]> gcc.gnu.org Git - gcc.git/blame - gcc/except.c
pt.c (try_one_overload): Take orig_targs again.
[gcc.git] / gcc / except.c
CommitLineData
12670d88 1/* Implements exception handling.
e5e809f4 2 Copyright (C) 1989, 92-97, 1998 Free Software Foundation, Inc.
4956d07c
MS
3 Contributed by Mike Stump <mrs@cygnus.com>.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22
12670d88
RK
23/* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
956d6950 26 be transferred to any arbitrary code associated with a function call
12670d88
RK
27 several levels up the stack.
28
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
38
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
45
27a36778
MS
46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
e9a25f70 48 approach, which is the default. -fno-sjlj-exceptions can be used to
27a36778
MS
49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
55
12670d88
RK
56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
60
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
67
2ed18e63
MS
68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
73
956d6950 74 In the current implementation, cleanups are handled by allocating an
2ed18e63
MS
75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
83
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
12670d88 89
ca55abae
JM
90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
12670d88 92 __register_exceptions with the address of its local
ca55abae
JM
93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
96
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
6d8ccdbb 100 __register_frame_info. On other targets, the information for each
d1485032 101 translation unit is registered from the file generated by collect2.
6d8ccdbb 102 __register_frame_info is defined in frame.c, and is responsible for
ca55abae
JM
103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
12670d88 105
27a36778 106 The function __throw is actually responsible for doing the
ca55abae
JM
107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
12670d88 109 per-object-file basis for each source file compiled with
38e01259 110 -fexceptions by the C++ frontend. Before __throw is invoked,
ca55abae
JM
111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
12670d88 113
27a36778 114 __throw attempts to find the appropriate exception handler for the
12670d88 115 PC value stored in __eh_pc by calling __find_first_exception_table_match
2ed18e63 116 (which is defined in libgcc2.c). If __find_first_exception_table_match
ca55abae
JM
117 finds a relevant handler, __throw transfers control directly to it.
118
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
125
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
12670d88
RK
131
132 Internal implementation details:
133
12670d88 134 To associate a user-defined handler with a block of statements, the
27a36778 135 function expand_start_try_stmts is used to mark the start of the
12670d88 136 block of statements with which the handler is to be associated
2ed18e63
MS
137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
139
27a36778 140 A call to expand_start_all_catch marks the end of the try block,
2ed18e63
MS
141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
143
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
151
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
27a36778 155 handler. expand_end_all_catch and expand_leftover_cleanups
2ed18e63
MS
156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
158
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
27a36778 163 to the topmost entry's label via expand_goto will resume normal
2ed18e63
MS
164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
167
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
27a36778
MS
170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
12670d88
RK
172
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
2ed18e63
MS
177 global variable to hold the value. (This will be changing in the
178 future.)
179
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
185
186 Internally-generated exception regions (cleanups) are marked by
27a36778 187 calling expand_eh_region_start to mark the start of the region,
2ed18e63
MS
188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
12670d88
RK
196
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
2ed18e63
MS
200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
208
209 Cleanups can also be specified by using add_partial_entry (handler)
27a36778 210 and end_protect_partials. add_partial_entry creates the start of
2ed18e63
MS
211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
27a36778 217 group of calls to add_partial_entry as the entries are queued
2ed18e63
MS
218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
12670d88
RK
222
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
2ed18e63
MS
226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
12670d88
RK
229
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
2ed18e63 234 can be safely optimized away (along with its exception handlers)
27a36778
MS
235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
245
12670d88 246
ca55abae 247 Walking the stack:
12670d88 248
ca55abae
JM
249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
12670d88 252
ca55abae 253 Unwinding the stack:
12670d88 254
ca55abae
JM
255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
259
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
262
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
270
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
956d6950 282 should call __terminate.
ca55abae
JM
283
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
2ed18e63
MS
289
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
ca55abae
JM
292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
12670d88 296
ca55abae
JM
297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
12670d88 302
27a36778 303 On some platforms it is possible that neither __unwind_function
12670d88 304 nor inlined unwinders are available. For these platforms it is not
27a36778 305 possible to throw through a function call, and abort will be
2ed18e63
MS
306 invoked instead of performing the throw.
307
ca55abae
JM
308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
313
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
319
2ed18e63
MS
320 Future directions:
321
27a36778 322 Currently __throw makes no differentiation between cleanups and
2ed18e63
MS
323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
330
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
27a36778 333 A two-pass scheme could then be used by __throw to iterate
2ed18e63
MS
334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
338
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
27a36778 343 __throw to be able to determine if a given user-defined
2ed18e63
MS
344 exception handler will actually be executed, given the type of
345 exception.
346
347 One scheme is to add additional information to exception_table_list
27a36778 348 as to the types of exceptions accepted by each handler. __throw
2ed18e63
MS
349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
351
352 There is currently no significant level of debugging support
27a36778 353 available, other than to place a breakpoint on __throw. While
2ed18e63
MS
354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
27a36778 359 scheme by adding additional labels to __throw for appropriate
2ed18e63
MS
360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
363
ca55abae
JM
364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
27a36778
MS
369
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
373
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
956d6950 380 table, and no calls to __register_exceptions. __sjthrow is used
27a36778
MS
381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
384
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
4956d07c
MS
389
390
391#include "config.h"
ca55abae 392#include "defaults.h"
9a0d1e1b 393#include "eh-common.h"
670ee920 394#include "system.h"
4956d07c
MS
395#include "rtl.h"
396#include "tree.h"
397#include "flags.h"
398#include "except.h"
399#include "function.h"
400#include "insn-flags.h"
401#include "expr.h"
402#include "insn-codes.h"
403#include "regs.h"
404#include "hard-reg-set.h"
405#include "insn-config.h"
406#include "recog.h"
407#include "output.h"
10f0ad3d 408#include "toplev.h"
4956d07c 409
27a36778
MS
410/* One to use setjmp/longjmp method of generating code for exception
411 handling. */
412
d1485032 413int exceptions_via_longjmp = 2;
27a36778
MS
414
415/* One to enable asynchronous exception support. */
416
417int asynchronous_exceptions = 0;
418
419/* One to protect cleanup actions with a handler that calls
420 __terminate, zero otherwise. */
421
e701eb4d 422int protect_cleanup_actions_with_terminate;
27a36778 423
12670d88 424/* A list of labels used for exception handlers. Created by
4956d07c
MS
425 find_exception_handler_labels for the optimization passes. */
426
427rtx exception_handler_labels;
428
154bba13
TT
429/* The EH context. Nonzero if the function has already
430 fetched a pointer to the EH context for exception handling. */
27a36778 431
154bba13 432rtx current_function_ehc;
27a36778 433
956d6950 434/* A stack used for keeping track of the currently active exception
12670d88 435 handling region. As each exception region is started, an entry
4956d07c
MS
436 describing the region is pushed onto this stack. The current
437 region can be found by looking at the top of the stack, and as we
12670d88
RK
438 exit regions, the corresponding entries are popped.
439
27a36778 440 Entries cannot overlap; they can be nested. So there is only one
12670d88
RK
441 entry at most that corresponds to the current instruction, and that
442 is the entry on the top of the stack. */
4956d07c 443
27a36778 444static struct eh_stack ehstack;
4956d07c 445
9a0d1e1b
AM
446
447/* This stack is used to represent what the current eh region is
448 for the catch blocks beings processed */
449
450static struct eh_stack catchstack;
451
12670d88
RK
452/* A queue used for tracking which exception regions have closed but
453 whose handlers have not yet been expanded. Regions are emitted in
454 groups in an attempt to improve paging performance.
455
456 As we exit a region, we enqueue a new entry. The entries are then
27a36778 457 dequeued during expand_leftover_cleanups and expand_start_all_catch,
12670d88
RK
458
459 We should redo things so that we either take RTL for the handler,
460 or we expand the handler expressed as a tree immediately at region
461 end time. */
4956d07c 462
27a36778 463static struct eh_queue ehqueue;
4956d07c 464
12670d88 465/* Insns for all of the exception handlers for the current function.
abeeec2a 466 They are currently emitted by the frontend code. */
4956d07c
MS
467
468rtx catch_clauses;
469
12670d88
RK
470/* A TREE_CHAINed list of handlers for regions that are not yet
471 closed. The TREE_VALUE of each entry contains the handler for the
abeeec2a 472 corresponding entry on the ehstack. */
4956d07c 473
12670d88 474static tree protect_list;
4956d07c
MS
475
476/* Stacks to keep track of various labels. */
477
12670d88
RK
478/* Keeps track of the label to resume to should one want to resume
479 normal control flow out of a handler (instead of, say, returning to
1418bb67 480 the caller of the current function or exiting the program). */
4956d07c
MS
481
482struct label_node *caught_return_label_stack = NULL;
483
956d6950
JL
484/* Keeps track of the label used as the context of a throw to rethrow an
485 exception to the outer exception region. */
486
487struct label_node *outer_context_label_stack = NULL;
488
12670d88 489/* A random data area for the front end's own use. */
4956d07c
MS
490
491struct label_node *false_label_stack = NULL;
492
71038426
RH
493/* Pseudos used to hold exception return data in the interim between
494 __builtin_eh_return and the end of the function. */
495
496static rtx eh_return_context;
497static rtx eh_return_stack_adjust;
498static rtx eh_return_handler;
499
500/* Used to mark the eh return stub for flow, so that the Right Thing
501 happens with the values for the hardregs therin. */
502
503rtx eh_return_stub_label;
504
505/* Prototypes for local functions. */
506
242c13b0
JL
507static void push_eh_entry PROTO((struct eh_stack *));
508static struct eh_entry * pop_eh_entry PROTO((struct eh_stack *));
509static void enqueue_eh_entry PROTO((struct eh_queue *, struct eh_entry *));
510static struct eh_entry * dequeue_eh_entry PROTO((struct eh_queue *));
511static rtx call_get_eh_context PROTO((void));
512static void start_dynamic_cleanup PROTO((tree, tree));
513static void start_dynamic_handler PROTO((void));
e701eb4d 514static void expand_rethrow PROTO((rtx));
242c13b0
JL
515static void output_exception_table_entry PROTO((FILE *, int));
516static int can_throw PROTO((rtx));
517static rtx scan_region PROTO((rtx, int, int *));
71038426 518static void eh_regs PROTO((rtx *, rtx *, rtx *, int));
242c13b0 519static void set_insn_eh_region PROTO((rtx *, int));
767f5b14 520#ifdef DONT_USE_BUILTIN_SETJMP
561592c5 521static void jumpif_rtx PROTO((rtx, rtx));
767f5b14 522#endif
561592c5 523
242c13b0 524rtx expand_builtin_return_addr PROTO((enum built_in_function, int, rtx));
4956d07c
MS
525\f
526/* Various support routines to manipulate the various data structures
527 used by the exception handling code. */
528
529/* Push a label entry onto the given STACK. */
530
531void
532push_label_entry (stack, rlabel, tlabel)
533 struct label_node **stack;
534 rtx rlabel;
535 tree tlabel;
536{
537 struct label_node *newnode
538 = (struct label_node *) xmalloc (sizeof (struct label_node));
539
540 if (rlabel)
541 newnode->u.rlabel = rlabel;
542 else
543 newnode->u.tlabel = tlabel;
544 newnode->chain = *stack;
545 *stack = newnode;
546}
547
548/* Pop a label entry from the given STACK. */
549
550rtx
551pop_label_entry (stack)
552 struct label_node **stack;
553{
554 rtx label;
555 struct label_node *tempnode;
556
557 if (! *stack)
558 return NULL_RTX;
559
560 tempnode = *stack;
561 label = tempnode->u.rlabel;
562 *stack = (*stack)->chain;
563 free (tempnode);
564
565 return label;
566}
567
568/* Return the top element of the given STACK. */
569
570tree
571top_label_entry (stack)
572 struct label_node **stack;
573{
574 if (! *stack)
575 return NULL_TREE;
576
577 return (*stack)->u.tlabel;
578}
579
9a0d1e1b
AM
580/* get an exception label. These must be on the permanent obstack */
581
582rtx
583gen_exception_label ()
584{
585 rtx lab;
586
587 push_obstacks_nochange ();
588 end_temporary_allocation ();
589 lab = gen_label_rtx ();
590 pop_obstacks ();
591 return lab;
592}
593
478b0752 594/* Push a new eh_node entry onto STACK. */
4956d07c 595
478b0752 596static void
4956d07c
MS
597push_eh_entry (stack)
598 struct eh_stack *stack;
599{
600 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
601 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
602
478b0752 603 entry->outer_context = gen_label_rtx ();
4956d07c 604 entry->finalization = NULL_TREE;
9a0d1e1b
AM
605 entry->label_used = 0;
606 entry->exception_handler_label = gen_exception_label ();
bf71cd2e 607 entry->false_label = NULL_RTX;
9a0d1e1b
AM
608
609 node->entry = entry;
610 node->chain = stack->top;
611 stack->top = node;
612}
4956d07c 613
9a0d1e1b
AM
614/* push an existing entry onto a stack. */
615static void
616push_entry (stack, entry)
617 struct eh_stack *stack;
618 struct eh_entry *entry;
619{
620 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
4956d07c
MS
621 node->entry = entry;
622 node->chain = stack->top;
623 stack->top = node;
4956d07c
MS
624}
625
626/* Pop an entry from the given STACK. */
627
628static struct eh_entry *
629pop_eh_entry (stack)
630 struct eh_stack *stack;
631{
632 struct eh_node *tempnode;
633 struct eh_entry *tempentry;
634
635 tempnode = stack->top;
636 tempentry = tempnode->entry;
637 stack->top = stack->top->chain;
638 free (tempnode);
639
640 return tempentry;
641}
642
643/* Enqueue an ENTRY onto the given QUEUE. */
644
645static void
646enqueue_eh_entry (queue, entry)
647 struct eh_queue *queue;
648 struct eh_entry *entry;
649{
650 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
651
652 node->entry = entry;
653 node->chain = NULL;
654
655 if (queue->head == NULL)
656 {
657 queue->head = node;
658 }
659 else
660 {
661 queue->tail->chain = node;
662 }
663 queue->tail = node;
664}
665
666/* Dequeue an entry from the given QUEUE. */
667
668static struct eh_entry *
669dequeue_eh_entry (queue)
670 struct eh_queue *queue;
671{
672 struct eh_node *tempnode;
673 struct eh_entry *tempentry;
674
675 if (queue->head == NULL)
676 return NULL;
677
678 tempnode = queue->head;
679 queue->head = queue->head->chain;
680
681 tempentry = tempnode->entry;
682 free (tempnode);
683
684 return tempentry;
685}
9a0d1e1b
AM
686
687static void
688receive_exception_label (handler_label)
689 rtx handler_label;
690{
691 emit_label (handler_label);
692
693#ifdef HAVE_exception_receiver
694 if (! exceptions_via_longjmp)
695 if (HAVE_exception_receiver)
696 emit_insn (gen_exception_receiver ());
697#endif
698
699#ifdef HAVE_nonlocal_goto_receiver
700 if (! exceptions_via_longjmp)
701 if (HAVE_nonlocal_goto_receiver)
702 emit_insn (gen_nonlocal_goto_receiver ());
703#endif
704}
705
706
707struct func_eh_entry
708{
709 int range_number; /* EH region number from EH NOTE insn's */
710 struct handler_info *handlers;
711};
712
713
714/* table of function eh regions */
715static struct func_eh_entry *function_eh_regions = NULL;
716static int num_func_eh_entries = 0;
717static int current_func_eh_entry = 0;
718
719#define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
720
721/* Add a new eh_entry for this function, and base it off of the information
722 in the EH_ENTRY parameter. A NULL parameter is invalid. The number
723 returned is an number which uniquely identifies this exception range. */
724
725int
726new_eh_region_entry (note_eh_region)
727 int note_eh_region;
728{
729 if (current_func_eh_entry == num_func_eh_entries)
730 {
731 if (num_func_eh_entries == 0)
732 {
733 function_eh_regions =
734 (struct func_eh_entry *) malloc (SIZE_FUNC_EH (50));
735 num_func_eh_entries = 50;
736 }
737 else
738 {
739 num_func_eh_entries = num_func_eh_entries * 3 / 2;
740 function_eh_regions = (struct func_eh_entry *)
741 realloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
742 }
743 }
744 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
745 function_eh_regions[current_func_eh_entry].handlers = NULL;
746
747 return current_func_eh_entry++;
748}
749
750/* Add new handler information to an exception range. The first parameter
751 specifies the range number (returned from new_eh_entry()). The second
752 parameter specifies the handler. By default the handler is inserted at
753 the end of the list. A handler list may contain only ONE NULL_TREE
754 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
755 is always output as the LAST handler in the exception table for a region. */
756
757void
758add_new_handler (region, newhandler)
759 int region;
760 struct handler_info *newhandler;
761{
762 struct handler_info *last;
763
764 newhandler->next = NULL;
765 last = function_eh_regions[region].handlers;
766 if (last == NULL)
767 function_eh_regions[region].handlers = newhandler;
768 else
769 {
770 for ( ; last->next != NULL; last = last->next)
d7e78529
AM
771 ;
772 last->next = newhandler;
9a0d1e1b
AM
773 }
774}
775
9f8e6243
AM
776/* Remove a handler label. The handler label is being deleted, so all
777 regions which reference this handler should have it removed from their
778 list of possible handlers. Any region which has the final handler
779 removed can be deleted. */
780
781void remove_handler (removing_label)
782 rtx removing_label;
783{
784 struct handler_info *handler, *last;
785 int x;
786 for (x = 0 ; x < current_func_eh_entry; ++x)
787 {
788 last = NULL;
789 handler = function_eh_regions[x].handlers;
790 for ( ; handler; last = handler, handler = handler->next)
791 if (handler->handler_label == removing_label)
792 {
793 if (last)
794 {
795 last->next = handler->next;
796 handler = last;
797 }
798 else
799 function_eh_regions[x].handlers = handler->next;
800 }
801 }
802}
803
9c606f69
AM
804/* This function will return a malloc'd pointer to an array of
805 void pointer representing the runtime match values that
806 currently exist in all regions. */
807
808int
4f70758f
KG
809find_all_handler_type_matches (array)
810 void ***array;
9c606f69
AM
811{
812 struct handler_info *handler, *last;
813 int x,y;
814 void *val;
815 void **ptr;
816 int max_ptr;
817 int n_ptr = 0;
818
819 *array = NULL;
820
821 if (!doing_eh (0) || ! flag_new_exceptions)
822 return 0;
823
824 max_ptr = 100;
825 ptr = (void **)malloc (max_ptr * sizeof (void *));
826
827 if (ptr == NULL)
828 return 0;
829
830 for (x = 0 ; x < current_func_eh_entry; x++)
831 {
832 last = NULL;
833 handler = function_eh_regions[x].handlers;
834 for ( ; handler; last = handler, handler = handler->next)
835 {
836 val = handler->type_info;
837 if (val != NULL && val != CATCH_ALL_TYPE)
838 {
839 /* See if this match value has already been found. */
840 for (y = 0; y < n_ptr; y++)
841 if (ptr[y] == val)
842 break;
843
844 /* If we break early, we already found this value. */
845 if (y < n_ptr)
846 continue;
847
848 /* Do we need to allocate more space? */
849 if (n_ptr >= max_ptr)
850 {
851 max_ptr += max_ptr / 2;
852 ptr = (void **)realloc (ptr, max_ptr * sizeof (void *));
853 if (ptr == NULL)
854 return 0;
855 }
856 ptr[n_ptr] = val;
857 n_ptr++;
858 }
859 }
860 }
861 *array = ptr;
862 return n_ptr;
863}
864
9a0d1e1b
AM
865/* Create a new handler structure initialized with the handler label and
866 typeinfo fields passed in. */
867
868struct handler_info *
869get_new_handler (handler, typeinfo)
870 rtx handler;
871 void *typeinfo;
872{
873 struct handler_info* ptr;
874 ptr = (struct handler_info *) malloc (sizeof (struct handler_info));
875 ptr->handler_label = handler;
876 ptr->type_info = typeinfo;
877 ptr->next = NULL;
878
879 return ptr;
880}
881
882
883
884/* Find the index in function_eh_regions associated with a NOTE region. If
885 the region cannot be found, a -1 is returned. This should never happen! */
886
887int
888find_func_region (insn_region)
889 int insn_region;
890{
891 int x;
892 for (x = 0; x < current_func_eh_entry; x++)
893 if (function_eh_regions[x].range_number == insn_region)
894 return x;
895
896 return -1;
897}
898
899/* Get a pointer to the first handler in an exception region's list. */
900
901struct handler_info *
902get_first_handler (region)
903 int region;
904{
905 return function_eh_regions[find_func_region (region)].handlers;
906}
907
908/* Clean out the function_eh_region table and free all memory */
909
910static void
911clear_function_eh_region ()
912{
913 int x;
914 struct handler_info *ptr, *next;
915 for (x = 0; x < current_func_eh_entry; x++)
916 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
917 {
918 next = ptr->next;
919 free (ptr);
920 }
921 free (function_eh_regions);
922 num_func_eh_entries = 0;
923 current_func_eh_entry = 0;
924}
925
926/* Make a duplicate of an exception region by copying all the handlers
927 for an exception region. Return the new handler index. */
928
929int
930duplicate_handlers (old_note_eh_region, new_note_eh_region)
931 int old_note_eh_region, new_note_eh_region;
932{
933 struct handler_info *ptr, *new_ptr;
934 int new_region, region;
935
936 region = find_func_region (old_note_eh_region);
937 if (region == -1)
938 error ("Cannot duplicate non-existant exception region.");
939
940 if (find_func_region (new_note_eh_region) != -1)
941 error ("Cannot duplicate EH region because new note region already exists");
942
943 new_region = new_eh_region_entry (new_note_eh_region);
944 ptr = function_eh_regions[region].handlers;
945
946 for ( ; ptr; ptr = ptr->next)
947 {
948 new_ptr = get_new_handler (ptr->handler_label, ptr->type_info);
949 add_new_handler (new_region, new_ptr);
950 }
951
952 return new_region;
953}
954
4956d07c 955\f
38e01259 956/* Routine to see if exception handling is turned on.
4956d07c 957 DO_WARN is non-zero if we want to inform the user that exception
12670d88
RK
958 handling is turned off.
959
960 This is used to ensure that -fexceptions has been specified if the
abeeec2a 961 compiler tries to use any exception-specific functions. */
4956d07c
MS
962
963int
964doing_eh (do_warn)
965 int do_warn;
966{
967 if (! flag_exceptions)
968 {
969 static int warned = 0;
970 if (! warned && do_warn)
971 {
972 error ("exception handling disabled, use -fexceptions to enable");
973 warned = 1;
974 }
975 return 0;
976 }
977 return 1;
978}
979
12670d88 980/* Given a return address in ADDR, determine the address we should use
abeeec2a 981 to find the corresponding EH region. */
4956d07c
MS
982
983rtx
984eh_outer_context (addr)
985 rtx addr;
986{
987 /* First mask out any unwanted bits. */
988#ifdef MASK_RETURN_ADDR
ca55abae 989 expand_and (addr, MASK_RETURN_ADDR, addr);
4956d07c
MS
990#endif
991
ca55abae
JM
992 /* Then adjust to find the real return address. */
993#if defined (RETURN_ADDR_OFFSET)
994 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
4956d07c
MS
995#endif
996
997 return addr;
998}
999
27a36778
MS
1000/* Start a new exception region for a region of code that has a
1001 cleanup action and push the HANDLER for the region onto
1002 protect_list. All of the regions created with add_partial_entry
1003 will be ended when end_protect_partials is invoked. */
12670d88
RK
1004
1005void
1006add_partial_entry (handler)
1007 tree handler;
1008{
1009 expand_eh_region_start ();
1010
abeeec2a 1011 /* Make sure the entry is on the correct obstack. */
12670d88
RK
1012 push_obstacks_nochange ();
1013 resume_temporary_allocation ();
27a36778
MS
1014
1015 /* Because this is a cleanup action, we may have to protect the handler
1016 with __terminate. */
1017 handler = protect_with_terminate (handler);
1018
12670d88
RK
1019 protect_list = tree_cons (NULL_TREE, handler, protect_list);
1020 pop_obstacks ();
1021}
1022
100d81d4 1023/* Emit code to get EH context to current function. */
27a36778 1024
154bba13 1025static rtx
01eb7f9a 1026call_get_eh_context ()
27a36778 1027{
bb727b5a
JM
1028 static tree fn;
1029 tree expr;
1030
1031 if (fn == NULL_TREE)
1032 {
1033 tree fntype;
154bba13 1034 fn = get_identifier ("__get_eh_context");
bb727b5a
JM
1035 push_obstacks_nochange ();
1036 end_temporary_allocation ();
1037 fntype = build_pointer_type (build_pointer_type
1038 (build_pointer_type (void_type_node)));
1039 fntype = build_function_type (fntype, NULL_TREE);
1040 fn = build_decl (FUNCTION_DECL, fn, fntype);
1041 DECL_EXTERNAL (fn) = 1;
1042 TREE_PUBLIC (fn) = 1;
1043 DECL_ARTIFICIAL (fn) = 1;
1044 TREE_READONLY (fn) = 1;
1045 make_decl_rtl (fn, NULL_PTR, 1);
1046 assemble_external (fn);
1047 pop_obstacks ();
1048 }
1049
1050 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1051 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1052 expr, NULL_TREE, NULL_TREE);
1053 TREE_SIDE_EFFECTS (expr) = 1;
bb727b5a 1054
100d81d4 1055 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
154bba13
TT
1056}
1057
1058/* Get a reference to the EH context.
1059 We will only generate a register for the current function EH context here,
1060 and emit a USE insn to mark that this is a EH context register.
1061
1062 Later, emit_eh_context will emit needed call to __get_eh_context
1063 in libgcc2, and copy the value to the register we have generated. */
1064
1065rtx
01eb7f9a 1066get_eh_context ()
154bba13
TT
1067{
1068 if (current_function_ehc == 0)
1069 {
1070 rtx insn;
1071
1072 current_function_ehc = gen_reg_rtx (Pmode);
1073
38a448ca
RH
1074 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1075 current_function_ehc);
154bba13
TT
1076 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1077
1078 REG_NOTES (insn)
38a448ca
RH
1079 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1080 REG_NOTES (insn));
154bba13
TT
1081 }
1082 return current_function_ehc;
1083}
1084
154bba13
TT
1085/* Get a reference to the dynamic handler chain. It points to the
1086 pointer to the next element in the dynamic handler chain. It ends
1087 when there are no more elements in the dynamic handler chain, when
1088 the value is &top_elt from libgcc2.c. Immediately after the
1089 pointer, is an area suitable for setjmp/longjmp when
1090 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1091 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1092 isn't defined. */
1093
1094rtx
1095get_dynamic_handler_chain ()
1096{
1097 rtx ehc, dhc, result;
1098
01eb7f9a 1099 ehc = get_eh_context ();
3301dc51
AM
1100
1101 /* This is the offset of dynamic_handler_chain in the eh_context struct
1102 declared in eh-common.h. If its location is change, change this offset */
5816cb14 1103 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
154bba13
TT
1104
1105 result = copy_to_reg (dhc);
1106
1107 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 1108 return gen_rtx_MEM (Pmode, result);
27a36778
MS
1109}
1110
1111/* Get a reference to the dynamic cleanup chain. It points to the
1112 pointer to the next element in the dynamic cleanup chain.
1113 Immediately after the pointer, are two Pmode variables, one for a
1114 pointer to a function that performs the cleanup action, and the
1115 second, the argument to pass to that function. */
1116
1117rtx
1118get_dynamic_cleanup_chain ()
1119{
154bba13 1120 rtx dhc, dcc, result;
27a36778
MS
1121
1122 dhc = get_dynamic_handler_chain ();
5816cb14 1123 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
27a36778 1124
154bba13 1125 result = copy_to_reg (dcc);
27a36778
MS
1126
1127 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 1128 return gen_rtx_MEM (Pmode, result);
154bba13
TT
1129}
1130
767f5b14 1131#ifdef DONT_USE_BUILTIN_SETJMP
27a36778
MS
1132/* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1133 LABEL is an rtx of code CODE_LABEL, in this function. */
1134
561592c5 1135static void
27a36778
MS
1136jumpif_rtx (x, label)
1137 rtx x;
1138 rtx label;
1139{
1140 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1141}
767f5b14 1142#endif
27a36778
MS
1143
1144/* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1145 We just need to create an element for the cleanup list, and push it
1146 into the chain.
1147
1148 A dynamic cleanup is a cleanup action implied by the presence of an
1149 element on the EH runtime dynamic cleanup stack that is to be
1150 performed when an exception is thrown. The cleanup action is
1151 performed by __sjthrow when an exception is thrown. Only certain
1152 actions can be optimized into dynamic cleanup actions. For the
1153 restrictions on what actions can be performed using this routine,
1154 see expand_eh_region_start_tree. */
1155
1156static void
1157start_dynamic_cleanup (func, arg)
1158 tree func;
1159 tree arg;
1160{
381127e8 1161 rtx dcc;
27a36778
MS
1162 rtx new_func, new_arg;
1163 rtx x, buf;
1164 int size;
1165
1166 /* We allocate enough room for a pointer to the function, and
1167 one argument. */
1168 size = 2;
1169
1170 /* XXX, FIXME: The stack space allocated this way is too long lived,
1171 but there is no allocation routine that allocates at the level of
1172 the last binding contour. */
1173 buf = assign_stack_local (BLKmode,
1174 GET_MODE_SIZE (Pmode)*(size+1),
1175 0);
1176
1177 buf = change_address (buf, Pmode, NULL_RTX);
1178
1179 /* Store dcc into the first word of the newly allocated buffer. */
1180
1181 dcc = get_dynamic_cleanup_chain ();
1182 emit_move_insn (buf, dcc);
1183
1184 /* Store func and arg into the cleanup list element. */
1185
38a448ca
RH
1186 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1187 GET_MODE_SIZE (Pmode)));
1188 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1189 GET_MODE_SIZE (Pmode)*2));
27a36778
MS
1190 x = expand_expr (func, new_func, Pmode, 0);
1191 if (x != new_func)
1192 emit_move_insn (new_func, x);
1193
1194 x = expand_expr (arg, new_arg, Pmode, 0);
1195 if (x != new_arg)
1196 emit_move_insn (new_arg, x);
1197
1198 /* Update the cleanup chain. */
1199
1200 emit_move_insn (dcc, XEXP (buf, 0));
1201}
1202
1203/* Emit RTL to start a dynamic handler on the EH runtime dynamic
1204 handler stack. This should only be used by expand_eh_region_start
1205 or expand_eh_region_start_tree. */
1206
1207static void
1208start_dynamic_handler ()
1209{
1210 rtx dhc, dcc;
6e6a07d2 1211 rtx x, arg, buf;
27a36778
MS
1212 int size;
1213
6e6a07d2 1214#ifndef DONT_USE_BUILTIN_SETJMP
27a36778
MS
1215 /* The number of Pmode words for the setjmp buffer, when using the
1216 builtin setjmp/longjmp, see expand_builtin, case
1217 BUILT_IN_LONGJMP. */
1218 size = 5;
1219#else
1220#ifdef JMP_BUF_SIZE
1221 size = JMP_BUF_SIZE;
1222#else
1223 /* Should be large enough for most systems, if it is not,
1224 JMP_BUF_SIZE should be defined with the proper value. It will
1225 also tend to be larger than necessary for most systems, a more
1226 optimal port will define JMP_BUF_SIZE. */
1227 size = FIRST_PSEUDO_REGISTER+2;
1228#endif
1229#endif
1230 /* XXX, FIXME: The stack space allocated this way is too long lived,
1231 but there is no allocation routine that allocates at the level of
1232 the last binding contour. */
1233 arg = assign_stack_local (BLKmode,
1234 GET_MODE_SIZE (Pmode)*(size+1),
1235 0);
1236
1237 arg = change_address (arg, Pmode, NULL_RTX);
1238
1239 /* Store dhc into the first word of the newly allocated buffer. */
1240
1241 dhc = get_dynamic_handler_chain ();
38a448ca
RH
1242 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1243 GET_MODE_SIZE (Pmode)));
27a36778
MS
1244 emit_move_insn (arg, dhc);
1245
1246 /* Zero out the start of the cleanup chain. */
1247 emit_move_insn (dcc, const0_rtx);
1248
1249 /* The jmpbuf starts two words into the area allocated. */
6e6a07d2 1250 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
27a36778 1251
6e6a07d2 1252#ifdef DONT_USE_BUILTIN_SETJMP
27a36778 1253 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1, SImode, 1,
6e6a07d2 1254 buf, Pmode);
6fd1c67b
RH
1255 /* If we come back here for a catch, transfer control to the handler. */
1256 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
6e6a07d2 1257#else
6fd1c67b
RH
1258 {
1259 /* A label to continue execution for the no exception case. */
1260 rtx noex = gen_label_rtx();
1261 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1262 ehstack.top->entry->exception_handler_label);
1263 emit_label (noex);
1264 }
6e6a07d2 1265#endif
27a36778 1266
27a36778
MS
1267 /* We are committed to this, so update the handler chain. */
1268
1269 emit_move_insn (dhc, XEXP (arg, 0));
1270}
1271
1272/* Start an exception handling region for the given cleanup action.
12670d88 1273 All instructions emitted after this point are considered to be part
27a36778
MS
1274 of the region until expand_eh_region_end is invoked. CLEANUP is
1275 the cleanup action to perform. The return value is true if the
1276 exception region was optimized away. If that case,
1277 expand_eh_region_end does not need to be called for this cleanup,
1278 nor should it be.
1279
1280 This routine notices one particular common case in C++ code
1281 generation, and optimizes it so as to not need the exception
1282 region. It works by creating a dynamic cleanup action, instead of
38e01259 1283 a using an exception region. */
27a36778
MS
1284
1285int
4c581243
MS
1286expand_eh_region_start_tree (decl, cleanup)
1287 tree decl;
27a36778
MS
1288 tree cleanup;
1289{
27a36778
MS
1290 /* This is the old code. */
1291 if (! doing_eh (0))
1292 return 0;
1293
1294 /* The optimization only applies to actions protected with
1295 terminate, and only applies if we are using the setjmp/longjmp
1296 codegen method. */
1297 if (exceptions_via_longjmp
1298 && protect_cleanup_actions_with_terminate)
1299 {
1300 tree func, arg;
1301 tree args;
1302
1303 /* Ignore any UNSAVE_EXPR. */
1304 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1305 cleanup = TREE_OPERAND (cleanup, 0);
1306
1307 /* Further, it only applies if the action is a call, if there
1308 are 2 arguments, and if the second argument is 2. */
1309
1310 if (TREE_CODE (cleanup) == CALL_EXPR
1311 && (args = TREE_OPERAND (cleanup, 1))
1312 && (func = TREE_OPERAND (cleanup, 0))
1313 && (arg = TREE_VALUE (args))
1314 && (args = TREE_CHAIN (args))
1315
1316 /* is the second argument 2? */
1317 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1318 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1319 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1320
1321 /* Make sure there are no other arguments. */
1322 && TREE_CHAIN (args) == NULL_TREE)
1323 {
1324 /* Arrange for returns and gotos to pop the entry we make on the
1325 dynamic cleanup stack. */
4c581243 1326 expand_dcc_cleanup (decl);
27a36778
MS
1327 start_dynamic_cleanup (func, arg);
1328 return 1;
1329 }
1330 }
1331
4c581243 1332 expand_eh_region_start_for_decl (decl);
9762d48d 1333 ehstack.top->entry->finalization = cleanup;
27a36778
MS
1334
1335 return 0;
1336}
1337
4c581243
MS
1338/* Just like expand_eh_region_start, except if a cleanup action is
1339 entered on the cleanup chain, the TREE_PURPOSE of the element put
1340 on the chain is DECL. DECL should be the associated VAR_DECL, if
1341 any, otherwise it should be NULL_TREE. */
4956d07c
MS
1342
1343void
4c581243
MS
1344expand_eh_region_start_for_decl (decl)
1345 tree decl;
4956d07c
MS
1346{
1347 rtx note;
1348
1349 /* This is the old code. */
1350 if (! doing_eh (0))
1351 return;
1352
27a36778
MS
1353 if (exceptions_via_longjmp)
1354 {
1355 /* We need a new block to record the start and end of the
1356 dynamic handler chain. We could always do this, but we
1357 really want to permit jumping into such a block, and we want
1358 to avoid any errors or performance impact in the SJ EH code
1359 for now. */
1360 expand_start_bindings (0);
1361
1362 /* But we don't need or want a new temporary level. */
1363 pop_temp_slots ();
1364
1365 /* Mark this block as created by expand_eh_region_start. This
1366 is so that we can pop the block with expand_end_bindings
1367 automatically. */
1368 mark_block_as_eh_region ();
1369
1370 /* Arrange for returns and gotos to pop the entry we make on the
1371 dynamic handler stack. */
4c581243 1372 expand_dhc_cleanup (decl);
27a36778 1373 }
4956d07c 1374
478b0752 1375 push_eh_entry (&ehstack);
9ad8a5f0
MS
1376 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1377 NOTE_BLOCK_NUMBER (note)
1378 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
27a36778
MS
1379 if (exceptions_via_longjmp)
1380 start_dynamic_handler ();
4956d07c
MS
1381}
1382
4c581243
MS
1383/* Start an exception handling region. All instructions emitted after
1384 this point are considered to be part of the region until
1385 expand_eh_region_end is invoked. */
1386
1387void
1388expand_eh_region_start ()
1389{
1390 expand_eh_region_start_for_decl (NULL_TREE);
1391}
1392
27a36778
MS
1393/* End an exception handling region. The information about the region
1394 is found on the top of ehstack.
12670d88
RK
1395
1396 HANDLER is either the cleanup for the exception region, or if we're
1397 marking the end of a try block, HANDLER is integer_zero_node.
1398
27a36778 1399 HANDLER will be transformed to rtl when expand_leftover_cleanups
abeeec2a 1400 is invoked. */
4956d07c
MS
1401
1402void
1403expand_eh_region_end (handler)
1404 tree handler;
1405{
4956d07c 1406 struct eh_entry *entry;
9ad8a5f0 1407 rtx note;
4956d07c
MS
1408
1409 if (! doing_eh (0))
1410 return;
1411
1412 entry = pop_eh_entry (&ehstack);
1413
9ad8a5f0
MS
1414 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1415 NOTE_BLOCK_NUMBER (note)
1416 = CODE_LABEL_NUMBER (entry->exception_handler_label);
e701eb4d
JM
1417 if (exceptions_via_longjmp == 0
1418 /* We share outer_context between regions; only emit it once. */
1419 && INSN_UID (entry->outer_context) == 0)
27a36778 1420 {
478b0752 1421 rtx label;
4956d07c 1422
478b0752
MS
1423 label = gen_label_rtx ();
1424 emit_jump (label);
1425
1426 /* Emit a label marking the end of this exception region that
1427 is used for rethrowing into the outer context. */
1428 emit_label (entry->outer_context);
e701eb4d 1429 expand_internal_throw ();
4956d07c 1430
478b0752 1431 emit_label (label);
27a36778 1432 }
4956d07c
MS
1433
1434 entry->finalization = handler;
1435
9a0d1e1b
AM
1436 /* create region entry in final exception table */
1437 new_eh_region_entry (NOTE_BLOCK_NUMBER (note));
1438
4956d07c
MS
1439 enqueue_eh_entry (&ehqueue, entry);
1440
27a36778
MS
1441 /* If we have already started ending the bindings, don't recurse.
1442 This only happens when exceptions_via_longjmp is true. */
1443 if (is_eh_region ())
1444 {
1445 /* Because we don't need or want a new temporary level and
1446 because we didn't create one in expand_eh_region_start,
1447 create a fake one now to avoid removing one in
1448 expand_end_bindings. */
1449 push_temp_slots ();
1450
1451 mark_block_as_not_eh_region ();
1452
1453 /* Maybe do this to prevent jumping in and so on... */
1454 expand_end_bindings (NULL_TREE, 0, 0);
1455 }
4956d07c
MS
1456}
1457
9762d48d
JM
1458/* End the EH region for a goto fixup. We only need them in the region-based
1459 EH scheme. */
1460
1461void
1462expand_fixup_region_start ()
1463{
1464 if (! doing_eh (0) || exceptions_via_longjmp)
1465 return;
1466
1467 expand_eh_region_start ();
1468}
1469
1470/* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1471 expanded; to avoid running it twice if it throws, we look through the
1472 ehqueue for a matching region and rethrow from its outer_context. */
1473
1474void
1475expand_fixup_region_end (cleanup)
1476 tree cleanup;
1477{
9762d48d 1478 struct eh_node *node;
b37f006b 1479 int dont_issue;
9762d48d
JM
1480
1481 if (! doing_eh (0) || exceptions_via_longjmp)
1482 return;
1483
1484 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1485 node = node->chain;
1486 if (node == 0)
1487 for (node = ehqueue.head; node && node->entry->finalization != cleanup; )
1488 node = node->chain;
1489 if (node == 0)
1490 abort ();
1491
b37f006b
AM
1492 /* If the outer context label has not been issued yet, we don't want
1493 to issue it as a part of this region, unless this is the
1494 correct region for the outer context. If we did, then the label for
1495 the outer context will be WITHIN the begin/end labels,
1496 and we could get an infinte loop when it tried to rethrow, or just
1497 generally incorrect execution following a throw. */
1498
1499 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1500 && (ehstack.top->entry != node->entry));
1501
e701eb4d 1502 ehstack.top->entry->outer_context = node->entry->outer_context;
9762d48d 1503
b37f006b
AM
1504 /* Since we are rethrowing to the OUTER region, we know we don't need
1505 a jump around sequence for this region, so we'll pretend the outer
1506 context label has been issued by setting INSN_UID to 1, then clearing
1507 it again afterwards. */
1508
1509 if (dont_issue)
1510 INSN_UID (node->entry->outer_context) = 1;
1511
e701eb4d
JM
1512 /* Just rethrow. size_zero_node is just a NOP. */
1513 expand_eh_region_end (size_zero_node);
b37f006b
AM
1514
1515 if (dont_issue)
1516 INSN_UID (node->entry->outer_context) = 0;
9762d48d
JM
1517}
1518
27a36778
MS
1519/* If we are using the setjmp/longjmp EH codegen method, we emit a
1520 call to __sjthrow.
1521
1522 Otherwise, we emit a call to __throw and note that we threw
1523 something, so we know we need to generate the necessary code for
1524 __throw.
12670d88
RK
1525
1526 Before invoking throw, the __eh_pc variable must have been set up
1527 to contain the PC being thrown from. This address is used by
27a36778 1528 __throw to determine which exception region (if any) is
abeeec2a 1529 responsible for handling the exception. */
4956d07c 1530
27a36778 1531void
4956d07c
MS
1532emit_throw ()
1533{
27a36778
MS
1534 if (exceptions_via_longjmp)
1535 {
1536 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1537 }
1538 else
1539 {
4956d07c 1540#ifdef JUMP_TO_THROW
27a36778 1541 emit_indirect_jump (throw_libfunc);
4956d07c 1542#else
27a36778 1543 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
4956d07c 1544#endif
27a36778 1545 }
4956d07c
MS
1546 emit_barrier ();
1547}
1548
e701eb4d
JM
1549/* Throw the current exception. If appropriate, this is done by jumping
1550 to the next handler. */
4956d07c
MS
1551
1552void
e701eb4d 1553expand_internal_throw ()
4956d07c 1554{
e701eb4d 1555 emit_throw ();
4956d07c
MS
1556}
1557
1558/* Called from expand_exception_blocks and expand_end_catch_block to
27a36778 1559 emit any pending handlers/cleanups queued from expand_eh_region_end. */
4956d07c
MS
1560
1561void
1562expand_leftover_cleanups ()
1563{
1564 struct eh_entry *entry;
1565
1566 while ((entry = dequeue_eh_entry (&ehqueue)) != 0)
1567 {
1568 rtx prev;
1569
12670d88
RK
1570 /* A leftover try block. Shouldn't be one here. */
1571 if (entry->finalization == integer_zero_node)
1572 abort ();
1573
abeeec2a 1574 /* Output the label for the start of the exception handler. */
4956d07c 1575
9a0d1e1b 1576 receive_exception_label (entry->exception_handler_label);
f51430ed 1577
9a0d1e1b
AM
1578 /* register a handler for this cleanup region */
1579 add_new_handler (
1580 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1581 get_new_handler (entry->exception_handler_label, NULL));
05f5b2cd 1582
abeeec2a 1583 /* And now generate the insns for the handler. */
4956d07c
MS
1584 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1585
1586 prev = get_last_insn ();
27a36778 1587 if (prev == NULL || GET_CODE (prev) != BARRIER)
e701eb4d
JM
1588 /* Emit code to throw to the outer context if we fall off
1589 the end of the handler. */
1590 expand_rethrow (entry->outer_context);
4956d07c 1591
c7ae64f2 1592 do_pending_stack_adjust ();
4956d07c
MS
1593 free (entry);
1594 }
1595}
1596
abeeec2a 1597/* Called at the start of a block of try statements. */
12670d88
RK
1598void
1599expand_start_try_stmts ()
1600{
1601 if (! doing_eh (1))
1602 return;
1603
1604 expand_eh_region_start ();
1605}
1606
9a0d1e1b
AM
1607/* Called to begin a catch clause. The parameter is the object which
1608 will be passed to the runtime type check routine. */
1609void
0d3453df 1610start_catch_handler (rtime)
9a0d1e1b
AM
1611 tree rtime;
1612{
9a9deafc
AM
1613 rtx handler_label;
1614 int insn_region_num;
1615 int eh_region_entry;
1616
1617 if (! doing_eh (1))
1618 return;
1619
1620 handler_label = catchstack.top->entry->exception_handler_label;
1621 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1622 eh_region_entry = find_func_region (insn_region_num);
9a0d1e1b
AM
1623
1624 /* If we've already issued this label, pick a new one */
7ecb5d27 1625 if (catchstack.top->entry->label_used)
9a0d1e1b
AM
1626 handler_label = gen_exception_label ();
1627 else
1628 catchstack.top->entry->label_used = 1;
1629
1630 receive_exception_label (handler_label);
1631
1632 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
bf71cd2e
AM
1633
1634 if (flag_new_exceptions && ! exceptions_via_longjmp)
1635 return;
1636
1637 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1638 issue code to compare 'rtime' to the value in eh_info, via the
1639 matching function in eh_info. If its is false, we branch around
1640 the handler we are about to issue. */
1641
1642 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1643 {
1644 rtx call_rtx, rtime_address;
1645
1646 if (catchstack.top->entry->false_label != NULL_RTX)
7ac2148b 1647 fatal ("Compiler Bug: Never issued previous false_label");
bf71cd2e
AM
1648 catchstack.top->entry->false_label = gen_exception_label ();
1649
1650 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
1651 rtime_address = force_reg (Pmode, rtime_address);
1652
1653 /* Now issue the call, and branch around handler if needed */
43566944
AM
1654 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1655 0, SImode, 1, rtime_address, Pmode);
bf71cd2e
AM
1656
1657 /* Did the function return true? */
1658 emit_cmp_insn (call_rtx, const0_rtx, EQ, NULL_RTX,
1659 GET_MODE (call_rtx), 0 ,0);
1660 emit_jump_insn (gen_beq (catchstack.top->entry->false_label));
1661 }
1662}
1663
1664/* Called to end a catch clause. If we aren't using the new exception
1665 model tabel mechanism, we need to issue the branch-around label
1666 for the end of the catch block. */
1667
1668void
1669end_catch_handler ()
1670{
1671 if (! doing_eh (1) || (flag_new_exceptions && ! exceptions_via_longjmp))
1672 return;
1673
1674 /* A NULL label implies the catch clause was a catch all or cleanup */
1675 if (catchstack.top->entry->false_label == NULL_RTX)
1676 return;
1677
1678 emit_label (catchstack.top->entry->false_label);
1679 catchstack.top->entry->false_label = NULL_RTX;
9a0d1e1b
AM
1680}
1681
12670d88
RK
1682/* Generate RTL for the start of a group of catch clauses.
1683
1684 It is responsible for starting a new instruction sequence for the
1685 instructions in the catch block, and expanding the handlers for the
1686 internally-generated exception regions nested within the try block
abeeec2a 1687 corresponding to this catch block. */
4956d07c
MS
1688
1689void
1690expand_start_all_catch ()
1691{
1692 struct eh_entry *entry;
1693 tree label;
e701eb4d 1694 rtx outer_context;
4956d07c
MS
1695
1696 if (! doing_eh (1))
1697 return;
1698
e701eb4d 1699 outer_context = ehstack.top->entry->outer_context;
1418bb67 1700
abeeec2a 1701 /* End the try block. */
12670d88
RK
1702 expand_eh_region_end (integer_zero_node);
1703
4956d07c
MS
1704 emit_line_note (input_filename, lineno);
1705 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1706
12670d88 1707 /* The label for the exception handling block that we will save.
956d6950 1708 This is Lresume in the documentation. */
4956d07c
MS
1709 expand_label (label);
1710
12670d88 1711 /* Push the label that points to where normal flow is resumed onto
abeeec2a 1712 the top of the label stack. */
4956d07c
MS
1713 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1714
1715 /* Start a new sequence for all the catch blocks. We will add this
12670d88 1716 to the global sequence catch_clauses when we have completed all
4956d07c
MS
1717 the handlers in this handler-seq. */
1718 start_sequence ();
1719
9a0d1e1b
AM
1720 entry = dequeue_eh_entry (&ehqueue);
1721 for ( ; entry->finalization != integer_zero_node;
1722 entry = dequeue_eh_entry (&ehqueue))
4956d07c
MS
1723 {
1724 rtx prev;
1725
9a0d1e1b 1726 /* Emit the label for the cleanup handler for this region, and
12670d88
RK
1727 expand the code for the handler.
1728
1729 Note that a catch region is handled as a side-effect here;
1730 for a try block, entry->finalization will contain
1731 integer_zero_node, so no code will be generated in the
1732 expand_expr call below. But, the label for the handler will
1733 still be emitted, so any code emitted after this point will
abeeec2a 1734 end up being the handler. */
9a0d1e1b
AM
1735
1736 receive_exception_label (entry->exception_handler_label);
05f5b2cd 1737
9a0d1e1b
AM
1738 /* register a handler for this cleanup region */
1739 add_new_handler (
1740 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1741 get_new_handler (entry->exception_handler_label, NULL));
4956d07c 1742
9a0d1e1b 1743 /* And now generate the insns for the cleanup handler. */
27a36778
MS
1744 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1745
4956d07c 1746 prev = get_last_insn ();
12670d88 1747 if (prev == NULL || GET_CODE (prev) != BARRIER)
e701eb4d
JM
1748 /* Code to throw out to outer context when we fall off end
1749 of the handler. We can't do this here for catch blocks,
1750 so it's done in expand_end_all_catch instead. */
1751 expand_rethrow (entry->outer_context);
12670d88 1752
f45ebe47 1753 do_pending_stack_adjust ();
4956d07c
MS
1754 free (entry);
1755 }
e701eb4d 1756
9a0d1e1b
AM
1757 /* At this point, all the cleanups are done, and the ehqueue now has
1758 the current exception region at its head. We dequeue it, and put it
1759 on the catch stack. */
1760
1761 push_entry (&catchstack, entry);
1762
e701eb4d
JM
1763 /* If we are not doing setjmp/longjmp EH, because we are reordered
1764 out of line, we arrange to rethrow in the outer context. We need to
1765 do this because we are not physically within the region, if any, that
1766 logically contains this catch block. */
1767 if (! exceptions_via_longjmp)
1768 {
1769 expand_eh_region_start ();
1770 ehstack.top->entry->outer_context = outer_context;
1771 }
5816cb14 1772
4956d07c
MS
1773}
1774
12670d88
RK
1775/* Finish up the catch block. At this point all the insns for the
1776 catch clauses have already been generated, so we only have to add
1777 them to the catch_clauses list. We also want to make sure that if
1778 we fall off the end of the catch clauses that we rethrow to the
abeeec2a 1779 outer EH region. */
4956d07c
MS
1780
1781void
1782expand_end_all_catch ()
1783{
5dfa7520 1784 rtx new_catch_clause, outer_context = NULL_RTX;
0d3453df 1785 struct eh_entry *entry;
4956d07c
MS
1786
1787 if (! doing_eh (1))
1788 return;
1789
0d3453df
AM
1790 /* Dequeue the current catch clause region. */
1791 entry = pop_eh_entry (&catchstack);
1792 free (entry);
1793
e701eb4d 1794 if (! exceptions_via_longjmp)
5dfa7520
JM
1795 {
1796 outer_context = ehstack.top->entry->outer_context;
1797
1798 /* Finish the rethrow region. size_zero_node is just a NOP. */
1799 expand_eh_region_end (size_zero_node);
1800 }
1801
e701eb4d
JM
1802 /* Code to throw out to outer context, if we fall off end of catch
1803 handlers. This is rethrow (Lresume, same id, same obj) in the
1804 documentation. We use Lresume because we know that it will throw
1805 to the correct context.
12670d88 1806
e701eb4d
JM
1807 In other words, if the catch handler doesn't exit or return, we
1808 do a "throw" (using the address of Lresume as the point being
1809 thrown from) so that the outer EH region can then try to process
1810 the exception. */
1811 expand_rethrow (outer_context);
4956d07c
MS
1812
1813 /* Now we have the complete catch sequence. */
1814 new_catch_clause = get_insns ();
1815 end_sequence ();
1816
1817 /* This level of catch blocks is done, so set up the successful
1818 catch jump label for the next layer of catch blocks. */
1819 pop_label_entry (&caught_return_label_stack);
956d6950 1820 pop_label_entry (&outer_context_label_stack);
4956d07c
MS
1821
1822 /* Add the new sequence of catches to the main one for this function. */
1823 push_to_sequence (catch_clauses);
1824 emit_insns (new_catch_clause);
1825 catch_clauses = get_insns ();
1826 end_sequence ();
1827
1828 /* Here we fall through into the continuation code. */
1829}
1830
e701eb4d
JM
1831/* Rethrow from the outer context LABEL. */
1832
1833static void
1834expand_rethrow (label)
1835 rtx label;
1836{
1837 if (exceptions_via_longjmp)
1838 emit_throw ();
1839 else
1840 emit_jump (label);
1841}
1842
12670d88 1843/* End all the pending exception regions on protect_list. The handlers
27a36778 1844 will be emitted when expand_leftover_cleanups is invoked. */
4956d07c
MS
1845
1846void
1847end_protect_partials ()
1848{
1849 while (protect_list)
1850 {
1851 expand_eh_region_end (TREE_VALUE (protect_list));
1852 protect_list = TREE_CHAIN (protect_list);
1853 }
1854}
27a36778
MS
1855
1856/* Arrange for __terminate to be called if there is an unhandled throw
1857 from within E. */
1858
1859tree
1860protect_with_terminate (e)
1861 tree e;
1862{
1863 /* We only need to do this when using setjmp/longjmp EH and the
1864 language requires it, as otherwise we protect all of the handlers
1865 at once, if we need to. */
1866 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
1867 {
1868 tree handler, result;
1869
1870 /* All cleanups must be on the function_obstack. */
1871 push_obstacks_nochange ();
1872 resume_temporary_allocation ();
1873
1874 handler = make_node (RTL_EXPR);
1875 TREE_TYPE (handler) = void_type_node;
1876 RTL_EXPR_RTL (handler) = const0_rtx;
1877 TREE_SIDE_EFFECTS (handler) = 1;
1878 start_sequence_for_rtl_expr (handler);
1879
1880 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
1881 emit_barrier ();
1882
1883 RTL_EXPR_SEQUENCE (handler) = get_insns ();
1884 end_sequence ();
1885
1886 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
1887 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
1888 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
1889 TREE_READONLY (result) = TREE_READONLY (e);
1890
1891 pop_obstacks ();
1892
1893 e = result;
1894 }
1895
1896 return e;
1897}
4956d07c
MS
1898\f
1899/* The exception table that we build that is used for looking up and
12670d88
RK
1900 dispatching exceptions, the current number of entries, and its
1901 maximum size before we have to extend it.
1902
1903 The number in eh_table is the code label number of the exception
27a36778
MS
1904 handler for the region. This is added by add_eh_table_entry and
1905 used by output_exception_table_entry. */
12670d88 1906
9a0d1e1b
AM
1907static int *eh_table = NULL;
1908static int eh_table_size = 0;
1909static int eh_table_max_size = 0;
4956d07c
MS
1910
1911/* Note the need for an exception table entry for region N. If we
12670d88
RK
1912 don't need to output an explicit exception table, avoid all of the
1913 extra work.
1914
1915 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
9a0d1e1b 1916 (Or NOTE_INSN_EH_REGION_END sometimes)
12670d88 1917 N is the NOTE_BLOCK_NUMBER of the note, which comes from the code
abeeec2a 1918 label number of the exception handler for the region. */
4956d07c
MS
1919
1920void
1921add_eh_table_entry (n)
1922 int n;
1923{
1924#ifndef OMIT_EH_TABLE
1925 if (eh_table_size >= eh_table_max_size)
1926 {
1927 if (eh_table)
1928 {
1929 eh_table_max_size += eh_table_max_size>>1;
1930
1931 if (eh_table_max_size < 0)
1932 abort ();
1933
ca55abae
JM
1934 eh_table = (int *) xrealloc (eh_table,
1935 eh_table_max_size * sizeof (int));
4956d07c
MS
1936 }
1937 else
1938 {
1939 eh_table_max_size = 252;
1940 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
1941 }
1942 }
1943 eh_table[eh_table_size++] = n;
1944#endif
1945}
1946
12670d88
RK
1947/* Return a non-zero value if we need to output an exception table.
1948
1949 On some platforms, we don't have to output a table explicitly.
1950 This routine doesn't mean we don't have one. */
4956d07c
MS
1951
1952int
1953exception_table_p ()
1954{
1955 if (eh_table)
1956 return 1;
1957
1958 return 0;
1959}
1960
38e01259 1961/* Output the entry of the exception table corresponding to the
12670d88
RK
1962 exception region numbered N to file FILE.
1963
1964 N is the code label number corresponding to the handler of the
abeeec2a 1965 region. */
4956d07c
MS
1966
1967static void
1968output_exception_table_entry (file, n)
1969 FILE *file;
1970 int n;
1971{
1972 char buf[256];
1973 rtx sym;
9a0d1e1b
AM
1974 struct handler_info *handler;
1975
1976 handler = get_first_handler (n);
4956d07c 1977
9a0d1e1b
AM
1978 for ( ; handler != NULL; handler = handler->next)
1979 {
1980 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
1981 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
1982 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
4956d07c 1983
9a0d1e1b
AM
1984 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
1985 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
1986 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
1987
1988 assemble_integer (handler->handler_label,
1989 POINTER_SIZE / BITS_PER_UNIT, 1);
4956d07c 1990
a1622f83
AM
1991 if (flag_new_exceptions)
1992 {
1993 if (handler->type_info == NULL)
1994 assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
1995 else
9c606f69
AM
1996 if (handler->type_info == CATCH_ALL_TYPE)
1997 assemble_integer (GEN_INT (CATCH_ALL_TYPE),
1998 POINTER_SIZE / BITS_PER_UNIT, 1);
1999 else
2000 output_constant ((tree)(handler->type_info),
9a0d1e1b 2001 POINTER_SIZE / BITS_PER_UNIT);
a1622f83 2002 }
9a0d1e1b 2003 putc ('\n', file); /* blank line */
bf71cd2e
AM
2004 /* We only output the first label under the old scheme */
2005 if (! flag_new_exceptions)
2006 break;
9a0d1e1b 2007 }
4956d07c
MS
2008}
2009
abeeec2a 2010/* Output the exception table if we have and need one. */
4956d07c 2011
9a0d1e1b
AM
2012static short language_code = 0;
2013static short version_code = 0;
2014
2015/* This routine will set the language code for exceptions. */
804a4e13
KG
2016void
2017set_exception_lang_code (code)
2018 int code;
9a0d1e1b
AM
2019{
2020 language_code = code;
2021}
2022
2023/* This routine will set the language version code for exceptions. */
804a4e13
KG
2024void
2025set_exception_version_code (code)
9a0d1e1b
AM
2026 short code;
2027{
2028 version_code = code;
2029}
2030
9a0d1e1b 2031
4956d07c
MS
2032void
2033output_exception_table ()
2034{
2035 int i;
2036 extern FILE *asm_out_file;
2037
ca55abae 2038 if (! doing_eh (0) || ! eh_table)
4956d07c
MS
2039 return;
2040
2041 exception_section ();
2042
2043 /* Beginning marker for table. */
2044 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
2045 assemble_label ("__EXCEPTION_TABLE__");
2046
a1622f83
AM
2047 if (flag_new_exceptions)
2048 {
2049 assemble_integer (GEN_INT (NEW_EH_RUNTIME),
2050 POINTER_SIZE / BITS_PER_UNIT, 1);
2051 assemble_integer (GEN_INT (language_code), 2 , 1);
2052 assemble_integer (GEN_INT (version_code), 2 , 1);
2053
2054 /* Add enough padding to make sure table aligns on a pointer boundry. */
2055 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2056 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2057 ;
2058 if (i != 0)
2059 assemble_integer (const0_rtx, i , 1);
2060 }
9a0d1e1b 2061
4956d07c
MS
2062 for (i = 0; i < eh_table_size; ++i)
2063 output_exception_table_entry (asm_out_file, eh_table[i]);
2064
2065 free (eh_table);
9a0d1e1b 2066 clear_function_eh_region ();
4956d07c
MS
2067
2068 /* Ending marker for table. */
4956d07c 2069 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
a1622f83 2070
9a0d1e1b
AM
2071 /* for binary compatability, the old __throw checked the second
2072 position for a -1, so we should output at least 2 -1's */
a1622f83
AM
2073 if (! flag_new_exceptions)
2074 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2075
4956d07c
MS
2076 putc ('\n', asm_out_file); /* blank line */
2077}
4956d07c 2078\f
154bba13
TT
2079/* Emit code to get EH context.
2080
2081 We have to scan thru the code to find possible EH context registers.
2082 Inlined functions may use it too, and thus we'll have to be able
2083 to change them too.
2084
2085 This is done only if using exceptions_via_longjmp. */
2086
2087void
2088emit_eh_context ()
2089{
2090 rtx insn;
2091 rtx ehc = 0;
2092
2093 if (! doing_eh (0))
2094 return;
2095
2096 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2097 if (GET_CODE (insn) == INSN
2098 && GET_CODE (PATTERN (insn)) == USE)
2099 {
2100 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2101 if (reg)
2102 {
2103 rtx insns;
2104
100d81d4
JM
2105 start_sequence ();
2106
d9c92f32
JM
2107 /* If this is the first use insn, emit the call here. This
2108 will always be at the top of our function, because if
2109 expand_inline_function notices a REG_EH_CONTEXT note, it
2110 adds a use insn to this function as well. */
154bba13 2111 if (ehc == 0)
01eb7f9a 2112 ehc = call_get_eh_context ();
154bba13 2113
154bba13
TT
2114 emit_move_insn (XEXP (reg, 0), ehc);
2115 insns = get_insns ();
2116 end_sequence ();
2117
2118 emit_insns_before (insns, insn);
0fc1434b
AM
2119
2120 /* At -O0, we must make the context register stay alive so
2121 that the stupid.c register allocator doesn't get confused. */
2122 if (obey_regdecls != 0)
2123 {
2124 insns = gen_rtx_USE (GET_MODE (XEXP (reg,0)), XEXP (reg,0));
2125 emit_insn_before (insns, get_last_insn ());
2126 }
154bba13
TT
2127 }
2128 }
2129}
2130
12670d88
RK
2131/* Scan the current insns and build a list of handler labels. The
2132 resulting list is placed in the global variable exception_handler_labels.
2133
2134 It is called after the last exception handling region is added to
2135 the current function (when the rtl is almost all built for the
2136 current function) and before the jump optimization pass. */
4956d07c
MS
2137
2138void
2139find_exception_handler_labels ()
2140{
2141 rtx insn;
4956d07c
MS
2142
2143 exception_handler_labels = NULL_RTX;
2144
2145 /* If we aren't doing exception handling, there isn't much to check. */
2146 if (! doing_eh (0))
2147 return;
2148
12670d88
RK
2149 /* For each start of a region, add its label to the list. */
2150
4956d07c
MS
2151 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2152 {
9a0d1e1b 2153 struct handler_info* ptr;
4956d07c
MS
2154 if (GET_CODE (insn) == NOTE
2155 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2156 {
9a0d1e1b
AM
2157 ptr = get_first_handler (NOTE_BLOCK_NUMBER (insn));
2158 for ( ; ptr; ptr = ptr->next)
2159 {
2160 /* make sure label isn't in the list already */
2161 rtx x;
2162 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2163 if (XEXP (x, 0) == ptr->handler_label)
2164 break;
2165 if (! x)
2166 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2167 ptr->handler_label, exception_handler_labels);
2168 }
4956d07c
MS
2169 }
2170 }
9a0d1e1b
AM
2171}
2172
2173/* Return a value of 1 if the parameter label number is an exception handler
2174 label. Return 0 otherwise. */
988cea7d 2175
9a0d1e1b
AM
2176int
2177is_exception_handler_label (lab)
2178 int lab;
2179{
2180 rtx x;
2181 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2182 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2183 return 1;
2184 return 0;
4956d07c
MS
2185}
2186
12670d88
RK
2187/* Perform sanity checking on the exception_handler_labels list.
2188
2189 Can be called after find_exception_handler_labels is called to
2190 build the list of exception handlers for the current function and
2191 before we finish processing the current function. */
4956d07c
MS
2192
2193void
2194check_exception_handler_labels ()
2195{
9a0d1e1b 2196 rtx insn, insn2;
4956d07c
MS
2197
2198 /* If we aren't doing exception handling, there isn't much to check. */
2199 if (! doing_eh (0))
2200 return;
2201
9a0d1e1b
AM
2202 /* Make sure there is no more than 1 copy of a label */
2203 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
4956d07c 2204 {
9a0d1e1b
AM
2205 int count = 0;
2206 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2207 if (XEXP (insn, 0) == XEXP (insn2, 0))
2208 count++;
2209 if (count != 1)
2210 warning ("Counted %d copies of EH region %d in list.\n", count,
2211 CODE_LABEL_NUMBER (insn));
4956d07c
MS
2212 }
2213
4956d07c
MS
2214}
2215\f
2216/* This group of functions initializes the exception handling data
2217 structures at the start of the compilation, initializes the data
12670d88 2218 structures at the start of a function, and saves and restores the
4956d07c
MS
2219 exception handling data structures for the start/end of a nested
2220 function. */
2221
2222/* Toplevel initialization for EH things. */
2223
2224void
2225init_eh ()
2226{
4956d07c
MS
2227}
2228
abeeec2a 2229/* Initialize the per-function EH information. */
4956d07c
MS
2230
2231void
2232init_eh_for_function ()
2233{
2234 ehstack.top = 0;
9a0d1e1b 2235 catchstack.top = 0;
4956d07c
MS
2236 ehqueue.head = ehqueue.tail = 0;
2237 catch_clauses = NULL_RTX;
2238 false_label_stack = 0;
2239 caught_return_label_stack = 0;
2240 protect_list = NULL_TREE;
154bba13 2241 current_function_ehc = NULL_RTX;
71038426
RH
2242 eh_return_context = NULL_RTX;
2243 eh_return_stack_adjust = NULL_RTX;
2244 eh_return_handler = NULL_RTX;
2245 eh_return_stub_label = NULL_RTX;
4956d07c
MS
2246}
2247
12670d88
RK
2248/* Save some of the per-function EH info into the save area denoted by
2249 P.
2250
27a36778 2251 This is currently called from save_stmt_status. */
4956d07c
MS
2252
2253void
2254save_eh_status (p)
2255 struct function *p;
2256{
3a88cbd1
JL
2257 if (p == NULL)
2258 abort ();
12670d88 2259
4956d07c 2260 p->ehstack = ehstack;
9a0d1e1b 2261 p->catchstack = catchstack;
4956d07c
MS
2262 p->ehqueue = ehqueue;
2263 p->catch_clauses = catch_clauses;
2264 p->false_label_stack = false_label_stack;
2265 p->caught_return_label_stack = caught_return_label_stack;
2266 p->protect_list = protect_list;
154bba13 2267 p->ehc = current_function_ehc;
4956d07c 2268
6e1f1f93 2269 init_eh_for_function ();
4956d07c
MS
2270}
2271
12670d88
RK
2272/* Restore the per-function EH info saved into the area denoted by P.
2273
abeeec2a 2274 This is currently called from restore_stmt_status. */
4956d07c
MS
2275
2276void
2277restore_eh_status (p)
2278 struct function *p;
2279{
3a88cbd1
JL
2280 if (p == NULL)
2281 abort ();
12670d88 2282
4956d07c
MS
2283 protect_list = p->protect_list;
2284 caught_return_label_stack = p->caught_return_label_stack;
2285 false_label_stack = p->false_label_stack;
2286 catch_clauses = p->catch_clauses;
2287 ehqueue = p->ehqueue;
2288 ehstack = p->ehstack;
9a0d1e1b 2289 catchstack = p->catchstack;
154bba13 2290 current_function_ehc = p->ehc;
4956d07c
MS
2291}
2292\f
2293/* This section is for the exception handling specific optimization
2294 pass. First are the internal routines, and then the main
2295 optimization pass. */
2296
2297/* Determine if the given INSN can throw an exception. */
2298
2299static int
2300can_throw (insn)
2301 rtx insn;
2302{
abeeec2a 2303 /* Calls can always potentially throw exceptions. */
4956d07c
MS
2304 if (GET_CODE (insn) == CALL_INSN)
2305 return 1;
2306
27a36778
MS
2307 if (asynchronous_exceptions)
2308 {
2309 /* If we wanted asynchronous exceptions, then everything but NOTEs
2310 and CODE_LABELs could throw. */
2311 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2312 return 1;
2313 }
4956d07c
MS
2314
2315 return 0;
2316}
2317
12670d88
RK
2318/* Scan a exception region looking for the matching end and then
2319 remove it if possible. INSN is the start of the region, N is the
2320 region number, and DELETE_OUTER is to note if anything in this
2321 region can throw.
2322
2323 Regions are removed if they cannot possibly catch an exception.
27a36778 2324 This is determined by invoking can_throw on each insn within the
12670d88
RK
2325 region; if can_throw returns true for any of the instructions, the
2326 region can catch an exception, since there is an insn within the
2327 region that is capable of throwing an exception.
2328
2329 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
27a36778 2330 calls abort if it can't find one.
12670d88
RK
2331
2332 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
abeeec2a 2333 correspond to the region number, or if DELETE_OUTER is NULL. */
4956d07c
MS
2334
2335static rtx
2336scan_region (insn, n, delete_outer)
2337 rtx insn;
2338 int n;
2339 int *delete_outer;
2340{
2341 rtx start = insn;
2342
2343 /* Assume we can delete the region. */
2344 int delete = 1;
2345
3a88cbd1
JL
2346 if (insn == NULL_RTX
2347 || GET_CODE (insn) != NOTE
2348 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2349 || NOTE_BLOCK_NUMBER (insn) != n
2350 || delete_outer == NULL)
2351 abort ();
12670d88 2352
4956d07c
MS
2353 insn = NEXT_INSN (insn);
2354
2355 /* Look for the matching end. */
2356 while (! (GET_CODE (insn) == NOTE
2357 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2358 {
2359 /* If anything can throw, we can't remove the region. */
2360 if (delete && can_throw (insn))
2361 {
2362 delete = 0;
2363 }
2364
2365 /* Watch out for and handle nested regions. */
2366 if (GET_CODE (insn) == NOTE
2367 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2368 {
2369 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &delete);
2370 }
2371
2372 insn = NEXT_INSN (insn);
2373 }
2374
2375 /* The _BEG/_END NOTEs must match and nest. */
2376 if (NOTE_BLOCK_NUMBER (insn) != n)
2377 abort ();
2378
12670d88 2379 /* If anything in this exception region can throw, we can throw. */
4956d07c
MS
2380 if (! delete)
2381 *delete_outer = 0;
2382 else
2383 {
2384 /* Delete the start and end of the region. */
2385 delete_insn (start);
2386 delete_insn (insn);
2387
9a0d1e1b
AM
2388/* We no longer removed labels here, since flow will now remove any
2389 handler which cannot be called any more. */
2390
2391#if 0
4956d07c
MS
2392 /* Only do this part if we have built the exception handler
2393 labels. */
2394 if (exception_handler_labels)
2395 {
2396 rtx x, *prev = &exception_handler_labels;
2397
2398 /* Find it in the list of handlers. */
2399 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2400 {
2401 rtx label = XEXP (x, 0);
2402 if (CODE_LABEL_NUMBER (label) == n)
2403 {
2404 /* If we are the last reference to the handler,
2405 delete it. */
2406 if (--LABEL_NUSES (label) == 0)
2407 delete_insn (label);
2408
2409 if (optimize)
2410 {
2411 /* Remove it from the list of exception handler
2412 labels, if we are optimizing. If we are not, then
2413 leave it in the list, as we are not really going to
2414 remove the region. */
2415 *prev = XEXP (x, 1);
2416 XEXP (x, 1) = 0;
2417 XEXP (x, 0) = 0;
2418 }
2419
2420 break;
2421 }
2422 prev = &XEXP (x, 1);
2423 }
2424 }
9a0d1e1b 2425#endif
4956d07c
MS
2426 }
2427 return insn;
2428}
2429
2430/* Perform various interesting optimizations for exception handling
2431 code.
2432
12670d88
RK
2433 We look for empty exception regions and make them go (away). The
2434 jump optimization code will remove the handler if nothing else uses
abeeec2a 2435 it. */
4956d07c
MS
2436
2437void
2438exception_optimize ()
2439{
381127e8 2440 rtx insn;
4956d07c
MS
2441 int n;
2442
12670d88 2443 /* Remove empty regions. */
4956d07c
MS
2444 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2445 {
2446 if (GET_CODE (insn) == NOTE
2447 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2448 {
27a36778 2449 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
12670d88
RK
2450 insn, we will indirectly skip through all the insns
2451 inbetween. We are also guaranteed that the value of insn
27a36778 2452 returned will be valid, as otherwise scan_region won't
abeeec2a 2453 return. */
4956d07c
MS
2454 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &n);
2455 }
2456 }
2457}
ca55abae
JM
2458\f
2459/* Various hooks for the DWARF 2 __throw routine. */
2460
2461/* Do any necessary initialization to access arbitrary stack frames.
2462 On the SPARC, this means flushing the register windows. */
2463
2464void
2465expand_builtin_unwind_init ()
2466{
2467 /* Set this so all the registers get saved in our frame; we need to be
2468 able to copy the saved values for any registers from frames we unwind. */
2469 current_function_has_nonlocal_label = 1;
2470
2471#ifdef SETUP_FRAME_ADDRESSES
2472 SETUP_FRAME_ADDRESSES ();
2473#endif
2474}
2475
2476/* Given a value extracted from the return address register or stack slot,
2477 return the actual address encoded in that value. */
2478
2479rtx
2480expand_builtin_extract_return_addr (addr_tree)
2481 tree addr_tree;
2482{
2483 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2484 return eh_outer_context (addr);
2485}
2486
2487/* Given an actual address in addr_tree, do any necessary encoding
2488 and return the value to be stored in the return address register or
2489 stack slot so the epilogue will return to that address. */
2490
2491rtx
2492expand_builtin_frob_return_addr (addr_tree)
2493 tree addr_tree;
2494{
2495 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2496#ifdef RETURN_ADDR_OFFSET
2497 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2498#endif
2499 return addr;
2500}
2501
71038426
RH
2502/* Choose three registers for communication between the main body of
2503 __throw and the epilogue (or eh stub) and the exception handler.
2504 We must do this with hard registers because the epilogue itself
2505 will be generated after reload, at which point we may not reference
2506 pseudos at all.
ca55abae 2507
71038426
RH
2508 The first passes the exception context to the handler. For this
2509 we use the return value register for a void*.
ca55abae 2510
71038426
RH
2511 The second holds the stack pointer value to be restored. For
2512 this we use the static chain register if it exists and is different
2513 from the previous, otherwise some arbitrary call-clobbered register.
ca55abae 2514
71038426
RH
2515 The third holds the address of the handler itself. Here we use
2516 some arbitrary call-clobbered register. */
ca55abae
JM
2517
2518static void
71038426
RH
2519eh_regs (pcontext, psp, pra, outgoing)
2520 rtx *pcontext, *psp, *pra;
ca55abae
JM
2521 int outgoing;
2522{
71038426
RH
2523 rtx rcontext, rsp, rra;
2524 int i;
ca55abae
JM
2525
2526#ifdef FUNCTION_OUTGOING_VALUE
2527 if (outgoing)
71038426
RH
2528 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2529 current_function_decl);
ca55abae
JM
2530 else
2531#endif
71038426
RH
2532 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
2533 current_function_decl);
ca55abae
JM
2534
2535#ifdef STATIC_CHAIN_REGNUM
2536 if (outgoing)
71038426 2537 rsp = static_chain_incoming_rtx;
ca55abae 2538 else
71038426
RH
2539 rsp = static_chain_rtx;
2540 if (REGNO (rsp) == REGNO (rcontext))
ca55abae 2541#endif /* STATIC_CHAIN_REGNUM */
71038426 2542 rsp = NULL_RTX;
ca55abae 2543
71038426 2544 if (rsp == NULL_RTX)
ca55abae 2545 {
ca55abae 2546 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
71038426
RH
2547 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
2548 break;
2549 if (i == FIRST_PSEUDO_REGISTER)
2550 abort();
ca55abae 2551
71038426 2552 rsp = gen_rtx_REG (Pmode, i);
ca55abae
JM
2553 }
2554
71038426
RH
2555 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2556 if (call_used_regs[i] && ! fixed_regs[i]
2557 && i != REGNO (rcontext) && i != REGNO (rsp))
2558 break;
2559 if (i == FIRST_PSEUDO_REGISTER)
2560 abort();
2561
2562 rra = gen_rtx_REG (Pmode, i);
ca55abae 2563
71038426
RH
2564 *pcontext = rcontext;
2565 *psp = rsp;
2566 *pra = rra;
2567}
9a0d1e1b
AM
2568
2569/* Retrieve the register which contains the pointer to the eh_context
2570 structure set the __throw. */
2571
2572rtx
2573get_reg_for_handler ()
2574{
2575 rtx reg1;
2576 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2577 current_function_decl);
2578 return reg1;
2579}
2580
71038426
RH
2581/* Set up the epilogue with the magic bits we'll need to return to the
2582 exception handler. */
9a0d1e1b 2583
71038426
RH
2584void
2585expand_builtin_eh_return (context, stack, handler)
2586 tree context, stack, handler;
a1622f83 2587{
71038426
RH
2588 if (eh_return_context)
2589 error("Duplicate call to __builtin_eh_return");
a1622f83 2590
71038426
RH
2591 eh_return_context
2592 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
2593 eh_return_stack_adjust
2594 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
2595 eh_return_handler
2596 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
a1622f83
AM
2597}
2598
71038426
RH
2599void
2600expand_eh_return ()
ca55abae 2601{
71038426
RH
2602 rtx reg1, reg2, reg3;
2603 rtx stub_start, after_stub;
2604 rtx ra, tmp;
ca55abae 2605
71038426
RH
2606 if (!eh_return_context)
2607 return;
ca55abae 2608
71038426
RH
2609 eh_regs (&reg1, &reg2, &reg3, 1);
2610 emit_move_insn (reg1, eh_return_context);
2611 emit_move_insn (reg2, eh_return_stack_adjust);
2612 emit_move_insn (reg3, eh_return_handler);
9a0d1e1b 2613
71038426 2614 /* Talk directly to the target's epilogue code when possible. */
9a0d1e1b 2615
71038426
RH
2616#ifdef HAVE_eh_epilogue
2617 if (HAVE_eh_epilogue)
2618 {
2619 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
2620 return;
2621 }
2622#endif
9a0d1e1b 2623
71038426 2624 /* Otherwise, use the same stub technique we had before. */
ca55abae 2625
71038426
RH
2626 eh_return_stub_label = stub_start = gen_label_rtx ();
2627 after_stub = gen_label_rtx ();
ca55abae 2628
71038426 2629 /* Set the return address to the stub label. */
ca55abae 2630
71038426
RH
2631 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
2632 0, hard_frame_pointer_rtx);
2633 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
2634 abort();
ca55abae 2635
71038426
RH
2636 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
2637#ifdef RETURN_ADDR_OFFSET
2638 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
2639#endif
2640 emit_move_insn (ra, tmp);
ca55abae 2641
71038426 2642 /* Indicate that the registers are in fact used. */
38a448ca
RH
2643 emit_insn (gen_rtx_USE (VOIDmode, reg1));
2644 emit_insn (gen_rtx_USE (VOIDmode, reg2));
71038426
RH
2645 emit_insn (gen_rtx_USE (VOIDmode, reg3));
2646 if (GET_CODE (ra) == REG)
2647 emit_insn (gen_rtx_USE (VOIDmode, ra));
77d33a84 2648
71038426
RH
2649 /* Generate the stub. */
2650
2651 emit_jump (after_stub);
2652 emit_label (stub_start);
2653
2654 eh_regs (&reg1, &reg2, &reg3, 0);
2655 adjust_stack (reg2);
2656 emit_indirect_jump (reg3);
2657
2658 emit_label (after_stub);
2659}
77d33a84
AM
2660\f
2661
2662/* This contains the code required to verify whether arbitrary instructions
2663 are in the same exception region. */
2664
2665static int *insn_eh_region = (int *)0;
2666static int maximum_uid;
2667
242c13b0
JL
2668static void
2669set_insn_eh_region (first, region_num)
77d33a84
AM
2670 rtx *first;
2671 int region_num;
2672{
2673 rtx insn;
2674 int rnum;
2675
2676 for (insn = *first; insn; insn = NEXT_INSN (insn))
2677 {
2678 if ((GET_CODE (insn) == NOTE) &&
2679 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
2680 {
2681 rnum = NOTE_BLOCK_NUMBER (insn);
2682 insn_eh_region[INSN_UID (insn)] = rnum;
2683 insn = NEXT_INSN (insn);
2684 set_insn_eh_region (&insn, rnum);
2685 /* Upon return, insn points to the EH_REGION_END of nested region */
2686 continue;
2687 }
2688 insn_eh_region[INSN_UID (insn)] = region_num;
2689 if ((GET_CODE (insn) == NOTE) &&
2690 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2691 break;
2692 }
2693 *first = insn;
2694}
2695
2696/* Free the insn table, an make sure it cannot be used again. */
2697
9a0d1e1b
AM
2698void
2699free_insn_eh_region ()
77d33a84
AM
2700{
2701 if (!doing_eh (0))
2702 return;
2703
2704 if (insn_eh_region)
2705 {
2706 free (insn_eh_region);
2707 insn_eh_region = (int *)0;
2708 }
2709}
2710
2711/* Initialize the table. max_uid must be calculated and handed into
2712 this routine. If it is unavailable, passing a value of 0 will
2713 cause this routine to calculate it as well. */
2714
9a0d1e1b
AM
2715void
2716init_insn_eh_region (first, max_uid)
77d33a84
AM
2717 rtx first;
2718 int max_uid;
2719{
2720 rtx insn;
2721
2722 if (!doing_eh (0))
2723 return;
2724
2725 if (insn_eh_region)
2726 free_insn_eh_region();
2727
2728 if (max_uid == 0)
2729 for (insn = first; insn; insn = NEXT_INSN (insn))
2730 if (INSN_UID (insn) > max_uid) /* find largest UID */
2731 max_uid = INSN_UID (insn);
2732
2733 maximum_uid = max_uid;
2734 insn_eh_region = (int *) malloc ((max_uid + 1) * sizeof (int));
2735 insn = first;
2736 set_insn_eh_region (&insn, 0);
2737}
2738
2739
2740/* Check whether 2 instructions are within the same region. */
2741
9a0d1e1b
AM
2742int
2743in_same_eh_region (insn1, insn2)
2744 rtx insn1, insn2;
77d33a84
AM
2745{
2746 int ret, uid1, uid2;
2747
2748 /* If no exceptions, instructions are always in same region. */
2749 if (!doing_eh (0))
2750 return 1;
2751
2752 /* If the table isn't allocated, assume the worst. */
2753 if (!insn_eh_region)
2754 return 0;
2755
2756 uid1 = INSN_UID (insn1);
2757 uid2 = INSN_UID (insn2);
2758
2759 /* if instructions have been allocated beyond the end, either
2760 the table is out of date, or this is a late addition, or
2761 something... Assume the worst. */
2762 if (uid1 > maximum_uid || uid2 > maximum_uid)
2763 return 0;
2764
2765 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
2766 return ret;
2767}
2768
This page took 0.998345 seconds and 5 git commands to generate.