]> gcc.gnu.org Git - gcc.git/blame - gcc/except.c
Wed May 6 22:32:37 CDT 1998 Robert Lipe <robertl@dgii.com>
[gcc.git] / gcc / except.c
CommitLineData
12670d88 1/* Implements exception handling.
e5e809f4 2 Copyright (C) 1989, 92-97, 1998 Free Software Foundation, Inc.
4956d07c
MS
3 Contributed by Mike Stump <mrs@cygnus.com>.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22
12670d88
RK
23/* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
956d6950 26 be transferred to any arbitrary code associated with a function call
12670d88
RK
27 several levels up the stack.
28
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
38
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
45
27a36778
MS
46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
e9a25f70 48 approach, which is the default. -fno-sjlj-exceptions can be used to
27a36778
MS
49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
55
12670d88
RK
56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
60
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
67
2ed18e63
MS
68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
73
956d6950 74 In the current implementation, cleanups are handled by allocating an
2ed18e63
MS
75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
83
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
12670d88 89
ca55abae
JM
90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
12670d88 92 __register_exceptions with the address of its local
ca55abae
JM
93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
96
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
6d8ccdbb 100 __register_frame_info. On other targets, the information for each
d1485032 101 translation unit is registered from the file generated by collect2.
6d8ccdbb 102 __register_frame_info is defined in frame.c, and is responsible for
ca55abae
JM
103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
12670d88 105
27a36778 106 The function __throw is actually responsible for doing the
ca55abae
JM
107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
12670d88 109 per-object-file basis for each source file compiled with
ca55abae
JM
110 -fexceptions by the the C++ frontend. Before __throw is invoked,
111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
12670d88 113
27a36778 114 __throw attempts to find the appropriate exception handler for the
12670d88 115 PC value stored in __eh_pc by calling __find_first_exception_table_match
2ed18e63 116 (which is defined in libgcc2.c). If __find_first_exception_table_match
ca55abae
JM
117 finds a relevant handler, __throw transfers control directly to it.
118
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
125
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
12670d88
RK
131
132 Internal implementation details:
133
12670d88 134 To associate a user-defined handler with a block of statements, the
27a36778 135 function expand_start_try_stmts is used to mark the start of the
12670d88 136 block of statements with which the handler is to be associated
2ed18e63
MS
137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
139
27a36778 140 A call to expand_start_all_catch marks the end of the try block,
2ed18e63
MS
141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
143
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
151
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
27a36778 155 handler. expand_end_all_catch and expand_leftover_cleanups
2ed18e63
MS
156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
158
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
27a36778 163 to the topmost entry's label via expand_goto will resume normal
2ed18e63
MS
164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
167
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
27a36778
MS
170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
12670d88
RK
172
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
2ed18e63
MS
177 global variable to hold the value. (This will be changing in the
178 future.)
179
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
185
186 Internally-generated exception regions (cleanups) are marked by
27a36778 187 calling expand_eh_region_start to mark the start of the region,
2ed18e63
MS
188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
12670d88
RK
196
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
2ed18e63
MS
200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
208
209 Cleanups can also be specified by using add_partial_entry (handler)
27a36778 210 and end_protect_partials. add_partial_entry creates the start of
2ed18e63
MS
211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
27a36778 217 group of calls to add_partial_entry as the entries are queued
2ed18e63
MS
218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
12670d88
RK
222
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
2ed18e63
MS
226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
12670d88
RK
229
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
2ed18e63 234 can be safely optimized away (along with its exception handlers)
27a36778
MS
235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
245
12670d88 246
ca55abae 247 Walking the stack:
12670d88 248
ca55abae
JM
249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
12670d88 252
ca55abae 253 Unwinding the stack:
12670d88 254
ca55abae
JM
255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
259
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
262
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
270
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
956d6950 282 should call __terminate.
ca55abae
JM
283
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
2ed18e63
MS
289
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
ca55abae
JM
292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
12670d88 296
ca55abae
JM
297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
12670d88 302
27a36778 303 On some platforms it is possible that neither __unwind_function
12670d88 304 nor inlined unwinders are available. For these platforms it is not
27a36778 305 possible to throw through a function call, and abort will be
2ed18e63
MS
306 invoked instead of performing the throw.
307
ca55abae
JM
308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
313
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
319
2ed18e63
MS
320 Future directions:
321
27a36778 322 Currently __throw makes no differentiation between cleanups and
2ed18e63
MS
323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
330
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
27a36778 333 A two-pass scheme could then be used by __throw to iterate
2ed18e63
MS
334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
338
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
27a36778 343 __throw to be able to determine if a given user-defined
2ed18e63
MS
344 exception handler will actually be executed, given the type of
345 exception.
346
347 One scheme is to add additional information to exception_table_list
27a36778 348 as to the types of exceptions accepted by each handler. __throw
2ed18e63
MS
349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
351
352 There is currently no significant level of debugging support
27a36778 353 available, other than to place a breakpoint on __throw. While
2ed18e63
MS
354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
27a36778 359 scheme by adding additional labels to __throw for appropriate
2ed18e63
MS
360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
363
ca55abae
JM
364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
27a36778
MS
369
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
373
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
956d6950 380 table, and no calls to __register_exceptions. __sjthrow is used
27a36778
MS
381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
384
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
4956d07c
MS
389
390
391#include "config.h"
ca55abae 392#include "defaults.h"
670ee920 393#include "system.h"
4956d07c
MS
394#include "rtl.h"
395#include "tree.h"
396#include "flags.h"
397#include "except.h"
398#include "function.h"
399#include "insn-flags.h"
400#include "expr.h"
401#include "insn-codes.h"
402#include "regs.h"
403#include "hard-reg-set.h"
404#include "insn-config.h"
405#include "recog.h"
406#include "output.h"
10f0ad3d 407#include "toplev.h"
4956d07c 408
27a36778
MS
409/* One to use setjmp/longjmp method of generating code for exception
410 handling. */
411
d1485032 412int exceptions_via_longjmp = 2;
27a36778
MS
413
414/* One to enable asynchronous exception support. */
415
416int asynchronous_exceptions = 0;
417
418/* One to protect cleanup actions with a handler that calls
419 __terminate, zero otherwise. */
420
e701eb4d 421int protect_cleanup_actions_with_terminate;
27a36778 422
12670d88 423/* A list of labels used for exception handlers. Created by
4956d07c
MS
424 find_exception_handler_labels for the optimization passes. */
425
426rtx exception_handler_labels;
427
154bba13
TT
428/* The EH context. Nonzero if the function has already
429 fetched a pointer to the EH context for exception handling. */
27a36778 430
154bba13 431rtx current_function_ehc;
27a36778 432
956d6950 433/* A stack used for keeping track of the currently active exception
12670d88 434 handling region. As each exception region is started, an entry
4956d07c
MS
435 describing the region is pushed onto this stack. The current
436 region can be found by looking at the top of the stack, and as we
12670d88
RK
437 exit regions, the corresponding entries are popped.
438
27a36778 439 Entries cannot overlap; they can be nested. So there is only one
12670d88
RK
440 entry at most that corresponds to the current instruction, and that
441 is the entry on the top of the stack. */
4956d07c 442
27a36778 443static struct eh_stack ehstack;
4956d07c 444
12670d88
RK
445/* A queue used for tracking which exception regions have closed but
446 whose handlers have not yet been expanded. Regions are emitted in
447 groups in an attempt to improve paging performance.
448
449 As we exit a region, we enqueue a new entry. The entries are then
27a36778 450 dequeued during expand_leftover_cleanups and expand_start_all_catch,
12670d88
RK
451
452 We should redo things so that we either take RTL for the handler,
453 or we expand the handler expressed as a tree immediately at region
454 end time. */
4956d07c 455
27a36778 456static struct eh_queue ehqueue;
4956d07c 457
12670d88 458/* Insns for all of the exception handlers for the current function.
abeeec2a 459 They are currently emitted by the frontend code. */
4956d07c
MS
460
461rtx catch_clauses;
462
12670d88
RK
463/* A TREE_CHAINed list of handlers for regions that are not yet
464 closed. The TREE_VALUE of each entry contains the handler for the
abeeec2a 465 corresponding entry on the ehstack. */
4956d07c 466
12670d88 467static tree protect_list;
4956d07c
MS
468
469/* Stacks to keep track of various labels. */
470
12670d88
RK
471/* Keeps track of the label to resume to should one want to resume
472 normal control flow out of a handler (instead of, say, returning to
1418bb67 473 the caller of the current function or exiting the program). */
4956d07c
MS
474
475struct label_node *caught_return_label_stack = NULL;
476
956d6950
JL
477/* Keeps track of the label used as the context of a throw to rethrow an
478 exception to the outer exception region. */
479
480struct label_node *outer_context_label_stack = NULL;
481
12670d88 482/* A random data area for the front end's own use. */
4956d07c
MS
483
484struct label_node *false_label_stack = NULL;
485
242c13b0
JL
486static void push_eh_entry PROTO((struct eh_stack *));
487static struct eh_entry * pop_eh_entry PROTO((struct eh_stack *));
488static void enqueue_eh_entry PROTO((struct eh_queue *, struct eh_entry *));
489static struct eh_entry * dequeue_eh_entry PROTO((struct eh_queue *));
490static rtx call_get_eh_context PROTO((void));
491static void start_dynamic_cleanup PROTO((tree, tree));
492static void start_dynamic_handler PROTO((void));
e701eb4d 493static void expand_rethrow PROTO((rtx));
242c13b0
JL
494static void output_exception_table_entry PROTO((FILE *, int));
495static int can_throw PROTO((rtx));
496static rtx scan_region PROTO((rtx, int, int *));
497static void eh_regs PROTO((rtx *, rtx *, int));
498static void set_insn_eh_region PROTO((rtx *, int));
e701eb4d 499
242c13b0 500rtx expand_builtin_return_addr PROTO((enum built_in_function, int, rtx));
4956d07c
MS
501\f
502/* Various support routines to manipulate the various data structures
503 used by the exception handling code. */
504
505/* Push a label entry onto the given STACK. */
506
507void
508push_label_entry (stack, rlabel, tlabel)
509 struct label_node **stack;
510 rtx rlabel;
511 tree tlabel;
512{
513 struct label_node *newnode
514 = (struct label_node *) xmalloc (sizeof (struct label_node));
515
516 if (rlabel)
517 newnode->u.rlabel = rlabel;
518 else
519 newnode->u.tlabel = tlabel;
520 newnode->chain = *stack;
521 *stack = newnode;
522}
523
524/* Pop a label entry from the given STACK. */
525
526rtx
527pop_label_entry (stack)
528 struct label_node **stack;
529{
530 rtx label;
531 struct label_node *tempnode;
532
533 if (! *stack)
534 return NULL_RTX;
535
536 tempnode = *stack;
537 label = tempnode->u.rlabel;
538 *stack = (*stack)->chain;
539 free (tempnode);
540
541 return label;
542}
543
544/* Return the top element of the given STACK. */
545
546tree
547top_label_entry (stack)
548 struct label_node **stack;
549{
550 if (! *stack)
551 return NULL_TREE;
552
553 return (*stack)->u.tlabel;
554}
555
478b0752 556/* Push a new eh_node entry onto STACK. */
4956d07c 557
478b0752 558static void
4956d07c
MS
559push_eh_entry (stack)
560 struct eh_stack *stack;
561{
562 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
563 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
564
478b0752 565 entry->outer_context = gen_label_rtx ();
4956d07c
MS
566 entry->exception_handler_label = gen_label_rtx ();
567 entry->finalization = NULL_TREE;
568
569 node->entry = entry;
570 node->chain = stack->top;
571 stack->top = node;
4956d07c
MS
572}
573
574/* Pop an entry from the given STACK. */
575
576static struct eh_entry *
577pop_eh_entry (stack)
578 struct eh_stack *stack;
579{
580 struct eh_node *tempnode;
581 struct eh_entry *tempentry;
582
583 tempnode = stack->top;
584 tempentry = tempnode->entry;
585 stack->top = stack->top->chain;
586 free (tempnode);
587
588 return tempentry;
589}
590
591/* Enqueue an ENTRY onto the given QUEUE. */
592
593static void
594enqueue_eh_entry (queue, entry)
595 struct eh_queue *queue;
596 struct eh_entry *entry;
597{
598 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
599
600 node->entry = entry;
601 node->chain = NULL;
602
603 if (queue->head == NULL)
604 {
605 queue->head = node;
606 }
607 else
608 {
609 queue->tail->chain = node;
610 }
611 queue->tail = node;
612}
613
614/* Dequeue an entry from the given QUEUE. */
615
616static struct eh_entry *
617dequeue_eh_entry (queue)
618 struct eh_queue *queue;
619{
620 struct eh_node *tempnode;
621 struct eh_entry *tempentry;
622
623 if (queue->head == NULL)
624 return NULL;
625
626 tempnode = queue->head;
627 queue->head = queue->head->chain;
628
629 tempentry = tempnode->entry;
630 free (tempnode);
631
632 return tempentry;
633}
634\f
635/* Routine to see if exception exception handling is turned on.
636 DO_WARN is non-zero if we want to inform the user that exception
12670d88
RK
637 handling is turned off.
638
639 This is used to ensure that -fexceptions has been specified if the
abeeec2a 640 compiler tries to use any exception-specific functions. */
4956d07c
MS
641
642int
643doing_eh (do_warn)
644 int do_warn;
645{
646 if (! flag_exceptions)
647 {
648 static int warned = 0;
649 if (! warned && do_warn)
650 {
651 error ("exception handling disabled, use -fexceptions to enable");
652 warned = 1;
653 }
654 return 0;
655 }
656 return 1;
657}
658
12670d88 659/* Given a return address in ADDR, determine the address we should use
abeeec2a 660 to find the corresponding EH region. */
4956d07c
MS
661
662rtx
663eh_outer_context (addr)
664 rtx addr;
665{
666 /* First mask out any unwanted bits. */
667#ifdef MASK_RETURN_ADDR
ca55abae 668 expand_and (addr, MASK_RETURN_ADDR, addr);
4956d07c
MS
669#endif
670
ca55abae
JM
671 /* Then adjust to find the real return address. */
672#if defined (RETURN_ADDR_OFFSET)
673 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
4956d07c
MS
674#endif
675
676 return addr;
677}
678
27a36778
MS
679/* Start a new exception region for a region of code that has a
680 cleanup action and push the HANDLER for the region onto
681 protect_list. All of the regions created with add_partial_entry
682 will be ended when end_protect_partials is invoked. */
12670d88
RK
683
684void
685add_partial_entry (handler)
686 tree handler;
687{
688 expand_eh_region_start ();
689
abeeec2a 690 /* Make sure the entry is on the correct obstack. */
12670d88
RK
691 push_obstacks_nochange ();
692 resume_temporary_allocation ();
27a36778
MS
693
694 /* Because this is a cleanup action, we may have to protect the handler
695 with __terminate. */
696 handler = protect_with_terminate (handler);
697
12670d88
RK
698 protect_list = tree_cons (NULL_TREE, handler, protect_list);
699 pop_obstacks ();
700}
701
100d81d4 702/* Emit code to get EH context to current function. */
27a36778 703
154bba13 704static rtx
01eb7f9a 705call_get_eh_context ()
27a36778 706{
bb727b5a
JM
707 static tree fn;
708 tree expr;
709
710 if (fn == NULL_TREE)
711 {
712 tree fntype;
154bba13 713 fn = get_identifier ("__get_eh_context");
bb727b5a
JM
714 push_obstacks_nochange ();
715 end_temporary_allocation ();
716 fntype = build_pointer_type (build_pointer_type
717 (build_pointer_type (void_type_node)));
718 fntype = build_function_type (fntype, NULL_TREE);
719 fn = build_decl (FUNCTION_DECL, fn, fntype);
720 DECL_EXTERNAL (fn) = 1;
721 TREE_PUBLIC (fn) = 1;
722 DECL_ARTIFICIAL (fn) = 1;
723 TREE_READONLY (fn) = 1;
724 make_decl_rtl (fn, NULL_PTR, 1);
725 assemble_external (fn);
726 pop_obstacks ();
727 }
728
729 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
730 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
731 expr, NULL_TREE, NULL_TREE);
732 TREE_SIDE_EFFECTS (expr) = 1;
bb727b5a 733
100d81d4 734 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
154bba13
TT
735}
736
737/* Get a reference to the EH context.
738 We will only generate a register for the current function EH context here,
739 and emit a USE insn to mark that this is a EH context register.
740
741 Later, emit_eh_context will emit needed call to __get_eh_context
742 in libgcc2, and copy the value to the register we have generated. */
743
744rtx
01eb7f9a 745get_eh_context ()
154bba13
TT
746{
747 if (current_function_ehc == 0)
748 {
749 rtx insn;
750
751 current_function_ehc = gen_reg_rtx (Pmode);
752
38a448ca
RH
753 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
754 current_function_ehc);
154bba13
TT
755 insn = emit_insn_before (insn, get_first_nonparm_insn ());
756
757 REG_NOTES (insn)
38a448ca
RH
758 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
759 REG_NOTES (insn));
154bba13
TT
760 }
761 return current_function_ehc;
762}
763
154bba13
TT
764/* Get a reference to the dynamic handler chain. It points to the
765 pointer to the next element in the dynamic handler chain. It ends
766 when there are no more elements in the dynamic handler chain, when
767 the value is &top_elt from libgcc2.c. Immediately after the
768 pointer, is an area suitable for setjmp/longjmp when
769 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
770 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
771 isn't defined. */
772
773rtx
774get_dynamic_handler_chain ()
775{
776 rtx ehc, dhc, result;
777
01eb7f9a 778 ehc = get_eh_context ();
154bba13
TT
779 dhc = ehc;
780
781 result = copy_to_reg (dhc);
782
783 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 784 return gen_rtx_MEM (Pmode, result);
27a36778
MS
785}
786
787/* Get a reference to the dynamic cleanup chain. It points to the
788 pointer to the next element in the dynamic cleanup chain.
789 Immediately after the pointer, are two Pmode variables, one for a
790 pointer to a function that performs the cleanup action, and the
791 second, the argument to pass to that function. */
792
793rtx
794get_dynamic_cleanup_chain ()
795{
154bba13 796 rtx dhc, dcc, result;
27a36778
MS
797
798 dhc = get_dynamic_handler_chain ();
799 dcc = plus_constant (dhc, GET_MODE_SIZE (Pmode));
800
154bba13 801 result = copy_to_reg (dcc);
27a36778
MS
802
803 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 804 return gen_rtx_MEM (Pmode, result);
154bba13
TT
805}
806
27a36778
MS
807/* Generate code to evaluate X and jump to LABEL if the value is nonzero.
808 LABEL is an rtx of code CODE_LABEL, in this function. */
809
810void
811jumpif_rtx (x, label)
812 rtx x;
813 rtx label;
814{
815 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
816}
817
818/* Generate code to evaluate X and jump to LABEL if the value is zero.
819 LABEL is an rtx of code CODE_LABEL, in this function. */
820
821void
822jumpifnot_rtx (x, label)
823 rtx x;
824 rtx label;
825{
826 jumpifnot (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
827}
828
829/* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
830 We just need to create an element for the cleanup list, and push it
831 into the chain.
832
833 A dynamic cleanup is a cleanup action implied by the presence of an
834 element on the EH runtime dynamic cleanup stack that is to be
835 performed when an exception is thrown. The cleanup action is
836 performed by __sjthrow when an exception is thrown. Only certain
837 actions can be optimized into dynamic cleanup actions. For the
838 restrictions on what actions can be performed using this routine,
839 see expand_eh_region_start_tree. */
840
841static void
842start_dynamic_cleanup (func, arg)
843 tree func;
844 tree arg;
845{
381127e8 846 rtx dcc;
27a36778
MS
847 rtx new_func, new_arg;
848 rtx x, buf;
849 int size;
850
851 /* We allocate enough room for a pointer to the function, and
852 one argument. */
853 size = 2;
854
855 /* XXX, FIXME: The stack space allocated this way is too long lived,
856 but there is no allocation routine that allocates at the level of
857 the last binding contour. */
858 buf = assign_stack_local (BLKmode,
859 GET_MODE_SIZE (Pmode)*(size+1),
860 0);
861
862 buf = change_address (buf, Pmode, NULL_RTX);
863
864 /* Store dcc into the first word of the newly allocated buffer. */
865
866 dcc = get_dynamic_cleanup_chain ();
867 emit_move_insn (buf, dcc);
868
869 /* Store func and arg into the cleanup list element. */
870
38a448ca
RH
871 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
872 GET_MODE_SIZE (Pmode)));
873 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
874 GET_MODE_SIZE (Pmode)*2));
27a36778
MS
875 x = expand_expr (func, new_func, Pmode, 0);
876 if (x != new_func)
877 emit_move_insn (new_func, x);
878
879 x = expand_expr (arg, new_arg, Pmode, 0);
880 if (x != new_arg)
881 emit_move_insn (new_arg, x);
882
883 /* Update the cleanup chain. */
884
885 emit_move_insn (dcc, XEXP (buf, 0));
886}
887
888/* Emit RTL to start a dynamic handler on the EH runtime dynamic
889 handler stack. This should only be used by expand_eh_region_start
890 or expand_eh_region_start_tree. */
891
892static void
893start_dynamic_handler ()
894{
895 rtx dhc, dcc;
6e6a07d2 896 rtx x, arg, buf;
27a36778
MS
897 int size;
898
6e6a07d2 899#ifndef DONT_USE_BUILTIN_SETJMP
27a36778
MS
900 /* The number of Pmode words for the setjmp buffer, when using the
901 builtin setjmp/longjmp, see expand_builtin, case
902 BUILT_IN_LONGJMP. */
903 size = 5;
904#else
905#ifdef JMP_BUF_SIZE
906 size = JMP_BUF_SIZE;
907#else
908 /* Should be large enough for most systems, if it is not,
909 JMP_BUF_SIZE should be defined with the proper value. It will
910 also tend to be larger than necessary for most systems, a more
911 optimal port will define JMP_BUF_SIZE. */
912 size = FIRST_PSEUDO_REGISTER+2;
913#endif
914#endif
915 /* XXX, FIXME: The stack space allocated this way is too long lived,
916 but there is no allocation routine that allocates at the level of
917 the last binding contour. */
918 arg = assign_stack_local (BLKmode,
919 GET_MODE_SIZE (Pmode)*(size+1),
920 0);
921
922 arg = change_address (arg, Pmode, NULL_RTX);
923
924 /* Store dhc into the first word of the newly allocated buffer. */
925
926 dhc = get_dynamic_handler_chain ();
38a448ca
RH
927 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
928 GET_MODE_SIZE (Pmode)));
27a36778
MS
929 emit_move_insn (arg, dhc);
930
931 /* Zero out the start of the cleanup chain. */
932 emit_move_insn (dcc, const0_rtx);
933
934 /* The jmpbuf starts two words into the area allocated. */
6e6a07d2 935 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
27a36778 936
6e6a07d2 937#ifdef DONT_USE_BUILTIN_SETJMP
27a36778 938 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1, SImode, 1,
6e6a07d2 939 buf, Pmode);
6fd1c67b
RH
940 /* If we come back here for a catch, transfer control to the handler. */
941 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
6e6a07d2 942#else
6fd1c67b
RH
943 {
944 /* A label to continue execution for the no exception case. */
945 rtx noex = gen_label_rtx();
946 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
947 ehstack.top->entry->exception_handler_label);
948 emit_label (noex);
949 }
6e6a07d2 950#endif
27a36778 951
27a36778
MS
952 /* We are committed to this, so update the handler chain. */
953
954 emit_move_insn (dhc, XEXP (arg, 0));
955}
956
957/* Start an exception handling region for the given cleanup action.
12670d88 958 All instructions emitted after this point are considered to be part
27a36778
MS
959 of the region until expand_eh_region_end is invoked. CLEANUP is
960 the cleanup action to perform. The return value is true if the
961 exception region was optimized away. If that case,
962 expand_eh_region_end does not need to be called for this cleanup,
963 nor should it be.
964
965 This routine notices one particular common case in C++ code
966 generation, and optimizes it so as to not need the exception
967 region. It works by creating a dynamic cleanup action, instead of
968 of a using an exception region. */
969
970int
4c581243
MS
971expand_eh_region_start_tree (decl, cleanup)
972 tree decl;
27a36778
MS
973 tree cleanup;
974{
27a36778
MS
975 /* This is the old code. */
976 if (! doing_eh (0))
977 return 0;
978
979 /* The optimization only applies to actions protected with
980 terminate, and only applies if we are using the setjmp/longjmp
981 codegen method. */
982 if (exceptions_via_longjmp
983 && protect_cleanup_actions_with_terminate)
984 {
985 tree func, arg;
986 tree args;
987
988 /* Ignore any UNSAVE_EXPR. */
989 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
990 cleanup = TREE_OPERAND (cleanup, 0);
991
992 /* Further, it only applies if the action is a call, if there
993 are 2 arguments, and if the second argument is 2. */
994
995 if (TREE_CODE (cleanup) == CALL_EXPR
996 && (args = TREE_OPERAND (cleanup, 1))
997 && (func = TREE_OPERAND (cleanup, 0))
998 && (arg = TREE_VALUE (args))
999 && (args = TREE_CHAIN (args))
1000
1001 /* is the second argument 2? */
1002 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1003 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1004 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1005
1006 /* Make sure there are no other arguments. */
1007 && TREE_CHAIN (args) == NULL_TREE)
1008 {
1009 /* Arrange for returns and gotos to pop the entry we make on the
1010 dynamic cleanup stack. */
4c581243 1011 expand_dcc_cleanup (decl);
27a36778
MS
1012 start_dynamic_cleanup (func, arg);
1013 return 1;
1014 }
1015 }
1016
4c581243 1017 expand_eh_region_start_for_decl (decl);
9762d48d 1018 ehstack.top->entry->finalization = cleanup;
27a36778
MS
1019
1020 return 0;
1021}
1022
4c581243
MS
1023/* Just like expand_eh_region_start, except if a cleanup action is
1024 entered on the cleanup chain, the TREE_PURPOSE of the element put
1025 on the chain is DECL. DECL should be the associated VAR_DECL, if
1026 any, otherwise it should be NULL_TREE. */
4956d07c
MS
1027
1028void
4c581243
MS
1029expand_eh_region_start_for_decl (decl)
1030 tree decl;
4956d07c
MS
1031{
1032 rtx note;
1033
1034 /* This is the old code. */
1035 if (! doing_eh (0))
1036 return;
1037
27a36778
MS
1038 if (exceptions_via_longjmp)
1039 {
1040 /* We need a new block to record the start and end of the
1041 dynamic handler chain. We could always do this, but we
1042 really want to permit jumping into such a block, and we want
1043 to avoid any errors or performance impact in the SJ EH code
1044 for now. */
1045 expand_start_bindings (0);
1046
1047 /* But we don't need or want a new temporary level. */
1048 pop_temp_slots ();
1049
1050 /* Mark this block as created by expand_eh_region_start. This
1051 is so that we can pop the block with expand_end_bindings
1052 automatically. */
1053 mark_block_as_eh_region ();
1054
1055 /* Arrange for returns and gotos to pop the entry we make on the
1056 dynamic handler stack. */
4c581243 1057 expand_dhc_cleanup (decl);
27a36778 1058 }
4956d07c 1059
478b0752 1060 push_eh_entry (&ehstack);
9ad8a5f0
MS
1061 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1062 NOTE_BLOCK_NUMBER (note)
1063 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
27a36778
MS
1064 if (exceptions_via_longjmp)
1065 start_dynamic_handler ();
4956d07c
MS
1066}
1067
4c581243
MS
1068/* Start an exception handling region. All instructions emitted after
1069 this point are considered to be part of the region until
1070 expand_eh_region_end is invoked. */
1071
1072void
1073expand_eh_region_start ()
1074{
1075 expand_eh_region_start_for_decl (NULL_TREE);
1076}
1077
27a36778
MS
1078/* End an exception handling region. The information about the region
1079 is found on the top of ehstack.
12670d88
RK
1080
1081 HANDLER is either the cleanup for the exception region, or if we're
1082 marking the end of a try block, HANDLER is integer_zero_node.
1083
27a36778 1084 HANDLER will be transformed to rtl when expand_leftover_cleanups
abeeec2a 1085 is invoked. */
4956d07c
MS
1086
1087void
1088expand_eh_region_end (handler)
1089 tree handler;
1090{
4956d07c 1091 struct eh_entry *entry;
9ad8a5f0 1092 rtx note;
4956d07c
MS
1093
1094 if (! doing_eh (0))
1095 return;
1096
1097 entry = pop_eh_entry (&ehstack);
1098
9ad8a5f0
MS
1099 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1100 NOTE_BLOCK_NUMBER (note)
1101 = CODE_LABEL_NUMBER (entry->exception_handler_label);
e701eb4d
JM
1102 if (exceptions_via_longjmp == 0
1103 /* We share outer_context between regions; only emit it once. */
1104 && INSN_UID (entry->outer_context) == 0)
27a36778 1105 {
478b0752 1106 rtx label;
4956d07c 1107
478b0752
MS
1108 label = gen_label_rtx ();
1109 emit_jump (label);
1110
1111 /* Emit a label marking the end of this exception region that
1112 is used for rethrowing into the outer context. */
1113 emit_label (entry->outer_context);
e701eb4d 1114 expand_internal_throw ();
4956d07c 1115
478b0752 1116 emit_label (label);
27a36778 1117 }
4956d07c
MS
1118
1119 entry->finalization = handler;
1120
1121 enqueue_eh_entry (&ehqueue, entry);
1122
27a36778
MS
1123 /* If we have already started ending the bindings, don't recurse.
1124 This only happens when exceptions_via_longjmp is true. */
1125 if (is_eh_region ())
1126 {
1127 /* Because we don't need or want a new temporary level and
1128 because we didn't create one in expand_eh_region_start,
1129 create a fake one now to avoid removing one in
1130 expand_end_bindings. */
1131 push_temp_slots ();
1132
1133 mark_block_as_not_eh_region ();
1134
1135 /* Maybe do this to prevent jumping in and so on... */
1136 expand_end_bindings (NULL_TREE, 0, 0);
1137 }
4956d07c
MS
1138}
1139
9762d48d
JM
1140/* End the EH region for a goto fixup. We only need them in the region-based
1141 EH scheme. */
1142
1143void
1144expand_fixup_region_start ()
1145{
1146 if (! doing_eh (0) || exceptions_via_longjmp)
1147 return;
1148
1149 expand_eh_region_start ();
1150}
1151
1152/* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1153 expanded; to avoid running it twice if it throws, we look through the
1154 ehqueue for a matching region and rethrow from its outer_context. */
1155
1156void
1157expand_fixup_region_end (cleanup)
1158 tree cleanup;
1159{
9762d48d 1160 struct eh_node *node;
9762d48d
JM
1161
1162 if (! doing_eh (0) || exceptions_via_longjmp)
1163 return;
1164
1165 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1166 node = node->chain;
1167 if (node == 0)
1168 for (node = ehqueue.head; node && node->entry->finalization != cleanup; )
1169 node = node->chain;
1170 if (node == 0)
1171 abort ();
1172
e701eb4d 1173 ehstack.top->entry->outer_context = node->entry->outer_context;
9762d48d 1174
e701eb4d
JM
1175 /* Just rethrow. size_zero_node is just a NOP. */
1176 expand_eh_region_end (size_zero_node);
9762d48d
JM
1177}
1178
27a36778
MS
1179/* If we are using the setjmp/longjmp EH codegen method, we emit a
1180 call to __sjthrow.
1181
1182 Otherwise, we emit a call to __throw and note that we threw
1183 something, so we know we need to generate the necessary code for
1184 __throw.
12670d88
RK
1185
1186 Before invoking throw, the __eh_pc variable must have been set up
1187 to contain the PC being thrown from. This address is used by
27a36778 1188 __throw to determine which exception region (if any) is
abeeec2a 1189 responsible for handling the exception. */
4956d07c 1190
27a36778 1191void
4956d07c
MS
1192emit_throw ()
1193{
27a36778
MS
1194 if (exceptions_via_longjmp)
1195 {
1196 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1197 }
1198 else
1199 {
4956d07c 1200#ifdef JUMP_TO_THROW
27a36778 1201 emit_indirect_jump (throw_libfunc);
4956d07c 1202#else
27a36778 1203 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
4956d07c 1204#endif
27a36778 1205 }
4956d07c
MS
1206 emit_barrier ();
1207}
1208
e701eb4d
JM
1209/* Throw the current exception. If appropriate, this is done by jumping
1210 to the next handler. */
4956d07c
MS
1211
1212void
e701eb4d 1213expand_internal_throw ()
4956d07c 1214{
e701eb4d 1215 emit_throw ();
4956d07c
MS
1216}
1217
1218/* Called from expand_exception_blocks and expand_end_catch_block to
27a36778 1219 emit any pending handlers/cleanups queued from expand_eh_region_end. */
4956d07c
MS
1220
1221void
1222expand_leftover_cleanups ()
1223{
1224 struct eh_entry *entry;
1225
1226 while ((entry = dequeue_eh_entry (&ehqueue)) != 0)
1227 {
1228 rtx prev;
1229
12670d88
RK
1230 /* A leftover try block. Shouldn't be one here. */
1231 if (entry->finalization == integer_zero_node)
1232 abort ();
1233
abeeec2a 1234 /* Output the label for the start of the exception handler. */
4956d07c
MS
1235 emit_label (entry->exception_handler_label);
1236
f51430ed
MS
1237#ifdef HAVE_exception_receiver
1238 if (! exceptions_via_longjmp)
1239 if (HAVE_exception_receiver)
1240 emit_insn (gen_exception_receiver ());
1241#endif
1242
05f5b2cd
MS
1243#ifdef HAVE_nonlocal_goto_receiver
1244 if (! exceptions_via_longjmp)
1245 if (HAVE_nonlocal_goto_receiver)
1246 emit_insn (gen_nonlocal_goto_receiver ());
1247#endif
1248
abeeec2a 1249 /* And now generate the insns for the handler. */
4956d07c
MS
1250 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1251
1252 prev = get_last_insn ();
27a36778 1253 if (prev == NULL || GET_CODE (prev) != BARRIER)
e701eb4d
JM
1254 /* Emit code to throw to the outer context if we fall off
1255 the end of the handler. */
1256 expand_rethrow (entry->outer_context);
4956d07c 1257
c7ae64f2 1258 do_pending_stack_adjust ();
4956d07c
MS
1259 free (entry);
1260 }
1261}
1262
abeeec2a 1263/* Called at the start of a block of try statements. */
12670d88
RK
1264void
1265expand_start_try_stmts ()
1266{
1267 if (! doing_eh (1))
1268 return;
1269
1270 expand_eh_region_start ();
1271}
1272
1273/* Generate RTL for the start of a group of catch clauses.
1274
1275 It is responsible for starting a new instruction sequence for the
1276 instructions in the catch block, and expanding the handlers for the
1277 internally-generated exception regions nested within the try block
abeeec2a 1278 corresponding to this catch block. */
4956d07c
MS
1279
1280void
1281expand_start_all_catch ()
1282{
1283 struct eh_entry *entry;
1284 tree label;
e701eb4d 1285 rtx outer_context;
4956d07c
MS
1286
1287 if (! doing_eh (1))
1288 return;
1289
e701eb4d 1290 outer_context = ehstack.top->entry->outer_context;
1418bb67 1291
abeeec2a 1292 /* End the try block. */
12670d88
RK
1293 expand_eh_region_end (integer_zero_node);
1294
4956d07c
MS
1295 emit_line_note (input_filename, lineno);
1296 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1297
12670d88 1298 /* The label for the exception handling block that we will save.
956d6950 1299 This is Lresume in the documentation. */
4956d07c
MS
1300 expand_label (label);
1301
12670d88 1302 /* Push the label that points to where normal flow is resumed onto
abeeec2a 1303 the top of the label stack. */
4956d07c
MS
1304 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1305
1306 /* Start a new sequence for all the catch blocks. We will add this
12670d88 1307 to the global sequence catch_clauses when we have completed all
4956d07c
MS
1308 the handlers in this handler-seq. */
1309 start_sequence ();
1310
1311 while (1)
1312 {
1313 rtx prev;
1314
1315 entry = dequeue_eh_entry (&ehqueue);
12670d88
RK
1316 /* Emit the label for the exception handler for this region, and
1317 expand the code for the handler.
1318
1319 Note that a catch region is handled as a side-effect here;
1320 for a try block, entry->finalization will contain
1321 integer_zero_node, so no code will be generated in the
1322 expand_expr call below. But, the label for the handler will
1323 still be emitted, so any code emitted after this point will
abeeec2a 1324 end up being the handler. */
4956d07c 1325 emit_label (entry->exception_handler_label);
4956d07c 1326
f51430ed
MS
1327#ifdef HAVE_exception_receiver
1328 if (! exceptions_via_longjmp)
1329 if (HAVE_exception_receiver)
1330 emit_insn (gen_exception_receiver ());
1331#endif
1332
05f5b2cd
MS
1333#ifdef HAVE_nonlocal_goto_receiver
1334 if (! exceptions_via_longjmp)
1335 if (HAVE_nonlocal_goto_receiver)
1336 emit_insn (gen_nonlocal_goto_receiver ());
1337#endif
1338
12670d88 1339 /* When we get down to the matching entry for this try block, stop. */
4956d07c 1340 if (entry->finalization == integer_zero_node)
12670d88 1341 {
abeeec2a 1342 /* Don't forget to free this entry. */
12670d88
RK
1343 free (entry);
1344 break;
1345 }
4956d07c 1346
27a36778
MS
1347 /* And now generate the insns for the handler. */
1348 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1349
4956d07c 1350 prev = get_last_insn ();
12670d88 1351 if (prev == NULL || GET_CODE (prev) != BARRIER)
e701eb4d
JM
1352 /* Code to throw out to outer context when we fall off end
1353 of the handler. We can't do this here for catch blocks,
1354 so it's done in expand_end_all_catch instead. */
1355 expand_rethrow (entry->outer_context);
12670d88 1356
f45ebe47 1357 do_pending_stack_adjust ();
4956d07c
MS
1358 free (entry);
1359 }
e701eb4d
JM
1360
1361 /* If we are not doing setjmp/longjmp EH, because we are reordered
1362 out of line, we arrange to rethrow in the outer context. We need to
1363 do this because we are not physically within the region, if any, that
1364 logically contains this catch block. */
1365 if (! exceptions_via_longjmp)
1366 {
1367 expand_eh_region_start ();
1368 ehstack.top->entry->outer_context = outer_context;
1369 }
4956d07c
MS
1370}
1371
12670d88
RK
1372/* Finish up the catch block. At this point all the insns for the
1373 catch clauses have already been generated, so we only have to add
1374 them to the catch_clauses list. We also want to make sure that if
1375 we fall off the end of the catch clauses that we rethrow to the
abeeec2a 1376 outer EH region. */
4956d07c
MS
1377
1378void
1379expand_end_all_catch ()
1380{
5dfa7520 1381 rtx new_catch_clause, outer_context = NULL_RTX;
4956d07c
MS
1382
1383 if (! doing_eh (1))
1384 return;
1385
e701eb4d 1386 if (! exceptions_via_longjmp)
5dfa7520
JM
1387 {
1388 outer_context = ehstack.top->entry->outer_context;
1389
1390 /* Finish the rethrow region. size_zero_node is just a NOP. */
1391 expand_eh_region_end (size_zero_node);
1392 }
1393
e701eb4d
JM
1394 /* Code to throw out to outer context, if we fall off end of catch
1395 handlers. This is rethrow (Lresume, same id, same obj) in the
1396 documentation. We use Lresume because we know that it will throw
1397 to the correct context.
12670d88 1398
e701eb4d
JM
1399 In other words, if the catch handler doesn't exit or return, we
1400 do a "throw" (using the address of Lresume as the point being
1401 thrown from) so that the outer EH region can then try to process
1402 the exception. */
1403 expand_rethrow (outer_context);
4956d07c
MS
1404
1405 /* Now we have the complete catch sequence. */
1406 new_catch_clause = get_insns ();
1407 end_sequence ();
1408
1409 /* This level of catch blocks is done, so set up the successful
1410 catch jump label for the next layer of catch blocks. */
1411 pop_label_entry (&caught_return_label_stack);
956d6950 1412 pop_label_entry (&outer_context_label_stack);
4956d07c
MS
1413
1414 /* Add the new sequence of catches to the main one for this function. */
1415 push_to_sequence (catch_clauses);
1416 emit_insns (new_catch_clause);
1417 catch_clauses = get_insns ();
1418 end_sequence ();
1419
1420 /* Here we fall through into the continuation code. */
1421}
1422
e701eb4d
JM
1423/* Rethrow from the outer context LABEL. */
1424
1425static void
1426expand_rethrow (label)
1427 rtx label;
1428{
1429 if (exceptions_via_longjmp)
1430 emit_throw ();
1431 else
1432 emit_jump (label);
1433}
1434
12670d88 1435/* End all the pending exception regions on protect_list. The handlers
27a36778 1436 will be emitted when expand_leftover_cleanups is invoked. */
4956d07c
MS
1437
1438void
1439end_protect_partials ()
1440{
1441 while (protect_list)
1442 {
1443 expand_eh_region_end (TREE_VALUE (protect_list));
1444 protect_list = TREE_CHAIN (protect_list);
1445 }
1446}
27a36778
MS
1447
1448/* Arrange for __terminate to be called if there is an unhandled throw
1449 from within E. */
1450
1451tree
1452protect_with_terminate (e)
1453 tree e;
1454{
1455 /* We only need to do this when using setjmp/longjmp EH and the
1456 language requires it, as otherwise we protect all of the handlers
1457 at once, if we need to. */
1458 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
1459 {
1460 tree handler, result;
1461
1462 /* All cleanups must be on the function_obstack. */
1463 push_obstacks_nochange ();
1464 resume_temporary_allocation ();
1465
1466 handler = make_node (RTL_EXPR);
1467 TREE_TYPE (handler) = void_type_node;
1468 RTL_EXPR_RTL (handler) = const0_rtx;
1469 TREE_SIDE_EFFECTS (handler) = 1;
1470 start_sequence_for_rtl_expr (handler);
1471
1472 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
1473 emit_barrier ();
1474
1475 RTL_EXPR_SEQUENCE (handler) = get_insns ();
1476 end_sequence ();
1477
1478 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
1479 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
1480 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
1481 TREE_READONLY (result) = TREE_READONLY (e);
1482
1483 pop_obstacks ();
1484
1485 e = result;
1486 }
1487
1488 return e;
1489}
4956d07c
MS
1490\f
1491/* The exception table that we build that is used for looking up and
12670d88
RK
1492 dispatching exceptions, the current number of entries, and its
1493 maximum size before we have to extend it.
1494
1495 The number in eh_table is the code label number of the exception
27a36778
MS
1496 handler for the region. This is added by add_eh_table_entry and
1497 used by output_exception_table_entry. */
12670d88 1498
4956d07c
MS
1499static int *eh_table;
1500static int eh_table_size;
1501static int eh_table_max_size;
1502
1503/* Note the need for an exception table entry for region N. If we
12670d88
RK
1504 don't need to output an explicit exception table, avoid all of the
1505 extra work.
1506
1507 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
1508 N is the NOTE_BLOCK_NUMBER of the note, which comes from the code
abeeec2a 1509 label number of the exception handler for the region. */
4956d07c
MS
1510
1511void
1512add_eh_table_entry (n)
1513 int n;
1514{
1515#ifndef OMIT_EH_TABLE
1516 if (eh_table_size >= eh_table_max_size)
1517 {
1518 if (eh_table)
1519 {
1520 eh_table_max_size += eh_table_max_size>>1;
1521
1522 if (eh_table_max_size < 0)
1523 abort ();
1524
ca55abae
JM
1525 eh_table = (int *) xrealloc (eh_table,
1526 eh_table_max_size * sizeof (int));
4956d07c
MS
1527 }
1528 else
1529 {
1530 eh_table_max_size = 252;
1531 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
1532 }
1533 }
1534 eh_table[eh_table_size++] = n;
1535#endif
1536}
1537
12670d88
RK
1538/* Return a non-zero value if we need to output an exception table.
1539
1540 On some platforms, we don't have to output a table explicitly.
1541 This routine doesn't mean we don't have one. */
4956d07c
MS
1542
1543int
1544exception_table_p ()
1545{
1546 if (eh_table)
1547 return 1;
1548
1549 return 0;
1550}
1551
12670d88
RK
1552/* Output the entry of the exception table corresponding to to the
1553 exception region numbered N to file FILE.
1554
1555 N is the code label number corresponding to the handler of the
abeeec2a 1556 region. */
4956d07c
MS
1557
1558static void
1559output_exception_table_entry (file, n)
1560 FILE *file;
1561 int n;
1562{
1563 char buf[256];
1564 rtx sym;
1565
1566 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
38a448ca 1567 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
4956d07c
MS
1568 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
1569
1570 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
38a448ca 1571 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
4956d07c
MS
1572 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
1573
1574 ASM_GENERATE_INTERNAL_LABEL (buf, "L", n);
38a448ca 1575 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
4956d07c
MS
1576 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
1577
1578 putc ('\n', file); /* blank line */
1579}
1580
abeeec2a 1581/* Output the exception table if we have and need one. */
4956d07c
MS
1582
1583void
1584output_exception_table ()
1585{
1586 int i;
1587 extern FILE *asm_out_file;
1588
ca55abae 1589 if (! doing_eh (0) || ! eh_table)
4956d07c
MS
1590 return;
1591
1592 exception_section ();
1593
1594 /* Beginning marker for table. */
1595 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
1596 assemble_label ("__EXCEPTION_TABLE__");
1597
4956d07c
MS
1598 for (i = 0; i < eh_table_size; ++i)
1599 output_exception_table_entry (asm_out_file, eh_table[i]);
1600
1601 free (eh_table);
1602
1603 /* Ending marker for table. */
4956d07c
MS
1604 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
1605 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
1606 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
1607 putc ('\n', asm_out_file); /* blank line */
1608}
4956d07c 1609\f
154bba13
TT
1610/* Emit code to get EH context.
1611
1612 We have to scan thru the code to find possible EH context registers.
1613 Inlined functions may use it too, and thus we'll have to be able
1614 to change them too.
1615
1616 This is done only if using exceptions_via_longjmp. */
1617
1618void
1619emit_eh_context ()
1620{
1621 rtx insn;
1622 rtx ehc = 0;
1623
1624 if (! doing_eh (0))
1625 return;
1626
1627 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1628 if (GET_CODE (insn) == INSN
1629 && GET_CODE (PATTERN (insn)) == USE)
1630 {
1631 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
1632 if (reg)
1633 {
1634 rtx insns;
1635
100d81d4
JM
1636 start_sequence ();
1637
d9c92f32
JM
1638 /* If this is the first use insn, emit the call here. This
1639 will always be at the top of our function, because if
1640 expand_inline_function notices a REG_EH_CONTEXT note, it
1641 adds a use insn to this function as well. */
154bba13 1642 if (ehc == 0)
01eb7f9a 1643 ehc = call_get_eh_context ();
154bba13 1644
154bba13
TT
1645 emit_move_insn (XEXP (reg, 0), ehc);
1646 insns = get_insns ();
1647 end_sequence ();
1648
1649 emit_insns_before (insns, insn);
1650 }
1651 }
1652}
1653
12670d88
RK
1654/* Scan the current insns and build a list of handler labels. The
1655 resulting list is placed in the global variable exception_handler_labels.
1656
1657 It is called after the last exception handling region is added to
1658 the current function (when the rtl is almost all built for the
1659 current function) and before the jump optimization pass. */
4956d07c
MS
1660
1661void
1662find_exception_handler_labels ()
1663{
1664 rtx insn;
1665 int max_labelno = max_label_num ();
1666 int min_labelno = get_first_label_num ();
1667 rtx *labels;
1668
1669 exception_handler_labels = NULL_RTX;
1670
1671 /* If we aren't doing exception handling, there isn't much to check. */
1672 if (! doing_eh (0))
1673 return;
1674
12670d88 1675 /* Generate a handy reference to each label. */
4956d07c 1676
1d77fa53
BK
1677 /* We call xmalloc here instead of alloca; we did the latter in the past,
1678 but found that it can sometimes end up being asked to allocate space
1679 for more than 1 million labels. */
1680 labels = (rtx *) xmalloc ((max_labelno - min_labelno) * sizeof (rtx));
abeeec2a 1681 bzero ((char *) labels, (max_labelno - min_labelno) * sizeof (rtx));
12670d88 1682
abeeec2a 1683 /* Arrange for labels to be indexed directly by CODE_LABEL_NUMBER. */
4956d07c
MS
1684 labels -= min_labelno;
1685
1686 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1687 {
1688 if (GET_CODE (insn) == CODE_LABEL)
1689 if (CODE_LABEL_NUMBER (insn) >= min_labelno
1690 && CODE_LABEL_NUMBER (insn) < max_labelno)
1691 labels[CODE_LABEL_NUMBER (insn)] = insn;
1692 }
1693
12670d88
RK
1694 /* For each start of a region, add its label to the list. */
1695
4956d07c
MS
1696 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1697 {
1698 if (GET_CODE (insn) == NOTE
1699 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
1700 {
1701 rtx label = NULL_RTX;
1702
1703 if (NOTE_BLOCK_NUMBER (insn) >= min_labelno
1704 && NOTE_BLOCK_NUMBER (insn) < max_labelno)
1705 {
1706 label = labels[NOTE_BLOCK_NUMBER (insn)];
1707
1708 if (label)
1709 exception_handler_labels
38a448ca
RH
1710 = gen_rtx_EXPR_LIST (VOIDmode,
1711 label, exception_handler_labels);
4956d07c
MS
1712 else
1713 warning ("didn't find handler for EH region %d",
1714 NOTE_BLOCK_NUMBER (insn));
1715 }
1716 else
1717 warning ("mismatched EH region %d", NOTE_BLOCK_NUMBER (insn));
1718 }
1719 }
988cea7d 1720
3f34faec 1721 free (labels + min_labelno);
4956d07c
MS
1722}
1723
12670d88
RK
1724/* Perform sanity checking on the exception_handler_labels list.
1725
1726 Can be called after find_exception_handler_labels is called to
1727 build the list of exception handlers for the current function and
1728 before we finish processing the current function. */
4956d07c
MS
1729
1730void
1731check_exception_handler_labels ()
1732{
1733 rtx insn, handler;
1734
1735 /* If we aren't doing exception handling, there isn't much to check. */
1736 if (! doing_eh (0))
1737 return;
1738
12670d88
RK
1739 /* Ensure that the CODE_LABEL_NUMBER for the CODE_LABEL entry point
1740 in each handler corresponds to the CODE_LABEL_NUMBER of the
abeeec2a 1741 handler. */
12670d88 1742
4956d07c
MS
1743 for (handler = exception_handler_labels;
1744 handler;
1745 handler = XEXP (handler, 1))
1746 {
1747 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1748 {
1749 if (GET_CODE (insn) == CODE_LABEL)
1750 {
1751 if (CODE_LABEL_NUMBER (insn)
1752 == CODE_LABEL_NUMBER (XEXP (handler, 0)))
1753 {
1754 if (insn != XEXP (handler, 0))
1755 warning ("mismatched handler %d",
1756 CODE_LABEL_NUMBER (insn));
1757 break;
1758 }
1759 }
1760 }
1761 if (insn == NULL_RTX)
1762 warning ("handler not found %d",
1763 CODE_LABEL_NUMBER (XEXP (handler, 0)));
1764 }
1765
12670d88
RK
1766 /* Now go through and make sure that for each region there is a
1767 corresponding label. */
4956d07c
MS
1768 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1769 {
1770 if (GET_CODE (insn) == NOTE
27a36778
MS
1771 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
1772 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
4956d07c
MS
1773 {
1774 for (handler = exception_handler_labels;
1775 handler;
1776 handler = XEXP (handler, 1))
1777 {
1778 if (CODE_LABEL_NUMBER (XEXP (handler, 0))
1779 == NOTE_BLOCK_NUMBER (insn))
1780 break;
1781 }
ec2be682 1782 if (handler == NULL_RTX && !flag_syntax_only)
4956d07c
MS
1783 warning ("region exists, no handler %d",
1784 NOTE_BLOCK_NUMBER (insn));
1785 }
1786 }
1787}
1788\f
1789/* This group of functions initializes the exception handling data
1790 structures at the start of the compilation, initializes the data
12670d88 1791 structures at the start of a function, and saves and restores the
4956d07c
MS
1792 exception handling data structures for the start/end of a nested
1793 function. */
1794
1795/* Toplevel initialization for EH things. */
1796
1797void
1798init_eh ()
1799{
4956d07c
MS
1800}
1801
abeeec2a 1802/* Initialize the per-function EH information. */
4956d07c
MS
1803
1804void
1805init_eh_for_function ()
1806{
1807 ehstack.top = 0;
1808 ehqueue.head = ehqueue.tail = 0;
1809 catch_clauses = NULL_RTX;
1810 false_label_stack = 0;
1811 caught_return_label_stack = 0;
1812 protect_list = NULL_TREE;
154bba13 1813 current_function_ehc = NULL_RTX;
4956d07c
MS
1814}
1815
12670d88
RK
1816/* Save some of the per-function EH info into the save area denoted by
1817 P.
1818
27a36778 1819 This is currently called from save_stmt_status. */
4956d07c
MS
1820
1821void
1822save_eh_status (p)
1823 struct function *p;
1824{
3a88cbd1
JL
1825 if (p == NULL)
1826 abort ();
12670d88 1827
4956d07c
MS
1828 p->ehstack = ehstack;
1829 p->ehqueue = ehqueue;
1830 p->catch_clauses = catch_clauses;
1831 p->false_label_stack = false_label_stack;
1832 p->caught_return_label_stack = caught_return_label_stack;
1833 p->protect_list = protect_list;
154bba13 1834 p->ehc = current_function_ehc;
4956d07c 1835
6e1f1f93 1836 init_eh_for_function ();
4956d07c
MS
1837}
1838
12670d88
RK
1839/* Restore the per-function EH info saved into the area denoted by P.
1840
abeeec2a 1841 This is currently called from restore_stmt_status. */
4956d07c
MS
1842
1843void
1844restore_eh_status (p)
1845 struct function *p;
1846{
3a88cbd1
JL
1847 if (p == NULL)
1848 abort ();
12670d88 1849
4956d07c
MS
1850 protect_list = p->protect_list;
1851 caught_return_label_stack = p->caught_return_label_stack;
1852 false_label_stack = p->false_label_stack;
1853 catch_clauses = p->catch_clauses;
1854 ehqueue = p->ehqueue;
1855 ehstack = p->ehstack;
154bba13 1856 current_function_ehc = p->ehc;
4956d07c
MS
1857}
1858\f
1859/* This section is for the exception handling specific optimization
1860 pass. First are the internal routines, and then the main
1861 optimization pass. */
1862
1863/* Determine if the given INSN can throw an exception. */
1864
1865static int
1866can_throw (insn)
1867 rtx insn;
1868{
abeeec2a 1869 /* Calls can always potentially throw exceptions. */
4956d07c
MS
1870 if (GET_CODE (insn) == CALL_INSN)
1871 return 1;
1872
27a36778
MS
1873 if (asynchronous_exceptions)
1874 {
1875 /* If we wanted asynchronous exceptions, then everything but NOTEs
1876 and CODE_LABELs could throw. */
1877 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
1878 return 1;
1879 }
4956d07c
MS
1880
1881 return 0;
1882}
1883
12670d88
RK
1884/* Scan a exception region looking for the matching end and then
1885 remove it if possible. INSN is the start of the region, N is the
1886 region number, and DELETE_OUTER is to note if anything in this
1887 region can throw.
1888
1889 Regions are removed if they cannot possibly catch an exception.
27a36778 1890 This is determined by invoking can_throw on each insn within the
12670d88
RK
1891 region; if can_throw returns true for any of the instructions, the
1892 region can catch an exception, since there is an insn within the
1893 region that is capable of throwing an exception.
1894
1895 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
27a36778 1896 calls abort if it can't find one.
12670d88
RK
1897
1898 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
abeeec2a 1899 correspond to the region number, or if DELETE_OUTER is NULL. */
4956d07c
MS
1900
1901static rtx
1902scan_region (insn, n, delete_outer)
1903 rtx insn;
1904 int n;
1905 int *delete_outer;
1906{
1907 rtx start = insn;
1908
1909 /* Assume we can delete the region. */
1910 int delete = 1;
1911
3a88cbd1
JL
1912 if (insn == NULL_RTX
1913 || GET_CODE (insn) != NOTE
1914 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
1915 || NOTE_BLOCK_NUMBER (insn) != n
1916 || delete_outer == NULL)
1917 abort ();
12670d88 1918
4956d07c
MS
1919 insn = NEXT_INSN (insn);
1920
1921 /* Look for the matching end. */
1922 while (! (GET_CODE (insn) == NOTE
1923 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
1924 {
1925 /* If anything can throw, we can't remove the region. */
1926 if (delete && can_throw (insn))
1927 {
1928 delete = 0;
1929 }
1930
1931 /* Watch out for and handle nested regions. */
1932 if (GET_CODE (insn) == NOTE
1933 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
1934 {
1935 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &delete);
1936 }
1937
1938 insn = NEXT_INSN (insn);
1939 }
1940
1941 /* The _BEG/_END NOTEs must match and nest. */
1942 if (NOTE_BLOCK_NUMBER (insn) != n)
1943 abort ();
1944
12670d88 1945 /* If anything in this exception region can throw, we can throw. */
4956d07c
MS
1946 if (! delete)
1947 *delete_outer = 0;
1948 else
1949 {
1950 /* Delete the start and end of the region. */
1951 delete_insn (start);
1952 delete_insn (insn);
1953
1954 /* Only do this part if we have built the exception handler
1955 labels. */
1956 if (exception_handler_labels)
1957 {
1958 rtx x, *prev = &exception_handler_labels;
1959
1960 /* Find it in the list of handlers. */
1961 for (x = exception_handler_labels; x; x = XEXP (x, 1))
1962 {
1963 rtx label = XEXP (x, 0);
1964 if (CODE_LABEL_NUMBER (label) == n)
1965 {
1966 /* If we are the last reference to the handler,
1967 delete it. */
1968 if (--LABEL_NUSES (label) == 0)
1969 delete_insn (label);
1970
1971 if (optimize)
1972 {
1973 /* Remove it from the list of exception handler
1974 labels, if we are optimizing. If we are not, then
1975 leave it in the list, as we are not really going to
1976 remove the region. */
1977 *prev = XEXP (x, 1);
1978 XEXP (x, 1) = 0;
1979 XEXP (x, 0) = 0;
1980 }
1981
1982 break;
1983 }
1984 prev = &XEXP (x, 1);
1985 }
1986 }
1987 }
1988 return insn;
1989}
1990
1991/* Perform various interesting optimizations for exception handling
1992 code.
1993
12670d88
RK
1994 We look for empty exception regions and make them go (away). The
1995 jump optimization code will remove the handler if nothing else uses
abeeec2a 1996 it. */
4956d07c
MS
1997
1998void
1999exception_optimize ()
2000{
381127e8 2001 rtx insn;
4956d07c
MS
2002 int n;
2003
12670d88 2004 /* Remove empty regions. */
4956d07c
MS
2005 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2006 {
2007 if (GET_CODE (insn) == NOTE
2008 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2009 {
27a36778 2010 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
12670d88
RK
2011 insn, we will indirectly skip through all the insns
2012 inbetween. We are also guaranteed that the value of insn
27a36778 2013 returned will be valid, as otherwise scan_region won't
abeeec2a 2014 return. */
4956d07c
MS
2015 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &n);
2016 }
2017 }
2018}
ca55abae
JM
2019\f
2020/* Various hooks for the DWARF 2 __throw routine. */
2021
2022/* Do any necessary initialization to access arbitrary stack frames.
2023 On the SPARC, this means flushing the register windows. */
2024
2025void
2026expand_builtin_unwind_init ()
2027{
2028 /* Set this so all the registers get saved in our frame; we need to be
2029 able to copy the saved values for any registers from frames we unwind. */
2030 current_function_has_nonlocal_label = 1;
2031
2032#ifdef SETUP_FRAME_ADDRESSES
2033 SETUP_FRAME_ADDRESSES ();
2034#endif
2035}
2036
2037/* Given a value extracted from the return address register or stack slot,
2038 return the actual address encoded in that value. */
2039
2040rtx
2041expand_builtin_extract_return_addr (addr_tree)
2042 tree addr_tree;
2043{
2044 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2045 return eh_outer_context (addr);
2046}
2047
2048/* Given an actual address in addr_tree, do any necessary encoding
2049 and return the value to be stored in the return address register or
2050 stack slot so the epilogue will return to that address. */
2051
2052rtx
2053expand_builtin_frob_return_addr (addr_tree)
2054 tree addr_tree;
2055{
2056 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2057#ifdef RETURN_ADDR_OFFSET
2058 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2059#endif
2060 return addr;
2061}
2062
2063/* Given an actual address in addr_tree, set the return address register up
2064 so the epilogue will return to that address. If the return address is
2065 not in a register, do nothing. */
2066
2067void
2068expand_builtin_set_return_addr_reg (addr_tree)
2069 tree addr_tree;
2070{
4f870c04 2071 rtx tmp;
ca55abae
JM
2072 rtx ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
2073 0, hard_frame_pointer_rtx);
2074
2075 if (GET_CODE (ra) != REG || REGNO (ra) >= FIRST_PSEUDO_REGISTER)
2076 return;
2077
4f870c04
JM
2078 tmp = force_operand (expand_builtin_frob_return_addr (addr_tree), ra);
2079 if (tmp != ra)
2080 emit_move_insn (ra, tmp);
ca55abae
JM
2081}
2082
2083/* Choose two registers for communication between the main body of
2084 __throw and the stub for adjusting the stack pointer. The first register
2085 is used to pass the address of the exception handler; the second register
2086 is used to pass the stack pointer offset.
2087
2088 For register 1 we use the return value register for a void *.
2089 For register 2 we use the static chain register if it exists and is
2090 different from register 1, otherwise some arbitrary call-clobbered
2091 register. */
2092
2093static void
2094eh_regs (r1, r2, outgoing)
2095 rtx *r1, *r2;
2096 int outgoing;
2097{
2098 rtx reg1, reg2;
2099
2100#ifdef FUNCTION_OUTGOING_VALUE
2101 if (outgoing)
2102 reg1 = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2103 current_function_decl);
2104 else
2105#endif
2106 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2107 current_function_decl);
2108
2109#ifdef STATIC_CHAIN_REGNUM
2110 if (outgoing)
2111 reg2 = static_chain_incoming_rtx;
2112 else
2113 reg2 = static_chain_rtx;
2114 if (REGNO (reg2) == REGNO (reg1))
2115#endif /* STATIC_CHAIN_REGNUM */
2116 reg2 = NULL_RTX;
2117
2118 if (reg2 == NULL_RTX)
2119 {
2120 int i;
2121 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2122 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (reg1))
2123 {
38a448ca 2124 reg2 = gen_rtx_REG (Pmode, i);
ca55abae
JM
2125 break;
2126 }
2127
2128 if (reg2 == NULL_RTX)
2129 abort ();
2130 }
2131
2132 *r1 = reg1;
2133 *r2 = reg2;
2134}
2135
2136/* Emit inside of __throw a stub which adjusts the stack pointer and jumps
2137 to the exception handler. __throw will set up the necessary values
2138 and then return to the stub. */
2139
2140rtx
2141expand_builtin_eh_stub ()
2142{
2143 rtx stub_start = gen_label_rtx ();
2144 rtx after_stub = gen_label_rtx ();
381127e8 2145 rtx handler, offset;
ca55abae
JM
2146
2147 emit_jump (after_stub);
2148 emit_label (stub_start);
2149
2150 eh_regs (&handler, &offset, 0);
2151
2152 adjust_stack (offset);
2153 emit_indirect_jump (handler);
2154
2155 emit_label (after_stub);
38a448ca 2156 return gen_rtx_LABEL_REF (Pmode, stub_start);
ca55abae
JM
2157}
2158
2159/* Set up the registers for passing the handler address and stack offset
2160 to the stub above. */
2161
2162void
2163expand_builtin_set_eh_regs (handler, offset)
2164 tree handler, offset;
2165{
2166 rtx reg1, reg2;
2167
2168 eh_regs (&reg1, &reg2, 1);
2169
2170 store_expr (offset, reg2, 0);
2171 store_expr (handler, reg1, 0);
2172
2173 /* These will be used by the stub. */
38a448ca
RH
2174 emit_insn (gen_rtx_USE (VOIDmode, reg1));
2175 emit_insn (gen_rtx_USE (VOIDmode, reg2));
ca55abae 2176}
77d33a84
AM
2177
2178\f
2179
2180/* This contains the code required to verify whether arbitrary instructions
2181 are in the same exception region. */
2182
2183static int *insn_eh_region = (int *)0;
2184static int maximum_uid;
2185
242c13b0
JL
2186static void
2187set_insn_eh_region (first, region_num)
77d33a84
AM
2188 rtx *first;
2189 int region_num;
2190{
2191 rtx insn;
2192 int rnum;
2193
2194 for (insn = *first; insn; insn = NEXT_INSN (insn))
2195 {
2196 if ((GET_CODE (insn) == NOTE) &&
2197 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
2198 {
2199 rnum = NOTE_BLOCK_NUMBER (insn);
2200 insn_eh_region[INSN_UID (insn)] = rnum;
2201 insn = NEXT_INSN (insn);
2202 set_insn_eh_region (&insn, rnum);
2203 /* Upon return, insn points to the EH_REGION_END of nested region */
2204 continue;
2205 }
2206 insn_eh_region[INSN_UID (insn)] = region_num;
2207 if ((GET_CODE (insn) == NOTE) &&
2208 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2209 break;
2210 }
2211 *first = insn;
2212}
2213
2214/* Free the insn table, an make sure it cannot be used again. */
2215
2216void free_insn_eh_region ()
2217{
2218 if (!doing_eh (0))
2219 return;
2220
2221 if (insn_eh_region)
2222 {
2223 free (insn_eh_region);
2224 insn_eh_region = (int *)0;
2225 }
2226}
2227
2228/* Initialize the table. max_uid must be calculated and handed into
2229 this routine. If it is unavailable, passing a value of 0 will
2230 cause this routine to calculate it as well. */
2231
2232void init_insn_eh_region (first, max_uid)
2233 rtx first;
2234 int max_uid;
2235{
2236 rtx insn;
2237
2238 if (!doing_eh (0))
2239 return;
2240
2241 if (insn_eh_region)
2242 free_insn_eh_region();
2243
2244 if (max_uid == 0)
2245 for (insn = first; insn; insn = NEXT_INSN (insn))
2246 if (INSN_UID (insn) > max_uid) /* find largest UID */
2247 max_uid = INSN_UID (insn);
2248
2249 maximum_uid = max_uid;
2250 insn_eh_region = (int *) malloc ((max_uid + 1) * sizeof (int));
2251 insn = first;
2252 set_insn_eh_region (&insn, 0);
2253}
2254
2255
2256/* Check whether 2 instructions are within the same region. */
2257
2258int in_same_eh_region(insn1, insn2)
2259 rtx insn1,insn2;
2260{
2261 int ret, uid1, uid2;
2262
2263 /* If no exceptions, instructions are always in same region. */
2264 if (!doing_eh (0))
2265 return 1;
2266
2267 /* If the table isn't allocated, assume the worst. */
2268 if (!insn_eh_region)
2269 return 0;
2270
2271 uid1 = INSN_UID (insn1);
2272 uid2 = INSN_UID (insn2);
2273
2274 /* if instructions have been allocated beyond the end, either
2275 the table is out of date, or this is a late addition, or
2276 something... Assume the worst. */
2277 if (uid1 > maximum_uid || uid2 > maximum_uid)
2278 return 0;
2279
2280 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
2281 return ret;
2282}
2283
This page took 0.414124 seconds and 5 git commands to generate.