]> gcc.gnu.org Git - gcc.git/blame - gcc/final.c
gcc-common.c (ggc_mark_rtx_children): Mark NOTE_EXPECTED_VALUE from NOTE_INSN_EXPECTE...
[gcc.git] / gcc / final.c
CommitLineData
3cf2715d 1/* Convert RTL to assembler code and output it, for GNU compiler.
3b708058
JL
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
3cf2715d
DE
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
940d9d63
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
3cf2715d
DE
21
22
23/* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
25
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
31
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
36
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
39
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
43
44 The code for the function prologue and epilogue are generated
45 directly as assembler code by the macros FUNCTION_PROLOGUE and
46 FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
47
48#include "config.h"
670ee920 49#include "system.h"
3cf2715d
DE
50
51#include "tree.h"
52#include "rtl.h"
6baf1cc8 53#include "tm_p.h"
3cf2715d
DE
54#include "regs.h"
55#include "insn-config.h"
56#include "insn-flags.h"
57#include "insn-attr.h"
58#include "insn-codes.h"
59#include "recog.h"
60#include "conditions.h"
61#include "flags.h"
62#include "real.h"
63#include "hard-reg-set.h"
64#include "defaults.h"
65#include "output.h"
3d195391 66#include "except.h"
49ad7cfa 67#include "function.h"
10f0ad3d 68#include "toplev.h"
d6f4ec51 69#include "reload.h"
ab87f8c8 70#include "intl.h"
be1bb652 71#include "basic-block.h"
3cf2715d
DE
72
73/* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
74#if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
76ead72b 75#include "dbxout.h"
c7391272 76#if defined (USG) || !defined (HAVE_STAB_H)
3cf2715d
DE
77#include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
78#else
9ec36da5
JL
79#include <stab.h>
80#endif
81
3cf2715d
DE
82#endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
83
f73ad30e
JH
84#ifndef ACCUMULATE_OUTGOING_ARGS
85#define ACCUMULATE_OUTGOING_ARGS 0
86#endif
87
3cf2715d
DE
88#ifdef XCOFF_DEBUGGING_INFO
89#include "xcoffout.h"
90#endif
91
76ead72b
RL
92#ifdef DWARF_DEBUGGING_INFO
93#include "dwarfout.h"
94#endif
95
96#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
97#include "dwarf2out.h"
98#endif
99
100#ifdef SDB_DEBUGGING_INFO
101#include "sdbout.h"
102#endif
103
3cf2715d
DE
104/* .stabd code for line number. */
105#ifndef N_SLINE
106#define N_SLINE 0x44
107#endif
108
109/* .stabs code for included file name. */
110#ifndef N_SOL
111#define N_SOL 0x84
112#endif
113
114#ifndef INT_TYPE_SIZE
115#define INT_TYPE_SIZE BITS_PER_WORD
116#endif
117
9e2f9a7f
DE
118#ifndef LONG_TYPE_SIZE
119#define LONG_TYPE_SIZE BITS_PER_WORD
120#endif
121
3cf2715d
DE
122/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
123 null default for it to save conditionalization later. */
124#ifndef CC_STATUS_INIT
125#define CC_STATUS_INIT
126#endif
127
128/* How to start an assembler comment. */
129#ifndef ASM_COMMENT_START
130#define ASM_COMMENT_START ";#"
131#endif
132
133/* Is the given character a logical line separator for the assembler? */
134#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
135#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
136#endif
137
75197b37
BS
138#ifndef JUMP_TABLES_IN_TEXT_SECTION
139#define JUMP_TABLES_IN_TEXT_SECTION 0
140#endif
141
3cf2715d
DE
142/* Last insn processed by final_scan_insn. */
143static rtx debug_insn = 0;
144
145/* Line number of last NOTE. */
146static int last_linenum;
147
eac40081
RK
148/* Highest line number in current block. */
149static int high_block_linenum;
150
151/* Likewise for function. */
152static int high_function_linenum;
153
3cf2715d 154/* Filename of last NOTE. */
3cce094d 155static const char *last_filename;
3cf2715d
DE
156
157/* Number of basic blocks seen so far;
158 used if profile_block_flag is set. */
159static int count_basic_blocks;
160
9e2f9a7f
DE
161/* Number of instrumented arcs when profile_arc_flag is set. */
162extern int count_instrumented_arcs;
163
fc470718
R
164extern int length_unit_log; /* This is defined in insn-attrtab.c. */
165
3cf2715d
DE
166/* Nonzero while outputting an `asm' with operands.
167 This means that inconsistencies are the user's fault, so don't abort.
168 The precise value is the insn being output, to pass to error_for_asm. */
169static rtx this_is_asm_operands;
170
171/* Number of operands of this insn, for an `asm' with operands. */
22bf4422 172static unsigned int insn_noperands;
3cf2715d
DE
173
174/* Compare optimization flag. */
175
176static rtx last_ignored_compare = 0;
177
178/* Flag indicating this insn is the start of a new basic block. */
179
180static int new_block = 1;
181
3cf2715d
DE
182/* Assign a unique number to each insn that is output.
183 This can be used to generate unique local labels. */
184
185static int insn_counter = 0;
186
187#ifdef HAVE_cc0
188/* This variable contains machine-dependent flags (defined in tm.h)
189 set and examined by output routines
190 that describe how to interpret the condition codes properly. */
191
192CC_STATUS cc_status;
193
194/* During output of an insn, this contains a copy of cc_status
195 from before the insn. */
196
197CC_STATUS cc_prev_status;
198#endif
199
200/* Indexed by hardware reg number, is 1 if that register is ever
201 used in the current function.
202
203 In life_analysis, or in stupid_life_analysis, this is set
204 up to record the hard regs used explicitly. Reload adds
205 in the hard regs used for holding pseudo regs. Final uses
206 it to generate the code in the function prologue and epilogue
207 to save and restore registers as needed. */
208
209char regs_ever_live[FIRST_PSEUDO_REGISTER];
210
211/* Nonzero means current function must be given a frame pointer.
212 Set in stmt.c if anything is allocated on the stack there.
213 Set in reload1.c if anything is allocated on the stack there. */
214
215int frame_pointer_needed;
216
217/* Assign unique numbers to labels generated for profiling. */
218
219int profile_label_no;
220
18c038b9 221/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
3cf2715d
DE
222
223static int block_depth;
224
225/* Nonzero if have enabled APP processing of our assembler output. */
226
227static int app_on;
228
229/* If we are outputting an insn sequence, this contains the sequence rtx.
230 Zero otherwise. */
231
232rtx final_sequence;
233
234#ifdef ASSEMBLER_DIALECT
235
236/* Number of the assembler dialect to use, starting at 0. */
237static int dialect_number;
238#endif
239
240/* Indexed by line number, nonzero if there is a note for that line. */
241
242static char *line_note_exists;
243
afe48e06
RH
244#ifdef HAVE_conditional_execution
245/* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
246rtx current_insn_predicate;
247#endif
248
3cf2715d
DE
249/* Linked list to hold line numbers for each basic block. */
250
251struct bb_list {
252 struct bb_list *next; /* pointer to next basic block */
253 int line_num; /* line number */
254 int file_label_num; /* LPBC<n> label # for stored filename */
255 int func_label_num; /* LPBC<n> label # for stored function name */
256};
257
258static struct bb_list *bb_head = 0; /* Head of basic block list */
259static struct bb_list **bb_tail = &bb_head; /* Ptr to store next bb ptr */
260static int bb_file_label_num = -1; /* Current label # for file */
261static int bb_func_label_num = -1; /* Current label # for func */
262
263/* Linked list to hold the strings for each file and function name output. */
264
265struct bb_str {
266 struct bb_str *next; /* pointer to next string */
9b3142b3 267 const char *string; /* string */
3cf2715d
DE
268 int label_num; /* label number */
269 int length; /* string length */
270};
271
3cf2715d
DE
272static struct bb_str *sbb_head = 0; /* Head of string list. */
273static struct bb_str **sbb_tail = &sbb_head; /* Ptr to store next bb str */
274static int sbb_label_num = 0; /* Last label used */
275
1d300e19 276#ifdef HAVE_ATTR_length
711d877c
KG
277static int asm_insn_count PARAMS ((rtx));
278#endif
279static void profile_function PARAMS ((FILE *));
280static void profile_after_prologue PARAMS ((FILE *));
281static void add_bb PARAMS ((FILE *));
282static int add_bb_string PARAMS ((const char *, int));
283static void output_source_line PARAMS ((FILE *, rtx));
284static rtx walk_alter_subreg PARAMS ((rtx));
285static void output_asm_name PARAMS ((void));
286static void output_operand PARAMS ((rtx, int));
e9a25f70 287#ifdef LEAF_REGISTERS
711d877c 288static void leaf_renumber_regs PARAMS ((rtx));
e9a25f70
JL
289#endif
290#ifdef HAVE_cc0
711d877c 291static int alter_cond PARAMS ((rtx));
e9a25f70 292#endif
ca3075bd 293#ifndef ADDR_VEC_ALIGN
711d877c 294static int final_addr_vec_align PARAMS ((rtx));
ca3075bd 295#endif
7bdb32b9 296#ifdef HAVE_ATTR_length
711d877c 297static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
7bdb32b9 298#endif
3cf2715d
DE
299\f
300/* Initialize data in final at the beginning of a compilation. */
301
302void
303init_final (filename)
6a651371 304 const char *filename ATTRIBUTE_UNUSED;
3cf2715d 305{
3cf2715d 306 app_on = 0;
3cf2715d
DE
307 final_sequence = 0;
308
309#ifdef ASSEMBLER_DIALECT
310 dialect_number = ASSEMBLER_DIALECT;
311#endif
312}
313
314/* Called at end of source file,
315 to output the block-profiling table for this entire compilation. */
316
317void
318end_final (filename)
87e11268 319 const char *filename;
3cf2715d
DE
320{
321 int i;
322
9e2f9a7f 323 if (profile_block_flag || profile_arc_flag)
3cf2715d
DE
324 {
325 char name[20];
326 int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
9e2f9a7f 327 int size, rounded;
3cf2715d
DE
328 struct bb_list *ptr;
329 struct bb_str *sptr;
9e2f9a7f
DE
330 int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
331 int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
332
333 if (profile_block_flag)
334 size = long_bytes * count_basic_blocks;
335 else
336 size = long_bytes * count_instrumented_arcs;
337 rounded = size;
3cf2715d
DE
338
339 rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
340 rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
341 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
342
343 data_section ();
344
47431dff
RK
345 /* Output the main header, of 11 words:
346 0: 1 if this file is initialized, else 0.
3cf2715d
DE
347 1: address of file name (LPBX1).
348 2: address of table of counts (LPBX2).
349 3: number of counts in the table.
350 4: always 0, for compatibility with Sun.
351
352 The following are GNU extensions:
353
354 5: address of table of start addrs of basic blocks (LPBX3).
355 6: Number of bytes in this header.
356 7: address of table of function names (LPBX4).
357 8: address of table of line numbers (LPBX5) or 0.
47431dff 358 9: address of table of file names (LPBX6) or 0.
0f41302f 359 10: space reserved for basic block profiling. */
3cf2715d
DE
360
361 ASM_OUTPUT_ALIGN (asm_out_file, align);
362
363 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
364 /* zero word */
9e2f9a7f 365 assemble_integer (const0_rtx, long_bytes, 1);
3cf2715d
DE
366
367 /* address of filename */
368 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
38a448ca 369 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
3cf2715d
DE
370
371 /* address of count table */
372 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
38a448ca 373 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
3cf2715d 374
9e2f9a7f
DE
375 /* count of the # of basic blocks or # of instrumented arcs */
376 if (profile_block_flag)
377 assemble_integer (GEN_INT (count_basic_blocks), long_bytes, 1);
378 else
379 assemble_integer (GEN_INT (count_instrumented_arcs), long_bytes,
380 1);
3cf2715d
DE
381
382 /* zero word (link field) */
9e2f9a7f 383 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
384
385 /* address of basic block start address table */
9e2f9a7f
DE
386 if (profile_block_flag)
387 {
388 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
38a448ca 389 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
9e2f9a7f
DE
390 1);
391 }
392 else
393 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
394
395 /* byte count for extended structure. */
d7502074 396 assemble_integer (GEN_INT (11 * UNITS_PER_WORD), long_bytes, 1);
3cf2715d
DE
397
398 /* address of function name table */
9e2f9a7f
DE
399 if (profile_block_flag)
400 {
401 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
38a448ca 402 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
9e2f9a7f
DE
403 1);
404 }
405 else
406 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
407
408 /* address of line number and filename tables if debugging. */
9e2f9a7f 409 if (write_symbols != NO_DEBUG && profile_block_flag)
3cf2715d
DE
410 {
411 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
c5c76735
JL
412 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
413 pointer_bytes, 1);
3cf2715d 414 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
c5c76735
JL
415 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
416 pointer_bytes, 1);
3cf2715d
DE
417 }
418 else
419 {
9e2f9a7f
DE
420 assemble_integer (const0_rtx, pointer_bytes, 1);
421 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
422 }
423
47431dff
RK
424 /* space for extension ptr (link field) */
425 assemble_integer (const0_rtx, UNITS_PER_WORD, 1);
426
3cf2715d
DE
427 /* Output the file name changing the suffix to .d for Sun tcov
428 compatibility. */
429 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
430 {
67e23d2f
JW
431 char *cwd = getpwd ();
432 int len = strlen (filename) + strlen (cwd) + 1;
433 char *data_file = (char *) alloca (len + 4);
434
435 strcpy (data_file, cwd);
436 strcat (data_file, "/");
437 strcat (data_file, filename);
3cf2715d 438 strip_off_ending (data_file, len);
9e2f9a7f
DE
439 if (profile_block_flag)
440 strcat (data_file, ".d");
441 else
442 strcat (data_file, ".da");
3cf2715d
DE
443 assemble_string (data_file, strlen (data_file) + 1);
444 }
445
446 /* Make space for the table of counts. */
2786cbad 447 if (size == 0)
3cf2715d
DE
448 {
449 /* Realign data section. */
450 ASM_OUTPUT_ALIGN (asm_out_file, align);
451 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
452 if (size != 0)
453 assemble_zeros (size);
454 }
455 else
456 {
457 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
458#ifdef ASM_OUTPUT_SHARED_LOCAL
459 if (flag_shared_data)
460 ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
461 else
462#endif
e9a25f70
JL
463#ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
464 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
465 BIGGEST_ALIGNMENT);
466#else
3cf2715d
DE
467#ifdef ASM_OUTPUT_ALIGNED_LOCAL
468 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
469 BIGGEST_ALIGNMENT);
470#else
471 ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
e9a25f70 472#endif
3cf2715d
DE
473#endif
474 }
475
476 /* Output any basic block strings */
9e2f9a7f 477 if (profile_block_flag)
3cf2715d 478 {
9e2f9a7f
DE
479 readonly_data_section ();
480 if (sbb_head)
3cf2715d 481 {
9e2f9a7f
DE
482 ASM_OUTPUT_ALIGN (asm_out_file, align);
483 for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
484 {
485 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
486 sptr->label_num);
487 assemble_string (sptr->string, sptr->length);
488 }
3cf2715d
DE
489 }
490 }
491
492 /* Output the table of addresses. */
9e2f9a7f 493 if (profile_block_flag)
3cf2715d 494 {
9e2f9a7f
DE
495 /* Realign in new section */
496 ASM_OUTPUT_ALIGN (asm_out_file, align);
497 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
498 for (i = 0; i < count_basic_blocks; i++)
499 {
500 ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
38a448ca 501 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
9e2f9a7f
DE
502 pointer_bytes, 1);
503 }
3cf2715d
DE
504 }
505
506 /* Output the table of function names. */
9e2f9a7f 507 if (profile_block_flag)
3cf2715d 508 {
9e2f9a7f
DE
509 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
510 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
3cf2715d 511 {
9e2f9a7f
DE
512 if (ptr->func_label_num >= 0)
513 {
514 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
515 ptr->func_label_num);
38a448ca 516 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
9e2f9a7f
DE
517 pointer_bytes, 1);
518 }
519 else
520 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d 521 }
3cf2715d 522
9e2f9a7f
DE
523 for ( ; i < count_basic_blocks; i++)
524 assemble_integer (const0_rtx, pointer_bytes, 1);
525 }
3cf2715d 526
9e2f9a7f 527 if (write_symbols != NO_DEBUG && profile_block_flag)
3cf2715d
DE
528 {
529 /* Output the table of line numbers. */
530 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
531 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
9e2f9a7f 532 assemble_integer (GEN_INT (ptr->line_num), long_bytes, 1);
3cf2715d
DE
533
534 for ( ; i < count_basic_blocks; i++)
9e2f9a7f 535 assemble_integer (const0_rtx, long_bytes, 1);
3cf2715d
DE
536
537 /* Output the table of file names. */
538 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
539 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
540 {
541 if (ptr->file_label_num >= 0)
542 {
9e2f9a7f
DE
543 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
544 ptr->file_label_num);
38a448ca 545 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
9e2f9a7f 546 pointer_bytes, 1);
3cf2715d
DE
547 }
548 else
9e2f9a7f 549 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
550 }
551
552 for ( ; i < count_basic_blocks; i++)
9e2f9a7f 553 assemble_integer (const0_rtx, pointer_bytes, 1);
3cf2715d
DE
554 }
555
556 /* End with the address of the table of addresses,
557 so we can find it easily, as the last word in the file's text. */
9e2f9a7f
DE
558 if (profile_block_flag)
559 {
560 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
38a448ca 561 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
9e2f9a7f
DE
562 1);
563 }
3cf2715d
DE
564 }
565}
566
567/* Enable APP processing of subsequent output.
568 Used before the output from an `asm' statement. */
569
570void
571app_enable ()
572{
573 if (! app_on)
574 {
51723711 575 fputs (ASM_APP_ON, asm_out_file);
3cf2715d
DE
576 app_on = 1;
577 }
578}
579
580/* Disable APP processing of subsequent output.
581 Called from varasm.c before most kinds of output. */
582
583void
584app_disable ()
585{
586 if (app_on)
587 {
51723711 588 fputs (ASM_APP_OFF, asm_out_file);
3cf2715d
DE
589 app_on = 0;
590 }
591}
592\f
593/* Return the number of slots filled in the current
594 delayed branch sequence (we don't count the insn needing the
595 delay slot). Zero if not in a delayed branch sequence. */
596
597#ifdef DELAY_SLOTS
598int
599dbr_sequence_length ()
600{
601 if (final_sequence != 0)
602 return XVECLEN (final_sequence, 0) - 1;
603 else
604 return 0;
605}
606#endif
607\f
608/* The next two pages contain routines used to compute the length of an insn
609 and to shorten branches. */
610
611/* Arrays for insn lengths, and addresses. The latter is referenced by
612 `insn_current_length'. */
613
614static short *insn_lengths;
615int *insn_addresses;
616
ea3cbda5
R
617/* Max uid for which the above arrays are valid. */
618static int insn_lengths_max_uid;
619
3cf2715d
DE
620/* Address of insn being processed. Used by `insn_current_length'. */
621int insn_current_address;
622
fc470718
R
623/* Address of insn being processed in previous iteration. */
624int insn_last_address;
625
626/* konwn invariant alignment of insn being processed. */
627int insn_current_align;
628
95707627
R
629/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
630 gives the next following alignment insn that increases the known
631 alignment, or NULL_RTX if there is no such insn.
632 For any alignment obtained this way, we can again index uid_align with
633 its uid to obtain the next following align that in turn increases the
634 alignment, till we reach NULL_RTX; the sequence obtained this way
635 for each insn we'll call the alignment chain of this insn in the following
636 comments. */
637
9e423e6d
JW
638struct label_alignment {
639 short alignment;
640 short max_skip;
641};
642
643static rtx *uid_align;
644static int *uid_shuid;
645static struct label_alignment *label_align;
95707627 646
3cf2715d
DE
647/* Indicate that branch shortening hasn't yet been done. */
648
649void
650init_insn_lengths ()
651{
95707627
R
652 if (label_align)
653 {
654 free (label_align);
655 label_align = 0;
656 }
657 if (uid_shuid)
658 {
659 free (uid_shuid);
660 uid_shuid = 0;
661 }
662 if (insn_lengths)
663 {
664 free (insn_lengths);
665 insn_lengths = 0;
ea3cbda5 666 insn_lengths_max_uid = 0;
95707627
R
667 }
668 if (insn_addresses)
669 {
670 free (insn_addresses);
671 insn_addresses = 0;
672 }
673 if (uid_align)
674 {
675 free (uid_align);
676 uid_align = 0;
677 }
3cf2715d
DE
678}
679
680/* Obtain the current length of an insn. If branch shortening has been done,
681 get its actual length. Otherwise, get its maximum length. */
682
683int
684get_attr_length (insn)
7bdb32b9 685 rtx insn ATTRIBUTE_UNUSED;
3cf2715d
DE
686{
687#ifdef HAVE_ATTR_length
688 rtx body;
689 int i;
690 int length = 0;
691
ea3cbda5 692 if (insn_lengths_max_uid > INSN_UID (insn))
3cf2715d
DE
693 return insn_lengths[INSN_UID (insn)];
694 else
695 switch (GET_CODE (insn))
696 {
697 case NOTE:
698 case BARRIER:
699 case CODE_LABEL:
700 return 0;
701
702 case CALL_INSN:
703 length = insn_default_length (insn);
704 break;
705
706 case JUMP_INSN:
707 body = PATTERN (insn);
708 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
709 {
fc470718
R
710 /* Alignment is machine-dependent and should be handled by
711 ADDR_VEC_ALIGN. */
3cf2715d
DE
712 }
713 else
714 length = insn_default_length (insn);
715 break;
716
717 case INSN:
718 body = PATTERN (insn);
719 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
720 return 0;
721
722 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
723 length = asm_insn_count (body) * insn_default_length (insn);
724 else if (GET_CODE (body) == SEQUENCE)
725 for (i = 0; i < XVECLEN (body, 0); i++)
726 length += get_attr_length (XVECEXP (body, 0, i));
727 else
728 length = insn_default_length (insn);
e9a25f70
JL
729 break;
730
731 default:
732 break;
3cf2715d
DE
733 }
734
735#ifdef ADJUST_INSN_LENGTH
736 ADJUST_INSN_LENGTH (insn, length);
737#endif
738 return length;
739#else /* not HAVE_ATTR_length */
740 return 0;
741#endif /* not HAVE_ATTR_length */
742}
743\f
fc470718
R
744/* Code to handle alignment inside shorten_branches. */
745
746/* Here is an explanation how the algorithm in align_fuzz can give
747 proper results:
748
749 Call a sequence of instructions beginning with alignment point X
750 and continuing until the next alignment point `block X'. When `X'
751 is used in an expression, it means the alignment value of the
752 alignment point.
753
754 Call the distance between the start of the first insn of block X, and
755 the end of the last insn of block X `IX', for the `inner size of X'.
756 This is clearly the sum of the instruction lengths.
757
758 Likewise with the next alignment-delimited block following X, which we
759 shall call block Y.
760
761 Call the distance between the start of the first insn of block X, and
762 the start of the first insn of block Y `OX', for the `outer size of X'.
763
764 The estimated padding is then OX - IX.
765
766 OX can be safely estimated as
767
768 if (X >= Y)
769 OX = round_up(IX, Y)
770 else
771 OX = round_up(IX, X) + Y - X
772
773 Clearly est(IX) >= real(IX), because that only depends on the
774 instruction lengths, and those being overestimated is a given.
775
776 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
777 we needn't worry about that when thinking about OX.
778
779 When X >= Y, the alignment provided by Y adds no uncertainty factor
780 for branch ranges starting before X, so we can just round what we have.
781 But when X < Y, we don't know anything about the, so to speak,
782 `middle bits', so we have to assume the worst when aligning up from an
783 address mod X to one mod Y, which is Y - X. */
784
785#ifndef LABEL_ALIGN
efa3896a 786#define LABEL_ALIGN(LABEL) align_labels_log
fc470718
R
787#endif
788
9e423e6d 789#ifndef LABEL_ALIGN_MAX_SKIP
efa3896a 790#define LABEL_ALIGN_MAX_SKIP (align_labels-1)
9e423e6d
JW
791#endif
792
fc470718 793#ifndef LOOP_ALIGN
efa3896a 794#define LOOP_ALIGN(LABEL) align_loops_log
fc470718
R
795#endif
796
9e423e6d 797#ifndef LOOP_ALIGN_MAX_SKIP
efa3896a 798#define LOOP_ALIGN_MAX_SKIP (align_loops-1)
9e423e6d
JW
799#endif
800
fc470718 801#ifndef LABEL_ALIGN_AFTER_BARRIER
efa3896a 802#define LABEL_ALIGN_AFTER_BARRIER(LABEL) align_jumps_log
fc470718
R
803#endif
804
9e423e6d 805#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
efa3896a 806#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (align_jumps-1)
9e423e6d
JW
807#endif
808
fc470718 809#ifndef ADDR_VEC_ALIGN
ca3075bd 810static int
fc470718
R
811final_addr_vec_align (addr_vec)
812 rtx addr_vec;
813{
814 int align = exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))));
815
816 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
817 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
818 return align;
819
820}
821#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
822#endif
823
824#ifndef INSN_LENGTH_ALIGNMENT
825#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
826#endif
827
fc470718
R
828#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
829
de7987a6 830static int min_labelno, max_labelno;
fc470718
R
831
832#define LABEL_TO_ALIGNMENT(LABEL) \
9e423e6d
JW
833 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
834
835#define LABEL_TO_MAX_SKIP(LABEL) \
836 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
fc470718
R
837
838/* For the benefit of port specific code do this also as a function. */
839int
840label_to_alignment (label)
841 rtx label;
842{
843 return LABEL_TO_ALIGNMENT (label);
844}
845
846#ifdef HAVE_ATTR_length
847/* The differences in addresses
848 between a branch and its target might grow or shrink depending on
849 the alignment the start insn of the range (the branch for a forward
850 branch or the label for a backward branch) starts out on; if these
851 differences are used naively, they can even oscillate infinitely.
852 We therefore want to compute a 'worst case' address difference that
853 is independent of the alignment the start insn of the range end
854 up on, and that is at least as large as the actual difference.
855 The function align_fuzz calculates the amount we have to add to the
856 naively computed difference, by traversing the part of the alignment
857 chain of the start insn of the range that is in front of the end insn
858 of the range, and considering for each alignment the maximum amount
859 that it might contribute to a size increase.
860
861 For casesi tables, we also want to know worst case minimum amounts of
862 address difference, in case a machine description wants to introduce
863 some common offset that is added to all offsets in a table.
864 For this purpose, align_fuzz with a growth argument of 0 comuptes the
865 appropriate adjustment. */
866
867
868/* Compute the maximum delta by which the difference of the addresses of
869 START and END might grow / shrink due to a different address for start
870 which changes the size of alignment insns between START and END.
871 KNOWN_ALIGN_LOG is the alignment known for START.
872 GROWTH should be ~0 if the objective is to compute potential code size
873 increase, and 0 if the objective is to compute potential shrink.
874 The return value is undefined for any other value of GROWTH. */
ca3075bd 875static int
687d0ab6 876align_fuzz (start, end, known_align_log, growth)
fc470718
R
877 rtx start, end;
878 int known_align_log;
879 unsigned growth;
880{
881 int uid = INSN_UID (start);
882 rtx align_label;
883 int known_align = 1 << known_align_log;
884 int end_shuid = INSN_SHUID (end);
885 int fuzz = 0;
886
887 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
888 {
889 int align_addr, new_align;
890
891 uid = INSN_UID (align_label);
892 align_addr = insn_addresses[uid] - insn_lengths[uid];
893 if (uid_shuid[uid] > end_shuid)
894 break;
895 known_align_log = LABEL_TO_ALIGNMENT (align_label);
896 new_align = 1 << known_align_log;
897 if (new_align < known_align)
898 continue;
899 fuzz += (-align_addr ^ growth) & (new_align - known_align);
900 known_align = new_align;
901 }
902 return fuzz;
903}
904
905/* Compute a worst-case reference address of a branch so that it
906 can be safely used in the presence of aligned labels. Since the
907 size of the branch itself is unknown, the size of the branch is
908 not included in the range. I.e. for a forward branch, the reference
909 address is the end address of the branch as known from the previous
910 branch shortening pass, minus a value to account for possible size
911 increase due to alignment. For a backward branch, it is the start
912 address of the branch as known from the current pass, plus a value
913 to account for possible size increase due to alignment.
914 NB.: Therefore, the maximum offset allowed for backward branches needs
915 to exclude the branch size. */
916int
917insn_current_reference_address (branch)
918 rtx branch;
919{
920 rtx dest;
921 rtx seq = NEXT_INSN (PREV_INSN (branch));
922 int seq_uid = INSN_UID (seq);
923 if (GET_CODE (branch) != JUMP_INSN)
924 /* This can happen for example on the PA; the objective is to know the
925 offset to address something in front of the start of the function.
926 Thus, we can treat it like a backward branch.
927 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
928 any alignment we'd encounter, so we skip the call to align_fuzz. */
929 return insn_current_address;
930 dest = JUMP_LABEL (branch);
33f7f353 931 /* BRANCH has no proper alignment chain set, so use SEQ. */
fc470718
R
932 if (INSN_SHUID (branch) < INSN_SHUID (dest))
933 {
934 /* Forward branch. */
935 return (insn_last_address + insn_lengths[seq_uid]
26024475 936 - align_fuzz (seq, dest, length_unit_log, ~0));
fc470718
R
937 }
938 else
939 {
940 /* Backward branch. */
941 return (insn_current_address
923f7cf9 942 + align_fuzz (dest, seq, length_unit_log, ~0));
fc470718
R
943 }
944}
945#endif /* HAVE_ATTR_length */
946\f
3cf2715d
DE
947/* Make a pass over all insns and compute their actual lengths by shortening
948 any branches of variable length if possible. */
949
950/* Give a default value for the lowest address in a function. */
951
952#ifndef FIRST_INSN_ADDRESS
953#define FIRST_INSN_ADDRESS 0
954#endif
955
fc470718
R
956/* shorten_branches might be called multiple times: for example, the SH
957 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
958 In order to do this, it needs proper length information, which it obtains
959 by calling shorten_branches. This cannot be collapsed with
960 shorten_branches itself into a single pass unless we also want to intergate
961 reorg.c, since the branch splitting exposes new instructions with delay
962 slots. */
963
3cf2715d
DE
964void
965shorten_branches (first)
7bdb32b9 966 rtx first ATTRIBUTE_UNUSED;
3cf2715d 967{
3cf2715d 968 rtx insn;
fc470718
R
969 int max_uid;
970 int i;
fc470718 971 int max_log;
9e423e6d 972 int max_skip;
fc470718
R
973#ifdef HAVE_ATTR_length
974#define MAX_CODE_ALIGN 16
975 rtx seq;
3cf2715d 976 int something_changed = 1;
3cf2715d
DE
977 char *varying_length;
978 rtx body;
979 int uid;
fc470718 980 rtx align_tab[MAX_CODE_ALIGN];
3cf2715d 981
3d14e82f
JW
982 /* In order to make sure that all instructions have valid length info,
983 we must split them before we compute the address/length info. */
984
985 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
986 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
fc470718
R
987 {
988 rtx old = insn;
1b4d9ecd
RE
989 /* Don't split the insn if it has been deleted. */
990 if (! INSN_DELETED_P (old))
991 insn = try_split (PATTERN (old), old, 1);
fc470718
R
992 /* When not optimizing, the old insn will be still left around
993 with only the 'deleted' bit set. Transform it into a note
994 to avoid confusion of subsequent processing. */
995 if (INSN_DELETED_P (old))
996 {
997 PUT_CODE (old , NOTE);
998 NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
999 NOTE_SOURCE_FILE (old) = 0;
1000 }
1001 }
1002#endif
3d14e82f 1003
fc470718
R
1004 /* We must do some computations even when not actually shortening, in
1005 order to get the alignment information for the labels. */
1006
95707627
R
1007 init_insn_lengths ();
1008
fc470718
R
1009 /* Compute maximum UID and allocate label_align / uid_shuid. */
1010 max_uid = get_max_uid ();
1011
1012 max_labelno = max_label_num ();
1013 min_labelno = get_first_label_num ();
d0f3d9c2 1014 label_align = (struct label_alignment *)
3de90026 1015 xcalloc ((max_labelno - min_labelno + 1), sizeof (struct label_alignment));
fc470718 1016
fc470718
R
1017 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1018
1019 /* Initialize label_align and set up uid_shuid to be strictly
1020 monotonically rising with insn order. */
e2faec75
R
1021 /* We use max_log here to keep track of the maximum alignment we want to
1022 impose on the next CODE_LABEL (or the current one if we are processing
1023 the CODE_LABEL itself). */
1024
9e423e6d
JW
1025 max_log = 0;
1026 max_skip = 0;
1027
1028 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
fc470718
R
1029 {
1030 int log;
1031
1032 INSN_SHUID (insn) = i++;
1033 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
e2faec75
R
1034 {
1035 /* reorg might make the first insn of a loop being run once only,
1036 and delete the label in front of it. Then we want to apply
1037 the loop alignment to the new label created by reorg, which
1038 is separated by the former loop start insn from the
1039 NOTE_INSN_LOOP_BEG. */
1040 }
fc470718
R
1041 else if (GET_CODE (insn) == CODE_LABEL)
1042 {
1043 rtx next;
1044
1045 log = LABEL_ALIGN (insn);
1046 if (max_log < log)
9e423e6d
JW
1047 {
1048 max_log = log;
1049 max_skip = LABEL_ALIGN_MAX_SKIP;
1050 }
fc470718 1051 next = NEXT_INSN (insn);
75197b37
BS
1052 /* ADDR_VECs only take room if read-only data goes into the text
1053 section. */
1054 if (JUMP_TABLES_IN_TEXT_SECTION
1055#if !defined(READONLY_DATA_SECTION)
1056 || 1
fc470718 1057#endif
75197b37
BS
1058 )
1059 if (next && GET_CODE (next) == JUMP_INSN)
1060 {
1061 rtx nextbody = PATTERN (next);
1062 if (GET_CODE (nextbody) == ADDR_VEC
1063 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1064 {
1065 log = ADDR_VEC_ALIGN (next);
1066 if (max_log < log)
1067 {
1068 max_log = log;
1069 max_skip = LABEL_ALIGN_MAX_SKIP;
1070 }
1071 }
1072 }
fc470718 1073 LABEL_TO_ALIGNMENT (insn) = max_log;
9e423e6d 1074 LABEL_TO_MAX_SKIP (insn) = max_skip;
fc470718 1075 max_log = 0;
9e423e6d 1076 max_skip = 0;
fc470718
R
1077 }
1078 else if (GET_CODE (insn) == BARRIER)
1079 {
1080 rtx label;
1081
1082 for (label = insn; label && GET_RTX_CLASS (GET_CODE (label)) != 'i';
1083 label = NEXT_INSN (label))
1084 if (GET_CODE (label) == CODE_LABEL)
1085 {
1086 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1087 if (max_log < log)
9e423e6d
JW
1088 {
1089 max_log = log;
1090 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1091 }
fc470718
R
1092 break;
1093 }
1094 }
e2faec75
R
1095 /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
1096 sequences in order to handle reorg output efficiently. */
fc470718
R
1097 else if (GET_CODE (insn) == NOTE
1098 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1099 {
1100 rtx label;
edd6ede7 1101 int nest = 0;
fc470718 1102
edd6ede7
R
1103 /* Search for the label that starts the loop.
1104 Don't skip past the end of the loop, since that could
1105 lead to putting an alignment where it does not belong.
1106 However, a label after a nested (non-)loop would be OK. */
e2faec75 1107 for (label = insn; label; label = NEXT_INSN (label))
edd6ede7
R
1108 {
1109 if (GET_CODE (label) == NOTE
1110 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_BEG)
1111 nest++;
1112 else if (GET_CODE (label) == NOTE
1113 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_END
1114 && --nest == 0)
fc470718 1115 break;
edd6ede7
R
1116 else if (GET_CODE (label) == CODE_LABEL)
1117 {
2148624a 1118 log = LOOP_ALIGN (label);
edd6ede7
R
1119 if (max_log < log)
1120 {
1121 max_log = log;
1122 max_skip = LOOP_ALIGN_MAX_SKIP;
1123 }
1124 break;
1125 }
1126 }
fc470718
R
1127 }
1128 else
1129 continue;
1130 }
1131#ifdef HAVE_ATTR_length
1132
1133 /* Allocate the rest of the arrays. */
fc470718 1134 insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
ea3cbda5 1135 insn_lengths_max_uid = max_uid;
af035616
R
1136 /* Syntax errors can lead to labels being outside of the main insn stream.
1137 Initialize insn_addresses, so that we get reproducible results. */
3de90026 1138 insn_addresses = (int *) xcalloc (max_uid, sizeof (int));
fc470718 1139
3de90026 1140 varying_length = (char *) xcalloc (max_uid, sizeof (char));
fc470718
R
1141
1142 /* Initialize uid_align. We scan instructions
1143 from end to start, and keep in align_tab[n] the last seen insn
1144 that does an alignment of at least n+1, i.e. the successor
1145 in the alignment chain for an insn that does / has a known
1146 alignment of n. */
3de90026 1147 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
fc470718
R
1148
1149 for (i = MAX_CODE_ALIGN; --i >= 0; )
1150 align_tab[i] = NULL_RTX;
1151 seq = get_last_insn ();
33f7f353 1152 for (; seq; seq = PREV_INSN (seq))
fc470718
R
1153 {
1154 int uid = INSN_UID (seq);
1155 int log;
fc470718
R
1156 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1157 uid_align[uid] = align_tab[0];
fc470718
R
1158 if (log)
1159 {
1160 /* Found an alignment label. */
1161 uid_align[uid] = align_tab[log];
1162 for (i = log - 1; i >= 0; i--)
1163 align_tab[i] = seq;
1164 }
33f7f353
JR
1165 }
1166#ifdef CASE_VECTOR_SHORTEN_MODE
1167 if (optimize)
1168 {
1169 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1170 label fields. */
1171
1172 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1173 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1174 int rel;
1175
1176 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
fc470718 1177 {
33f7f353
JR
1178 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1179 int len, i, min, max, insn_shuid;
1180 int min_align;
1181 addr_diff_vec_flags flags;
1182
1183 if (GET_CODE (insn) != JUMP_INSN
1184 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1185 continue;
1186 pat = PATTERN (insn);
1187 len = XVECLEN (pat, 1);
1188 if (len <= 0)
1189 abort ();
1190 min_align = MAX_CODE_ALIGN;
1191 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1192 {
1193 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1194 int shuid = INSN_SHUID (lab);
1195 if (shuid < min)
1196 {
1197 min = shuid;
1198 min_lab = lab;
1199 }
1200 if (shuid > max)
1201 {
1202 max = shuid;
1203 max_lab = lab;
1204 }
1205 if (min_align > LABEL_TO_ALIGNMENT (lab))
1206 min_align = LABEL_TO_ALIGNMENT (lab);
1207 }
1208 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1209 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1210 insn_shuid = INSN_SHUID (insn);
1211 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1212 flags.min_align = min_align;
1213 flags.base_after_vec = rel > insn_shuid;
1214 flags.min_after_vec = min > insn_shuid;
1215 flags.max_after_vec = max > insn_shuid;
1216 flags.min_after_base = min > rel;
1217 flags.max_after_base = max > rel;
1218 ADDR_DIFF_VEC_FLAGS (pat) = flags;
fc470718
R
1219 }
1220 }
33f7f353 1221#endif /* CASE_VECTOR_SHORTEN_MODE */
3cf2715d 1222
3cf2715d
DE
1223
1224 /* Compute initial lengths, addresses, and varying flags for each insn. */
1225 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1226 insn != 0;
1227 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1228 {
1229 uid = INSN_UID (insn);
fc470718 1230
3cf2715d 1231 insn_lengths[uid] = 0;
fc470718
R
1232
1233 if (GET_CODE (insn) == CODE_LABEL)
1234 {
1235 int log = LABEL_TO_ALIGNMENT (insn);
1236 if (log)
1237 {
1238 int align = 1 << log;
ecb06768 1239 int new_address = (insn_current_address + align - 1) & -align;
fc470718
R
1240 insn_lengths[uid] = new_address - insn_current_address;
1241 insn_current_address = new_address;
1242 }
1243 }
1244
1245 insn_addresses[uid] = insn_current_address;
3cf2715d
DE
1246
1247 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1248 || GET_CODE (insn) == CODE_LABEL)
1249 continue;
04da53bd
R
1250 if (INSN_DELETED_P (insn))
1251 continue;
3cf2715d
DE
1252
1253 body = PATTERN (insn);
1254 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
5a32a90c
JR
1255 {
1256 /* This only takes room if read-only data goes into the text
1257 section. */
75197b37
BS
1258 if (JUMP_TABLES_IN_TEXT_SECTION
1259#if !defined(READONLY_DATA_SECTION)
1260 || 1
1261#endif
1262 )
1263 insn_lengths[uid] = (XVECLEN (body,
1264 GET_CODE (body) == ADDR_DIFF_VEC)
1265 * GET_MODE_SIZE (GET_MODE (body)));
5a32a90c 1266 /* Alignment is handled by ADDR_VEC_ALIGN. */
5a32a90c 1267 }
a30caf5c 1268 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
3cf2715d
DE
1269 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1270 else if (GET_CODE (body) == SEQUENCE)
1271 {
1272 int i;
1273 int const_delay_slots;
1274#ifdef DELAY_SLOTS
1275 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1276#else
1277 const_delay_slots = 0;
1278#endif
1279 /* Inside a delay slot sequence, we do not do any branch shortening
1280 if the shortening could change the number of delay slots
0f41302f 1281 of the branch. */
3cf2715d
DE
1282 for (i = 0; i < XVECLEN (body, 0); i++)
1283 {
1284 rtx inner_insn = XVECEXP (body, 0, i);
1285 int inner_uid = INSN_UID (inner_insn);
1286 int inner_length;
1287
a30caf5c
DC
1288 if (GET_CODE (body) == ASM_INPUT
1289 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
3cf2715d
DE
1290 inner_length = (asm_insn_count (PATTERN (inner_insn))
1291 * insn_default_length (inner_insn));
1292 else
1293 inner_length = insn_default_length (inner_insn);
1294
1295 insn_lengths[inner_uid] = inner_length;
1296 if (const_delay_slots)
1297 {
1298 if ((varying_length[inner_uid]
1299 = insn_variable_length_p (inner_insn)) != 0)
1300 varying_length[uid] = 1;
1301 insn_addresses[inner_uid] = (insn_current_address +
1302 insn_lengths[uid]);
1303 }
1304 else
1305 varying_length[inner_uid] = 0;
1306 insn_lengths[uid] += inner_length;
1307 }
1308 }
1309 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1310 {
1311 insn_lengths[uid] = insn_default_length (insn);
1312 varying_length[uid] = insn_variable_length_p (insn);
1313 }
1314
1315 /* If needed, do any adjustment. */
1316#ifdef ADJUST_INSN_LENGTH
1317 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
04b6000c
VM
1318 if (insn_lengths[uid] < 0)
1319 fatal_insn ("Negative insn length", insn);
3cf2715d
DE
1320#endif
1321 }
1322
1323 /* Now loop over all the insns finding varying length insns. For each,
1324 get the current insn length. If it has changed, reflect the change.
1325 When nothing changes for a full pass, we are done. */
1326
1327 while (something_changed)
1328 {
1329 something_changed = 0;
fc470718 1330 insn_current_align = MAX_CODE_ALIGN - 1;
3cf2715d
DE
1331 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1332 insn != 0;
1333 insn = NEXT_INSN (insn))
1334 {
1335 int new_length;
b729186a 1336#ifdef ADJUST_INSN_LENGTH
3cf2715d 1337 int tmp_length;
b729186a 1338#endif
fc470718 1339 int length_align;
3cf2715d
DE
1340
1341 uid = INSN_UID (insn);
fc470718
R
1342
1343 if (GET_CODE (insn) == CODE_LABEL)
1344 {
1345 int log = LABEL_TO_ALIGNMENT (insn);
1346 if (log > insn_current_align)
1347 {
1348 int align = 1 << log;
ecb06768 1349 int new_address= (insn_current_address + align - 1) & -align;
fc470718
R
1350 insn_lengths[uid] = new_address - insn_current_address;
1351 insn_current_align = log;
1352 insn_current_address = new_address;
1353 }
1354 else
1355 insn_lengths[uid] = 0;
1356 insn_addresses[uid] = insn_current_address;
1357 continue;
1358 }
1359
1360 length_align = INSN_LENGTH_ALIGNMENT (insn);
1361 if (length_align < insn_current_align)
1362 insn_current_align = length_align;
1363
1364 insn_last_address = insn_addresses[uid];
3cf2715d 1365 insn_addresses[uid] = insn_current_address;
fc470718 1366
5e75ef4a 1367#ifdef CASE_VECTOR_SHORTEN_MODE
33f7f353
JR
1368 if (optimize && GET_CODE (insn) == JUMP_INSN
1369 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1370 {
33f7f353
JR
1371 rtx body = PATTERN (insn);
1372 int old_length = insn_lengths[uid];
1373 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1374 rtx min_lab = XEXP (XEXP (body, 2), 0);
1375 rtx max_lab = XEXP (XEXP (body, 3), 0);
1376 addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
1377 int rel_addr = insn_addresses[INSN_UID (rel_lab)];
1378 int min_addr = insn_addresses[INSN_UID (min_lab)];
1379 int max_addr = insn_addresses[INSN_UID (max_lab)];
1380 rtx prev;
1381 int rel_align = 0;
1382
1383 /* Try to find a known alignment for rel_lab. */
1384 for (prev = rel_lab;
1385 prev
1386 && ! insn_lengths[INSN_UID (prev)]
1387 && ! (varying_length[INSN_UID (prev)] & 1);
1388 prev = PREV_INSN (prev))
1389 if (varying_length[INSN_UID (prev)] & 2)
1390 {
1391 rel_align = LABEL_TO_ALIGNMENT (prev);
1392 break;
1393 }
1394
1395 /* See the comment on addr_diff_vec_flags in rtl.h for the
1396 meaning of the flags values. base: REL_LAB vec: INSN */
1397 /* Anything after INSN has still addresses from the last
1398 pass; adjust these so that they reflect our current
1399 estimate for this pass. */
1400 if (flags.base_after_vec)
1401 rel_addr += insn_current_address - insn_last_address;
1402 if (flags.min_after_vec)
1403 min_addr += insn_current_address - insn_last_address;
1404 if (flags.max_after_vec)
1405 max_addr += insn_current_address - insn_last_address;
1406 /* We want to know the worst case, i.e. lowest possible value
1407 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1408 its offset is positive, and we have to be wary of code shrink;
1409 otherwise, it is negative, and we have to be vary of code
1410 size increase. */
1411 if (flags.min_after_base)
1412 {
1413 /* If INSN is between REL_LAB and MIN_LAB, the size
1414 changes we are about to make can change the alignment
1415 within the observed offset, therefore we have to break
1416 it up into two parts that are independent. */
1417 if (! flags.base_after_vec && flags.min_after_vec)
1418 {
1419 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1420 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1421 }
1422 else
1423 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1424 }
1425 else
1426 {
1427 if (flags.base_after_vec && ! flags.min_after_vec)
1428 {
1429 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1430 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1431 }
1432 else
1433 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1434 }
1435 /* Likewise, determine the highest lowest possible value
1436 for the offset of MAX_LAB. */
1437 if (flags.max_after_base)
1438 {
1439 if (! flags.base_after_vec && flags.max_after_vec)
1440 {
1441 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1442 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1443 }
1444 else
1445 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1446 }
1447 else
1448 {
1449 if (flags.base_after_vec && ! flags.max_after_vec)
1450 {
1451 max_addr += align_fuzz (max_lab, insn, 0, 0);
1452 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1453 }
1454 else
1455 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1456 }
1457 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1458 max_addr - rel_addr,
1459 body));
75197b37
BS
1460 if (JUMP_TABLES_IN_TEXT_SECTION
1461#if !defined(READONLY_DATA_SECTION)
1462 || 1
33f7f353 1463#endif
75197b37
BS
1464 )
1465 {
1466 insn_lengths[uid]
1467 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1468 insn_current_address += insn_lengths[uid];
1469 if (insn_lengths[uid] != old_length)
1470 something_changed = 1;
1471 }
1472
33f7f353 1473 continue;
33f7f353 1474 }
5e75ef4a
JL
1475#endif /* CASE_VECTOR_SHORTEN_MODE */
1476
1477 if (! (varying_length[uid]))
3cf2715d
DE
1478 {
1479 insn_current_address += insn_lengths[uid];
1480 continue;
1481 }
1482 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1483 {
1484 int i;
1485
1486 body = PATTERN (insn);
1487 new_length = 0;
1488 for (i = 0; i < XVECLEN (body, 0); i++)
1489 {
1490 rtx inner_insn = XVECEXP (body, 0, i);
1491 int inner_uid = INSN_UID (inner_insn);
1492 int inner_length;
1493
1494 insn_addresses[inner_uid] = insn_current_address;
1495
1496 /* insn_current_length returns 0 for insns with a
1497 non-varying length. */
1498 if (! varying_length[inner_uid])
1499 inner_length = insn_lengths[inner_uid];
1500 else
1501 inner_length = insn_current_length (inner_insn);
1502
1503 if (inner_length != insn_lengths[inner_uid])
1504 {
1505 insn_lengths[inner_uid] = inner_length;
1506 something_changed = 1;
1507 }
1508 insn_current_address += insn_lengths[inner_uid];
1509 new_length += inner_length;
1510 }
1511 }
1512 else
1513 {
1514 new_length = insn_current_length (insn);
1515 insn_current_address += new_length;
1516 }
1517
3cf2715d
DE
1518#ifdef ADJUST_INSN_LENGTH
1519 /* If needed, do any adjustment. */
1520 tmp_length = new_length;
1521 ADJUST_INSN_LENGTH (insn, new_length);
1522 insn_current_address += (new_length - tmp_length);
3cf2715d
DE
1523#endif
1524
1525 if (new_length != insn_lengths[uid])
1526 {
1527 insn_lengths[uid] = new_length;
1528 something_changed = 1;
1529 }
1530 }
bb4aaf18
TG
1531 /* For a non-optimizing compile, do only a single pass. */
1532 if (!optimize)
1533 break;
3cf2715d 1534 }
fc470718
R
1535
1536 free (varying_length);
1537
3cf2715d
DE
1538#endif /* HAVE_ATTR_length */
1539}
1540
1541#ifdef HAVE_ATTR_length
1542/* Given the body of an INSN known to be generated by an ASM statement, return
1543 the number of machine instructions likely to be generated for this insn.
1544 This is used to compute its length. */
1545
1546static int
1547asm_insn_count (body)
1548 rtx body;
1549{
3cce094d 1550 const char *template;
3cf2715d
DE
1551 int count = 1;
1552
5d0930ea
DE
1553 if (GET_CODE (body) == ASM_INPUT)
1554 template = XSTR (body, 0);
1555 else
1556 template = decode_asm_operands (body, NULL_PTR, NULL_PTR,
1557 NULL_PTR, NULL_PTR);
1558
1559 for ( ; *template; template++)
3cf2715d
DE
1560 if (IS_ASM_LOGICAL_LINE_SEPARATOR(*template) || *template == '\n')
1561 count++;
1562
1563 return count;
1564}
1565#endif
1566\f
1567/* Output assembler code for the start of a function,
1568 and initialize some of the variables in this file
1569 for the new function. The label for the function and associated
1570 assembler pseudo-ops have already been output in `assemble_start_function'.
1571
1572 FIRST is the first insn of the rtl for the function being compiled.
1573 FILE is the file to write assembler code to.
1574 OPTIMIZE is nonzero if we should eliminate redundant
1575 test and compare insns. */
1576
1577void
1578final_start_function (first, file, optimize)
1579 rtx first;
1580 FILE *file;
6a651371 1581 int optimize ATTRIBUTE_UNUSED;
3cf2715d
DE
1582{
1583 block_depth = 0;
1584
1585 this_is_asm_operands = 0;
1586
1587#ifdef NON_SAVING_SETJMP
1588 /* A function that calls setjmp should save and restore all the
1589 call-saved registers on a system where longjmp clobbers them. */
1590 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1591 {
1592 int i;
1593
1594 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
252f342a 1595 if (!call_used_regs[i])
3cf2715d
DE
1596 regs_ever_live[i] = 1;
1597 }
1598#endif
1599
1600 /* Initial line number is supposed to be output
1601 before the function's prologue and label
1602 so that the function's address will not appear to be
1603 in the last statement of the preceding function. */
1604 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
5fad6898
RK
1605 last_linenum = high_block_linenum = high_function_linenum
1606 = NOTE_LINE_NUMBER (first);
eac40081 1607
c5cec899 1608#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
d291dd49 1609 /* Output DWARF definition of the function. */
0021b564 1610 if (dwarf2out_do_frame ())
9a666dda 1611 dwarf2out_begin_prologue ();
00262c8a
ML
1612 else
1613 current_function_func_begin_label = 0;
d291dd49
JM
1614#endif
1615
5fad6898
RK
1616 /* For SDB and XCOFF, the function beginning must be marked between
1617 the function label and the prologue. We always need this, even when
3c734272 1618 -g1 was used. Defer on MIPS systems so that parameter descriptions
0f41302f 1619 follow function entry. */
3c734272 1620#if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
5fad6898
RK
1621 if (write_symbols == SDB_DEBUG)
1622 sdbout_begin_function (last_linenum);
1623 else
2e2bbce2 1624#endif
3cf2715d 1625#ifdef XCOFF_DEBUGGING_INFO
5fad6898
RK
1626 if (write_symbols == XCOFF_DEBUG)
1627 xcoffout_begin_function (file, last_linenum);
1628 else
3cf2715d 1629#endif
5fad6898
RK
1630 /* But only output line number for other debug info types if -g2
1631 or better. */
1632 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1633 output_source_line (file, first);
3cf2715d
DE
1634
1635#ifdef LEAF_REG_REMAP
54ff41b7 1636 if (current_function_uses_only_leaf_regs)
3cf2715d
DE
1637 leaf_renumber_regs (first);
1638#endif
1639
1640 /* The Sun386i and perhaps other machines don't work right
1641 if the profiling code comes after the prologue. */
1642#ifdef PROFILE_BEFORE_PROLOGUE
1643 if (profile_flag)
1644 profile_function (file);
1645#endif /* PROFILE_BEFORE_PROLOGUE */
1646
0021b564
JM
1647#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1648 if (dwarf2out_do_frame ())
1649 dwarf2out_frame_debug (NULL_RTX);
1650#endif
1651
18c038b9
MM
1652 /* If debugging, assign block numbers to all of the blocks in this
1653 function. */
1654 if (write_symbols)
1655 {
1656 number_blocks (current_function_decl);
3ac79482 1657 remove_unnecessary_notes ();
18c038b9
MM
1658 /* We never actually put out begin/end notes for the top-level
1659 block in the function. But, conceptually, that block is
1660 always needed. */
1661 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1662 }
1663
3cf2715d
DE
1664#ifdef FUNCTION_PROLOGUE
1665 /* First output the function prologue: code to set up the stack frame. */
1666 FUNCTION_PROLOGUE (file, get_frame_size ());
1667#endif
1668
3cf2715d
DE
1669 /* If the machine represents the prologue as RTL, the profiling code must
1670 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1671#ifdef HAVE_prologue
1672 if (! HAVE_prologue)
1673#endif
1674 profile_after_prologue (file);
1675
1676 profile_label_no++;
1677
1678 /* If we are doing basic block profiling, remember a printable version
1679 of the function name. */
1680 if (profile_block_flag)
1681 {
db3cf6fb
MS
1682 bb_func_label_num
1683 = add_bb_string ((*decl_printable_name) (current_function_decl, 2), FALSE);
3cf2715d
DE
1684 }
1685}
1686
1687static void
1688profile_after_prologue (file)
7bdb32b9 1689 FILE *file ATTRIBUTE_UNUSED;
3cf2715d
DE
1690{
1691#ifdef FUNCTION_BLOCK_PROFILER
1692 if (profile_block_flag)
1693 {
47431dff 1694 FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
3cf2715d
DE
1695 }
1696#endif /* FUNCTION_BLOCK_PROFILER */
1697
1698#ifndef PROFILE_BEFORE_PROLOGUE
1699 if (profile_flag)
1700 profile_function (file);
1701#endif /* not PROFILE_BEFORE_PROLOGUE */
1702}
1703
1704static void
1705profile_function (file)
1706 FILE *file;
1707{
9e2f9a7f 1708 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
b729186a
JL
1709#if defined(ASM_OUTPUT_REG_PUSH)
1710#if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
3cf2715d 1711 int sval = current_function_returns_struct;
b729186a
JL
1712#endif
1713#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
3cf2715d 1714 int cxt = current_function_needs_context;
b729186a
JL
1715#endif
1716#endif /* ASM_OUTPUT_REG_PUSH */
3cf2715d
DE
1717
1718 data_section ();
1719 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1720 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
9e2f9a7f 1721 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, 1);
3cf2715d 1722
499df339 1723 function_section (current_function_decl);
3cf2715d 1724
65ed39df 1725#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1726 if (sval)
1727 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1728#else
65ed39df 1729#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1730 if (sval)
51723711
KG
1731 {
1732 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1733 }
3cf2715d
DE
1734#endif
1735#endif
1736
65ed39df 1737#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1738 if (cxt)
1739 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1740#else
65ed39df 1741#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1742 if (cxt)
51723711
KG
1743 {
1744 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1745 }
3cf2715d
DE
1746#endif
1747#endif
3cf2715d
DE
1748
1749 FUNCTION_PROFILER (file, profile_label_no);
1750
65ed39df 1751#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1752 if (cxt)
1753 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1754#else
65ed39df 1755#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1756 if (cxt)
51723711
KG
1757 {
1758 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1759 }
3cf2715d
DE
1760#endif
1761#endif
3cf2715d 1762
65ed39df 1763#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1764 if (sval)
1765 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1766#else
65ed39df 1767#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1768 if (sval)
51723711
KG
1769 {
1770 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1771 }
3cf2715d
DE
1772#endif
1773#endif
1774}
1775
1776/* Output assembler code for the end of a function.
1777 For clarity, args are same as those of `final_start_function'
1778 even though not all of them are needed. */
1779
1780void
1781final_end_function (first, file, optimize)
6a651371 1782 rtx first ATTRIBUTE_UNUSED;
3cf2715d 1783 FILE *file;
6a651371 1784 int optimize ATTRIBUTE_UNUSED;
3cf2715d 1785{
be1bb652 1786 app_disable ();
3cf2715d
DE
1787
1788#ifdef SDB_DEBUGGING_INFO
1789 if (write_symbols == SDB_DEBUG)
eac40081 1790 sdbout_end_function (high_function_linenum);
3cf2715d
DE
1791#endif
1792
1793#ifdef DWARF_DEBUGGING_INFO
1794 if (write_symbols == DWARF_DEBUG)
1795 dwarfout_end_function ();
1796#endif
1797
1798#ifdef XCOFF_DEBUGGING_INFO
1799 if (write_symbols == XCOFF_DEBUG)
eac40081 1800 xcoffout_end_function (file, high_function_linenum);
3cf2715d
DE
1801#endif
1802
1803#ifdef FUNCTION_EPILOGUE
1804 /* Finally, output the function epilogue:
1805 code to restore the stack frame and return to the caller. */
1806 FUNCTION_EPILOGUE (file, get_frame_size ());
1807#endif
1808
1809#ifdef SDB_DEBUGGING_INFO
1810 if (write_symbols == SDB_DEBUG)
1811 sdbout_end_epilogue ();
1812#endif
1813
1814#ifdef DWARF_DEBUGGING_INFO
1815 if (write_symbols == DWARF_DEBUG)
1816 dwarfout_end_epilogue ();
1817#endif
1818
c5cec899 1819#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
0021b564 1820 if (dwarf2out_do_frame ())
9a666dda
JM
1821 dwarf2out_end_epilogue ();
1822#endif
1823
3cf2715d
DE
1824#ifdef XCOFF_DEBUGGING_INFO
1825 if (write_symbols == XCOFF_DEBUG)
1826 xcoffout_end_epilogue (file);
1827#endif
1828
1829 bb_func_label_num = -1; /* not in function, nuke label # */
1830
1831 /* If FUNCTION_EPILOGUE is not defined, then the function body
1832 itself contains return instructions wherever needed. */
1833}
1834\f
1835/* Add a block to the linked list that remembers the current line/file/function
1836 for basic block profiling. Emit the label in front of the basic block and
1837 the instructions that increment the count field. */
1838
1839static void
1840add_bb (file)
1841 FILE *file;
1842{
1843 struct bb_list *ptr = (struct bb_list *) permalloc (sizeof (struct bb_list));
1844
1845 /* Add basic block to linked list. */
1846 ptr->next = 0;
1847 ptr->line_num = last_linenum;
1848 ptr->file_label_num = bb_file_label_num;
1849 ptr->func_label_num = bb_func_label_num;
1850 *bb_tail = ptr;
1851 bb_tail = &ptr->next;
1852
1853 /* Enable the table of basic-block use counts
1854 to point at the code it applies to. */
1855 ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);
1856
1857 /* Before first insn of this basic block, increment the
1858 count of times it was entered. */
1859#ifdef BLOCK_PROFILER
1860 BLOCK_PROFILER (file, count_basic_blocks);
9e2f9a7f
DE
1861#endif
1862#ifdef HAVE_cc0
3cf2715d
DE
1863 CC_STATUS_INIT;
1864#endif
1865
1866 new_block = 0;
1867 count_basic_blocks++;
1868}
1869
1870/* Add a string to be used for basic block profiling. */
1871
1872static int
1873add_bb_string (string, perm_p)
9b3142b3 1874 const char *string;
3cf2715d
DE
1875 int perm_p;
1876{
1877 int len;
1878 struct bb_str *ptr = 0;
1879
1880 if (!string)
1881 {
1882 string = "<unknown>";
1883 perm_p = TRUE;
1884 }
1885
1886 /* Allocate a new string if the current string isn't permanent. If
1887 the string is permanent search for the same string in other
1888 allocations. */
1889
1890 len = strlen (string) + 1;
1891 if (!perm_p)
1892 {
1893 char *p = (char *) permalloc (len);
1894 bcopy (string, p, len);
1895 string = p;
1896 }
1897 else
0f41302f 1898 for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
3cf2715d
DE
1899 if (ptr->string == string)
1900 break;
1901
1902 /* Allocate a new string block if we need to. */
1903 if (!ptr)
1904 {
1905 ptr = (struct bb_str *) permalloc (sizeof (*ptr));
1906 ptr->next = 0;
1907 ptr->length = len;
1908 ptr->label_num = sbb_label_num++;
1909 ptr->string = string;
1910 *sbb_tail = ptr;
1911 sbb_tail = &ptr->next;
1912 }
1913
1914 return ptr->label_num;
1915}
1916
1917\f
1918/* Output assembler code for some insns: all or part of a function.
1919 For description of args, see `final_start_function', above.
1920
1921 PRESCAN is 1 if we are not really outputting,
1922 just scanning as if we were outputting.
1923 Prescanning deletes and rearranges insns just like ordinary output.
1924 PRESCAN is -2 if we are outputting after having prescanned.
1925 In this case, don't try to delete or rearrange insns
1926 because that has already been done.
1927 Prescanning is done only on certain machines. */
1928
1929void
1930final (first, file, optimize, prescan)
1931 rtx first;
1932 FILE *file;
1933 int optimize;
1934 int prescan;
1935{
1936 register rtx insn;
1937 int max_line = 0;
a8c3510c 1938 int max_uid = 0;
3cf2715d
DE
1939
1940 last_ignored_compare = 0;
1941 new_block = 1;
1942
3d195391
MS
1943 check_exception_handler_labels ();
1944
3cf2715d
DE
1945 /* Make a map indicating which line numbers appear in this function.
1946 When producing SDB debugging info, delete troublesome line number
1947 notes from inlined functions in other files as well as duplicate
1948 line number notes. */
1949#ifdef SDB_DEBUGGING_INFO
1950 if (write_symbols == SDB_DEBUG)
1951 {
1952 rtx last = 0;
1953 for (insn = first; insn; insn = NEXT_INSN (insn))
1954 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1955 {
1956 if ((RTX_INTEGRATED_P (insn)
1957 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1958 || (last != 0
1959 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1960 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1961 {
1962 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1963 NOTE_SOURCE_FILE (insn) = 0;
1964 continue;
1965 }
1966 last = insn;
1967 if (NOTE_LINE_NUMBER (insn) > max_line)
1968 max_line = NOTE_LINE_NUMBER (insn);
1969 }
1970 }
1971 else
1972#endif
1973 {
1974 for (insn = first; insn; insn = NEXT_INSN (insn))
1975 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1976 max_line = NOTE_LINE_NUMBER (insn);
1977 }
1978
bedda2da 1979 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
3cf2715d
DE
1980
1981 for (insn = first; insn; insn = NEXT_INSN (insn))
a8c3510c
AM
1982 {
1983 if (INSN_UID (insn) > max_uid) /* find largest UID */
1984 max_uid = INSN_UID (insn);
1985 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1986 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
9ef4c6ef
JC
1987#ifdef HAVE_cc0
1988 /* If CC tracking across branches is enabled, record the insn which
1989 jumps to each branch only reached from one place. */
7ad7f828 1990 if (optimize && GET_CODE (insn) == JUMP_INSN)
9ef4c6ef
JC
1991 {
1992 rtx lab = JUMP_LABEL (insn);
1993 if (lab && LABEL_NUSES (lab) == 1)
1994 {
1995 LABEL_REFS (lab) = insn;
1996 }
1997 }
1998#endif
a8c3510c
AM
1999 }
2000
2001 /* Initialize insn_eh_region table if eh is being used. */
2002
2003 init_insn_eh_region (first, max_uid);
3cf2715d
DE
2004
2005 init_recog ();
2006
2007 CC_STATUS_INIT;
2008
2009 /* Output the insns. */
2010 for (insn = NEXT_INSN (first); insn;)
2f16edb1
TG
2011 {
2012#ifdef HAVE_ATTR_length
2013 insn_current_address = insn_addresses[INSN_UID (insn)];
2014#endif
2015 insn = final_scan_insn (insn, file, optimize, prescan, 0);
2016 }
3cf2715d
DE
2017
2018 /* Do basic-block profiling here
2019 if the last insn was a conditional branch. */
2020 if (profile_block_flag && new_block)
2021 add_bb (file);
a8c3510c
AM
2022
2023 free_insn_eh_region ();
bedda2da
MM
2024 free (line_note_exists);
2025 line_note_exists = NULL;
3cf2715d
DE
2026}
2027\f
4bbf910e
RH
2028const char *
2029get_insn_template (code, insn)
2030 int code;
2031 rtx insn;
2032{
2033 const void *output = insn_data[code].output;
2034 switch (insn_data[code].output_format)
2035 {
2036 case INSN_OUTPUT_FORMAT_SINGLE:
2037 return (const char *) output;
2038 case INSN_OUTPUT_FORMAT_MULTI:
2039 return ((const char * const *) output)[which_alternative];
2040 case INSN_OUTPUT_FORMAT_FUNCTION:
2041 if (insn == NULL)
2042 abort ();
2043 return (* (insn_output_fn) output) (recog_data.operand, insn);
2044
2045 default:
2046 abort ();
2047 }
2048}
3cf2715d
DE
2049/* The final scan for one insn, INSN.
2050 Args are same as in `final', except that INSN
2051 is the insn being scanned.
2052 Value returned is the next insn to be scanned.
2053
2054 NOPEEPHOLES is the flag to disallow peephole processing (currently
2055 used for within delayed branch sequence output). */
2056
2057rtx
2058final_scan_insn (insn, file, optimize, prescan, nopeepholes)
2059 rtx insn;
2060 FILE *file;
272df862 2061 int optimize ATTRIBUTE_UNUSED;
3cf2715d 2062 int prescan;
272df862 2063 int nopeepholes ATTRIBUTE_UNUSED;
3cf2715d 2064{
90ca38bb
MM
2065#ifdef HAVE_cc0
2066 rtx set;
2067#endif
2068
3cf2715d
DE
2069 insn_counter++;
2070
2071 /* Ignore deleted insns. These can occur when we split insns (due to a
2072 template of "#") while not optimizing. */
2073 if (INSN_DELETED_P (insn))
2074 return NEXT_INSN (insn);
2075
2076 switch (GET_CODE (insn))
2077 {
2078 case NOTE:
2079 if (prescan > 0)
2080 break;
2081
be1bb652
RH
2082 switch (NOTE_LINE_NUMBER (insn))
2083 {
2084 case NOTE_INSN_DELETED:
2085 case NOTE_INSN_LOOP_BEG:
2086 case NOTE_INSN_LOOP_END:
2087 case NOTE_INSN_LOOP_CONT:
2088 case NOTE_INSN_LOOP_VTOP:
2089 case NOTE_INSN_FUNCTION_END:
2090 case NOTE_INSN_SETJMP:
2091 case NOTE_INSN_REPEATED_LINE_NUMBER:
2092 case NOTE_INSN_RANGE_BEG:
2093 case NOTE_INSN_RANGE_END:
2094 case NOTE_INSN_LIVE:
2095 case NOTE_INSN_EXPECTED_VALUE:
2096 break;
3cf2715d 2097
be1bb652
RH
2098 case NOTE_INSN_BASIC_BLOCK:
2099 if (flag_debug_asm)
2100 fprintf (asm_out_file, "\t%s basic block %d\n",
2101 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
2102 break;
3cf2715d 2103
be1bb652
RH
2104 case NOTE_INSN_EH_REGION_BEG:
2105 if (! exceptions_via_longjmp)
2106 {
2107 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHB", NOTE_EH_HANDLER (insn));
2108 if (! flag_new_exceptions)
2109 add_eh_table_entry (NOTE_EH_HANDLER (insn));
3d195391 2110#ifdef ASM_OUTPUT_EH_REGION_BEG
be1bb652 2111 ASM_OUTPUT_EH_REGION_BEG (file, NOTE_EH_HANDLER (insn));
3d195391 2112#endif
be1bb652 2113 }
3d195391 2114 break;
3d195391 2115
be1bb652
RH
2116 case NOTE_INSN_EH_REGION_END:
2117 if (! exceptions_via_longjmp)
2118 {
2119 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHE", NOTE_EH_HANDLER (insn));
2120 if (flag_new_exceptions)
2121 add_eh_table_entry (NOTE_EH_HANDLER (insn));
3d195391 2122#ifdef ASM_OUTPUT_EH_REGION_END
be1bb652 2123 ASM_OUTPUT_EH_REGION_END (file, NOTE_EH_HANDLER (insn));
3d195391 2124#endif
be1bb652 2125 }
3d195391 2126 break;
3d195391 2127
be1bb652 2128 case NOTE_INSN_PROLOGUE_END:
3cf2715d
DE
2129#ifdef FUNCTION_END_PROLOGUE
2130 FUNCTION_END_PROLOGUE (file);
2131#endif
2132 profile_after_prologue (file);
2133 break;
3cf2715d 2134
be1bb652 2135 case NOTE_INSN_EPILOGUE_BEG:
3cf2715d 2136#ifdef FUNCTION_BEGIN_EPILOGUE
3cf2715d 2137 FUNCTION_BEGIN_EPILOGUE (file);
3cf2715d 2138#endif
be1bb652 2139 break;
3cf2715d 2140
be1bb652
RH
2141 case NOTE_INSN_FUNCTION_BEG:
2142 if (write_symbols == NO_DEBUG)
2143 break;
3c734272
RK
2144#if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
2145 /* MIPS stabs require the parameter descriptions to be after the
0f41302f 2146 function entry point rather than before. */
3c734272 2147 if (write_symbols == SDB_DEBUG)
be1bb652
RH
2148 {
2149 app_disable ();
2150 sdbout_begin_function (last_linenum);
2151 }
3c734272
RK
2152 else
2153#endif
3cf2715d 2154#ifdef DWARF_DEBUGGING_INFO
2e2bbce2
RK
2155 /* This outputs a marker where the function body starts, so it
2156 must be after the prologue. */
3cf2715d 2157 if (write_symbols == DWARF_DEBUG)
be1bb652
RH
2158 {
2159 app_disable ();
2160 dwarfout_begin_function ();
2161 }
3cf2715d
DE
2162#endif
2163 break;
be1bb652
RH
2164
2165 case NOTE_INSN_BLOCK_BEG:
2166 if (debug_info_level == DINFO_LEVEL_NORMAL
3cf2715d 2167 || debug_info_level == DINFO_LEVEL_VERBOSE
3cf2715d 2168 || write_symbols == DWARF_DEBUG
be1bb652
RH
2169 || write_symbols == DWARF2_DEBUG)
2170 {
2171 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 2172
be1bb652
RH
2173 app_disable ();
2174 ++block_depth;
2175 high_block_linenum = last_linenum;
eac40081 2176
be1bb652 2177 /* Output debugging info about the symbol-block beginning. */
3cf2715d 2178#ifdef SDB_DEBUGGING_INFO
be1bb652
RH
2179 if (write_symbols == SDB_DEBUG)
2180 sdbout_begin_block (file, last_linenum, n);
3cf2715d
DE
2181#endif
2182#ifdef XCOFF_DEBUGGING_INFO
be1bb652
RH
2183 if (write_symbols == XCOFF_DEBUG)
2184 xcoffout_begin_block (file, last_linenum, n);
3cf2715d
DE
2185#endif
2186#ifdef DBX_DEBUGGING_INFO
be1bb652
RH
2187 if (write_symbols == DBX_DEBUG)
2188 ASM_OUTPUT_INTERNAL_LABEL (file, "LBB", n);
3cf2715d
DE
2189#endif
2190#ifdef DWARF_DEBUGGING_INFO
be1bb652
RH
2191 if (write_symbols == DWARF_DEBUG)
2192 dwarfout_begin_block (n);
3cf2715d 2193#endif
9a666dda 2194#ifdef DWARF2_DEBUGGING_INFO
be1bb652
RH
2195 if (write_symbols == DWARF2_DEBUG)
2196 dwarf2out_begin_block (n);
9a666dda 2197#endif
3cf2715d 2198
be1bb652
RH
2199 /* Mark this block as output. */
2200 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2201 }
2202 break;
18c038b9 2203
be1bb652
RH
2204 case NOTE_INSN_BLOCK_END:
2205 if (debug_info_level == DINFO_LEVEL_NORMAL
2206 || debug_info_level == DINFO_LEVEL_VERBOSE
2207 || write_symbols == DWARF_DEBUG
2208 || write_symbols == DWARF2_DEBUG)
2209 {
2210 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 2211
be1bb652
RH
2212 app_disable ();
2213
2214 /* End of a symbol-block. */
2215 --block_depth;
2216 if (block_depth < 0)
2217 abort ();
3cf2715d
DE
2218
2219#ifdef XCOFF_DEBUGGING_INFO
be1bb652
RH
2220 if (write_symbols == XCOFF_DEBUG)
2221 xcoffout_end_block (file, high_block_linenum, n);
3cf2715d
DE
2222#endif
2223#ifdef DBX_DEBUGGING_INFO
be1bb652
RH
2224 if (write_symbols == DBX_DEBUG)
2225 ASM_OUTPUT_INTERNAL_LABEL (file, "LBE", n);
3cf2715d
DE
2226#endif
2227#ifdef SDB_DEBUGGING_INFO
be1bb652
RH
2228 if (write_symbols == SDB_DEBUG)
2229 sdbout_end_block (file, high_block_linenum, n);
3cf2715d
DE
2230#endif
2231#ifdef DWARF_DEBUGGING_INFO
be1bb652
RH
2232 if (write_symbols == DWARF_DEBUG)
2233 dwarfout_end_block (n);
9a666dda
JM
2234#endif
2235#ifdef DWARF2_DEBUGGING_INFO
be1bb652
RH
2236 if (write_symbols == DWARF2_DEBUG)
2237 dwarf2out_end_block (n);
3cf2715d 2238#endif
be1bb652
RH
2239 }
2240 break;
2241
2242 case NOTE_INSN_DELETED_LABEL:
2243 /* Emit the label. We may have deleted the CODE_LABEL because
2244 the label could be proved to be unreachable, though still
2245 referenced (in the form of having its address taken. */
2246 /* ??? Figure out how not to do this unconditionally. This
2247 interferes with bundling on LIW targets. */
2248 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2249
2250 if (debug_info_level == DINFO_LEVEL_NORMAL
2251 || debug_info_level == DINFO_LEVEL_VERBOSE)
2252 {
3cf2715d 2253#ifdef DWARF_DEBUGGING_INFO
be1bb652
RH
2254 if (write_symbols == DWARF_DEBUG)
2255 dwarfout_label (insn);
9a666dda
JM
2256#endif
2257#ifdef DWARF2_DEBUGGING_INFO
be1bb652
RH
2258 if (write_symbols == DWARF2_DEBUG)
2259 dwarf2out_label (insn);
3cf2715d 2260#endif
be1bb652
RH
2261 }
2262 break;
3cf2715d 2263
be1bb652
RH
2264 default:
2265 if (NOTE_LINE_NUMBER (insn) <= 0)
2266 abort ();
3cf2715d 2267
be1bb652
RH
2268 /* This note is a line-number. */
2269 {
2270 register rtx note;
2271 int note_after = 0;
2272
2273 /* If there is anything real after this note, output it.
2274 If another line note follows, omit this one. */
2275 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2276 {
2277 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
3cf2715d 2278 break;
3cf2715d 2279
be1bb652
RH
2280 /* These types of notes can be significant
2281 so make sure the preceding line number stays. */
2282 else if (GET_CODE (note) == NOTE
2283 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2284 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2285 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2286 break;
2287 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2288 {
2289 /* Another line note follows; we can delete this note
2290 if no intervening line numbers have notes elsewhere. */
2291 int num;
2292 for (num = NOTE_LINE_NUMBER (insn) + 1;
2293 num < NOTE_LINE_NUMBER (note);
2294 num++)
2295 if (line_note_exists[num])
2296 break;
2297
2298 if (num >= NOTE_LINE_NUMBER (note))
2299 note_after = 1;
2300 break;
2301 }
2302 }
2303
2304 /* Output this line note if it is the first or the last line
2305 note in a row. */
2306 if (!note_after)
2307 output_source_line (file, insn);
2308 }
2309 break;
3cf2715d
DE
2310 }
2311 break;
2312
2313 case BARRIER:
f73ad30e 2314#if defined (DWARF2_UNWIND_INFO)
be1bb652
RH
2315 /* If we push arguments, we need to check all insns for stack
2316 adjustments. */
2317 if (!ACCUMULATE_OUTGOING_ARGS && dwarf2out_do_frame ())
2318 dwarf2out_frame_debug (insn);
3cf2715d
DE
2319#endif
2320 break;
2321
2322 case CODE_LABEL:
1dd8faa8
R
2323 /* The target port might emit labels in the output function for
2324 some insn, e.g. sh.c output_branchy_insn. */
de7987a6
R
2325 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2326 {
2327 int align = LABEL_TO_ALIGNMENT (insn);
50b2596f 2328#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
9e423e6d 2329 int max_skip = LABEL_TO_MAX_SKIP (insn);
50b2596f 2330#endif
fc470718 2331
1dd8faa8 2332 if (align && NEXT_INSN (insn))
9e423e6d
JW
2333#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2334 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2335#else
de7987a6 2336 ASM_OUTPUT_ALIGN (file, align);
9e423e6d 2337#endif
de7987a6 2338 }
9ef4c6ef 2339#ifdef HAVE_cc0
3cf2715d 2340 CC_STATUS_INIT;
9ef4c6ef
JC
2341 /* If this label is reached from only one place, set the condition
2342 codes from the instruction just before the branch. */
7ad7f828
JC
2343
2344 /* Disabled because some insns set cc_status in the C output code
2345 and NOTICE_UPDATE_CC alone can set incorrect status. */
2346 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
9ef4c6ef
JC
2347 {
2348 rtx jump = LABEL_REFS (insn);
2349 rtx barrier = prev_nonnote_insn (insn);
2350 rtx prev;
2351 /* If the LABEL_REFS field of this label has been set to point
2352 at a branch, the predecessor of the branch is a regular
2353 insn, and that branch is the only way to reach this label,
2354 set the condition codes based on the branch and its
2355 predecessor. */
2356 if (barrier && GET_CODE (barrier) == BARRIER
2357 && jump && GET_CODE (jump) == JUMP_INSN
2358 && (prev = prev_nonnote_insn (jump))
2359 && GET_CODE (prev) == INSN)
2360 {
2361 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2362 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2363 }
2364 }
2365#endif
3cf2715d
DE
2366 if (prescan > 0)
2367 break;
2368 new_block = 1;
03ffa171
RK
2369
2370#ifdef FINAL_PRESCAN_LABEL
2371 FINAL_PRESCAN_INSN (insn, NULL_PTR, 0);
2372#endif
2373
3cf2715d
DE
2374#ifdef SDB_DEBUGGING_INFO
2375 if (write_symbols == SDB_DEBUG && LABEL_NAME (insn))
2376 sdbout_label (insn);
2377#endif
2378#ifdef DWARF_DEBUGGING_INFO
2379 if (write_symbols == DWARF_DEBUG && LABEL_NAME (insn))
2380 dwarfout_label (insn);
9a666dda
JM
2381#endif
2382#ifdef DWARF2_DEBUGGING_INFO
2383 if (write_symbols == DWARF2_DEBUG && LABEL_NAME (insn))
2384 dwarf2out_label (insn);
3cf2715d
DE
2385#endif
2386 if (app_on)
2387 {
51723711 2388 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2389 app_on = 0;
2390 }
2391 if (NEXT_INSN (insn) != 0
2392 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2393 {
2394 rtx nextbody = PATTERN (NEXT_INSN (insn));
2395
2396 /* If this label is followed by a jump-table,
2397 make sure we put the label in the read-only section. Also
2398 possibly write the label and jump table together. */
2399
2400 if (GET_CODE (nextbody) == ADDR_VEC
2401 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2402 {
e0d80184
DM
2403#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2404 /* In this case, the case vector is being moved by the
2405 target, so don't output the label at all. Leave that
2406 to the back end macros. */
2407#else
75197b37
BS
2408 if (! JUMP_TABLES_IN_TEXT_SECTION)
2409 {
2410 readonly_data_section ();
3cf2715d 2411#ifdef READONLY_DATA_SECTION
75197b37
BS
2412 ASM_OUTPUT_ALIGN (file,
2413 exact_log2 (BIGGEST_ALIGNMENT
2414 / BITS_PER_UNIT));
3cf2715d 2415#endif /* READONLY_DATA_SECTION */
75197b37
BS
2416 }
2417 else
2418 function_section (current_function_decl);
2419
3cf2715d
DE
2420#ifdef ASM_OUTPUT_CASE_LABEL
2421 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2422 NEXT_INSN (insn));
2423#else
8cd0faaf
CM
2424 if (LABEL_ALTERNATE_NAME (insn))
2425 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2426 else
2427 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
e0d80184 2428#endif
3cf2715d
DE
2429#endif
2430 break;
2431 }
2432 }
8cd0faaf
CM
2433 if (LABEL_ALTERNATE_NAME (insn))
2434 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2435 else
2436 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
3cf2715d
DE
2437 break;
2438
2439 default:
2440 {
51723711 2441 register rtx body = PATTERN (insn);
3cf2715d 2442 int insn_code_number;
9b3142b3 2443 const char *template;
b729186a 2444#ifdef HAVE_cc0
3cf2715d 2445 rtx note;
b729186a 2446#endif
3cf2715d
DE
2447
2448 /* An INSN, JUMP_INSN or CALL_INSN.
2449 First check for special kinds that recog doesn't recognize. */
2450
2451 if (GET_CODE (body) == USE /* These are just declarations */
2452 || GET_CODE (body) == CLOBBER)
2453 break;
2454
2455#ifdef HAVE_cc0
2456 /* If there is a REG_CC_SETTER note on this insn, it means that
2457 the setting of the condition code was done in the delay slot
2458 of the insn that branched here. So recover the cc status
2459 from the insn that set it. */
2460
2461 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2462 if (note)
2463 {
2464 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2465 cc_prev_status = cc_status;
2466 }
2467#endif
2468
2469 /* Detect insns that are really jump-tables
2470 and output them as such. */
2471
2472 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2473 {
7f7f8214 2474#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
3cf2715d 2475 register int vlen, idx;
7f7f8214 2476#endif
3cf2715d
DE
2477
2478 if (prescan > 0)
2479 break;
2480
2481 if (app_on)
2482 {
51723711 2483 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2484 app_on = 0;
2485 }
2486
e0d80184
DM
2487#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2488 if (GET_CODE (body) == ADDR_VEC)
2489 {
2490#ifdef ASM_OUTPUT_ADDR_VEC
2491 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2492#else
2493 abort();
2494#endif
2495 }
2496 else
2497 {
2498#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2499 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2500#else
2501 abort();
2502#endif
2503 }
2504#else
3cf2715d
DE
2505 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2506 for (idx = 0; idx < vlen; idx++)
2507 {
2508 if (GET_CODE (body) == ADDR_VEC)
2509 {
2510#ifdef ASM_OUTPUT_ADDR_VEC_ELT
2511 ASM_OUTPUT_ADDR_VEC_ELT
2512 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2513#else
2514 abort ();
2515#endif
2516 }
2517 else
2518 {
2519#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2520 ASM_OUTPUT_ADDR_DIFF_ELT
2521 (file,
33f7f353 2522 body,
3cf2715d
DE
2523 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2524 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2525#else
2526 abort ();
2527#endif
2528 }
2529 }
2530#ifdef ASM_OUTPUT_CASE_END
2531 ASM_OUTPUT_CASE_END (file,
2532 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2533 insn);
e0d80184 2534#endif
3cf2715d
DE
2535#endif
2536
4d1065ed 2537 function_section (current_function_decl);
3cf2715d
DE
2538
2539 break;
2540 }
2541
2542 /* Do basic-block profiling when we reach a new block.
2543 Done here to avoid jump tables. */
2544 if (profile_block_flag && new_block)
2545 add_bb (file);
2546
2547 if (GET_CODE (body) == ASM_INPUT)
2548 {
2549 /* There's no telling what that did to the condition codes. */
2550 CC_STATUS_INIT;
2551 if (prescan > 0)
2552 break;
2553 if (! app_on)
2554 {
51723711 2555 fputs (ASM_APP_ON, file);
3cf2715d
DE
2556 app_on = 1;
2557 }
2558 fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
2559 break;
2560 }
2561
2562 /* Detect `asm' construct with operands. */
2563 if (asm_noperands (body) >= 0)
2564 {
22bf4422 2565 unsigned int noperands = asm_noperands (body);
3cf2715d 2566 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
3cce094d 2567 const char *string;
3cf2715d
DE
2568
2569 /* There's no telling what that did to the condition codes. */
2570 CC_STATUS_INIT;
2571 if (prescan > 0)
2572 break;
2573
2574 if (! app_on)
2575 {
51723711 2576 fputs (ASM_APP_ON, file);
3cf2715d
DE
2577 app_on = 1;
2578 }
2579
2580 /* Get out the operand values. */
2581 string = decode_asm_operands (body, ops, NULL_PTR,
2582 NULL_PTR, NULL_PTR);
2583 /* Inhibit aborts on what would otherwise be compiler bugs. */
2584 insn_noperands = noperands;
2585 this_is_asm_operands = insn;
2586
2587 /* Output the insn using them. */
2588 output_asm_insn (string, ops);
2589 this_is_asm_operands = 0;
2590 break;
2591 }
2592
2593 if (prescan <= 0 && app_on)
2594 {
51723711 2595 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2596 app_on = 0;
2597 }
2598
2599 if (GET_CODE (body) == SEQUENCE)
2600 {
2601 /* A delayed-branch sequence */
2602 register int i;
2603 rtx next;
2604
2605 if (prescan > 0)
2606 break;
2607 final_sequence = body;
2608
2609 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2610 force the restoration of a comparison that was previously
2611 thought unnecessary. If that happens, cancel this sequence
2612 and cause that insn to be restored. */
2613
2614 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2615 if (next != XVECEXP (body, 0, 1))
2616 {
2617 final_sequence = 0;
2618 return next;
2619 }
2620
2621 for (i = 1; i < XVECLEN (body, 0); i++)
c7eee2df
RK
2622 {
2623 rtx insn = XVECEXP (body, 0, i);
2624 rtx next = NEXT_INSN (insn);
2625 /* We loop in case any instruction in a delay slot gets
2626 split. */
2627 do
2628 insn = final_scan_insn (insn, file, 0, prescan, 1);
2629 while (insn != next);
2630 }
3cf2715d
DE
2631#ifdef DBR_OUTPUT_SEQEND
2632 DBR_OUTPUT_SEQEND (file);
2633#endif
2634 final_sequence = 0;
2635
2636 /* If the insn requiring the delay slot was a CALL_INSN, the
2637 insns in the delay slot are actually executed before the
2638 called function. Hence we don't preserve any CC-setting
2639 actions in these insns and the CC must be marked as being
2640 clobbered by the function. */
2641 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
b729186a
JL
2642 {
2643 CC_STATUS_INIT;
2644 }
3cf2715d
DE
2645
2646 /* Following a conditional branch sequence, we have a new basic
2647 block. */
2648 if (profile_block_flag)
2649 {
2650 rtx insn = XVECEXP (body, 0, 0);
2651 rtx body = PATTERN (insn);
2652
2653 if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2654 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2655 || (GET_CODE (insn) == JUMP_INSN
2656 && GET_CODE (body) == PARALLEL
2657 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2658 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
2659 new_block = 1;
2660 }
2661 break;
2662 }
2663
2664 /* We have a real machine instruction as rtl. */
2665
2666 body = PATTERN (insn);
2667
2668#ifdef HAVE_cc0
b88c92cc
RK
2669 set = single_set(insn);
2670
3cf2715d
DE
2671 /* Check for redundant test and compare instructions
2672 (when the condition codes are already set up as desired).
2673 This is done only when optimizing; if not optimizing,
2674 it should be possible for the user to alter a variable
2675 with the debugger in between statements
2676 and the next statement should reexamine the variable
2677 to compute the condition codes. */
2678
30f5e9f5 2679 if (optimize)
3cf2715d 2680 {
b88c92cc 2681#if 0
30f5e9f5 2682 rtx set = single_set(insn);
b88c92cc 2683#endif
30f5e9f5
RK
2684
2685 if (set
2686 && GET_CODE (SET_DEST (set)) == CC0
2687 && insn != last_ignored_compare)
3cf2715d 2688 {
30f5e9f5
RK
2689 if (GET_CODE (SET_SRC (set)) == SUBREG)
2690 SET_SRC (set) = alter_subreg (SET_SRC (set));
2691 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2692 {
2693 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2694 XEXP (SET_SRC (set), 0)
2695 = alter_subreg (XEXP (SET_SRC (set), 0));
2696 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2697 XEXP (SET_SRC (set), 1)
2698 = alter_subreg (XEXP (SET_SRC (set), 1));
2699 }
2700 if ((cc_status.value1 != 0
2701 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2702 || (cc_status.value2 != 0
2703 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
3cf2715d 2704 {
30f5e9f5
RK
2705 /* Don't delete insn if it has an addressing side-effect. */
2706 if (! FIND_REG_INC_NOTE (insn, 0)
2707 /* or if anything in it is volatile. */
2708 && ! volatile_refs_p (PATTERN (insn)))
2709 {
2710 /* We don't really delete the insn; just ignore it. */
2711 last_ignored_compare = insn;
2712 break;
2713 }
3cf2715d
DE
2714 }
2715 }
2716 }
2717#endif
2718
2719 /* Following a conditional branch, we have a new basic block.
2720 But if we are inside a sequence, the new block starts after the
2721 last insn of the sequence. */
2722 if (profile_block_flag && final_sequence == 0
2723 && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2724 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2725 || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
2726 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2727 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
2728 new_block = 1;
2729
2730#ifndef STACK_REGS
2731 /* Don't bother outputting obvious no-ops, even without -O.
2732 This optimization is fast and doesn't interfere with debugging.
2733 Don't do this if the insn is in a delay slot, since this
2734 will cause an improper number of delay insns to be written. */
2735 if (final_sequence == 0
2736 && prescan >= 0
2737 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2738 && GET_CODE (SET_SRC (body)) == REG
2739 && GET_CODE (SET_DEST (body)) == REG
2740 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2741 break;
2742#endif
2743
2744#ifdef HAVE_cc0
2745 /* If this is a conditional branch, maybe modify it
2746 if the cc's are in a nonstandard state
2747 so that it accomplishes the same thing that it would
2748 do straightforwardly if the cc's were set up normally. */
2749
2750 if (cc_status.flags != 0
2751 && GET_CODE (insn) == JUMP_INSN
2752 && GET_CODE (body) == SET
2753 && SET_DEST (body) == pc_rtx
2754 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
de2b56f9 2755 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
fff752ad 2756 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
3cf2715d
DE
2757 /* This is done during prescan; it is not done again
2758 in final scan when prescan has been done. */
2759 && prescan >= 0)
2760 {
2761 /* This function may alter the contents of its argument
2762 and clear some of the cc_status.flags bits.
2763 It may also return 1 meaning condition now always true
2764 or -1 meaning condition now always false
2765 or 2 meaning condition nontrivial but altered. */
2766 register int result = alter_cond (XEXP (SET_SRC (body), 0));
2767 /* If condition now has fixed value, replace the IF_THEN_ELSE
2768 with its then-operand or its else-operand. */
2769 if (result == 1)
2770 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2771 if (result == -1)
2772 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2773
2774 /* The jump is now either unconditional or a no-op.
2775 If it has become a no-op, don't try to output it.
2776 (It would not be recognized.) */
2777 if (SET_SRC (body) == pc_rtx)
2778 {
2779 PUT_CODE (insn, NOTE);
2780 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2781 NOTE_SOURCE_FILE (insn) = 0;
2782 break;
2783 }
2784 else if (GET_CODE (SET_SRC (body)) == RETURN)
2785 /* Replace (set (pc) (return)) with (return). */
2786 PATTERN (insn) = body = SET_SRC (body);
2787
2788 /* Rerecognize the instruction if it has changed. */
2789 if (result != 0)
2790 INSN_CODE (insn) = -1;
2791 }
2792
2793 /* Make same adjustments to instructions that examine the
462da2af
SC
2794 condition codes without jumping and instructions that
2795 handle conditional moves (if this machine has either one). */
3cf2715d
DE
2796
2797 if (cc_status.flags != 0
b88c92cc 2798 && set != 0)
3cf2715d 2799 {
462da2af
SC
2800 rtx cond_rtx, then_rtx, else_rtx;
2801
2802 if (GET_CODE (insn) != JUMP_INSN
b88c92cc 2803 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
462da2af 2804 {
b88c92cc
RK
2805 cond_rtx = XEXP (SET_SRC (set), 0);
2806 then_rtx = XEXP (SET_SRC (set), 1);
2807 else_rtx = XEXP (SET_SRC (set), 2);
462da2af
SC
2808 }
2809 else
2810 {
b88c92cc 2811 cond_rtx = SET_SRC (set);
462da2af
SC
2812 then_rtx = const_true_rtx;
2813 else_rtx = const0_rtx;
2814 }
2815
2816 switch (GET_CODE (cond_rtx))
3cf2715d
DE
2817 {
2818 case GTU:
2819 case GT:
2820 case LTU:
2821 case LT:
2822 case GEU:
2823 case GE:
2824 case LEU:
2825 case LE:
2826 case EQ:
2827 case NE:
2828 {
2829 register int result;
462da2af 2830 if (XEXP (cond_rtx, 0) != cc0_rtx)
3cf2715d 2831 break;
462da2af 2832 result = alter_cond (cond_rtx);
3cf2715d 2833 if (result == 1)
b88c92cc 2834 validate_change (insn, &SET_SRC (set), then_rtx, 0);
3cf2715d 2835 else if (result == -1)
b88c92cc 2836 validate_change (insn, &SET_SRC (set), else_rtx, 0);
3cf2715d
DE
2837 else if (result == 2)
2838 INSN_CODE (insn) = -1;
b88c92cc 2839 if (SET_DEST (set) == SET_SRC (set))
462da2af
SC
2840 {
2841 PUT_CODE (insn, NOTE);
2842 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2843 NOTE_SOURCE_FILE (insn) = 0;
462da2af 2844 }
3cf2715d 2845 }
e9a25f70
JL
2846 break;
2847
2848 default:
2849 break;
3cf2715d
DE
2850 }
2851 }
462da2af 2852
3cf2715d
DE
2853#endif
2854
ede7cd44 2855#ifdef HAVE_peephole
3cf2715d
DE
2856 /* Do machine-specific peephole optimizations if desired. */
2857
2858 if (optimize && !flag_no_peephole && !nopeepholes)
2859 {
2860 rtx next = peephole (insn);
2861 /* When peepholing, if there were notes within the peephole,
2862 emit them before the peephole. */
2863 if (next != 0 && next != NEXT_INSN (insn))
2864 {
2865 rtx prev = PREV_INSN (insn);
2866 rtx note;
2867
2868 for (note = NEXT_INSN (insn); note != next;
2869 note = NEXT_INSN (note))
2870 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2871
2872 /* In case this is prescan, put the notes
2873 in proper position for later rescan. */
2874 note = NEXT_INSN (insn);
2875 PREV_INSN (note) = prev;
2876 NEXT_INSN (prev) = note;
2877 NEXT_INSN (PREV_INSN (next)) = insn;
2878 PREV_INSN (insn) = PREV_INSN (next);
2879 NEXT_INSN (insn) = next;
2880 PREV_INSN (next) = insn;
2881 }
2882
2883 /* PEEPHOLE might have changed this. */
2884 body = PATTERN (insn);
2885 }
ede7cd44 2886#endif
3cf2715d
DE
2887
2888 /* Try to recognize the instruction.
2889 If successful, verify that the operands satisfy the
2890 constraints for the instruction. Crash if they don't,
2891 since `reload' should have changed them so that they do. */
2892
2893 insn_code_number = recog_memoized (insn);
0eadeb15 2894 extract_insn (insn);
0304f787 2895 cleanup_subreg_operands (insn);
3cf2715d 2896
0eadeb15 2897 if (! constrain_operands (1))
3cf2715d 2898 fatal_insn_not_found (insn);
3cf2715d
DE
2899
2900 /* Some target machines need to prescan each insn before
2901 it is output. */
2902
2903#ifdef FINAL_PRESCAN_INSN
1ccbefce 2904 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3cf2715d
DE
2905#endif
2906
afe48e06
RH
2907#ifdef HAVE_conditional_execution
2908 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2909 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2910 else
2911 current_insn_predicate = NULL_RTX;
2912#endif
2913
3cf2715d
DE
2914#ifdef HAVE_cc0
2915 cc_prev_status = cc_status;
2916
2917 /* Update `cc_status' for this instruction.
2918 The instruction's output routine may change it further.
2919 If the output routine for a jump insn needs to depend
2920 on the cc status, it should look at cc_prev_status. */
2921
2922 NOTICE_UPDATE_CC (body, insn);
2923#endif
2924
2925 debug_insn = insn;
2926
f73ad30e 2927#if defined (DWARF2_UNWIND_INFO)
b57d9225 2928 /* If we push arguments, we want to know where the calls are. */
f73ad30e
JH
2929 if (!ACCUMULATE_OUTGOING_ARGS && GET_CODE (insn) == CALL_INSN
2930 && dwarf2out_do_frame ())
b57d9225
JM
2931 dwarf2out_frame_debug (insn);
2932#endif
2933
4bbf910e
RH
2934 /* Find the proper template for this insn. */
2935 template = get_insn_template (insn_code_number, insn);
3cf2715d 2936
4bbf910e
RH
2937 /* If the C code returns 0, it means that it is a jump insn
2938 which follows a deleted test insn, and that test insn
2939 needs to be reinserted. */
3cf2715d
DE
2940 if (template == 0)
2941 {
4bbf910e
RH
2942 if (prev_nonnote_insn (insn) != last_ignored_compare)
2943 abort ();
2944 new_block = 0;
2945 return prev_nonnote_insn (insn);
3cf2715d
DE
2946 }
2947
2948 /* If the template is the string "#", it means that this insn must
2949 be split. */
2950 if (template[0] == '#' && template[1] == '\0')
2951 {
2952 rtx new = try_split (body, insn, 0);
2953
2954 /* If we didn't split the insn, go away. */
2955 if (new == insn && PATTERN (new) == body)
cf879efa 2956 fatal_insn ("Could not split insn", insn);
3cf2715d 2957
3d14e82f
JW
2958#ifdef HAVE_ATTR_length
2959 /* This instruction should have been split in shorten_branches,
2960 to ensure that we would have valid length info for the
2961 splitees. */
2962 abort ();
2963#endif
2964
3cf2715d
DE
2965 new_block = 0;
2966 return new;
2967 }
2968
2969 if (prescan > 0)
2970 break;
2971
2972 /* Output assembler code from the template. */
2973
1ccbefce 2974 output_asm_insn (template, recog_data.operand);
3cf2715d 2975
0021b564 2976#if defined (DWARF2_UNWIND_INFO)
0021b564
JM
2977 /* If we push arguments, we need to check all insns for stack
2978 adjustments. */
f73ad30e
JH
2979 if (!ACCUMULATE_OUTGOING_ARGS)
2980 {
2981 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2982 dwarf2out_frame_debug (insn);
2983 }
2984 else
2985 {
0021b564 2986#if defined (HAVE_prologue)
f73ad30e
JH
2987 /* If this insn is part of the prologue, emit DWARF v2
2988 call frame info. */
2989 if (RTX_FRAME_RELATED_P (insn) && dwarf2out_do_frame ())
2990 dwarf2out_frame_debug (insn);
0021b564 2991#endif
f73ad30e 2992 }
0021b564 2993#endif
469ac993 2994
3cf2715d
DE
2995#if 0
2996 /* It's not at all clear why we did this and doing so interferes
2997 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2998 with this out. */
2999
3000 /* Mark this insn as having been output. */
3001 INSN_DELETED_P (insn) = 1;
3002#endif
3003
3004 debug_insn = 0;
3005 }
3006 }
3007 return NEXT_INSN (insn);
3008}
3009\f
3010/* Output debugging info to the assembler file FILE
3011 based on the NOTE-insn INSN, assumed to be a line number. */
3012
3013static void
3014output_source_line (file, insn)
6a651371 3015 FILE *file ATTRIBUTE_UNUSED;
3cf2715d
DE
3016 rtx insn;
3017{
3cce094d 3018 register const char *filename = NOTE_SOURCE_FILE (insn);
3cf2715d
DE
3019
3020 /* Remember filename for basic block profiling.
3021 Filenames are allocated on the permanent obstack
3022 or are passed in ARGV, so we don't have to save
3023 the string. */
3024
3025 if (profile_block_flag && last_filename != filename)
3026 bb_file_label_num = add_bb_string (filename, TRUE);
3027
3028 last_filename = filename;
3029 last_linenum = NOTE_LINE_NUMBER (insn);
eac40081
RK
3030 high_block_linenum = MAX (last_linenum, high_block_linenum);
3031 high_function_linenum = MAX (last_linenum, high_function_linenum);
3cf2715d
DE
3032
3033 if (write_symbols != NO_DEBUG)
3034 {
3035#ifdef SDB_DEBUGGING_INFO
3036 if (write_symbols == SDB_DEBUG
3037#if 0 /* People like having line numbers even in wrong file! */
3038 /* COFF can't handle multiple source files--lose, lose. */
3039 && !strcmp (filename, main_input_filename)
3040#endif
3041 /* COFF relative line numbers must be positive. */
3042 && last_linenum > sdb_begin_function_line)
3043 {
3044#ifdef ASM_OUTPUT_SOURCE_LINE
3045 ASM_OUTPUT_SOURCE_LINE (file, last_linenum);
3046#else
3047 fprintf (file, "\t.ln\t%d\n",
3048 ((sdb_begin_function_line > -1)
3049 ? last_linenum - sdb_begin_function_line : 1));
3050#endif
3051 }
3052#endif
3053
3054#if defined (DBX_DEBUGGING_INFO)
3055 if (write_symbols == DBX_DEBUG)
3056 dbxout_source_line (file, filename, NOTE_LINE_NUMBER (insn));
3057#endif
3058
3059#if defined (XCOFF_DEBUGGING_INFO)
3060 if (write_symbols == XCOFF_DEBUG)
3061 xcoffout_source_line (file, filename, insn);
3062#endif
3063
3064#ifdef DWARF_DEBUGGING_INFO
3065 if (write_symbols == DWARF_DEBUG)
3066 dwarfout_line (filename, NOTE_LINE_NUMBER (insn));
3067#endif
9a666dda
JM
3068
3069#ifdef DWARF2_DEBUGGING_INFO
3070 if (write_symbols == DWARF2_DEBUG)
3071 dwarf2out_line (filename, NOTE_LINE_NUMBER (insn));
3072#endif
3cf2715d
DE
3073 }
3074}
3075\f
0304f787
JL
3076
3077/* For each operand in INSN, simplify (subreg (reg)) so that it refers
3078 directly to the desired hard register. */
3079void
3080cleanup_subreg_operands (insn)
3081 rtx insn;
3082{
f62a15e3
BS
3083 int i;
3084
0eadeb15 3085 extract_insn (insn);
1ccbefce 3086 for (i = 0; i < recog_data.n_operands; i++)
0304f787 3087 {
1ccbefce
RH
3088 if (GET_CODE (recog_data.operand[i]) == SUBREG)
3089 recog_data.operand[i] = alter_subreg (recog_data.operand[i]);
3090 else if (GET_CODE (recog_data.operand[i]) == PLUS
3091 || GET_CODE (recog_data.operand[i]) == MULT)
3092 recog_data.operand[i] = walk_alter_subreg (recog_data.operand[i]);
0304f787
JL
3093 }
3094
1ccbefce 3095 for (i = 0; i < recog_data.n_dups; i++)
0304f787 3096 {
1ccbefce
RH
3097 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3098 *recog_data.dup_loc[i] = alter_subreg (*recog_data.dup_loc[i]);
3099 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3100 || GET_CODE (*recog_data.dup_loc[i]) == MULT)
3101 *recog_data.dup_loc[i] = walk_alter_subreg (*recog_data.dup_loc[i]);
0304f787
JL
3102 }
3103}
3104
3cf2715d
DE
3105/* If X is a SUBREG, replace it with a REG or a MEM,
3106 based on the thing it is a subreg of. */
3107
3108rtx
3109alter_subreg (x)
3110 register rtx x;
3111{
3112 register rtx y = SUBREG_REG (x);
f5963e61 3113
3cf2715d
DE
3114 if (GET_CODE (y) == SUBREG)
3115 y = alter_subreg (y);
3116
f5963e61
JL
3117 /* If reload is operating, we may be replacing inside this SUBREG.
3118 Check for that and make a new one if so. */
3119 if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
3120 x = copy_rtx (x);
3121
3cf2715d
DE
3122 if (GET_CODE (y) == REG)
3123 {
ef178af3 3124 int regno;
ce4d78eb
RH
3125 /* If the word size is larger than the size of this register,
3126 adjust the register number to compensate. */
3127 /* ??? Note that this just catches stragglers created by/for
3128 integrate. It would be better if we either caught these
3129 earlier, or kept _all_ subregs until now and eliminate
3130 gen_lowpart and friends. */
3131
ce4d78eb 3132#ifdef ALTER_HARD_SUBREG
ef178af3
ZW
3133 regno = ALTER_HARD_SUBREG(GET_MODE (x), SUBREG_WORD (x),
3134 GET_MODE (y), REGNO (y));
ce4d78eb 3135#else
ef178af3 3136 regno = REGNO (y) + SUBREG_WORD (x);
ce4d78eb 3137#endif
ef178af3
ZW
3138 PUT_CODE (x, REG);
3139 REGNO (x) = regno;
0304f787
JL
3140 /* This field has a different meaning for REGs and SUBREGs. Make sure
3141 to clear it! */
3142 x->used = 0;
3cf2715d
DE
3143 }
3144 else if (GET_CODE (y) == MEM)
3145 {
3146 register int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
bf49b139 3147
f76b9db2
ILT
3148 if (BYTES_BIG_ENDIAN)
3149 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))
3150 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (y))));
3cf2715d 3151 PUT_CODE (x, MEM);
c6df88cb 3152 MEM_COPY_ATTRIBUTES (x, y);
3cf2715d
DE
3153 XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
3154 }
3155
3156 return x;
3157}
3158
3159/* Do alter_subreg on all the SUBREGs contained in X. */
3160
3161static rtx
3162walk_alter_subreg (x)
3163 rtx x;
3164{
3165 switch (GET_CODE (x))
3166 {
3167 case PLUS:
3168 case MULT:
3169 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3170 XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
3171 break;
3172
3173 case MEM:
3174 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3175 break;
3176
3177 case SUBREG:
3178 return alter_subreg (x);
e9a25f70
JL
3179
3180 default:
3181 break;
3cf2715d
DE
3182 }
3183
3184 return x;
3185}
3186\f
3187#ifdef HAVE_cc0
3188
3189/* Given BODY, the body of a jump instruction, alter the jump condition
3190 as required by the bits that are set in cc_status.flags.
3191 Not all of the bits there can be handled at this level in all cases.
3192
3193 The value is normally 0.
3194 1 means that the condition has become always true.
3195 -1 means that the condition has become always false.
3196 2 means that COND has been altered. */
3197
3198static int
3199alter_cond (cond)
3200 register rtx cond;
3201{
3202 int value = 0;
3203
3204 if (cc_status.flags & CC_REVERSED)
3205 {
3206 value = 2;
3207 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3208 }
3209
3210 if (cc_status.flags & CC_INVERTED)
3211 {
3212 value = 2;
3213 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3214 }
3215
3216 if (cc_status.flags & CC_NOT_POSITIVE)
3217 switch (GET_CODE (cond))
3218 {
3219 case LE:
3220 case LEU:
3221 case GEU:
3222 /* Jump becomes unconditional. */
3223 return 1;
3224
3225 case GT:
3226 case GTU:
3227 case LTU:
3228 /* Jump becomes no-op. */
3229 return -1;
3230
3231 case GE:
3232 PUT_CODE (cond, EQ);
3233 value = 2;
3234 break;
3235
3236 case LT:
3237 PUT_CODE (cond, NE);
3238 value = 2;
3239 break;
e9a25f70
JL
3240
3241 default:
3242 break;
3cf2715d
DE
3243 }
3244
3245 if (cc_status.flags & CC_NOT_NEGATIVE)
3246 switch (GET_CODE (cond))
3247 {
3248 case GE:
3249 case GEU:
3250 /* Jump becomes unconditional. */
3251 return 1;
3252
3253 case LT:
3254 case LTU:
3255 /* Jump becomes no-op. */
3256 return -1;
3257
3258 case LE:
3259 case LEU:
3260 PUT_CODE (cond, EQ);
3261 value = 2;
3262 break;
3263
3264 case GT:
3265 case GTU:
3266 PUT_CODE (cond, NE);
3267 value = 2;
3268 break;
e9a25f70
JL
3269
3270 default:
3271 break;
3cf2715d
DE
3272 }
3273
3274 if (cc_status.flags & CC_NO_OVERFLOW)
3275 switch (GET_CODE (cond))
3276 {
3277 case GEU:
3278 /* Jump becomes unconditional. */
3279 return 1;
3280
3281 case LEU:
3282 PUT_CODE (cond, EQ);
3283 value = 2;
3284 break;
3285
3286 case GTU:
3287 PUT_CODE (cond, NE);
3288 value = 2;
3289 break;
3290
3291 case LTU:
3292 /* Jump becomes no-op. */
3293 return -1;
e9a25f70
JL
3294
3295 default:
3296 break;
3cf2715d
DE
3297 }
3298
3299 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3300 switch (GET_CODE (cond))
3301 {
e9a25f70 3302 default:
3cf2715d
DE
3303 abort ();
3304
3305 case NE:
3306 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3307 value = 2;
3308 break;
3309
3310 case EQ:
3311 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3312 value = 2;
3313 break;
3314 }
3315
3316 if (cc_status.flags & CC_NOT_SIGNED)
3317 /* The flags are valid if signed condition operators are converted
3318 to unsigned. */
3319 switch (GET_CODE (cond))
3320 {
3321 case LE:
3322 PUT_CODE (cond, LEU);
3323 value = 2;
3324 break;
3325
3326 case LT:
3327 PUT_CODE (cond, LTU);
3328 value = 2;
3329 break;
3330
3331 case GT:
3332 PUT_CODE (cond, GTU);
3333 value = 2;
3334 break;
3335
3336 case GE:
3337 PUT_CODE (cond, GEU);
3338 value = 2;
3339 break;
e9a25f70
JL
3340
3341 default:
3342 break;
3cf2715d
DE
3343 }
3344
3345 return value;
3346}
3347#endif
3348\f
3349/* Report inconsistency between the assembler template and the operands.
3350 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3351
3352void
ab87f8c8
JL
3353output_operand_lossage (msgid)
3354 const char *msgid;
3cf2715d
DE
3355{
3356 if (this_is_asm_operands)
ab87f8c8 3357 error_for_asm (this_is_asm_operands, "invalid `asm': %s", _(msgid));
3cf2715d 3358 else
987009bf
ZW
3359 {
3360 error ("output_operand: %s", _(msgid));
3361 abort ();
3362 }
3cf2715d
DE
3363}
3364\f
3365/* Output of assembler code from a template, and its subroutines. */
3366
3367/* Output text from TEMPLATE to the assembler output file,
3368 obeying %-directions to substitute operands taken from
3369 the vector OPERANDS.
3370
3371 %N (for N a digit) means print operand N in usual manner.
3372 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3373 and print the label name with no punctuation.
3374 %cN means require operand N to be a constant
3375 and print the constant expression with no punctuation.
3376 %aN means expect operand N to be a memory address
3377 (not a memory reference!) and print a reference
3378 to that address.
3379 %nN means expect operand N to be a constant
3380 and print a constant expression for minus the value
3381 of the operand, with no other punctuation. */
3382
cb649530
RK
3383static void
3384output_asm_name ()
3385{
3386 if (flag_print_asm_name)
3387 {
3388 /* Annotate the assembly with a comment describing the pattern and
3389 alternative used. */
3390 if (debug_insn)
3391 {
3392 register int num = INSN_CODE (debug_insn);
1db9f6ce 3393 fprintf (asm_out_file, "\t%s %d\t%s",
a995e389
RH
3394 ASM_COMMENT_START, INSN_UID (debug_insn),
3395 insn_data[num].name);
3396 if (insn_data[num].n_alternatives > 1)
cb649530 3397 fprintf (asm_out_file, "/%d", which_alternative + 1);
1db9f6ce 3398#ifdef HAVE_ATTR_length
a995e389
RH
3399 fprintf (asm_out_file, "\t[length = %d]",
3400 get_attr_length (debug_insn));
1db9f6ce 3401#endif
cb649530
RK
3402 /* Clear this so only the first assembler insn
3403 of any rtl insn will get the special comment for -dp. */
3404 debug_insn = 0;
3405 }
3406 }
3407}
3408
3cf2715d
DE
3409void
3410output_asm_insn (template, operands)
9b3142b3 3411 const char *template;
3cf2715d
DE
3412 rtx *operands;
3413{
9b3142b3 3414 register const char *p;
b729186a 3415 register int c;
3cf2715d
DE
3416
3417 /* An insn may return a null string template
3418 in a case where no assembler code is needed. */
3419 if (*template == 0)
3420 return;
3421
3422 p = template;
3423 putc ('\t', asm_out_file);
3424
3425#ifdef ASM_OUTPUT_OPCODE
3426 ASM_OUTPUT_OPCODE (asm_out_file, p);
3427#endif
3428
b729186a 3429 while ((c = *p++))
3cf2715d
DE
3430 switch (c)
3431 {
3cf2715d 3432 case '\n':
cb649530 3433 output_asm_name ();
3cf2715d 3434 putc (c, asm_out_file);
cb649530 3435#ifdef ASM_OUTPUT_OPCODE
3cf2715d
DE
3436 while ((c = *p) == '\t')
3437 {
3438 putc (c, asm_out_file);
3439 p++;
3440 }
3441 ASM_OUTPUT_OPCODE (asm_out_file, p);
3cf2715d 3442#endif
cb649530 3443 break;
3cf2715d
DE
3444
3445#ifdef ASSEMBLER_DIALECT
3446 case '{':
b729186a
JL
3447 {
3448 register int i;
3449
3450 /* If we want the first dialect, do nothing. Otherwise, skip
3451 DIALECT_NUMBER of strings ending with '|'. */
3452 for (i = 0; i < dialect_number; i++)
3453 {
463a8384 3454 while (*p && *p != '}' && *p++ != '|')
b729186a 3455 ;
463a8384
BS
3456 if (*p == '}')
3457 break;
b729186a
JL
3458 if (*p == '|')
3459 p++;
3460 }
3461 }
3cf2715d
DE
3462 break;
3463
3464 case '|':
3465 /* Skip to close brace. */
3466 while (*p && *p++ != '}')
3467 ;
3468 break;
3469
3470 case '}':
3471 break;
3472#endif
3473
3474 case '%':
3475 /* %% outputs a single %. */
3476 if (*p == '%')
3477 {
3478 p++;
3479 putc (c, asm_out_file);
3480 }
3481 /* %= outputs a number which is unique to each insn in the entire
3482 compilation. This is useful for making local labels that are
3483 referred to more than once in a given insn. */
3484 else if (*p == '=')
3485 {
3486 p++;
3487 fprintf (asm_out_file, "%d", insn_counter);
3488 }
3489 /* % followed by a letter and some digits
3490 outputs an operand in a special way depending on the letter.
3491 Letters `acln' are implemented directly.
3492 Other letters are passed to `output_operand' so that
3493 the PRINT_OPERAND macro can define them. */
5f6d3823 3494 else if (ISLOWER(*p) || ISUPPER(*p))
3cf2715d
DE
3495 {
3496 int letter = *p++;
3497 c = atoi (p);
3498
3499 if (! (*p >= '0' && *p <= '9'))
3500 output_operand_lossage ("operand number missing after %-letter");
22bf4422 3501 else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3cf2715d
DE
3502 output_operand_lossage ("operand number out of range");
3503 else if (letter == 'l')
3504 output_asm_label (operands[c]);
3505 else if (letter == 'a')
3506 output_address (operands[c]);
3507 else if (letter == 'c')
3508 {
3509 if (CONSTANT_ADDRESS_P (operands[c]))
3510 output_addr_const (asm_out_file, operands[c]);
3511 else
3512 output_operand (operands[c], 'c');
3513 }
3514 else if (letter == 'n')
3515 {
3516 if (GET_CODE (operands[c]) == CONST_INT)
21e3a81b 3517 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3cf2715d
DE
3518 - INTVAL (operands[c]));
3519 else
3520 {
3521 putc ('-', asm_out_file);
3522 output_addr_const (asm_out_file, operands[c]);
3523 }
3524 }
3525 else
3526 output_operand (operands[c], letter);
3527
3528 while ((c = *p) >= '0' && c <= '9') p++;
3529 }
3530 /* % followed by a digit outputs an operand the default way. */
3531 else if (*p >= '0' && *p <= '9')
3532 {
3533 c = atoi (p);
22bf4422 3534 if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3cf2715d
DE
3535 output_operand_lossage ("operand number out of range");
3536 else
3537 output_operand (operands[c], 0);
3538 while ((c = *p) >= '0' && c <= '9') p++;
3539 }
3540 /* % followed by punctuation: output something for that
3541 punctuation character alone, with no operand.
3542 The PRINT_OPERAND macro decides what is actually done. */
3543#ifdef PRINT_OPERAND_PUNCT_VALID_P
973838fd 3544 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char)*p))
3cf2715d
DE
3545 output_operand (NULL_RTX, *p++);
3546#endif
3547 else
3548 output_operand_lossage ("invalid %%-code");
3549 break;
3550
3551 default:
3552 putc (c, asm_out_file);
3553 }
3554
cb649530 3555 output_asm_name ();
3cf2715d
DE
3556
3557 putc ('\n', asm_out_file);
3558}
3559\f
3560/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3561
3562void
3563output_asm_label (x)
3564 rtx x;
3565{
3566 char buf[256];
3567
3568 if (GET_CODE (x) == LABEL_REF)
be1bb652
RH
3569 x = XEXP (x, 0);
3570 if (GET_CODE (x) == CODE_LABEL
3571 || (GET_CODE (x) == NOTE
3572 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3cf2715d
DE
3573 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3574 else
3575 output_operand_lossage ("`%l' operand isn't a label");
3576
3577 assemble_name (asm_out_file, buf);
3578}
3579
3580/* Print operand X using machine-dependent assembler syntax.
3581 The macro PRINT_OPERAND is defined just to control this function.
3582 CODE is a non-digit that preceded the operand-number in the % spec,
3583 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3584 between the % and the digits.
3585 When CODE is a non-letter, X is 0.
3586
3587 The meanings of the letters are machine-dependent and controlled
3588 by PRINT_OPERAND. */
3589
3590static void
3591output_operand (x, code)
3592 rtx x;
962f1324 3593 int code ATTRIBUTE_UNUSED;
3cf2715d
DE
3594{
3595 if (x && GET_CODE (x) == SUBREG)
3596 x = alter_subreg (x);
3597
3598 /* If X is a pseudo-register, abort now rather than writing trash to the
3599 assembler file. */
3600
3601 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3602 abort ();
3603
3604 PRINT_OPERAND (asm_out_file, x, code);
3605}
3606
3607/* Print a memory reference operand for address X
3608 using machine-dependent assembler syntax.
3609 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3610
3611void
3612output_address (x)
3613 rtx x;
3614{
3615 walk_alter_subreg (x);
3616 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3617}
3618\f
3619/* Print an integer constant expression in assembler syntax.
3620 Addition and subtraction are the only arithmetic
3621 that may appear in these expressions. */
3622
3623void
3624output_addr_const (file, x)
3625 FILE *file;
3626 rtx x;
3627{
3628 char buf[256];
3629
3630 restart:
3631 switch (GET_CODE (x))
3632 {
3633 case PC:
3634 if (flag_pic)
3635 putc ('.', file);
3636 else
3637 abort ();
3638 break;
3639
3640 case SYMBOL_REF:
3641 assemble_name (file, XSTR (x, 0));
3642 break;
3643
3644 case LABEL_REF:
3645 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3646 assemble_name (file, buf);
3647 break;
3648
3649 case CODE_LABEL:
3650 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3651 assemble_name (file, buf);
3652 break;
3653
3654 case CONST_INT:
21e3a81b 3655 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3cf2715d
DE
3656 break;
3657
3658 case CONST:
3659 /* This used to output parentheses around the expression,
3660 but that does not work on the 386 (either ATT or BSD assembler). */
3661 output_addr_const (file, XEXP (x, 0));
3662 break;
3663
3664 case CONST_DOUBLE:
3665 if (GET_MODE (x) == VOIDmode)
3666 {
3667 /* We can use %d if the number is one word and positive. */
3668 if (CONST_DOUBLE_HIGH (x))
21e3a81b 3669 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3cf2715d
DE
3670 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3671 else if (CONST_DOUBLE_LOW (x) < 0)
21e3a81b 3672 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3cf2715d 3673 else
21e3a81b 3674 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3cf2715d
DE
3675 }
3676 else
3677 /* We can't handle floating point constants;
3678 PRINT_OPERAND must handle them. */
3679 output_operand_lossage ("floating constant misused");
3680 break;
3681
3682 case PLUS:
3683 /* Some assemblers need integer constants to appear last (eg masm). */
3684 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3685 {
3686 output_addr_const (file, XEXP (x, 1));
3687 if (INTVAL (XEXP (x, 0)) >= 0)
3688 fprintf (file, "+");
3689 output_addr_const (file, XEXP (x, 0));
3690 }
3691 else
3692 {
3693 output_addr_const (file, XEXP (x, 0));
3694 if (INTVAL (XEXP (x, 1)) >= 0)
3695 fprintf (file, "+");
3696 output_addr_const (file, XEXP (x, 1));
3697 }
3698 break;
3699
3700 case MINUS:
3701 /* Avoid outputting things like x-x or x+5-x,
3702 since some assemblers can't handle that. */
3703 x = simplify_subtraction (x);
3704 if (GET_CODE (x) != MINUS)
3705 goto restart;
3706
3707 output_addr_const (file, XEXP (x, 0));
3708 fprintf (file, "-");
3709 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3710 && INTVAL (XEXP (x, 1)) < 0)
3711 {
b6c8689d 3712 fprintf (file, "%s", ASM_OPEN_PAREN);
3cf2715d 3713 output_addr_const (file, XEXP (x, 1));
b6c8689d 3714 fprintf (file, "%s", ASM_CLOSE_PAREN);
3cf2715d
DE
3715 }
3716 else
3717 output_addr_const (file, XEXP (x, 1));
3718 break;
3719
3720 case ZERO_EXTEND:
3721 case SIGN_EXTEND:
3722 output_addr_const (file, XEXP (x, 0));
3723 break;
3724
3725 default:
3726 output_operand_lossage ("invalid expression as operand");
3727 }
3728}
3729\f
3730/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3731 %R prints the value of REGISTER_PREFIX.
3732 %L prints the value of LOCAL_LABEL_PREFIX.
3733 %U prints the value of USER_LABEL_PREFIX.
3734 %I prints the value of IMMEDIATE_PREFIX.
3735 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3736 Also supported are %d, %x, %s, %e, %f, %g and %%.
3737
3738 We handle alternate assembler dialects here, just like output_asm_insn. */
3739
3740void
711d877c 3741asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3cf2715d 3742{
5148a72b 3743#ifndef ANSI_PROTOTYPES
3cf2715d 3744 FILE *file;
87e11268 3745 const char *p;
3cf2715d
DE
3746#endif
3747 va_list argptr;
3748 char buf[10];
3749 char *q, c;
3cf2715d
DE
3750
3751 VA_START (argptr, p);
3752
5148a72b 3753#ifndef ANSI_PROTOTYPES
0f41302f 3754 file = va_arg (argptr, FILE *);
87e11268 3755 p = va_arg (argptr, const char *);
3cf2715d
DE
3756#endif
3757
3758 buf[0] = '%';
3759
b729186a 3760 while ((c = *p++))
3cf2715d
DE
3761 switch (c)
3762 {
3763#ifdef ASSEMBLER_DIALECT
3764 case '{':
b729186a
JL
3765 {
3766 int i;
3cf2715d 3767
b729186a
JL
3768 /* If we want the first dialect, do nothing. Otherwise, skip
3769 DIALECT_NUMBER of strings ending with '|'. */
3770 for (i = 0; i < dialect_number; i++)
3771 {
3772 while (*p && *p++ != '|')
3773 ;
3774
3775 if (*p == '|')
3776 p++;
3cf2715d 3777 }
b729186a 3778 }
3cf2715d
DE
3779 break;
3780
3781 case '|':
3782 /* Skip to close brace. */
3783 while (*p && *p++ != '}')
3784 ;
3785 break;
3786
3787 case '}':
3788 break;
3789#endif
3790
3791 case '%':
3792 c = *p++;
3793 q = &buf[1];
3794 while ((c >= '0' && c <= '9') || c == '.')
3795 {
3796 *q++ = c;
3797 c = *p++;
3798 }
3799 switch (c)
3800 {
3801 case '%':
3802 fprintf (file, "%%");
3803 break;
3804
3805 case 'd': case 'i': case 'u':
3806 case 'x': case 'p': case 'X':
3807 case 'o':
3808 *q++ = c;
3809 *q = 0;
3810 fprintf (file, buf, va_arg (argptr, int));
3811 break;
3812
3813 case 'w':
3814 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3815 but we do not check for those cases. It means that the value
3816 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3817
21e3a81b
RK
3818#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3819#else
3820#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3821 *q++ = 'l';
3822#else
3823 *q++ = 'l';
3cf2715d 3824 *q++ = 'l';
21e3a81b 3825#endif
3cf2715d
DE
3826#endif
3827
3828 *q++ = *p++;
3829 *q = 0;
3830 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3831 break;
3832
3833 case 'l':
3834 *q++ = c;
3835 *q++ = *p++;
3836 *q = 0;
3837 fprintf (file, buf, va_arg (argptr, long));
3838 break;
3839
3840 case 'e':
3841 case 'f':
3842 case 'g':
3843 *q++ = c;
3844 *q = 0;
3845 fprintf (file, buf, va_arg (argptr, double));
3846 break;
3847
3848 case 's':
3849 *q++ = c;
3850 *q = 0;
3851 fprintf (file, buf, va_arg (argptr, char *));
3852 break;
3853
3854 case 'O':
3855#ifdef ASM_OUTPUT_OPCODE
3856 ASM_OUTPUT_OPCODE (asm_out_file, p);
3857#endif
3858 break;
3859
3860 case 'R':
3861#ifdef REGISTER_PREFIX
3862 fprintf (file, "%s", REGISTER_PREFIX);
3863#endif
3864 break;
3865
3866 case 'I':
3867#ifdef IMMEDIATE_PREFIX
3868 fprintf (file, "%s", IMMEDIATE_PREFIX);
3869#endif
3870 break;
3871
3872 case 'L':
3873#ifdef LOCAL_LABEL_PREFIX
3874 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3875#endif
3876 break;
3877
3878 case 'U':
19283265 3879 fputs (user_label_prefix, file);
3cf2715d
DE
3880 break;
3881
fe0503ea
NC
3882#ifdef ASM_FPRINTF_EXTENSIONS
3883 /* Upper case letters are reserved for general use by asm_fprintf
3884 and so are not available to target specific code. In order to
3885 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3886 they are defined here. As they get turned into real extensions
3887 to asm_fprintf they should be removed from this list. */
3888 case 'A': case 'B': case 'C': case 'D': case 'E':
3889 case 'F': case 'G': case 'H': case 'J': case 'K':
3890 case 'M': case 'N': case 'P': case 'Q': case 'S':
3891 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3892 break;
3893
3894 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3895#endif
3cf2715d
DE
3896 default:
3897 abort ();
3898 }
3899 break;
3900
3901 default:
3902 fputc (c, file);
3903 }
f0305a2b 3904 va_end (argptr);
3cf2715d
DE
3905}
3906\f
3907/* Split up a CONST_DOUBLE or integer constant rtx
3908 into two rtx's for single words,
3909 storing in *FIRST the word that comes first in memory in the target
3910 and in *SECOND the other. */
3911
3912void
3913split_double (value, first, second)
3914 rtx value;
3915 rtx *first, *second;
3916{
3917 if (GET_CODE (value) == CONST_INT)
3918 {
5a1a6efd 3919 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
f76b9db2 3920 {
5a1a6efd 3921 /* In this case the CONST_INT holds both target words.
27eef9ce
JC
3922 Extract the bits from it into two word-sized pieces.
3923 Sign extend each half to HOST_WIDE_INT. */
5a1a6efd 3924 rtx low, high;
563c063f
MM
3925 /* On machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD
3926 the shift below will cause a compiler warning, even though
3927 this code won't be executed. So put the shift amounts in
3928 variables to avoid the warning. */
3929 int rshift = HOST_BITS_PER_WIDE_INT - BITS_PER_WORD;
3930 int lshift = HOST_BITS_PER_WIDE_INT - 2 * BITS_PER_WORD;
3931
3932 low = GEN_INT ((INTVAL (value) << rshift) >> rshift);
3933 high = GEN_INT ((INTVAL (value) << lshift) >> rshift);
5a1a6efd
RK
3934 if (WORDS_BIG_ENDIAN)
3935 {
3936 *first = high;
3937 *second = low;
3938 }
3939 else
3940 {
3941 *first = low;
3942 *second = high;
3943 }
f76b9db2
ILT
3944 }
3945 else
3946 {
5a1a6efd
RK
3947 /* The rule for using CONST_INT for a wider mode
3948 is that we regard the value as signed.
3949 So sign-extend it. */
3950 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3951 if (WORDS_BIG_ENDIAN)
3952 {
3953 *first = high;
3954 *second = value;
3955 }
3956 else
3957 {
3958 *first = value;
3959 *second = high;
3960 }
f76b9db2 3961 }
3cf2715d
DE
3962 }
3963 else if (GET_CODE (value) != CONST_DOUBLE)
3964 {
f76b9db2
ILT
3965 if (WORDS_BIG_ENDIAN)
3966 {
3967 *first = const0_rtx;
3968 *second = value;
3969 }
3970 else
3971 {
3972 *first = value;
3973 *second = const0_rtx;
3974 }
3cf2715d
DE
3975 }
3976 else if (GET_MODE (value) == VOIDmode
3977 /* This is the old way we did CONST_DOUBLE integers. */
3978 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3979 {
3980 /* In an integer, the words are defined as most and least significant.
3981 So order them by the target's convention. */
f76b9db2
ILT
3982 if (WORDS_BIG_ENDIAN)
3983 {
3984 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3985 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3986 }
3987 else
3988 {
3989 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3990 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3991 }
3cf2715d
DE
3992 }
3993 else
3994 {
3995#ifdef REAL_ARITHMETIC
3996 REAL_VALUE_TYPE r; long l[2];
3997 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3998
3999 /* Note, this converts the REAL_VALUE_TYPE to the target's
4000 format, splits up the floating point double and outputs
4001 exactly 32 bits of it into each of l[0] and l[1] --
0f41302f 4002 not necessarily BITS_PER_WORD bits. */
3cf2715d
DE
4003 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
4004
b5a3eb84
JW
4005 /* If 32 bits is an entire word for the target, but not for the host,
4006 then sign-extend on the host so that the number will look the same
4007 way on the host that it would on the target. See for instance
4008 simplify_unary_operation. The #if is needed to avoid compiler
4009 warnings. */
4010
4011#if HOST_BITS_PER_LONG > 32
4012 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
4013 {
4014 if (l[0] & ((long) 1 << 31))
4015 l[0] |= ((long) (-1) << 32);
4016 if (l[1] & ((long) 1 << 31))
4017 l[1] |= ((long) (-1) << 32);
4018 }
4019#endif
4020
3cf2715d
DE
4021 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
4022 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
4023#else
4024 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
4025 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
4026 && ! flag_pretend_float)
4027 abort ();
4028
f76b9db2
ILT
4029 if (
4030#ifdef HOST_WORDS_BIG_ENDIAN
4031 WORDS_BIG_ENDIAN
3cf2715d 4032#else
f76b9db2 4033 ! WORDS_BIG_ENDIAN
3cf2715d 4034#endif
f76b9db2
ILT
4035 )
4036 {
4037 /* Host and target agree => no need to swap. */
4038 *first = GEN_INT (CONST_DOUBLE_LOW (value));
4039 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
4040 }
4041 else
4042 {
4043 *second = GEN_INT (CONST_DOUBLE_LOW (value));
4044 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
4045 }
3cf2715d
DE
4046#endif /* no REAL_ARITHMETIC */
4047 }
4048}
4049\f
4050/* Return nonzero if this function has no function calls. */
4051
4052int
4053leaf_function_p ()
4054{
4055 rtx insn;
4056
9e2f9a7f 4057 if (profile_flag || profile_block_flag || profile_arc_flag)
3cf2715d
DE
4058 return 0;
4059
4060 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4061 {
7d167afd
JJ
4062 if (GET_CODE (insn) == CALL_INSN
4063 && ! SIBLING_CALL_P (insn))
3cf2715d
DE
4064 return 0;
4065 if (GET_CODE (insn) == INSN
4066 && GET_CODE (PATTERN (insn)) == SEQUENCE
0a1c58a2
JL
4067 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
4068 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3cf2715d
DE
4069 return 0;
4070 }
4071 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
4072 {
7d167afd
JJ
4073 if (GET_CODE (XEXP (insn, 0)) == CALL_INSN
4074 && ! SIBLING_CALL_P (insn))
3cf2715d
DE
4075 return 0;
4076 if (GET_CODE (XEXP (insn, 0)) == INSN
4077 && GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE
0a1c58a2
JL
4078 && GET_CODE (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)) == CALL_INSN
4079 && ! SIBLING_CALL_P (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)))
3cf2715d
DE
4080 return 0;
4081 }
4082
4083 return 1;
4084}
4085
4086/* On some machines, a function with no call insns
4087 can run faster if it doesn't create its own register window.
4088 When output, the leaf function should use only the "output"
4089 registers. Ordinarily, the function would be compiled to use
4090 the "input" registers to find its arguments; it is a candidate
4091 for leaf treatment if it uses only the "input" registers.
4092 Leaf function treatment means renumbering so the function
4093 uses the "output" registers instead. */
4094
4095#ifdef LEAF_REGISTERS
4096
3cf2715d
DE
4097/* Return 1 if this function uses only the registers that can be
4098 safely renumbered. */
4099
4100int
4101only_leaf_regs_used ()
4102{
4103 int i;
7d167afd 4104 char *permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3cf2715d
DE
4105
4106 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
e5e809f4
JL
4107 if ((regs_ever_live[i] || global_regs[i])
4108 && ! permitted_reg_in_leaf_functions[i])
4109 return 0;
4110
4111 if (current_function_uses_pic_offset_table
4112 && pic_offset_table_rtx != 0
4113 && GET_CODE (pic_offset_table_rtx) == REG
4114 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4115 return 0;
4116
3cf2715d
DE
4117 return 1;
4118}
4119
4120/* Scan all instructions and renumber all registers into those
4121 available in leaf functions. */
4122
4123static void
4124leaf_renumber_regs (first)
4125 rtx first;
4126{
4127 rtx insn;
4128
4129 /* Renumber only the actual patterns.
4130 The reg-notes can contain frame pointer refs,
4131 and renumbering them could crash, and should not be needed. */
4132 for (insn = first; insn; insn = NEXT_INSN (insn))
4133 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
4134 leaf_renumber_regs_insn (PATTERN (insn));
4135 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
4136 if (GET_RTX_CLASS (GET_CODE (XEXP (insn, 0))) == 'i')
4137 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4138}
4139
4140/* Scan IN_RTX and its subexpressions, and renumber all regs into those
4141 available in leaf functions. */
4142
4143void
4144leaf_renumber_regs_insn (in_rtx)
4145 register rtx in_rtx;
4146{
4147 register int i, j;
6f7d635c 4148 register const char *format_ptr;
3cf2715d
DE
4149
4150 if (in_rtx == 0)
4151 return;
4152
4153 /* Renumber all input-registers into output-registers.
4154 renumbered_regs would be 1 for an output-register;
4155 they */
4156
4157 if (GET_CODE (in_rtx) == REG)
4158 {
4159 int newreg;
4160
4161 /* Don't renumber the same reg twice. */
4162 if (in_rtx->used)
4163 return;
4164
4165 newreg = REGNO (in_rtx);
4166 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4167 to reach here as part of a REG_NOTE. */
4168 if (newreg >= FIRST_PSEUDO_REGISTER)
4169 {
4170 in_rtx->used = 1;
4171 return;
4172 }
4173 newreg = LEAF_REG_REMAP (newreg);
4174 if (newreg < 0)
4175 abort ();
4176 regs_ever_live[REGNO (in_rtx)] = 0;
4177 regs_ever_live[newreg] = 1;
4178 REGNO (in_rtx) = newreg;
4179 in_rtx->used = 1;
4180 }
4181
4182 if (GET_RTX_CLASS (GET_CODE (in_rtx)) == 'i')
4183 {
4184 /* Inside a SEQUENCE, we find insns.
4185 Renumber just the patterns of these insns,
4186 just as we do for the top-level insns. */
4187 leaf_renumber_regs_insn (PATTERN (in_rtx));
4188 return;
4189 }
4190
4191 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4192
4193 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4194 switch (*format_ptr++)
4195 {
4196 case 'e':
4197 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4198 break;
4199
4200 case 'E':
4201 if (NULL != XVEC (in_rtx, i))
4202 {
4203 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4204 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4205 }
4206 break;
4207
4208 case 'S':
4209 case 's':
4210 case '0':
4211 case 'i':
4212 case 'w':
4213 case 'n':
4214 case 'u':
4215 break;
4216
4217 default:
4218 abort ();
4219 }
4220}
4221#endif
This page took 1.101952 seconds and 5 git commands to generate.