
6cf9ac28 2965output_asm_insn (const char *template, rtx *operands)
3cf2715d 2966{
b3694847
SS
2967 const char *p;
2968 int c;
8554d9a4
JJ
2969#ifdef ASSEMBLER_DIALECT
2970 int dialect = 0;
2971#endif
0d4903b8 2972 int oporder[MAX_RECOG_OPERANDS];
4f9b4029 2973 char opoutput[MAX_RECOG_OPERANDS];
0d4903b8 2974 int ops = 0;
3cf2715d
DE
2975
2976 /* An insn may return a null string template
2977 in a case where no assembler code is needed. */
2978 if (*template == 0)
2979 return;
2980
4f9b4029 2981 memset (opoutput, 0, sizeof opoutput);
3cf2715d
DE
2982 p = template;
2983 putc ('\t', asm_out_file);
2984
2985#ifdef ASM_OUTPUT_OPCODE
2986 ASM_OUTPUT_OPCODE (asm_out_file, p);
2987#endif
2988
b729186a 2989 while ((c = *p++))
3cf2715d
DE
2990 switch (c)
2991 {
3cf2715d 2992 case '\n':
4f9b4029
RK
2993 if (flag_verbose_asm)
2994 output_asm_operand_names (operands, oporder, ops);
0d4903b8
RK
2995 if (flag_print_asm_name)
2996 output_asm_name ();
2997
4f9b4029
RK
2998 ops = 0;
2999 memset (opoutput, 0, sizeof opoutput);
3000
3cf2715d 3001 putc (c, asm_out_file);
cb649530 3002#ifdef ASM_OUTPUT_OPCODE
3cf2715d
DE
3003 while ((c = *p) == '\t')
3004 {
3005 putc (c, asm_out_file);
3006 p++;
3007 }
3008 ASM_OUTPUT_OPCODE (asm_out_file, p);
3cf2715d 3009#endif
cb649530 3010 break;
3cf2715d
DE
3011
3012#ifdef ASSEMBLER_DIALECT
3013 case '{':
b729186a 3014 {
b3694847 3015 int i;
f5d927c0 3016
8554d9a4
JJ
3017 if (dialect)
3018 output_operand_lossage ("nested assembly dialect alternatives");
3019 else
3020 dialect = 1;
3021
b729186a
JL
3022 /* If we want the first dialect, do nothing. Otherwise, skip
3023 DIALECT_NUMBER of strings ending with '|'. */
3024 for (i = 0; i < dialect_number; i++)
3025 {
463a8384 3026 while (*p && *p != '}' && *p++ != '|')
b729186a 3027 ;
463a8384
BS
3028 if (*p == '}')
3029 break;
b729186a
JL
3030 if (*p == '|')
3031 p++;
3032 }
8554d9a4
JJ
3033
3034 if (*p == '\0')
3035 output_operand_lossage ("unterminated assembly dialect alternative");
b729186a 3036 }
3cf2715d
DE
3037 break;
3038
3039 case '|':
8554d9a4
JJ
3040 if (dialect)
3041 {
3042 /* Skip to close brace. */
3043 do
3044 {
3045 if (*p == '\0')
3046 {
3047 output_operand_lossage ("unterminated assembly dialect alternative");
3048 break;
3049 }
ff81832f 3050 }
8554d9a4
JJ
3051 while (*p++ != '}');
3052 dialect = 0;
3053 }
3054 else
3055 putc (c, asm_out_file);
3cf2715d
DE
3056 break;
3057
3058 case '}':
8554d9a4
JJ
3059 if (! dialect)
3060 putc (c, asm_out_file);
3061 dialect = 0;
3cf2715d
DE
3062 break;
3063#endif
3064
3065 case '%':
3066 /* %% outputs a single %. */
3067 if (*p == '%')
3068 {
3069 p++;
3070 putc (c, asm_out_file);
3071 }
3072 /* %= outputs a number which is unique to each insn in the entire
3073 compilation. This is useful for making local labels that are
3074 referred to more than once in a given insn. */
3075 else if (*p == '=')
3076 {
3077 p++;
3078 fprintf (asm_out_file, "%d", insn_counter);
3079 }
3080 /* % followed by a letter and some digits
3081 outputs an operand in a special way depending on the letter.
3082 Letters `acln' are implemented directly.
3083 Other letters are passed to `output_operand' so that
3084 the PRINT_OPERAND macro can define them. */
0df6c2c7 3085 else if (ISALPHA (*p))
3cf2715d
DE
3086 {
3087 int letter = *p++;
c383c15f
GK
3088 unsigned long opnum;
3089 char *endptr;
3090
3091 opnum = strtoul (p, &endptr, 10);
3092
3093 if (endptr == p)
3094 output_operand_lossage ("operand number missing "
3095 "after %%-letter");
3096 else if (this_is_asm_operands && opnum >= insn_noperands)
3cf2715d
DE
3097 output_operand_lossage ("operand number out of range");
3098 else if (letter == 'l')
c383c15f 3099 output_asm_label (operands[opnum]);
3cf2715d 3100 else if (letter == 'a')
c383c15f 3101 output_address (operands[opnum]);
3cf2715d
DE
3102 else if (letter == 'c')
3103 {
c383c15f
GK
3104 if (CONSTANT_ADDRESS_P (operands[opnum]))
3105 output_addr_const (asm_out_file, operands[opnum]);
3cf2715d 3106 else
c383c15f 3107 output_operand (operands[opnum], 'c');
3cf2715d
DE
3108 }
3109 else if (letter == 'n')
3110 {
c383c15f 3111 if (GET_CODE (operands[opnum]) == CONST_INT)
21e3a81b 3112 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
c383c15f 3113 - INTVAL (operands[opnum]));
3cf2715d
DE
3114 else
3115 {
3116 putc ('-', asm_out_file);
c383c15f 3117 output_addr_const (asm_out_file, operands[opnum]);
3cf2715d
DE
3118 }
3119 }
3120 else
c383c15f 3121 output_operand (operands[opnum], letter);
f5d927c0 3122
c383c15f 3123 if (!opoutput[opnum])
dc9d0b14 3124 oporder[ops++] = opnum;
c383c15f 3125 opoutput[opnum] = 1;
0d4903b8 3126
c383c15f
GK
3127 p = endptr;
3128 c = *p;
3cf2715d
DE
3129 }
3130 /* % followed by a digit outputs an operand the default way. */
0df6c2c7 3131 else if (ISDIGIT (*p))
3cf2715d 3132 {
c383c15f
GK
3133 unsigned long opnum;
3134 char *endptr;
3135
3136 opnum = strtoul (p, &endptr, 10);
3137 if (this_is_asm_operands && opnum >= insn_noperands)
3cf2715d
DE
3138 output_operand_lossage ("operand number out of range");
3139 else
c383c15f 3140 output_operand (operands[opnum], 0);
0d4903b8 3141
c383c15f 3142 if (!opoutput[opnum])
dc9d0b14 3143 oporder[ops++] = opnum;
c383c15f 3144 opoutput[opnum] = 1;
4f9b4029 3145
c383c15f
GK
3146 p = endptr;
3147 c = *p;
3cf2715d
DE
3148 }
3149 /* % followed by punctuation: output something for that
3150 punctuation character alone, with no operand.
3151 The PRINT_OPERAND macro decides what is actually done. */
3152#ifdef PRINT_OPERAND_PUNCT_VALID_P
f5d927c0 3153 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3cf2715d
DE
3154 output_operand (NULL_RTX, *p++);
3155#endif
3156 else
3157 output_operand_lossage ("invalid %%-code");
3158 break;
3159
3160 default:
3161 putc (c, asm_out_file);
3162 }
3163
0d4903b8
RK
3164 /* Write out the variable names for operands, if we know them. */
3165 if (flag_verbose_asm)
4f9b4029 3166 output_asm_operand_names (operands, oporder, ops);
0d4903b8
RK
3167 if (flag_print_asm_name)
3168 output_asm_name ();
3cf2715d
DE
3169
3170 putc ('\n', asm_out_file);
3171}
3172\f
3173/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3174
3175void
6cf9ac28 3176output_asm_label (rtx x)
3cf2715d
DE
3177{
3178 char buf[256];
3179
3180 if (GET_CODE (x) == LABEL_REF)
be1bb652 3181 x = XEXP (x, 0);
4b4bf941
JQ
3182 if (LABEL_P (x)
3183 || (NOTE_P (x)
be1bb652 3184 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3cf2715d
DE
3185 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3186 else
a52453cc 3187 output_operand_lossage ("`%%l' operand isn't a label");
3cf2715d
DE
3188
3189 assemble_name (asm_out_file, buf);
3190}
3191
3192/* Print operand X using machine-dependent assembler syntax.
3193 The macro PRINT_OPERAND is defined just to control this function.
3194 CODE is a non-digit that preceded the operand-number in the % spec,
3195 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3196 between the % and the digits.
3197 When CODE is a non-letter, X is 0.
3198
3199 The meanings of the letters are machine-dependent and controlled
3200 by PRINT_OPERAND. */
3201
3202static void
6cf9ac28 3203output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3cf2715d
DE
3204{
3205 if (x && GET_CODE (x) == SUBREG)
49d801d3 3206 x = alter_subreg (&x);
3cf2715d
DE
3207
3208 /* If X is a pseudo-register, abort now rather than writing trash to the
3209 assembler file. */
0bccc606 3210 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3cf2715d
DE
3211
3212 PRINT_OPERAND (asm_out_file, x, code);
3213}
3214
3215/* Print a memory reference operand for address X
3216 using machine-dependent assembler syntax.
3217 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3218
3219void
6cf9ac28 3220output_address (rtx x)
3cf2715d 3221{
49d801d3 3222 walk_alter_subreg (&x);
3cf2715d
DE
3223 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3224}
3225\f
3226/* Print an integer constant expression in assembler syntax.
3227 Addition and subtraction are the only arithmetic
3228 that may appear in these expressions. */
3229
3230void
6cf9ac28 3231output_addr_const (FILE *file, rtx x)
3cf2715d
DE
3232{
3233 char buf[256];
3234
3235 restart:
3236 switch (GET_CODE (x))
3237 {
3238 case PC:
eac50d7a 3239 putc ('.', file);
3cf2715d
DE
3240 break;
3241
3242 case SYMBOL_REF:
bb9a388d
ZW
3243 if (SYMBOL_REF_DECL (x))
3244 mark_decl_referenced (SYMBOL_REF_DECL (x));
99c8c61c
AO
3245#ifdef ASM_OUTPUT_SYMBOL_REF
3246 ASM_OUTPUT_SYMBOL_REF (file, x);
3247#else
3cf2715d 3248 assemble_name (file, XSTR (x, 0));
99c8c61c 3249#endif
3cf2715d
DE
3250 break;
3251
3252 case LABEL_REF:
422be3c3
AO
3253 x = XEXP (x, 0);
3254 /* Fall through. */
3cf2715d
DE
3255 case CODE_LABEL:
3256 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
2f0b7af6
GK
3257#ifdef ASM_OUTPUT_LABEL_REF
3258 ASM_OUTPUT_LABEL_REF (file, buf);
3259#else
3cf2715d 3260 assemble_name (file, buf);
2f0b7af6 3261#endif
3cf2715d
DE
3262 break;
3263
3264 case CONST_INT:
21e3a81b 3265 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3cf2715d
DE
3266 break;
3267
3268 case CONST:
3269 /* This used to output parentheses around the expression,
3270 but that does not work on the 386 (either ATT or BSD assembler). */
3271 output_addr_const (file, XEXP (x, 0));
3272 break;
3273
3274 case CONST_DOUBLE:
3275 if (GET_MODE (x) == VOIDmode)
3276 {
3277 /* We can use %d if the number is one word and positive. */
3278 if (CONST_DOUBLE_HIGH (x))
21e3a81b 3279 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3cf2715d 3280 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
f5d927c0 3281 else if (CONST_DOUBLE_LOW (x) < 0)
21e3a81b 3282 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3cf2715d 3283 else
21e3a81b 3284 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3cf2715d
DE
3285 }
3286 else
3287 /* We can't handle floating point constants;
3288 PRINT_OPERAND must handle them. */
3289 output_operand_lossage ("floating constant misused");
3290 break;
3291
3292 case PLUS:
3293 /* Some assemblers need integer constants to appear last (eg masm). */
3294 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3295 {
3296 output_addr_const (file, XEXP (x, 1));
3297 if (INTVAL (XEXP (x, 0)) >= 0)
3298 fprintf (file, "+");
3299 output_addr_const (file, XEXP (x, 0));
3300 }
3301 else
3302 {
3303 output_addr_const (file, XEXP (x, 0));
08106825
AO
3304 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3305 || INTVAL (XEXP (x, 1)) >= 0)
3cf2715d
DE
3306 fprintf (file, "+");
3307 output_addr_const (file, XEXP (x, 1));
3308 }
3309 break;
3310
3311 case MINUS:
3312 /* Avoid outputting things like x-x or x+5-x,
3313 since some assemblers can't handle that. */
3314 x = simplify_subtraction (x);
3315 if (GET_CODE (x) != MINUS)
3316 goto restart;
3317
3318 output_addr_const (file, XEXP (x, 0));
3319 fprintf (file, "-");
301d03af
RS
3320 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3321 || GET_CODE (XEXP (x, 1)) == PC
3322 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3323 output_addr_const (file, XEXP (x, 1));
3324 else
3cf2715d 3325 {
17b53c33 3326 fputs (targetm.asm_out.open_paren, file);
3cf2715d 3327 output_addr_const (file, XEXP (x, 1));
17b53c33 3328 fputs (targetm.asm_out.close_paren, file);
3cf2715d 3329 }
3cf2715d
DE
3330 break;
3331
3332 case ZERO_EXTEND:
3333 case SIGN_EXTEND:
fdf473ae 3334 case SUBREG:
3cf2715d
DE
3335 output_addr_const (file, XEXP (x, 0));
3336 break;
3337
3338 default:
422be3c3
AO
3339#ifdef OUTPUT_ADDR_CONST_EXTRA
3340 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3341 break;
3342
3343 fail:
3344#endif
3cf2715d
DE
3345 output_operand_lossage ("invalid expression as operand");
3346 }
3347}
3348\f
3349/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3350 %R prints the value of REGISTER_PREFIX.
3351 %L prints the value of LOCAL_LABEL_PREFIX.
3352 %U prints the value of USER_LABEL_PREFIX.
3353 %I prints the value of IMMEDIATE_PREFIX.
3354 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
b1721339 3355 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3cf2715d
DE
3356
3357 We handle alternate assembler dialects here, just like output_asm_insn. */
3358
3359void
e34d07f2 3360asm_fprintf (FILE *file, const char *p, ...)
3cf2715d 3361{
3cf2715d
DE
3362 char buf[10];
3363 char *q, c;
e34d07f2 3364 va_list argptr;
6cf9ac28 3365
e34d07f2 3366 va_start (argptr, p);
3cf2715d
DE
3367
3368 buf[0] = '%';
3369
b729186a 3370 while ((c = *p++))
3cf2715d
DE
3371 switch (c)
3372 {
3373#ifdef ASSEMBLER_DIALECT
3374 case '{':
b729186a
JL
3375 {
3376 int i;
3cf2715d 3377
b729186a
JL
3378 /* If we want the first dialect, do nothing. Otherwise, skip
3379 DIALECT_NUMBER of strings ending with '|'. */
3380 for (i = 0; i < dialect_number; i++)
3381 {
3382 while (*p && *p++ != '|')
3383 ;
3384
3385 if (*p == '|')
3386 p++;
f5d927c0 3387 }
b729186a 3388 }
3cf2715d
DE
3389 break;
3390
3391 case '|':
3392 /* Skip to close brace. */
3393 while (*p && *p++ != '}')
3394 ;
3395 break;
3396
3397 case '}':
3398 break;
3399#endif
3400
3401 case '%':
3402 c = *p++;
3403 q = &buf[1];
b1721339
KG
3404 while (strchr ("-+ #0", c))
3405 {
3406 *q++ = c;
3407 c = *p++;
3408 }
0df6c2c7 3409 while (ISDIGIT (c) || c == '.')
3cf2715d
DE
3410 {
3411 *q++ = c;
3412 c = *p++;
3413 }
3414 switch (c)
3415 {
3416 case '%':
b1721339 3417 putc ('%', file);
3cf2715d
DE
3418 break;
3419
3420 case 'd': case 'i': case 'u':
b1721339
KG
3421 case 'x': case 'X': case 'o':
3422 case 'c':
3cf2715d
DE
3423 *q++ = c;
3424 *q = 0;
3425 fprintf (file, buf, va_arg (argptr, int));
3426 break;
3427
3428 case 'w':
b1721339
KG
3429 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3430 'o' cases, but we do not check for those cases. It
3431 means that the value is a HOST_WIDE_INT, which may be
3432 either `long' or `long long'. */
85f015e1
KG
3433 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3434 q += strlen (HOST_WIDE_INT_PRINT);
3cf2715d
DE
3435 *q++ = *p++;
3436 *q = 0;
3437 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3438 break;
3439
3440 case 'l':
3441 *q++ = c;
b1721339
KG
3442#ifdef HAVE_LONG_LONG
3443 if (*p == 'l')
3444 {
3445 *q++ = *p++;
3446 *q++ = *p++;
3447 *q = 0;
3448 fprintf (file, buf, va_arg (argptr, long long));
3449 }
3450 else
3451#endif
3452 {
3453 *q++ = *p++;
3454 *q = 0;
3455 fprintf (file, buf, va_arg (argptr, long));
3456 }
6cf9ac28 3457
3cf2715d
DE
3458 break;
3459
3460 case 's':
3461 *q++ = c;
3462 *q = 0;
3463 fprintf (file, buf, va_arg (argptr, char *));
3464 break;
3465
3466 case 'O':
3467#ifdef ASM_OUTPUT_OPCODE
3468 ASM_OUTPUT_OPCODE (asm_out_file, p);
3469#endif
3470 break;
3471
3472 case 'R':
3473#ifdef REGISTER_PREFIX
3474 fprintf (file, "%s", REGISTER_PREFIX);
3475#endif
3476 break;
3477
3478 case 'I':
3479#ifdef IMMEDIATE_PREFIX
3480 fprintf (file, "%s", IMMEDIATE_PREFIX);
3481#endif
3482 break;
3483
3484 case 'L':
3485#ifdef LOCAL_LABEL_PREFIX
3486 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3487#endif
3488 break;
3489
3490 case 'U':
19283265 3491 fputs (user_label_prefix, file);
3cf2715d
DE
3492 break;
3493
fe0503ea 3494#ifdef ASM_FPRINTF_EXTENSIONS
7ef0daad 3495 /* Uppercase letters are reserved for general use by asm_fprintf
fe0503ea
NC
3496 and so are not available to target specific code. In order to
3497 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3498 they are defined here. As they get turned into real extensions
3499 to asm_fprintf they should be removed from this list. */
3500 case 'A': case 'B': case 'C': case 'D': case 'E':
3501 case 'F': case 'G': case 'H': case 'J': case 'K':
3502 case 'M': case 'N': case 'P': case 'Q': case 'S':
3503 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3504 break;
f5d927c0 3505
fe0503ea
NC
3506 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3507#endif
3cf2715d 3508 default:
0bccc606 3509 gcc_unreachable ();
3cf2715d
DE
3510 }
3511 break;
3512
3513 default:
b1721339 3514 putc (c, file);
3cf2715d 3515 }
e34d07f2 3516 va_end (argptr);
3cf2715d
DE
3517}
3518\f
3519/* Split up a CONST_DOUBLE or integer constant rtx
3520 into two rtx's for single words,
3521 storing in *FIRST the word that comes first in memory in the target
3522 and in *SECOND the other. */
3523
3524void
6cf9ac28 3525split_double (rtx value, rtx *first, rtx *second)
3cf2715d
DE
3526{
3527 if (GET_CODE (value) == CONST_INT)
3528 {
5a1a6efd 3529 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
f76b9db2 3530 {
5a1a6efd 3531 /* In this case the CONST_INT holds both target words.
27eef9ce
JC
3532 Extract the bits from it into two word-sized pieces.
3533 Sign extend each half to HOST_WIDE_INT. */
7f251dee
AO
3534 unsigned HOST_WIDE_INT low, high;
3535 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3536
3537 /* Set sign_bit to the most significant bit of a word. */
3538 sign_bit = 1;
3539 sign_bit <<= BITS_PER_WORD - 1;
3540
3541 /* Set mask so that all bits of the word are set. We could
3542 have used 1 << BITS_PER_WORD instead of basing the
3543 calculation on sign_bit. However, on machines where
3544 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3545 compiler warning, even though the code would never be
3546 executed. */
3547 mask = sign_bit << 1;
3548 mask--;
3549
3550 /* Set sign_extend as any remaining bits. */
3551 sign_extend = ~mask;
f5d927c0 3552
7f251dee
AO
3553 /* Pick the lower word and sign-extend it. */
3554 low = INTVAL (value);
3555 low &= mask;
3556 if (low & sign_bit)
3557 low |= sign_extend;
3558
3559 /* Pick the higher word, shifted to the least significant
3560 bits, and sign-extend it. */
3561 high = INTVAL (value);
3562 high >>= BITS_PER_WORD - 1;
3563 high >>= 1;
3564 high &= mask;
3565 if (high & sign_bit)
3566 high |= sign_extend;
3567
3568 /* Store the words in the target machine order. */
5a1a6efd
RK
3569 if (WORDS_BIG_ENDIAN)
3570 {
7f251dee
AO
3571 *first = GEN_INT (high);
3572 *second = GEN_INT (low);
5a1a6efd
RK
3573 }
3574 else
3575 {
7f251dee
AO
3576 *first = GEN_INT (low);
3577 *second = GEN_INT (high);
5a1a6efd 3578 }
f76b9db2
ILT
3579 }
3580 else
3581 {
5a1a6efd
RK
3582 /* The rule for using CONST_INT for a wider mode
3583 is that we regard the value as signed.
3584 So sign-extend it. */
3585 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3586 if (WORDS_BIG_ENDIAN)
3587 {
3588 *first = high;
3589 *second = value;
3590 }
3591 else
3592 {
3593 *first = value;
3594 *second = high;
3595 }
f76b9db2 3596 }
3cf2715d
DE
3597 }
3598 else if (GET_CODE (value) != CONST_DOUBLE)
3599 {
f76b9db2
ILT
3600 if (WORDS_BIG_ENDIAN)
3601 {
3602 *first = const0_rtx;
3603 *second = value;
3604 }
3605 else
3606 {
3607 *first = value;
3608 *second = const0_rtx;
3609 }
3cf2715d
DE
3610 }
3611 else if (GET_MODE (value) == VOIDmode
3612 /* This is the old way we did CONST_DOUBLE integers. */
3613 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3614 {
3615 /* In an integer, the words are defined as most and least significant.
3616 So order them by the target's convention. */
f76b9db2
ILT
3617 if (WORDS_BIG_ENDIAN)
3618 {
3619 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3620 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3621 }
3622 else
3623 {
3624 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3625 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3626 }
3cf2715d
DE
3627 }
3628 else
3629 {
f5d927c0
KH
3630 REAL_VALUE_TYPE r;
3631 long l[2];
3cf2715d
DE
3632 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3633
3634 /* Note, this converts the REAL_VALUE_TYPE to the target's
3635 format, splits up the floating point double and outputs
3636 exactly 32 bits of it into each of l[0] and l[1] --
0f41302f 3637 not necessarily BITS_PER_WORD bits. */
3cf2715d
DE
3638 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3639
b5a3eb84
JW
3640 /* If 32 bits is an entire word for the target, but not for the host,
3641 then sign-extend on the host so that the number will look the same
3642 way on the host that it would on the target. See for instance
3643 simplify_unary_operation. The #if is needed to avoid compiler
3644 warnings. */
3645
3646#if HOST_BITS_PER_LONG > 32
3647 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3648 {
3649 if (l[0] & ((long) 1 << 31))
3650 l[0] |= ((long) (-1) << 32);
3651 if (l[1] & ((long) 1 << 31))
3652 l[1] |= ((long) (-1) << 32);
3653 }
3654#endif
3655
3e95a7cb
ZW
3656 *first = GEN_INT (l[0]);
3657 *second = GEN_INT (l[1]);
3cf2715d
DE
3658 }
3659}
3660\f
3661/* Return nonzero if this function has no function calls. */
3662
3663int
6cf9ac28 3664leaf_function_p (void)
3cf2715d
DE
3665{
3666 rtx insn;
b660f82f 3667 rtx link;
3cf2715d 3668
70f4f91c 3669 if (current_function_profile || profile_arc_flag)
3cf2715d
DE
3670 return 0;
3671
3672 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3673 {
4b4bf941 3674 if (CALL_P (insn)
7d167afd 3675 && ! SIBLING_CALL_P (insn))
3cf2715d 3676 return 0;
4b4bf941 3677 if (NONJUMP_INSN_P (insn)
3cf2715d 3678 && GET_CODE (PATTERN (insn)) == SEQUENCE
4b4bf941 3679 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
0a1c58a2 3680 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3cf2715d
DE
3681 return 0;
3682 }
b660f82f
JW
3683 for (link = current_function_epilogue_delay_list;
3684 link;
3685 link = XEXP (link, 1))
3cf2715d 3686 {
b660f82f
JW
3687 insn = XEXP (link, 0);
3688
4b4bf941 3689 if (CALL_P (insn)
7d167afd 3690 && ! SIBLING_CALL_P (insn))
3cf2715d 3691 return 0;
4b4bf941 3692 if (NONJUMP_INSN_P (insn)
b660f82f 3693 && GET_CODE (PATTERN (insn)) == SEQUENCE
4b4bf941 3694 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
b660f82f 3695 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3cf2715d
DE
3696 return 0;
3697 }
3698
3699 return 1;
3700}
3701
09da1532 3702/* Return 1 if branch is a forward branch.
ef6257cd
JH
3703 Uses insn_shuid array, so it works only in the final pass. May be used by
3704 output templates to customary add branch prediction hints.
3705 */
3706int
6cf9ac28 3707final_forward_branch_p (rtx insn)
ef6257cd
JH
3708{
3709 int insn_id, label_id;
0bccc606
NS
3710
3711 gcc_assert (uid_shuid);
ef6257cd
JH
3712 insn_id = INSN_SHUID (insn);
3713 label_id = INSN_SHUID (JUMP_LABEL (insn));
3714 /* We've hit some insns that does not have id information available. */
0bccc606 3715 gcc_assert (insn_id && label_id);
ef6257cd
JH
3716 return insn_id < label_id;
3717}
3718
3cf2715d
DE
3719/* On some machines, a function with no call insns
3720 can run faster if it doesn't create its own register window.
3721 When output, the leaf function should use only the "output"
3722 registers. Ordinarily, the function would be compiled to use
3723 the "input" registers to find its arguments; it is a candidate
3724 for leaf treatment if it uses only the "input" registers.
3725 Leaf function treatment means renumbering so the function
3726 uses the "output" registers instead. */
3727
3728#ifdef LEAF_REGISTERS
3729
3cf2715d
DE
3730/* Return 1 if this function uses only the registers that can be
3731 safely renumbered. */
3732
3733int
6cf9ac28 3734only_leaf_regs_used (void)
3cf2715d
DE
3735{
3736 int i;
4977bab6 3737 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3cf2715d
DE
3738
3739 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
e5e809f4
JL
3740 if ((regs_ever_live[i] || global_regs[i])
3741 && ! permitted_reg_in_leaf_functions[i])
3742 return 0;
3743
3744 if (current_function_uses_pic_offset_table
3745 && pic_offset_table_rtx != 0
f8cfc6aa 3746 && REG_P (pic_offset_table_rtx)
e5e809f4
JL
3747 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3748 return 0;
3749
3cf2715d
DE
3750 return 1;
3751}
3752
3753/* Scan all instructions and renumber all registers into those
3754 available in leaf functions. */
3755
3756static void
6cf9ac28 3757leaf_renumber_regs (rtx first)
3cf2715d
DE
3758{
3759 rtx insn;
3760
3761 /* Renumber only the actual patterns.
3762 The reg-notes can contain frame pointer refs,
3763 and renumbering them could crash, and should not be needed. */
3764 for (insn = first; insn; insn = NEXT_INSN (insn))
2c3c49de 3765 if (INSN_P (insn))
3cf2715d 3766 leaf_renumber_regs_insn (PATTERN (insn));
f5d927c0
KH
3767 for (insn = current_function_epilogue_delay_list;
3768 insn;
3769 insn = XEXP (insn, 1))
2c3c49de 3770 if (INSN_P (XEXP (insn, 0)))
3cf2715d
DE
3771 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3772}
3773
3774/* Scan IN_RTX and its subexpressions, and renumber all regs into those
3775 available in leaf functions. */
3776
3777void
6cf9ac28 3778leaf_renumber_regs_insn (rtx in_rtx)
3cf2715d 3779{
b3694847
SS
3780 int i, j;
3781 const char *format_ptr;
3cf2715d
DE
3782
3783 if (in_rtx == 0)
3784 return;
3785
3786 /* Renumber all input-registers into output-registers.
3787 renumbered_regs would be 1 for an output-register;
3788 they */
3789
f8cfc6aa 3790 if (REG_P (in_rtx))
3cf2715d
DE
3791 {
3792 int newreg;
3793
3794 /* Don't renumber the same reg twice. */
3795 if (in_rtx->used)
3796 return;
3797
3798 newreg = REGNO (in_rtx);
3799 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3800 to reach here as part of a REG_NOTE. */
3801 if (newreg >= FIRST_PSEUDO_REGISTER)
3802 {
3803 in_rtx->used = 1;
3804 return;
3805 }
3806 newreg = LEAF_REG_REMAP (newreg);
0bccc606 3807 gcc_assert (newreg >= 0);
3cf2715d
DE
3808 regs_ever_live[REGNO (in_rtx)] = 0;
3809 regs_ever_live[newreg] = 1;
3810 REGNO (in_rtx) = newreg;
3811 in_rtx->used = 1;
3812 }
3813
2c3c49de 3814 if (INSN_P (in_rtx))
3cf2715d
DE
3815 {
3816 /* Inside a SEQUENCE, we find insns.
3817 Renumber just the patterns of these insns,
3818 just as we do for the top-level insns. */
3819 leaf_renumber_regs_insn (PATTERN (in_rtx));
3820 return;
3821 }
3822
3823 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3824
3825 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3826 switch (*format_ptr++)
3827 {
3828 case 'e':
3829 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3830 break;
3831
3832 case 'E':
3833 if (NULL != XVEC (in_rtx, i))
3834 {
3835 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3836 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3837 }
3838 break;
3839
3840 case 'S':
3841 case 's':
3842 case '0':
3843 case 'i':
3844 case 'w':
3845 case 'n':
3846 case 'u':
3847 break;
3848
3849 default:
0bccc606 3850 gcc_unreachable ();
3cf2715d
DE
3851 }
3852}
3853#endif
6a08f7b3
DP
3854
3855
3856/* When -gused is used, emit debug info for only used symbols. But in
3857 addition to the standard intercepted debug_hooks there are some direct
3858 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3859 Those routines may also be called from a higher level intercepted routine. So
3860 to prevent recording data for an inner call to one of these for an intercept,
5d3cc252 3861 we maintain an intercept nesting counter (debug_nesting). We only save the
6a08f7b3
DP
3862 intercepted arguments if the nesting is 1. */
3863int debug_nesting = 0;
3864
3865static tree *symbol_queue;
3866int symbol_queue_index = 0;
3867static int symbol_queue_size = 0;
3868
3869/* Generate the symbols for any queued up type symbols we encountered
3870 while generating the type info for some originally used symbol.
3871 This might generate additional entries in the queue. Only when
3872 the nesting depth goes to 0 is this routine called. */
3873
3874void
6cf9ac28 3875debug_flush_symbol_queue (void)
6a08f7b3
DP
3876{
3877 int i;
6cf9ac28 3878
6a08f7b3
DP
3879 /* Make sure that additionally queued items are not flushed
3880 prematurely. */
6cf9ac28 3881
6a08f7b3 3882 ++debug_nesting;
6cf9ac28 3883
6a08f7b3
DP
3884 for (i = 0; i < symbol_queue_index; ++i)
3885 {
3886 /* If we pushed queued symbols then such symbols are must be
3887 output no matter what anyone else says. Specifically,
3888 we need to make sure dbxout_symbol() thinks the symbol was
3889 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3890 which may be set for outside reasons. */
3891 int saved_tree_used = TREE_USED (symbol_queue[i]);
3892 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3893 TREE_USED (symbol_queue[i]) = 1;
3894 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3895
3896#ifdef DBX_DEBUGGING_INFO
3897 dbxout_symbol (symbol_queue[i], 0);
3898#endif
3899
3900 TREE_USED (symbol_queue[i]) = saved_tree_used;
3901 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3902 }
3903
3904 symbol_queue_index = 0;
6cf9ac28 3905 --debug_nesting;
6a08f7b3
DP
3906}
3907
3908/* Queue a type symbol needed as part of the definition of a decl
3909 symbol. These symbols are generated when debug_flush_symbol_queue()
3910 is called. */
3911
6cf9ac28 3912void
6a08f7b3
DP
3913debug_queue_symbol (tree decl)
3914{
6cf9ac28 3915 if (symbol_queue_index >= symbol_queue_size)
6a08f7b3
DP
3916 {
3917 symbol_queue_size += 10;
703ad42b
KG
3918 symbol_queue = xrealloc (symbol_queue,
3919 symbol_queue_size * sizeof (tree));
6a08f7b3
DP
3920 }
3921
3922 symbol_queue[symbol_queue_index++] = decl;
6cf9ac28 3923}
6a08f7b3 3924
f9da5064 3925/* Free symbol queue. */
6a08f7b3 3926void
6cf9ac28 3927debug_free_queue (void)
6a08f7b3
DP
3928{
3929 if (symbol_queue)
3930 {
3931 free (symbol_queue);
3932 symbol_queue = NULL;
3933 symbol_queue_size = 0;
3934 }
3935}
This page took 2.426458 seconds and 5 git commands to generate.