]> gcc.gnu.org Git - gcc.git/blame - gcc/except.c
* pexecute.c: Remove obsolete ifdefed cygwin code.
[gcc.git] / gcc / except.c
CommitLineData
12670d88 1/* Implements exception handling.
e5e809f4 2 Copyright (C) 1989, 92-97, 1998 Free Software Foundation, Inc.
4956d07c
MS
3 Contributed by Mike Stump <mrs@cygnus.com>.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22
12670d88
RK
23/* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
956d6950 26 be transferred to any arbitrary code associated with a function call
12670d88
RK
27 several levels up the stack.
28
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
38
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
45
27a36778
MS
46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
e9a25f70 48 approach, which is the default. -fno-sjlj-exceptions can be used to
27a36778
MS
49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
55
12670d88
RK
56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
60
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
67
2ed18e63
MS
68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
73
956d6950 74 In the current implementation, cleanups are handled by allocating an
2ed18e63
MS
75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
83
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
12670d88 89
ca55abae
JM
90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
12670d88 92 __register_exceptions with the address of its local
ca55abae
JM
93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
96
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
6d8ccdbb 100 __register_frame_info. On other targets, the information for each
d1485032 101 translation unit is registered from the file generated by collect2.
6d8ccdbb 102 __register_frame_info is defined in frame.c, and is responsible for
ca55abae
JM
103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
12670d88 105
27a36778 106 The function __throw is actually responsible for doing the
ca55abae
JM
107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
12670d88 109 per-object-file basis for each source file compiled with
38e01259 110 -fexceptions by the C++ frontend. Before __throw is invoked,
ca55abae
JM
111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
12670d88 113
27a36778 114 __throw attempts to find the appropriate exception handler for the
12670d88 115 PC value stored in __eh_pc by calling __find_first_exception_table_match
2ed18e63 116 (which is defined in libgcc2.c). If __find_first_exception_table_match
ca55abae
JM
117 finds a relevant handler, __throw transfers control directly to it.
118
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
125
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
12670d88
RK
131
132 Internal implementation details:
133
12670d88 134 To associate a user-defined handler with a block of statements, the
27a36778 135 function expand_start_try_stmts is used to mark the start of the
12670d88 136 block of statements with which the handler is to be associated
2ed18e63
MS
137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
139
27a36778 140 A call to expand_start_all_catch marks the end of the try block,
2ed18e63
MS
141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
143
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
151
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
27a36778 155 handler. expand_end_all_catch and expand_leftover_cleanups
2ed18e63
MS
156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
158
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
27a36778 163 to the topmost entry's label via expand_goto will resume normal
2ed18e63
MS
164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
167
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
27a36778
MS
170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
12670d88
RK
172
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
2ed18e63
MS
177 global variable to hold the value. (This will be changing in the
178 future.)
179
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
185
186 Internally-generated exception regions (cleanups) are marked by
27a36778 187 calling expand_eh_region_start to mark the start of the region,
2ed18e63
MS
188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
12670d88
RK
196
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
2ed18e63
MS
200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
208
209 Cleanups can also be specified by using add_partial_entry (handler)
27a36778 210 and end_protect_partials. add_partial_entry creates the start of
2ed18e63
MS
211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
27a36778 217 group of calls to add_partial_entry as the entries are queued
2ed18e63
MS
218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
12670d88
RK
222
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
2ed18e63
MS
226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
12670d88
RK
229
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
2ed18e63 234 can be safely optimized away (along with its exception handlers)
27a36778
MS
235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
245
12670d88 246
ca55abae 247 Walking the stack:
12670d88 248
ca55abae
JM
249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
12670d88 252
ca55abae 253 Unwinding the stack:
12670d88 254
ca55abae
JM
255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
259
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
262
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
270
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
956d6950 282 should call __terminate.
ca55abae
JM
283
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
2ed18e63
MS
289
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
ca55abae
JM
292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
12670d88 296
ca55abae
JM
297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
12670d88 302
27a36778 303 On some platforms it is possible that neither __unwind_function
12670d88 304 nor inlined unwinders are available. For these platforms it is not
27a36778 305 possible to throw through a function call, and abort will be
2ed18e63
MS
306 invoked instead of performing the throw.
307
ca55abae
JM
308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
313
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
319
2ed18e63
MS
320 Future directions:
321
27a36778 322 Currently __throw makes no differentiation between cleanups and
2ed18e63
MS
323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
330
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
27a36778 333 A two-pass scheme could then be used by __throw to iterate
2ed18e63
MS
334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
338
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
27a36778 343 __throw to be able to determine if a given user-defined
2ed18e63
MS
344 exception handler will actually be executed, given the type of
345 exception.
346
347 One scheme is to add additional information to exception_table_list
27a36778 348 as to the types of exceptions accepted by each handler. __throw
2ed18e63
MS
349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
351
352 There is currently no significant level of debugging support
27a36778 353 available, other than to place a breakpoint on __throw. While
2ed18e63
MS
354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
27a36778 359 scheme by adding additional labels to __throw for appropriate
2ed18e63
MS
360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
363
ca55abae
JM
364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
27a36778
MS
369
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
373
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
956d6950 380 table, and no calls to __register_exceptions. __sjthrow is used
27a36778
MS
381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
384
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
4956d07c
MS
389
390
391#include "config.h"
ca55abae 392#include "defaults.h"
9a0d1e1b 393#include "eh-common.h"
670ee920 394#include "system.h"
4956d07c
MS
395#include "rtl.h"
396#include "tree.h"
397#include "flags.h"
398#include "except.h"
399#include "function.h"
400#include "insn-flags.h"
401#include "expr.h"
402#include "insn-codes.h"
403#include "regs.h"
404#include "hard-reg-set.h"
405#include "insn-config.h"
406#include "recog.h"
407#include "output.h"
10f0ad3d 408#include "toplev.h"
4956d07c 409
27a36778
MS
410/* One to use setjmp/longjmp method of generating code for exception
411 handling. */
412
d1485032 413int exceptions_via_longjmp = 2;
27a36778
MS
414
415/* One to enable asynchronous exception support. */
416
417int asynchronous_exceptions = 0;
418
419/* One to protect cleanup actions with a handler that calls
420 __terminate, zero otherwise. */
421
e701eb4d 422int protect_cleanup_actions_with_terminate;
27a36778 423
12670d88 424/* A list of labels used for exception handlers. Created by
4956d07c
MS
425 find_exception_handler_labels for the optimization passes. */
426
427rtx exception_handler_labels;
428
154bba13
TT
429/* The EH context. Nonzero if the function has already
430 fetched a pointer to the EH context for exception handling. */
27a36778 431
154bba13 432rtx current_function_ehc;
27a36778 433
956d6950 434/* A stack used for keeping track of the currently active exception
12670d88 435 handling region. As each exception region is started, an entry
4956d07c
MS
436 describing the region is pushed onto this stack. The current
437 region can be found by looking at the top of the stack, and as we
12670d88
RK
438 exit regions, the corresponding entries are popped.
439
27a36778 440 Entries cannot overlap; they can be nested. So there is only one
12670d88
RK
441 entry at most that corresponds to the current instruction, and that
442 is the entry on the top of the stack. */
4956d07c 443
27a36778 444static struct eh_stack ehstack;
4956d07c 445
9a0d1e1b
AM
446
447/* This stack is used to represent what the current eh region is
448 for the catch blocks beings processed */
449
450static struct eh_stack catchstack;
451
12670d88
RK
452/* A queue used for tracking which exception regions have closed but
453 whose handlers have not yet been expanded. Regions are emitted in
454 groups in an attempt to improve paging performance.
455
456 As we exit a region, we enqueue a new entry. The entries are then
27a36778 457 dequeued during expand_leftover_cleanups and expand_start_all_catch,
12670d88
RK
458
459 We should redo things so that we either take RTL for the handler,
460 or we expand the handler expressed as a tree immediately at region
461 end time. */
4956d07c 462
27a36778 463static struct eh_queue ehqueue;
4956d07c 464
12670d88 465/* Insns for all of the exception handlers for the current function.
abeeec2a 466 They are currently emitted by the frontend code. */
4956d07c
MS
467
468rtx catch_clauses;
469
12670d88
RK
470/* A TREE_CHAINed list of handlers for regions that are not yet
471 closed. The TREE_VALUE of each entry contains the handler for the
abeeec2a 472 corresponding entry on the ehstack. */
4956d07c 473
12670d88 474static tree protect_list;
4956d07c
MS
475
476/* Stacks to keep track of various labels. */
477
12670d88
RK
478/* Keeps track of the label to resume to should one want to resume
479 normal control flow out of a handler (instead of, say, returning to
1418bb67 480 the caller of the current function or exiting the program). */
4956d07c
MS
481
482struct label_node *caught_return_label_stack = NULL;
483
956d6950
JL
484/* Keeps track of the label used as the context of a throw to rethrow an
485 exception to the outer exception region. */
486
487struct label_node *outer_context_label_stack = NULL;
488
12670d88 489/* A random data area for the front end's own use. */
4956d07c
MS
490
491struct label_node *false_label_stack = NULL;
492
71038426
RH
493/* Pseudos used to hold exception return data in the interim between
494 __builtin_eh_return and the end of the function. */
495
496static rtx eh_return_context;
497static rtx eh_return_stack_adjust;
498static rtx eh_return_handler;
499
500/* Used to mark the eh return stub for flow, so that the Right Thing
501 happens with the values for the hardregs therin. */
502
503rtx eh_return_stub_label;
504
505/* Prototypes for local functions. */
506
242c13b0
JL
507static void push_eh_entry PROTO((struct eh_stack *));
508static struct eh_entry * pop_eh_entry PROTO((struct eh_stack *));
509static void enqueue_eh_entry PROTO((struct eh_queue *, struct eh_entry *));
510static struct eh_entry * dequeue_eh_entry PROTO((struct eh_queue *));
511static rtx call_get_eh_context PROTO((void));
512static void start_dynamic_cleanup PROTO((tree, tree));
513static void start_dynamic_handler PROTO((void));
e701eb4d 514static void expand_rethrow PROTO((rtx));
242c13b0
JL
515static void output_exception_table_entry PROTO((FILE *, int));
516static int can_throw PROTO((rtx));
517static rtx scan_region PROTO((rtx, int, int *));
71038426 518static void eh_regs PROTO((rtx *, rtx *, rtx *, int));
242c13b0 519static void set_insn_eh_region PROTO((rtx *, int));
767f5b14 520#ifdef DONT_USE_BUILTIN_SETJMP
561592c5 521static void jumpif_rtx PROTO((rtx, rtx));
767f5b14 522#endif
561592c5 523
242c13b0 524rtx expand_builtin_return_addr PROTO((enum built_in_function, int, rtx));
4956d07c
MS
525\f
526/* Various support routines to manipulate the various data structures
527 used by the exception handling code. */
528
529/* Push a label entry onto the given STACK. */
530
531void
532push_label_entry (stack, rlabel, tlabel)
533 struct label_node **stack;
534 rtx rlabel;
535 tree tlabel;
536{
537 struct label_node *newnode
538 = (struct label_node *) xmalloc (sizeof (struct label_node));
539
540 if (rlabel)
541 newnode->u.rlabel = rlabel;
542 else
543 newnode->u.tlabel = tlabel;
544 newnode->chain = *stack;
545 *stack = newnode;
546}
547
548/* Pop a label entry from the given STACK. */
549
550rtx
551pop_label_entry (stack)
552 struct label_node **stack;
553{
554 rtx label;
555 struct label_node *tempnode;
556
557 if (! *stack)
558 return NULL_RTX;
559
560 tempnode = *stack;
561 label = tempnode->u.rlabel;
562 *stack = (*stack)->chain;
563 free (tempnode);
564
565 return label;
566}
567
568/* Return the top element of the given STACK. */
569
570tree
571top_label_entry (stack)
572 struct label_node **stack;
573{
574 if (! *stack)
575 return NULL_TREE;
576
577 return (*stack)->u.tlabel;
578}
579
9a0d1e1b
AM
580/* get an exception label. These must be on the permanent obstack */
581
582rtx
583gen_exception_label ()
584{
585 rtx lab;
586
587 push_obstacks_nochange ();
588 end_temporary_allocation ();
589 lab = gen_label_rtx ();
590 pop_obstacks ();
591 return lab;
592}
593
478b0752 594/* Push a new eh_node entry onto STACK. */
4956d07c 595
478b0752 596static void
4956d07c
MS
597push_eh_entry (stack)
598 struct eh_stack *stack;
599{
600 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
601 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
602
478b0752 603 entry->outer_context = gen_label_rtx ();
4956d07c 604 entry->finalization = NULL_TREE;
9a0d1e1b
AM
605 entry->label_used = 0;
606 entry->exception_handler_label = gen_exception_label ();
bf71cd2e 607 entry->false_label = NULL_RTX;
9a0d1e1b
AM
608
609 node->entry = entry;
610 node->chain = stack->top;
611 stack->top = node;
612}
4956d07c 613
9a0d1e1b
AM
614/* push an existing entry onto a stack. */
615static void
616push_entry (stack, entry)
617 struct eh_stack *stack;
618 struct eh_entry *entry;
619{
620 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
4956d07c
MS
621 node->entry = entry;
622 node->chain = stack->top;
623 stack->top = node;
4956d07c
MS
624}
625
626/* Pop an entry from the given STACK. */
627
628static struct eh_entry *
629pop_eh_entry (stack)
630 struct eh_stack *stack;
631{
632 struct eh_node *tempnode;
633 struct eh_entry *tempentry;
634
635 tempnode = stack->top;
636 tempentry = tempnode->entry;
637 stack->top = stack->top->chain;
638 free (tempnode);
639
640 return tempentry;
641}
642
643/* Enqueue an ENTRY onto the given QUEUE. */
644
645static void
646enqueue_eh_entry (queue, entry)
647 struct eh_queue *queue;
648 struct eh_entry *entry;
649{
650 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
651
652 node->entry = entry;
653 node->chain = NULL;
654
655 if (queue->head == NULL)
656 {
657 queue->head = node;
658 }
659 else
660 {
661 queue->tail->chain = node;
662 }
663 queue->tail = node;
664}
665
666/* Dequeue an entry from the given QUEUE. */
667
668static struct eh_entry *
669dequeue_eh_entry (queue)
670 struct eh_queue *queue;
671{
672 struct eh_node *tempnode;
673 struct eh_entry *tempentry;
674
675 if (queue->head == NULL)
676 return NULL;
677
678 tempnode = queue->head;
679 queue->head = queue->head->chain;
680
681 tempentry = tempnode->entry;
682 free (tempnode);
683
684 return tempentry;
685}
9a0d1e1b
AM
686
687static void
688receive_exception_label (handler_label)
689 rtx handler_label;
690{
691 emit_label (handler_label);
692
693#ifdef HAVE_exception_receiver
694 if (! exceptions_via_longjmp)
695 if (HAVE_exception_receiver)
696 emit_insn (gen_exception_receiver ());
697#endif
698
699#ifdef HAVE_nonlocal_goto_receiver
700 if (! exceptions_via_longjmp)
701 if (HAVE_nonlocal_goto_receiver)
702 emit_insn (gen_nonlocal_goto_receiver ());
703#endif
704}
705
706
707struct func_eh_entry
708{
709 int range_number; /* EH region number from EH NOTE insn's */
710 struct handler_info *handlers;
711};
712
713
714/* table of function eh regions */
715static struct func_eh_entry *function_eh_regions = NULL;
716static int num_func_eh_entries = 0;
717static int current_func_eh_entry = 0;
718
719#define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
720
721/* Add a new eh_entry for this function, and base it off of the information
722 in the EH_ENTRY parameter. A NULL parameter is invalid. The number
723 returned is an number which uniquely identifies this exception range. */
724
725int
726new_eh_region_entry (note_eh_region)
727 int note_eh_region;
728{
729 if (current_func_eh_entry == num_func_eh_entries)
730 {
731 if (num_func_eh_entries == 0)
732 {
733 function_eh_regions =
734 (struct func_eh_entry *) malloc (SIZE_FUNC_EH (50));
735 num_func_eh_entries = 50;
736 }
737 else
738 {
739 num_func_eh_entries = num_func_eh_entries * 3 / 2;
740 function_eh_regions = (struct func_eh_entry *)
741 realloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
742 }
743 }
744 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
745 function_eh_regions[current_func_eh_entry].handlers = NULL;
746
747 return current_func_eh_entry++;
748}
749
750/* Add new handler information to an exception range. The first parameter
751 specifies the range number (returned from new_eh_entry()). The second
752 parameter specifies the handler. By default the handler is inserted at
753 the end of the list. A handler list may contain only ONE NULL_TREE
754 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
755 is always output as the LAST handler in the exception table for a region. */
756
757void
758add_new_handler (region, newhandler)
759 int region;
760 struct handler_info *newhandler;
761{
762 struct handler_info *last;
763
764 newhandler->next = NULL;
765 last = function_eh_regions[region].handlers;
766 if (last == NULL)
767 function_eh_regions[region].handlers = newhandler;
768 else
769 {
9bbdf48e
JM
770 for ( ; ; last = last->next)
771 {
772 if (last->type_info == CATCH_ALL_TYPE)
773 pedwarn ("additional handler after ...");
774 if (last->next == NULL)
775 break;
776 }
d7e78529 777 last->next = newhandler;
9a0d1e1b
AM
778 }
779}
780
9f8e6243
AM
781/* Remove a handler label. The handler label is being deleted, so all
782 regions which reference this handler should have it removed from their
783 list of possible handlers. Any region which has the final handler
784 removed can be deleted. */
785
786void remove_handler (removing_label)
787 rtx removing_label;
788{
789 struct handler_info *handler, *last;
790 int x;
791 for (x = 0 ; x < current_func_eh_entry; ++x)
792 {
793 last = NULL;
794 handler = function_eh_regions[x].handlers;
795 for ( ; handler; last = handler, handler = handler->next)
796 if (handler->handler_label == removing_label)
797 {
798 if (last)
799 {
800 last->next = handler->next;
801 handler = last;
802 }
803 else
804 function_eh_regions[x].handlers = handler->next;
805 }
806 }
807}
808
9c606f69
AM
809/* This function will return a malloc'd pointer to an array of
810 void pointer representing the runtime match values that
811 currently exist in all regions. */
812
813int
4f70758f
KG
814find_all_handler_type_matches (array)
815 void ***array;
9c606f69
AM
816{
817 struct handler_info *handler, *last;
818 int x,y;
819 void *val;
820 void **ptr;
821 int max_ptr;
822 int n_ptr = 0;
823
824 *array = NULL;
825
826 if (!doing_eh (0) || ! flag_new_exceptions)
827 return 0;
828
829 max_ptr = 100;
830 ptr = (void **)malloc (max_ptr * sizeof (void *));
831
832 if (ptr == NULL)
833 return 0;
834
835 for (x = 0 ; x < current_func_eh_entry; x++)
836 {
837 last = NULL;
838 handler = function_eh_regions[x].handlers;
839 for ( ; handler; last = handler, handler = handler->next)
840 {
841 val = handler->type_info;
842 if (val != NULL && val != CATCH_ALL_TYPE)
843 {
844 /* See if this match value has already been found. */
845 for (y = 0; y < n_ptr; y++)
846 if (ptr[y] == val)
847 break;
848
849 /* If we break early, we already found this value. */
850 if (y < n_ptr)
851 continue;
852
853 /* Do we need to allocate more space? */
854 if (n_ptr >= max_ptr)
855 {
856 max_ptr += max_ptr / 2;
857 ptr = (void **)realloc (ptr, max_ptr * sizeof (void *));
858 if (ptr == NULL)
859 return 0;
860 }
861 ptr[n_ptr] = val;
862 n_ptr++;
863 }
864 }
865 }
866 *array = ptr;
867 return n_ptr;
868}
869
9a0d1e1b
AM
870/* Create a new handler structure initialized with the handler label and
871 typeinfo fields passed in. */
872
873struct handler_info *
874get_new_handler (handler, typeinfo)
875 rtx handler;
876 void *typeinfo;
877{
878 struct handler_info* ptr;
879 ptr = (struct handler_info *) malloc (sizeof (struct handler_info));
880 ptr->handler_label = handler;
881 ptr->type_info = typeinfo;
882 ptr->next = NULL;
883
884 return ptr;
885}
886
887
888
889/* Find the index in function_eh_regions associated with a NOTE region. If
890 the region cannot be found, a -1 is returned. This should never happen! */
891
892int
893find_func_region (insn_region)
894 int insn_region;
895{
896 int x;
897 for (x = 0; x < current_func_eh_entry; x++)
898 if (function_eh_regions[x].range_number == insn_region)
899 return x;
900
901 return -1;
902}
903
904/* Get a pointer to the first handler in an exception region's list. */
905
906struct handler_info *
907get_first_handler (region)
908 int region;
909{
910 return function_eh_regions[find_func_region (region)].handlers;
911}
912
913/* Clean out the function_eh_region table and free all memory */
914
915static void
916clear_function_eh_region ()
917{
918 int x;
919 struct handler_info *ptr, *next;
920 for (x = 0; x < current_func_eh_entry; x++)
921 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
922 {
923 next = ptr->next;
924 free (ptr);
925 }
926 free (function_eh_regions);
927 num_func_eh_entries = 0;
928 current_func_eh_entry = 0;
929}
930
931/* Make a duplicate of an exception region by copying all the handlers
932 for an exception region. Return the new handler index. */
933
934int
935duplicate_handlers (old_note_eh_region, new_note_eh_region)
936 int old_note_eh_region, new_note_eh_region;
937{
938 struct handler_info *ptr, *new_ptr;
939 int new_region, region;
940
941 region = find_func_region (old_note_eh_region);
942 if (region == -1)
943 error ("Cannot duplicate non-existant exception region.");
944
945 if (find_func_region (new_note_eh_region) != -1)
946 error ("Cannot duplicate EH region because new note region already exists");
947
948 new_region = new_eh_region_entry (new_note_eh_region);
949 ptr = function_eh_regions[region].handlers;
950
951 for ( ; ptr; ptr = ptr->next)
952 {
953 new_ptr = get_new_handler (ptr->handler_label, ptr->type_info);
954 add_new_handler (new_region, new_ptr);
955 }
956
957 return new_region;
958}
959
4956d07c 960\f
38e01259 961/* Routine to see if exception handling is turned on.
4956d07c 962 DO_WARN is non-zero if we want to inform the user that exception
12670d88
RK
963 handling is turned off.
964
965 This is used to ensure that -fexceptions has been specified if the
abeeec2a 966 compiler tries to use any exception-specific functions. */
4956d07c
MS
967
968int
969doing_eh (do_warn)
970 int do_warn;
971{
972 if (! flag_exceptions)
973 {
974 static int warned = 0;
975 if (! warned && do_warn)
976 {
977 error ("exception handling disabled, use -fexceptions to enable");
978 warned = 1;
979 }
980 return 0;
981 }
982 return 1;
983}
984
12670d88 985/* Given a return address in ADDR, determine the address we should use
abeeec2a 986 to find the corresponding EH region. */
4956d07c
MS
987
988rtx
989eh_outer_context (addr)
990 rtx addr;
991{
992 /* First mask out any unwanted bits. */
993#ifdef MASK_RETURN_ADDR
ca55abae 994 expand_and (addr, MASK_RETURN_ADDR, addr);
4956d07c
MS
995#endif
996
ca55abae
JM
997 /* Then adjust to find the real return address. */
998#if defined (RETURN_ADDR_OFFSET)
999 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
4956d07c
MS
1000#endif
1001
1002 return addr;
1003}
1004
27a36778
MS
1005/* Start a new exception region for a region of code that has a
1006 cleanup action and push the HANDLER for the region onto
1007 protect_list. All of the regions created with add_partial_entry
1008 will be ended when end_protect_partials is invoked. */
12670d88
RK
1009
1010void
1011add_partial_entry (handler)
1012 tree handler;
1013{
1014 expand_eh_region_start ();
1015
abeeec2a 1016 /* Make sure the entry is on the correct obstack. */
12670d88
RK
1017 push_obstacks_nochange ();
1018 resume_temporary_allocation ();
27a36778
MS
1019
1020 /* Because this is a cleanup action, we may have to protect the handler
1021 with __terminate. */
1022 handler = protect_with_terminate (handler);
1023
12670d88
RK
1024 protect_list = tree_cons (NULL_TREE, handler, protect_list);
1025 pop_obstacks ();
1026}
1027
100d81d4 1028/* Emit code to get EH context to current function. */
27a36778 1029
154bba13 1030static rtx
01eb7f9a 1031call_get_eh_context ()
27a36778 1032{
bb727b5a
JM
1033 static tree fn;
1034 tree expr;
1035
1036 if (fn == NULL_TREE)
1037 {
1038 tree fntype;
154bba13 1039 fn = get_identifier ("__get_eh_context");
bb727b5a
JM
1040 push_obstacks_nochange ();
1041 end_temporary_allocation ();
1042 fntype = build_pointer_type (build_pointer_type
1043 (build_pointer_type (void_type_node)));
1044 fntype = build_function_type (fntype, NULL_TREE);
1045 fn = build_decl (FUNCTION_DECL, fn, fntype);
1046 DECL_EXTERNAL (fn) = 1;
1047 TREE_PUBLIC (fn) = 1;
1048 DECL_ARTIFICIAL (fn) = 1;
1049 TREE_READONLY (fn) = 1;
1050 make_decl_rtl (fn, NULL_PTR, 1);
1051 assemble_external (fn);
1052 pop_obstacks ();
1053 }
1054
1055 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1056 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1057 expr, NULL_TREE, NULL_TREE);
1058 TREE_SIDE_EFFECTS (expr) = 1;
bb727b5a 1059
100d81d4 1060 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
154bba13
TT
1061}
1062
1063/* Get a reference to the EH context.
1064 We will only generate a register for the current function EH context here,
1065 and emit a USE insn to mark that this is a EH context register.
1066
1067 Later, emit_eh_context will emit needed call to __get_eh_context
1068 in libgcc2, and copy the value to the register we have generated. */
1069
1070rtx
01eb7f9a 1071get_eh_context ()
154bba13
TT
1072{
1073 if (current_function_ehc == 0)
1074 {
1075 rtx insn;
1076
1077 current_function_ehc = gen_reg_rtx (Pmode);
1078
38a448ca
RH
1079 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1080 current_function_ehc);
154bba13
TT
1081 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1082
1083 REG_NOTES (insn)
38a448ca
RH
1084 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1085 REG_NOTES (insn));
154bba13
TT
1086 }
1087 return current_function_ehc;
1088}
1089
154bba13
TT
1090/* Get a reference to the dynamic handler chain. It points to the
1091 pointer to the next element in the dynamic handler chain. It ends
1092 when there are no more elements in the dynamic handler chain, when
1093 the value is &top_elt from libgcc2.c. Immediately after the
1094 pointer, is an area suitable for setjmp/longjmp when
1095 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1096 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1097 isn't defined. */
1098
1099rtx
1100get_dynamic_handler_chain ()
1101{
1102 rtx ehc, dhc, result;
1103
01eb7f9a 1104 ehc = get_eh_context ();
3301dc51
AM
1105
1106 /* This is the offset of dynamic_handler_chain in the eh_context struct
1107 declared in eh-common.h. If its location is change, change this offset */
5816cb14 1108 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
154bba13
TT
1109
1110 result = copy_to_reg (dhc);
1111
1112 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 1113 return gen_rtx_MEM (Pmode, result);
27a36778
MS
1114}
1115
1116/* Get a reference to the dynamic cleanup chain. It points to the
1117 pointer to the next element in the dynamic cleanup chain.
1118 Immediately after the pointer, are two Pmode variables, one for a
1119 pointer to a function that performs the cleanup action, and the
1120 second, the argument to pass to that function. */
1121
1122rtx
1123get_dynamic_cleanup_chain ()
1124{
154bba13 1125 rtx dhc, dcc, result;
27a36778
MS
1126
1127 dhc = get_dynamic_handler_chain ();
5816cb14 1128 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
27a36778 1129
154bba13 1130 result = copy_to_reg (dcc);
27a36778
MS
1131
1132 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 1133 return gen_rtx_MEM (Pmode, result);
154bba13
TT
1134}
1135
767f5b14 1136#ifdef DONT_USE_BUILTIN_SETJMP
27a36778
MS
1137/* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1138 LABEL is an rtx of code CODE_LABEL, in this function. */
1139
561592c5 1140static void
27a36778
MS
1141jumpif_rtx (x, label)
1142 rtx x;
1143 rtx label;
1144{
1145 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1146}
767f5b14 1147#endif
27a36778
MS
1148
1149/* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1150 We just need to create an element for the cleanup list, and push it
1151 into the chain.
1152
1153 A dynamic cleanup is a cleanup action implied by the presence of an
1154 element on the EH runtime dynamic cleanup stack that is to be
1155 performed when an exception is thrown. The cleanup action is
1156 performed by __sjthrow when an exception is thrown. Only certain
1157 actions can be optimized into dynamic cleanup actions. For the
1158 restrictions on what actions can be performed using this routine,
1159 see expand_eh_region_start_tree. */
1160
1161static void
1162start_dynamic_cleanup (func, arg)
1163 tree func;
1164 tree arg;
1165{
381127e8 1166 rtx dcc;
27a36778
MS
1167 rtx new_func, new_arg;
1168 rtx x, buf;
1169 int size;
1170
1171 /* We allocate enough room for a pointer to the function, and
1172 one argument. */
1173 size = 2;
1174
1175 /* XXX, FIXME: The stack space allocated this way is too long lived,
1176 but there is no allocation routine that allocates at the level of
1177 the last binding contour. */
1178 buf = assign_stack_local (BLKmode,
1179 GET_MODE_SIZE (Pmode)*(size+1),
1180 0);
1181
1182 buf = change_address (buf, Pmode, NULL_RTX);
1183
1184 /* Store dcc into the first word of the newly allocated buffer. */
1185
1186 dcc = get_dynamic_cleanup_chain ();
1187 emit_move_insn (buf, dcc);
1188
1189 /* Store func and arg into the cleanup list element. */
1190
38a448ca
RH
1191 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1192 GET_MODE_SIZE (Pmode)));
1193 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1194 GET_MODE_SIZE (Pmode)*2));
27a36778
MS
1195 x = expand_expr (func, new_func, Pmode, 0);
1196 if (x != new_func)
1197 emit_move_insn (new_func, x);
1198
1199 x = expand_expr (arg, new_arg, Pmode, 0);
1200 if (x != new_arg)
1201 emit_move_insn (new_arg, x);
1202
1203 /* Update the cleanup chain. */
1204
1205 emit_move_insn (dcc, XEXP (buf, 0));
1206}
1207
1208/* Emit RTL to start a dynamic handler on the EH runtime dynamic
1209 handler stack. This should only be used by expand_eh_region_start
1210 or expand_eh_region_start_tree. */
1211
1212static void
1213start_dynamic_handler ()
1214{
1215 rtx dhc, dcc;
6e6a07d2 1216 rtx x, arg, buf;
27a36778
MS
1217 int size;
1218
6e6a07d2 1219#ifndef DONT_USE_BUILTIN_SETJMP
27a36778
MS
1220 /* The number of Pmode words for the setjmp buffer, when using the
1221 builtin setjmp/longjmp, see expand_builtin, case
1222 BUILT_IN_LONGJMP. */
1223 size = 5;
1224#else
1225#ifdef JMP_BUF_SIZE
1226 size = JMP_BUF_SIZE;
1227#else
1228 /* Should be large enough for most systems, if it is not,
1229 JMP_BUF_SIZE should be defined with the proper value. It will
1230 also tend to be larger than necessary for most systems, a more
1231 optimal port will define JMP_BUF_SIZE. */
1232 size = FIRST_PSEUDO_REGISTER+2;
1233#endif
1234#endif
1235 /* XXX, FIXME: The stack space allocated this way is too long lived,
1236 but there is no allocation routine that allocates at the level of
1237 the last binding contour. */
1238 arg = assign_stack_local (BLKmode,
1239 GET_MODE_SIZE (Pmode)*(size+1),
1240 0);
1241
1242 arg = change_address (arg, Pmode, NULL_RTX);
1243
1244 /* Store dhc into the first word of the newly allocated buffer. */
1245
1246 dhc = get_dynamic_handler_chain ();
38a448ca
RH
1247 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1248 GET_MODE_SIZE (Pmode)));
27a36778
MS
1249 emit_move_insn (arg, dhc);
1250
1251 /* Zero out the start of the cleanup chain. */
1252 emit_move_insn (dcc, const0_rtx);
1253
1254 /* The jmpbuf starts two words into the area allocated. */
6e6a07d2 1255 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
27a36778 1256
6e6a07d2 1257#ifdef DONT_USE_BUILTIN_SETJMP
27a36778 1258 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1, SImode, 1,
6e6a07d2 1259 buf, Pmode);
6fd1c67b
RH
1260 /* If we come back here for a catch, transfer control to the handler. */
1261 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
6e6a07d2 1262#else
6fd1c67b
RH
1263 {
1264 /* A label to continue execution for the no exception case. */
1265 rtx noex = gen_label_rtx();
1266 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1267 ehstack.top->entry->exception_handler_label);
1268 emit_label (noex);
1269 }
6e6a07d2 1270#endif
27a36778 1271
27a36778
MS
1272 /* We are committed to this, so update the handler chain. */
1273
1274 emit_move_insn (dhc, XEXP (arg, 0));
1275}
1276
1277/* Start an exception handling region for the given cleanup action.
12670d88 1278 All instructions emitted after this point are considered to be part
27a36778
MS
1279 of the region until expand_eh_region_end is invoked. CLEANUP is
1280 the cleanup action to perform. The return value is true if the
1281 exception region was optimized away. If that case,
1282 expand_eh_region_end does not need to be called for this cleanup,
1283 nor should it be.
1284
1285 This routine notices one particular common case in C++ code
1286 generation, and optimizes it so as to not need the exception
1287 region. It works by creating a dynamic cleanup action, instead of
38e01259 1288 a using an exception region. */
27a36778
MS
1289
1290int
4c581243
MS
1291expand_eh_region_start_tree (decl, cleanup)
1292 tree decl;
27a36778
MS
1293 tree cleanup;
1294{
27a36778
MS
1295 /* This is the old code. */
1296 if (! doing_eh (0))
1297 return 0;
1298
1299 /* The optimization only applies to actions protected with
1300 terminate, and only applies if we are using the setjmp/longjmp
1301 codegen method. */
1302 if (exceptions_via_longjmp
1303 && protect_cleanup_actions_with_terminate)
1304 {
1305 tree func, arg;
1306 tree args;
1307
1308 /* Ignore any UNSAVE_EXPR. */
1309 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1310 cleanup = TREE_OPERAND (cleanup, 0);
1311
1312 /* Further, it only applies if the action is a call, if there
1313 are 2 arguments, and if the second argument is 2. */
1314
1315 if (TREE_CODE (cleanup) == CALL_EXPR
1316 && (args = TREE_OPERAND (cleanup, 1))
1317 && (func = TREE_OPERAND (cleanup, 0))
1318 && (arg = TREE_VALUE (args))
1319 && (args = TREE_CHAIN (args))
1320
1321 /* is the second argument 2? */
1322 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1323 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1324 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1325
1326 /* Make sure there are no other arguments. */
1327 && TREE_CHAIN (args) == NULL_TREE)
1328 {
1329 /* Arrange for returns and gotos to pop the entry we make on the
1330 dynamic cleanup stack. */
4c581243 1331 expand_dcc_cleanup (decl);
27a36778
MS
1332 start_dynamic_cleanup (func, arg);
1333 return 1;
1334 }
1335 }
1336
4c581243 1337 expand_eh_region_start_for_decl (decl);
9762d48d 1338 ehstack.top->entry->finalization = cleanup;
27a36778
MS
1339
1340 return 0;
1341}
1342
4c581243
MS
1343/* Just like expand_eh_region_start, except if a cleanup action is
1344 entered on the cleanup chain, the TREE_PURPOSE of the element put
1345 on the chain is DECL. DECL should be the associated VAR_DECL, if
1346 any, otherwise it should be NULL_TREE. */
4956d07c
MS
1347
1348void
4c581243
MS
1349expand_eh_region_start_for_decl (decl)
1350 tree decl;
4956d07c
MS
1351{
1352 rtx note;
1353
1354 /* This is the old code. */
1355 if (! doing_eh (0))
1356 return;
1357
27a36778
MS
1358 if (exceptions_via_longjmp)
1359 {
1360 /* We need a new block to record the start and end of the
1361 dynamic handler chain. We could always do this, but we
1362 really want to permit jumping into such a block, and we want
1363 to avoid any errors or performance impact in the SJ EH code
1364 for now. */
1365 expand_start_bindings (0);
1366
1367 /* But we don't need or want a new temporary level. */
1368 pop_temp_slots ();
1369
1370 /* Mark this block as created by expand_eh_region_start. This
1371 is so that we can pop the block with expand_end_bindings
1372 automatically. */
1373 mark_block_as_eh_region ();
1374
1375 /* Arrange for returns and gotos to pop the entry we make on the
1376 dynamic handler stack. */
4c581243 1377 expand_dhc_cleanup (decl);
27a36778 1378 }
4956d07c 1379
478b0752 1380 push_eh_entry (&ehstack);
9ad8a5f0
MS
1381 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1382 NOTE_BLOCK_NUMBER (note)
1383 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
27a36778
MS
1384 if (exceptions_via_longjmp)
1385 start_dynamic_handler ();
4956d07c
MS
1386}
1387
4c581243
MS
1388/* Start an exception handling region. All instructions emitted after
1389 this point are considered to be part of the region until
1390 expand_eh_region_end is invoked. */
1391
1392void
1393expand_eh_region_start ()
1394{
1395 expand_eh_region_start_for_decl (NULL_TREE);
1396}
1397
27a36778
MS
1398/* End an exception handling region. The information about the region
1399 is found on the top of ehstack.
12670d88
RK
1400
1401 HANDLER is either the cleanup for the exception region, or if we're
1402 marking the end of a try block, HANDLER is integer_zero_node.
1403
27a36778 1404 HANDLER will be transformed to rtl when expand_leftover_cleanups
abeeec2a 1405 is invoked. */
4956d07c
MS
1406
1407void
1408expand_eh_region_end (handler)
1409 tree handler;
1410{
4956d07c 1411 struct eh_entry *entry;
9ad8a5f0 1412 rtx note;
4956d07c
MS
1413
1414 if (! doing_eh (0))
1415 return;
1416
1417 entry = pop_eh_entry (&ehstack);
1418
9ad8a5f0
MS
1419 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1420 NOTE_BLOCK_NUMBER (note)
1421 = CODE_LABEL_NUMBER (entry->exception_handler_label);
e701eb4d
JM
1422 if (exceptions_via_longjmp == 0
1423 /* We share outer_context between regions; only emit it once. */
1424 && INSN_UID (entry->outer_context) == 0)
27a36778 1425 {
478b0752 1426 rtx label;
4956d07c 1427
478b0752
MS
1428 label = gen_label_rtx ();
1429 emit_jump (label);
1430
1431 /* Emit a label marking the end of this exception region that
1432 is used for rethrowing into the outer context. */
1433 emit_label (entry->outer_context);
e701eb4d 1434 expand_internal_throw ();
4956d07c 1435
478b0752 1436 emit_label (label);
27a36778 1437 }
4956d07c
MS
1438
1439 entry->finalization = handler;
1440
9a0d1e1b
AM
1441 /* create region entry in final exception table */
1442 new_eh_region_entry (NOTE_BLOCK_NUMBER (note));
1443
4956d07c
MS
1444 enqueue_eh_entry (&ehqueue, entry);
1445
27a36778
MS
1446 /* If we have already started ending the bindings, don't recurse.
1447 This only happens when exceptions_via_longjmp is true. */
1448 if (is_eh_region ())
1449 {
1450 /* Because we don't need or want a new temporary level and
1451 because we didn't create one in expand_eh_region_start,
1452 create a fake one now to avoid removing one in
1453 expand_end_bindings. */
1454 push_temp_slots ();
1455
1456 mark_block_as_not_eh_region ();
1457
1458 /* Maybe do this to prevent jumping in and so on... */
1459 expand_end_bindings (NULL_TREE, 0, 0);
1460 }
4956d07c
MS
1461}
1462
9762d48d
JM
1463/* End the EH region for a goto fixup. We only need them in the region-based
1464 EH scheme. */
1465
1466void
1467expand_fixup_region_start ()
1468{
1469 if (! doing_eh (0) || exceptions_via_longjmp)
1470 return;
1471
1472 expand_eh_region_start ();
1473}
1474
1475/* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1476 expanded; to avoid running it twice if it throws, we look through the
1477 ehqueue for a matching region and rethrow from its outer_context. */
1478
1479void
1480expand_fixup_region_end (cleanup)
1481 tree cleanup;
1482{
9762d48d 1483 struct eh_node *node;
b37f006b 1484 int dont_issue;
9762d48d
JM
1485
1486 if (! doing_eh (0) || exceptions_via_longjmp)
1487 return;
1488
1489 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1490 node = node->chain;
1491 if (node == 0)
1492 for (node = ehqueue.head; node && node->entry->finalization != cleanup; )
1493 node = node->chain;
1494 if (node == 0)
1495 abort ();
1496
b37f006b
AM
1497 /* If the outer context label has not been issued yet, we don't want
1498 to issue it as a part of this region, unless this is the
1499 correct region for the outer context. If we did, then the label for
1500 the outer context will be WITHIN the begin/end labels,
1501 and we could get an infinte loop when it tried to rethrow, or just
1502 generally incorrect execution following a throw. */
1503
1504 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1505 && (ehstack.top->entry != node->entry));
1506
e701eb4d 1507 ehstack.top->entry->outer_context = node->entry->outer_context;
9762d48d 1508
b37f006b
AM
1509 /* Since we are rethrowing to the OUTER region, we know we don't need
1510 a jump around sequence for this region, so we'll pretend the outer
1511 context label has been issued by setting INSN_UID to 1, then clearing
1512 it again afterwards. */
1513
1514 if (dont_issue)
1515 INSN_UID (node->entry->outer_context) = 1;
1516
e701eb4d
JM
1517 /* Just rethrow. size_zero_node is just a NOP. */
1518 expand_eh_region_end (size_zero_node);
b37f006b
AM
1519
1520 if (dont_issue)
1521 INSN_UID (node->entry->outer_context) = 0;
9762d48d
JM
1522}
1523
27a36778
MS
1524/* If we are using the setjmp/longjmp EH codegen method, we emit a
1525 call to __sjthrow.
1526
1527 Otherwise, we emit a call to __throw and note that we threw
1528 something, so we know we need to generate the necessary code for
1529 __throw.
12670d88
RK
1530
1531 Before invoking throw, the __eh_pc variable must have been set up
1532 to contain the PC being thrown from. This address is used by
27a36778 1533 __throw to determine which exception region (if any) is
abeeec2a 1534 responsible for handling the exception. */
4956d07c 1535
27a36778 1536void
4956d07c
MS
1537emit_throw ()
1538{
27a36778
MS
1539 if (exceptions_via_longjmp)
1540 {
1541 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1542 }
1543 else
1544 {
4956d07c 1545#ifdef JUMP_TO_THROW
27a36778 1546 emit_indirect_jump (throw_libfunc);
4956d07c 1547#else
27a36778 1548 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
4956d07c 1549#endif
27a36778 1550 }
4956d07c
MS
1551 emit_barrier ();
1552}
1553
e701eb4d
JM
1554/* Throw the current exception. If appropriate, this is done by jumping
1555 to the next handler. */
4956d07c
MS
1556
1557void
e701eb4d 1558expand_internal_throw ()
4956d07c 1559{
e701eb4d 1560 emit_throw ();
4956d07c
MS
1561}
1562
1563/* Called from expand_exception_blocks and expand_end_catch_block to
27a36778 1564 emit any pending handlers/cleanups queued from expand_eh_region_end. */
4956d07c
MS
1565
1566void
1567expand_leftover_cleanups ()
1568{
1569 struct eh_entry *entry;
1570
1571 while ((entry = dequeue_eh_entry (&ehqueue)) != 0)
1572 {
1573 rtx prev;
1574
12670d88
RK
1575 /* A leftover try block. Shouldn't be one here. */
1576 if (entry->finalization == integer_zero_node)
1577 abort ();
1578
abeeec2a 1579 /* Output the label for the start of the exception handler. */
4956d07c 1580
9a0d1e1b 1581 receive_exception_label (entry->exception_handler_label);
f51430ed 1582
9a0d1e1b
AM
1583 /* register a handler for this cleanup region */
1584 add_new_handler (
1585 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1586 get_new_handler (entry->exception_handler_label, NULL));
05f5b2cd 1587
abeeec2a 1588 /* And now generate the insns for the handler. */
4956d07c
MS
1589 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1590
1591 prev = get_last_insn ();
27a36778 1592 if (prev == NULL || GET_CODE (prev) != BARRIER)
e701eb4d
JM
1593 /* Emit code to throw to the outer context if we fall off
1594 the end of the handler. */
1595 expand_rethrow (entry->outer_context);
4956d07c 1596
c7ae64f2 1597 do_pending_stack_adjust ();
4956d07c
MS
1598 free (entry);
1599 }
1600}
1601
abeeec2a 1602/* Called at the start of a block of try statements. */
12670d88
RK
1603void
1604expand_start_try_stmts ()
1605{
1606 if (! doing_eh (1))
1607 return;
1608
1609 expand_eh_region_start ();
1610}
1611
9a0d1e1b
AM
1612/* Called to begin a catch clause. The parameter is the object which
1613 will be passed to the runtime type check routine. */
1614void
0d3453df 1615start_catch_handler (rtime)
9a0d1e1b
AM
1616 tree rtime;
1617{
9a9deafc
AM
1618 rtx handler_label;
1619 int insn_region_num;
1620 int eh_region_entry;
1621
1622 if (! doing_eh (1))
1623 return;
1624
1625 handler_label = catchstack.top->entry->exception_handler_label;
1626 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1627 eh_region_entry = find_func_region (insn_region_num);
9a0d1e1b
AM
1628
1629 /* If we've already issued this label, pick a new one */
7ecb5d27 1630 if (catchstack.top->entry->label_used)
9a0d1e1b
AM
1631 handler_label = gen_exception_label ();
1632 else
1633 catchstack.top->entry->label_used = 1;
1634
1635 receive_exception_label (handler_label);
1636
1637 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
bf71cd2e
AM
1638
1639 if (flag_new_exceptions && ! exceptions_via_longjmp)
1640 return;
1641
1642 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1643 issue code to compare 'rtime' to the value in eh_info, via the
1644 matching function in eh_info. If its is false, we branch around
1645 the handler we are about to issue. */
1646
1647 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1648 {
1649 rtx call_rtx, rtime_address;
1650
1651 if (catchstack.top->entry->false_label != NULL_RTX)
7ac2148b 1652 fatal ("Compiler Bug: Never issued previous false_label");
bf71cd2e
AM
1653 catchstack.top->entry->false_label = gen_exception_label ();
1654
1655 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
1656 rtime_address = force_reg (Pmode, rtime_address);
1657
1658 /* Now issue the call, and branch around handler if needed */
43566944
AM
1659 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1660 0, SImode, 1, rtime_address, Pmode);
bf71cd2e
AM
1661
1662 /* Did the function return true? */
1663 emit_cmp_insn (call_rtx, const0_rtx, EQ, NULL_RTX,
1664 GET_MODE (call_rtx), 0 ,0);
1665 emit_jump_insn (gen_beq (catchstack.top->entry->false_label));
1666 }
1667}
1668
1669/* Called to end a catch clause. If we aren't using the new exception
1670 model tabel mechanism, we need to issue the branch-around label
1671 for the end of the catch block. */
1672
1673void
1674end_catch_handler ()
1675{
1676 if (! doing_eh (1) || (flag_new_exceptions && ! exceptions_via_longjmp))
1677 return;
1678
1679 /* A NULL label implies the catch clause was a catch all or cleanup */
1680 if (catchstack.top->entry->false_label == NULL_RTX)
1681 return;
1682
1683 emit_label (catchstack.top->entry->false_label);
1684 catchstack.top->entry->false_label = NULL_RTX;
9a0d1e1b
AM
1685}
1686
12670d88
RK
1687/* Generate RTL for the start of a group of catch clauses.
1688
1689 It is responsible for starting a new instruction sequence for the
1690 instructions in the catch block, and expanding the handlers for the
1691 internally-generated exception regions nested within the try block
abeeec2a 1692 corresponding to this catch block. */
4956d07c
MS
1693
1694void
1695expand_start_all_catch ()
1696{
1697 struct eh_entry *entry;
1698 tree label;
e701eb4d 1699 rtx outer_context;
4956d07c
MS
1700
1701 if (! doing_eh (1))
1702 return;
1703
e701eb4d 1704 outer_context = ehstack.top->entry->outer_context;
1418bb67 1705
abeeec2a 1706 /* End the try block. */
12670d88
RK
1707 expand_eh_region_end (integer_zero_node);
1708
4956d07c
MS
1709 emit_line_note (input_filename, lineno);
1710 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1711
12670d88 1712 /* The label for the exception handling block that we will save.
956d6950 1713 This is Lresume in the documentation. */
4956d07c
MS
1714 expand_label (label);
1715
12670d88 1716 /* Push the label that points to where normal flow is resumed onto
abeeec2a 1717 the top of the label stack. */
4956d07c
MS
1718 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1719
1720 /* Start a new sequence for all the catch blocks. We will add this
12670d88 1721 to the global sequence catch_clauses when we have completed all
4956d07c
MS
1722 the handlers in this handler-seq. */
1723 start_sequence ();
1724
9a0d1e1b
AM
1725 entry = dequeue_eh_entry (&ehqueue);
1726 for ( ; entry->finalization != integer_zero_node;
1727 entry = dequeue_eh_entry (&ehqueue))
4956d07c
MS
1728 {
1729 rtx prev;
1730
9a0d1e1b 1731 /* Emit the label for the cleanup handler for this region, and
12670d88
RK
1732 expand the code for the handler.
1733
1734 Note that a catch region is handled as a side-effect here;
1735 for a try block, entry->finalization will contain
1736 integer_zero_node, so no code will be generated in the
1737 expand_expr call below. But, the label for the handler will
1738 still be emitted, so any code emitted after this point will
abeeec2a 1739 end up being the handler. */
9a0d1e1b
AM
1740
1741 receive_exception_label (entry->exception_handler_label);
05f5b2cd 1742
9a0d1e1b
AM
1743 /* register a handler for this cleanup region */
1744 add_new_handler (
1745 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1746 get_new_handler (entry->exception_handler_label, NULL));
4956d07c 1747
9a0d1e1b 1748 /* And now generate the insns for the cleanup handler. */
27a36778
MS
1749 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1750
4956d07c 1751 prev = get_last_insn ();
12670d88 1752 if (prev == NULL || GET_CODE (prev) != BARRIER)
e701eb4d
JM
1753 /* Code to throw out to outer context when we fall off end
1754 of the handler. We can't do this here for catch blocks,
1755 so it's done in expand_end_all_catch instead. */
1756 expand_rethrow (entry->outer_context);
12670d88 1757
f45ebe47 1758 do_pending_stack_adjust ();
4956d07c
MS
1759 free (entry);
1760 }
e701eb4d 1761
9a0d1e1b
AM
1762 /* At this point, all the cleanups are done, and the ehqueue now has
1763 the current exception region at its head. We dequeue it, and put it
1764 on the catch stack. */
1765
1766 push_entry (&catchstack, entry);
1767
e701eb4d
JM
1768 /* If we are not doing setjmp/longjmp EH, because we are reordered
1769 out of line, we arrange to rethrow in the outer context. We need to
1770 do this because we are not physically within the region, if any, that
1771 logically contains this catch block. */
1772 if (! exceptions_via_longjmp)
1773 {
1774 expand_eh_region_start ();
1775 ehstack.top->entry->outer_context = outer_context;
1776 }
5816cb14 1777
4956d07c
MS
1778}
1779
12670d88
RK
1780/* Finish up the catch block. At this point all the insns for the
1781 catch clauses have already been generated, so we only have to add
1782 them to the catch_clauses list. We also want to make sure that if
1783 we fall off the end of the catch clauses that we rethrow to the
abeeec2a 1784 outer EH region. */
4956d07c
MS
1785
1786void
1787expand_end_all_catch ()
1788{
5dfa7520 1789 rtx new_catch_clause, outer_context = NULL_RTX;
0d3453df 1790 struct eh_entry *entry;
4956d07c
MS
1791
1792 if (! doing_eh (1))
1793 return;
1794
0d3453df
AM
1795 /* Dequeue the current catch clause region. */
1796 entry = pop_eh_entry (&catchstack);
1797 free (entry);
1798
e701eb4d 1799 if (! exceptions_via_longjmp)
5dfa7520
JM
1800 {
1801 outer_context = ehstack.top->entry->outer_context;
1802
1803 /* Finish the rethrow region. size_zero_node is just a NOP. */
1804 expand_eh_region_end (size_zero_node);
1805 }
1806
e701eb4d
JM
1807 /* Code to throw out to outer context, if we fall off end of catch
1808 handlers. This is rethrow (Lresume, same id, same obj) in the
1809 documentation. We use Lresume because we know that it will throw
1810 to the correct context.
12670d88 1811
e701eb4d
JM
1812 In other words, if the catch handler doesn't exit or return, we
1813 do a "throw" (using the address of Lresume as the point being
1814 thrown from) so that the outer EH region can then try to process
1815 the exception. */
1816 expand_rethrow (outer_context);
4956d07c
MS
1817
1818 /* Now we have the complete catch sequence. */
1819 new_catch_clause = get_insns ();
1820 end_sequence ();
1821
1822 /* This level of catch blocks is done, so set up the successful
1823 catch jump label for the next layer of catch blocks. */
1824 pop_label_entry (&caught_return_label_stack);
956d6950 1825 pop_label_entry (&outer_context_label_stack);
4956d07c
MS
1826
1827 /* Add the new sequence of catches to the main one for this function. */
1828 push_to_sequence (catch_clauses);
1829 emit_insns (new_catch_clause);
1830 catch_clauses = get_insns ();
1831 end_sequence ();
1832
1833 /* Here we fall through into the continuation code. */
1834}
1835
e701eb4d
JM
1836/* Rethrow from the outer context LABEL. */
1837
1838static void
1839expand_rethrow (label)
1840 rtx label;
1841{
1842 if (exceptions_via_longjmp)
1843 emit_throw ();
1844 else
1845 emit_jump (label);
1846}
1847
12670d88 1848/* End all the pending exception regions on protect_list. The handlers
27a36778 1849 will be emitted when expand_leftover_cleanups is invoked. */
4956d07c
MS
1850
1851void
1852end_protect_partials ()
1853{
1854 while (protect_list)
1855 {
1856 expand_eh_region_end (TREE_VALUE (protect_list));
1857 protect_list = TREE_CHAIN (protect_list);
1858 }
1859}
27a36778
MS
1860
1861/* Arrange for __terminate to be called if there is an unhandled throw
1862 from within E. */
1863
1864tree
1865protect_with_terminate (e)
1866 tree e;
1867{
1868 /* We only need to do this when using setjmp/longjmp EH and the
1869 language requires it, as otherwise we protect all of the handlers
1870 at once, if we need to. */
1871 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
1872 {
1873 tree handler, result;
1874
1875 /* All cleanups must be on the function_obstack. */
1876 push_obstacks_nochange ();
1877 resume_temporary_allocation ();
1878
1879 handler = make_node (RTL_EXPR);
1880 TREE_TYPE (handler) = void_type_node;
1881 RTL_EXPR_RTL (handler) = const0_rtx;
1882 TREE_SIDE_EFFECTS (handler) = 1;
1883 start_sequence_for_rtl_expr (handler);
1884
1885 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
1886 emit_barrier ();
1887
1888 RTL_EXPR_SEQUENCE (handler) = get_insns ();
1889 end_sequence ();
1890
1891 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
1892 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
1893 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
1894 TREE_READONLY (result) = TREE_READONLY (e);
1895
1896 pop_obstacks ();
1897
1898 e = result;
1899 }
1900
1901 return e;
1902}
4956d07c
MS
1903\f
1904/* The exception table that we build that is used for looking up and
12670d88
RK
1905 dispatching exceptions, the current number of entries, and its
1906 maximum size before we have to extend it.
1907
1908 The number in eh_table is the code label number of the exception
27a36778
MS
1909 handler for the region. This is added by add_eh_table_entry and
1910 used by output_exception_table_entry. */
12670d88 1911
9a0d1e1b
AM
1912static int *eh_table = NULL;
1913static int eh_table_size = 0;
1914static int eh_table_max_size = 0;
4956d07c
MS
1915
1916/* Note the need for an exception table entry for region N. If we
12670d88
RK
1917 don't need to output an explicit exception table, avoid all of the
1918 extra work.
1919
1920 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
9a0d1e1b 1921 (Or NOTE_INSN_EH_REGION_END sometimes)
12670d88 1922 N is the NOTE_BLOCK_NUMBER of the note, which comes from the code
abeeec2a 1923 label number of the exception handler for the region. */
4956d07c
MS
1924
1925void
1926add_eh_table_entry (n)
1927 int n;
1928{
1929#ifndef OMIT_EH_TABLE
1930 if (eh_table_size >= eh_table_max_size)
1931 {
1932 if (eh_table)
1933 {
1934 eh_table_max_size += eh_table_max_size>>1;
1935
1936 if (eh_table_max_size < 0)
1937 abort ();
1938
ca55abae
JM
1939 eh_table = (int *) xrealloc (eh_table,
1940 eh_table_max_size * sizeof (int));
4956d07c
MS
1941 }
1942 else
1943 {
1944 eh_table_max_size = 252;
1945 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
1946 }
1947 }
1948 eh_table[eh_table_size++] = n;
1949#endif
1950}
1951
12670d88
RK
1952/* Return a non-zero value if we need to output an exception table.
1953
1954 On some platforms, we don't have to output a table explicitly.
1955 This routine doesn't mean we don't have one. */
4956d07c
MS
1956
1957int
1958exception_table_p ()
1959{
1960 if (eh_table)
1961 return 1;
1962
1963 return 0;
1964}
1965
38e01259 1966/* Output the entry of the exception table corresponding to the
12670d88
RK
1967 exception region numbered N to file FILE.
1968
1969 N is the code label number corresponding to the handler of the
abeeec2a 1970 region. */
4956d07c
MS
1971
1972static void
1973output_exception_table_entry (file, n)
1974 FILE *file;
1975 int n;
1976{
1977 char buf[256];
1978 rtx sym;
9a0d1e1b
AM
1979 struct handler_info *handler;
1980
1981 handler = get_first_handler (n);
4956d07c 1982
9a0d1e1b
AM
1983 for ( ; handler != NULL; handler = handler->next)
1984 {
1985 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
1986 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
1987 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
4956d07c 1988
9a0d1e1b
AM
1989 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
1990 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
1991 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
1992
1993 assemble_integer (handler->handler_label,
1994 POINTER_SIZE / BITS_PER_UNIT, 1);
4956d07c 1995
a1622f83
AM
1996 if (flag_new_exceptions)
1997 {
1998 if (handler->type_info == NULL)
1999 assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2000 else
9c606f69
AM
2001 if (handler->type_info == CATCH_ALL_TYPE)
2002 assemble_integer (GEN_INT (CATCH_ALL_TYPE),
2003 POINTER_SIZE / BITS_PER_UNIT, 1);
2004 else
2005 output_constant ((tree)(handler->type_info),
9a0d1e1b 2006 POINTER_SIZE / BITS_PER_UNIT);
a1622f83 2007 }
9a0d1e1b 2008 putc ('\n', file); /* blank line */
bf71cd2e
AM
2009 /* We only output the first label under the old scheme */
2010 if (! flag_new_exceptions)
2011 break;
9a0d1e1b 2012 }
4956d07c
MS
2013}
2014
abeeec2a 2015/* Output the exception table if we have and need one. */
4956d07c 2016
9a0d1e1b
AM
2017static short language_code = 0;
2018static short version_code = 0;
2019
2020/* This routine will set the language code for exceptions. */
804a4e13
KG
2021void
2022set_exception_lang_code (code)
2023 int code;
9a0d1e1b
AM
2024{
2025 language_code = code;
2026}
2027
2028/* This routine will set the language version code for exceptions. */
804a4e13
KG
2029void
2030set_exception_version_code (code)
9a0d1e1b
AM
2031 short code;
2032{
2033 version_code = code;
2034}
2035
9a0d1e1b 2036
4956d07c
MS
2037void
2038output_exception_table ()
2039{
2040 int i;
2041 extern FILE *asm_out_file;
2042
ca55abae 2043 if (! doing_eh (0) || ! eh_table)
4956d07c
MS
2044 return;
2045
2046 exception_section ();
2047
2048 /* Beginning marker for table. */
2049 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
2050 assemble_label ("__EXCEPTION_TABLE__");
2051
a1622f83
AM
2052 if (flag_new_exceptions)
2053 {
2054 assemble_integer (GEN_INT (NEW_EH_RUNTIME),
2055 POINTER_SIZE / BITS_PER_UNIT, 1);
2056 assemble_integer (GEN_INT (language_code), 2 , 1);
2057 assemble_integer (GEN_INT (version_code), 2 , 1);
2058
2059 /* Add enough padding to make sure table aligns on a pointer boundry. */
2060 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2061 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2062 ;
2063 if (i != 0)
2064 assemble_integer (const0_rtx, i , 1);
2065 }
9a0d1e1b 2066
4956d07c
MS
2067 for (i = 0; i < eh_table_size; ++i)
2068 output_exception_table_entry (asm_out_file, eh_table[i]);
2069
2070 free (eh_table);
9a0d1e1b 2071 clear_function_eh_region ();
4956d07c
MS
2072
2073 /* Ending marker for table. */
4956d07c 2074 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
a1622f83 2075
9a0d1e1b
AM
2076 /* for binary compatability, the old __throw checked the second
2077 position for a -1, so we should output at least 2 -1's */
a1622f83
AM
2078 if (! flag_new_exceptions)
2079 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2080
4956d07c
MS
2081 putc ('\n', asm_out_file); /* blank line */
2082}
4956d07c 2083\f
154bba13
TT
2084/* Emit code to get EH context.
2085
2086 We have to scan thru the code to find possible EH context registers.
2087 Inlined functions may use it too, and thus we'll have to be able
2088 to change them too.
2089
2090 This is done only if using exceptions_via_longjmp. */
2091
2092void
2093emit_eh_context ()
2094{
2095 rtx insn;
2096 rtx ehc = 0;
2097
2098 if (! doing_eh (0))
2099 return;
2100
2101 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2102 if (GET_CODE (insn) == INSN
2103 && GET_CODE (PATTERN (insn)) == USE)
2104 {
2105 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2106 if (reg)
2107 {
2108 rtx insns;
2109
100d81d4
JM
2110 start_sequence ();
2111
d9c92f32
JM
2112 /* If this is the first use insn, emit the call here. This
2113 will always be at the top of our function, because if
2114 expand_inline_function notices a REG_EH_CONTEXT note, it
2115 adds a use insn to this function as well. */
154bba13 2116 if (ehc == 0)
01eb7f9a 2117 ehc = call_get_eh_context ();
154bba13 2118
154bba13
TT
2119 emit_move_insn (XEXP (reg, 0), ehc);
2120 insns = get_insns ();
2121 end_sequence ();
2122
2123 emit_insns_before (insns, insn);
0fc1434b
AM
2124
2125 /* At -O0, we must make the context register stay alive so
2126 that the stupid.c register allocator doesn't get confused. */
2127 if (obey_regdecls != 0)
2128 {
2129 insns = gen_rtx_USE (GET_MODE (XEXP (reg,0)), XEXP (reg,0));
2130 emit_insn_before (insns, get_last_insn ());
2131 }
154bba13
TT
2132 }
2133 }
2134}
2135
12670d88
RK
2136/* Scan the current insns and build a list of handler labels. The
2137 resulting list is placed in the global variable exception_handler_labels.
2138
2139 It is called after the last exception handling region is added to
2140 the current function (when the rtl is almost all built for the
2141 current function) and before the jump optimization pass. */
4956d07c
MS
2142
2143void
2144find_exception_handler_labels ()
2145{
2146 rtx insn;
4956d07c
MS
2147
2148 exception_handler_labels = NULL_RTX;
2149
2150 /* If we aren't doing exception handling, there isn't much to check. */
2151 if (! doing_eh (0))
2152 return;
2153
12670d88
RK
2154 /* For each start of a region, add its label to the list. */
2155
4956d07c
MS
2156 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2157 {
9a0d1e1b 2158 struct handler_info* ptr;
4956d07c
MS
2159 if (GET_CODE (insn) == NOTE
2160 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2161 {
9a0d1e1b
AM
2162 ptr = get_first_handler (NOTE_BLOCK_NUMBER (insn));
2163 for ( ; ptr; ptr = ptr->next)
2164 {
2165 /* make sure label isn't in the list already */
2166 rtx x;
2167 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2168 if (XEXP (x, 0) == ptr->handler_label)
2169 break;
2170 if (! x)
2171 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2172 ptr->handler_label, exception_handler_labels);
2173 }
4956d07c
MS
2174 }
2175 }
9a0d1e1b
AM
2176}
2177
2178/* Return a value of 1 if the parameter label number is an exception handler
2179 label. Return 0 otherwise. */
988cea7d 2180
9a0d1e1b
AM
2181int
2182is_exception_handler_label (lab)
2183 int lab;
2184{
2185 rtx x;
2186 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2187 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2188 return 1;
2189 return 0;
4956d07c
MS
2190}
2191
12670d88
RK
2192/* Perform sanity checking on the exception_handler_labels list.
2193
2194 Can be called after find_exception_handler_labels is called to
2195 build the list of exception handlers for the current function and
2196 before we finish processing the current function. */
4956d07c
MS
2197
2198void
2199check_exception_handler_labels ()
2200{
9a0d1e1b 2201 rtx insn, insn2;
4956d07c
MS
2202
2203 /* If we aren't doing exception handling, there isn't much to check. */
2204 if (! doing_eh (0))
2205 return;
2206
9a0d1e1b
AM
2207 /* Make sure there is no more than 1 copy of a label */
2208 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
4956d07c 2209 {
9a0d1e1b
AM
2210 int count = 0;
2211 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2212 if (XEXP (insn, 0) == XEXP (insn2, 0))
2213 count++;
2214 if (count != 1)
2215 warning ("Counted %d copies of EH region %d in list.\n", count,
2216 CODE_LABEL_NUMBER (insn));
4956d07c
MS
2217 }
2218
4956d07c
MS
2219}
2220\f
2221/* This group of functions initializes the exception handling data
2222 structures at the start of the compilation, initializes the data
12670d88 2223 structures at the start of a function, and saves and restores the
4956d07c
MS
2224 exception handling data structures for the start/end of a nested
2225 function. */
2226
2227/* Toplevel initialization for EH things. */
2228
2229void
2230init_eh ()
2231{
4956d07c
MS
2232}
2233
abeeec2a 2234/* Initialize the per-function EH information. */
4956d07c
MS
2235
2236void
2237init_eh_for_function ()
2238{
2239 ehstack.top = 0;
9a0d1e1b 2240 catchstack.top = 0;
4956d07c
MS
2241 ehqueue.head = ehqueue.tail = 0;
2242 catch_clauses = NULL_RTX;
2243 false_label_stack = 0;
2244 caught_return_label_stack = 0;
2245 protect_list = NULL_TREE;
154bba13 2246 current_function_ehc = NULL_RTX;
71038426
RH
2247 eh_return_context = NULL_RTX;
2248 eh_return_stack_adjust = NULL_RTX;
2249 eh_return_handler = NULL_RTX;
2250 eh_return_stub_label = NULL_RTX;
4956d07c
MS
2251}
2252
12670d88
RK
2253/* Save some of the per-function EH info into the save area denoted by
2254 P.
2255
27a36778 2256 This is currently called from save_stmt_status. */
4956d07c
MS
2257
2258void
2259save_eh_status (p)
2260 struct function *p;
2261{
3a88cbd1
JL
2262 if (p == NULL)
2263 abort ();
12670d88 2264
4956d07c 2265 p->ehstack = ehstack;
9a0d1e1b 2266 p->catchstack = catchstack;
4956d07c
MS
2267 p->ehqueue = ehqueue;
2268 p->catch_clauses = catch_clauses;
2269 p->false_label_stack = false_label_stack;
2270 p->caught_return_label_stack = caught_return_label_stack;
2271 p->protect_list = protect_list;
154bba13 2272 p->ehc = current_function_ehc;
4956d07c 2273
6e1f1f93 2274 init_eh_for_function ();
4956d07c
MS
2275}
2276
12670d88
RK
2277/* Restore the per-function EH info saved into the area denoted by P.
2278
abeeec2a 2279 This is currently called from restore_stmt_status. */
4956d07c
MS
2280
2281void
2282restore_eh_status (p)
2283 struct function *p;
2284{
3a88cbd1
JL
2285 if (p == NULL)
2286 abort ();
12670d88 2287
4956d07c
MS
2288 protect_list = p->protect_list;
2289 caught_return_label_stack = p->caught_return_label_stack;
2290 false_label_stack = p->false_label_stack;
2291 catch_clauses = p->catch_clauses;
2292 ehqueue = p->ehqueue;
2293 ehstack = p->ehstack;
9a0d1e1b 2294 catchstack = p->catchstack;
154bba13 2295 current_function_ehc = p->ehc;
4956d07c
MS
2296}
2297\f
2298/* This section is for the exception handling specific optimization
2299 pass. First are the internal routines, and then the main
2300 optimization pass. */
2301
2302/* Determine if the given INSN can throw an exception. */
2303
2304static int
2305can_throw (insn)
2306 rtx insn;
2307{
abeeec2a 2308 /* Calls can always potentially throw exceptions. */
4956d07c
MS
2309 if (GET_CODE (insn) == CALL_INSN)
2310 return 1;
2311
27a36778
MS
2312 if (asynchronous_exceptions)
2313 {
2314 /* If we wanted asynchronous exceptions, then everything but NOTEs
2315 and CODE_LABELs could throw. */
2316 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2317 return 1;
2318 }
4956d07c
MS
2319
2320 return 0;
2321}
2322
12670d88
RK
2323/* Scan a exception region looking for the matching end and then
2324 remove it if possible. INSN is the start of the region, N is the
2325 region number, and DELETE_OUTER is to note if anything in this
2326 region can throw.
2327
2328 Regions are removed if they cannot possibly catch an exception.
27a36778 2329 This is determined by invoking can_throw on each insn within the
12670d88
RK
2330 region; if can_throw returns true for any of the instructions, the
2331 region can catch an exception, since there is an insn within the
2332 region that is capable of throwing an exception.
2333
2334 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
27a36778 2335 calls abort if it can't find one.
12670d88
RK
2336
2337 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
abeeec2a 2338 correspond to the region number, or if DELETE_OUTER is NULL. */
4956d07c
MS
2339
2340static rtx
2341scan_region (insn, n, delete_outer)
2342 rtx insn;
2343 int n;
2344 int *delete_outer;
2345{
2346 rtx start = insn;
2347
2348 /* Assume we can delete the region. */
2349 int delete = 1;
2350
3a88cbd1
JL
2351 if (insn == NULL_RTX
2352 || GET_CODE (insn) != NOTE
2353 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2354 || NOTE_BLOCK_NUMBER (insn) != n
2355 || delete_outer == NULL)
2356 abort ();
12670d88 2357
4956d07c
MS
2358 insn = NEXT_INSN (insn);
2359
2360 /* Look for the matching end. */
2361 while (! (GET_CODE (insn) == NOTE
2362 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2363 {
2364 /* If anything can throw, we can't remove the region. */
2365 if (delete && can_throw (insn))
2366 {
2367 delete = 0;
2368 }
2369
2370 /* Watch out for and handle nested regions. */
2371 if (GET_CODE (insn) == NOTE
2372 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2373 {
2374 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &delete);
2375 }
2376
2377 insn = NEXT_INSN (insn);
2378 }
2379
2380 /* The _BEG/_END NOTEs must match and nest. */
2381 if (NOTE_BLOCK_NUMBER (insn) != n)
2382 abort ();
2383
12670d88 2384 /* If anything in this exception region can throw, we can throw. */
4956d07c
MS
2385 if (! delete)
2386 *delete_outer = 0;
2387 else
2388 {
2389 /* Delete the start and end of the region. */
2390 delete_insn (start);
2391 delete_insn (insn);
2392
9a0d1e1b
AM
2393/* We no longer removed labels here, since flow will now remove any
2394 handler which cannot be called any more. */
2395
2396#if 0
4956d07c
MS
2397 /* Only do this part if we have built the exception handler
2398 labels. */
2399 if (exception_handler_labels)
2400 {
2401 rtx x, *prev = &exception_handler_labels;
2402
2403 /* Find it in the list of handlers. */
2404 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2405 {
2406 rtx label = XEXP (x, 0);
2407 if (CODE_LABEL_NUMBER (label) == n)
2408 {
2409 /* If we are the last reference to the handler,
2410 delete it. */
2411 if (--LABEL_NUSES (label) == 0)
2412 delete_insn (label);
2413
2414 if (optimize)
2415 {
2416 /* Remove it from the list of exception handler
2417 labels, if we are optimizing. If we are not, then
2418 leave it in the list, as we are not really going to
2419 remove the region. */
2420 *prev = XEXP (x, 1);
2421 XEXP (x, 1) = 0;
2422 XEXP (x, 0) = 0;
2423 }
2424
2425 break;
2426 }
2427 prev = &XEXP (x, 1);
2428 }
2429 }
9a0d1e1b 2430#endif
4956d07c
MS
2431 }
2432 return insn;
2433}
2434
2435/* Perform various interesting optimizations for exception handling
2436 code.
2437
12670d88
RK
2438 We look for empty exception regions and make them go (away). The
2439 jump optimization code will remove the handler if nothing else uses
abeeec2a 2440 it. */
4956d07c
MS
2441
2442void
2443exception_optimize ()
2444{
381127e8 2445 rtx insn;
4956d07c
MS
2446 int n;
2447
12670d88 2448 /* Remove empty regions. */
4956d07c
MS
2449 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2450 {
2451 if (GET_CODE (insn) == NOTE
2452 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2453 {
27a36778 2454 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
12670d88
RK
2455 insn, we will indirectly skip through all the insns
2456 inbetween. We are also guaranteed that the value of insn
27a36778 2457 returned will be valid, as otherwise scan_region won't
abeeec2a 2458 return. */
4956d07c
MS
2459 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &n);
2460 }
2461 }
2462}
ca55abae
JM
2463\f
2464/* Various hooks for the DWARF 2 __throw routine. */
2465
2466/* Do any necessary initialization to access arbitrary stack frames.
2467 On the SPARC, this means flushing the register windows. */
2468
2469void
2470expand_builtin_unwind_init ()
2471{
2472 /* Set this so all the registers get saved in our frame; we need to be
2473 able to copy the saved values for any registers from frames we unwind. */
2474 current_function_has_nonlocal_label = 1;
2475
2476#ifdef SETUP_FRAME_ADDRESSES
2477 SETUP_FRAME_ADDRESSES ();
2478#endif
2479}
2480
2481/* Given a value extracted from the return address register or stack slot,
2482 return the actual address encoded in that value. */
2483
2484rtx
2485expand_builtin_extract_return_addr (addr_tree)
2486 tree addr_tree;
2487{
2488 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2489 return eh_outer_context (addr);
2490}
2491
2492/* Given an actual address in addr_tree, do any necessary encoding
2493 and return the value to be stored in the return address register or
2494 stack slot so the epilogue will return to that address. */
2495
2496rtx
2497expand_builtin_frob_return_addr (addr_tree)
2498 tree addr_tree;
2499{
2500 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2501#ifdef RETURN_ADDR_OFFSET
2502 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2503#endif
2504 return addr;
2505}
2506
71038426
RH
2507/* Choose three registers for communication between the main body of
2508 __throw and the epilogue (or eh stub) and the exception handler.
2509 We must do this with hard registers because the epilogue itself
2510 will be generated after reload, at which point we may not reference
2511 pseudos at all.
ca55abae 2512
71038426
RH
2513 The first passes the exception context to the handler. For this
2514 we use the return value register for a void*.
ca55abae 2515
71038426
RH
2516 The second holds the stack pointer value to be restored. For
2517 this we use the static chain register if it exists and is different
2518 from the previous, otherwise some arbitrary call-clobbered register.
ca55abae 2519
71038426
RH
2520 The third holds the address of the handler itself. Here we use
2521 some arbitrary call-clobbered register. */
ca55abae
JM
2522
2523static void
71038426
RH
2524eh_regs (pcontext, psp, pra, outgoing)
2525 rtx *pcontext, *psp, *pra;
ca55abae
JM
2526 int outgoing;
2527{
71038426
RH
2528 rtx rcontext, rsp, rra;
2529 int i;
ca55abae
JM
2530
2531#ifdef FUNCTION_OUTGOING_VALUE
2532 if (outgoing)
71038426
RH
2533 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2534 current_function_decl);
ca55abae
JM
2535 else
2536#endif
71038426
RH
2537 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
2538 current_function_decl);
ca55abae
JM
2539
2540#ifdef STATIC_CHAIN_REGNUM
2541 if (outgoing)
71038426 2542 rsp = static_chain_incoming_rtx;
ca55abae 2543 else
71038426
RH
2544 rsp = static_chain_rtx;
2545 if (REGNO (rsp) == REGNO (rcontext))
ca55abae 2546#endif /* STATIC_CHAIN_REGNUM */
71038426 2547 rsp = NULL_RTX;
ca55abae 2548
71038426 2549 if (rsp == NULL_RTX)
ca55abae 2550 {
ca55abae 2551 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
71038426
RH
2552 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
2553 break;
2554 if (i == FIRST_PSEUDO_REGISTER)
2555 abort();
ca55abae 2556
71038426 2557 rsp = gen_rtx_REG (Pmode, i);
ca55abae
JM
2558 }
2559
71038426
RH
2560 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2561 if (call_used_regs[i] && ! fixed_regs[i]
2562 && i != REGNO (rcontext) && i != REGNO (rsp))
2563 break;
2564 if (i == FIRST_PSEUDO_REGISTER)
2565 abort();
2566
2567 rra = gen_rtx_REG (Pmode, i);
ca55abae 2568
71038426
RH
2569 *pcontext = rcontext;
2570 *psp = rsp;
2571 *pra = rra;
2572}
9a0d1e1b
AM
2573
2574/* Retrieve the register which contains the pointer to the eh_context
2575 structure set the __throw. */
2576
2577rtx
2578get_reg_for_handler ()
2579{
2580 rtx reg1;
2581 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2582 current_function_decl);
2583 return reg1;
2584}
2585
71038426
RH
2586/* Set up the epilogue with the magic bits we'll need to return to the
2587 exception handler. */
9a0d1e1b 2588
71038426
RH
2589void
2590expand_builtin_eh_return (context, stack, handler)
2591 tree context, stack, handler;
a1622f83 2592{
71038426
RH
2593 if (eh_return_context)
2594 error("Duplicate call to __builtin_eh_return");
a1622f83 2595
71038426
RH
2596 eh_return_context
2597 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
2598 eh_return_stack_adjust
2599 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
2600 eh_return_handler
2601 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
a1622f83
AM
2602}
2603
71038426
RH
2604void
2605expand_eh_return ()
ca55abae 2606{
71038426
RH
2607 rtx reg1, reg2, reg3;
2608 rtx stub_start, after_stub;
2609 rtx ra, tmp;
ca55abae 2610
71038426
RH
2611 if (!eh_return_context)
2612 return;
ca55abae 2613
71038426
RH
2614 eh_regs (&reg1, &reg2, &reg3, 1);
2615 emit_move_insn (reg1, eh_return_context);
2616 emit_move_insn (reg2, eh_return_stack_adjust);
2617 emit_move_insn (reg3, eh_return_handler);
9a0d1e1b 2618
71038426 2619 /* Talk directly to the target's epilogue code when possible. */
9a0d1e1b 2620
71038426
RH
2621#ifdef HAVE_eh_epilogue
2622 if (HAVE_eh_epilogue)
2623 {
2624 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
2625 return;
2626 }
2627#endif
9a0d1e1b 2628
71038426 2629 /* Otherwise, use the same stub technique we had before. */
ca55abae 2630
71038426
RH
2631 eh_return_stub_label = stub_start = gen_label_rtx ();
2632 after_stub = gen_label_rtx ();
ca55abae 2633
71038426 2634 /* Set the return address to the stub label. */
ca55abae 2635
71038426
RH
2636 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
2637 0, hard_frame_pointer_rtx);
2638 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
2639 abort();
ca55abae 2640
71038426
RH
2641 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
2642#ifdef RETURN_ADDR_OFFSET
2643 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
2644#endif
2a55b8e8
JW
2645 tmp = force_operand (tmp, ra);
2646 if (tmp != ra)
2647 emit_move_insn (ra, tmp);
ca55abae 2648
71038426 2649 /* Indicate that the registers are in fact used. */
38a448ca
RH
2650 emit_insn (gen_rtx_USE (VOIDmode, reg1));
2651 emit_insn (gen_rtx_USE (VOIDmode, reg2));
71038426
RH
2652 emit_insn (gen_rtx_USE (VOIDmode, reg3));
2653 if (GET_CODE (ra) == REG)
2654 emit_insn (gen_rtx_USE (VOIDmode, ra));
77d33a84 2655
71038426
RH
2656 /* Generate the stub. */
2657
2658 emit_jump (after_stub);
2659 emit_label (stub_start);
2660
2661 eh_regs (&reg1, &reg2, &reg3, 0);
2662 adjust_stack (reg2);
2663 emit_indirect_jump (reg3);
2664
2665 emit_label (after_stub);
2666}
77d33a84
AM
2667\f
2668
2669/* This contains the code required to verify whether arbitrary instructions
2670 are in the same exception region. */
2671
2672static int *insn_eh_region = (int *)0;
2673static int maximum_uid;
2674
242c13b0
JL
2675static void
2676set_insn_eh_region (first, region_num)
77d33a84
AM
2677 rtx *first;
2678 int region_num;
2679{
2680 rtx insn;
2681 int rnum;
2682
2683 for (insn = *first; insn; insn = NEXT_INSN (insn))
2684 {
2685 if ((GET_CODE (insn) == NOTE) &&
2686 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
2687 {
2688 rnum = NOTE_BLOCK_NUMBER (insn);
2689 insn_eh_region[INSN_UID (insn)] = rnum;
2690 insn = NEXT_INSN (insn);
2691 set_insn_eh_region (&insn, rnum);
2692 /* Upon return, insn points to the EH_REGION_END of nested region */
2693 continue;
2694 }
2695 insn_eh_region[INSN_UID (insn)] = region_num;
2696 if ((GET_CODE (insn) == NOTE) &&
2697 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2698 break;
2699 }
2700 *first = insn;
2701}
2702
2703/* Free the insn table, an make sure it cannot be used again. */
2704
9a0d1e1b
AM
2705void
2706free_insn_eh_region ()
77d33a84
AM
2707{
2708 if (!doing_eh (0))
2709 return;
2710
2711 if (insn_eh_region)
2712 {
2713 free (insn_eh_region);
2714 insn_eh_region = (int *)0;
2715 }
2716}
2717
2718/* Initialize the table. max_uid must be calculated and handed into
2719 this routine. If it is unavailable, passing a value of 0 will
2720 cause this routine to calculate it as well. */
2721
9a0d1e1b
AM
2722void
2723init_insn_eh_region (first, max_uid)
77d33a84
AM
2724 rtx first;
2725 int max_uid;
2726{
2727 rtx insn;
2728
2729 if (!doing_eh (0))
2730 return;
2731
2732 if (insn_eh_region)
2733 free_insn_eh_region();
2734
2735 if (max_uid == 0)
2736 for (insn = first; insn; insn = NEXT_INSN (insn))
2737 if (INSN_UID (insn) > max_uid) /* find largest UID */
2738 max_uid = INSN_UID (insn);
2739
2740 maximum_uid = max_uid;
2741 insn_eh_region = (int *) malloc ((max_uid + 1) * sizeof (int));
2742 insn = first;
2743 set_insn_eh_region (&insn, 0);
2744}
2745
2746
2747/* Check whether 2 instructions are within the same region. */
2748
9a0d1e1b
AM
2749int
2750in_same_eh_region (insn1, insn2)
2751 rtx insn1, insn2;
77d33a84
AM
2752{
2753 int ret, uid1, uid2;
2754
2755 /* If no exceptions, instructions are always in same region. */
2756 if (!doing_eh (0))
2757 return 1;
2758
2759 /* If the table isn't allocated, assume the worst. */
2760 if (!insn_eh_region)
2761 return 0;
2762
2763 uid1 = INSN_UID (insn1);
2764 uid2 = INSN_UID (insn2);
2765
2766 /* if instructions have been allocated beyond the end, either
2767 the table is out of date, or this is a late addition, or
2768 something... Assume the worst. */
2769 if (uid1 > maximum_uid || uid2 > maximum_uid)
2770 return 0;
2771
2772 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
2773 return ret;
2774}
2775
This page took 0.614048 seconds and 5 git commands to generate.