]> gcc.gnu.org Git - gcc.git/blame - gcc/except.c
except.c: Include intl.h.
[gcc.git] / gcc / except.c
CommitLineData
12670d88 1/* Implements exception handling.
e5e809f4 2 Copyright (C) 1989, 92-97, 1998 Free Software Foundation, Inc.
4956d07c
MS
3 Contributed by Mike Stump <mrs@cygnus.com>.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22
12670d88
RK
23/* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
956d6950 26 be transferred to any arbitrary code associated with a function call
12670d88
RK
27 several levels up the stack.
28
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
38
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
45
27a36778
MS
46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
e9a25f70 48 approach, which is the default. -fno-sjlj-exceptions can be used to
27a36778
MS
49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
55
12670d88
RK
56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
60
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
67
2ed18e63
MS
68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
73
956d6950 74 In the current implementation, cleanups are handled by allocating an
2ed18e63
MS
75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
83
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
12670d88 89
ca55abae
JM
90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
12670d88 92 __register_exceptions with the address of its local
ca55abae
JM
93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
96
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
6d8ccdbb 100 __register_frame_info. On other targets, the information for each
d1485032 101 translation unit is registered from the file generated by collect2.
6d8ccdbb 102 __register_frame_info is defined in frame.c, and is responsible for
ca55abae
JM
103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
12670d88 105
27a36778 106 The function __throw is actually responsible for doing the
ca55abae
JM
107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
12670d88 109 per-object-file basis for each source file compiled with
38e01259 110 -fexceptions by the C++ frontend. Before __throw is invoked,
ca55abae
JM
111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
12670d88 113
27a36778 114 __throw attempts to find the appropriate exception handler for the
12670d88 115 PC value stored in __eh_pc by calling __find_first_exception_table_match
2ed18e63 116 (which is defined in libgcc2.c). If __find_first_exception_table_match
ca55abae
JM
117 finds a relevant handler, __throw transfers control directly to it.
118
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
125
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
12670d88
RK
131
132 Internal implementation details:
133
12670d88 134 To associate a user-defined handler with a block of statements, the
27a36778 135 function expand_start_try_stmts is used to mark the start of the
12670d88 136 block of statements with which the handler is to be associated
2ed18e63
MS
137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
139
27a36778 140 A call to expand_start_all_catch marks the end of the try block,
2ed18e63
MS
141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
143
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
151
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
27a36778 155 handler. expand_end_all_catch and expand_leftover_cleanups
2ed18e63
MS
156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
158
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
27a36778 163 to the topmost entry's label via expand_goto will resume normal
2ed18e63
MS
164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
167
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
27a36778
MS
170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
12670d88
RK
172
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
2ed18e63
MS
177 global variable to hold the value. (This will be changing in the
178 future.)
179
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
185
186 Internally-generated exception regions (cleanups) are marked by
27a36778 187 calling expand_eh_region_start to mark the start of the region,
2ed18e63
MS
188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
12670d88
RK
196
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
2ed18e63
MS
200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
208
209 Cleanups can also be specified by using add_partial_entry (handler)
27a36778 210 and end_protect_partials. add_partial_entry creates the start of
2ed18e63
MS
211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
27a36778 217 group of calls to add_partial_entry as the entries are queued
2ed18e63
MS
218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
12670d88
RK
222
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
2ed18e63
MS
226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
12670d88
RK
229
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
2ed18e63 234 can be safely optimized away (along with its exception handlers)
27a36778
MS
235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
245
12670d88 246
ca55abae 247 Walking the stack:
12670d88 248
ca55abae
JM
249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
12670d88 252
ca55abae 253 Unwinding the stack:
12670d88 254
ca55abae
JM
255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
259
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
262
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
270
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
956d6950 282 should call __terminate.
ca55abae
JM
283
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
2ed18e63
MS
289
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
ca55abae
JM
292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
12670d88 296
ca55abae
JM
297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
12670d88 302
27a36778 303 On some platforms it is possible that neither __unwind_function
12670d88 304 nor inlined unwinders are available. For these platforms it is not
27a36778 305 possible to throw through a function call, and abort will be
2ed18e63
MS
306 invoked instead of performing the throw.
307
ca55abae
JM
308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
313
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
319
2ed18e63
MS
320 Future directions:
321
27a36778 322 Currently __throw makes no differentiation between cleanups and
2ed18e63
MS
323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
330
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
27a36778 333 A two-pass scheme could then be used by __throw to iterate
2ed18e63
MS
334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
338
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
27a36778 343 __throw to be able to determine if a given user-defined
2ed18e63
MS
344 exception handler will actually be executed, given the type of
345 exception.
346
347 One scheme is to add additional information to exception_table_list
27a36778 348 as to the types of exceptions accepted by each handler. __throw
2ed18e63
MS
349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
351
352 There is currently no significant level of debugging support
27a36778 353 available, other than to place a breakpoint on __throw. While
2ed18e63
MS
354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
27a36778 359 scheme by adding additional labels to __throw for appropriate
2ed18e63
MS
360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
363
ca55abae
JM
364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
27a36778
MS
369
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
373
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
956d6950 380 table, and no calls to __register_exceptions. __sjthrow is used
27a36778
MS
381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
384
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
4956d07c
MS
389
390
391#include "config.h"
ca55abae 392#include "defaults.h"
9a0d1e1b 393#include "eh-common.h"
670ee920 394#include "system.h"
4956d07c
MS
395#include "rtl.h"
396#include "tree.h"
397#include "flags.h"
398#include "except.h"
399#include "function.h"
400#include "insn-flags.h"
401#include "expr.h"
402#include "insn-codes.h"
403#include "regs.h"
404#include "hard-reg-set.h"
405#include "insn-config.h"
406#include "recog.h"
407#include "output.h"
10f0ad3d 408#include "toplev.h"
e6cfb550 409#include "obstack.h"
4956d07c 410
27a36778
MS
411/* One to use setjmp/longjmp method of generating code for exception
412 handling. */
413
d1485032 414int exceptions_via_longjmp = 2;
27a36778
MS
415
416/* One to enable asynchronous exception support. */
417
418int asynchronous_exceptions = 0;
419
420/* One to protect cleanup actions with a handler that calls
421 __terminate, zero otherwise. */
422
e701eb4d 423int protect_cleanup_actions_with_terminate;
27a36778 424
12670d88 425/* A list of labels used for exception handlers. Created by
4956d07c
MS
426 find_exception_handler_labels for the optimization passes. */
427
428rtx exception_handler_labels;
429
154bba13
TT
430/* The EH context. Nonzero if the function has already
431 fetched a pointer to the EH context for exception handling. */
27a36778 432
154bba13 433rtx current_function_ehc;
27a36778 434
956d6950 435/* A stack used for keeping track of the currently active exception
12670d88 436 handling region. As each exception region is started, an entry
4956d07c
MS
437 describing the region is pushed onto this stack. The current
438 region can be found by looking at the top of the stack, and as we
12670d88
RK
439 exit regions, the corresponding entries are popped.
440
27a36778 441 Entries cannot overlap; they can be nested. So there is only one
12670d88
RK
442 entry at most that corresponds to the current instruction, and that
443 is the entry on the top of the stack. */
4956d07c 444
27a36778 445static struct eh_stack ehstack;
4956d07c 446
9a0d1e1b
AM
447
448/* This stack is used to represent what the current eh region is
449 for the catch blocks beings processed */
450
451static struct eh_stack catchstack;
452
12670d88
RK
453/* A queue used for tracking which exception regions have closed but
454 whose handlers have not yet been expanded. Regions are emitted in
455 groups in an attempt to improve paging performance.
456
457 As we exit a region, we enqueue a new entry. The entries are then
27a36778 458 dequeued during expand_leftover_cleanups and expand_start_all_catch,
12670d88
RK
459
460 We should redo things so that we either take RTL for the handler,
461 or we expand the handler expressed as a tree immediately at region
462 end time. */
4956d07c 463
27a36778 464static struct eh_queue ehqueue;
4956d07c 465
12670d88 466/* Insns for all of the exception handlers for the current function.
abeeec2a 467 They are currently emitted by the frontend code. */
4956d07c
MS
468
469rtx catch_clauses;
470
12670d88
RK
471/* A TREE_CHAINed list of handlers for regions that are not yet
472 closed. The TREE_VALUE of each entry contains the handler for the
abeeec2a 473 corresponding entry on the ehstack. */
4956d07c 474
12670d88 475static tree protect_list;
4956d07c
MS
476
477/* Stacks to keep track of various labels. */
478
12670d88
RK
479/* Keeps track of the label to resume to should one want to resume
480 normal control flow out of a handler (instead of, say, returning to
1418bb67 481 the caller of the current function or exiting the program). */
4956d07c
MS
482
483struct label_node *caught_return_label_stack = NULL;
484
956d6950
JL
485/* Keeps track of the label used as the context of a throw to rethrow an
486 exception to the outer exception region. */
487
488struct label_node *outer_context_label_stack = NULL;
489
12670d88 490/* A random data area for the front end's own use. */
4956d07c
MS
491
492struct label_node *false_label_stack = NULL;
493
71038426
RH
494/* Pseudos used to hold exception return data in the interim between
495 __builtin_eh_return and the end of the function. */
496
497static rtx eh_return_context;
498static rtx eh_return_stack_adjust;
499static rtx eh_return_handler;
500
501/* Used to mark the eh return stub for flow, so that the Right Thing
502 happens with the values for the hardregs therin. */
503
504rtx eh_return_stub_label;
505
e6cfb550
AM
506/* This is used for targets which can call rethrow with an offset instead
507 of an address. This is subtracted from the rethrow label we are
508 interested in. */
509
510static rtx first_rethrow_symbol = NULL_RTX;
511static rtx final_rethrow = NULL_RTX;
512static rtx last_rethrow_symbol = NULL_RTX;
513
514
71038426
RH
515/* Prototypes for local functions. */
516
242c13b0
JL
517static void push_eh_entry PROTO((struct eh_stack *));
518static struct eh_entry * pop_eh_entry PROTO((struct eh_stack *));
519static void enqueue_eh_entry PROTO((struct eh_queue *, struct eh_entry *));
520static struct eh_entry * dequeue_eh_entry PROTO((struct eh_queue *));
521static rtx call_get_eh_context PROTO((void));
522static void start_dynamic_cleanup PROTO((tree, tree));
523static void start_dynamic_handler PROTO((void));
e701eb4d 524static void expand_rethrow PROTO((rtx));
242c13b0
JL
525static void output_exception_table_entry PROTO((FILE *, int));
526static int can_throw PROTO((rtx));
527static rtx scan_region PROTO((rtx, int, int *));
71038426 528static void eh_regs PROTO((rtx *, rtx *, rtx *, int));
242c13b0 529static void set_insn_eh_region PROTO((rtx *, int));
767f5b14 530#ifdef DONT_USE_BUILTIN_SETJMP
561592c5 531static void jumpif_rtx PROTO((rtx, rtx));
767f5b14 532#endif
561592c5 533
242c13b0 534rtx expand_builtin_return_addr PROTO((enum built_in_function, int, rtx));
4956d07c
MS
535\f
536/* Various support routines to manipulate the various data structures
537 used by the exception handling code. */
538
e6cfb550
AM
539extern struct obstack permanent_obstack;
540
541/* Generate a SYMBOL_REF for rethrow to use */
542static rtx
543create_rethrow_ref (region_num)
544 int region_num;
545{
546 rtx def;
547 char *ptr;
548 char buf[60];
549
550 push_obstacks_nochange ();
551 end_temporary_allocation ();
552
553 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", region_num);
554 ptr = (char *) obstack_copy0 (&permanent_obstack, buf, strlen (buf));
555 def = gen_rtx_SYMBOL_REF (Pmode, ptr);
556 SYMBOL_REF_NEED_ADJUST (def) = 1;
557
558 pop_obstacks ();
559 return def;
560}
561
4956d07c
MS
562/* Push a label entry onto the given STACK. */
563
564void
565push_label_entry (stack, rlabel, tlabel)
566 struct label_node **stack;
567 rtx rlabel;
568 tree tlabel;
569{
570 struct label_node *newnode
571 = (struct label_node *) xmalloc (sizeof (struct label_node));
572
573 if (rlabel)
574 newnode->u.rlabel = rlabel;
575 else
576 newnode->u.tlabel = tlabel;
577 newnode->chain = *stack;
578 *stack = newnode;
579}
580
581/* Pop a label entry from the given STACK. */
582
583rtx
584pop_label_entry (stack)
585 struct label_node **stack;
586{
587 rtx label;
588 struct label_node *tempnode;
589
590 if (! *stack)
591 return NULL_RTX;
592
593 tempnode = *stack;
594 label = tempnode->u.rlabel;
595 *stack = (*stack)->chain;
596 free (tempnode);
597
598 return label;
599}
600
601/* Return the top element of the given STACK. */
602
603tree
604top_label_entry (stack)
605 struct label_node **stack;
606{
607 if (! *stack)
608 return NULL_TREE;
609
610 return (*stack)->u.tlabel;
611}
612
9a0d1e1b
AM
613/* get an exception label. These must be on the permanent obstack */
614
615rtx
616gen_exception_label ()
617{
618 rtx lab;
9a0d1e1b 619 lab = gen_label_rtx ();
9a0d1e1b
AM
620 return lab;
621}
622
478b0752 623/* Push a new eh_node entry onto STACK. */
4956d07c 624
478b0752 625static void
4956d07c
MS
626push_eh_entry (stack)
627 struct eh_stack *stack;
628{
629 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
630 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
631
e6cfb550 632 rtx rlab = gen_exception_label ();
4956d07c 633 entry->finalization = NULL_TREE;
9a0d1e1b 634 entry->label_used = 0;
e6cfb550 635 entry->exception_handler_label = rlab;
bf71cd2e 636 entry->false_label = NULL_RTX;
e6cfb550
AM
637 if (! flag_new_exceptions)
638 entry->outer_context = gen_label_rtx ();
639 else
640 entry->outer_context = create_rethrow_ref (CODE_LABEL_NUMBER (rlab));
641 entry->rethrow_label = entry->outer_context;
9a0d1e1b
AM
642
643 node->entry = entry;
644 node->chain = stack->top;
645 stack->top = node;
646}
4956d07c 647
9a0d1e1b
AM
648/* push an existing entry onto a stack. */
649static void
650push_entry (stack, entry)
651 struct eh_stack *stack;
652 struct eh_entry *entry;
653{
654 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
4956d07c
MS
655 node->entry = entry;
656 node->chain = stack->top;
657 stack->top = node;
4956d07c
MS
658}
659
660/* Pop an entry from the given STACK. */
661
662static struct eh_entry *
663pop_eh_entry (stack)
664 struct eh_stack *stack;
665{
666 struct eh_node *tempnode;
667 struct eh_entry *tempentry;
668
669 tempnode = stack->top;
670 tempentry = tempnode->entry;
671 stack->top = stack->top->chain;
672 free (tempnode);
673
674 return tempentry;
675}
676
677/* Enqueue an ENTRY onto the given QUEUE. */
678
679static void
680enqueue_eh_entry (queue, entry)
681 struct eh_queue *queue;
682 struct eh_entry *entry;
683{
684 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
685
686 node->entry = entry;
687 node->chain = NULL;
688
689 if (queue->head == NULL)
690 {
691 queue->head = node;
692 }
693 else
694 {
695 queue->tail->chain = node;
696 }
697 queue->tail = node;
698}
699
700/* Dequeue an entry from the given QUEUE. */
701
702static struct eh_entry *
703dequeue_eh_entry (queue)
704 struct eh_queue *queue;
705{
706 struct eh_node *tempnode;
707 struct eh_entry *tempentry;
708
709 if (queue->head == NULL)
710 return NULL;
711
712 tempnode = queue->head;
713 queue->head = queue->head->chain;
714
715 tempentry = tempnode->entry;
716 free (tempnode);
717
718 return tempentry;
719}
9a0d1e1b
AM
720
721static void
722receive_exception_label (handler_label)
723 rtx handler_label;
724{
725 emit_label (handler_label);
726
727#ifdef HAVE_exception_receiver
728 if (! exceptions_via_longjmp)
729 if (HAVE_exception_receiver)
730 emit_insn (gen_exception_receiver ());
731#endif
732
733#ifdef HAVE_nonlocal_goto_receiver
734 if (! exceptions_via_longjmp)
735 if (HAVE_nonlocal_goto_receiver)
736 emit_insn (gen_nonlocal_goto_receiver ());
737#endif
738}
739
740
741struct func_eh_entry
742{
743 int range_number; /* EH region number from EH NOTE insn's */
e6cfb550 744 rtx rethrow_label; /* Label for rethrow */
9a0d1e1b
AM
745 struct handler_info *handlers;
746};
747
748
749/* table of function eh regions */
750static struct func_eh_entry *function_eh_regions = NULL;
751static int num_func_eh_entries = 0;
752static int current_func_eh_entry = 0;
753
754#define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
755
756/* Add a new eh_entry for this function, and base it off of the information
e6cfb550
AM
757 in the EH_ENTRY parameter. A NULL parameter is invalid.
758 OUTER_CONTEXT is a label which is used for rethrowing. The number
9a0d1e1b
AM
759 returned is an number which uniquely identifies this exception range. */
760
e6cfb550
AM
761static int
762new_eh_region_entry (note_eh_region, rethrow)
9a0d1e1b 763 int note_eh_region;
e6cfb550 764 rtx rethrow;
9a0d1e1b
AM
765{
766 if (current_func_eh_entry == num_func_eh_entries)
767 {
768 if (num_func_eh_entries == 0)
769 {
770 function_eh_regions =
771 (struct func_eh_entry *) malloc (SIZE_FUNC_EH (50));
772 num_func_eh_entries = 50;
773 }
774 else
775 {
776 num_func_eh_entries = num_func_eh_entries * 3 / 2;
777 function_eh_regions = (struct func_eh_entry *)
778 realloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
779 }
780 }
781 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
e6cfb550
AM
782 if (rethrow == NULL_RTX)
783 function_eh_regions[current_func_eh_entry].rethrow_label =
784 create_rethrow_ref (note_eh_region);
785 else
786 function_eh_regions[current_func_eh_entry].rethrow_label = rethrow;
9a0d1e1b
AM
787 function_eh_regions[current_func_eh_entry].handlers = NULL;
788
789 return current_func_eh_entry++;
790}
791
792/* Add new handler information to an exception range. The first parameter
793 specifies the range number (returned from new_eh_entry()). The second
794 parameter specifies the handler. By default the handler is inserted at
795 the end of the list. A handler list may contain only ONE NULL_TREE
796 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
797 is always output as the LAST handler in the exception table for a region. */
798
799void
800add_new_handler (region, newhandler)
801 int region;
802 struct handler_info *newhandler;
803{
804 struct handler_info *last;
805
806 newhandler->next = NULL;
807 last = function_eh_regions[region].handlers;
808 if (last == NULL)
809 function_eh_regions[region].handlers = newhandler;
810 else
811 {
9bbdf48e
JM
812 for ( ; ; last = last->next)
813 {
814 if (last->type_info == CATCH_ALL_TYPE)
815 pedwarn ("additional handler after ...");
816 if (last->next == NULL)
817 break;
818 }
d7e78529 819 last->next = newhandler;
9a0d1e1b
AM
820 }
821}
822
9f8e6243
AM
823/* Remove a handler label. The handler label is being deleted, so all
824 regions which reference this handler should have it removed from their
825 list of possible handlers. Any region which has the final handler
826 removed can be deleted. */
827
828void remove_handler (removing_label)
829 rtx removing_label;
830{
831 struct handler_info *handler, *last;
832 int x;
833 for (x = 0 ; x < current_func_eh_entry; ++x)
834 {
835 last = NULL;
836 handler = function_eh_regions[x].handlers;
837 for ( ; handler; last = handler, handler = handler->next)
838 if (handler->handler_label == removing_label)
839 {
840 if (last)
841 {
842 last->next = handler->next;
843 handler = last;
844 }
845 else
846 function_eh_regions[x].handlers = handler->next;
847 }
848 }
849}
850
9c606f69
AM
851/* This function will return a malloc'd pointer to an array of
852 void pointer representing the runtime match values that
853 currently exist in all regions. */
854
855int
4f70758f
KG
856find_all_handler_type_matches (array)
857 void ***array;
9c606f69
AM
858{
859 struct handler_info *handler, *last;
860 int x,y;
861 void *val;
862 void **ptr;
863 int max_ptr;
864 int n_ptr = 0;
865
866 *array = NULL;
867
868 if (!doing_eh (0) || ! flag_new_exceptions)
869 return 0;
870
871 max_ptr = 100;
872 ptr = (void **)malloc (max_ptr * sizeof (void *));
873
874 if (ptr == NULL)
875 return 0;
876
877 for (x = 0 ; x < current_func_eh_entry; x++)
878 {
879 last = NULL;
880 handler = function_eh_regions[x].handlers;
881 for ( ; handler; last = handler, handler = handler->next)
882 {
883 val = handler->type_info;
884 if (val != NULL && val != CATCH_ALL_TYPE)
885 {
886 /* See if this match value has already been found. */
887 for (y = 0; y < n_ptr; y++)
888 if (ptr[y] == val)
889 break;
890
891 /* If we break early, we already found this value. */
892 if (y < n_ptr)
893 continue;
894
895 /* Do we need to allocate more space? */
896 if (n_ptr >= max_ptr)
897 {
898 max_ptr += max_ptr / 2;
899 ptr = (void **)realloc (ptr, max_ptr * sizeof (void *));
900 if (ptr == NULL)
901 return 0;
902 }
903 ptr[n_ptr] = val;
904 n_ptr++;
905 }
906 }
907 }
908 *array = ptr;
909 return n_ptr;
910}
911
9a0d1e1b
AM
912/* Create a new handler structure initialized with the handler label and
913 typeinfo fields passed in. */
914
915struct handler_info *
916get_new_handler (handler, typeinfo)
917 rtx handler;
918 void *typeinfo;
919{
920 struct handler_info* ptr;
921 ptr = (struct handler_info *) malloc (sizeof (struct handler_info));
922 ptr->handler_label = handler;
0177de87 923 ptr->handler_number = CODE_LABEL_NUMBER (handler);
9a0d1e1b
AM
924 ptr->type_info = typeinfo;
925 ptr->next = NULL;
926
927 return ptr;
928}
929
930
931
932/* Find the index in function_eh_regions associated with a NOTE region. If
933 the region cannot be found, a -1 is returned. This should never happen! */
934
935int
936find_func_region (insn_region)
937 int insn_region;
938{
939 int x;
940 for (x = 0; x < current_func_eh_entry; x++)
941 if (function_eh_regions[x].range_number == insn_region)
942 return x;
943
944 return -1;
945}
946
947/* Get a pointer to the first handler in an exception region's list. */
948
949struct handler_info *
950get_first_handler (region)
951 int region;
952{
953 return function_eh_regions[find_func_region (region)].handlers;
954}
955
956/* Clean out the function_eh_region table and free all memory */
957
958static void
959clear_function_eh_region ()
960{
961 int x;
962 struct handler_info *ptr, *next;
963 for (x = 0; x < current_func_eh_entry; x++)
964 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
965 {
966 next = ptr->next;
967 free (ptr);
968 }
969 free (function_eh_regions);
970 num_func_eh_entries = 0;
971 current_func_eh_entry = 0;
972}
973
974/* Make a duplicate of an exception region by copying all the handlers
e6cfb550
AM
975 for an exception region. Return the new handler index. The final
976 parameter is a routine which maps old labels to new ones. */
9a0d1e1b
AM
977
978int
e6cfb550 979duplicate_eh_handlers (old_note_eh_region, new_note_eh_region, map)
9a0d1e1b 980 int old_note_eh_region, new_note_eh_region;
3b89e9d1 981 rtx (*map) PARAMS ((rtx));
9a0d1e1b
AM
982{
983 struct handler_info *ptr, *new_ptr;
984 int new_region, region;
985
986 region = find_func_region (old_note_eh_region);
987 if (region == -1)
e6cfb550
AM
988 fatal ("Cannot duplicate non-existant exception region.");
989
990 /* duplicate_eh_handlers may have been called during a symbol remap. */
991 new_region = find_func_region (new_note_eh_region);
992 if (new_region != -1)
993 return (new_region);
9a0d1e1b 994
e6cfb550 995 new_region = new_eh_region_entry (new_note_eh_region, NULL_RTX);
9a0d1e1b 996
9a0d1e1b
AM
997 ptr = function_eh_regions[region].handlers;
998
999 for ( ; ptr; ptr = ptr->next)
1000 {
e6cfb550 1001 new_ptr = get_new_handler (map (ptr->handler_label), ptr->type_info);
9a0d1e1b
AM
1002 add_new_handler (new_region, new_ptr);
1003 }
1004
1005 return new_region;
1006}
1007
e6cfb550
AM
1008
1009/* Given a rethrow symbol, find the EH region number this is for. */
1010int
1011eh_region_from_symbol (sym)
1012 rtx sym;
1013{
1014 int x;
1015 if (sym == last_rethrow_symbol)
1016 return 1;
1017 for (x = 0; x < current_func_eh_entry; x++)
1018 if (function_eh_regions[x].rethrow_label == sym)
1019 return function_eh_regions[x].range_number;
1020 return -1;
1021}
1022
1023
1024/* When inlining/unrolling, we have to map the symbols passed to
1025 __rethrow as well. This performs the remap. If a symbol isn't foiund,
1026 the original one is returned. This is not an efficient routine,
1027 so don't call it on everything!! */
1028rtx
1029rethrow_symbol_map (sym, map)
1030 rtx sym;
3b89e9d1 1031 rtx (*map) PARAMS ((rtx));
e6cfb550
AM
1032{
1033 int x, y;
1034 for (x = 0; x < current_func_eh_entry; x++)
1035 if (function_eh_regions[x].rethrow_label == sym)
1036 {
1037 /* We've found the original region, now lets determine which region
1038 this now maps to. */
1039 rtx l1 = function_eh_regions[x].handlers->handler_label;
1040 rtx l2 = map (l1);
1041 y = CODE_LABEL_NUMBER (l2); /* This is the new region number */
1042 x = find_func_region (y); /* Get the new permanent region */
1043 if (x == -1) /* Hmm, Doesn't exist yet */
1044 {
1045 x = duplicate_eh_handlers (CODE_LABEL_NUMBER (l1), y, map);
1046 /* Since we're mapping it, it must be used. */
1047 SYMBOL_REF_USED (function_eh_regions[x].rethrow_label) = 1;
1048 }
1049 return function_eh_regions[x].rethrow_label;
1050 }
1051 return sym;
1052}
1053
1054int
1055rethrow_used (region)
1056 int region;
1057{
1058 if (flag_new_exceptions)
1059 {
1060 rtx lab = function_eh_regions[find_func_region (region)].rethrow_label;
1061 return (SYMBOL_REF_USED (lab));
1062 }
1063 return 0;
1064}
1065
4956d07c 1066\f
38e01259 1067/* Routine to see if exception handling is turned on.
4956d07c 1068 DO_WARN is non-zero if we want to inform the user that exception
12670d88
RK
1069 handling is turned off.
1070
1071 This is used to ensure that -fexceptions has been specified if the
abeeec2a 1072 compiler tries to use any exception-specific functions. */
4956d07c
MS
1073
1074int
1075doing_eh (do_warn)
1076 int do_warn;
1077{
1078 if (! flag_exceptions)
1079 {
1080 static int warned = 0;
1081 if (! warned && do_warn)
1082 {
1083 error ("exception handling disabled, use -fexceptions to enable");
1084 warned = 1;
1085 }
1086 return 0;
1087 }
1088 return 1;
1089}
1090
12670d88 1091/* Given a return address in ADDR, determine the address we should use
abeeec2a 1092 to find the corresponding EH region. */
4956d07c
MS
1093
1094rtx
1095eh_outer_context (addr)
1096 rtx addr;
1097{
1098 /* First mask out any unwanted bits. */
1099#ifdef MASK_RETURN_ADDR
ca55abae 1100 expand_and (addr, MASK_RETURN_ADDR, addr);
4956d07c
MS
1101#endif
1102
ca55abae
JM
1103 /* Then adjust to find the real return address. */
1104#if defined (RETURN_ADDR_OFFSET)
1105 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
4956d07c
MS
1106#endif
1107
1108 return addr;
1109}
1110
27a36778
MS
1111/* Start a new exception region for a region of code that has a
1112 cleanup action and push the HANDLER for the region onto
1113 protect_list. All of the regions created with add_partial_entry
1114 will be ended when end_protect_partials is invoked. */
12670d88
RK
1115
1116void
1117add_partial_entry (handler)
1118 tree handler;
1119{
1120 expand_eh_region_start ();
1121
abeeec2a 1122 /* Make sure the entry is on the correct obstack. */
12670d88
RK
1123 push_obstacks_nochange ();
1124 resume_temporary_allocation ();
27a36778
MS
1125
1126 /* Because this is a cleanup action, we may have to protect the handler
1127 with __terminate. */
1128 handler = protect_with_terminate (handler);
1129
12670d88
RK
1130 protect_list = tree_cons (NULL_TREE, handler, protect_list);
1131 pop_obstacks ();
1132}
1133
100d81d4 1134/* Emit code to get EH context to current function. */
27a36778 1135
154bba13 1136static rtx
01eb7f9a 1137call_get_eh_context ()
27a36778 1138{
bb727b5a
JM
1139 static tree fn;
1140 tree expr;
1141
1142 if (fn == NULL_TREE)
1143 {
1144 tree fntype;
154bba13 1145 fn = get_identifier ("__get_eh_context");
bb727b5a
JM
1146 push_obstacks_nochange ();
1147 end_temporary_allocation ();
1148 fntype = build_pointer_type (build_pointer_type
1149 (build_pointer_type (void_type_node)));
1150 fntype = build_function_type (fntype, NULL_TREE);
1151 fn = build_decl (FUNCTION_DECL, fn, fntype);
1152 DECL_EXTERNAL (fn) = 1;
1153 TREE_PUBLIC (fn) = 1;
1154 DECL_ARTIFICIAL (fn) = 1;
1155 TREE_READONLY (fn) = 1;
1156 make_decl_rtl (fn, NULL_PTR, 1);
1157 assemble_external (fn);
1158 pop_obstacks ();
1159 }
1160
1161 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1162 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1163 expr, NULL_TREE, NULL_TREE);
1164 TREE_SIDE_EFFECTS (expr) = 1;
bb727b5a 1165
100d81d4 1166 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
154bba13
TT
1167}
1168
1169/* Get a reference to the EH context.
1170 We will only generate a register for the current function EH context here,
1171 and emit a USE insn to mark that this is a EH context register.
1172
1173 Later, emit_eh_context will emit needed call to __get_eh_context
1174 in libgcc2, and copy the value to the register we have generated. */
1175
1176rtx
01eb7f9a 1177get_eh_context ()
154bba13
TT
1178{
1179 if (current_function_ehc == 0)
1180 {
1181 rtx insn;
1182
1183 current_function_ehc = gen_reg_rtx (Pmode);
1184
38a448ca
RH
1185 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1186 current_function_ehc);
154bba13
TT
1187 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1188
1189 REG_NOTES (insn)
38a448ca
RH
1190 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1191 REG_NOTES (insn));
154bba13
TT
1192 }
1193 return current_function_ehc;
1194}
1195
154bba13
TT
1196/* Get a reference to the dynamic handler chain. It points to the
1197 pointer to the next element in the dynamic handler chain. It ends
1198 when there are no more elements in the dynamic handler chain, when
1199 the value is &top_elt from libgcc2.c. Immediately after the
1200 pointer, is an area suitable for setjmp/longjmp when
1201 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1202 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1203 isn't defined. */
1204
1205rtx
1206get_dynamic_handler_chain ()
1207{
1208 rtx ehc, dhc, result;
1209
01eb7f9a 1210 ehc = get_eh_context ();
3301dc51
AM
1211
1212 /* This is the offset of dynamic_handler_chain in the eh_context struct
1213 declared in eh-common.h. If its location is change, change this offset */
5816cb14 1214 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
154bba13
TT
1215
1216 result = copy_to_reg (dhc);
1217
1218 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 1219 return gen_rtx_MEM (Pmode, result);
27a36778
MS
1220}
1221
1222/* Get a reference to the dynamic cleanup chain. It points to the
1223 pointer to the next element in the dynamic cleanup chain.
1224 Immediately after the pointer, are two Pmode variables, one for a
1225 pointer to a function that performs the cleanup action, and the
1226 second, the argument to pass to that function. */
1227
1228rtx
1229get_dynamic_cleanup_chain ()
1230{
154bba13 1231 rtx dhc, dcc, result;
27a36778
MS
1232
1233 dhc = get_dynamic_handler_chain ();
5816cb14 1234 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
27a36778 1235
154bba13 1236 result = copy_to_reg (dcc);
27a36778
MS
1237
1238 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 1239 return gen_rtx_MEM (Pmode, result);
154bba13
TT
1240}
1241
767f5b14 1242#ifdef DONT_USE_BUILTIN_SETJMP
27a36778
MS
1243/* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1244 LABEL is an rtx of code CODE_LABEL, in this function. */
1245
561592c5 1246static void
27a36778
MS
1247jumpif_rtx (x, label)
1248 rtx x;
1249 rtx label;
1250{
1251 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1252}
767f5b14 1253#endif
27a36778
MS
1254
1255/* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1256 We just need to create an element for the cleanup list, and push it
1257 into the chain.
1258
1259 A dynamic cleanup is a cleanup action implied by the presence of an
1260 element on the EH runtime dynamic cleanup stack that is to be
1261 performed when an exception is thrown. The cleanup action is
1262 performed by __sjthrow when an exception is thrown. Only certain
1263 actions can be optimized into dynamic cleanup actions. For the
1264 restrictions on what actions can be performed using this routine,
1265 see expand_eh_region_start_tree. */
1266
1267static void
1268start_dynamic_cleanup (func, arg)
1269 tree func;
1270 tree arg;
1271{
381127e8 1272 rtx dcc;
27a36778
MS
1273 rtx new_func, new_arg;
1274 rtx x, buf;
1275 int size;
1276
1277 /* We allocate enough room for a pointer to the function, and
1278 one argument. */
1279 size = 2;
1280
1281 /* XXX, FIXME: The stack space allocated this way is too long lived,
1282 but there is no allocation routine that allocates at the level of
1283 the last binding contour. */
1284 buf = assign_stack_local (BLKmode,
1285 GET_MODE_SIZE (Pmode)*(size+1),
1286 0);
1287
1288 buf = change_address (buf, Pmode, NULL_RTX);
1289
1290 /* Store dcc into the first word of the newly allocated buffer. */
1291
1292 dcc = get_dynamic_cleanup_chain ();
1293 emit_move_insn (buf, dcc);
1294
1295 /* Store func and arg into the cleanup list element. */
1296
38a448ca
RH
1297 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1298 GET_MODE_SIZE (Pmode)));
1299 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1300 GET_MODE_SIZE (Pmode)*2));
27a36778
MS
1301 x = expand_expr (func, new_func, Pmode, 0);
1302 if (x != new_func)
1303 emit_move_insn (new_func, x);
1304
1305 x = expand_expr (arg, new_arg, Pmode, 0);
1306 if (x != new_arg)
1307 emit_move_insn (new_arg, x);
1308
1309 /* Update the cleanup chain. */
1310
1311 emit_move_insn (dcc, XEXP (buf, 0));
1312}
1313
1314/* Emit RTL to start a dynamic handler on the EH runtime dynamic
1315 handler stack. This should only be used by expand_eh_region_start
1316 or expand_eh_region_start_tree. */
1317
1318static void
1319start_dynamic_handler ()
1320{
1321 rtx dhc, dcc;
6e6a07d2 1322 rtx x, arg, buf;
27a36778
MS
1323 int size;
1324
6e6a07d2 1325#ifndef DONT_USE_BUILTIN_SETJMP
27a36778
MS
1326 /* The number of Pmode words for the setjmp buffer, when using the
1327 builtin setjmp/longjmp, see expand_builtin, case
1328 BUILT_IN_LONGJMP. */
1329 size = 5;
1330#else
1331#ifdef JMP_BUF_SIZE
1332 size = JMP_BUF_SIZE;
1333#else
1334 /* Should be large enough for most systems, if it is not,
1335 JMP_BUF_SIZE should be defined with the proper value. It will
1336 also tend to be larger than necessary for most systems, a more
1337 optimal port will define JMP_BUF_SIZE. */
1338 size = FIRST_PSEUDO_REGISTER+2;
1339#endif
1340#endif
1341 /* XXX, FIXME: The stack space allocated this way is too long lived,
1342 but there is no allocation routine that allocates at the level of
1343 the last binding contour. */
1344 arg = assign_stack_local (BLKmode,
1345 GET_MODE_SIZE (Pmode)*(size+1),
1346 0);
1347
1348 arg = change_address (arg, Pmode, NULL_RTX);
1349
1350 /* Store dhc into the first word of the newly allocated buffer. */
1351
1352 dhc = get_dynamic_handler_chain ();
38a448ca
RH
1353 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1354 GET_MODE_SIZE (Pmode)));
27a36778
MS
1355 emit_move_insn (arg, dhc);
1356
1357 /* Zero out the start of the cleanup chain. */
1358 emit_move_insn (dcc, const0_rtx);
1359
1360 /* The jmpbuf starts two words into the area allocated. */
6e6a07d2 1361 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
27a36778 1362
6e6a07d2 1363#ifdef DONT_USE_BUILTIN_SETJMP
27a36778 1364 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1, SImode, 1,
6e6a07d2 1365 buf, Pmode);
6fd1c67b
RH
1366 /* If we come back here for a catch, transfer control to the handler. */
1367 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
6e6a07d2 1368#else
6fd1c67b
RH
1369 {
1370 /* A label to continue execution for the no exception case. */
1371 rtx noex = gen_label_rtx();
1372 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1373 ehstack.top->entry->exception_handler_label);
1374 emit_label (noex);
1375 }
6e6a07d2 1376#endif
27a36778 1377
27a36778
MS
1378 /* We are committed to this, so update the handler chain. */
1379
b68e8bdd 1380 emit_move_insn (dhc, force_operand (XEXP (arg, 0), NULL_RTX));
27a36778
MS
1381}
1382
1383/* Start an exception handling region for the given cleanup action.
12670d88 1384 All instructions emitted after this point are considered to be part
27a36778
MS
1385 of the region until expand_eh_region_end is invoked. CLEANUP is
1386 the cleanup action to perform. The return value is true if the
1387 exception region was optimized away. If that case,
1388 expand_eh_region_end does not need to be called for this cleanup,
1389 nor should it be.
1390
1391 This routine notices one particular common case in C++ code
1392 generation, and optimizes it so as to not need the exception
1393 region. It works by creating a dynamic cleanup action, instead of
38e01259 1394 a using an exception region. */
27a36778
MS
1395
1396int
4c581243
MS
1397expand_eh_region_start_tree (decl, cleanup)
1398 tree decl;
27a36778
MS
1399 tree cleanup;
1400{
27a36778
MS
1401 /* This is the old code. */
1402 if (! doing_eh (0))
1403 return 0;
1404
1405 /* The optimization only applies to actions protected with
1406 terminate, and only applies if we are using the setjmp/longjmp
1407 codegen method. */
1408 if (exceptions_via_longjmp
1409 && protect_cleanup_actions_with_terminate)
1410 {
1411 tree func, arg;
1412 tree args;
1413
1414 /* Ignore any UNSAVE_EXPR. */
1415 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1416 cleanup = TREE_OPERAND (cleanup, 0);
1417
1418 /* Further, it only applies if the action is a call, if there
1419 are 2 arguments, and if the second argument is 2. */
1420
1421 if (TREE_CODE (cleanup) == CALL_EXPR
1422 && (args = TREE_OPERAND (cleanup, 1))
1423 && (func = TREE_OPERAND (cleanup, 0))
1424 && (arg = TREE_VALUE (args))
1425 && (args = TREE_CHAIN (args))
1426
1427 /* is the second argument 2? */
1428 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1429 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1430 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1431
1432 /* Make sure there are no other arguments. */
1433 && TREE_CHAIN (args) == NULL_TREE)
1434 {
1435 /* Arrange for returns and gotos to pop the entry we make on the
1436 dynamic cleanup stack. */
4c581243 1437 expand_dcc_cleanup (decl);
27a36778
MS
1438 start_dynamic_cleanup (func, arg);
1439 return 1;
1440 }
1441 }
1442
4c581243 1443 expand_eh_region_start_for_decl (decl);
9762d48d 1444 ehstack.top->entry->finalization = cleanup;
27a36778
MS
1445
1446 return 0;
1447}
1448
4c581243
MS
1449/* Just like expand_eh_region_start, except if a cleanup action is
1450 entered on the cleanup chain, the TREE_PURPOSE of the element put
1451 on the chain is DECL. DECL should be the associated VAR_DECL, if
1452 any, otherwise it should be NULL_TREE. */
4956d07c
MS
1453
1454void
4c581243
MS
1455expand_eh_region_start_for_decl (decl)
1456 tree decl;
4956d07c
MS
1457{
1458 rtx note;
1459
1460 /* This is the old code. */
1461 if (! doing_eh (0))
1462 return;
1463
27a36778
MS
1464 if (exceptions_via_longjmp)
1465 {
1466 /* We need a new block to record the start and end of the
1467 dynamic handler chain. We could always do this, but we
1468 really want to permit jumping into such a block, and we want
1469 to avoid any errors or performance impact in the SJ EH code
1470 for now. */
1471 expand_start_bindings (0);
1472
1473 /* But we don't need or want a new temporary level. */
1474 pop_temp_slots ();
1475
1476 /* Mark this block as created by expand_eh_region_start. This
1477 is so that we can pop the block with expand_end_bindings
1478 automatically. */
1479 mark_block_as_eh_region ();
1480
1481 /* Arrange for returns and gotos to pop the entry we make on the
1482 dynamic handler stack. */
4c581243 1483 expand_dhc_cleanup (decl);
27a36778 1484 }
4956d07c 1485
478b0752 1486 push_eh_entry (&ehstack);
9ad8a5f0
MS
1487 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1488 NOTE_BLOCK_NUMBER (note)
1489 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
27a36778
MS
1490 if (exceptions_via_longjmp)
1491 start_dynamic_handler ();
4956d07c
MS
1492}
1493
4c581243
MS
1494/* Start an exception handling region. All instructions emitted after
1495 this point are considered to be part of the region until
1496 expand_eh_region_end is invoked. */
1497
1498void
1499expand_eh_region_start ()
1500{
1501 expand_eh_region_start_for_decl (NULL_TREE);
1502}
1503
27a36778
MS
1504/* End an exception handling region. The information about the region
1505 is found on the top of ehstack.
12670d88
RK
1506
1507 HANDLER is either the cleanup for the exception region, or if we're
1508 marking the end of a try block, HANDLER is integer_zero_node.
1509
27a36778 1510 HANDLER will be transformed to rtl when expand_leftover_cleanups
abeeec2a 1511 is invoked. */
4956d07c
MS
1512
1513void
1514expand_eh_region_end (handler)
1515 tree handler;
1516{
4956d07c 1517 struct eh_entry *entry;
9ad8a5f0 1518 rtx note;
e6cfb550 1519 int ret, r;
4956d07c
MS
1520
1521 if (! doing_eh (0))
1522 return;
1523
1524 entry = pop_eh_entry (&ehstack);
1525
9ad8a5f0 1526 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
e6cfb550 1527 ret = NOTE_BLOCK_NUMBER (note)
9ad8a5f0 1528 = CODE_LABEL_NUMBER (entry->exception_handler_label);
e6cfb550 1529 if (exceptions_via_longjmp == 0 && ! flag_new_exceptions
e701eb4d
JM
1530 /* We share outer_context between regions; only emit it once. */
1531 && INSN_UID (entry->outer_context) == 0)
27a36778 1532 {
478b0752 1533 rtx label;
4956d07c 1534
478b0752
MS
1535 label = gen_label_rtx ();
1536 emit_jump (label);
1537
1538 /* Emit a label marking the end of this exception region that
1539 is used for rethrowing into the outer context. */
1540 emit_label (entry->outer_context);
e701eb4d 1541 expand_internal_throw ();
4956d07c 1542
478b0752 1543 emit_label (label);
27a36778 1544 }
4956d07c
MS
1545
1546 entry->finalization = handler;
1547
9a0d1e1b 1548 /* create region entry in final exception table */
e6cfb550 1549 r = new_eh_region_entry (NOTE_BLOCK_NUMBER (note), entry->rethrow_label);
9a0d1e1b 1550
4956d07c
MS
1551 enqueue_eh_entry (&ehqueue, entry);
1552
27a36778
MS
1553 /* If we have already started ending the bindings, don't recurse.
1554 This only happens when exceptions_via_longjmp is true. */
1555 if (is_eh_region ())
1556 {
1557 /* Because we don't need or want a new temporary level and
1558 because we didn't create one in expand_eh_region_start,
1559 create a fake one now to avoid removing one in
1560 expand_end_bindings. */
1561 push_temp_slots ();
1562
1563 mark_block_as_not_eh_region ();
1564
1565 /* Maybe do this to prevent jumping in and so on... */
1566 expand_end_bindings (NULL_TREE, 0, 0);
1567 }
4956d07c
MS
1568}
1569
9762d48d
JM
1570/* End the EH region for a goto fixup. We only need them in the region-based
1571 EH scheme. */
1572
1573void
1574expand_fixup_region_start ()
1575{
1576 if (! doing_eh (0) || exceptions_via_longjmp)
1577 return;
1578
1579 expand_eh_region_start ();
1580}
1581
1582/* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1583 expanded; to avoid running it twice if it throws, we look through the
1584 ehqueue for a matching region and rethrow from its outer_context. */
1585
1586void
1587expand_fixup_region_end (cleanup)
1588 tree cleanup;
1589{
9762d48d 1590 struct eh_node *node;
b37f006b 1591 int dont_issue;
9762d48d
JM
1592
1593 if (! doing_eh (0) || exceptions_via_longjmp)
1594 return;
1595
1596 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1597 node = node->chain;
1598 if (node == 0)
1599 for (node = ehqueue.head; node && node->entry->finalization != cleanup; )
1600 node = node->chain;
1601 if (node == 0)
1602 abort ();
1603
b37f006b
AM
1604 /* If the outer context label has not been issued yet, we don't want
1605 to issue it as a part of this region, unless this is the
1606 correct region for the outer context. If we did, then the label for
1607 the outer context will be WITHIN the begin/end labels,
1608 and we could get an infinte loop when it tried to rethrow, or just
1609 generally incorrect execution following a throw. */
1610
1611 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1612 && (ehstack.top->entry != node->entry));
1613
e701eb4d 1614 ehstack.top->entry->outer_context = node->entry->outer_context;
9762d48d 1615
b37f006b
AM
1616 /* Since we are rethrowing to the OUTER region, we know we don't need
1617 a jump around sequence for this region, so we'll pretend the outer
1618 context label has been issued by setting INSN_UID to 1, then clearing
1619 it again afterwards. */
1620
1621 if (dont_issue)
1622 INSN_UID (node->entry->outer_context) = 1;
1623
e701eb4d
JM
1624 /* Just rethrow. size_zero_node is just a NOP. */
1625 expand_eh_region_end (size_zero_node);
b37f006b
AM
1626
1627 if (dont_issue)
1628 INSN_UID (node->entry->outer_context) = 0;
9762d48d
JM
1629}
1630
27a36778
MS
1631/* If we are using the setjmp/longjmp EH codegen method, we emit a
1632 call to __sjthrow.
1633
1634 Otherwise, we emit a call to __throw and note that we threw
1635 something, so we know we need to generate the necessary code for
1636 __throw.
12670d88
RK
1637
1638 Before invoking throw, the __eh_pc variable must have been set up
1639 to contain the PC being thrown from. This address is used by
27a36778 1640 __throw to determine which exception region (if any) is
abeeec2a 1641 responsible for handling the exception. */
4956d07c 1642
27a36778 1643void
4956d07c
MS
1644emit_throw ()
1645{
27a36778
MS
1646 if (exceptions_via_longjmp)
1647 {
1648 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1649 }
1650 else
1651 {
4956d07c 1652#ifdef JUMP_TO_THROW
27a36778 1653 emit_indirect_jump (throw_libfunc);
4956d07c 1654#else
27a36778 1655 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
4956d07c 1656#endif
27a36778 1657 }
4956d07c
MS
1658 emit_barrier ();
1659}
1660
e701eb4d
JM
1661/* Throw the current exception. If appropriate, this is done by jumping
1662 to the next handler. */
4956d07c
MS
1663
1664void
e701eb4d 1665expand_internal_throw ()
4956d07c 1666{
e701eb4d 1667 emit_throw ();
4956d07c
MS
1668}
1669
1670/* Called from expand_exception_blocks and expand_end_catch_block to
27a36778 1671 emit any pending handlers/cleanups queued from expand_eh_region_end. */
4956d07c
MS
1672
1673void
1674expand_leftover_cleanups ()
1675{
1676 struct eh_entry *entry;
1677
1678 while ((entry = dequeue_eh_entry (&ehqueue)) != 0)
1679 {
1680 rtx prev;
1681
12670d88
RK
1682 /* A leftover try block. Shouldn't be one here. */
1683 if (entry->finalization == integer_zero_node)
1684 abort ();
1685
abeeec2a 1686 /* Output the label for the start of the exception handler. */
4956d07c 1687
9a0d1e1b 1688 receive_exception_label (entry->exception_handler_label);
f51430ed 1689
9a0d1e1b
AM
1690 /* register a handler for this cleanup region */
1691 add_new_handler (
1692 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1693 get_new_handler (entry->exception_handler_label, NULL));
05f5b2cd 1694
abeeec2a 1695 /* And now generate the insns for the handler. */
4956d07c
MS
1696 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1697
1698 prev = get_last_insn ();
27a36778 1699 if (prev == NULL || GET_CODE (prev) != BARRIER)
e701eb4d
JM
1700 /* Emit code to throw to the outer context if we fall off
1701 the end of the handler. */
1702 expand_rethrow (entry->outer_context);
4956d07c 1703
c7ae64f2 1704 do_pending_stack_adjust ();
4956d07c
MS
1705 free (entry);
1706 }
1707}
1708
abeeec2a 1709/* Called at the start of a block of try statements. */
12670d88
RK
1710void
1711expand_start_try_stmts ()
1712{
1713 if (! doing_eh (1))
1714 return;
1715
1716 expand_eh_region_start ();
1717}
1718
9a0d1e1b
AM
1719/* Called to begin a catch clause. The parameter is the object which
1720 will be passed to the runtime type check routine. */
1721void
0d3453df 1722start_catch_handler (rtime)
9a0d1e1b
AM
1723 tree rtime;
1724{
9a9deafc
AM
1725 rtx handler_label;
1726 int insn_region_num;
1727 int eh_region_entry;
1728
1729 if (! doing_eh (1))
1730 return;
1731
1732 handler_label = catchstack.top->entry->exception_handler_label;
1733 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1734 eh_region_entry = find_func_region (insn_region_num);
9a0d1e1b
AM
1735
1736 /* If we've already issued this label, pick a new one */
7ecb5d27 1737 if (catchstack.top->entry->label_used)
9a0d1e1b
AM
1738 handler_label = gen_exception_label ();
1739 else
1740 catchstack.top->entry->label_used = 1;
1741
1742 receive_exception_label (handler_label);
1743
1744 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
bf71cd2e
AM
1745
1746 if (flag_new_exceptions && ! exceptions_via_longjmp)
1747 return;
1748
1749 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1750 issue code to compare 'rtime' to the value in eh_info, via the
1751 matching function in eh_info. If its is false, we branch around
1752 the handler we are about to issue. */
1753
1754 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1755 {
1756 rtx call_rtx, rtime_address;
1757
1758 if (catchstack.top->entry->false_label != NULL_RTX)
7ac2148b 1759 fatal ("Compiler Bug: Never issued previous false_label");
bf71cd2e
AM
1760 catchstack.top->entry->false_label = gen_exception_label ();
1761
1762 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
30bf7f73
DT
1763#ifdef POINTERS_EXTEND_UNSIGNED
1764 rtime_address = convert_memory_address (Pmode, rtime_address);
1765#endif
bf71cd2e
AM
1766 rtime_address = force_reg (Pmode, rtime_address);
1767
1768 /* Now issue the call, and branch around handler if needed */
43566944
AM
1769 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1770 0, SImode, 1, rtime_address, Pmode);
bf71cd2e
AM
1771
1772 /* Did the function return true? */
c5d5d461
JL
1773 emit_cmp_and_jump_insns (call_rtx, const0_rtx, EQ, NULL_RTX,
1774 GET_MODE (call_rtx), 0, 0,
1775 catchstack.top->entry->false_label);
bf71cd2e
AM
1776 }
1777}
1778
1779/* Called to end a catch clause. If we aren't using the new exception
1780 model tabel mechanism, we need to issue the branch-around label
1781 for the end of the catch block. */
1782
1783void
1784end_catch_handler ()
1785{
e6cfb550 1786 if (! doing_eh (1))
bf71cd2e 1787 return;
e6cfb550
AM
1788
1789 if (flag_new_exceptions && ! exceptions_via_longjmp)
1790 {
1791 emit_barrier ();
1792 return;
1793 }
bf71cd2e
AM
1794
1795 /* A NULL label implies the catch clause was a catch all or cleanup */
1796 if (catchstack.top->entry->false_label == NULL_RTX)
1797 return;
1798
1799 emit_label (catchstack.top->entry->false_label);
1800 catchstack.top->entry->false_label = NULL_RTX;
9a0d1e1b
AM
1801}
1802
12670d88
RK
1803/* Generate RTL for the start of a group of catch clauses.
1804
1805 It is responsible for starting a new instruction sequence for the
1806 instructions in the catch block, and expanding the handlers for the
1807 internally-generated exception regions nested within the try block
abeeec2a 1808 corresponding to this catch block. */
4956d07c
MS
1809
1810void
1811expand_start_all_catch ()
1812{
1813 struct eh_entry *entry;
1814 tree label;
e701eb4d 1815 rtx outer_context;
4956d07c
MS
1816
1817 if (! doing_eh (1))
1818 return;
1819
e701eb4d 1820 outer_context = ehstack.top->entry->outer_context;
1418bb67 1821
abeeec2a 1822 /* End the try block. */
12670d88
RK
1823 expand_eh_region_end (integer_zero_node);
1824
4956d07c
MS
1825 emit_line_note (input_filename, lineno);
1826 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1827
12670d88 1828 /* The label for the exception handling block that we will save.
956d6950 1829 This is Lresume in the documentation. */
4956d07c
MS
1830 expand_label (label);
1831
12670d88 1832 /* Push the label that points to where normal flow is resumed onto
abeeec2a 1833 the top of the label stack. */
4956d07c
MS
1834 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1835
1836 /* Start a new sequence for all the catch blocks. We will add this
12670d88 1837 to the global sequence catch_clauses when we have completed all
4956d07c
MS
1838 the handlers in this handler-seq. */
1839 start_sequence ();
1840
9a0d1e1b
AM
1841 entry = dequeue_eh_entry (&ehqueue);
1842 for ( ; entry->finalization != integer_zero_node;
1843 entry = dequeue_eh_entry (&ehqueue))
4956d07c
MS
1844 {
1845 rtx prev;
1846
9a0d1e1b 1847 /* Emit the label for the cleanup handler for this region, and
12670d88
RK
1848 expand the code for the handler.
1849
1850 Note that a catch region is handled as a side-effect here;
1851 for a try block, entry->finalization will contain
1852 integer_zero_node, so no code will be generated in the
1853 expand_expr call below. But, the label for the handler will
1854 still be emitted, so any code emitted after this point will
abeeec2a 1855 end up being the handler. */
9a0d1e1b
AM
1856
1857 receive_exception_label (entry->exception_handler_label);
05f5b2cd 1858
9a0d1e1b
AM
1859 /* register a handler for this cleanup region */
1860 add_new_handler (
1861 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1862 get_new_handler (entry->exception_handler_label, NULL));
4956d07c 1863
9a0d1e1b 1864 /* And now generate the insns for the cleanup handler. */
27a36778
MS
1865 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1866
4956d07c 1867 prev = get_last_insn ();
12670d88 1868 if (prev == NULL || GET_CODE (prev) != BARRIER)
e701eb4d
JM
1869 /* Code to throw out to outer context when we fall off end
1870 of the handler. We can't do this here for catch blocks,
1871 so it's done in expand_end_all_catch instead. */
1872 expand_rethrow (entry->outer_context);
12670d88 1873
f45ebe47 1874 do_pending_stack_adjust ();
4956d07c
MS
1875 free (entry);
1876 }
e701eb4d 1877
9a0d1e1b
AM
1878 /* At this point, all the cleanups are done, and the ehqueue now has
1879 the current exception region at its head. We dequeue it, and put it
1880 on the catch stack. */
1881
1882 push_entry (&catchstack, entry);
1883
e701eb4d
JM
1884 /* If we are not doing setjmp/longjmp EH, because we are reordered
1885 out of line, we arrange to rethrow in the outer context. We need to
1886 do this because we are not physically within the region, if any, that
1887 logically contains this catch block. */
1888 if (! exceptions_via_longjmp)
1889 {
1890 expand_eh_region_start ();
1891 ehstack.top->entry->outer_context = outer_context;
1892 }
5816cb14 1893
4956d07c
MS
1894}
1895
12670d88
RK
1896/* Finish up the catch block. At this point all the insns for the
1897 catch clauses have already been generated, so we only have to add
1898 them to the catch_clauses list. We also want to make sure that if
1899 we fall off the end of the catch clauses that we rethrow to the
abeeec2a 1900 outer EH region. */
4956d07c
MS
1901
1902void
1903expand_end_all_catch ()
1904{
e6cfb550 1905 rtx new_catch_clause;
0d3453df 1906 struct eh_entry *entry;
4956d07c
MS
1907
1908 if (! doing_eh (1))
1909 return;
1910
0d3453df
AM
1911 /* Dequeue the current catch clause region. */
1912 entry = pop_eh_entry (&catchstack);
1913 free (entry);
1914
e701eb4d 1915 if (! exceptions_via_longjmp)
5dfa7520 1916 {
e6cfb550 1917 rtx outer_context = ehstack.top->entry->outer_context;
5dfa7520
JM
1918
1919 /* Finish the rethrow region. size_zero_node is just a NOP. */
1920 expand_eh_region_end (size_zero_node);
e6cfb550
AM
1921 /* New exceptions handling models will never have a fall through
1922 of a catch clause */
1923 if (!flag_new_exceptions)
1924 expand_rethrow (outer_context);
5dfa7520 1925 }
e6cfb550
AM
1926 else
1927 expand_rethrow (NULL_RTX);
5dfa7520 1928
e701eb4d
JM
1929 /* Code to throw out to outer context, if we fall off end of catch
1930 handlers. This is rethrow (Lresume, same id, same obj) in the
1931 documentation. We use Lresume because we know that it will throw
1932 to the correct context.
12670d88 1933
e701eb4d
JM
1934 In other words, if the catch handler doesn't exit or return, we
1935 do a "throw" (using the address of Lresume as the point being
1936 thrown from) so that the outer EH region can then try to process
1937 the exception. */
4956d07c
MS
1938
1939 /* Now we have the complete catch sequence. */
1940 new_catch_clause = get_insns ();
1941 end_sequence ();
1942
1943 /* This level of catch blocks is done, so set up the successful
1944 catch jump label for the next layer of catch blocks. */
1945 pop_label_entry (&caught_return_label_stack);
956d6950 1946 pop_label_entry (&outer_context_label_stack);
4956d07c
MS
1947
1948 /* Add the new sequence of catches to the main one for this function. */
1949 push_to_sequence (catch_clauses);
1950 emit_insns (new_catch_clause);
1951 catch_clauses = get_insns ();
1952 end_sequence ();
1953
1954 /* Here we fall through into the continuation code. */
1955}
1956
e701eb4d
JM
1957/* Rethrow from the outer context LABEL. */
1958
1959static void
1960expand_rethrow (label)
1961 rtx label;
1962{
1963 if (exceptions_via_longjmp)
1964 emit_throw ();
1965 else
e6cfb550
AM
1966 if (flag_new_exceptions)
1967 {
1968 rtx insn, val;
1969 if (label == NULL_RTX)
1970 label = last_rethrow_symbol;
1971 emit_library_call (rethrow_libfunc, 0, VOIDmode, 1, label, Pmode);
1972 SYMBOL_REF_USED (label) = 1;
e881bb1b
RH
1973
1974 /* Search backwards for the actual call insn. */
e6cfb550 1975 insn = get_last_insn ();
e881bb1b
RH
1976 while (GET_CODE (insn) != CALL_INSN)
1977 insn = PREV_INSN (insn);
1978 delete_insns_since (insn);
1979
e6cfb550 1980 /* Mark the label/symbol on the call. */
e881bb1b 1981 val = GEN_INT (eh_region_from_symbol (label));
e6cfb550 1982 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_RETHROW, val,
e881bb1b 1983 REG_NOTES (insn));
e6cfb550
AM
1984 emit_barrier ();
1985 }
1986 else
1987 emit_jump (label);
e701eb4d
JM
1988}
1989
12670d88 1990/* End all the pending exception regions on protect_list. The handlers
27a36778 1991 will be emitted when expand_leftover_cleanups is invoked. */
4956d07c
MS
1992
1993void
1994end_protect_partials ()
1995{
1996 while (protect_list)
1997 {
1998 expand_eh_region_end (TREE_VALUE (protect_list));
1999 protect_list = TREE_CHAIN (protect_list);
2000 }
2001}
27a36778
MS
2002
2003/* Arrange for __terminate to be called if there is an unhandled throw
2004 from within E. */
2005
2006tree
2007protect_with_terminate (e)
2008 tree e;
2009{
2010 /* We only need to do this when using setjmp/longjmp EH and the
2011 language requires it, as otherwise we protect all of the handlers
2012 at once, if we need to. */
2013 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
2014 {
2015 tree handler, result;
2016
2017 /* All cleanups must be on the function_obstack. */
2018 push_obstacks_nochange ();
2019 resume_temporary_allocation ();
2020
2021 handler = make_node (RTL_EXPR);
2022 TREE_TYPE (handler) = void_type_node;
2023 RTL_EXPR_RTL (handler) = const0_rtx;
2024 TREE_SIDE_EFFECTS (handler) = 1;
2025 start_sequence_for_rtl_expr (handler);
2026
2027 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
2028 emit_barrier ();
2029
2030 RTL_EXPR_SEQUENCE (handler) = get_insns ();
2031 end_sequence ();
2032
2033 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
2034 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2035 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2036 TREE_READONLY (result) = TREE_READONLY (e);
2037
2038 pop_obstacks ();
2039
2040 e = result;
2041 }
2042
2043 return e;
2044}
4956d07c
MS
2045\f
2046/* The exception table that we build that is used for looking up and
12670d88
RK
2047 dispatching exceptions, the current number of entries, and its
2048 maximum size before we have to extend it.
2049
2050 The number in eh_table is the code label number of the exception
27a36778
MS
2051 handler for the region. This is added by add_eh_table_entry and
2052 used by output_exception_table_entry. */
12670d88 2053
9a0d1e1b
AM
2054static int *eh_table = NULL;
2055static int eh_table_size = 0;
2056static int eh_table_max_size = 0;
4956d07c
MS
2057
2058/* Note the need for an exception table entry for region N. If we
12670d88
RK
2059 don't need to output an explicit exception table, avoid all of the
2060 extra work.
2061
2062 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
9a0d1e1b 2063 (Or NOTE_INSN_EH_REGION_END sometimes)
12670d88 2064 N is the NOTE_BLOCK_NUMBER of the note, which comes from the code
abeeec2a 2065 label number of the exception handler for the region. */
4956d07c
MS
2066
2067void
2068add_eh_table_entry (n)
2069 int n;
2070{
2071#ifndef OMIT_EH_TABLE
2072 if (eh_table_size >= eh_table_max_size)
2073 {
2074 if (eh_table)
2075 {
2076 eh_table_max_size += eh_table_max_size>>1;
2077
2078 if (eh_table_max_size < 0)
2079 abort ();
2080
ca55abae
JM
2081 eh_table = (int *) xrealloc (eh_table,
2082 eh_table_max_size * sizeof (int));
4956d07c
MS
2083 }
2084 else
2085 {
2086 eh_table_max_size = 252;
2087 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
2088 }
2089 }
2090 eh_table[eh_table_size++] = n;
2091#endif
2092}
2093
12670d88
RK
2094/* Return a non-zero value if we need to output an exception table.
2095
2096 On some platforms, we don't have to output a table explicitly.
2097 This routine doesn't mean we don't have one. */
4956d07c
MS
2098
2099int
2100exception_table_p ()
2101{
2102 if (eh_table)
2103 return 1;
2104
2105 return 0;
2106}
2107
38e01259 2108/* Output the entry of the exception table corresponding to the
12670d88
RK
2109 exception region numbered N to file FILE.
2110
2111 N is the code label number corresponding to the handler of the
abeeec2a 2112 region. */
4956d07c
MS
2113
2114static void
2115output_exception_table_entry (file, n)
2116 FILE *file;
2117 int n;
2118{
2119 char buf[256];
2120 rtx sym;
e6cfb550
AM
2121 struct handler_info *handler = get_first_handler (n);
2122 int index = find_func_region (n);
2123 rtx rethrow;
2124
2125 /* form and emit the rethrow label, if needed */
2126 rethrow = function_eh_regions[index].rethrow_label;
2127 if (rethrow != NULL_RTX && !flag_new_exceptions)
2128 rethrow = NULL_RTX;
2129 if (rethrow != NULL_RTX && handler == NULL)
2130 if (! SYMBOL_REF_USED (rethrow))
2131 rethrow = NULL_RTX;
9a0d1e1b 2132
4956d07c 2133
e6cfb550 2134 for ( ; handler != NULL || rethrow != NULL_RTX; handler = handler->next)
9a0d1e1b 2135 {
e6cfb550
AM
2136 /* rethrow label should indicate the LAST entry for a region */
2137 if (rethrow != NULL_RTX && (handler == NULL || handler->next == NULL))
2138 {
2139 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", n);
2140 assemble_label(buf);
2141 rethrow = NULL_RTX;
2142 }
2143
9a0d1e1b
AM
2144 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
2145 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2146 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
4956d07c 2147
9a0d1e1b
AM
2148 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
2149 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2150 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2151
e6cfb550
AM
2152 if (handler == NULL)
2153 assemble_integer (GEN_INT (0), POINTER_SIZE / BITS_PER_UNIT, 1);
2154 else
0177de87
AM
2155 {
2156 ASM_GENERATE_INTERNAL_LABEL (buf, "L", handler->handler_number);
2157 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2158 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2159 }
4956d07c 2160
a1622f83
AM
2161 if (flag_new_exceptions)
2162 {
e6cfb550 2163 if (handler == NULL || handler->type_info == NULL)
a1622f83
AM
2164 assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2165 else
9c606f69
AM
2166 if (handler->type_info == CATCH_ALL_TYPE)
2167 assemble_integer (GEN_INT (CATCH_ALL_TYPE),
2168 POINTER_SIZE / BITS_PER_UNIT, 1);
2169 else
2170 output_constant ((tree)(handler->type_info),
9a0d1e1b 2171 POINTER_SIZE / BITS_PER_UNIT);
a1622f83 2172 }
9a0d1e1b 2173 putc ('\n', file); /* blank line */
bf71cd2e 2174 /* We only output the first label under the old scheme */
e6cfb550 2175 if (! flag_new_exceptions || handler == NULL)
bf71cd2e 2176 break;
9a0d1e1b 2177 }
4956d07c
MS
2178}
2179
abeeec2a 2180/* Output the exception table if we have and need one. */
4956d07c 2181
9a0d1e1b
AM
2182static short language_code = 0;
2183static short version_code = 0;
2184
2185/* This routine will set the language code for exceptions. */
804a4e13
KG
2186void
2187set_exception_lang_code (code)
2188 int code;
9a0d1e1b
AM
2189{
2190 language_code = code;
2191}
2192
2193/* This routine will set the language version code for exceptions. */
804a4e13
KG
2194void
2195set_exception_version_code (code)
2ec10ea9 2196 int code;
9a0d1e1b
AM
2197{
2198 version_code = code;
2199}
2200
9a0d1e1b 2201
4956d07c
MS
2202void
2203output_exception_table ()
2204{
2205 int i;
e6cfb550 2206 char buf[256];
4956d07c
MS
2207 extern FILE *asm_out_file;
2208
ca55abae 2209 if (! doing_eh (0) || ! eh_table)
4956d07c
MS
2210 return;
2211
2212 exception_section ();
2213
2214 /* Beginning marker for table. */
2215 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
2216 assemble_label ("__EXCEPTION_TABLE__");
2217
a1622f83
AM
2218 if (flag_new_exceptions)
2219 {
2220 assemble_integer (GEN_INT (NEW_EH_RUNTIME),
2221 POINTER_SIZE / BITS_PER_UNIT, 1);
2222 assemble_integer (GEN_INT (language_code), 2 , 1);
2223 assemble_integer (GEN_INT (version_code), 2 , 1);
2224
2225 /* Add enough padding to make sure table aligns on a pointer boundry. */
2226 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2227 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2228 ;
2229 if (i != 0)
2230 assemble_integer (const0_rtx, i , 1);
e6cfb550
AM
2231
2232 /* Generate the label for offset calculations on rethrows */
2233 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", 0);
2234 assemble_label(buf);
a1622f83 2235 }
9a0d1e1b 2236
4956d07c
MS
2237 for (i = 0; i < eh_table_size; ++i)
2238 output_exception_table_entry (asm_out_file, eh_table[i]);
2239
2240 free (eh_table);
9a0d1e1b 2241 clear_function_eh_region ();
4956d07c
MS
2242
2243 /* Ending marker for table. */
e6cfb550
AM
2244 /* Generate the label for end of table. */
2245 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", CODE_LABEL_NUMBER (final_rethrow));
2246 assemble_label(buf);
4956d07c 2247 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
a1622f83 2248
9a0d1e1b
AM
2249 /* for binary compatability, the old __throw checked the second
2250 position for a -1, so we should output at least 2 -1's */
a1622f83
AM
2251 if (! flag_new_exceptions)
2252 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2253
4956d07c
MS
2254 putc ('\n', asm_out_file); /* blank line */
2255}
4956d07c 2256\f
154bba13
TT
2257/* Emit code to get EH context.
2258
2259 We have to scan thru the code to find possible EH context registers.
2260 Inlined functions may use it too, and thus we'll have to be able
2261 to change them too.
2262
2263 This is done only if using exceptions_via_longjmp. */
2264
2265void
2266emit_eh_context ()
2267{
2268 rtx insn;
2269 rtx ehc = 0;
2270
2271 if (! doing_eh (0))
2272 return;
2273
2274 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2275 if (GET_CODE (insn) == INSN
2276 && GET_CODE (PATTERN (insn)) == USE)
2277 {
2278 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2279 if (reg)
2280 {
2281 rtx insns;
2282
100d81d4
JM
2283 start_sequence ();
2284
d9c92f32
JM
2285 /* If this is the first use insn, emit the call here. This
2286 will always be at the top of our function, because if
2287 expand_inline_function notices a REG_EH_CONTEXT note, it
2288 adds a use insn to this function as well. */
154bba13 2289 if (ehc == 0)
01eb7f9a 2290 ehc = call_get_eh_context ();
154bba13 2291
154bba13
TT
2292 emit_move_insn (XEXP (reg, 0), ehc);
2293 insns = get_insns ();
2294 end_sequence ();
2295
2296 emit_insns_before (insns, insn);
0fc1434b
AM
2297
2298 /* At -O0, we must make the context register stay alive so
2299 that the stupid.c register allocator doesn't get confused. */
2300 if (obey_regdecls != 0)
2301 {
2302 insns = gen_rtx_USE (GET_MODE (XEXP (reg,0)), XEXP (reg,0));
2303 emit_insn_before (insns, get_last_insn ());
2304 }
154bba13
TT
2305 }
2306 }
2307}
2308
12670d88
RK
2309/* Scan the current insns and build a list of handler labels. The
2310 resulting list is placed in the global variable exception_handler_labels.
2311
2312 It is called after the last exception handling region is added to
2313 the current function (when the rtl is almost all built for the
2314 current function) and before the jump optimization pass. */
4956d07c
MS
2315
2316void
2317find_exception_handler_labels ()
2318{
2319 rtx insn;
4956d07c
MS
2320
2321 exception_handler_labels = NULL_RTX;
2322
2323 /* If we aren't doing exception handling, there isn't much to check. */
2324 if (! doing_eh (0))
2325 return;
2326
12670d88
RK
2327 /* For each start of a region, add its label to the list. */
2328
4956d07c
MS
2329 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2330 {
9a0d1e1b 2331 struct handler_info* ptr;
4956d07c
MS
2332 if (GET_CODE (insn) == NOTE
2333 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2334 {
9a0d1e1b
AM
2335 ptr = get_first_handler (NOTE_BLOCK_NUMBER (insn));
2336 for ( ; ptr; ptr = ptr->next)
2337 {
2338 /* make sure label isn't in the list already */
2339 rtx x;
2340 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2341 if (XEXP (x, 0) == ptr->handler_label)
2342 break;
2343 if (! x)
2344 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2345 ptr->handler_label, exception_handler_labels);
2346 }
4956d07c
MS
2347 }
2348 }
9a0d1e1b
AM
2349}
2350
2351/* Return a value of 1 if the parameter label number is an exception handler
2352 label. Return 0 otherwise. */
988cea7d 2353
9a0d1e1b
AM
2354int
2355is_exception_handler_label (lab)
2356 int lab;
2357{
2358 rtx x;
2359 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2360 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2361 return 1;
2362 return 0;
4956d07c
MS
2363}
2364
12670d88
RK
2365/* Perform sanity checking on the exception_handler_labels list.
2366
2367 Can be called after find_exception_handler_labels is called to
2368 build the list of exception handlers for the current function and
2369 before we finish processing the current function. */
4956d07c
MS
2370
2371void
2372check_exception_handler_labels ()
2373{
9a0d1e1b 2374 rtx insn, insn2;
4956d07c
MS
2375
2376 /* If we aren't doing exception handling, there isn't much to check. */
2377 if (! doing_eh (0))
2378 return;
2379
9a0d1e1b
AM
2380 /* Make sure there is no more than 1 copy of a label */
2381 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
4956d07c 2382 {
9a0d1e1b
AM
2383 int count = 0;
2384 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2385 if (XEXP (insn, 0) == XEXP (insn2, 0))
2386 count++;
2387 if (count != 1)
2388 warning ("Counted %d copies of EH region %d in list.\n", count,
2389 CODE_LABEL_NUMBER (insn));
4956d07c
MS
2390 }
2391
4956d07c
MS
2392}
2393\f
2394/* This group of functions initializes the exception handling data
2395 structures at the start of the compilation, initializes the data
12670d88 2396 structures at the start of a function, and saves and restores the
4956d07c
MS
2397 exception handling data structures for the start/end of a nested
2398 function. */
2399
2400/* Toplevel initialization for EH things. */
2401
2402void
2403init_eh ()
2404{
e6cfb550
AM
2405 first_rethrow_symbol = create_rethrow_ref (0);
2406 final_rethrow = gen_exception_label ();
2407 last_rethrow_symbol = create_rethrow_ref (CODE_LABEL_NUMBER (final_rethrow));
4956d07c
MS
2408}
2409
abeeec2a 2410/* Initialize the per-function EH information. */
4956d07c
MS
2411
2412void
2413init_eh_for_function ()
2414{
2415 ehstack.top = 0;
9a0d1e1b 2416 catchstack.top = 0;
4956d07c
MS
2417 ehqueue.head = ehqueue.tail = 0;
2418 catch_clauses = NULL_RTX;
2419 false_label_stack = 0;
2420 caught_return_label_stack = 0;
2421 protect_list = NULL_TREE;
154bba13 2422 current_function_ehc = NULL_RTX;
71038426
RH
2423 eh_return_context = NULL_RTX;
2424 eh_return_stack_adjust = NULL_RTX;
2425 eh_return_handler = NULL_RTX;
2426 eh_return_stub_label = NULL_RTX;
4956d07c
MS
2427}
2428
12670d88
RK
2429/* Save some of the per-function EH info into the save area denoted by
2430 P.
2431
27a36778 2432 This is currently called from save_stmt_status. */
4956d07c
MS
2433
2434void
2435save_eh_status (p)
2436 struct function *p;
2437{
3a88cbd1
JL
2438 if (p == NULL)
2439 abort ();
12670d88 2440
4956d07c 2441 p->ehstack = ehstack;
9a0d1e1b 2442 p->catchstack = catchstack;
4956d07c
MS
2443 p->ehqueue = ehqueue;
2444 p->catch_clauses = catch_clauses;
2445 p->false_label_stack = false_label_stack;
2446 p->caught_return_label_stack = caught_return_label_stack;
2447 p->protect_list = protect_list;
154bba13 2448 p->ehc = current_function_ehc;
4956d07c 2449
6e1f1f93 2450 init_eh_for_function ();
4956d07c
MS
2451}
2452
12670d88
RK
2453/* Restore the per-function EH info saved into the area denoted by P.
2454
abeeec2a 2455 This is currently called from restore_stmt_status. */
4956d07c
MS
2456
2457void
2458restore_eh_status (p)
2459 struct function *p;
2460{
3a88cbd1
JL
2461 if (p == NULL)
2462 abort ();
12670d88 2463
4956d07c
MS
2464 protect_list = p->protect_list;
2465 caught_return_label_stack = p->caught_return_label_stack;
2466 false_label_stack = p->false_label_stack;
2467 catch_clauses = p->catch_clauses;
2468 ehqueue = p->ehqueue;
2469 ehstack = p->ehstack;
9a0d1e1b 2470 catchstack = p->catchstack;
154bba13 2471 current_function_ehc = p->ehc;
4956d07c
MS
2472}
2473\f
2474/* This section is for the exception handling specific optimization
2475 pass. First are the internal routines, and then the main
2476 optimization pass. */
2477
2478/* Determine if the given INSN can throw an exception. */
2479
2480static int
2481can_throw (insn)
2482 rtx insn;
2483{
abeeec2a 2484 /* Calls can always potentially throw exceptions. */
4956d07c
MS
2485 if (GET_CODE (insn) == CALL_INSN)
2486 return 1;
2487
27a36778
MS
2488 if (asynchronous_exceptions)
2489 {
2490 /* If we wanted asynchronous exceptions, then everything but NOTEs
2491 and CODE_LABELs could throw. */
2492 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2493 return 1;
2494 }
4956d07c
MS
2495
2496 return 0;
2497}
2498
12670d88
RK
2499/* Scan a exception region looking for the matching end and then
2500 remove it if possible. INSN is the start of the region, N is the
2501 region number, and DELETE_OUTER is to note if anything in this
2502 region can throw.
2503
2504 Regions are removed if they cannot possibly catch an exception.
27a36778 2505 This is determined by invoking can_throw on each insn within the
12670d88
RK
2506 region; if can_throw returns true for any of the instructions, the
2507 region can catch an exception, since there is an insn within the
2508 region that is capable of throwing an exception.
2509
2510 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
27a36778 2511 calls abort if it can't find one.
12670d88
RK
2512
2513 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
abeeec2a 2514 correspond to the region number, or if DELETE_OUTER is NULL. */
4956d07c
MS
2515
2516static rtx
2517scan_region (insn, n, delete_outer)
2518 rtx insn;
2519 int n;
2520 int *delete_outer;
2521{
2522 rtx start = insn;
2523
2524 /* Assume we can delete the region. */
2525 int delete = 1;
2526
e6cfb550
AM
2527 int r = find_func_region (n);
2528 /* Can't delete something which is rethrown to. */
2529 if (SYMBOL_REF_USED((function_eh_regions[r].rethrow_label)))
2530 delete = 0;
2531
3a88cbd1
JL
2532 if (insn == NULL_RTX
2533 || GET_CODE (insn) != NOTE
2534 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2535 || NOTE_BLOCK_NUMBER (insn) != n
2536 || delete_outer == NULL)
2537 abort ();
12670d88 2538
4956d07c
MS
2539 insn = NEXT_INSN (insn);
2540
2541 /* Look for the matching end. */
2542 while (! (GET_CODE (insn) == NOTE
2543 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2544 {
2545 /* If anything can throw, we can't remove the region. */
2546 if (delete && can_throw (insn))
2547 {
2548 delete = 0;
2549 }
2550
2551 /* Watch out for and handle nested regions. */
2552 if (GET_CODE (insn) == NOTE
2553 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2554 {
2555 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &delete);
2556 }
2557
2558 insn = NEXT_INSN (insn);
2559 }
2560
2561 /* The _BEG/_END NOTEs must match and nest. */
2562 if (NOTE_BLOCK_NUMBER (insn) != n)
2563 abort ();
2564
12670d88 2565 /* If anything in this exception region can throw, we can throw. */
4956d07c
MS
2566 if (! delete)
2567 *delete_outer = 0;
2568 else
2569 {
2570 /* Delete the start and end of the region. */
2571 delete_insn (start);
2572 delete_insn (insn);
2573
9a0d1e1b
AM
2574/* We no longer removed labels here, since flow will now remove any
2575 handler which cannot be called any more. */
2576
2577#if 0
4956d07c
MS
2578 /* Only do this part if we have built the exception handler
2579 labels. */
2580 if (exception_handler_labels)
2581 {
2582 rtx x, *prev = &exception_handler_labels;
2583
2584 /* Find it in the list of handlers. */
2585 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2586 {
2587 rtx label = XEXP (x, 0);
2588 if (CODE_LABEL_NUMBER (label) == n)
2589 {
2590 /* If we are the last reference to the handler,
2591 delete it. */
2592 if (--LABEL_NUSES (label) == 0)
2593 delete_insn (label);
2594
2595 if (optimize)
2596 {
2597 /* Remove it from the list of exception handler
2598 labels, if we are optimizing. If we are not, then
2599 leave it in the list, as we are not really going to
2600 remove the region. */
2601 *prev = XEXP (x, 1);
2602 XEXP (x, 1) = 0;
2603 XEXP (x, 0) = 0;
2604 }
2605
2606 break;
2607 }
2608 prev = &XEXP (x, 1);
2609 }
2610 }
9a0d1e1b 2611#endif
4956d07c
MS
2612 }
2613 return insn;
2614}
2615
2616/* Perform various interesting optimizations for exception handling
2617 code.
2618
12670d88
RK
2619 We look for empty exception regions and make them go (away). The
2620 jump optimization code will remove the handler if nothing else uses
abeeec2a 2621 it. */
4956d07c
MS
2622
2623void
2624exception_optimize ()
2625{
381127e8 2626 rtx insn;
4956d07c
MS
2627 int n;
2628
12670d88 2629 /* Remove empty regions. */
4956d07c
MS
2630 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2631 {
2632 if (GET_CODE (insn) == NOTE
2633 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2634 {
27a36778 2635 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
12670d88
RK
2636 insn, we will indirectly skip through all the insns
2637 inbetween. We are also guaranteed that the value of insn
27a36778 2638 returned will be valid, as otherwise scan_region won't
abeeec2a 2639 return. */
4956d07c
MS
2640 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &n);
2641 }
2642 }
2643}
ca55abae
JM
2644\f
2645/* Various hooks for the DWARF 2 __throw routine. */
2646
2647/* Do any necessary initialization to access arbitrary stack frames.
2648 On the SPARC, this means flushing the register windows. */
2649
2650void
2651expand_builtin_unwind_init ()
2652{
2653 /* Set this so all the registers get saved in our frame; we need to be
2654 able to copy the saved values for any registers from frames we unwind. */
2655 current_function_has_nonlocal_label = 1;
2656
2657#ifdef SETUP_FRAME_ADDRESSES
2658 SETUP_FRAME_ADDRESSES ();
2659#endif
2660}
2661
2662/* Given a value extracted from the return address register or stack slot,
2663 return the actual address encoded in that value. */
2664
2665rtx
2666expand_builtin_extract_return_addr (addr_tree)
2667 tree addr_tree;
2668{
2669 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2670 return eh_outer_context (addr);
2671}
2672
2673/* Given an actual address in addr_tree, do any necessary encoding
2674 and return the value to be stored in the return address register or
2675 stack slot so the epilogue will return to that address. */
2676
2677rtx
2678expand_builtin_frob_return_addr (addr_tree)
2679 tree addr_tree;
2680{
2681 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2682#ifdef RETURN_ADDR_OFFSET
2683 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2684#endif
2685 return addr;
2686}
2687
71038426
RH
2688/* Choose three registers for communication between the main body of
2689 __throw and the epilogue (or eh stub) and the exception handler.
2690 We must do this with hard registers because the epilogue itself
2691 will be generated after reload, at which point we may not reference
2692 pseudos at all.
ca55abae 2693
71038426
RH
2694 The first passes the exception context to the handler. For this
2695 we use the return value register for a void*.
ca55abae 2696
71038426
RH
2697 The second holds the stack pointer value to be restored. For
2698 this we use the static chain register if it exists and is different
2699 from the previous, otherwise some arbitrary call-clobbered register.
ca55abae 2700
71038426
RH
2701 The third holds the address of the handler itself. Here we use
2702 some arbitrary call-clobbered register. */
ca55abae
JM
2703
2704static void
71038426
RH
2705eh_regs (pcontext, psp, pra, outgoing)
2706 rtx *pcontext, *psp, *pra;
ca55abae
JM
2707 int outgoing;
2708{
71038426
RH
2709 rtx rcontext, rsp, rra;
2710 int i;
ca55abae
JM
2711
2712#ifdef FUNCTION_OUTGOING_VALUE
2713 if (outgoing)
71038426
RH
2714 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2715 current_function_decl);
ca55abae
JM
2716 else
2717#endif
71038426
RH
2718 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
2719 current_function_decl);
ca55abae
JM
2720
2721#ifdef STATIC_CHAIN_REGNUM
2722 if (outgoing)
71038426 2723 rsp = static_chain_incoming_rtx;
ca55abae 2724 else
71038426
RH
2725 rsp = static_chain_rtx;
2726 if (REGNO (rsp) == REGNO (rcontext))
ca55abae 2727#endif /* STATIC_CHAIN_REGNUM */
71038426 2728 rsp = NULL_RTX;
ca55abae 2729
71038426 2730 if (rsp == NULL_RTX)
ca55abae 2731 {
ca55abae 2732 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
71038426
RH
2733 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
2734 break;
2735 if (i == FIRST_PSEUDO_REGISTER)
2736 abort();
ca55abae 2737
71038426 2738 rsp = gen_rtx_REG (Pmode, i);
ca55abae
JM
2739 }
2740
71038426
RH
2741 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2742 if (call_used_regs[i] && ! fixed_regs[i]
2743 && i != REGNO (rcontext) && i != REGNO (rsp))
2744 break;
2745 if (i == FIRST_PSEUDO_REGISTER)
2746 abort();
2747
2748 rra = gen_rtx_REG (Pmode, i);
ca55abae 2749
71038426
RH
2750 *pcontext = rcontext;
2751 *psp = rsp;
2752 *pra = rra;
2753}
9a0d1e1b
AM
2754
2755/* Retrieve the register which contains the pointer to the eh_context
2756 structure set the __throw. */
2757
2758rtx
2759get_reg_for_handler ()
2760{
2761 rtx reg1;
2762 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2763 current_function_decl);
2764 return reg1;
2765}
2766
71038426
RH
2767/* Set up the epilogue with the magic bits we'll need to return to the
2768 exception handler. */
9a0d1e1b 2769
71038426
RH
2770void
2771expand_builtin_eh_return (context, stack, handler)
2772 tree context, stack, handler;
a1622f83 2773{
71038426
RH
2774 if (eh_return_context)
2775 error("Duplicate call to __builtin_eh_return");
a1622f83 2776
71038426
RH
2777 eh_return_context
2778 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
2779 eh_return_stack_adjust
2780 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
2781 eh_return_handler
2782 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
a1622f83
AM
2783}
2784
71038426
RH
2785void
2786expand_eh_return ()
ca55abae 2787{
71038426
RH
2788 rtx reg1, reg2, reg3;
2789 rtx stub_start, after_stub;
2790 rtx ra, tmp;
ca55abae 2791
71038426
RH
2792 if (!eh_return_context)
2793 return;
ca55abae 2794
71038426 2795 eh_regs (&reg1, &reg2, &reg3, 1);
aefe40b1
DT
2796#ifdef POINTERS_EXTEND_UNSIGNED
2797 eh_return_context = convert_memory_address (Pmode, eh_return_context);
2798 eh_return_stack_adjust =
2799 convert_memory_address (Pmode, eh_return_stack_adjust);
2800 eh_return_handler = convert_memory_address (Pmode, eh_return_handler);
2801#endif
71038426
RH
2802 emit_move_insn (reg1, eh_return_context);
2803 emit_move_insn (reg2, eh_return_stack_adjust);
2804 emit_move_insn (reg3, eh_return_handler);
9a0d1e1b 2805
71038426 2806 /* Talk directly to the target's epilogue code when possible. */
9a0d1e1b 2807
71038426
RH
2808#ifdef HAVE_eh_epilogue
2809 if (HAVE_eh_epilogue)
2810 {
2811 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
2812 return;
2813 }
2814#endif
9a0d1e1b 2815
71038426 2816 /* Otherwise, use the same stub technique we had before. */
ca55abae 2817
71038426
RH
2818 eh_return_stub_label = stub_start = gen_label_rtx ();
2819 after_stub = gen_label_rtx ();
ca55abae 2820
71038426 2821 /* Set the return address to the stub label. */
ca55abae 2822
71038426
RH
2823 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
2824 0, hard_frame_pointer_rtx);
2825 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
2826 abort();
ca55abae 2827
71038426
RH
2828 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
2829#ifdef RETURN_ADDR_OFFSET
2830 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
2831#endif
2a55b8e8
JW
2832 tmp = force_operand (tmp, ra);
2833 if (tmp != ra)
2834 emit_move_insn (ra, tmp);
ca55abae 2835
71038426 2836 /* Indicate that the registers are in fact used. */
38a448ca
RH
2837 emit_insn (gen_rtx_USE (VOIDmode, reg1));
2838 emit_insn (gen_rtx_USE (VOIDmode, reg2));
71038426
RH
2839 emit_insn (gen_rtx_USE (VOIDmode, reg3));
2840 if (GET_CODE (ra) == REG)
2841 emit_insn (gen_rtx_USE (VOIDmode, ra));
77d33a84 2842
71038426
RH
2843 /* Generate the stub. */
2844
2845 emit_jump (after_stub);
2846 emit_label (stub_start);
2847
2848 eh_regs (&reg1, &reg2, &reg3, 0);
2849 adjust_stack (reg2);
2850 emit_indirect_jump (reg3);
2851
2852 emit_label (after_stub);
2853}
77d33a84
AM
2854\f
2855
2856/* This contains the code required to verify whether arbitrary instructions
2857 are in the same exception region. */
2858
2859static int *insn_eh_region = (int *)0;
2860static int maximum_uid;
2861
242c13b0
JL
2862static void
2863set_insn_eh_region (first, region_num)
77d33a84
AM
2864 rtx *first;
2865 int region_num;
2866{
2867 rtx insn;
2868 int rnum;
2869
2870 for (insn = *first; insn; insn = NEXT_INSN (insn))
2871 {
2872 if ((GET_CODE (insn) == NOTE) &&
2873 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
2874 {
2875 rnum = NOTE_BLOCK_NUMBER (insn);
2876 insn_eh_region[INSN_UID (insn)] = rnum;
2877 insn = NEXT_INSN (insn);
2878 set_insn_eh_region (&insn, rnum);
2879 /* Upon return, insn points to the EH_REGION_END of nested region */
2880 continue;
2881 }
2882 insn_eh_region[INSN_UID (insn)] = region_num;
2883 if ((GET_CODE (insn) == NOTE) &&
2884 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2885 break;
2886 }
2887 *first = insn;
2888}
2889
2890/* Free the insn table, an make sure it cannot be used again. */
2891
9a0d1e1b
AM
2892void
2893free_insn_eh_region ()
77d33a84
AM
2894{
2895 if (!doing_eh (0))
2896 return;
2897
2898 if (insn_eh_region)
2899 {
2900 free (insn_eh_region);
2901 insn_eh_region = (int *)0;
2902 }
2903}
2904
2905/* Initialize the table. max_uid must be calculated and handed into
2906 this routine. If it is unavailable, passing a value of 0 will
2907 cause this routine to calculate it as well. */
2908
9a0d1e1b
AM
2909void
2910init_insn_eh_region (first, max_uid)
77d33a84
AM
2911 rtx first;
2912 int max_uid;
2913{
2914 rtx insn;
2915
2916 if (!doing_eh (0))
2917 return;
2918
2919 if (insn_eh_region)
2920 free_insn_eh_region();
2921
2922 if (max_uid == 0)
2923 for (insn = first; insn; insn = NEXT_INSN (insn))
2924 if (INSN_UID (insn) > max_uid) /* find largest UID */
2925 max_uid = INSN_UID (insn);
2926
2927 maximum_uid = max_uid;
2928 insn_eh_region = (int *) malloc ((max_uid + 1) * sizeof (int));
2929 insn = first;
2930 set_insn_eh_region (&insn, 0);
2931}
2932
2933
2934/* Check whether 2 instructions are within the same region. */
2935
9a0d1e1b
AM
2936int
2937in_same_eh_region (insn1, insn2)
2938 rtx insn1, insn2;
77d33a84
AM
2939{
2940 int ret, uid1, uid2;
2941
2942 /* If no exceptions, instructions are always in same region. */
2943 if (!doing_eh (0))
2944 return 1;
2945
2946 /* If the table isn't allocated, assume the worst. */
2947 if (!insn_eh_region)
2948 return 0;
2949
2950 uid1 = INSN_UID (insn1);
2951 uid2 = INSN_UID (insn2);
2952
2953 /* if instructions have been allocated beyond the end, either
2954 the table is out of date, or this is a late addition, or
2955 something... Assume the worst. */
2956 if (uid1 > maximum_uid || uid2 > maximum_uid)
2957 return 0;
2958
2959 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
2960 return ret;
2961}
2962
This page took 0.652211 seconds and 5 git commands to generate.