]>
Commit | Line | Data |
---|---|---|
18ca7dab | 1 | /* Subroutines for manipulating rtx's in semantically interesting ways. |
2e6a5989 | 2 | Copyright (C) 1987, 91, 94, 95, 96, 97, 1998 Free Software Foundation, Inc. |
18ca7dab RK |
3 | |
4 | This file is part of GNU CC. | |
5 | ||
6 | GNU CC is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GNU CC is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GNU CC; see the file COPYING. If not, write to | |
940d9d63 RK |
18 | the Free Software Foundation, 59 Temple Place - Suite 330, |
19 | Boston, MA 02111-1307, USA. */ | |
18ca7dab RK |
20 | |
21 | ||
22 | #include "config.h" | |
670ee920 | 23 | #include "system.h" |
18ca7dab RK |
24 | #include "rtl.h" |
25 | #include "tree.h" | |
26 | #include "flags.h" | |
27 | #include "expr.h" | |
28 | #include "hard-reg-set.h" | |
29 | #include "insn-config.h" | |
30 | #include "recog.h" | |
31 | #include "insn-flags.h" | |
32 | #include "insn-codes.h" | |
33 | ||
ea534b63 | 34 | static rtx break_out_memory_refs PROTO((rtx)); |
edff2491 | 35 | static void emit_stack_probe PROTO((rtx)); |
b1ec3c92 CH |
36 | /* Return an rtx for the sum of X and the integer C. |
37 | ||
8008b228 | 38 | This function should be used via the `plus_constant' macro. */ |
18ca7dab RK |
39 | |
40 | rtx | |
b1ec3c92 | 41 | plus_constant_wide (x, c) |
18ca7dab | 42 | register rtx x; |
b1ec3c92 | 43 | register HOST_WIDE_INT c; |
18ca7dab RK |
44 | { |
45 | register RTX_CODE code; | |
46 | register enum machine_mode mode; | |
47 | register rtx tem; | |
48 | int all_constant = 0; | |
49 | ||
50 | if (c == 0) | |
51 | return x; | |
52 | ||
53 | restart: | |
54 | ||
55 | code = GET_CODE (x); | |
56 | mode = GET_MODE (x); | |
57 | switch (code) | |
58 | { | |
59 | case CONST_INT: | |
b1ec3c92 | 60 | return GEN_INT (INTVAL (x) + c); |
18ca7dab RK |
61 | |
62 | case CONST_DOUBLE: | |
63 | { | |
b1ec3c92 CH |
64 | HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x); |
65 | HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x); | |
66 | HOST_WIDE_INT l2 = c; | |
67 | HOST_WIDE_INT h2 = c < 0 ? ~0 : 0; | |
68 | HOST_WIDE_INT lv, hv; | |
18ca7dab RK |
69 | |
70 | add_double (l1, h1, l2, h2, &lv, &hv); | |
71 | ||
72 | return immed_double_const (lv, hv, VOIDmode); | |
73 | } | |
74 | ||
75 | case MEM: | |
76 | /* If this is a reference to the constant pool, try replacing it with | |
77 | a reference to a new constant. If the resulting address isn't | |
78 | valid, don't return it because we have no way to validize it. */ | |
79 | if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF | |
80 | && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0))) | |
81 | { | |
38a448ca RH |
82 | /* Any rtl we create here must go in a saveable obstack, since |
83 | we might have been called from within combine. */ | |
84 | push_obstacks_nochange (); | |
85 | rtl_in_saveable_obstack (); | |
18ca7dab RK |
86 | tem |
87 | = force_const_mem (GET_MODE (x), | |
88 | plus_constant (get_pool_constant (XEXP (x, 0)), | |
89 | c)); | |
38a448ca | 90 | pop_obstacks (); |
18ca7dab RK |
91 | if (memory_address_p (GET_MODE (tem), XEXP (tem, 0))) |
92 | return tem; | |
93 | } | |
94 | break; | |
95 | ||
96 | case CONST: | |
97 | /* If adding to something entirely constant, set a flag | |
98 | so that we can add a CONST around the result. */ | |
99 | x = XEXP (x, 0); | |
100 | all_constant = 1; | |
101 | goto restart; | |
102 | ||
103 | case SYMBOL_REF: | |
104 | case LABEL_REF: | |
105 | all_constant = 1; | |
106 | break; | |
107 | ||
108 | case PLUS: | |
109 | /* The interesting case is adding the integer to a sum. | |
110 | Look for constant term in the sum and combine | |
111 | with C. For an integer constant term, we make a combined | |
112 | integer. For a constant term that is not an explicit integer, | |
e5671f2b RK |
113 | we cannot really combine, but group them together anyway. |
114 | ||
115 | Use a recursive call in case the remaining operand is something | |
116 | that we handle specially, such as a SYMBOL_REF. */ | |
117 | ||
118 | if (GET_CODE (XEXP (x, 1)) == CONST_INT) | |
119 | return plus_constant (XEXP (x, 0), c + INTVAL (XEXP (x, 1))); | |
18ca7dab | 120 | else if (CONSTANT_P (XEXP (x, 0))) |
38a448ca RH |
121 | return gen_rtx_PLUS (mode, |
122 | plus_constant (XEXP (x, 0), c), | |
123 | XEXP (x, 1)); | |
18ca7dab | 124 | else if (CONSTANT_P (XEXP (x, 1))) |
38a448ca RH |
125 | return gen_rtx_PLUS (mode, |
126 | XEXP (x, 0), | |
127 | plus_constant (XEXP (x, 1), c)); | |
128 | break; | |
129 | ||
130 | default: | |
131 | break; | |
18ca7dab RK |
132 | } |
133 | ||
134 | if (c != 0) | |
38a448ca | 135 | x = gen_rtx_PLUS (mode, x, GEN_INT (c)); |
18ca7dab RK |
136 | |
137 | if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) | |
138 | return x; | |
139 | else if (all_constant) | |
38a448ca | 140 | return gen_rtx_CONST (mode, x); |
18ca7dab RK |
141 | else |
142 | return x; | |
143 | } | |
144 | ||
b1ec3c92 CH |
145 | /* This is the same as `plus_constant', except that it handles LO_SUM. |
146 | ||
147 | This function should be used via the `plus_constant_for_output' macro. */ | |
18ca7dab RK |
148 | |
149 | rtx | |
b1ec3c92 | 150 | plus_constant_for_output_wide (x, c) |
18ca7dab | 151 | register rtx x; |
b1ec3c92 | 152 | register HOST_WIDE_INT c; |
18ca7dab | 153 | { |
18ca7dab | 154 | register enum machine_mode mode = GET_MODE (x); |
18ca7dab RK |
155 | |
156 | if (GET_CODE (x) == LO_SUM) | |
38a448ca | 157 | return gen_rtx_LO_SUM (mode, XEXP (x, 0), |
18ca7dab RK |
158 | plus_constant_for_output (XEXP (x, 1), c)); |
159 | ||
160 | else | |
161 | return plus_constant (x, c); | |
162 | } | |
163 | \f | |
164 | /* If X is a sum, return a new sum like X but lacking any constant terms. | |
165 | Add all the removed constant terms into *CONSTPTR. | |
166 | X itself is not altered. The result != X if and only if | |
167 | it is not isomorphic to X. */ | |
168 | ||
169 | rtx | |
170 | eliminate_constant_term (x, constptr) | |
171 | rtx x; | |
172 | rtx *constptr; | |
173 | { | |
174 | register rtx x0, x1; | |
175 | rtx tem; | |
176 | ||
177 | if (GET_CODE (x) != PLUS) | |
178 | return x; | |
179 | ||
180 | /* First handle constants appearing at this level explicitly. */ | |
181 | if (GET_CODE (XEXP (x, 1)) == CONST_INT | |
182 | && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr, | |
183 | XEXP (x, 1))) | |
184 | && GET_CODE (tem) == CONST_INT) | |
185 | { | |
186 | *constptr = tem; | |
187 | return eliminate_constant_term (XEXP (x, 0), constptr); | |
188 | } | |
189 | ||
190 | tem = const0_rtx; | |
191 | x0 = eliminate_constant_term (XEXP (x, 0), &tem); | |
192 | x1 = eliminate_constant_term (XEXP (x, 1), &tem); | |
193 | if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0)) | |
194 | && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), | |
195 | *constptr, tem)) | |
196 | && GET_CODE (tem) == CONST_INT) | |
197 | { | |
198 | *constptr = tem; | |
38a448ca | 199 | return gen_rtx_PLUS (GET_MODE (x), x0, x1); |
18ca7dab RK |
200 | } |
201 | ||
202 | return x; | |
203 | } | |
204 | ||
205 | /* Returns the insn that next references REG after INSN, or 0 | |
206 | if REG is clobbered before next referenced or we cannot find | |
207 | an insn that references REG in a straight-line piece of code. */ | |
208 | ||
209 | rtx | |
210 | find_next_ref (reg, insn) | |
211 | rtx reg; | |
212 | rtx insn; | |
213 | { | |
214 | rtx next; | |
215 | ||
216 | for (insn = NEXT_INSN (insn); insn; insn = next) | |
217 | { | |
218 | next = NEXT_INSN (insn); | |
219 | if (GET_CODE (insn) == NOTE) | |
220 | continue; | |
221 | if (GET_CODE (insn) == CODE_LABEL | |
222 | || GET_CODE (insn) == BARRIER) | |
223 | return 0; | |
224 | if (GET_CODE (insn) == INSN | |
225 | || GET_CODE (insn) == JUMP_INSN | |
226 | || GET_CODE (insn) == CALL_INSN) | |
227 | { | |
228 | if (reg_set_p (reg, insn)) | |
229 | return 0; | |
230 | if (reg_mentioned_p (reg, PATTERN (insn))) | |
231 | return insn; | |
232 | if (GET_CODE (insn) == JUMP_INSN) | |
233 | { | |
234 | if (simplejump_p (insn)) | |
235 | next = JUMP_LABEL (insn); | |
236 | else | |
237 | return 0; | |
238 | } | |
239 | if (GET_CODE (insn) == CALL_INSN | |
240 | && REGNO (reg) < FIRST_PSEUDO_REGISTER | |
241 | && call_used_regs[REGNO (reg)]) | |
242 | return 0; | |
243 | } | |
244 | else | |
245 | abort (); | |
246 | } | |
247 | return 0; | |
248 | } | |
249 | ||
250 | /* Return an rtx for the size in bytes of the value of EXP. */ | |
251 | ||
252 | rtx | |
253 | expr_size (exp) | |
254 | tree exp; | |
255 | { | |
99098c66 RK |
256 | tree size = size_in_bytes (TREE_TYPE (exp)); |
257 | ||
258 | if (TREE_CODE (size) != INTEGER_CST | |
259 | && contains_placeholder_p (size)) | |
260 | size = build (WITH_RECORD_EXPR, sizetype, size, exp); | |
261 | ||
8fbea4dc RK |
262 | return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), |
263 | EXPAND_MEMORY_USE_BAD); | |
18ca7dab RK |
264 | } |
265 | \f | |
266 | /* Return a copy of X in which all memory references | |
267 | and all constants that involve symbol refs | |
268 | have been replaced with new temporary registers. | |
269 | Also emit code to load the memory locations and constants | |
270 | into those registers. | |
271 | ||
272 | If X contains no such constants or memory references, | |
273 | X itself (not a copy) is returned. | |
274 | ||
275 | If a constant is found in the address that is not a legitimate constant | |
276 | in an insn, it is left alone in the hope that it might be valid in the | |
277 | address. | |
278 | ||
279 | X may contain no arithmetic except addition, subtraction and multiplication. | |
280 | Values returned by expand_expr with 1 for sum_ok fit this constraint. */ | |
281 | ||
282 | static rtx | |
283 | break_out_memory_refs (x) | |
284 | register rtx x; | |
285 | { | |
286 | if (GET_CODE (x) == MEM | |
cabeca29 | 287 | || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x) |
18ca7dab | 288 | && GET_MODE (x) != VOIDmode)) |
2cca6e3f | 289 | x = force_reg (GET_MODE (x), x); |
18ca7dab RK |
290 | else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS |
291 | || GET_CODE (x) == MULT) | |
292 | { | |
293 | register rtx op0 = break_out_memory_refs (XEXP (x, 0)); | |
294 | register rtx op1 = break_out_memory_refs (XEXP (x, 1)); | |
2cca6e3f | 295 | |
18ca7dab | 296 | if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1)) |
38a448ca | 297 | x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1); |
18ca7dab | 298 | } |
2cca6e3f | 299 | |
18ca7dab RK |
300 | return x; |
301 | } | |
302 | ||
ea534b63 RK |
303 | #ifdef POINTERS_EXTEND_UNSIGNED |
304 | ||
305 | /* Given X, a memory address in ptr_mode, convert it to an address | |
498b529f RK |
306 | in Pmode, or vice versa (TO_MODE says which way). We take advantage of |
307 | the fact that pointers are not allowed to overflow by commuting arithmetic | |
308 | operations over conversions so that address arithmetic insns can be | |
309 | used. */ | |
ea534b63 | 310 | |
498b529f RK |
311 | rtx |
312 | convert_memory_address (to_mode, x) | |
313 | enum machine_mode to_mode; | |
ea534b63 RK |
314 | rtx x; |
315 | { | |
0b04ec8c | 316 | enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode; |
498b529f RK |
317 | rtx temp; |
318 | ||
0b04ec8c RK |
319 | /* Here we handle some special cases. If none of them apply, fall through |
320 | to the default case. */ | |
ea534b63 RK |
321 | switch (GET_CODE (x)) |
322 | { | |
323 | case CONST_INT: | |
324 | case CONST_DOUBLE: | |
498b529f RK |
325 | return x; |
326 | ||
ea534b63 | 327 | case LABEL_REF: |
38a448ca RH |
328 | temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0)); |
329 | LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x); | |
330 | return temp; | |
498b529f | 331 | |
ea534b63 | 332 | case SYMBOL_REF: |
38a448ca | 333 | temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0)); |
498b529f | 334 | SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x); |
d7dc4377 | 335 | CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x); |
498b529f | 336 | return temp; |
ea534b63 | 337 | |
498b529f | 338 | case CONST: |
38a448ca RH |
339 | return gen_rtx_CONST (to_mode, |
340 | convert_memory_address (to_mode, XEXP (x, 0))); | |
ea534b63 | 341 | |
0b04ec8c RK |
342 | case PLUS: |
343 | case MULT: | |
344 | /* For addition the second operand is a small constant, we can safely | |
38a448ca | 345 | permute the conversion and addition operation. We can always safely |
60725c78 RK |
346 | permute them if we are making the address narrower. In addition, |
347 | always permute the operations if this is a constant. */ | |
0b04ec8c RK |
348 | if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode) |
349 | || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT | |
60725c78 RK |
350 | && (INTVAL (XEXP (x, 1)) + 20000 < 40000 |
351 | || CONSTANT_P (XEXP (x, 0))))) | |
38a448ca RH |
352 | return gen_rtx_fmt_ee (GET_CODE (x), to_mode, |
353 | convert_memory_address (to_mode, XEXP (x, 0)), | |
354 | convert_memory_address (to_mode, XEXP (x, 1))); | |
355 | break; | |
356 | ||
357 | default: | |
358 | break; | |
ea534b63 | 359 | } |
0b04ec8c RK |
360 | |
361 | return convert_modes (to_mode, from_mode, | |
362 | x, POINTERS_EXTEND_UNSIGNED); | |
ea534b63 RK |
363 | } |
364 | #endif | |
365 | ||
18ca7dab RK |
366 | /* Given a memory address or facsimile X, construct a new address, |
367 | currently equivalent, that is stable: future stores won't change it. | |
368 | ||
369 | X must be composed of constants, register and memory references | |
370 | combined with addition, subtraction and multiplication: | |
371 | in other words, just what you can get from expand_expr if sum_ok is 1. | |
372 | ||
373 | Works by making copies of all regs and memory locations used | |
374 | by X and combining them the same way X does. | |
375 | You could also stabilize the reference to this address | |
376 | by copying the address to a register with copy_to_reg; | |
377 | but then you wouldn't get indexed addressing in the reference. */ | |
378 | ||
379 | rtx | |
380 | copy_all_regs (x) | |
381 | register rtx x; | |
382 | { | |
383 | if (GET_CODE (x) == REG) | |
384 | { | |
11c50c5e DE |
385 | if (REGNO (x) != FRAME_POINTER_REGNUM |
386 | #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM | |
387 | && REGNO (x) != HARD_FRAME_POINTER_REGNUM | |
388 | #endif | |
389 | ) | |
18ca7dab RK |
390 | x = copy_to_reg (x); |
391 | } | |
392 | else if (GET_CODE (x) == MEM) | |
393 | x = copy_to_reg (x); | |
394 | else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS | |
395 | || GET_CODE (x) == MULT) | |
396 | { | |
397 | register rtx op0 = copy_all_regs (XEXP (x, 0)); | |
398 | register rtx op1 = copy_all_regs (XEXP (x, 1)); | |
399 | if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1)) | |
38a448ca | 400 | x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1); |
18ca7dab RK |
401 | } |
402 | return x; | |
403 | } | |
404 | \f | |
405 | /* Return something equivalent to X but valid as a memory address | |
406 | for something of mode MODE. When X is not itself valid, this | |
407 | works by copying X or subexpressions of it into registers. */ | |
408 | ||
409 | rtx | |
410 | memory_address (mode, x) | |
411 | enum machine_mode mode; | |
412 | register rtx x; | |
413 | { | |
18b9ca6f | 414 | register rtx oldx = x; |
18ca7dab | 415 | |
38a448ca RH |
416 | if (GET_CODE (x) == ADDRESSOF) |
417 | return x; | |
418 | ||
ea534b63 RK |
419 | #ifdef POINTERS_EXTEND_UNSIGNED |
420 | if (GET_MODE (x) == ptr_mode) | |
498b529f | 421 | x = convert_memory_address (Pmode, x); |
ea534b63 RK |
422 | #endif |
423 | ||
18ca7dab RK |
424 | /* By passing constant addresses thru registers |
425 | we get a chance to cse them. */ | |
cabeca29 | 426 | if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)) |
18b9ca6f | 427 | x = force_reg (Pmode, x); |
18ca7dab RK |
428 | |
429 | /* Accept a QUEUED that refers to a REG | |
430 | even though that isn't a valid address. | |
431 | On attempting to put this in an insn we will call protect_from_queue | |
432 | which will turn it into a REG, which is valid. */ | |
18b9ca6f | 433 | else if (GET_CODE (x) == QUEUED |
18ca7dab | 434 | && GET_CODE (QUEUED_VAR (x)) == REG) |
18b9ca6f | 435 | ; |
18ca7dab RK |
436 | |
437 | /* We get better cse by rejecting indirect addressing at this stage. | |
438 | Let the combiner create indirect addresses where appropriate. | |
439 | For now, generate the code so that the subexpressions useful to share | |
440 | are visible. But not if cse won't be done! */ | |
18b9ca6f | 441 | else |
18ca7dab | 442 | { |
18b9ca6f RK |
443 | if (! cse_not_expected && GET_CODE (x) != REG) |
444 | x = break_out_memory_refs (x); | |
445 | ||
446 | /* At this point, any valid address is accepted. */ | |
447 | GO_IF_LEGITIMATE_ADDRESS (mode, x, win); | |
448 | ||
449 | /* If it was valid before but breaking out memory refs invalidated it, | |
450 | use it the old way. */ | |
451 | if (memory_address_p (mode, oldx)) | |
452 | goto win2; | |
453 | ||
454 | /* Perform machine-dependent transformations on X | |
455 | in certain cases. This is not necessary since the code | |
456 | below can handle all possible cases, but machine-dependent | |
457 | transformations can make better code. */ | |
458 | LEGITIMIZE_ADDRESS (x, oldx, mode, win); | |
459 | ||
460 | /* PLUS and MULT can appear in special ways | |
461 | as the result of attempts to make an address usable for indexing. | |
462 | Usually they are dealt with by calling force_operand, below. | |
463 | But a sum containing constant terms is special | |
464 | if removing them makes the sum a valid address: | |
465 | then we generate that address in a register | |
466 | and index off of it. We do this because it often makes | |
467 | shorter code, and because the addresses thus generated | |
468 | in registers often become common subexpressions. */ | |
469 | if (GET_CODE (x) == PLUS) | |
470 | { | |
471 | rtx constant_term = const0_rtx; | |
472 | rtx y = eliminate_constant_term (x, &constant_term); | |
473 | if (constant_term == const0_rtx | |
474 | || ! memory_address_p (mode, y)) | |
475 | x = force_operand (x, NULL_RTX); | |
476 | else | |
477 | { | |
38a448ca | 478 | y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term); |
18b9ca6f RK |
479 | if (! memory_address_p (mode, y)) |
480 | x = force_operand (x, NULL_RTX); | |
481 | else | |
482 | x = y; | |
483 | } | |
484 | } | |
18ca7dab | 485 | |
e475ed2a | 486 | else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS) |
18b9ca6f | 487 | x = force_operand (x, NULL_RTX); |
18ca7dab | 488 | |
18b9ca6f RK |
489 | /* If we have a register that's an invalid address, |
490 | it must be a hard reg of the wrong class. Copy it to a pseudo. */ | |
491 | else if (GET_CODE (x) == REG) | |
492 | x = copy_to_reg (x); | |
493 | ||
494 | /* Last resort: copy the value to a register, since | |
495 | the register is a valid address. */ | |
496 | else | |
497 | x = force_reg (Pmode, x); | |
498 | ||
499 | goto done; | |
18ca7dab | 500 | |
c02a7fbb RK |
501 | win2: |
502 | x = oldx; | |
503 | win: | |
504 | if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG | |
505 | /* Don't copy an addr via a reg if it is one of our stack slots. */ | |
506 | && ! (GET_CODE (x) == PLUS | |
507 | && (XEXP (x, 0) == virtual_stack_vars_rtx | |
508 | || XEXP (x, 0) == virtual_incoming_args_rtx))) | |
509 | { | |
510 | if (general_operand (x, Pmode)) | |
511 | x = force_reg (Pmode, x); | |
512 | else | |
513 | x = force_operand (x, NULL_RTX); | |
514 | } | |
18ca7dab | 515 | } |
18b9ca6f RK |
516 | |
517 | done: | |
518 | ||
2cca6e3f RK |
519 | /* If we didn't change the address, we are done. Otherwise, mark |
520 | a reg as a pointer if we have REG or REG + CONST_INT. */ | |
521 | if (oldx == x) | |
522 | return x; | |
523 | else if (GET_CODE (x) == REG) | |
305f22b5 | 524 | mark_reg_pointer (x, 1); |
2cca6e3f RK |
525 | else if (GET_CODE (x) == PLUS |
526 | && GET_CODE (XEXP (x, 0)) == REG | |
527 | && GET_CODE (XEXP (x, 1)) == CONST_INT) | |
305f22b5 | 528 | mark_reg_pointer (XEXP (x, 0), 1); |
2cca6e3f | 529 | |
18b9ca6f RK |
530 | /* OLDX may have been the address on a temporary. Update the address |
531 | to indicate that X is now used. */ | |
532 | update_temp_slot_address (oldx, x); | |
533 | ||
18ca7dab RK |
534 | return x; |
535 | } | |
536 | ||
537 | /* Like `memory_address' but pretend `flag_force_addr' is 0. */ | |
538 | ||
539 | rtx | |
540 | memory_address_noforce (mode, x) | |
541 | enum machine_mode mode; | |
542 | rtx x; | |
543 | { | |
544 | int ambient_force_addr = flag_force_addr; | |
545 | rtx val; | |
546 | ||
547 | flag_force_addr = 0; | |
548 | val = memory_address (mode, x); | |
549 | flag_force_addr = ambient_force_addr; | |
550 | return val; | |
551 | } | |
552 | ||
553 | /* Convert a mem ref into one with a valid memory address. | |
554 | Pass through anything else unchanged. */ | |
555 | ||
556 | rtx | |
557 | validize_mem (ref) | |
558 | rtx ref; | |
559 | { | |
560 | if (GET_CODE (ref) != MEM) | |
561 | return ref; | |
562 | if (memory_address_p (GET_MODE (ref), XEXP (ref, 0))) | |
563 | return ref; | |
564 | /* Don't alter REF itself, since that is probably a stack slot. */ | |
565 | return change_address (ref, GET_MODE (ref), XEXP (ref, 0)); | |
566 | } | |
567 | \f | |
568 | /* Return a modified copy of X with its memory address copied | |
569 | into a temporary register to protect it from side effects. | |
570 | If X is not a MEM, it is returned unchanged (and not copied). | |
571 | Perhaps even if it is a MEM, if there is no need to change it. */ | |
572 | ||
573 | rtx | |
574 | stabilize (x) | |
575 | rtx x; | |
576 | { | |
577 | register rtx addr; | |
578 | if (GET_CODE (x) != MEM) | |
579 | return x; | |
580 | addr = XEXP (x, 0); | |
581 | if (rtx_unstable_p (addr)) | |
582 | { | |
583 | rtx temp = copy_all_regs (addr); | |
584 | rtx mem; | |
585 | if (GET_CODE (temp) != REG) | |
586 | temp = copy_to_reg (temp); | |
38a448ca | 587 | mem = gen_rtx_MEM (GET_MODE (x), temp); |
18ca7dab RK |
588 | |
589 | /* Mark returned memref with in_struct if it's in an array or | |
590 | structure. Copy const and volatile from original memref. */ | |
591 | ||
592 | MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS; | |
593 | RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x); | |
594 | MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x); | |
595 | return mem; | |
596 | } | |
597 | return x; | |
598 | } | |
599 | \f | |
600 | /* Copy the value or contents of X to a new temp reg and return that reg. */ | |
601 | ||
602 | rtx | |
603 | copy_to_reg (x) | |
604 | rtx x; | |
605 | { | |
606 | register rtx temp = gen_reg_rtx (GET_MODE (x)); | |
607 | ||
608 | /* If not an operand, must be an address with PLUS and MULT so | |
609 | do the computation. */ | |
610 | if (! general_operand (x, VOIDmode)) | |
611 | x = force_operand (x, temp); | |
612 | ||
613 | if (x != temp) | |
614 | emit_move_insn (temp, x); | |
615 | ||
616 | return temp; | |
617 | } | |
618 | ||
619 | /* Like copy_to_reg but always give the new register mode Pmode | |
620 | in case X is a constant. */ | |
621 | ||
622 | rtx | |
623 | copy_addr_to_reg (x) | |
624 | rtx x; | |
625 | { | |
626 | return copy_to_mode_reg (Pmode, x); | |
627 | } | |
628 | ||
629 | /* Like copy_to_reg but always give the new register mode MODE | |
630 | in case X is a constant. */ | |
631 | ||
632 | rtx | |
633 | copy_to_mode_reg (mode, x) | |
634 | enum machine_mode mode; | |
635 | rtx x; | |
636 | { | |
637 | register rtx temp = gen_reg_rtx (mode); | |
638 | ||
639 | /* If not an operand, must be an address with PLUS and MULT so | |
640 | do the computation. */ | |
641 | if (! general_operand (x, VOIDmode)) | |
642 | x = force_operand (x, temp); | |
643 | ||
644 | if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode) | |
645 | abort (); | |
646 | if (x != temp) | |
647 | emit_move_insn (temp, x); | |
648 | return temp; | |
649 | } | |
650 | ||
651 | /* Load X into a register if it is not already one. | |
652 | Use mode MODE for the register. | |
653 | X should be valid for mode MODE, but it may be a constant which | |
654 | is valid for all integer modes; that's why caller must specify MODE. | |
655 | ||
656 | The caller must not alter the value in the register we return, | |
657 | since we mark it as a "constant" register. */ | |
658 | ||
659 | rtx | |
660 | force_reg (mode, x) | |
661 | enum machine_mode mode; | |
662 | rtx x; | |
663 | { | |
62874575 | 664 | register rtx temp, insn, set; |
18ca7dab RK |
665 | |
666 | if (GET_CODE (x) == REG) | |
667 | return x; | |
668 | temp = gen_reg_rtx (mode); | |
669 | insn = emit_move_insn (temp, x); | |
62874575 | 670 | |
18ca7dab | 671 | /* Let optimizers know that TEMP's value never changes |
62874575 RK |
672 | and that X can be substituted for it. Don't get confused |
673 | if INSN set something else (such as a SUBREG of TEMP). */ | |
674 | if (CONSTANT_P (x) | |
675 | && (set = single_set (insn)) != 0 | |
676 | && SET_DEST (set) == temp) | |
18ca7dab | 677 | { |
b1ec3c92 | 678 | rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX); |
18ca7dab RK |
679 | |
680 | if (note) | |
681 | XEXP (note, 0) = x; | |
682 | else | |
38a448ca | 683 | REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, x, REG_NOTES (insn)); |
18ca7dab RK |
684 | } |
685 | return temp; | |
686 | } | |
687 | ||
688 | /* If X is a memory ref, copy its contents to a new temp reg and return | |
689 | that reg. Otherwise, return X. */ | |
690 | ||
691 | rtx | |
692 | force_not_mem (x) | |
693 | rtx x; | |
694 | { | |
695 | register rtx temp; | |
696 | if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode) | |
697 | return x; | |
698 | temp = gen_reg_rtx (GET_MODE (x)); | |
699 | emit_move_insn (temp, x); | |
700 | return temp; | |
701 | } | |
702 | ||
703 | /* Copy X to TARGET (if it's nonzero and a reg) | |
704 | or to a new temp reg and return that reg. | |
705 | MODE is the mode to use for X in case it is a constant. */ | |
706 | ||
707 | rtx | |
708 | copy_to_suggested_reg (x, target, mode) | |
709 | rtx x, target; | |
710 | enum machine_mode mode; | |
711 | { | |
712 | register rtx temp; | |
713 | ||
714 | if (target && GET_CODE (target) == REG) | |
715 | temp = target; | |
716 | else | |
717 | temp = gen_reg_rtx (mode); | |
718 | ||
719 | emit_move_insn (temp, x); | |
720 | return temp; | |
721 | } | |
722 | \f | |
9ff65789 RK |
723 | /* Return the mode to use to store a scalar of TYPE and MODE. |
724 | PUNSIGNEDP points to the signedness of the type and may be adjusted | |
725 | to show what signedness to use on extension operations. | |
726 | ||
727 | FOR_CALL is non-zero if this call is promoting args for a call. */ | |
728 | ||
729 | enum machine_mode | |
730 | promote_mode (type, mode, punsignedp, for_call) | |
731 | tree type; | |
732 | enum machine_mode mode; | |
733 | int *punsignedp; | |
734 | int for_call; | |
735 | { | |
736 | enum tree_code code = TREE_CODE (type); | |
737 | int unsignedp = *punsignedp; | |
738 | ||
739 | #ifdef PROMOTE_FOR_CALL_ONLY | |
740 | if (! for_call) | |
741 | return mode; | |
742 | #endif | |
743 | ||
744 | switch (code) | |
745 | { | |
746 | #ifdef PROMOTE_MODE | |
747 | case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: | |
748 | case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE: | |
749 | PROMOTE_MODE (mode, unsignedp, type); | |
750 | break; | |
751 | #endif | |
752 | ||
ea534b63 | 753 | #ifdef POINTERS_EXTEND_UNSIGNED |
56a4c9e2 | 754 | case REFERENCE_TYPE: |
9ff65789 | 755 | case POINTER_TYPE: |
ea534b63 RK |
756 | mode = Pmode; |
757 | unsignedp = POINTERS_EXTEND_UNSIGNED; | |
9ff65789 | 758 | break; |
ea534b63 | 759 | #endif |
38a448ca RH |
760 | |
761 | default: | |
762 | break; | |
9ff65789 RK |
763 | } |
764 | ||
765 | *punsignedp = unsignedp; | |
766 | return mode; | |
767 | } | |
768 | \f | |
18ca7dab RK |
769 | /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes). |
770 | This pops when ADJUST is positive. ADJUST need not be constant. */ | |
771 | ||
772 | void | |
773 | adjust_stack (adjust) | |
774 | rtx adjust; | |
775 | { | |
776 | rtx temp; | |
777 | adjust = protect_from_queue (adjust, 0); | |
778 | ||
779 | if (adjust == const0_rtx) | |
780 | return; | |
781 | ||
782 | temp = expand_binop (Pmode, | |
783 | #ifdef STACK_GROWS_DOWNWARD | |
784 | add_optab, | |
785 | #else | |
786 | sub_optab, | |
787 | #endif | |
788 | stack_pointer_rtx, adjust, stack_pointer_rtx, 0, | |
789 | OPTAB_LIB_WIDEN); | |
790 | ||
791 | if (temp != stack_pointer_rtx) | |
792 | emit_move_insn (stack_pointer_rtx, temp); | |
793 | } | |
794 | ||
795 | /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes). | |
796 | This pushes when ADJUST is positive. ADJUST need not be constant. */ | |
797 | ||
798 | void | |
799 | anti_adjust_stack (adjust) | |
800 | rtx adjust; | |
801 | { | |
802 | rtx temp; | |
803 | adjust = protect_from_queue (adjust, 0); | |
804 | ||
805 | if (adjust == const0_rtx) | |
806 | return; | |
807 | ||
808 | temp = expand_binop (Pmode, | |
809 | #ifdef STACK_GROWS_DOWNWARD | |
810 | sub_optab, | |
811 | #else | |
812 | add_optab, | |
813 | #endif | |
814 | stack_pointer_rtx, adjust, stack_pointer_rtx, 0, | |
815 | OPTAB_LIB_WIDEN); | |
816 | ||
817 | if (temp != stack_pointer_rtx) | |
818 | emit_move_insn (stack_pointer_rtx, temp); | |
819 | } | |
820 | ||
821 | /* Round the size of a block to be pushed up to the boundary required | |
822 | by this machine. SIZE is the desired size, which need not be constant. */ | |
823 | ||
824 | rtx | |
825 | round_push (size) | |
826 | rtx size; | |
827 | { | |
828 | #ifdef STACK_BOUNDARY | |
829 | int align = STACK_BOUNDARY / BITS_PER_UNIT; | |
830 | if (align == 1) | |
831 | return size; | |
832 | if (GET_CODE (size) == CONST_INT) | |
833 | { | |
834 | int new = (INTVAL (size) + align - 1) / align * align; | |
835 | if (INTVAL (size) != new) | |
b1ec3c92 | 836 | size = GEN_INT (new); |
18ca7dab RK |
837 | } |
838 | else | |
839 | { | |
5244db05 | 840 | /* CEIL_DIV_EXPR needs to worry about the addition overflowing, |
0f41302f MS |
841 | but we know it can't. So add ourselves and then do |
842 | TRUNC_DIV_EXPR. */ | |
5244db05 RK |
843 | size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1), |
844 | NULL_RTX, 1, OPTAB_LIB_WIDEN); | |
845 | size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align), | |
b1ec3c92 CH |
846 | NULL_RTX, 1); |
847 | size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1); | |
18ca7dab RK |
848 | } |
849 | #endif /* STACK_BOUNDARY */ | |
850 | return size; | |
851 | } | |
852 | \f | |
59257ff7 RK |
853 | /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer |
854 | to a previously-created save area. If no save area has been allocated, | |
855 | this function will allocate one. If a save area is specified, it | |
856 | must be of the proper mode. | |
857 | ||
858 | The insns are emitted after insn AFTER, if nonzero, otherwise the insns | |
859 | are emitted at the current position. */ | |
860 | ||
861 | void | |
862 | emit_stack_save (save_level, psave, after) | |
863 | enum save_level save_level; | |
864 | rtx *psave; | |
865 | rtx after; | |
866 | { | |
867 | rtx sa = *psave; | |
868 | /* The default is that we use a move insn and save in a Pmode object. */ | |
869 | rtx (*fcn) () = gen_move_insn; | |
870 | enum machine_mode mode = Pmode; | |
871 | ||
872 | /* See if this machine has anything special to do for this kind of save. */ | |
873 | switch (save_level) | |
874 | { | |
875 | #ifdef HAVE_save_stack_block | |
876 | case SAVE_BLOCK: | |
877 | if (HAVE_save_stack_block) | |
878 | { | |
879 | fcn = gen_save_stack_block; | |
880 | mode = insn_operand_mode[CODE_FOR_save_stack_block][0]; | |
881 | } | |
882 | break; | |
883 | #endif | |
884 | #ifdef HAVE_save_stack_function | |
885 | case SAVE_FUNCTION: | |
886 | if (HAVE_save_stack_function) | |
887 | { | |
888 | fcn = gen_save_stack_function; | |
889 | mode = insn_operand_mode[CODE_FOR_save_stack_function][0]; | |
890 | } | |
891 | break; | |
892 | #endif | |
893 | #ifdef HAVE_save_stack_nonlocal | |
894 | case SAVE_NONLOCAL: | |
895 | if (HAVE_save_stack_nonlocal) | |
896 | { | |
897 | fcn = gen_save_stack_nonlocal; | |
0d69ab6f | 898 | mode = insn_operand_mode[(int) CODE_FOR_save_stack_nonlocal][0]; |
59257ff7 RK |
899 | } |
900 | break; | |
901 | #endif | |
38a448ca RH |
902 | default: |
903 | break; | |
59257ff7 RK |
904 | } |
905 | ||
906 | /* If there is no save area and we have to allocate one, do so. Otherwise | |
907 | verify the save area is the proper mode. */ | |
908 | ||
909 | if (sa == 0) | |
910 | { | |
911 | if (mode != VOIDmode) | |
912 | { | |
913 | if (save_level == SAVE_NONLOCAL) | |
914 | *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0); | |
915 | else | |
916 | *psave = sa = gen_reg_rtx (mode); | |
917 | } | |
918 | } | |
919 | else | |
920 | { | |
921 | if (mode == VOIDmode || GET_MODE (sa) != mode) | |
922 | abort (); | |
923 | } | |
924 | ||
925 | if (after) | |
700f6f98 RK |
926 | { |
927 | rtx seq; | |
928 | ||
929 | start_sequence (); | |
5460015d JW |
930 | /* We must validize inside the sequence, to ensure that any instructions |
931 | created by the validize call also get moved to the right place. */ | |
932 | if (sa != 0) | |
933 | sa = validize_mem (sa); | |
d072107f | 934 | emit_insn (fcn (sa, stack_pointer_rtx)); |
700f6f98 RK |
935 | seq = gen_sequence (); |
936 | end_sequence (); | |
937 | emit_insn_after (seq, after); | |
938 | } | |
59257ff7 | 939 | else |
5460015d JW |
940 | { |
941 | if (sa != 0) | |
942 | sa = validize_mem (sa); | |
943 | emit_insn (fcn (sa, stack_pointer_rtx)); | |
944 | } | |
59257ff7 RK |
945 | } |
946 | ||
947 | /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save | |
948 | area made by emit_stack_save. If it is zero, we have nothing to do. | |
949 | ||
950 | Put any emitted insns after insn AFTER, if nonzero, otherwise at | |
951 | current position. */ | |
952 | ||
953 | void | |
954 | emit_stack_restore (save_level, sa, after) | |
955 | enum save_level save_level; | |
956 | rtx after; | |
957 | rtx sa; | |
958 | { | |
959 | /* The default is that we use a move insn. */ | |
960 | rtx (*fcn) () = gen_move_insn; | |
961 | ||
962 | /* See if this machine has anything special to do for this kind of save. */ | |
963 | switch (save_level) | |
964 | { | |
965 | #ifdef HAVE_restore_stack_block | |
966 | case SAVE_BLOCK: | |
967 | if (HAVE_restore_stack_block) | |
968 | fcn = gen_restore_stack_block; | |
969 | break; | |
970 | #endif | |
971 | #ifdef HAVE_restore_stack_function | |
972 | case SAVE_FUNCTION: | |
973 | if (HAVE_restore_stack_function) | |
974 | fcn = gen_restore_stack_function; | |
975 | break; | |
976 | #endif | |
977 | #ifdef HAVE_restore_stack_nonlocal | |
978 | ||
979 | case SAVE_NONLOCAL: | |
980 | if (HAVE_restore_stack_nonlocal) | |
981 | fcn = gen_restore_stack_nonlocal; | |
982 | break; | |
983 | #endif | |
38a448ca RH |
984 | default: |
985 | break; | |
59257ff7 RK |
986 | } |
987 | ||
d072107f RK |
988 | if (sa != 0) |
989 | sa = validize_mem (sa); | |
990 | ||
59257ff7 | 991 | if (after) |
700f6f98 RK |
992 | { |
993 | rtx seq; | |
994 | ||
995 | start_sequence (); | |
d072107f | 996 | emit_insn (fcn (stack_pointer_rtx, sa)); |
700f6f98 RK |
997 | seq = gen_sequence (); |
998 | end_sequence (); | |
999 | emit_insn_after (seq, after); | |
1000 | } | |
59257ff7 | 1001 | else |
d072107f | 1002 | emit_insn (fcn (stack_pointer_rtx, sa)); |
59257ff7 RK |
1003 | } |
1004 | \f | |
c9ec4f99 DM |
1005 | #ifdef SETJMP_VIA_SAVE_AREA |
1006 | /* Optimize RTL generated by allocate_dynamic_stack_space for targets | |
1007 | where SETJMP_VIA_SAVE_AREA is true. The problem is that on these | |
1008 | platforms, the dynamic stack space used can corrupt the original | |
1009 | frame, thus causing a crash if a longjmp unwinds to it. */ | |
1010 | ||
1011 | void | |
1012 | optimize_save_area_alloca (insns) | |
1013 | rtx insns; | |
1014 | { | |
1015 | rtx insn; | |
1016 | ||
1017 | for (insn = insns; insn; insn = NEXT_INSN(insn)) | |
1018 | { | |
1019 | rtx note; | |
1020 | ||
1021 | if (GET_CODE (insn) != INSN) | |
1022 | continue; | |
1023 | ||
1024 | for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) | |
1025 | { | |
1026 | if (REG_NOTE_KIND (note) != REG_SAVE_AREA) | |
1027 | continue; | |
1028 | ||
1029 | if (!current_function_calls_setjmp) | |
1030 | { | |
1031 | rtx pat = PATTERN (insn); | |
1032 | ||
1033 | /* If we do not see the note in a pattern matching | |
1034 | these precise characteristics, we did something | |
1035 | entirely wrong in allocate_dynamic_stack_space. | |
1036 | ||
1037 | Note, one way this could happen if if SETJMP_VIA_SAVE_AREA | |
1038 | was defined on a machine where stacks grow towards higher | |
1039 | addresses. | |
1040 | ||
1041 | Right now only supported port with stack that grow upward | |
1042 | is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */ | |
1043 | if (GET_CODE (pat) != SET | |
1044 | || SET_DEST (pat) != stack_pointer_rtx | |
1045 | || GET_CODE (SET_SRC (pat)) != MINUS | |
1046 | || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx) | |
1047 | abort (); | |
1048 | ||
1049 | /* This will now be transformed into a (set REG REG) | |
1050 | so we can just blow away all the other notes. */ | |
1051 | XEXP (SET_SRC (pat), 1) = XEXP (note, 0); | |
1052 | REG_NOTES (insn) = NULL_RTX; | |
1053 | } | |
1054 | else | |
1055 | { | |
1056 | /* setjmp was called, we must remove the REG_SAVE_AREA | |
1057 | note so that later passes do not get confused by its | |
1058 | presence. */ | |
1059 | if (note == REG_NOTES (insn)) | |
1060 | { | |
1061 | REG_NOTES (insn) = XEXP (note, 1); | |
1062 | } | |
1063 | else | |
1064 | { | |
1065 | rtx srch; | |
1066 | ||
1067 | for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1)) | |
1068 | if (XEXP (srch, 1) == note) | |
1069 | break; | |
1070 | ||
1071 | if (srch == NULL_RTX) | |
1072 | abort(); | |
1073 | ||
1074 | XEXP (srch, 1) = XEXP (note, 1); | |
1075 | } | |
1076 | } | |
1077 | /* Once we've seen the note of interest, we need not look at | |
1078 | the rest of them. */ | |
1079 | break; | |
1080 | } | |
1081 | } | |
1082 | } | |
1083 | #endif /* SETJMP_VIA_SAVE_AREA */ | |
1084 | ||
18ca7dab RK |
1085 | /* Return an rtx representing the address of an area of memory dynamically |
1086 | pushed on the stack. This region of memory is always aligned to | |
1087 | a multiple of BIGGEST_ALIGNMENT. | |
1088 | ||
1089 | Any required stack pointer alignment is preserved. | |
1090 | ||
1091 | SIZE is an rtx representing the size of the area. | |
091ad0b9 RK |
1092 | TARGET is a place in which the address can be placed. |
1093 | ||
1094 | KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */ | |
18ca7dab RK |
1095 | |
1096 | rtx | |
091ad0b9 | 1097 | allocate_dynamic_stack_space (size, target, known_align) |
18ca7dab RK |
1098 | rtx size; |
1099 | rtx target; | |
091ad0b9 | 1100 | int known_align; |
18ca7dab | 1101 | { |
c9ec4f99 DM |
1102 | #ifdef SETJMP_VIA_SAVE_AREA |
1103 | rtx setjmpless_size = NULL_RTX; | |
1104 | #endif | |
1105 | ||
15fc0026 | 1106 | /* If we're asking for zero bytes, it doesn't matter what we point |
9faa82d8 | 1107 | to since we can't dereference it. But return a reasonable |
15fc0026 RK |
1108 | address anyway. */ |
1109 | if (size == const0_rtx) | |
1110 | return virtual_stack_dynamic_rtx; | |
1111 | ||
1112 | /* Otherwise, show we're calling alloca or equivalent. */ | |
1113 | current_function_calls_alloca = 1; | |
1114 | ||
18ca7dab RK |
1115 | /* Ensure the size is in the proper mode. */ |
1116 | if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode) | |
1117 | size = convert_to_mode (Pmode, size, 1); | |
1118 | ||
1119 | /* We will need to ensure that the address we return is aligned to | |
1120 | BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't | |
1121 | always know its final value at this point in the compilation (it | |
1122 | might depend on the size of the outgoing parameter lists, for | |
1123 | example), so we must align the value to be returned in that case. | |
1124 | (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if | |
1125 | STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined). | |
1126 | We must also do an alignment operation on the returned value if | |
1127 | the stack pointer alignment is less strict that BIGGEST_ALIGNMENT. | |
1128 | ||
1129 | If we have to align, we must leave space in SIZE for the hole | |
1130 | that might result from the alignment operation. */ | |
1131 | ||
8d998e52 | 1132 | #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (STACK_BOUNDARY) |
515a7242 JW |
1133 | #define MUST_ALIGN 1 |
1134 | #else | |
1135 | #define MUST_ALIGN (STACK_BOUNDARY < BIGGEST_ALIGNMENT) | |
18ca7dab RK |
1136 | #endif |
1137 | ||
515a7242 | 1138 | if (MUST_ALIGN) |
3b998c11 RK |
1139 | { |
1140 | if (GET_CODE (size) == CONST_INT) | |
b1ec3c92 CH |
1141 | size = GEN_INT (INTVAL (size) |
1142 | + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1)); | |
3b998c11 RK |
1143 | else |
1144 | size = expand_binop (Pmode, add_optab, size, | |
b1ec3c92 CH |
1145 | GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1), |
1146 | NULL_RTX, 1, OPTAB_LIB_WIDEN); | |
3b998c11 | 1147 | } |
1d9d04f8 | 1148 | |
18ca7dab RK |
1149 | #ifdef SETJMP_VIA_SAVE_AREA |
1150 | /* If setjmp restores regs from a save area in the stack frame, | |
1151 | avoid clobbering the reg save area. Note that the offset of | |
1152 | virtual_incoming_args_rtx includes the preallocated stack args space. | |
1153 | It would be no problem to clobber that, but it's on the wrong side | |
1154 | of the old save area. */ | |
1155 | { | |
1156 | rtx dynamic_offset | |
1157 | = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx, | |
b1ec3c92 | 1158 | stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN); |
c9ec4f99 DM |
1159 | |
1160 | if (!current_function_calls_setjmp) | |
1161 | { | |
1162 | int align = STACK_BOUNDARY / BITS_PER_UNIT; | |
1163 | ||
1164 | /* See optimize_save_area_alloca to understand what is being | |
1165 | set up here. */ | |
1166 | ||
1167 | #if !defined(STACK_BOUNDARY) || !defined(MUST_ALIGN) || (STACK_BOUNDARY != BIGGEST_ALIGNMENT) | |
1168 | /* If anyone creates a target with these characteristics, let them | |
1169 | know that our optimization cannot work correctly in such a case. */ | |
1170 | abort(); | |
1171 | #endif | |
1172 | ||
1173 | if (GET_CODE (size) == CONST_INT) | |
1174 | { | |
1175 | int new = INTVAL (size) / align * align; | |
1176 | ||
1177 | if (INTVAL (size) != new) | |
1178 | setjmpless_size = GEN_INT (new); | |
1179 | else | |
1180 | setjmpless_size = size; | |
1181 | } | |
1182 | else | |
1183 | { | |
1184 | /* Since we know overflow is not possible, we avoid using | |
1185 | CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */ | |
1186 | setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, | |
1187 | GEN_INT (align), NULL_RTX, 1); | |
1188 | setjmpless_size = expand_mult (Pmode, setjmpless_size, | |
1189 | GEN_INT (align), NULL_RTX, 1); | |
1190 | } | |
1191 | /* Our optimization works based upon being able to perform a simple | |
1192 | transformation of this RTL into a (set REG REG) so make sure things | |
1193 | did in fact end up in a REG. */ | |
1194 | if (!arith_operand (setjmpless_size, Pmode)) | |
1195 | setjmpless_size = force_reg (Pmode, setjmpless_size); | |
1196 | } | |
1197 | ||
18ca7dab | 1198 | size = expand_binop (Pmode, add_optab, size, dynamic_offset, |
b1ec3c92 | 1199 | NULL_RTX, 1, OPTAB_LIB_WIDEN); |
18ca7dab RK |
1200 | } |
1201 | #endif /* SETJMP_VIA_SAVE_AREA */ | |
1202 | ||
1203 | /* Round the size to a multiple of the required stack alignment. | |
1204 | Since the stack if presumed to be rounded before this allocation, | |
1205 | this will maintain the required alignment. | |
1206 | ||
1207 | If the stack grows downward, we could save an insn by subtracting | |
1208 | SIZE from the stack pointer and then aligning the stack pointer. | |
1209 | The problem with this is that the stack pointer may be unaligned | |
1210 | between the execution of the subtraction and alignment insns and | |
1211 | some machines do not allow this. Even on those that do, some | |
1212 | signal handlers malfunction if a signal should occur between those | |
1213 | insns. Since this is an extremely rare event, we have no reliable | |
1214 | way of knowing which systems have this problem. So we avoid even | |
1215 | momentarily mis-aligning the stack. */ | |
1216 | ||
89d825c9 | 1217 | #ifdef STACK_BOUNDARY |
86b25e81 RS |
1218 | /* If we added a variable amount to SIZE, |
1219 | we can no longer assume it is aligned. */ | |
515a7242 | 1220 | #if !defined (SETJMP_VIA_SAVE_AREA) |
96ec484f | 1221 | if (MUST_ALIGN || known_align % STACK_BOUNDARY != 0) |
34c9156a | 1222 | #endif |
091ad0b9 | 1223 | size = round_push (size); |
89d825c9 | 1224 | #endif |
18ca7dab RK |
1225 | |
1226 | do_pending_stack_adjust (); | |
1227 | ||
edff2491 RK |
1228 | /* If needed, check that we have the required amount of stack. Take into |
1229 | account what has already been checked. */ | |
1230 | if (flag_stack_check && ! STACK_CHECK_BUILTIN) | |
1231 | probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size); | |
1232 | ||
091ad0b9 RK |
1233 | /* Don't use a TARGET that isn't a pseudo. */ |
1234 | if (target == 0 || GET_CODE (target) != REG | |
1235 | || REGNO (target) < FIRST_PSEUDO_REGISTER) | |
18ca7dab RK |
1236 | target = gen_reg_rtx (Pmode); |
1237 | ||
305f22b5 | 1238 | mark_reg_pointer (target, known_align / BITS_PER_UNIT); |
3ad69266 | 1239 | |
18ca7dab RK |
1240 | /* Perform the required allocation from the stack. Some systems do |
1241 | this differently than simply incrementing/decrementing from the | |
38a448ca | 1242 | stack pointer, such as acquiring the space by calling malloc(). */ |
18ca7dab RK |
1243 | #ifdef HAVE_allocate_stack |
1244 | if (HAVE_allocate_stack) | |
1245 | { | |
38a448ca | 1246 | enum machine_mode mode; |
ea534b63 | 1247 | |
18ca7dab RK |
1248 | if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0] |
1249 | && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]) | |
38a448ca RH |
1250 | (target, Pmode))) |
1251 | target = copy_to_mode_reg (Pmode, target); | |
1252 | mode = insn_operand_mode[(int) CODE_FOR_allocate_stack][1]; | |
1253 | size = convert_modes (mode, ptr_mode, size, 1); | |
1254 | if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][1] | |
1255 | && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][1]) | |
18ca7dab RK |
1256 | (size, mode))) |
1257 | size = copy_to_mode_reg (mode, size); | |
1258 | ||
38a448ca | 1259 | emit_insn (gen_allocate_stack (target, size)); |
18ca7dab RK |
1260 | } |
1261 | else | |
1262 | #endif | |
ea534b63 | 1263 | { |
38a448ca RH |
1264 | #ifndef STACK_GROWS_DOWNWARD |
1265 | emit_move_insn (target, virtual_stack_dynamic_rtx); | |
1266 | #endif | |
ea534b63 RK |
1267 | size = convert_modes (Pmode, ptr_mode, size, 1); |
1268 | anti_adjust_stack (size); | |
c9ec4f99 DM |
1269 | #ifdef SETJMP_VIA_SAVE_AREA |
1270 | if (setjmpless_size != NULL_RTX) | |
1271 | { | |
1272 | rtx note_target = get_last_insn (); | |
1273 | ||
1274 | REG_NOTES (note_target) = gen_rtx (EXPR_LIST, REG_SAVE_AREA, | |
1275 | setjmpless_size, | |
1276 | REG_NOTES (note_target)); | |
1277 | } | |
1278 | #endif /* SETJMP_VIA_SAVE_AREA */ | |
18ca7dab RK |
1279 | #ifdef STACK_GROWS_DOWNWARD |
1280 | emit_move_insn (target, virtual_stack_dynamic_rtx); | |
1281 | #endif | |
38a448ca | 1282 | } |
18ca7dab | 1283 | |
515a7242 | 1284 | if (MUST_ALIGN) |
091ad0b9 | 1285 | { |
5244db05 | 1286 | /* CEIL_DIV_EXPR needs to worry about the addition overflowing, |
0f41302f MS |
1287 | but we know it can't. So add ourselves and then do |
1288 | TRUNC_DIV_EXPR. */ | |
0f56a403 | 1289 | target = expand_binop (Pmode, add_optab, target, |
5244db05 RK |
1290 | GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1), |
1291 | NULL_RTX, 1, OPTAB_LIB_WIDEN); | |
1292 | target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target, | |
b1ec3c92 CH |
1293 | GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT), |
1294 | NULL_RTX, 1); | |
091ad0b9 | 1295 | target = expand_mult (Pmode, target, |
b1ec3c92 CH |
1296 | GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT), |
1297 | NULL_RTX, 1); | |
091ad0b9 | 1298 | } |
18ca7dab RK |
1299 | |
1300 | /* Some systems require a particular insn to refer to the stack | |
1301 | to make the pages exist. */ | |
1302 | #ifdef HAVE_probe | |
1303 | if (HAVE_probe) | |
1304 | emit_insn (gen_probe ()); | |
1305 | #endif | |
1306 | ||
15fc0026 RK |
1307 | /* Record the new stack level for nonlocal gotos. */ |
1308 | if (nonlocal_goto_handler_slot != 0) | |
1309 | emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX); | |
1310 | ||
18ca7dab RK |
1311 | return target; |
1312 | } | |
1313 | \f | |
edff2491 RK |
1314 | /* Emit one stack probe at ADDRESS, an address within the stack. */ |
1315 | ||
1316 | static void | |
1317 | emit_stack_probe (address) | |
1318 | rtx address; | |
1319 | { | |
38a448ca | 1320 | rtx memref = gen_rtx_MEM (word_mode, address); |
edff2491 RK |
1321 | |
1322 | MEM_VOLATILE_P (memref) = 1; | |
1323 | ||
1324 | if (STACK_CHECK_PROBE_LOAD) | |
1325 | emit_move_insn (gen_reg_rtx (word_mode), memref); | |
1326 | else | |
1327 | emit_move_insn (memref, const0_rtx); | |
1328 | } | |
1329 | ||
1330 | /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive. | |
1331 | FIRST is a constant and size is a Pmode RTX. These are offsets from the | |
1332 | current stack pointer. STACK_GROWS_DOWNWARD says whether to add or | |
1333 | subtract from the stack. If SIZE is constant, this is done | |
1334 | with a fixed number of probes. Otherwise, we must make a loop. */ | |
1335 | ||
1336 | #ifdef STACK_GROWS_DOWNWARD | |
1337 | #define STACK_GROW_OP MINUS | |
1338 | #else | |
1339 | #define STACK_GROW_OP PLUS | |
1340 | #endif | |
1341 | ||
1342 | void | |
1343 | probe_stack_range (first, size) | |
1344 | HOST_WIDE_INT first; | |
1345 | rtx size; | |
1346 | { | |
1347 | /* First see if we have an insn to check the stack. Use it if so. */ | |
1348 | #ifdef HAVE_check_stack | |
1349 | if (HAVE_check_stack) | |
1350 | { | |
38a448ca RH |
1351 | rtx last_addr |
1352 | = force_operand (gen_rtx_STACK_GROW_OP (Pmode, | |
1353 | stack_pointer_rtx, | |
1354 | plus_constant (size, first)), | |
1355 | NULL_RTX); | |
edff2491 RK |
1356 | |
1357 | if (insn_operand_predicate[(int) CODE_FOR_check_stack][0] | |
1358 | && ! ((*insn_operand_predicate[(int) CODE_FOR_check_stack][0]) | |
1359 | (last_address, Pmode))) | |
1360 | last_address = copy_to_mode_reg (Pmode, last_address); | |
1361 | ||
1362 | emit_insn (gen_check_stack (last_address)); | |
1363 | return; | |
1364 | } | |
1365 | #endif | |
1366 | ||
1367 | /* If we have to generate explicit probes, see if we have a constant | |
95a086b1 RK |
1368 | small number of them to generate. If so, that's the easy case. */ |
1369 | if (GET_CODE (size) == CONST_INT && INTVAL (size) < 10) | |
edff2491 RK |
1370 | { |
1371 | HOST_WIDE_INT offset; | |
1372 | ||
1373 | /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL | |
1374 | for values of N from 1 until it exceeds LAST. If only one | |
1375 | probe is needed, this will not generate any code. Then probe | |
1376 | at LAST. */ | |
1377 | for (offset = first + STACK_CHECK_PROBE_INTERVAL; | |
1378 | offset < INTVAL (size); | |
1379 | offset = offset + STACK_CHECK_PROBE_INTERVAL) | |
38a448ca RH |
1380 | emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, |
1381 | stack_pointer_rtx, | |
1382 | GEN_INT (offset))); | |
edff2491 | 1383 | |
38a448ca RH |
1384 | emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, |
1385 | stack_pointer_rtx, | |
1386 | plus_constant (size, first))); | |
edff2491 RK |
1387 | } |
1388 | ||
1389 | /* In the variable case, do the same as above, but in a loop. We emit loop | |
1390 | notes so that loop optimization can be done. */ | |
1391 | else | |
1392 | { | |
1393 | rtx test_addr | |
38a448ca RH |
1394 | = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, |
1395 | stack_pointer_rtx, | |
1396 | GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)), | |
edff2491 RK |
1397 | NULL_RTX); |
1398 | rtx last_addr | |
38a448ca RH |
1399 | = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, |
1400 | stack_pointer_rtx, | |
1401 | plus_constant (size, first)), | |
edff2491 RK |
1402 | NULL_RTX); |
1403 | rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL); | |
1404 | rtx loop_lab = gen_label_rtx (); | |
1405 | rtx test_lab = gen_label_rtx (); | |
1406 | rtx end_lab = gen_label_rtx (); | |
1407 | rtx temp; | |
1408 | ||
1409 | if (GET_CODE (test_addr) != REG | |
1410 | || REGNO (test_addr) < FIRST_PSEUDO_REGISTER) | |
1411 | test_addr = force_reg (Pmode, test_addr); | |
1412 | ||
1413 | emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG); | |
1414 | emit_jump (test_lab); | |
1415 | ||
1416 | emit_label (loop_lab); | |
1417 | emit_stack_probe (test_addr); | |
1418 | ||
1419 | emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT); | |
1420 | ||
1421 | #ifdef STACK_GROWS_DOWNWARD | |
1422 | #define CMP_OPCODE GTU | |
1423 | temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr, | |
1424 | 1, OPTAB_WIDEN); | |
1425 | #else | |
1426 | #define CMP_OPCODE LTU | |
1427 | temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr, | |
1428 | 1, OPTAB_WIDEN); | |
1429 | #endif | |
1430 | ||
1431 | if (temp != test_addr) | |
1432 | abort (); | |
1433 | ||
1434 | emit_label (test_lab); | |
1435 | emit_cmp_insn (test_addr, last_addr, CMP_OPCODE, NULL_RTX, Pmode, 1, 0); | |
1436 | emit_jump_insn ((*bcc_gen_fctn[(int) CMP_OPCODE]) (loop_lab)); | |
1437 | emit_jump (end_lab); | |
1438 | emit_note (NULL_PTR, NOTE_INSN_LOOP_END); | |
1439 | emit_label (end_lab); | |
1440 | ||
38a448ca RH |
1441 | /* If will be doing stupid optimization, show test_addr is still live. */ |
1442 | if (obey_regdecls) | |
1443 | emit_insn (gen_rtx_USE (VOIDmode, test_addr)); | |
1444 | ||
edff2491 RK |
1445 | emit_stack_probe (last_addr); |
1446 | } | |
1447 | } | |
1448 | \f | |
18ca7dab RK |
1449 | /* Return an rtx representing the register or memory location |
1450 | in which a scalar value of data type VALTYPE | |
1451 | was returned by a function call to function FUNC. | |
1452 | FUNC is a FUNCTION_DECL node if the precise function is known, | |
1453 | otherwise 0. */ | |
1454 | ||
1455 | rtx | |
1456 | hard_function_value (valtype, func) | |
1457 | tree valtype; | |
1458 | tree func; | |
1459 | { | |
e1a4071f JL |
1460 | rtx val = FUNCTION_VALUE (valtype, func); |
1461 | if (GET_CODE (val) == REG | |
1462 | && GET_MODE (val) == BLKmode) | |
1463 | { | |
1464 | int bytes = int_size_in_bytes (valtype); | |
1465 | enum machine_mode tmpmode; | |
1466 | for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT); | |
1467 | tmpmode != MAX_MACHINE_MODE; | |
1468 | tmpmode = GET_MODE_WIDER_MODE (tmpmode)) | |
1469 | { | |
1470 | /* Have we found a large enough mode? */ | |
1471 | if (GET_MODE_SIZE (tmpmode) >= bytes) | |
1472 | break; | |
1473 | } | |
1474 | ||
1475 | /* No suitable mode found. */ | |
1476 | if (tmpmode == MAX_MACHINE_MODE) | |
1477 | abort (); | |
1478 | ||
1479 | PUT_MODE (val, tmpmode); | |
1480 | } | |
1481 | return val; | |
18ca7dab RK |
1482 | } |
1483 | ||
1484 | /* Return an rtx representing the register or memory location | |
1485 | in which a scalar value of mode MODE was returned by a library call. */ | |
1486 | ||
1487 | rtx | |
1488 | hard_libcall_value (mode) | |
1489 | enum machine_mode mode; | |
1490 | { | |
1491 | return LIBCALL_VALUE (mode); | |
1492 | } | |
0c5e217d RS |
1493 | |
1494 | /* Look up the tree code for a given rtx code | |
1495 | to provide the arithmetic operation for REAL_ARITHMETIC. | |
1496 | The function returns an int because the caller may not know | |
1497 | what `enum tree_code' means. */ | |
1498 | ||
1499 | int | |
1500 | rtx_to_tree_code (code) | |
1501 | enum rtx_code code; | |
1502 | { | |
1503 | enum tree_code tcode; | |
1504 | ||
1505 | switch (code) | |
1506 | { | |
1507 | case PLUS: | |
1508 | tcode = PLUS_EXPR; | |
1509 | break; | |
1510 | case MINUS: | |
1511 | tcode = MINUS_EXPR; | |
1512 | break; | |
1513 | case MULT: | |
1514 | tcode = MULT_EXPR; | |
1515 | break; | |
1516 | case DIV: | |
1517 | tcode = RDIV_EXPR; | |
1518 | break; | |
1519 | case SMIN: | |
1520 | tcode = MIN_EXPR; | |
1521 | break; | |
1522 | case SMAX: | |
1523 | tcode = MAX_EXPR; | |
1524 | break; | |
1525 | default: | |
1526 | tcode = LAST_AND_UNUSED_TREE_CODE; | |
1527 | break; | |
1528 | } | |
1529 | return ((int) tcode); | |
1530 | } |